1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/IR/CallSite.h"
24 #include "llvm/IR/ConstantRange.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/GetElementPtrTypeIterator.h"
29 #include "llvm/IR/GlobalAlias.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Metadata.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/IR/PatternMatch.h"
37 #include "llvm/IR/Statepoint.h"
38 #include "llvm/Support/Debug.h"
39 #include "llvm/Support/MathExtras.h"
40 #include <algorithm>
41 #include <array>
42 #include <cstring>
43 using namespace llvm;
44 using namespace llvm::PatternMatch;
45 
46 const unsigned MaxDepth = 6;
47 
48 // Controls the number of uses of the value searched for possible
49 // dominating comparisons.
50 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
51                                               cl::Hidden, cl::init(20));
52 
53 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
54 /// 0). For vector types, returns the element type's bitwidth.
55 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
56   if (unsigned BitWidth = Ty->getScalarSizeInBits())
57     return BitWidth;
58 
59   return DL.getPointerTypeSizeInBits(Ty);
60 }
61 
62 namespace {
63 // Simplifying using an assume can only be done in a particular control-flow
64 // context (the context instruction provides that context). If an assume and
65 // the context instruction are not in the same block then the DT helps in
66 // figuring out if we can use it.
67 struct Query {
68   const DataLayout &DL;
69   AssumptionCache *AC;
70   const Instruction *CxtI;
71   const DominatorTree *DT;
72 
73   /// Set of assumptions that should be excluded from further queries.
74   /// This is because of the potential for mutual recursion to cause
75   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
76   /// classic case of this is assume(x = y), which will attempt to determine
77   /// bits in x from bits in y, which will attempt to determine bits in y from
78   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
79   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
80   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
81   /// on.
82   std::array<const Value*, MaxDepth> Excluded;
83   unsigned NumExcluded;
84 
85   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
86         const DominatorTree *DT)
87       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
88 
89   Query(const Query &Q, const Value *NewExcl)
90       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
91     Excluded = Q.Excluded;
92     Excluded[NumExcluded++] = NewExcl;
93     assert(NumExcluded <= Excluded.size());
94   }
95 
96   bool isExcluded(const Value *Value) const {
97     if (NumExcluded == 0)
98       return false;
99     auto End = Excluded.begin() + NumExcluded;
100     return std::find(Excluded.begin(), End, Value) != End;
101   }
102 };
103 } // end anonymous namespace
104 
105 // Given the provided Value and, potentially, a context instruction, return
106 // the preferred context instruction (if any).
107 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
108   // If we've been provided with a context instruction, then use that (provided
109   // it has been inserted).
110   if (CxtI && CxtI->getParent())
111     return CxtI;
112 
113   // If the value is really an already-inserted instruction, then use that.
114   CxtI = dyn_cast<Instruction>(V);
115   if (CxtI && CxtI->getParent())
116     return CxtI;
117 
118   return nullptr;
119 }
120 
121 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
122                              unsigned Depth, const Query &Q);
123 
124 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
125                             const DataLayout &DL, unsigned Depth,
126                             AssumptionCache *AC, const Instruction *CxtI,
127                             const DominatorTree *DT) {
128   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
129                      Query(DL, AC, safeCxtI(V, CxtI), DT));
130 }
131 
132 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
133                                AssumptionCache *AC, const Instruction *CxtI,
134                                const DominatorTree *DT) {
135   assert(LHS->getType() == RHS->getType() &&
136          "LHS and RHS should have the same type");
137   assert(LHS->getType()->isIntOrIntVectorTy() &&
138          "LHS and RHS should be integers");
139   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
140   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
141   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
142   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
143   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
144   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
145 }
146 
147 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
148                            unsigned Depth, const Query &Q);
149 
150 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
151                           const DataLayout &DL, unsigned Depth,
152                           AssumptionCache *AC, const Instruction *CxtI,
153                           const DominatorTree *DT) {
154   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
155                    Query(DL, AC, safeCxtI(V, CxtI), DT));
156 }
157 
158 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
159                                    const Query &Q);
160 
161 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
162                                   unsigned Depth, AssumptionCache *AC,
163                                   const Instruction *CxtI,
164                                   const DominatorTree *DT) {
165   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
166                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
167 }
168 
169 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
170 
171 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
172                           AssumptionCache *AC, const Instruction *CxtI,
173                           const DominatorTree *DT) {
174   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
175 }
176 
177 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
178                               AssumptionCache *AC, const Instruction *CxtI,
179                               const DominatorTree *DT) {
180   bool NonNegative, Negative;
181   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
182   return NonNegative;
183 }
184 
185 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
186                            AssumptionCache *AC, const Instruction *CxtI,
187                            const DominatorTree *DT) {
188   if (auto *CI = dyn_cast<ConstantInt>(V))
189     return CI->getValue().isStrictlyPositive();
190 
191   // TODO: We'd doing two recursive queries here.  We should factor this such
192   // that only a single query is needed.
193   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
194     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
195 }
196 
197 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
198 
199 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
200                           AssumptionCache *AC, const Instruction *CxtI,
201                           const DominatorTree *DT) {
202   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
203                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
204                                          DT));
205 }
206 
207 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
208                               const Query &Q);
209 
210 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
211                              unsigned Depth, AssumptionCache *AC,
212                              const Instruction *CxtI, const DominatorTree *DT) {
213   return ::MaskedValueIsZero(V, Mask, Depth,
214                              Query(DL, AC, safeCxtI(V, CxtI), DT));
215 }
216 
217 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
218 
219 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
220                                   unsigned Depth, AssumptionCache *AC,
221                                   const Instruction *CxtI,
222                                   const DominatorTree *DT) {
223   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
227                                    APInt &KnownZero, APInt &KnownOne,
228                                    APInt &KnownZero2, APInt &KnownOne2,
229                                    unsigned Depth, const Query &Q) {
230   if (!Add) {
231     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
232       // We know that the top bits of C-X are clear if X contains less bits
233       // than C (i.e. no wrap-around can happen).  For example, 20-X is
234       // positive if we can prove that X is >= 0 and < 16.
235       if (!CLHS->getValue().isNegative()) {
236         unsigned BitWidth = KnownZero.getBitWidth();
237         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
238         // NLZ can't be BitWidth with no sign bit
239         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
240         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
241 
242         // If all of the MaskV bits are known to be zero, then we know the
243         // output top bits are zero, because we now know that the output is
244         // from [0-C].
245         if ((KnownZero2 & MaskV) == MaskV) {
246           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
247           // Top bits known zero.
248           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
249         }
250       }
251     }
252   }
253 
254   unsigned BitWidth = KnownZero.getBitWidth();
255 
256   // If an initial sequence of bits in the result is not needed, the
257   // corresponding bits in the operands are not needed.
258   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
259   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
260   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
261 
262   // Carry in a 1 for a subtract, rather than a 0.
263   APInt CarryIn(BitWidth, 0);
264   if (!Add) {
265     // Sum = LHS + ~RHS + 1
266     std::swap(KnownZero2, KnownOne2);
267     CarryIn.setBit(0);
268   }
269 
270   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
271   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
272 
273   // Compute known bits of the carry.
274   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
275   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
276 
277   // Compute set of known bits (where all three relevant bits are known).
278   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
279   APInt RHSKnown = KnownZero2 | KnownOne2;
280   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
281   APInt Known = LHSKnown & RHSKnown & CarryKnown;
282 
283   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
284          "known bits of sum differ");
285 
286   // Compute known bits of the result.
287   KnownZero = ~PossibleSumOne & Known;
288   KnownOne = PossibleSumOne & Known;
289 
290   // Are we still trying to solve for the sign bit?
291   if (!Known.isNegative()) {
292     if (NSW) {
293       // Adding two non-negative numbers, or subtracting a negative number from
294       // a non-negative one, can't wrap into negative.
295       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
296         KnownZero |= APInt::getSignBit(BitWidth);
297       // Adding two negative numbers, or subtracting a non-negative number from
298       // a negative one, can't wrap into non-negative.
299       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
300         KnownOne |= APInt::getSignBit(BitWidth);
301     }
302   }
303 }
304 
305 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
306                                 APInt &KnownZero, APInt &KnownOne,
307                                 APInt &KnownZero2, APInt &KnownOne2,
308                                 unsigned Depth, const Query &Q) {
309   unsigned BitWidth = KnownZero.getBitWidth();
310   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
311   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
312 
313   bool isKnownNegative = false;
314   bool isKnownNonNegative = false;
315   // If the multiplication is known not to overflow, compute the sign bit.
316   if (NSW) {
317     if (Op0 == Op1) {
318       // The product of a number with itself is non-negative.
319       isKnownNonNegative = true;
320     } else {
321       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
322       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
323       bool isKnownNegativeOp1 = KnownOne.isNegative();
324       bool isKnownNegativeOp0 = KnownOne2.isNegative();
325       // The product of two numbers with the same sign is non-negative.
326       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
327         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
328       // The product of a negative number and a non-negative number is either
329       // negative or zero.
330       if (!isKnownNonNegative)
331         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
332                            isKnownNonZero(Op0, Depth, Q)) ||
333                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
334                            isKnownNonZero(Op1, Depth, Q));
335     }
336   }
337 
338   // If low bits are zero in either operand, output low known-0 bits.
339   // Also compute a conservative estimate for high known-0 bits.
340   // More trickiness is possible, but this is sufficient for the
341   // interesting case of alignment computation.
342   KnownOne.clearAllBits();
343   unsigned TrailZ = KnownZero.countTrailingOnes() +
344                     KnownZero2.countTrailingOnes();
345   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
346                              KnownZero2.countLeadingOnes(),
347                              BitWidth) - BitWidth;
348 
349   TrailZ = std::min(TrailZ, BitWidth);
350   LeadZ = std::min(LeadZ, BitWidth);
351   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
352               APInt::getHighBitsSet(BitWidth, LeadZ);
353 
354   // Only make use of no-wrap flags if we failed to compute the sign bit
355   // directly.  This matters if the multiplication always overflows, in
356   // which case we prefer to follow the result of the direct computation,
357   // though as the program is invoking undefined behaviour we can choose
358   // whatever we like here.
359   if (isKnownNonNegative && !KnownOne.isNegative())
360     KnownZero.setBit(BitWidth - 1);
361   else if (isKnownNegative && !KnownZero.isNegative())
362     KnownOne.setBit(BitWidth - 1);
363 }
364 
365 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
366                                              APInt &KnownZero,
367                                              APInt &KnownOne) {
368   unsigned BitWidth = KnownZero.getBitWidth();
369   unsigned NumRanges = Ranges.getNumOperands() / 2;
370   assert(NumRanges >= 1);
371 
372   KnownZero.setAllBits();
373   KnownOne.setAllBits();
374 
375   for (unsigned i = 0; i < NumRanges; ++i) {
376     ConstantInt *Lower =
377         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
378     ConstantInt *Upper =
379         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
380     ConstantRange Range(Lower->getValue(), Upper->getValue());
381 
382     // The first CommonPrefixBits of all values in Range are equal.
383     unsigned CommonPrefixBits =
384         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
385 
386     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
387     KnownOne &= Range.getUnsignedMax() & Mask;
388     KnownZero &= ~Range.getUnsignedMax() & Mask;
389   }
390 }
391 
392 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
393   SmallVector<const Value *, 16> WorkSet(1, I);
394   SmallPtrSet<const Value *, 32> Visited;
395   SmallPtrSet<const Value *, 16> EphValues;
396 
397   // The instruction defining an assumption's condition itself is always
398   // considered ephemeral to that assumption (even if it has other
399   // non-ephemeral users). See r246696's test case for an example.
400   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
401     return true;
402 
403   while (!WorkSet.empty()) {
404     const Value *V = WorkSet.pop_back_val();
405     if (!Visited.insert(V).second)
406       continue;
407 
408     // If all uses of this value are ephemeral, then so is this value.
409     if (std::all_of(V->user_begin(), V->user_end(),
410                     [&](const User *U) { return EphValues.count(U); })) {
411       if (V == E)
412         return true;
413 
414       EphValues.insert(V);
415       if (const User *U = dyn_cast<User>(V))
416         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
417              J != JE; ++J) {
418           if (isSafeToSpeculativelyExecute(*J))
419             WorkSet.push_back(*J);
420         }
421     }
422   }
423 
424   return false;
425 }
426 
427 // Is this an intrinsic that cannot be speculated but also cannot trap?
428 static bool isAssumeLikeIntrinsic(const Instruction *I) {
429   if (const CallInst *CI = dyn_cast<CallInst>(I))
430     if (Function *F = CI->getCalledFunction())
431       switch (F->getIntrinsicID()) {
432       default: break;
433       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
434       case Intrinsic::assume:
435       case Intrinsic::dbg_declare:
436       case Intrinsic::dbg_value:
437       case Intrinsic::invariant_start:
438       case Intrinsic::invariant_end:
439       case Intrinsic::lifetime_start:
440       case Intrinsic::lifetime_end:
441       case Intrinsic::objectsize:
442       case Intrinsic::ptr_annotation:
443       case Intrinsic::var_annotation:
444         return true;
445       }
446 
447   return false;
448 }
449 
450 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
451                                     const DominatorTree *DT) {
452   Instruction *Inv = cast<Instruction>(V);
453 
454   // There are two restrictions on the use of an assume:
455   //  1. The assume must dominate the context (or the control flow must
456   //     reach the assume whenever it reaches the context).
457   //  2. The context must not be in the assume's set of ephemeral values
458   //     (otherwise we will use the assume to prove that the condition
459   //     feeding the assume is trivially true, thus causing the removal of
460   //     the assume).
461 
462   if (DT) {
463     if (DT->dominates(Inv, CxtI)) {
464       return true;
465     } else if (Inv->getParent() == CxtI->getParent()) {
466       // The context comes first, but they're both in the same block. Make sure
467       // there is nothing in between that might interrupt the control flow.
468       for (BasicBlock::const_iterator I =
469              std::next(BasicBlock::const_iterator(CxtI)),
470                                       IE(Inv); I != IE; ++I)
471         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
472           return false;
473 
474       return !isEphemeralValueOf(Inv, CxtI);
475     }
476 
477     return false;
478   }
479 
480   // When we don't have a DT, we do a limited search...
481   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
482     return true;
483   } else if (Inv->getParent() == CxtI->getParent()) {
484     // Search forward from the assume until we reach the context (or the end
485     // of the block); the common case is that the assume will come first.
486     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
487          IE = Inv->getParent()->end(); I != IE; ++I)
488       if (&*I == CxtI)
489         return true;
490 
491     // The context must come first...
