1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/ConstantRange.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Dominators.h" 28 #include "llvm/IR/GetElementPtrTypeIterator.h" 29 #include "llvm/IR/GlobalAlias.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Instructions.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Metadata.h" 35 #include "llvm/IR/Operator.h" 36 #include "llvm/IR/PatternMatch.h" 37 #include "llvm/IR/Statepoint.h" 38 #include "llvm/Support/Debug.h" 39 #include "llvm/Support/MathExtras.h" 40 #include <algorithm> 41 #include <array> 42 #include <cstring> 43 using namespace llvm; 44 using namespace llvm::PatternMatch; 45 46 const unsigned MaxDepth = 6; 47 48 // Controls the number of uses of the value searched for possible 49 // dominating comparisons. 50 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 51 cl::Hidden, cl::init(20)); 52 53 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 54 /// 0). For vector types, returns the element type's bitwidth. 55 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 56 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 57 return BitWidth; 58 59 return DL.getPointerTypeSizeInBits(Ty); 60 } 61 62 namespace { 63 // Simplifying using an assume can only be done in a particular control-flow 64 // context (the context instruction provides that context). If an assume and 65 // the context instruction are not in the same block then the DT helps in 66 // figuring out if we can use it. 67 struct Query { 68 const DataLayout &DL; 69 AssumptionCache *AC; 70 const Instruction *CxtI; 71 const DominatorTree *DT; 72 73 /// Set of assumptions that should be excluded from further queries. 74 /// This is because of the potential for mutual recursion to cause 75 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 76 /// classic case of this is assume(x = y), which will attempt to determine 77 /// bits in x from bits in y, which will attempt to determine bits in y from 78 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 79 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 80 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 81 /// on. 82 std::array<const Value*, MaxDepth> Excluded; 83 unsigned NumExcluded; 84 85 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 86 const DominatorTree *DT) 87 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 88 89 Query(const Query &Q, const Value *NewExcl) 90 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 91 Excluded = Q.Excluded; 92 Excluded[NumExcluded++] = NewExcl; 93 assert(NumExcluded <= Excluded.size()); 94 } 95 96 bool isExcluded(const Value *Value) const { 97 if (NumExcluded == 0) 98 return false; 99 auto End = Excluded.begin() + NumExcluded; 100 return std::find(Excluded.begin(), End, Value) != End; 101 } 102 }; 103 } // end anonymous namespace 104 105 // Given the provided Value and, potentially, a context instruction, return 106 // the preferred context instruction (if any). 107 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 108 // If we've been provided with a context instruction, then use that (provided 109 // it has been inserted). 110 if (CxtI && CxtI->getParent()) 111 return CxtI; 112 113 // If the value is really an already-inserted instruction, then use that. 114 CxtI = dyn_cast<Instruction>(V); 115 if (CxtI && CxtI->getParent()) 116 return CxtI; 117 118 return nullptr; 119 } 120 121 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 122 unsigned Depth, const Query &Q); 123 124 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 125 const DataLayout &DL, unsigned Depth, 126 AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT) { 128 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 129 Query(DL, AC, safeCxtI(V, CxtI), DT)); 130 } 131 132 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 assert(LHS->getType() == RHS->getType() && 136 "LHS and RHS should have the same type"); 137 assert(LHS->getType()->isIntOrIntVectorTy() && 138 "LHS and RHS should be integers"); 139 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 140 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 141 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 142 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 143 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 144 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 145 } 146 147 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 148 unsigned Depth, const Query &Q); 149 150 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 151 const DataLayout &DL, unsigned Depth, 152 AssumptionCache *AC, const Instruction *CxtI, 153 const DominatorTree *DT) { 154 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 155 Query(DL, AC, safeCxtI(V, CxtI), DT)); 156 } 157 158 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 159 const Query &Q); 160 161 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 162 unsigned Depth, AssumptionCache *AC, 163 const Instruction *CxtI, 164 const DominatorTree *DT) { 165 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 166 Query(DL, AC, safeCxtI(V, CxtI), DT)); 167 } 168 169 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 170 171 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 172 AssumptionCache *AC, const Instruction *CxtI, 173 const DominatorTree *DT) { 174 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 175 } 176 177 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 178 AssumptionCache *AC, const Instruction *CxtI, 179 const DominatorTree *DT) { 180 bool NonNegative, Negative; 181 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 182 return NonNegative; 183 } 184 185 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth, 186 AssumptionCache *AC, const Instruction *CxtI, 187 const DominatorTree *DT) { 188 if (auto *CI = dyn_cast<ConstantInt>(V)) 189 return CI->getValue().isStrictlyPositive(); 190 191 // TODO: We'd doing two recursive queries here. We should factor this such 192 // that only a single query is needed. 193 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 194 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 195 } 196 197 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 198 199 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 200 AssumptionCache *AC, const Instruction *CxtI, 201 const DominatorTree *DT) { 202 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 203 safeCxtI(V1, safeCxtI(V2, CxtI)), 204 DT)); 205 } 206 207 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 208 const Query &Q); 209 210 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 211 unsigned Depth, AssumptionCache *AC, 212 const Instruction *CxtI, const DominatorTree *DT) { 213 return ::MaskedValueIsZero(V, Mask, Depth, 214 Query(DL, AC, safeCxtI(V, CxtI), DT)); 215 } 216 217 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 218 219 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 220 unsigned Depth, AssumptionCache *AC, 221 const Instruction *CxtI, 222 const DominatorTree *DT) { 223 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 224 } 225 226 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 227 APInt &KnownZero, APInt &KnownOne, 228 APInt &KnownZero2, APInt &KnownOne2, 229 unsigned Depth, const Query &Q) { 230 if (!Add) { 231 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 232 // We know that the top bits of C-X are clear if X contains less bits 233 // than C (i.e. no wrap-around can happen). For example, 20-X is 234 // positive if we can prove that X is >= 0 and < 16. 235 if (!CLHS->getValue().isNegative()) { 236 unsigned BitWidth = KnownZero.getBitWidth(); 237 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 238 // NLZ can't be BitWidth with no sign bit 239 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 240 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 241 242 // If all of the MaskV bits are known to be zero, then we know the 243 // output top bits are zero, because we now know that the output is 244 // from [0-C]. 245 if ((KnownZero2 & MaskV) == MaskV) { 246 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 247 // Top bits known zero. 248 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 249 } 250 } 251 } 252 } 253 254 unsigned BitWidth = KnownZero.getBitWidth(); 255 256 // If an initial sequence of bits in the result is not needed, the 257 // corresponding bits in the operands are not needed. 258 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 259 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 260 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 261 262 // Carry in a 1 for a subtract, rather than a 0. 263 APInt CarryIn(BitWidth, 0); 264 if (!Add) { 265 // Sum = LHS + ~RHS + 1 266 std::swap(KnownZero2, KnownOne2); 267 CarryIn.setBit(0); 268 } 269 270 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 271 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 272 273 // Compute known bits of the carry. 274 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 275 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 276 277 // Compute set of known bits (where all three relevant bits are known). 278 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 279 APInt RHSKnown = KnownZero2 | KnownOne2; 280 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 281 APInt Known = LHSKnown & RHSKnown & CarryKnown; 282 283 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 284 "known bits of sum differ"); 285 286 // Compute known bits of the result. 287 KnownZero = ~PossibleSumOne & Known; 288 KnownOne = PossibleSumOne & Known; 289 290 // Are we still trying to solve for the sign bit? 291 if (!Known.isNegative()) { 292 if (NSW) { 293 // Adding two non-negative numbers, or subtracting a negative number from 294 // a non-negative one, can't wrap into negative. 295 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 296 KnownZero |= APInt::getSignBit(BitWidth); 297 // Adding two negative numbers, or subtracting a non-negative number from 298 // a negative one, can't wrap into non-negative. 299 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 300 KnownOne |= APInt::getSignBit(BitWidth); 301 } 302 } 303 } 304 305 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 306 APInt &KnownZero, APInt &KnownOne, 307 APInt &KnownZero2, APInt &KnownOne2, 308 unsigned Depth, const Query &Q) { 309 unsigned BitWidth = KnownZero.getBitWidth(); 310 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 311 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 312 313 bool isKnownNegative = false; 314 bool isKnownNonNegative = false; 315 // If the multiplication is known not to overflow, compute the sign bit. 316 if (NSW) { 317 if (Op0 == Op1) { 318 // The product of a number with itself is non-negative. 319 isKnownNonNegative = true; 320 } else { 321 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 322 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 323 bool isKnownNegativeOp1 = KnownOne.isNegative(); 324 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 325 // The product of two numbers with the same sign is non-negative. 326 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 327 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 328 // The product of a negative number and a non-negative number is either 329 // negative or zero. 330 if (!isKnownNonNegative) 331 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 332 isKnownNonZero(Op0, Depth, Q)) || 333 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 334 isKnownNonZero(Op1, Depth, Q)); 335 } 336 } 337 338 // If low bits are zero in either operand, output low known-0 bits. 339 // Also compute a conservative estimate for high known-0 bits. 340 // More trickiness is possible, but this is sufficient for the 341 // interesting case of alignment computation. 342 KnownOne.clearAllBits(); 343 unsigned TrailZ = KnownZero.countTrailingOnes() + 344 KnownZero2.countTrailingOnes(); 345 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 346 KnownZero2.countLeadingOnes(), 347 BitWidth) - BitWidth; 348 349 TrailZ = std::min(TrailZ, BitWidth); 350 LeadZ = std::min(LeadZ, BitWidth); 351 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 352 APInt::getHighBitsSet(BitWidth, LeadZ); 353 354 // Only make use of no-wrap flags if we failed to compute the sign bit 355 // directly. This matters if the multiplication always overflows, in 356 // which case we prefer to follow the result of the direct computation, 357 // though as the program is invoking undefined behaviour we can choose 358 // whatever we like here. 359 if (isKnownNonNegative && !KnownOne.isNegative()) 360 KnownZero.setBit(BitWidth - 1); 361 else if (isKnownNegative && !KnownZero.isNegative()) 362 KnownOne.setBit(BitWidth - 1); 363 } 364 365 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 366 APInt &KnownZero, 367 APInt &KnownOne) { 368 unsigned BitWidth = KnownZero.getBitWidth(); 369 unsigned NumRanges = Ranges.getNumOperands() / 2; 370 assert(NumRanges >= 1); 371 372 KnownZero.setAllBits(); 373 KnownOne.setAllBits(); 374 375 for (unsigned i = 0; i < NumRanges; ++i) { 376 ConstantInt *Lower = 377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 378 ConstantInt *Upper = 379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 380 ConstantRange Range(Lower->getValue(), Upper->getValue()); 381 382 // The first CommonPrefixBits of all values in Range are equal. 