492     for (BasicBlock::const_iterator I =
493            std::next(BasicBlock::const_iterator(CxtI)),
494                                     IE(Inv); I != IE; ++I)
495       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
496         return false;
497 
498     return !isEphemeralValueOf(Inv, CxtI);
499   }
500 
501   return false;
502 }
503 
504 bool llvm::isValidAssumeForContext(const Instruction *I,
505                                    const Instruction *CxtI,
506                                    const DominatorTree *DT) {
507   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
508 }
509 
510 template<typename LHS, typename RHS>
511 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
512                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
513 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
514   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
515 }
516 
517 template<typename LHS, typename RHS>
518 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
519                         BinaryOp_match<RHS, LHS, Instruction::And>>
520 m_c_And(const LHS &L, const RHS &R) {
521   return m_CombineOr(m_And(L, R), m_And(R, L));
522 }
523 
524 template<typename LHS, typename RHS>
525 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
526                         BinaryOp_match<RHS, LHS, Instruction::Or>>
527 m_c_Or(const LHS &L, const RHS &R) {
528   return m_CombineOr(m_Or(L, R), m_Or(R, L));
529 }
530 
531 template<typename LHS, typename RHS>
532 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
533                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
534 m_c_Xor(const LHS &L, const RHS &R) {
535   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
536 }
537 
538 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
539                                        APInt &KnownOne, unsigned Depth,
540                                        const Query &Q) {
541   // Use of assumptions is context-sensitive. If we don't have a context, we
542   // cannot use them!
543   if (!Q.AC || !Q.CxtI)
544     return;
545 
546   unsigned BitWidth = KnownZero.getBitWidth();
547 
548   for (auto &AssumeVH : Q.AC->assumptions()) {
549     if (!AssumeVH)
550       continue;
551     CallInst *I = cast<CallInst>(AssumeVH);
552     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
553            "Got assumption for the wrong function!");
554     if (Q.isExcluded(I))
555       continue;
556 
557     // Warning: This loop can end up being somewhat performance sensetive.
558     // We're running this loop for once for each value queried resulting in a
559     // runtime of ~O(#assumes * #values).
560 
561     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
562            "must be an assume intrinsic");
563 
564     Value *Arg = I->getArgOperand(0);
565 
566     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
567       assert(BitWidth == 1 && "assume operand is not i1?");
568       KnownZero.clearAllBits();
569       KnownOne.setAllBits();
570       return;
571     }
572 
573     // The remaining tests are all recursive, so bail out if we hit the limit.
574     if (Depth == MaxDepth)
575       continue;
576 
577     Value *A, *B;
578     auto m_V = m_CombineOr(m_Specific(V),
579                            m_CombineOr(m_PtrToInt(m_Specific(V)),
580                            m_BitCast(m_Specific(V))));
581 
582     CmpInst::Predicate Pred;
583     ConstantInt *C;
584     // assume(v = a)
585     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
586         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
587       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
588       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
589       KnownZero |= RHSKnownZero;
590       KnownOne  |= RHSKnownOne;
591     // assume(v & b = a)
592     } else if (match(Arg,
593                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
594                Pred == ICmpInst::ICMP_EQ &&
595                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
596       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
597       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
598       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
599       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
600 
601       // For those bits in the mask that are known to be one, we can propagate
602       // known bits from the RHS to V.
603       KnownZero |= RHSKnownZero & MaskKnownOne;
604       KnownOne  |= RHSKnownOne  & MaskKnownOne;
605     // assume(~(v & b) = a)
606     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
607                                    m_Value(A))) &&
608                Pred == ICmpInst::ICMP_EQ &&
609                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
611       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
612       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
613       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
614 
615       // For those bits in the mask that are known to be one, we can propagate
616       // inverted known bits from the RHS to V.
617       KnownZero |= RHSKnownOne  & MaskKnownOne;
618       KnownOne  |= RHSKnownZero & MaskKnownOne;
619     // assume(v | b = a)
620     } else if (match(Arg,
621                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
622                Pred == ICmpInst::ICMP_EQ &&
623                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
624       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
625       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
626       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
627       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
628 
629       // For those bits in B that are known to be zero, we can propagate known
630       // bits from the RHS to V.
631       KnownZero |= RHSKnownZero & BKnownZero;
632       KnownOne  |= RHSKnownOne  & BKnownZero;
633     // assume(~(v | b) = a)
634     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
635                                    m_Value(A))) &&
636                Pred == ICmpInst::ICMP_EQ &&
637                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
638       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
639       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
640       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
641       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
642 
643       // For those bits in B that are known to be zero, we can propagate
644       // inverted known bits from the RHS to V.
645       KnownZero |= RHSKnownOne  & BKnownZero;
646       KnownOne  |= RHSKnownZero & BKnownZero;
647     // assume(v ^ b = a)
648     } else if (match(Arg,
649                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
650                Pred == ICmpInst::ICMP_EQ &&
651                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
652       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
653       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
654       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
655       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
656 
657       // For those bits in B that are known to be zero, we can propagate known
658       // bits from the RHS to V. For those bits in B that are known to be one,
659       // we can propagate inverted known bits from the RHS to V.
660       KnownZero |= RHSKnownZero & BKnownZero;
661       KnownOne  |= RHSKnownOne  & BKnownZero;
662       KnownZero |= RHSKnownOne  & BKnownOne;
663       KnownOne  |= RHSKnownZero & BKnownOne;
664     // assume(~(v ^ b) = a)
665     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
666                                    m_Value(A))) &&
667                Pred == ICmpInst::ICMP_EQ &&
668                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
669       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
670       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
671       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
672       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
673 
674       // For those bits in B that are known to be zero, we can propagate
675       // inverted known bits from the RHS to V. For those bits in B that are
676       // known to be one, we can propagate known bits from the RHS to V.
677       KnownZero |= RHSKnownOne  & BKnownZero;
678       KnownOne  |= RHSKnownZero & BKnownZero;
679       KnownZero |= RHSKnownZero & BKnownOne;
680       KnownOne  |= RHSKnownOne  & BKnownOne;
681     // assume(v << c = a)
682     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
683                                    m_Value(A))) &&
684                Pred == ICmpInst::ICMP_EQ &&
685                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
686       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
687       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
688       // For those bits in RHS that are known, we can propagate them to known
689       // bits in V shifted to the right by C.
690       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
691       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
692     // assume(~(v << c) = a)
693     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
694                                    m_Value(A))) &&
695                Pred == ICmpInst::ICMP_EQ &&
696                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
697       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
698       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
699       // For those bits in RHS that are known, we can propagate them inverted
700       // to known bits in V shifted to the right by C.
701       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
702       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
703     // assume(v >> c = a)
704     } else if (match(Arg,
705                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
706                                                 m_AShr(m_V, m_ConstantInt(C))),
707                               m_Value(A))) &&
708                Pred == ICmpInst::ICMP_EQ &&
709                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
710       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
711       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
712       // For those bits in RHS that are known, we can propagate them to known
713       // bits in V shifted to the right by C.
714       KnownZero |= RHSKnownZero << C->getZExtValue();
715       KnownOne  |= RHSKnownOne  << C->getZExtValue();
716     // assume(~(v >> c) = a)
717     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
718                                              m_LShr(m_V, m_ConstantInt(C)),
719                                              m_AShr(m_V, m_ConstantInt(C)))),
720                                    m_Value(A))) &&
721                Pred == ICmpInst::ICMP_EQ &&
722                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
723       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
724       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
725       // For those bits in RHS that are known, we can propagate them inverted
726       // to known bits in V shifted to the right by C.
727       KnownZero |= RHSKnownOne  << C->getZExtValue();
728       KnownOne  |= RHSKnownZero << C->getZExtValue();
729     // assume(v >=_s c) where c is non-negative
730     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
731                Pred == ICmpInst::ICMP_SGE &&
732                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
733       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
734       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
735 
736       if (RHSKnownZero.isNegative()) {
737         // We know that the sign bit is zero.
738         KnownZero |= APInt::getSignBit(BitWidth);
739       }
740     // assume(v >_s c) where c is at least -1.
741     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
742                Pred == ICmpInst::ICMP_SGT &&
743                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
744       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
745       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
746 
747       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
748         // We know that the sign bit is zero.
749         KnownZero |= APInt::getSignBit(BitWidth);
750       }
751     // assume(v <=_s c) where c is negative
752     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
753                Pred == ICmpInst::ICMP_SLE &&
754                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
755       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
756       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
757 
758       if (RHSKnownOne.isNegative()) {
759         // We know that the sign bit is one.
760         KnownOne |= APInt::getSignBit(BitWidth);
761       }
762     // assume(v <_s c) where c is non-positive
763     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
764                Pred == ICmpInst::ICMP_SLT &&
765                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
766       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
767       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
768 
769       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
770         // We know that the sign bit is one.
771         KnownOne |= APInt::getSignBit(BitWidth);
772       }
773     // assume(v <=_u c)
774     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
775                Pred == ICmpInst::ICMP_ULE &&
776                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
777       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
778       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
779 
780       // Whatever high bits in c are zero are known to be zero.
781       KnownZero |=
782         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
783     // assume(v <_u c)
784     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
785                Pred == ICmpInst::ICMP_ULT &&
786                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
788       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
789 
790       // Whatever high bits in c are zero are known to be zero (if c is a power
791       // of 2, then one more).
792       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
793         KnownZero |=
794           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
795       else
796         KnownZero |=
797           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
798     }
799   }
800 }
801 
802 // Compute known bits from a shift operator, including those with a
803 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
804 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
805 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
806 // functors that, given the known-zero or known-one bits respectively, and a
807 // shift amount, compute the implied known-zero or known-one bits of the shift
808 // operator's result respectively for that shift amount. The results from calling
809 // KZF and KOF are conservatively combined for all permitted shift amounts.
810 template <typename KZFunctor, typename KOFunctor>
811 static void computeKnownBitsFromShiftOperator(Operator *I,
812               APInt &KnownZero, APInt &KnownOne,
813               APInt &KnownZero2, APInt &KnownOne2,
814               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
815   unsigned BitWidth = KnownZero.getBitWidth();
816 
817   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
818     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
819 
820     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
821     KnownZero = KZF(KnownZero, ShiftAmt);
822     KnownOne  = KOF(KnownOne, ShiftAmt);
823     return;
824   }
825 
826   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
827 
828   // Note: We cannot use KnownZero.getLimitedValue() here, because if
829   // BitWidth > 64 and any upper bits are known, we'll end up returning the
830   // limit value (which implies all bits are known).
831   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
832   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
833 
834   // It would be more-clearly correct to use the two temporaries for this
835   // calculation. Reusing the APInts here to prevent unnecessary allocations.
836   KnownZero.clearAllBits();
837   KnownOne.clearAllBits();
838 
839   // If we know the shifter operand is nonzero, we can sometimes infer more
840   // known bits. However this is expensive to compute, so be lazy about it and
841   // only compute it when absolutely necessary.
842   Optional<bool> ShifterOperandIsNonZero;
843 
844   // Early exit if we can't constrain any well-defined shift amount.
845   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
846     ShifterOperandIsNonZero =
847         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
848     if (!*ShifterOperandIsNonZero)
849       return;
850   }
851 
852   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
853 
854   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
855   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
856     // Combine the shifted known input bits only for those shift amounts
857     // compatible with its known constraints.
858     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
859       continue;
860     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
861       continue;
862     // If we know the shifter is nonzero, we may be able to infer more known
863     // bits. This check is sunk down as far as possible to avoid the expensive
864     // call to isKnownNonZero if the cheaper checks above fail.
865     if (ShiftAmt == 0) {
866       if (!ShifterOperandIsNonZero.hasValue())
867         ShifterOperandIsNonZero =
868             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
869       if (*ShifterOperandIsNonZero)
870         continue;
871     }
872 
873     KnownZero &= KZF(KnownZero2, ShiftAmt);
874     KnownOne  &= KOF(KnownOne2, ShiftAmt);
875   }
876 
877   // If there are no compatible shift amounts, then we've proven that the shift
878   // amount must be >= the BitWidth, and the result is undefined. We could
879   // return anything we'd like, but we need to make sure the sets of known bits
880   // stay disjoint (it should be better for some other code to actually
881   // propagate the undef than to pick a value here using known bits).
882   if ((KnownZero & KnownOne) != 0) {
883     KnownZero.clearAllBits();
884     KnownOne.clearAllBits();
885   }
886 }
887 
888 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
889                                          APInt &KnownOne, unsigned Depth,
890                                          const Query &Q) {
891   unsigned BitWidth = KnownZero.getBitWidth();
892 
893   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
894   switch (I->getOpcode()) {
895   default: break;
896   case Instruction::Load:
897     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
898       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
899     break;
900   case Instruction::And: {
901     // If either the LHS or the RHS are Zero, the result is zero.
902     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
903     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
904 
905     // Output known-1 bits are only known if set in both the LHS & RHS.
906     KnownOne &= KnownOne2;
907     // Output known-0 are known to be clear if zero in either the LHS | RHS.
908     KnownZero |= KnownZero2;
909 
910     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
911     // here we handle the more general case of adding any odd number by
912     // matching the form add(x, add(x, y)) where y is odd.
913     // TODO: This could be generalized to clearing any bit set in y where the
914     // following bit is known to be unset in y.
915     Value *Y = nullptr;
916     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
917                                       m_Value(Y))) ||
918         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
919                                       m_Value(Y)))) {
920       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
921       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
922       if (KnownOne3.countTrailingOnes() > 0)
923         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
924     }
925     break;
926   }
927   case Instruction::Or: {
928     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
929     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
930 
931     // Output known-0 bits are only known if clear in both the LHS & RHS.
932     KnownZero &= KnownZero2;
933     // Output known-1 are known to be set if set in either the LHS | RHS.
934     KnownOne |= KnownOne2;
935     break;
936   }
937   case Instruction::Xor: {
938     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940 
941     // Output known-0 bits are known if clear or set in both the LHS & RHS.
942     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
943     // Output known-1 are known to be set if set in only one of the LHS, RHS.
944     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
945     KnownZero = KnownZeroOut;
946     break;
947   }
948   case Instruction::Mul: {
949     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
950     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
951                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
952     break;
953   }
954   case Instruction::UDiv: {
955     // For the purposes of computing leading zeros we can conservatively
956     // treat a udiv as a logical right shift by the power of 2 known to
957     // be less than the denominator.
958     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
959     unsigned LeadZ = KnownZero2.countLeadingOnes();
960 
961     KnownOne2.clearAllBits();
962     KnownZero2.clearAllBits();
963     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
964     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
965     if (RHSUnknownLeadingOnes != BitWidth)
966       LeadZ = std::min(BitWidth,
967                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
968 
969     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
970     break;
971   }
972   case Instruction::Select:
973     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
974     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
975 
976     // Only known if known in both the LHS and RHS.