383 unsigned CommonPrefixBits = 384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 385 386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 387 KnownOne &= Range.getUnsignedMax() & Mask; 388 KnownZero &= ~Range.getUnsignedMax() & Mask; 389 } 390 } 391 392 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 393 SmallVector<const Value *, 16> WorkSet(1, I); 394 SmallPtrSet<const Value *, 32> Visited; 395 SmallPtrSet<const Value *, 16> EphValues; 396 397 // The instruction defining an assumption's condition itself is always 398 // considered ephemeral to that assumption (even if it has other 399 // non-ephemeral users). See r246696's test case for an example. 400 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 401 return true; 402 403 while (!WorkSet.empty()) { 404 const Value *V = WorkSet.pop_back_val(); 405 if (!Visited.insert(V).second) 406 continue; 407 408 // If all uses of this value are ephemeral, then so is this value. 409 if (std::all_of(V->user_begin(), V->user_end(), 410 [&](const User *U) { return EphValues.count(U); })) { 411 if (V == E) 412 return true; 413 414 EphValues.insert(V); 415 if (const User *U = dyn_cast<User>(V)) 416 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 417 J != JE; ++J) { 418 if (isSafeToSpeculativelyExecute(*J)) 419 WorkSet.push_back(*J); 420 } 421 } 422 } 423 424 return false; 425 } 426 427 // Is this an intrinsic that cannot be speculated but also cannot trap? 428 static bool isAssumeLikeIntrinsic(const Instruction *I) { 429 if (const CallInst *CI = dyn_cast<CallInst>(I)) 430 if (Function *F = CI->getCalledFunction()) 431 switch (F->getIntrinsicID()) { 432 default: break; 433 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 434 case Intrinsic::assume: 435 case Intrinsic::dbg_declare: 436 case Intrinsic::dbg_value: 437 case Intrinsic::invariant_start: 438 case Intrinsic::invariant_end: 439 case Intrinsic::lifetime_start: 440 case Intrinsic::lifetime_end: 441 case Intrinsic::objectsize: 442 case Intrinsic::ptr_annotation: 443 case Intrinsic::var_annotation: 444 return true; 445 } 446 447 return false; 448 } 449 450 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 451 const DominatorTree *DT) { 452 Instruction *Inv = cast<Instruction>(V); 453 454 // There are two restrictions on the use of an assume: 455 // 1. The assume must dominate the context (or the control flow must 456 // reach the assume whenever it reaches the context). 457 // 2. The context must not be in the assume's set of ephemeral values 458 // (otherwise we will use the assume to prove that the condition 459 // feeding the assume is trivially true, thus causing the removal of 460 // the assume). 461 462 if (DT) { 463 if (DT->dominates(Inv, CxtI)) { 464 return true; 465 } else if (Inv->getParent() == CxtI->getParent()) { 466 // The context comes first, but they're both in the same block. Make sure 467 // there is nothing in between that might interrupt the control flow. 468 for (BasicBlock::const_iterator I = 469 std::next(BasicBlock::const_iterator(CxtI)), 470 IE(Inv); I != IE; ++I) 471 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 472 return false; 473 474 return !isEphemeralValueOf(Inv, CxtI); 475 } 476 477 return false; 478 } 479 480 // When we don't have a DT, we do a limited search... 481 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 482 return true; 483 } else if (Inv->getParent() == CxtI->getParent()) { 484 // Search forward from the assume until we reach the context (or the end 485 // of the block); the common case is that the assume will come first. 486 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 487 IE = Inv->getParent()->end(); I != IE; ++I) 488 if (&*I == CxtI) 489 return true; 490 491 // The context must come first... 492 for (BasicBlock::const_iterator I = 493 std::next(BasicBlock::const_iterator(CxtI)), 494 IE(Inv); I != IE; ++I) 495 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 496 return false; 497 498 return !isEphemeralValueOf(Inv, CxtI); 499 } 500 501 return false; 502 } 503 504 bool llvm::isValidAssumeForContext(const Instruction *I, 505 const Instruction *CxtI, 506 const DominatorTree *DT) { 507 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 508 } 509 510 template<typename LHS, typename RHS> 511 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 512 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 513 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 514 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 515 } 516 517 template<typename LHS, typename RHS> 518 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 519 BinaryOp_match<RHS, LHS, Instruction::And>> 520 m_c_And(const LHS &L, const RHS &R) { 521 return m_CombineOr(m_And(L, R), m_And(R, L)); 522 } 523 524 template<typename LHS, typename RHS> 525 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 526 BinaryOp_match<RHS, LHS, Instruction::Or>> 527 m_c_Or(const LHS &L, const RHS &R) { 528 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 529 } 530 531 template<typename LHS, typename RHS> 532 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 533 BinaryOp_match<RHS, LHS, Instruction::Xor>> 534 m_c_Xor(const LHS &L, const RHS &R) { 535 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 536 } 537 538 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 539 APInt &KnownOne, unsigned Depth, 540 const Query &Q) { 541 // Use of assumptions is context-sensitive. If we don't have a context, we 542 // cannot use them! 543 if (!Q.AC || !Q.CxtI) 544 return; 545 546 unsigned BitWidth = KnownZero.getBitWidth(); 547 548 for (auto &AssumeVH : Q.AC->assumptions()) { 549 if (!AssumeVH) 550 continue; 551 CallInst *I = cast<CallInst>(AssumeVH); 552 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 553 "Got assumption for the wrong function!"); 554 if (Q.isExcluded(I)) 555 continue; 556 557 // Warning: This loop can end up being somewhat performance sensetive. 