977     KnownOne &= KnownOne2;
978     KnownZero &= KnownZero2;
979     break;
980   case Instruction::FPTrunc:
981   case Instruction::FPExt:
982   case Instruction::FPToUI:
983   case Instruction::FPToSI:
984   case Instruction::SIToFP:
985   case Instruction::UIToFP:
986     break; // Can't work with floating point.
987   case Instruction::PtrToInt:
988   case Instruction::IntToPtr:
989   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
990     // FALL THROUGH and handle them the same as zext/trunc.
991   case Instruction::ZExt:
992   case Instruction::Trunc: {
993     Type *SrcTy = I->getOperand(0)->getType();
994 
995     unsigned SrcBitWidth;
996     // Note that we handle pointer operands here because of inttoptr/ptrtoint
997     // which fall through here.
998     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
999 
1000     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1001     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1002     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1003     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1004     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1005     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1006     // Any top bits are known to be zero.
1007     if (BitWidth > SrcBitWidth)
1008       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1009     break;
1010   }
1011   case Instruction::BitCast: {
1012     Type *SrcTy = I->getOperand(0)->getType();
1013     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1014          SrcTy->isFloatingPointTy()) &&
1015         // TODO: For now, not handling conversions like:
1016         // (bitcast i64 %x to <2 x i32>)
1017         !I->getType()->isVectorTy()) {
1018       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1019       break;
1020     }
1021     break;
1022   }
1023   case Instruction::SExt: {
1024     // Compute the bits in the result that are not present in the input.
1025     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1026 
1027     KnownZero = KnownZero.trunc(SrcBitWidth);
1028     KnownOne = KnownOne.trunc(SrcBitWidth);
1029     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1030     KnownZero = KnownZero.zext(BitWidth);
1031     KnownOne = KnownOne.zext(BitWidth);
1032 
1033     // If the sign bit of the input is known set or clear, then we know the
1034     // top bits of the result.
1035     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1036       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1037     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1038       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1039     break;
1040   }
1041   case Instruction::Shl: {
1042     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1043     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1044       return (KnownZero << ShiftAmt) |
1045              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1046     };
1047 
1048     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1049       return KnownOne << ShiftAmt;
1050     };
1051 
1052     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1053                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1054                                       KOF);
1055     break;
1056   }
1057   case Instruction::LShr: {
1058     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1059     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1060       return APIntOps::lshr(KnownZero, ShiftAmt) |
1061              // High bits known zero.
1062              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1063     };
1064 
1065     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1066       return APIntOps::lshr(KnownOne, ShiftAmt);
1067     };
1068 
1069     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1070                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1071                                       KOF);
1072     break;
1073   }
1074   case Instruction::AShr: {
1075     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1076     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1077       return APIntOps::ashr(KnownZero, ShiftAmt);
1078     };
1079 
1080     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1081       return APIntOps::ashr(KnownOne, ShiftAmt);
1082     };
1083 
1084     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1085                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1086                                       KOF);
1087     break;
1088   }
1089   case Instruction::Sub: {
1090     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1091     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1092                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1093                            Q);
1094     break;
1095   }
1096   case Instruction::Add: {
1097     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1098     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1099                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1100                            Q);
1101     break;
1102   }
1103   case Instruction::SRem:
1104     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1105       APInt RA = Rem->getValue().abs();
1106       if (RA.isPowerOf2()) {
1107         APInt LowBits = RA - 1;
1108         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1109                          Q);
1110 
1111         // The low bits of the first operand are unchanged by the srem.
1112         KnownZero = KnownZero2 & LowBits;
1113         KnownOne = KnownOne2 & LowBits;
1114 
1115         // If the first operand is non-negative or has all low bits zero, then
1116         // the upper bits are all zero.
1117         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1118           KnownZero |= ~LowBits;
1119 
1120         // If the first operand is negative and not all low bits are zero, then
1121         // the upper bits are all one.
1122         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1123           KnownOne |= ~LowBits;
1124 
1125         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1126       }
1127     }
1128 
1129     // The sign bit is the LHS's sign bit, except when the result of the
1130     // remainder is zero.
1131     if (KnownZero.isNonNegative()) {
1132       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1133       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1134                        Q);
1135       // If it's known zero, our sign bit is also zero.
1136       if (LHSKnownZero.isNegative())
1137         KnownZero.setBit(BitWidth - 1);
1138     }
1139 
1140     break;
1141   case Instruction::URem: {
1142     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1143       APInt RA = Rem->getValue();
1144       if (RA.isPowerOf2()) {
1145         APInt LowBits = (RA - 1);
1146         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1147         KnownZero |= ~LowBits;
1148         KnownOne &= LowBits;
1149         break;
1150       }
1151     }
1152 
1153     // Since the result is less than or equal to either operand, any leading
1154     // zero bits in either operand must also exist in the result.
1155     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1157 
1158     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1159                                 KnownZero2.countLeadingOnes());
1160     KnownOne.clearAllBits();
1161     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1162     break;
1163   }
1164 
1165   case Instruction::Alloca: {
1166     AllocaInst *AI = cast<AllocaInst>(I);
1167     unsigned Align = AI->getAlignment();
1168     if (Align == 0)
1169       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1170 
1171     if (Align > 0)
1172       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1173     break;
1174   }
1175   case Instruction::GetElementPtr: {
1176     // Analyze all of the subscripts of this getelementptr instruction
1177     // to determine if we can prove known low zero bits.
1178     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1179     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1180                      Q);
1181     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1182 
1183     gep_type_iterator GTI = gep_type_begin(I);
1184     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1185       Value *Index = I->getOperand(i);
1186       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1187         // Handle struct member offset arithmetic.
1188 
1189         // Handle case when index is vector zeroinitializer
1190         Constant *CIndex = cast<Constant>(Index);
1191         if (CIndex->isZeroValue())
1192           continue;
1193 
1194         if (CIndex->getType()->isVectorTy())
1195           Index = CIndex->getSplatValue();
1196 
1197         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1198         const StructLayout *SL = Q.DL.getStructLayout(STy);
1199         uint64_t Offset = SL->getElementOffset(Idx);
1200         TrailZ = std::min<unsigned>(TrailZ,
1201                                     countTrailingZeros(Offset));
1202       } else {
1203         // Handle array index arithmetic.
1204         Type *IndexedTy = GTI.getIndexedType();
1205         if (!IndexedTy->isSized()) {
1206           TrailZ = 0;
1207           break;
1208         }
1209         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1210         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1211         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1212         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1213         TrailZ = std::min(TrailZ,
1214                           unsigned(countTrailingZeros(TypeSize) +
1215                                    LocalKnownZero.countTrailingOnes()));
1216       }
1217     }
1218 
1219     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1220     break;
1221   }
1222   case Instruction::PHI: {
1223     PHINode *P = cast<PHINode>(I);
1224     // Handle the case of a simple two-predecessor recurrence PHI.
1225     // There's a lot more that could theoretically be done here, but
1226     // this is sufficient to catch some interesting cases.
1227     if (P->getNumIncomingValues() == 2) {
1228       for (unsigned i = 0; i != 2; ++i) {
1229         Value *L = P->getIncomingValue(i);
1230         Value *R = P->getIncomingValue(!i);
1231         Operator *LU = dyn_cast<Operator>(L);
1232         if (!LU)
1233           continue;
1234         unsigned Opcode = LU->getOpcode();
1235         // Check for operations that have the property that if
1236         // both their operands have low zero bits, the result
1237         // will have low zero bits.
1238         if (Opcode == Instruction::Add ||
1239             Opcode == Instruction::Sub ||
1240             Opcode == Instruction::And ||
1241             Opcode == Instruction::Or ||
1242             Opcode == Instruction::Mul) {
1243           Value *LL = LU->getOperand(0);
1244           Value *LR = LU->getOperand(1);
1245           // Find a recurrence.
1246           if (LL == I)
1247             L = LR;
1248           else if (LR == I)
1249             L = LL;
1250           else
1251             break;
1252           // Ok, we have a PHI of the form L op= R. Check for low
1253           // zero bits.
1254           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1255 
1256           // We need to take the minimum number of known bits
1257           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1258           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1259 
1260           KnownZero = APInt::getLowBitsSet(BitWidth,
1261                                            std::min(KnownZero2.countTrailingOnes(),
1262                                                     KnownZero3.countTrailingOnes()));
1263           break;
1264         }
1265       }
1266     }
1267 
1268     // Unreachable blocks may have zero-operand PHI nodes.
1269     if (P->getNumIncomingValues() == 0)
1270       break;
1271 
1272     // Otherwise take the unions of the known bit sets of the operands,
1273     // taking conservative care to avoid excessive recursion.
1274     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1275       // Skip if every incoming value references to ourself.
1276       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1277         break;
1278 
1279       KnownZero = APInt::getAllOnesValue(BitWidth);
1280       KnownOne = APInt::getAllOnesValue(BitWidth);
1281       for (Value *IncValue : P->incoming_values()) {
1282         // Skip direct self references.
1283         if (IncValue == P) continue;
1284 
1285         KnownZero2 = APInt(BitWidth, 0);
1286         KnownOne2 = APInt(BitWidth, 0);
1287         // Recurse, but cap the recursion to one level, because we don't
1288         // want to waste time spinning around in loops.
1289         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1290         KnownZero &= KnownZero2;
1291         KnownOne &= KnownOne2;
1292         // If all bits have been ruled out, there's no need to check
1293         // more operands.
1294         if (!KnownZero && !KnownOne)
1295           break;
1296       }
1297     }
1298     break;
1299   }
1300   case Instruction::Call:
1301   case Instruction::Invoke:
1302     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1303       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1304     // If a range metadata is attached to this IntrinsicInst, intersect the
1305     // explicit range specified by the metadata and the implicit range of
1306     // the intrinsic.
1307     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1308       switch (II->getIntrinsicID()) {
1309       default: break;
1310       case Intrinsic::bswap:
1311         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1312         KnownZero |= KnownZero2.byteSwap();
1313         KnownOne |= KnownOne2.byteSwap();
1314         break;
1315       case Intrinsic::ctlz:
1316       case Intrinsic::cttz: {
1317         unsigned LowBits = Log2_32(BitWidth)+1;
1318         // If this call is undefined for 0, the result will be less than 2^n.
1319         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1320           LowBits -= 1;
1321         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1322         break;
1323       }
1324       case Intrinsic::ctpop: {
1325         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1326         // We can bound the space the count needs.  Also, bits known to be zero
1327         // can't contribute to the population.
1328         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1329         unsigned LeadingZeros =
1330           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1331         assert(LeadingZeros <= BitWidth);
1332         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1333         KnownOne &= ~KnownZero;
1334         // TODO: we could bound KnownOne using the lower bound on the number
1335         // of bits which might be set provided by popcnt KnownOne2.
1336         break;
1337       }
1338       case Intrinsic::fabs: {
1339         Type *Ty = II->getType();
1340         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1341         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1342         break;
1343       }
1344       case Intrinsic::x86_sse42_crc32_64_64:
1345         KnownZero |= APInt::getHighBitsSet(64, 32);
1346         break;
1347       }
1348     }
1349     break;
1350   case Instruction::ExtractValue:
1351     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1352       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1353       if (EVI->getNumIndices() != 1) break;
1354       if (EVI->getIndices()[0] == 0) {
1355         switch (II->getIntrinsicID()) {
1356         default: break;
1357         case Intrinsic::uadd_with_overflow:
1358         case Intrinsic::sadd_with_overflow:
1359           computeKnownBitsAddSub(true, II->getArgOperand(0),
1360                                  II->getArgOperand(1), false, KnownZero,
1361                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1362           break;
1363         case Intrinsic::usub_with_overflow:
1364         case Intrinsic::ssub_with_overflow:
1365           computeKnownBitsAddSub(false, II->getArgOperand(0),
1366                                  II->getArgOperand(1), false, KnownZero,
1367                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1368           break;
1369         case Intrinsic::umul_with_overflow:
1370         case Intrinsic::smul_with_overflow:
1371           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1372                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1373                               Q);
1374           break;
1375         }
1376       }
1377     }
1378   }
1379 }
1380 
1381 /// Determine which bits of V are known to be either zero or one and return
1382 /// them in the KnownZero/KnownOne bit sets.
1383 ///
1384 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1385 /// we cannot optimize based on the assumption that it is zero without changing
1386 /// it to be an explicit zero.  If we don't change it to zero, other code could
1387 /// optimized based on the contradictory assumption that it is non-zero.
1388 /// Because instcombine aggressively folds operations with undef args anyway,
1389 /// this won't lose us code quality.
1390 ///
1391 /// This function is defined on values with integer type, values with pointer
1392 /// type, and vectors of integers.  In the case
1393 /// where V is a vector, known zero, and known one values are the
1394 /// same width as the vector element, and the bit is set only if it is true
1395 /// for all of the elements in the vector.
1396 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1397                       unsigned Depth, const Query &Q) {
1398   assert(V && "No Value?");
1399   assert(Depth <= MaxDepth && "Limit Search Depth");
1400   unsigned BitWidth = KnownZero.getBitWidth();
1401 
1402   assert((V->getType()->isIntOrIntVectorTy() ||
1403           V->getType()->isFPOrFPVectorTy() ||
1404           V->getType()->getScalarType()->isPointerTy()) &&
1405          "Not integer, floating point, or pointer type!");
1406   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1407          (!V->getType()->isIntOrIntVectorTy() ||
1408           V->getType()->getScalarSizeInBits() == BitWidth) &&
1409          KnownZero.getBitWidth() == BitWidth &&
1410          KnownOne.getBitWidth() == BitWidth &&
1411          "V, KnownOne and KnownZero should have same BitWidth");
1412 
1413   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1414     // We know all of the bits for a constant!
1415     KnownOne = CI->getValue();
1416     KnownZero = ~KnownOne;
1417     return;
1418   }
1419   // Null and aggregate-zero are all-zeros.
1420   if (isa<ConstantPointerNull>(V) ||
1421       isa<ConstantAggregateZero>(V)) {
1422     KnownOne.clearAllBits();
1423     KnownZero = APInt::getAllOnesValue(BitWidth);
1424     return;
1425   }
1426   // Handle a constant vector by taking the intersection of the known bits of
1427   // each element.  There is no real need to handle ConstantVector here, because
1428   // we don't handle undef in any particularly useful way.
1429   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1430     // We know that CDS must be a vector of integers. Take the intersection of
1431     // each element.
1432     KnownZero.setAllBits(); KnownOne.setAllBits();
1433     APInt Elt(KnownZero.getBitWidth(), 0);
1434     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1435       Elt = CDS->getElementAsInteger(i);
1436       KnownZero &= ~Elt;
1437       KnownOne &= Elt;
1438     }
1439     return;
1440   }
1441 
1442   // Start out not knowing anything.
1443   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1444 
1445   // Limit search depth.