558 // We're running this loop for once for each value queried resulting in a 559 // runtime of ~O(#assumes * #values). 560 561 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 562 "must be an assume intrinsic"); 563 564 Value *Arg = I->getArgOperand(0); 565 566 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 567 assert(BitWidth == 1 && "assume operand is not i1?"); 568 KnownZero.clearAllBits(); 569 KnownOne.setAllBits(); 570 return; 571 } 572 573 // The remaining tests are all recursive, so bail out if we hit the limit. 574 if (Depth == MaxDepth) 575 continue; 576 577 Value *A, *B; 578 auto m_V = m_CombineOr(m_Specific(V), 579 m_CombineOr(m_PtrToInt(m_Specific(V)), 580 m_BitCast(m_Specific(V)))); 581 582 CmpInst::Predicate Pred; 583 ConstantInt *C; 584 // assume(v = a) 585 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 586 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 588 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 589 KnownZero |= RHSKnownZero; 590 KnownOne |= RHSKnownOne; 591 // assume(v & b = a) 592 } else if (match(Arg, 593 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 594 Pred == ICmpInst::ICMP_EQ && 595 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 596 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 597 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 598 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 599 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 600 601 // For those bits in the mask that are known to be one, we can propagate 602 // known bits from the RHS to V. 603 KnownZero |= RHSKnownZero & MaskKnownOne; 604 KnownOne |= RHSKnownOne & MaskKnownOne; 605 // assume(~(v & b) = a) 606 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 607 m_Value(A))) && 608 Pred == ICmpInst::ICMP_EQ && 609 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 610 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 611 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 612 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 613 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 614 615 // For those bits in the mask that are known to be one, we can propagate 616 // inverted known bits from the RHS to V. 617 KnownZero |= RHSKnownOne & MaskKnownOne; 618 KnownOne |= RHSKnownZero & MaskKnownOne; 619 // assume(v | b = a) 620 } else if (match(Arg, 621 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 622 Pred == ICmpInst::ICMP_EQ && 623 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 624 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 625 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 626 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 627 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 628 629 // For those bits in B that are known to be zero, we can propagate known 630 // bits from the RHS to V. 631 KnownZero |= RHSKnownZero & BKnownZero; 632 KnownOne |= RHSKnownOne & BKnownZero; 633 // assume(~(v | b) = a) 634 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 635 m_Value(A))) && 636 Pred == ICmpInst::ICMP_EQ && 637 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 638 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 639 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 640 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 641 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 642 643 // For those bits in B that are known to be zero, we can propagate 644 // inverted known bits from the RHS to V. 645 KnownZero |= RHSKnownOne & BKnownZero; 646 KnownOne |= RHSKnownZero & BKnownZero; 647 // assume(v ^ b = a) 648 } else if (match(Arg, 649 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 650 Pred == ICmpInst::ICMP_EQ && 651 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 652 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 653 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 654 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 655 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 656 657 // For those bits in B that are known to be zero, we can propagate known 658 // bits from the RHS to V. For those bits in B that are known to be one, 659 // we can propagate inverted known bits from the RHS to V. 660 KnownZero |= RHSKnownZero & BKnownZero; 661 KnownOne |= RHSKnownOne & BKnownZero; 662 KnownZero |= RHSKnownOne & BKnownOne; 663 KnownOne |= RHSKnownZero & BKnownOne; 664 // assume(~(v ^ b) = a) 665 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 666 m_Value(A))) && 667 Pred == ICmpInst::ICMP_EQ && 668 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 669 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 670 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 671 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 672 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 673 674 // For those bits in B that are known to be zero, we can propagate 675 // inverted known bits from the RHS to V. For those bits in B that are 676 // known to be one, we can propagate known bits from the RHS to V. 677 KnownZero |= RHSKnownOne & BKnownZero; 678 KnownOne |= RHSKnownZero & BKnownZero; 679 KnownZero |= RHSKnownZero & BKnownOne; 680 KnownOne |= RHSKnownOne & BKnownOne; 681 // assume(v << c = a) 682 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 683 m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 687 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 688 // For those bits in RHS that are known, we can propagate them to known 689 // bits in V shifted to the right by C. 690 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 691 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 692 // assume(~(v << c) = a) 693 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 694 m_Value(A))) && 695 Pred == ICmpInst::ICMP_EQ && 696 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 698 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 699 // For those bits in RHS that are known, we can propagate them inverted 700 // to known bits in V shifted to the right by C. 701 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 702 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 703 // assume(v >> c = a) 704 } else if (match(Arg, 705 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 706 m_AShr(m_V, m_ConstantInt(C))), 707 m_Value(A))) && 708 Pred == ICmpInst::ICMP_EQ && 709 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 710 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 711 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 712 // For those bits in RHS that are known, we can propagate them to known 713 // bits in V shifted to the right by C. 714 KnownZero |= RHSKnownZero << C->getZExtValue(); 715 KnownOne |= RHSKnownOne << C->getZExtValue(); 716 // assume(~(v >> c) = a) 717 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 718 m_LShr(m_V, m_ConstantInt(C)), 719 m_AShr(m_V, m_ConstantInt(C)))), 720 m_Value(A))) && 721 Pred == ICmpInst::ICMP_EQ && 722 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 723 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 724 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 725 // For those bits in RHS that are known, we can propagate them inverted 726 // to known bits in V shifted to the right by C. 727 KnownZero |= RHSKnownOne << C->getZExtValue(); 728 KnownOne |= RHSKnownZero << C->getZExtValue(); 729 // assume(v >=_s c) where c is non-negative 730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 731 Pred == ICmpInst::ICMP_SGE && 732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 733 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 734 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 735 736 if (RHSKnownZero.isNegative()) { 737 // We know that the sign bit is zero. 738 KnownZero |= APInt::getSignBit(BitWidth); 739 } 740 // assume(v >_s c) where c is at least -1. 741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 742 Pred == ICmpInst::ICMP_SGT && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 744 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 745 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 746 747 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 748 // We know that the sign bit is zero. 749 KnownZero |= APInt::getSignBit(BitWidth); 750 } 751 // assume(v <=_s c) where c is negative 752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 753 Pred == ICmpInst::ICMP_SLE && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 757 758 if (RHSKnownOne.isNegative()) { 759 // We know that the sign bit is one. 760 KnownOne |= APInt::getSignBit(BitWidth); 761 } 762 // assume(v <_s c) where c is non-positive 763 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 764 Pred == ICmpInst::ICMP_SLT && 765 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 766 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 767 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 768 769 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 770 // We know that the sign bit is one. 771 KnownOne |= APInt::getSignBit(BitWidth); 772 } 773 // assume(v <=_u c) 774 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 775 Pred == ICmpInst::ICMP_ULE && 776 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 777 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 778 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 779 780 // Whatever high bits in c are zero are known to be zero. 781 KnownZero |= 782 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 783 // assume(v <_u c) 784 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 785 Pred == ICmpInst::ICMP_ULT && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 789 790 // Whatever high bits in c are zero are known to be zero (if c is a power 791 // of 2, then one more). 792 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 793 KnownZero |= 794 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 795 else 796 KnownZero |= 797 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 798 } 799 } 800 } 801 802 // Compute known bits from a shift operator, including those with a 803 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 804 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 805 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 806 // functors that, given the known-zero or known-one bits respectively, and a 807 // shift amount, compute the implied known-zero or known-one bits of the shift 808 // operator's result respectively for that shift amount. The results from calling 809 // KZF and KOF are conservatively combined for all permitted shift amounts. 810 template <typename KZFunctor, typename KOFunctor> 811 static void computeKnownBitsFromShiftOperator(Operator *I, 812 APInt &KnownZero, APInt &KnownOne, 813 APInt &KnownZero2, APInt &KnownOne2, 814 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 815 unsigned BitWidth = KnownZero.getBitWidth(); 816 817 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 818 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 819 820 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 821 KnownZero = KZF(KnownZero, ShiftAmt); 822 KnownOne = KOF(KnownOne, ShiftAmt); 823 return; 824 } 825 826 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 827 828 // Note: We cannot use KnownZero.getLimitedValue() here, because if 829 // BitWidth > 64 and any upper bits are known, we'll end up returning the 830 // limit value (which implies all bits are known). 831 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 832 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 833 834 // It would be more-clearly correct to use the two temporaries for this 835 // calculation. Reusing the APInts here to prevent unnecessary allocations. 836 KnownZero.clearAllBits(); 837 KnownOne.clearAllBits(); 838 839 // If we know the shifter operand is nonzero, we can sometimes infer more 840 // known bits. However this is expensive to compute, so be lazy about it and 841 // only compute it when absolutely necessary. 842 Optional<bool> ShifterOperandIsNonZero; 843 844 // Early exit if we can't constrain any well-defined shift amount. 845 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 846 ShifterOperandIsNonZero = 847 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 848 if (!*ShifterOperandIsNonZero) 849 return; 850 } 851 852 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 853 854 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 855 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 856 // Combine the shifted known input bits only for those shift amounts 857 // compatible with its known constraints. 