1446   // All recursive calls that increase depth must come after this.
1447   if (Depth == MaxDepth)
1448     return;
1449 
1450   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1451   // the bits of its aliasee.
1452   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1453     if (!GA->isInterposable())
1454       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1455     return;
1456   }
1457 
1458   if (Operator *I = dyn_cast<Operator>(V))
1459     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1460 
1461   // Aligned pointers have trailing zeros - refine KnownZero set
1462   if (V->getType()->isPointerTy()) {
1463     unsigned Align = V->getPointerAlignment(Q.DL);
1464     if (Align)
1465       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1466   }
1467 
1468   // computeKnownBitsFromAssume strictly refines KnownZero and
1469   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1470 
1471   // Check whether a nearby assume intrinsic can determine some known bits.
1472   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1473 
1474   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1475 }
1476 
1477 /// Determine whether the sign bit is known to be zero or one.
1478 /// Convenience wrapper around computeKnownBits.
1479 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1480                     unsigned Depth, const Query &Q) {
1481   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1482   if (!BitWidth) {
1483     KnownZero = false;
1484     KnownOne = false;
1485     return;
1486   }
1487   APInt ZeroBits(BitWidth, 0);
1488   APInt OneBits(BitWidth, 0);
1489   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1490   KnownOne = OneBits[BitWidth - 1];
1491   KnownZero = ZeroBits[BitWidth - 1];
1492 }
1493 
1494 /// Return true if the given value is known to have exactly one
1495 /// bit set when defined. For vectors return true if every element is known to
1496 /// be a power of two when defined. Supports values with integer or pointer
1497 /// types and vectors of integers.
1498 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1499                             const Query &Q) {
1500   if (Constant *C = dyn_cast<Constant>(V)) {
1501     if (C->isNullValue())
1502       return OrZero;
1503     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1504       return CI->getValue().isPowerOf2();
1505     // TODO: Handle vector constants.
1506   }
1507 
1508   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1509   // it is shifted off the end then the result is undefined.
1510   if (match(V, m_Shl(m_One(), m_Value())))
1511     return true;
1512 
1513   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1514   // bottom.  If it is shifted off the bottom then the result is undefined.
1515   if (match(V, m_LShr(m_SignBit(), m_Value())))
1516     return true;
1517 
1518   // The remaining tests are all recursive, so bail out if we hit the limit.
1519   if (Depth++ == MaxDepth)
1520     return false;
1521 
1522   Value *X = nullptr, *Y = nullptr;
1523   // A shift left or a logical shift right of a power of two is a power of two
1524   // or zero.
1525   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1526                  match(V, m_LShr(m_Value(X), m_Value()))))
1527     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1528 
1529   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1530     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1531 
1532   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1533     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1534            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1535 
1536   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1537     // A power of two and'd with anything is a power of two or zero.
1538     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1539         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1540       return true;
1541     // X & (-X) is always a power of two or zero.
1542     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1543       return true;
1544     return false;
1545   }
1546 
1547   // Adding a power-of-two or zero to the same power-of-two or zero yields
1548   // either the original power-of-two, a larger power-of-two or zero.
1549   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1550     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1551     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1552       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1553           match(X, m_And(m_Value(), m_Specific(Y))))
1554         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1555           return true;
1556       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1557           match(Y, m_And(m_Value(), m_Specific(X))))
1558         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1559           return true;
1560 
1561       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1562       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1563       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1564 
1565       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1566       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1567       // If i8 V is a power of two or zero:
1568       //  ZeroBits: 1 1 1 0 1 1 1 1
1569       // ~ZeroBits: 0 0 0 1 0 0 0 0
1570       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1571         // If OrZero isn't set, we cannot give back a zero result.
1572         // Make sure either the LHS or RHS has a bit set.
1573         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1574           return true;
1575     }
1576   }
1577 
1578   // An exact divide or right shift can only shift off zero bits, so the result
1579   // is a power of two only if the first operand is a power of two and not
1580   // copying a sign bit (sdiv int_min, 2).
1581   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1582       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1583     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1584                                   Depth, Q);
1585   }
1586 
1587   return false;
1588 }
1589 
1590 /// \brief Test whether a GEP's result is known to be non-null.
1591 ///
1592 /// Uses properties inherent in a GEP to try to determine whether it is known
1593 /// to be non-null.
1594 ///
1595 /// Currently this routine does not support vector GEPs.
1596 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1597                               const Query &Q) {
1598   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1599     return false;
1600 
1601   // FIXME: Support vector-GEPs.
1602   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1603 
1604   // If the base pointer is non-null, we cannot walk to a null address with an
1605   // inbounds GEP in address space zero.
1606   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1607     return true;
1608 
1609   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1610   // If so, then the GEP cannot produce a null pointer, as doing so would
1611   // inherently violate the inbounds contract within address space zero.
1612   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1613        GTI != GTE; ++GTI) {
1614     // Struct types are easy -- they must always be indexed by a constant.
1615     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1616       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1617       unsigned ElementIdx = OpC->getZExtValue();
1618       const StructLayout *SL = Q.DL.getStructLayout(STy);
1619       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1620       if (ElementOffset > 0)
1621         return true;
1622       continue;
1623     }
1624 
1625     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1626     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1627       continue;
1628 
1629     // Fast path the constant operand case both for efficiency and so we don't
1630     // increment Depth when just zipping down an all-constant GEP.
1631     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1632       if (!OpC->isZero())
1633         return true;
1634       continue;
1635     }
1636 
1637     // We post-increment Depth here because while isKnownNonZero increments it
1638     // as well, when we pop back up that increment won't persist. We don't want
1639     // to recurse 10k times just because we have 10k GEP operands. We don't
1640     // bail completely out because we want to handle constant GEPs regardless
1641     // of depth.
1642     if (Depth++ >= MaxDepth)
1643       continue;
1644 
1645     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1646       return true;
1647   }
1648 
1649   return false;
1650 }
1651 
1652 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1653 /// ensure that the value it's attached to is never Value?  'RangeType' is
1654 /// is the type of the value described by the range.
1655 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1656                                        const APInt& Value) {
1657   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1658   assert(NumRanges >= 1);
1659   for (unsigned i = 0; i < NumRanges; ++i) {
1660     ConstantInt *Lower =
1661         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1662     ConstantInt *Upper =
1663         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1664     ConstantRange Range(Lower->getValue(), Upper->getValue());
1665     if (Range.contains(Value))
1666       return false;
1667   }
1668   return true;
1669 }
1670 
1671 /// Return true if the given value is known to be non-zero when defined.
1672 /// For vectors return true if every element is known to be non-zero when
1673 /// defined. Supports values with integer or pointer type and vectors of
1674 /// integers.
1675 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1676   if (Constant *C = dyn_cast<Constant>(V)) {
1677     if (C->isNullValue())
1678       return false;
1679     if (isa<ConstantInt>(C))
1680       // Must be non-zero due to null test above.
1681       return true;
1682     // TODO: Handle vectors
1683     return false;
1684   }
1685 
1686   if (Instruction* I = dyn_cast<Instruction>(V)) {
1687     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1688       // If the possible ranges don't contain zero, then the value is
1689       // definitely non-zero.
1690       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1691         const APInt ZeroValue(Ty->getBitWidth(), 0);
1692         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1693           return true;
1694       }
1695     }
1696   }
1697 
1698   // The remaining tests are all recursive, so bail out if we hit the limit.
1699   if (Depth++ >= MaxDepth)
1700     return false;
1701 
1702   // Check for pointer simplifications.
1703   if (V->getType()->isPointerTy()) {
1704     if (isKnownNonNull(V))
1705       return true;
1706     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1707       if (isGEPKnownNonNull(GEP, Depth, Q))
1708         return true;
1709   }
1710 
1711   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1712 
1713   // X | Y != 0 if X != 0 or Y != 0.
1714   Value *X = nullptr, *Y = nullptr;
1715   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1716     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1717 
1718   // ext X != 0 if X != 0.
1719   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1720     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1721 
1722   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1723   // if the lowest bit is shifted off the end.
1724   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1725     // shl nuw can't remove any non-zero bits.
1726     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1727     if (BO->hasNoUnsignedWrap())
1728       return isKnownNonZero(X, Depth, Q);
1729 
1730     APInt KnownZero(BitWidth, 0);
1731     APInt KnownOne(BitWidth, 0);
1732     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1733     if (KnownOne[0])
1734       return true;
1735   }
1736   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1737   // defined if the sign bit is shifted off the end.
1738   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1739     // shr exact can only shift out zero bits.
1740     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1741     if (BO->isExact())
1742       return isKnownNonZero(X, Depth, Q);
1743 
1744     bool XKnownNonNegative, XKnownNegative;
1745     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1746     if (XKnownNegative)
1747       return true;
1748 
1749     // If the shifter operand is a constant, and all of the bits shifted
1750     // out are known to be zero, and X is known non-zero then at least one
1751     // non-zero bit must remain.
1752     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1753       APInt KnownZero(BitWidth, 0);
1754       APInt KnownOne(BitWidth, 0);
1755       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1756 
1757       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1758       // Is there a known one in the portion not shifted out?
1759       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1760         return true;
1761       // Are all the bits to be shifted out known zero?
1762       if (KnownZero.countTrailingOnes() >= ShiftVal)
1763         return isKnownNonZero(X, Depth, Q);
1764     }
1765   }
1766   // div exact can only produce a zero if the dividend is zero.
1767   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1768     return isKnownNonZero(X, Depth, Q);
1769   }
1770   // X + Y.
1771   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1772     bool XKnownNonNegative, XKnownNegative;
1773     bool YKnownNonNegative, YKnownNegative;
1774     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1775     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1776 
1777     // If X and Y are both non-negative (as signed values) then their sum is not
1778     // zero unless both X and Y are zero.
1779     if (XKnownNonNegative && YKnownNonNegative)
1780       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1781         return true;
1782 
1783     // If X and Y are both negative (as signed values) then their sum is not
1784     // zero unless both X and Y equal INT_MIN.
1785     if (BitWidth && XKnownNegative && YKnownNegative) {
1786       APInt KnownZero(BitWidth, 0);
1787       APInt KnownOne(BitWidth, 0);
1788       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1789       // The sign bit of X is set.  If some other bit is set then X is not equal
1790       // to INT_MIN.
1791       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1792       if ((KnownOne & Mask) != 0)
1793         return true;
1794       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1795       // to INT_MIN.
1796       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1797       if ((KnownOne & Mask) != 0)
1798         return true;
1799     }
1800 
1801     // The sum of a non-negative number and a power of two is not zero.
1802     if (XKnownNonNegative &&
1803         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1804       return true;
1805     if (YKnownNonNegative &&
1806         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1807       return true;
1808   }
1809   // X * Y.
1810   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1811     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1812     // If X and Y are non-zero then so is X * Y as long as the multiplication
1813     // does not overflow.
1814     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1815         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1816       return true;
1817   }
1818   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1819   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1820     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1821         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1822       return true;
1823   }
1824   // PHI
1825   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1826     // Try and detect a recurrence that monotonically increases from a
1827     // starting value, as these are common as induction variables.
1828     if (PN->getNumIncomingValues() == 2) {
1829       Value *Start = PN->getIncomingValue(0);
1830       Value *Induction = PN->getIncomingValue(1);
1831       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1832         std::swap(Start, Induction);
1833       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1834         if (!C->isZero() && !C->isNegative()) {
1835           ConstantInt *X;
1836           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1837                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1838               !X->isNegative())
1839             return true;
1840         }
1841       }
1842     }
1843     // Check if all incoming values are non-zero constant.
1844     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1845       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1846     });
1847     if (AllNonZeroConstants)
1848       return true;
1849   }
1850 
1851   if (!BitWidth) return false;
1852   APInt KnownZero(BitWidth, 0);
1853   APInt KnownOne(BitWidth, 0);
1854   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1855   return KnownOne != 0;
1856 }
1857 
1858 /// Return true if V2 == V1 + X, where X is known non-zero.
1859 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1860   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1861   if (!BO || BO->getOpcode() != Instruction::Add)
1862     return false;
1863   Value *Op = nullptr;
1864   if (V2 == BO->getOperand(0))
1865     Op = BO->getOperand(1);
1866   else if (V2 == BO->getOperand(1))
1867     Op = BO->getOperand(0);
1868   else
1869     return false;
1870   return isKnownNonZero(Op, 0, Q);
1871 }
1872 
1873 /// Return true if it is known that V1 != V2.
1874 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1875   if (V1->getType()->isVectorTy() || V1 == V2)
1876     return false;
1877   if (V1->getType() != V2->getType())
1878     // We can't look through casts yet.
1879     return false;
1880   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1881     return true;
1882 
1883   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1884     // Are any known bits in V1 contradictory to known bits in V2? If V1
1885     // has a known zero where V2 has a known one, they must not be equal.
1886     auto BitWidth = Ty->getBitWidth();
1887     APInt KnownZero1(BitWidth, 0);
1888     APInt KnownOne1(BitWidth, 0);
1889     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1890     APInt KnownZero2(BitWidth, 0);
1891     APInt KnownOne2(BitWidth, 0);
1892     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1893 
1894     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1895     if (OppositeBits.getBoolValue())
1896       return true;
1897   }
1898   return false;
1899 }
1900 
1901 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1902 /// simplify operations downstream. Mask is known to be zero for bits that V
1903 /// cannot have.
1904 ///
1905 /// This function is defined on values with integer type, values with pointer
1906 /// type, and vectors of integers.  In the case
1907 /// where V is a vector, the mask, known zero, and known one values are the
1908 /// same width as the vector element, and the bit is set only if it is true
1909 /// for all of the elements in the vector.
1910 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1911                        const Query &Q) {
1912   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1913   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1914   return (KnownZero & Mask) == Mask;
1915 }
1916 
1917 
1918 
1919 /// Return the number of times the sign bit of the register is replicated into
1920 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1921 /// (itself), but other cases can give us information. For example, immediately
1922 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1923 /// other, so we return 3.
1924 ///
1925 /// 'Op' must have a scalar integer type.
1926 ///
1927 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1928   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1929   unsigned Tmp, Tmp2;
1930   unsigned FirstAnswer = 1;
1931 
1932   // Note that ConstantInt is handled by the general computeKnownBits case
1933   // below.
1934 
1935   if (Depth == 6)
1936     return 1;  // Limit search depth.
1937 
1938   Operator *U = dyn_cast<Operator>(V);
1939   switch (Operator::getOpcode(V)) {
1940   default: break;
1941   case Instruction::SExt:
1942     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1943     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1944 
1945   case Instruction::SDiv: {
1946     const APInt *Denominator;
1947     // sdiv X, C -> adds log(C) sign bits.
1948     if (match(U->getOperand(1), m_APInt(Denominator))) {
1949 
1950       // Ignore non-positive denominator.