858 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 859 continue; 860 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 861 continue; 862 // If we know the shifter is nonzero, we may be able to infer more known 863 // bits. This check is sunk down as far as possible to avoid the expensive 864 // call to isKnownNonZero if the cheaper checks above fail. 865 if (ShiftAmt == 0) { 866 if (!ShifterOperandIsNonZero.hasValue()) 867 ShifterOperandIsNonZero = 868 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 869 if (*ShifterOperandIsNonZero) 870 continue; 871 } 872 873 KnownZero &= KZF(KnownZero2, ShiftAmt); 874 KnownOne &= KOF(KnownOne2, ShiftAmt); 875 } 876 877 // If there are no compatible shift amounts, then we've proven that the shift 878 // amount must be >= the BitWidth, and the result is undefined. We could 879 // return anything we'd like, but we need to make sure the sets of known bits 880 // stay disjoint (it should be better for some other code to actually 881 // propagate the undef than to pick a value here using known bits). 882 if ((KnownZero & KnownOne) != 0) { 883 KnownZero.clearAllBits(); 884 KnownOne.clearAllBits(); 885 } 886 } 887 888 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 889 APInt &KnownOne, unsigned Depth, 890 const Query &Q) { 891 unsigned BitWidth = KnownZero.getBitWidth(); 892 893 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 894 switch (I->getOpcode()) { 895 default: break; 896 case Instruction::Load: 897 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 898 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 899 break; 900 case Instruction::And: { 901 // If either the LHS or the RHS are Zero, the result is zero. 902 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 903 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 904 905 // Output known-1 bits are only known if set in both the LHS & RHS. 906 KnownOne &= KnownOne2; 907 // Output known-0 are known to be clear if zero in either the LHS | RHS. 908 KnownZero |= KnownZero2; 909 910 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 911 // here we handle the more general case of adding any odd number by 912 // matching the form add(x, add(x, y)) where y is odd. 913 // TODO: This could be generalized to clearing any bit set in y where the 914 // following bit is known to be unset in y. 915 Value *Y = nullptr; 916 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 917 m_Value(Y))) || 918 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 919 m_Value(Y)))) { 920 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 921 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 922 if (KnownOne3.countTrailingOnes() > 0) 923 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 924 } 925 break; 926 } 927 case Instruction::Or: { 928 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 929 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 930 931 // Output known-0 bits are only known if clear in both the LHS & RHS. 932 KnownZero &= KnownZero2; 933 // Output known-1 are known to be set if set in either the LHS | RHS. 934 KnownOne |= KnownOne2; 935 break; 936 } 937 case Instruction::Xor: { 938 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 940 941 // Output known-0 bits are known if clear or set in both the LHS & RHS. 942 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 943 // Output known-1 are known to be set if set in only one of the LHS, RHS. 944 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 945 KnownZero = KnownZeroOut; 946 break; 947 } 948 case Instruction::Mul: { 949 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 950 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 951 KnownOne, KnownZero2, KnownOne2, Depth, Q); 952 break; 953 } 954 case Instruction::UDiv: { 955 // For the purposes of computing leading zeros we can conservatively 956 // treat a udiv as a logical right shift by the power of 2 known to 957 // be less than the denominator. 958 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 959 unsigned LeadZ = KnownZero2.countLeadingOnes(); 960 961 KnownOne2.clearAllBits(); 962 KnownZero2.clearAllBits(); 963 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 964 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 965 if (RHSUnknownLeadingOnes != BitWidth) 966 LeadZ = std::min(BitWidth, 967 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 968 969 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 970 break; 971 } 972 case Instruction::Select: 973 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 974 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 975 976 // Only known if known in both the LHS and RHS. 977 KnownOne &= KnownOne2; 978 KnownZero &= KnownZero2; 979 break; 980 case Instruction::FPTrunc: 981 case Instruction::FPExt: 982 case Instruction::FPToUI: 983 case Instruction::FPToSI: 984 case Instruction::SIToFP: 985 case Instruction::UIToFP: 986 break; // Can't work with floating point. 987 case Instruction::PtrToInt: 988 case Instruction::IntToPtr: 989 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 990 // FALL THROUGH and handle them the same as zext/trunc. 991 case Instruction::ZExt: 992 case Instruction::Trunc: { 993 Type *SrcTy = I->getOperand(0)->getType(); 994 995 unsigned SrcBitWidth; 996 // Note that we handle pointer operands here because of inttoptr/ptrtoint 997 // which fall through here. 998 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 999 1000 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1001 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1002 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1003 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1004 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1005 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1006 // Any top bits are known to be zero. 1007 if (BitWidth > SrcBitWidth) 1008 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1009 break; 1010 } 1011 case Instruction::BitCast: { 1012 Type *SrcTy = I->getOperand(0)->getType(); 1013 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1014 SrcTy->isFloatingPointTy()) && 1015 // TODO: For now, not handling conversions like: 1016 // (bitcast i64 %x to <2 x i32>) 1017 !I->getType()->isVectorTy()) { 1018 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1019 break; 1020 } 1021 break; 1022 } 1023 case Instruction::SExt: { 1024 // Compute the bits in the result that are not present in the input. 1025 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1026 1027 KnownZero = KnownZero.trunc(SrcBitWidth); 1028 KnownOne = KnownOne.trunc(SrcBitWidth); 1029 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1030 KnownZero = KnownZero.zext(BitWidth); 1031 KnownOne = KnownOne.zext(BitWidth); 1032 1033 // If the sign bit of the input is known set or clear, then we know the 1034 // top bits of the result. 