1951       if (!Denominator->isStrictlyPositive())
1952         break;
1953 
1954       // Calculate the incoming numerator bits.
1955       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1956 
1957       // Add floor(log(C)) bits to the numerator bits.
1958       return std::min(TyBits, NumBits + Denominator->logBase2());
1959     }
1960     break;
1961   }
1962 
1963   case Instruction::SRem: {
1964     const APInt *Denominator;
1965     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1966     // positive constant.  This let us put a lower bound on the number of sign
1967     // bits.
1968     if (match(U->getOperand(1), m_APInt(Denominator))) {
1969 
1970       // Ignore non-positive denominator.
1971       if (!Denominator->isStrictlyPositive())
1972         break;
1973 
1974       // Calculate the incoming numerator bits. SRem by a positive constant
1975       // can't lower the number of sign bits.
1976       unsigned NumrBits =
1977           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1978 
1979       // Calculate the leading sign bit constraints by examining the
1980       // denominator.  Given that the denominator is positive, there are two
1981       // cases:
1982       //
1983       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
1984       //     (1 << ceilLogBase2(C)).
1985       //
1986       //  2. the numerator is negative.  Then the result range is (-C,0] and
1987       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1988       //
1989       // Thus a lower bound on the number of sign bits is `TyBits -
1990       // ceilLogBase2(C)`.
1991 
1992       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
1993       return std::max(NumrBits, ResBits);
1994     }
1995     break;
1996   }
1997 
1998   case Instruction::AShr: {
1999     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2000     // ashr X, C   -> adds C sign bits.  Vectors too.
2001     const APInt *ShAmt;
2002     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2003       Tmp += ShAmt->getZExtValue();
2004       if (Tmp > TyBits) Tmp = TyBits;
2005     }
2006     return Tmp;
2007   }
2008   case Instruction::Shl: {
2009     const APInt *ShAmt;
2010     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2011       // shl destroys sign bits.
2012       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2013       Tmp2 = ShAmt->getZExtValue();
2014       if (Tmp2 >= TyBits ||      // Bad shift.
2015           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2016       return Tmp - Tmp2;
2017     }
2018     break;
2019   }
2020   case Instruction::And:
2021   case Instruction::Or:
2022   case Instruction::Xor:    // NOT is handled here.
2023     // Logical binary ops preserve the number of sign bits at the worst.
2024     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2025     if (Tmp != 1) {
2026       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2027       FirstAnswer = std::min(Tmp, Tmp2);
2028       // We computed what we know about the sign bits as our first
2029       // answer. Now proceed to the generic code that uses
2030       // computeKnownBits, and pick whichever answer is better.
2031     }
2032     break;
2033 
2034   case Instruction::Select:
2035     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2036     if (Tmp == 1) return 1;  // Early out.
2037     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2038     return std::min(Tmp, Tmp2);
2039 
2040   case Instruction::Add:
2041     // Add can have at most one carry bit.  Thus we know that the output
2042     // is, at worst, one more bit than the inputs.
2043     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2044     if (Tmp == 1) return 1;  // Early out.
2045 
2046     // Special case decrementing a value (ADD X, -1):
2047     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2048       if (CRHS->isAllOnesValue()) {
2049         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2050         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2051 
2052         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2053         // sign bits set.
2054         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2055           return TyBits;
2056 
2057         // If we are subtracting one from a positive number, there is no carry
2058         // out of the result.
2059         if (KnownZero.isNegative())
2060           return Tmp;
2061       }
2062 
2063     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2064     if (Tmp2 == 1) return 1;
2065     return std::min(Tmp, Tmp2)-1;
2066 
2067   case Instruction::Sub:
2068     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2069     if (Tmp2 == 1) return 1;
2070 
2071     // Handle NEG.
2072     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2073       if (CLHS->isNullValue()) {
2074         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2075         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2076         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2077         // sign bits set.
2078         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2079           return TyBits;
2080 
2081         // If the input is known to be positive (the sign bit is known clear),
2082         // the output of the NEG has the same number of sign bits as the input.
2083         if (KnownZero.isNegative())
2084           return Tmp2;
2085 
2086         // Otherwise, we treat this like a SUB.
2087       }
2088 
2089     // Sub can have at most one carry bit.  Thus we know that the output
2090     // is, at worst, one more bit than the inputs.
2091     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2092     if (Tmp == 1) return 1;  // Early out.
2093     return std::min(Tmp, Tmp2)-1;
2094 
2095   case Instruction::PHI: {
2096     PHINode *PN = cast<PHINode>(U);
2097     unsigned NumIncomingValues = PN->getNumIncomingValues();
2098     // Don't analyze large in-degree PHIs.
2099     if (NumIncomingValues > 4) break;
2100     // Unreachable blocks may have zero-operand PHI nodes.
2101     if (NumIncomingValues == 0) break;
2102 
2103     // Take the minimum of all incoming values.  This can't infinitely loop
2104     // because of our depth threshold.
2105     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2106     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2107       if (Tmp == 1) return Tmp;
2108       Tmp = std::min(
2109           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2110     }
2111     return Tmp;
2112   }
2113 
2114   case Instruction::Trunc:
2115     // FIXME: it's tricky to do anything useful for this, but it is an important
2116     // case for targets like X86.
2117     break;
2118   }
2119 
2120   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2121   // use this information.
2122   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2123   APInt Mask;
2124   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2125 
2126   if (KnownZero.isNegative()) {        // sign bit is 0
2127     Mask = KnownZero;
2128   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2129     Mask = KnownOne;
2130   } else {
2131     // Nothing known.
2132     return FirstAnswer;
2133   }
2134 
2135   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2136   // the number of identical bits in the top of the input value.
2137   Mask = ~Mask;
2138   Mask <<= Mask.getBitWidth()-TyBits;
2139   // Return # leading zeros.  We use 'min' here in case Val was zero before
2140   // shifting.  We don't want to return '64' as for an i32 "0".
2141   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2142 }
2143 
2144 /// This function computes the integer multiple of Base that equals V.
2145 /// If successful, it returns true and returns the multiple in
2146 /// Multiple. If unsuccessful, it returns false. It looks
2147 /// through SExt instructions only if LookThroughSExt is true.
2148 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2149                            bool LookThroughSExt, unsigned Depth) {
2150   const unsigned MaxDepth = 6;
2151 
2152   assert(V && "No Value?");
2153   assert(Depth <= MaxDepth && "Limit Search Depth");
2154   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2155 
2156   Type *T = V->getType();
2157 
2158   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2159 
2160   if (Base == 0)
2161     return false;
2162 
2163   if (Base == 1) {
2164     Multiple = V;
2165     return true;
2166   }
2167 
2168   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2169   Constant *BaseVal = ConstantInt::get(T, Base);
2170   if (CO && CO == BaseVal) {
2171     // Multiple is 1.
2172     Multiple = ConstantInt::get(T, 1);
2173     return true;
2174   }
2175 
2176   if (CI && CI->getZExtValue() % Base == 0) {
2177     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2178     return true;
2179   }
2180 
2181   if (Depth == MaxDepth) return false;  // Limit search depth.
2182 
2183   Operator *I = dyn_cast<Operator>(V);
2184   if (!I) return false;
2185 
2186   switch (I->getOpcode()) {
2187   default: break;
2188   case Instruction::SExt:
2189     if (!LookThroughSExt) return false;
2190     // otherwise fall through to ZExt
2191   case Instruction::ZExt:
2192     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2193                            LookThroughSExt, Depth+1);
2194   case Instruction::Shl:
2195   case Instruction::Mul: {
2196     Value *Op0 = I->getOperand(0);
2197     Value *Op1 = I->getOperand(1);
2198 
2199     if (I->getOpcode() == Instruction::Shl) {
2200       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2201       if (!Op1CI) return false;
2202       // Turn Op0 << Op1 into Op0 * 2^Op1
2203       APInt Op1Int = Op1CI->getValue();
2204       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2205       APInt API(Op1Int.getBitWidth(), 0);
2206       API.setBit(BitToSet);
2207       Op1 = ConstantInt::get(V->getContext(), API);
2208     }
2209 
2210     Value *Mul0 = nullptr;
2211     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2212       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2213         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2214           if (Op1C->getType()->getPrimitiveSizeInBits() <
2215               MulC->getType()->getPrimitiveSizeInBits())
2216             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2217           if (Op1C->getType()->getPrimitiveSizeInBits() >
2218               MulC->getType()->getPrimitiveSizeInBits())
2219             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2220 
2221           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2222           Multiple = ConstantExpr::getMul(MulC, Op1C);
2223           return true;
2224         }
2225 
2226       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2227         if (Mul0CI->getValue() == 1) {
2228           // V == Base * Op1, so return Op1
2229           Multiple = Op1;
2230           return true;
2231         }
2232     }
2233 
2234     Value *Mul1 = nullptr;
2235     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2236       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2237         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2238           if (Op0C->getType()->getPrimitiveSizeInBits() <
2239               MulC->getType()->getPrimitiveSizeInBits())
2240             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2241           if (Op0C->getType()->getPrimitiveSizeInBits() >
2242               MulC->getType()->getPrimitiveSizeInBits())
2243             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2244 
2245           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2246           Multiple = ConstantExpr::getMul(MulC, Op0C);
2247           return true;
2248         }
2249 
2250       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2251         if (Mul1CI->getValue() == 1) {
2252           // V == Base * Op0, so return Op0
2253           Multiple = Op0;
2254           return true;
2255         }
2256     }
2257   }
2258   }
2259 
2260   // We could not determine if V is a multiple of Base.
2261   return false;
2262 }
2263 
2264 /// Return true if we can prove that the specified FP value is never equal to
2265 /// -0.0.
2266 ///
2267 /// NOTE: this function will need to be revisited when we support non-default
2268 /// rounding modes!
2269 ///
2270 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2271   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2272     return !CFP->getValueAPF().isNegZero();
2273 
2274   // FIXME: Magic number! At the least, this should be given a name because it's
2275   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2276   // expose it as a parameter, so it can be used for testing / experimenting.
2277   if (Depth == 6)
2278     return false;  // Limit search depth.
2279 
2280   const Operator *I = dyn_cast<Operator>(V);
2281   if (!I) return false;
2282 
2283   // Check if the nsz fast-math flag is set
2284   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2285     if (FPO->hasNoSignedZeros())
2286       return true;
2287 
2288   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2289   if (I->getOpcode() == Instruction::FAdd)
2290     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2291       if (CFP->isNullValue())
2292         return true;
2293 
2294   // sitofp and uitofp turn into +0.0 for zero.
2295   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2296     return true;
2297 
2298   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2299     // sqrt(-0.0) = -0.0, no other negative results are possible.
2300     if (II->getIntrinsicID() == Intrinsic::sqrt)
2301       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
2302 
2303   if (const CallInst *CI = dyn_cast<CallInst>(I))
2304     if (const Function *F = CI->getCalledFunction()) {
2305       if (F->isDeclaration()) {
2306         // abs(x) != -0.0
2307         if (F->getName() == "abs") return true;
2308         // fabs[lf](x) != -0.0
2309         if (F->getName() == "fabs") return true;
2310         if (F->getName() == "fabsf") return true;
2311         if (F->getName() == "fabsl") return true;
2312         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2313             F->getName() == "sqrtl")
2314           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
2315       }
2316     }
2317 
2318   return false;
2319 }
2320 
2321 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2322   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2323     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2324 
2325   // FIXME: Magic number! At the least, this should be given a name because it's
2326   // used similarly in CannotBeNegativeZero(). A better fix may be to
2327   // expose it as a parameter, so it can be used for testing / experimenting.
2328   if (Depth == 6)
2329     return false;  // Limit search depth.
2330 
2331   const Operator *I = dyn_cast<Operator>(V);
2332   if (!I) return false;
2333 
2334   switch (I->getOpcode()) {
2335   default: break;
2336   // Unsigned integers are always nonnegative.
2337   case Instruction::UIToFP:
2338     return true;
2339   case Instruction::FMul:
2340     // x*x is always non-negative or a NaN.
2341     if (I->getOperand(0) == I->getOperand(1))
2342       return true;
2343     // Fall through
2344   case Instruction::FAdd:
2345   case Instruction::FDiv:
2346   case Instruction::FRem:
2347     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2348            CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2349   case Instruction::Select:
2350     return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2351            CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2352   case Instruction::FPExt:
2353   case Instruction::FPTrunc:
2354     // Widening/narrowing never change sign.
2355     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2356   case Instruction::Call:
2357     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2358       switch (II->getIntrinsicID()) {
2359       default: break;
2360       case Intrinsic::maxnum:
2361         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2362                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2363       case Intrinsic::minnum:
2364         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2365                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2366       case Intrinsic::exp:
2367       case Intrinsic::exp2:
2368       case Intrinsic::fabs:
2369       case Intrinsic::sqrt:
2370         return true;
2371       case Intrinsic::powi:
2372         if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2373           // powi(x,n) is non-negative if n is even.
2374           if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2375             return true;
2376         }
2377         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2378       case Intrinsic::fma:
2379       case Intrinsic::fmuladd:
2380         // x*x+y is non-negative if y is non-negative.
2381         return I->getOperand(0) == I->getOperand(1) &&
2382                CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2383       }
2384     break;
2385   }
2386   return false;
2387 }
2388 
2389 /// If the specified value can be set by repeating the same byte in memory,
2390 /// return the i8 value that it is represented with.  This is
2391 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2392 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2393 /// byte store (e.g. i16 0x1234), return null.
2394 Value *llvm::isBytewiseValue(Value *V) {
2395   // All byte-wide stores are splatable, even of arbitrary variables.
2396   if (V->getType()->isIntegerTy(8)) return V;
2397 
2398   // Handle 'null' ConstantArrayZero etc.
2399   if (Constant *C = dyn_cast<Constant>(V))
2400     if (C->isNullValue())
2401       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2402 
2403   // Constant float and double values can be handled as integer values if the
2404   // corresponding integer value is "byteable".  An important case is 0.0.
2405   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2406     if (CFP->getType()->isFloatTy())
2407       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2408     if (CFP->getType()->isDoubleTy())
2409       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2410     // Don't handle long double formats, which have strange constraints.
2411   }
2412 
2413   // We can handle constant integers that are multiple of 8 bits.
2414   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2415     if (CI->getBitWidth() % 8 == 0) {
2416       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2417 
2418       if (!CI->getValue().isSplat(8))
2419         return nullptr;
2420       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2421     }
2422   }
2423 
2424   // A ConstantDataArray/Vector is splatable if all its members are equal and
2425   // also splatable.