1035 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1036 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1037 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1038 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1039 break; 1040 } 1041 case Instruction::Shl: { 1042 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1043 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1044 return (KnownZero << ShiftAmt) | 1045 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1046 }; 1047 1048 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1049 return KnownOne << ShiftAmt; 1050 }; 1051 1052 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1053 KnownZero2, KnownOne2, Depth, Q, KZF, 1054 KOF); 1055 break; 1056 } 1057 case Instruction::LShr: { 1058 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1059 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1060 return APIntOps::lshr(KnownZero, ShiftAmt) | 1061 // High bits known zero. 1062 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1063 }; 1064 1065 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1066 return APIntOps::lshr(KnownOne, ShiftAmt); 1067 }; 1068 1069 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1070 KnownZero2, KnownOne2, Depth, Q, KZF, 1071 KOF); 1072 break; 1073 } 1074 case Instruction::AShr: { 1075 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1076 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1077 return APIntOps::ashr(KnownZero, ShiftAmt); 1078 }; 1079 1080 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1081 return APIntOps::ashr(KnownOne, ShiftAmt); 1082 }; 1083 1084 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1085 KnownZero2, KnownOne2, Depth, Q, KZF, 1086 KOF); 1087 break; 1088 } 1089 case Instruction::Sub: { 1090 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1091 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1092 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1093 Q); 1094 break; 1095 } 1096 case Instruction::Add: { 1097 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1098 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1099 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1100 Q); 1101 break; 1102 } 1103 case Instruction::SRem: 1104 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1105 APInt RA = Rem->getValue().abs(); 1106 if (RA.isPowerOf2()) { 1107 APInt LowBits = RA - 1; 1108 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1109 Q); 1110 1111 // The low bits of the first operand are unchanged by the srem. 1112 KnownZero = KnownZero2 & LowBits; 1113 KnownOne = KnownOne2 & LowBits; 1114 1115 // If the first operand is non-negative or has all low bits zero, then 1116 // the upper bits are all zero. 1117 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1118 KnownZero |= ~LowBits; 1119 1120 // If the first operand is negative and not all low bits are zero, then 1121 // the upper bits are all one. 1122 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1123 KnownOne |= ~LowBits; 1124 1125 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1126 } 1127 } 1128 1129 // The sign bit is the LHS's sign bit, except when the result of the 1130 // remainder is zero. 1131 if (KnownZero.isNonNegative()) { 1132 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1133 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1134 Q); 1135 // If it's known zero, our sign bit is also zero. 1136 if (LHSKnownZero.isNegative()) 1137 KnownZero.setBit(BitWidth - 1); 1138 } 1139 1140 break; 1141 case Instruction::URem: { 1142 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1143 APInt RA = Rem->getValue(); 1144 if (RA.isPowerOf2()) { 1145 APInt LowBits = (RA - 1); 1146 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1147 KnownZero |= ~LowBits; 1148 KnownOne &= LowBits; 1149 break; 1150 } 1151 } 1152 1153 // Since the result is less than or equal to either operand, any leading 1154 // zero bits in either operand must also exist in the result. 1155 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1157 1158 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1159 KnownZero2.countLeadingOnes()); 1160 KnownOne.clearAllBits(); 1161 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1162 break; 1163 } 1164 1165 case Instruction::Alloca: { 1166 AllocaInst *AI = cast<AllocaInst>(I); 1167 unsigned Align = AI->getAlignment(); 1168 if (Align == 0) 1169 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1170 1171 if (Align > 0) 1172 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1173 break; 1174 } 1175 case Instruction::GetElementPtr: { 1176 // Analyze all of the subscripts of this getelementptr instruction 1177 // to determine if we can prove known low zero bits. 1178 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1179 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1180 Q); 1181 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1182 1183 gep_type_iterator GTI = gep_type_begin(I); 1184 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1185 Value *Index = I->getOperand(i); 1186 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1187 // Handle struct member offset arithmetic. 1188 1189 // Handle case when index is vector zeroinitializer 1190 Constant *CIndex = cast<Constant>(Index); 1191 if (CIndex->isZeroValue()) 1192 continue; 1193 1194 if (CIndex->getType()->isVectorTy()) 1195 Index = CIndex->getSplatValue(); 1196 1197 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1198 const StructLayout *SL = Q.DL.getStructLayout(STy); 1199 uint64_t Offset = SL->getElementOffset(Idx); 1200 TrailZ = std::min<unsigned>(TrailZ, 1201 countTrailingZeros(Offset)); 1202 } else { 1203 // Handle array index arithmetic. 1204 Type *IndexedTy = GTI.getIndexedType(); 1205 if (!IndexedTy->isSized()) { 1206 TrailZ = 0; 1207 break; 1208 } 1209 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1210 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1211 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1212 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1213 TrailZ = std::min(TrailZ, 1214 unsigned(countTrailingZeros(TypeSize) + 1215 LocalKnownZero.countTrailingOnes())); 1216 } 1217 } 1218 1219 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1220 break; 1221 } 1222 case Instruction::PHI: { 1223 PHINode *P = cast<PHINode>(I); 1224 // Handle the case of a simple two-predecessor recurrence PHI. 1225 // There's a lot more that could theoretically be done here, but 1226 // this is sufficient to catch some interesting cases. 