2426   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2427     Value *Elt = CA->getElementAsConstant(0);
2428     Value *Val = isBytewiseValue(Elt);
2429     if (!Val)
2430       return nullptr;
2431 
2432     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2433       if (CA->getElementAsConstant(I) != Elt)
2434         return nullptr;
2435 
2436     return Val;
2437   }
2438 
2439   // Conceptually, we could handle things like:
2440   //   %a = zext i8 %X to i16
2441   //   %b = shl i16 %a, 8
2442   //   %c = or i16 %a, %b
2443   // but until there is an example that actually needs this, it doesn't seem
2444   // worth worrying about.
2445   return nullptr;
2446 }
2447 
2448 
2449 // This is the recursive version of BuildSubAggregate. It takes a few different
2450 // arguments. Idxs is the index within the nested struct From that we are
2451 // looking at now (which is of type IndexedType). IdxSkip is the number of
2452 // indices from Idxs that should be left out when inserting into the resulting
2453 // struct. To is the result struct built so far, new insertvalue instructions
2454 // build on that.
2455 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2456                                 SmallVectorImpl<unsigned> &Idxs,
2457                                 unsigned IdxSkip,
2458                                 Instruction *InsertBefore) {
2459   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2460   if (STy) {
2461     // Save the original To argument so we can modify it
2462     Value *OrigTo = To;
2463     // General case, the type indexed by Idxs is a struct
2464     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2465       // Process each struct element recursively
2466       Idxs.push_back(i);
2467       Value *PrevTo = To;
2468       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2469                              InsertBefore);
2470       Idxs.pop_back();
2471       if (!To) {
2472         // Couldn't find any inserted value for this index? Cleanup
2473         while (PrevTo != OrigTo) {
2474           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2475           PrevTo = Del->getAggregateOperand();
2476           Del->eraseFromParent();
2477         }
2478         // Stop processing elements
2479         break;
2480       }
2481     }
2482     // If we successfully found a value for each of our subaggregates
2483     if (To)
2484       return To;
2485   }
2486   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2487   // the struct's elements had a value that was inserted directly. In the latter
2488   // case, perhaps we can't determine each of the subelements individually, but
2489   // we might be able to find the complete struct somewhere.
2490 
2491   // Find the value that is at that particular spot
2492   Value *V = FindInsertedValue(From, Idxs);
2493 
2494   if (!V)
2495     return nullptr;
2496 
2497   // Insert the value in the new (sub) aggregrate
2498   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2499                                        "tmp", InsertBefore);
2500 }
2501 
2502 // This helper takes a nested struct and extracts a part of it (which is again a
2503 // struct) into a new value. For example, given the struct:
2504 // { a, { b, { c, d }, e } }
2505 // and the indices "1, 1" this returns
2506 // { c, d }.
2507 //
2508 // It does this by inserting an insertvalue for each element in the resulting
2509 // struct, as opposed to just inserting a single struct. This will only work if
2510 // each of the elements of the substruct are known (ie, inserted into From by an
2511 // insertvalue instruction somewhere).
2512 //
2513 // All inserted insertvalue instructions are inserted before InsertBefore
2514 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2515                                 Instruction *InsertBefore) {
2516   assert(InsertBefore && "Must have someplace to insert!");
2517   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2518                                                              idx_range);
2519   Value *To = UndefValue::get(IndexedType);
2520   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2521   unsigned IdxSkip = Idxs.size();
2522 
2523   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2524 }
2525 
2526 /// Given an aggregrate and an sequence of indices, see if
2527 /// the scalar value indexed is already around as a register, for example if it
2528 /// were inserted directly into the aggregrate.
2529 ///
2530 /// If InsertBefore is not null, this function will duplicate (modified)
2531 /// insertvalues when a part of a nested struct is extracted.
2532 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2533                                Instruction *InsertBefore) {
2534   // Nothing to index? Just return V then (this is useful at the end of our
2535   // recursion).
2536   if (idx_range.empty())
2537     return V;
2538   // We have indices, so V should have an indexable type.
2539   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2540          "Not looking at a struct or array?");
2541   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2542          "Invalid indices for type?");
2543 
2544   if (Constant *C = dyn_cast<Constant>(V)) {
2545     C = C->getAggregateElement(idx_range[0]);
2546     if (!C) return nullptr;
2547     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2548   }
2549 
2550   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2551     // Loop the indices for the insertvalue instruction in parallel with the
2552     // requested indices
2553     const unsigned *req_idx = idx_range.begin();
2554     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2555          i != e; ++i, ++req_idx) {
2556       if (req_idx == idx_range.end()) {
2557         // We can't handle this without inserting insertvalues
2558         if (!InsertBefore)
2559           return nullptr;
2560 
2561         // The requested index identifies a part of a nested aggregate. Handle
2562         // this specially. For example,
2563         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2564         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2565         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2566         // This can be changed into
2567         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2568         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2569         // which allows the unused 0,0 element from the nested struct to be
2570         // removed.
2571         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2572                                  InsertBefore);
2573       }
2574 
2575       // This insert value inserts something else than what we are looking for.
2576       // See if the (aggregate) value inserted into has the value we are
2577       // looking for, then.
2578       if (*req_idx != *i)
2579         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2580                                  InsertBefore);
2581     }
2582     // If we end up here, the indices of the insertvalue match with those
2583     // requested (though possibly only partially). Now we recursively look at
2584     // the inserted value, passing any remaining indices.
2585     return FindInsertedValue(I->getInsertedValueOperand(),
2586                              makeArrayRef(req_idx, idx_range.end()),
2587                              InsertBefore);
2588   }
2589 
2590   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2591     // If we're extracting a value from an aggregate that was extracted from
2592     // something else, we can extract from that something else directly instead.
2593     // However, we will need to chain I's indices with the requested indices.
2594 
2595     // Calculate the number of indices required
2596     unsigned size = I->getNumIndices() + idx_range.size();
2597     // Allocate some space to put the new indices in
2598     SmallVector<unsigned, 5> Idxs;
2599     Idxs.reserve(size);
2600     // Add indices from the extract value instruction
2601     Idxs.append(I->idx_begin(), I->idx_end());
2602 
2603     // Add requested indices
2604     Idxs.append(idx_range.begin(), idx_range.end());
2605 
2606     assert(Idxs.size() == size
2607            && "Number of indices added not correct?");
2608 
2609     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2610   }
2611   // Otherwise, we don't know (such as, extracting from a function return value
2612   // or load instruction)
2613   return nullptr;
2614 }
2615 
2616 /// Analyze the specified pointer to see if it can be expressed as a base
2617 /// pointer plus a constant offset. Return the base and offset to the caller.
2618 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2619                                               const DataLayout &DL) {
2620   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2621   APInt ByteOffset(BitWidth, 0);
2622 
2623   // We walk up the defs but use a visited set to handle unreachable code. In
2624   // that case, we stop after accumulating the cycle once (not that it
2625   // matters).
2626   SmallPtrSet<Value *, 16> Visited;
2627   while (Visited.insert(Ptr).second) {
2628     if (Ptr->getType()->isVectorTy())
2629       break;
2630 
2631     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2632       APInt GEPOffset(BitWidth, 0);
2633       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2634         break;
2635 
2636       ByteOffset += GEPOffset;
2637 
2638       Ptr = GEP->getPointerOperand();
2639     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2640                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2641       Ptr = cast<Operator>(Ptr)->getOperand(0);
2642     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2643       if (GA->isInterposable())
2644         break;
2645       Ptr = GA->getAliasee();
2646     } else {
2647       break;
2648     }
2649   }
2650   Offset = ByteOffset.getSExtValue();
2651   return Ptr;
2652 }
2653 
2654 
2655 /// This function computes the length of a null-terminated C string pointed to
2656 /// by V. If successful, it returns true and returns the string in Str.
2657 /// If unsuccessful, it returns false.
2658 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2659                                  uint64_t Offset, bool TrimAtNul) {
2660   assert(V);
2661 
2662   // Look through bitcast instructions and geps.
2663   V = V->stripPointerCasts();
2664 
2665   // If the value is a GEP instruction or constant expression, treat it as an
2666   // offset.
2667   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2668     // Make sure the GEP has exactly three arguments.
2669     if (GEP->getNumOperands() != 3)
2670       return false;
2671 
2672     // Make sure the index-ee is a pointer to array of i8.
2673     ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2674     if (!AT || !AT->getElementType()->isIntegerTy(8))
2675       return false;
2676 
2677     // Check to make sure that the first operand of the GEP is an integer and
2678     // has value 0 so that we are sure we're indexing into the initializer.
2679     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2680     if (!FirstIdx || !FirstIdx->isZero())
2681       return false;
2682 
2683     // If the second index isn't a ConstantInt, then this is a variable index
2684     // into the array.  If this occurs, we can't say anything meaningful about
2685     // the string.
2686     uint64_t StartIdx = 0;
2687     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2688       StartIdx = CI->getZExtValue();
2689     else
2690       return false;
2691     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2692                                  TrimAtNul);
2693   }
2694 
2695   // The GEP instruction, constant or instruction, must reference a global
2696   // variable that is a constant and is initialized. The referenced constant
2697   // initializer is the array that we'll use for optimization.
2698   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2699   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2700     return false;
2701 
2702   // Handle the all-zeros case
2703   if (GV->getInitializer()->isNullValue()) {
2704     // This is a degenerate case. The initializer is constant zero so the
2705     // length of the string must be zero.
2706     Str = "";
2707     return true;
2708   }
2709 
2710   // Must be a Constant Array
2711   const ConstantDataArray *Array =
2712     dyn_cast<ConstantDataArray>(GV->getInitializer());
2713   if (!Array || !Array->isString())
2714     return false;
2715 
2716   // Get the number of elements in the array
2717   uint64_t NumElts = Array->getType()->getArrayNumElements();
2718 
2719   // Start out with the entire array in the StringRef.
2720   Str = Array->getAsString();
2721 
2722   if (Offset > NumElts)
2723     return false;
2724 
2725   // Skip over 'offset' bytes.
2726   Str = Str.substr(Offset);
2727 
2728   if (TrimAtNul) {
2729     // Trim off the \0 and anything after it.  If the array is not nul
2730     // terminated, we just return the whole end of string.  The client may know
2731     // some other way that the string is length-bound.
2732     Str = Str.substr(0, Str.find('\0'));
2733   }
2734   return true;
2735 }
2736 
2737 // These next two are very similar to the above, but also look through PHI
2738 // nodes.
2739 // TODO: See if we can integrate these two together.
2740 
2741 /// If we can compute the length of the string pointed to by
2742 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2743 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2744   // Look through noop bitcast instructions.
2745   V = V->stripPointerCasts();
2746 
2747   // If this is a PHI node, there are two cases: either we have already seen it
2748   // or we haven't.
2749   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2750     if (!PHIs.insert(PN).second)
2751       return ~0ULL;  // already in the set.
2752 
2753     // If it was new, see if all the input strings are the same length.
2754     uint64_t LenSoFar = ~0ULL;
2755     for (Value *IncValue : PN->incoming_values()) {
2756       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2757       if (Len == 0) return 0; // Unknown length -> unknown.
2758 
2759       if (Len == ~0ULL) continue;
2760 
2761       if (Len != LenSoFar && LenSoFar != ~0ULL)
2762         return 0;    // Disagree -> unknown.
2763       LenSoFar = Len;
2764     }
2765 
2766     // Success, all agree.
2767     return LenSoFar;
2768   }
2769 
2770   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2771   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2772     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2773     if (Len1 == 0) return 0;
2774     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2775     if (Len2 == 0) return 0;
2776     if (Len1 == ~0ULL) return Len2;
2777     if (Len2 == ~0ULL) return Len1;
2778     if (Len1 != Len2) return 0;
2779     return Len1;
2780   }
2781 
2782   // Otherwise, see if we can read the string.
2783   StringRef StrData;
2784   if (!getConstantStringInfo(V, StrData))
2785     return 0;
2786 
2787   return StrData.size()+1;
2788 }
2789 
2790 /// If we can compute the length of the string pointed to by
2791 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2792 uint64_t llvm::GetStringLength(Value *V) {
2793   if (!V->getType()->isPointerTy()) return 0;
2794 
2795   SmallPtrSet<PHINode*, 32> PHIs;
2796   uint64_t Len = GetStringLengthH(V, PHIs);
2797   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2798   // an empty string as a length.
2799   return Len == ~0ULL ? 1 : Len;
2800 }
2801 
2802 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2803 /// previous iteration of the loop was referring to the same object as \p PN.
2804 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2805   // Find the loop-defined value.
2806   Loop *L = LI->getLoopFor(PN->getParent());
2807   if (PN->getNumIncomingValues() != 2)
2808     return true;
2809 
2810   // Find the value from previous iteration.
2811   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2812   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2813     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2814   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2815     return true;
2816 
2817   // If a new pointer is loaded in the loop, the pointer references a different
2818   // object in every iteration.  E.g.:
2819   //    for (i)
2820   //       int *p = a[i];
2821   //       ...
2822   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2823     if (!L->isLoopInvariant(Load->getPointerOperand()))
2824       return false;
2825   return true;
2826 }
2827 
2828 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2829                                  unsigned MaxLookup) {
2830   if (!V->getType()->isPointerTy())
2831     return V;
2832   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2833     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2834       V = GEP->getPointerOperand();
2835     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2836                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2837       V = cast<Operator>(V)->getOperand(0);
2838     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2839       if (GA->isInterposable())
2840         return V;
2841       V = GA->getAliasee();
2842     } else {
2843       // See if InstructionSimplify knows any relevant tricks.
2844       if (Instruction *I = dyn_cast<Instruction>(V))
2845         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2846         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2847           V = Simplified;
2848           continue;
2849         }
2850 
2851       return V;
2852     }
2853     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2854   }
2855   return V;
2856 }
2857 
2858 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
2859                                 const DataLayout &DL, LoopInfo *LI,
2860                                 unsigned MaxLookup) {
2861   SmallPtrSet<Value *, 4> Visited;
2862   SmallVector<Value *, 4> Worklist;
2863   Worklist.push_back(V);
2864   do {
2865     Value *P = Worklist.pop_back_val();
2866     P = GetUnderlyingObject(P, DL, MaxLookup);
2867 
2868     if (!Visited.insert(P).second)
2869       continue;
2870 
2871     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2872       Worklist.push_back(SI->getTrueValue());
2873       Worklist.push_back(SI->getFalseValue());
2874       continue;
2875     }
2876 
2877     if (PHINode *PN = dyn_cast<PHINode>(P)) {
2878       // If this PHI changes the underlying object in every iteration of the
2879       // loop, don't look through it.  Consider:
2880       //   int **A;
2881       //   for (i) {
2882       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
2883       //     Curr = A[i];
2884       //     *Prev, *Curr;
2885       //
2886       // Prev is tracking Curr one iteration behind so they refer to different
2887       // underlying objects.
2888       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
2889           isSameUnderlyingObjectInLoop(PN, LI))
2890         for (Value *IncValue : PN->incoming_values())
2891           Worklist.push_back(IncValue);
2892       continue;
2893     }
2894 
2895     Objects.push_back(P);
2896   } while (!Worklist.empty());
2897 }
2898 
2899 /// Return true if the only users of this pointer are lifetime markers.
2900 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
2901   for (const User *U : V->users()) {
2902     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
2903     if (!II) return false;
2904 
2905     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2906         II->getIntrinsicID() != Intrinsic::lifetime_end)
2907       return false;
2908   }
2909   return true;
2910 }
2911 
2912 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
2913                                         const Instruction *CtxI,
2914                                         const DominatorTree *DT,
2915                                         const TargetLibraryInfo *TLI) {
2916   const Operator *Inst = dyn_cast<Operator>(V);
2917   if (!Inst)
2918     return false;
2919 
2920   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
2921     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
2922       if (C->canTrap())
2923         return false;
2924 
2925   switch (Inst->getOpcode()) {
2926   default:
2927     return true;
2928   case Instruction::UDiv:
2929   case Instruction::URem: {
2930     // x / y is undefined if y == 0.
2931     const APInt *V;
2932     if (match(Inst->getOperand(1), m_APInt(V)))
2933       return *V != 0;
2934     return false;
2935   }
2936   case Instruction::SDiv:
2937   case Instruction::SRem: {
2938     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
2939     const APInt *Numerator, *Denominator;
2940     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
2941       return false;
2942     // We cannot hoist this division if the denominator is 0.
2943     if (*Denominator == 0)
2944       return false;
2945     // It's safe to hoist if the denominator is not 0 or -1.
2946     if (*Denominator != -1)
2947       return true;
2948     // At this point we know that the denominator is -1.  It is safe to hoist as
2949     // long we know that the numerator is not INT_MIN.
2950     if (match(Inst->getOperand(0), m_APInt(Numerator)))
2951       return !Numerator->isMinSignedValue();
2952     // The numerator *might* be MinSignedValue.
2953     return false;
2954   }
2955   case Instruction::Load: {
2956     const LoadInst *LI = cast<LoadInst>(Inst);
2957     if (!LI->isUnordered() ||
2958         // Speculative load may create a race that did not exist in the source.
2959         LI->getParent()->getParent()->hasFnAttribute(
2960             Attribute::SanitizeThread) ||
2961         // Speculative load may load data from dirty regions.
2962         LI->getParent()->getParent()->hasFnAttribute(
2963             Attribute::SanitizeAddress))
2964       return false;
2965     const DataLayout &DL = LI->getModule()->getDataLayout();
2966     return isDereferenceableAndAlignedPointer(
2967         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
2968   }
2969   case Instruction::Call: {
2970     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
2971       switch (II->getIntrinsicID()) {
2972       // These synthetic intrinsics have no side-effects and just mark
2973       // information about their operands.
2974       // FIXME: There are other no-op synthetic instructions that potentially
2975       // should be considered at least *safe* to speculate...
2976       case Intrinsic::dbg_declare:
2977       case Intrinsic::dbg_value:
2978         return true;
2979 
2980       case Intrinsic::bswap:
2981       case Intrinsic::ctlz:
2982       case Intrinsic::ctpop:
2983       case Intrinsic::cttz:
2984       case Intrinsic::objectsize:
2985       case Intrinsic::sadd_with_overflow:
2986       case Intrinsic::smul_with_overflow:
2987       case Intrinsic::ssub_with_overflow:
2988       case Intrinsic::uadd_with_overflow:
2989       case Intrinsic::umul_with_overflow:
2990       case Intrinsic::usub_with_overflow:
2991         return true;
2992       // These intrinsics are defined to have the same behavior as libm
2993       // functions except for setting errno.
2994       case Intrinsic::sqrt:
2995       case Intrinsic::fma:
2996       case Intrinsic::fmuladd:
2997         return true;
2998       // These intrinsics are defined to have the same behavior as libm
2999       // functions, and the corresponding libm functions never set errno.
3000       case Intrinsic::trunc:
3001       case Intrinsic::copysign:
3002       case Intrinsic::fabs:
3003       case Intrinsic::minnum:
3004       case Intrinsic::maxnum:
3005         return true;
3006       // These intrinsics are defined to have the same behavior as libm
3007       // functions, which never overflow when operating on the IEEE754 types
3008       // that we support, and never set errno otherwise.
3009       case Intrinsic::ceil:
3010       case Intrinsic::floor:
3011       case Intrinsic::nearbyint:
3012       case Intrinsic::rint:
3013       case Intrinsic::round:
3014         return true;
3015       // TODO: are convert_{from,to}_fp16 safe?
3016       // TODO: can we list target-specific intrinsics here?
3017       default: break;
3018       }
3019     }
3020     return false; // The called function could have undefined behavior or
3021                   // side-effects, even if marked readnone nounwind.
3022   }
3023   case Instruction::VAArg:
3024   case Instruction::Alloca:
3025   case Instruction::Invoke:
3026   case Instruction::PHI:
3027   case Instruction::Store:
3028   case Instruction::Ret:
3029   case Instruction::Br:
3030   case Instruction::IndirectBr:
3031   case Instruction::Switch:
3032   case Instruction::Unreachable:
3033   case Instruction::Fence:
3034   case Instruction::AtomicRMW:
3035   case Instruction::AtomicCmpXchg:
3036   case Instruction::LandingPad:
3037   case Instruction::Resume:
3038   case Instruction::CatchSwitch:
3039   case Instruction::CatchPad:
3040   case Instruction::CatchRet:
3041   case Instruction::CleanupPad:
3042   case Instruction::CleanupRet:
3043     return false; // Misc instructions which have effects
3044   }
3045 }
3046 
3047 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3048   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3049 }
3050 
3051 /// Return true if we know that the specified value is never null.
3052 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3053   assert(V->getType()->isPointerTy() && "V must be pointer type");
3054 
3055   // Alloca never returns null, malloc might.
3056   if (isa<AllocaInst>(V)) return true;
3057 
3058   // A byval, inalloca, or nonnull argument is never null.
3059   if (const Argument *A = dyn_cast<Argument>(V))
3060     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3061 
3062   // A global variable in address space 0 is non null unless extern weak.
3063   // Other address spaces may have null as a valid address for a global,
3064   // so we can't assume anything.
3065   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3066     return !GV->hasExternalWeakLinkage() &&
3067            GV->getType()->getAddressSpace() == 0;
3068 
3069   // A Load tagged w/nonnull metadata is never null.
3070   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3071     return LI->getMetadata(LLVMContext::MD_nonnull);
3072 
3073   if (auto CS = ImmutableCallSite(V))
3074     if (CS.isReturnNonNull())
3075       return true;
3076 
3077   return false;
3078 }
3079 
3080 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3081                                                   const Instruction *CtxI,
3082                                                   const DominatorTree *DT) {
3083   assert(V->getType()->isPointerTy() && "V must be pointer type");
3084 
3085   unsigned NumUsesExplored = 0;
3086   for (auto U : V->users()) {
3087     // Avoid massive lists
3088     if (NumUsesExplored >= DomConditionsMaxUses)
3089       break;
3090     NumUsesExplored++;
3091     // Consider only compare instructions uniquely controlling a branch
3092     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3093     if (!Cmp)
3094       continue;
3095 
3096     for (auto *CmpU : Cmp->users()) {
3097       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3098       if (!BI)
3099         continue;
3100 
3101       assert(BI->isConditional() && "uses a comparison!");
3102 
3103       BasicBlock *NonNullSuccessor = nullptr;
3104       CmpInst::Predicate Pred;
3105 
3106       if (match(const_cast<ICmpInst*>(Cmp),
3107                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3108         if (Pred == ICmpInst::ICMP_EQ)
3109           NonNullSuccessor = BI->getSuccessor(1);
3110         else if (Pred == ICmpInst::ICMP_NE)
3111           NonNullSuccessor = BI->getSuccessor(0);
3112       }
3113 
3114       if (NonNullSuccessor) {
3115         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3116         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3117           return true;
3118       }
3119     }
3120   }
3121 
3122   return false;
3123 }
3124 
3125 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3126                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3127   if (isKnownNonNull(V, TLI))
3128     return true;
3129 
3130   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3131 }
3132 
3133 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3134                                                    const DataLayout &DL,
3135                                                    AssumptionCache *AC,
3136                                                    const Instruction *CxtI,
3137                                                    const DominatorTree *DT) {
3138   // Multiplying n * m significant bits yields a result of n + m significant
3139   // bits. If the total number of significant bits does not exceed the
3140   // result bit width (minus 1), there is no overflow.
3141   // This means if we have enough leading zero bits in the operands
3142   // we can guarantee that the result does not overflow.
3143   // Ref: "Hacker's Delight" by Henry Warren
3144   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3145   APInt LHSKnownZero(BitWidth, 0);
3146   APInt LHSKnownOne(BitWidth, 0);
3147   APInt RHSKnownZero(BitWidth, 0);
3148   APInt RHSKnownOne(BitWidth, 0);
3149   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3150                    DT);
3151   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3152                    DT);
3153   // Note that underestimating the number of zero bits gives a more
3154   // conservative answer.
3155   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3156                       RHSKnownZero.countLeadingOnes();
3157   // First handle the easy case: if we have enough zero bits there's
3158   // definitely no overflow.
3159   if (ZeroBits >= BitWidth)
3160     return OverflowResult::NeverOverflows;
3161 
3162   // Get the largest possible values for each operand.
3163   APInt LHSMax = ~LHSKnownZero;
3164   APInt RHSMax = ~RHSKnownZero;
3165 
3166   // We know the multiply operation doesn't overflow if the maximum values for
3167   // each operand will not overflow after we multiply them together.
3168   bool MaxOverflow;
3169   LHSMax.umul_ov(RHSMax, MaxOverflow);
3170   if (!MaxOverflow)
3171     return OverflowResult::NeverOverflows;
3172 
3173   // We know it always overflows if multiplying the smallest possible values for
3174   // the operands also results in overflow.
3175   bool MinOverflow;
3176   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3177   if (MinOverflow)
3178     return OverflowResult::AlwaysOverflows;
3179 
3180   return OverflowResult::MayOverflow;
3181 }
3182 
3183 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3184                                                    const DataLayout &DL,
3185                                                    AssumptionCache *AC,
3186                                                    const Instruction *CxtI,
3187                                                    const DominatorTree *DT) {
3188   bool LHSKnownNonNegative, LHSKnownNegative;
3189   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3190                  AC, CxtI, DT);
3191   if (LHSKnownNonNegative || LHSKnownNegative) {
3192     bool RHSKnownNonNegative, RHSKnownNegative;
3193     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3194                    AC, CxtI, DT);
3195 
3196     if (LHSKnownNegative && RHSKnownNegative) {
3197       // The sign bit is set in both cases: this MUST overflow.
3198       // Create a simple add instruction, and insert it into the struct.
3199       return OverflowResult::AlwaysOverflows;
3200     }
3201 
3202     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3203       // The sign bit is clear in both cases: this CANNOT overflow.
3204       // Create a simple add instruction, and insert it into the struct.
3205       return OverflowResult::NeverOverflows;
3206     }
3207   }
3208 
3209   return OverflowResult::MayOverflow;
3210 }
3211 
3212 static OverflowResult computeOverflowForSignedAdd(
3213     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3214     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3215   if (Add && Add->hasNoSignedWrap()) {
3216     return OverflowResult::NeverOverflows;
3217   }
3218 
3219   bool LHSKnownNonNegative, LHSKnownNegative;
3220   bool RHSKnownNonNegative, RHSKnownNegative;
3221   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3222                  AC, CxtI, DT);
3223   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3224                  AC, CxtI, DT);
3225 
3226   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3227       (LHSKnownNegative && RHSKnownNonNegative)) {
3228     // The sign bits are opposite: this CANNOT overflow.
3229     return OverflowResult::NeverOverflows;
3230   }
3231 
3232   // The remaining code needs Add to be available. Early returns if not so.
3233   if (!Add)
3234     return OverflowResult::MayOverflow;
3235 
3236   // If the sign of Add is the same as at least one of the operands, this add
3237   // CANNOT overflow. This is particularly useful when the sum is
3238   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3239   // operands.
3240   bool LHSOrRHSKnownNonNegative =
3241       (LHSKnownNonNegative || RHSKnownNonNegative);
3242   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3243   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3244     bool AddKnownNonNegative, AddKnownNegative;
3245     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3246                    /*Depth=*/0, AC, CxtI, DT);
3247     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3248         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3249       return OverflowResult::NeverOverflows;
3250     }
3251   }
3252 
3253   return OverflowResult::MayOverflow;
3254 }
3255 
3256 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3257                                                  const DataLayout &DL,
3258                                                  AssumptionCache *AC,
3259                                                  const Instruction *CxtI,
3260                                                  const DominatorTree *DT) {
3261   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3262                                        Add, DL, AC, CxtI, DT);
3263 }
3264 
3265 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3266                                                  const DataLayout &DL,
3267                                                  AssumptionCache *AC,
3268                                                  const Instruction *CxtI,
3269                                                  const DominatorTree *DT) {
3270   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3271 }
3272 
3273 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3274   // FIXME: This conservative implementation can be relaxed. E.g. most
3275   // atomic operations are guaranteed to terminate on most platforms
3276   // and most functions terminate.
3277 
3278   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3279          !isa<CallInst>(I) &&    // could throw and might not terminate
3280          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3281                                  //   non-successor (see bug 24185 for details).
3282          !isa<ResumeInst>(I) &&  // has no successors
3283          !isa<ReturnInst>(I);    // has no successors
3284 }
3285 
3286 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3287                                                   const Loop *L) {
3288   // The loop header is guaranteed to be executed for every iteration.
3289   //
3290   // FIXME: Relax this constraint to cover all basic blocks that are
3291   // guaranteed to be executed at every iteration.
3292   if (I->getParent() != L->getHeader()) return false;
3293 
3294   for (const Instruction &LI : *L->getHeader()) {
3295     if (&LI == I) return true;
3296     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3297   }
3298   llvm_unreachable("Instruction not contained in its own parent basic block.");
3299 }
3300 
3301 bool llvm::propagatesFullPoison(const Instruction *I) {
3302   switch (I->getOpcode()) {
3303     case Instruction::Add:
3304     case Instruction::Sub:
3305     case Instruction::Xor:
3306     case Instruction::Trunc:
3307     case Instruction::BitCast:
3308     case Instruction::AddrSpaceCast:
3309       // These operations all propagate poison unconditionally. Note that poison
3310       // is not any particular value, so xor or subtraction of poison with
3311       // itself still yields poison, not zero.
3312       return true;
3313 
3314     case Instruction::AShr:
3315     case Instruction::SExt:
3316       // For these operations, one bit of the input is replicated across
3317       // multiple output bits. A replicated poison bit is still poison.
3318       return true;
3319 
3320     case Instruction::Shl: {
3321       // Left shift *by* a poison value is poison. The number of
3322       // positions to shift is unsigned, so no negative values are
3323       // possible there. Left shift by zero places preserves poison. So
3324       // it only remains to consider left shift of poison by a positive
3325       // number of places.
3326       //
3327       // A left shift by a positive number of places leaves the lowest order bit
3328       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3329       // make the poison operand violate that flag, yielding a fresh full-poison
3330       // value.
3331       auto *OBO = cast<OverflowingBinaryOperator>(I);
3332       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3333     }
3334 
3335     case Instruction::Mul: {
3336       // A multiplication by zero yields a non-poison zero result, so we need to
3337       // rule out zero as an operand. Conservatively, multiplication by a
3338       // non-zero constant is not multiplication by zero.
3339       //
3340       // Multiplication by a non-zero constant can leave some bits
3341       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3342       // order bit unpoisoned. So we need to consider that.
3343       //
3344       // Multiplication by 1 preserves poison. If the multiplication has a
3345       // no-wrap flag, then we can make the poison operand violate that flag
3346       // when multiplied by any integer other than 0 and 1.
3347       auto *OBO = cast<OverflowingBinaryOperator>(I);
3348       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3349         for (Value *V : OBO->operands()) {
3350           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3351             // A ConstantInt cannot yield poison, so we can assume that it is
3352             // the other operand that is poison.
3353             return !CI->isZero();
3354           }
3355         }
3356       }
3357       return false;
3358     }
3359 
3360     case Instruction::GetElementPtr:
3361       // A GEP implicitly represents a sequence of additions, subtractions,
3362       // truncations, sign extensions and multiplications. The multiplications
3363       // are by the non-zero sizes of some set of types, so we do not have to be
3364       // concerned with multiplication by zero. If the GEP is in-bounds, then
3365       // these operations are implicitly no-signed-wrap so poison is propagated
3366       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3367       return cast<GEPOperator>(I)->isInBounds();
3368 
3369     default:
3370       return false;
3371   }
3372 }
3373 
3374 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3375   switch (I->getOpcode()) {
3376     case Instruction::Store:
3377       return cast<StoreInst>(I)->getPointerOperand();
3378 
3379     case Instruction::Load:
3380       return cast<LoadInst>(I)->getPointerOperand();
3381 
3382     case Instruction::AtomicCmpXchg:
3383       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3384 
3385     case Instruction::AtomicRMW:
3386       return cast<AtomicRMWInst>(I)->getPointerOperand();
3387 
3388     case Instruction::UDiv:
3389     case Instruction::SDiv:
3390     case Instruction::URem:
3391     case Instruction::SRem:
3392       return I->getOperand(1);
3393 
3394     default:
3395       return nullptr;
3396   }
3397 }
3398 
3399 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3400   // We currently only look for uses of poison values within the same basic
3401   // block, as that makes it easier to guarantee that the uses will be
3402   // executed given that PoisonI is executed.
3403   //
3404   // FIXME: Expand this to consider uses beyond the same basic block. To do
3405   // this, look out for the distinction between post-dominance and strong
3406   // post-dominance.
3407   const BasicBlock *BB = PoisonI->getParent();
3408 
3409   // Set of instructions that we have proved will yield poison if PoisonI
3410   // does.
3411   SmallSet<const Value *, 16> YieldsPoison;
3412   YieldsPoison.insert(PoisonI);
3413 
3414   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3415        I != E; ++I) {
3416     if (&*I != PoisonI) {
3417       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3418       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3419       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3420         return false;
3421     }
3422 
3423     // Mark poison that propagates from I through uses of I.
3424     if (YieldsPoison.count(&*I)) {
3425       for (const User *User : I->users()) {
3426         const Instruction *UserI = cast<Instruction>(User);
3427         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3428           YieldsPoison.insert(User);
3429       }
3430     }
3431   }
3432   return false;
3433 }
3434 
3435 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3436   if (FMF.noNaNs())
3437     return true;
3438 
3439   if (auto *C = dyn_cast<ConstantFP>(V))
3440     return !C->isNaN();
3441   return false;
3442 }
3443 
3444 static bool isKnownNonZero(Value *V) {
3445   if (auto *C = dyn_cast<ConstantFP>(V))
3446     return !C->isZero();
3447   return false;
3448 }
3449 
3450 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3451                                               FastMathFlags FMF,
3452                                               Value *CmpLHS, Value *CmpRHS,
3453                                               Value *TrueVal, Value *FalseVal,
3454                                               Value *&LHS, Value *&RHS) {
3455   LHS = CmpLHS;
3456   RHS = CmpRHS;
3457 
3458   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3459   // return inconsistent results between implementations.
3460   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3461   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3462   // Therefore we behave conservatively and only proceed if at least one of the
3463   // operands is known to not be zero, or if we don't care about signed zeroes.
3464   switch (Pred) {
3465   default: break;
3466   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3467   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3468     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3469         !isKnownNonZero(CmpRHS))
3470       return {SPF_UNKNOWN, SPNB_NA, false};
3471   }
3472 
3473   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3474   bool Ordered = false;
3475 
3476   // When given one NaN and one non-NaN input:
3477   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3478   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3479   //     ordered comparison fails), which could be NaN or non-NaN.
3480   // so here we discover exactly what NaN behavior is required/accepted.
3481   if (CmpInst::isFPPredicate(Pred)) {
3482     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3483     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3484 
3485     if (LHSSafe && RHSSafe) {
3486       // Both operands are known non-NaN.
3487       NaNBehavior = SPNB_RETURNS_ANY;
3488     } else if (CmpInst::isOrdered(Pred)) {
3489       // An ordered comparison will return false when given a NaN, so it
3490       // returns the RHS.
3491       Ordered = true;
3492       if (LHSSafe)
3493         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3494         NaNBehavior = SPNB_RETURNS_NAN;
3495       else if (RHSSafe)
3496         NaNBehavior = SPNB_RETURNS_OTHER;
3497       else
3498         // Completely unsafe.
3499         return {SPF_UNKNOWN, SPNB_NA, false};
3500     } else {
3501       Ordered = false;
3502       // An unordered comparison will return true when given a NaN, so it
3503       // returns the LHS.
3504       if (LHSSafe)
3505         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3506         NaNBehavior = SPNB_RETURNS_OTHER;
3507       else if (RHSSafe)
3508         NaNBehavior = SPNB_RETURNS_NAN;
3509       else
3510         // Completely unsafe.
3511         return {SPF_UNKNOWN, SPNB_NA, false};
3512     }
3513   }
3514 
3515   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3516     std::swap(CmpLHS, CmpRHS);
3517     Pred = CmpInst::getSwappedPredicate(Pred);
3518     if (NaNBehavior == SPNB_RETURNS_NAN)
3519       NaNBehavior = SPNB_RETURNS_OTHER;
3520     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3521       NaNBehavior = SPNB_RETURNS_NAN;
3522     Ordered = !Ordered;
3523   }
3524 
3525   // ([if]cmp X, Y) ? X : Y
3526   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3527     switch (Pred) {
3528     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3529     case ICmpInst::ICMP_UGT:
3530     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3531     case ICmpInst::ICMP_SGT:
3532     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3533     case ICmpInst::ICMP_ULT:
3534     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3535     case ICmpInst::ICMP_SLT:
3536     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3537     case FCmpInst::FCMP_UGT:
3538     case FCmpInst::FCMP_UGE:
3539     case FCmpInst::FCMP_OGT:
3540     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3541     case FCmpInst::FCMP_ULT:
3542     case FCmpInst::FCMP_ULE:
3543     case FCmpInst::FCMP_OLT:
3544     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3545     }
3546   }
3547 
3548   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3549     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3550         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3551 
3552       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3553       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3554       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3555         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3556       }
3557 
3558       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3559       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3560       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3561         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3562       }
3563     }
3564 
3565     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3566     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3567       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3568           ~C1->getValue() == C2->getValue() &&
3569           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3570            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3571         LHS = TrueVal;
3572         RHS = FalseVal;
3573         return {SPF_SMIN, SPNB_NA, false};
3574       }
3575     }
3576   }
3577 
3578   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3579 
3580   return {SPF_UNKNOWN, SPNB_NA, false};
3581 }
3582 
3583 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3584                               Instruction::CastOps *CastOp) {
3585   CastInst *CI = dyn_cast<CastInst>(V1);
3586   Constant *C = dyn_cast<Constant>(V2);
3587   CastInst *CI2 = dyn_cast<CastInst>(V2);
3588   if (!CI)
3589     return nullptr;
3590   *CastOp = CI->getOpcode();
3591 
3592   if (CI2) {
3593     // If V1 and V2 are both the same cast from the same type, we can look
3594     // through V1.
3595     if (CI2->getOpcode() == CI->getOpcode() &&
3596         CI2->getSrcTy() == CI->getSrcTy())
3597       return CI2->getOperand(0);
3598     return nullptr;
3599   } else if (!C) {
3600     return nullptr;
3601   }
3602 
3603   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
3604     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
3605     // This is only valid if the truncated value can be sign-extended
3606     // back to the original value.
3607     if (ConstantExpr::getSExt(T, C->getType()) == C)
3608       return T;
3609     return nullptr;
3610   }
3611   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3612     return ConstantExpr::getTrunc(C, CI->getSrcTy());
3613 
3614   if (isa<TruncInst>(CI))
3615     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3616 
3617   if (isa<FPToUIInst>(CI))
3618     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3619 
3620   if (isa<FPToSIInst>(CI))
3621     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3622 
3623   if (isa<UIToFPInst>(CI))
3624     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3625 
3626   if (isa<SIToFPInst>(CI))
3627     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3628 
3629   if (isa<FPTruncInst>(CI))
3630     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3631 
3632   if (isa<FPExtInst>(CI))
3633     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3634 
3635   return nullptr;
3636 }
3637 
3638 SelectPatternResult llvm::matchSelectPattern(Value *V,
3639                                              Value *&LHS, Value *&RHS,
3640                                              Instruction::CastOps *CastOp) {
3641   SelectInst *SI = dyn_cast<SelectInst>(V);
3642   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3643 
3644   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3645   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3646 
3647   CmpInst::Predicate Pred = CmpI->getPredicate();
3648   Value *CmpLHS = CmpI->getOperand(0);
3649   Value *CmpRHS = CmpI->getOperand(1);
3650   Value *TrueVal = SI->getTrueValue();
3651   Value *FalseVal = SI->getFalseValue();
3652   FastMathFlags FMF;
3653   if (isa<FPMathOperator>(CmpI))
3654     FMF = CmpI->getFastMathFlags();
3655 
3656   // Bail out early.
3657   if (CmpI->isEquality())
3658     return {SPF_UNKNOWN, SPNB_NA, false};
3659 
3660   // Deal with type mismatches.
3661   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3662     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3663       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3664                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3665                                   LHS, RHS);
3666     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3667       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3668                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3669                                   LHS, RHS);
3670   }
3671   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3672                               LHS, RHS);
3673 }
3674 
3675 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3676   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3677   assert(NumRanges >= 1 && "Must have at least one range!");
3678   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3679 
3680   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3681   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3682 
3683   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3684 
3685   for (unsigned i = 1; i < NumRanges; ++i) {
3686     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3687     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3688 
3689     // Note: unionWith will potentially create a range that contains values not
3690     // contained in any of the original N ranges.
3691     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3692   }
3693 
3694   return CR;
3695 }
3696 
3697 /// Return true if "icmp Pred LHS RHS" is always true.
3698 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3699                             const DataLayout &DL, unsigned Depth,
3700                             AssumptionCache *AC, const Instruction *CxtI,
3701                             const DominatorTree *DT) {
3702   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3703   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3704     return true;
3705 
3706   switch (Pred) {
3707   default:
3708     return false;
3709 
3710   case CmpInst::ICMP_SLE: {
3711     const APInt *C;
3712 
3713     // LHS s<= LHS +_{nsw} C   if C >= 0
3714     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3715       return !C->isNegative();
3716     return false;
3717   }
3718 
3719   case CmpInst::ICMP_ULE: {
3720     const APInt *C;
3721 
3722     // LHS u<= LHS +_{nuw} C   for any C
3723     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3724       return true;
3725 
3726     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3727     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3728                                        const APInt *&CA, const APInt *&CB) {
3729       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3730           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3731         return true;
3732 
3733       // If X & C == 0 then (X | C) == X +_{nuw} C
3734       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3735           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3736         unsigned BitWidth = CA->getBitWidth();
3737         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3738         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3739 
3740         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3741           return true;
3742       }
3743 
3744       return false;
3745     };
3746 
3747     Value *X;
3748     const APInt *CLHS, *CRHS;
3749     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3750       return CLHS->ule(*CRHS);
3751 
3752     return false;
3753   }
3754   }
3755 }
3756 
3757 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3758 /// ALHS ARHS" is true.
3759 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
3760                                   Value *ARHS, Value *BLHS, Value *BRHS,
3761                                   const DataLayout &DL, unsigned Depth,
3762                                   AssumptionCache *AC, const Instruction *CxtI,
3763                                   const DominatorTree *DT) {
3764   switch (Pred) {
3765   default:
3766     return false;
3767 
3768   case CmpInst::ICMP_SLT:
3769   case CmpInst::ICMP_SLE:
3770     return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
3771                            DT) &&
3772            isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
3773                            DT);
3774 
3775   case CmpInst::ICMP_ULT:
3776   case CmpInst::ICMP_ULE:
3777     return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
3778                            DT) &&
3779            isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
3780                            DT);
3781   }
3782 }
3783 
3784 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
3785                               unsigned Depth, AssumptionCache *AC,
3786                               const Instruction *CxtI,
3787                               const DominatorTree *DT) {
3788   assert(LHS->getType() == RHS->getType() && "mismatched type");
3789   Type *OpTy = LHS->getType();
3790   assert(OpTy->getScalarType()->isIntegerTy(1));
3791 
3792   // LHS ==> RHS by definition
3793   if (LHS == RHS) return true;
3794 
3795   if (OpTy->isVectorTy())
3796     // TODO: extending the code below to handle vectors
3797     return false;
3798   assert(OpTy->isIntegerTy(1) && "implied by above");
3799 
3800   ICmpInst::Predicate APred, BPred;
3801   Value *ALHS, *ARHS;
3802   Value *BLHS, *BRHS;
3803 
3804   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
3805       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
3806     return false;
3807 
3808   if (APred == BPred)
3809     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
3810                                  CxtI, DT);
3811 
3812   return false;
3813 }
3814