1227 if (P->getNumIncomingValues() == 2) { 1228 for (unsigned i = 0; i != 2; ++i) { 1229 Value *L = P->getIncomingValue(i); 1230 Value *R = P->getIncomingValue(!i); 1231 Operator *LU = dyn_cast<Operator>(L); 1232 if (!LU) 1233 continue; 1234 unsigned Opcode = LU->getOpcode(); 1235 // Check for operations that have the property that if 1236 // both their operands have low zero bits, the result 1237 // will have low zero bits. 1238 if (Opcode == Instruction::Add || 1239 Opcode == Instruction::Sub || 1240 Opcode == Instruction::And || 1241 Opcode == Instruction::Or || 1242 Opcode == Instruction::Mul) { 1243 Value *LL = LU->getOperand(0); 1244 Value *LR = LU->getOperand(1); 1245 // Find a recurrence. 1246 if (LL == I) 1247 L = LR; 1248 else if (LR == I) 1249 L = LL; 1250 else 1251 break; 1252 // Ok, we have a PHI of the form L op= R. Check for low 1253 // zero bits. 1254 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1255 1256 // We need to take the minimum number of known bits 1257 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1258 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1259 1260 KnownZero = APInt::getLowBitsSet(BitWidth, 1261 std::min(KnownZero2.countTrailingOnes(), 1262 KnownZero3.countTrailingOnes())); 1263 break; 1264 } 1265 } 1266 } 1267 1268 // Unreachable blocks may have zero-operand PHI nodes. 1269 if (P->getNumIncomingValues() == 0) 1270 break; 1271 1272 // Otherwise take the unions of the known bit sets of the operands, 1273 // taking conservative care to avoid excessive recursion. 1274 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1275 // Skip if every incoming value references to ourself. 1276 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1277 break; 1278 1279 KnownZero = APInt::getAllOnesValue(BitWidth); 1280 KnownOne = APInt::getAllOnesValue(BitWidth); 1281 for (Value *IncValue : P->incoming_values()) { 1282 // Skip direct self references. 1283 if (IncValue == P) continue; 1284 1285 KnownZero2 = APInt(BitWidth, 0); 1286 KnownOne2 = APInt(BitWidth, 0); 1287 // Recurse, but cap the recursion to one level, because we don't 1288 // want to waste time spinning around in loops. 1289 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1290 KnownZero &= KnownZero2; 1291 KnownOne &= KnownOne2; 1292 // If all bits have been ruled out, there's no need to check 1293 // more operands. 1294 if (!KnownZero && !KnownOne) 1295 break; 1296 } 1297 } 1298 break; 1299 } 1300 case Instruction::Call: 1301 case Instruction::Invoke: 1302 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1303 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1304 // If a range metadata is attached to this IntrinsicInst, intersect the 1305 // explicit range specified by the metadata and the implicit range of 1306 // the intrinsic. 1307 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1308 switch (II->getIntrinsicID()) { 1309 default: break; 1310 case Intrinsic::bswap: 1311 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1312 KnownZero |= KnownZero2.byteSwap(); 1313 KnownOne |= KnownOne2.byteSwap(); 1314 break; 1315 case Intrinsic::ctlz: 1316 case Intrinsic::cttz: { 1317 unsigned LowBits = Log2_32(BitWidth)+1; 1318 // If this call is undefined for 0, the result will be less than 2^n. 1319 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1320 LowBits -= 1; 1321 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1322 break; 1323 } 1324 case Intrinsic::ctpop: { 1325 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1326 // We can bound the space the count needs. Also, bits known to be zero 1327 // can't contribute to the population. 1328 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1329 unsigned LeadingZeros = 1330 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1331 assert(LeadingZeros <= BitWidth); 1332 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1333 KnownOne &= ~KnownZero; 1334 // TODO: we could bound KnownOne using the lower bound on the number 1335 // of bits which might be set provided by popcnt KnownOne2. 1336 break; 1337 } 1338 case Intrinsic::fabs: { 1339 Type *Ty = II->getType(); 1340 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1341 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1342 break; 1343 } 1344 case Intrinsic::x86_sse42_crc32_64_64: 1345 KnownZero |= APInt::getHighBitsSet(64, 32); 1346 break; 1347 } 1348 } 1349 break; 1350 case Instruction::ExtractValue: 1351 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1352 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1353 if (EVI->getNumIndices() != 1) break; 1354 if (EVI->getIndices()[0] == 0) { 1355 switch (II->getIntrinsicID()) { 1356 default: break; 1357 case Intrinsic::uadd_with_overflow: 1358 case Intrinsic::sadd_with_overflow: 1359 computeKnownBitsAddSub(true, II->getArgOperand(0), 1360 II->getArgOperand(1), false, KnownZero, 1361 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1362 break; 1363 case Intrinsic::usub_with_overflow: 1364 case Intrinsic::ssub_with_overflow: 1365 computeKnownBitsAddSub(false, II->getArgOperand(0), 1366 II->getArgOperand(1), false, KnownZero, 1367 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1368 break; 1369 case Intrinsic::umul_with_overflow: 1370 case Intrinsic::smul_with_overflow: 1371 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1372 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1373 Q); 1374 break; 1375 } 1376 } 1377 } 1378 } 1379 } 1380 1381 /// Determine which bits of V are known to be either zero or one and return 1382 /// them in the KnownZero/KnownOne bit sets. 1383 /// 1384 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1385 /// we cannot optimize based on the assumption that it is zero without changing 1386 /// it to be an explicit zero. If we don't change it to zero, other code could 1387 /// optimized based on the contradictory assumption that it is non-zero. 1388 /// Because instcombine aggressively folds operations with undef args anyway, 1389 /// this won't lose us code quality. 1390 /// 1391 /// This function is defined on values with integer type, values with pointer 1392 /// type, and vectors of integers. In the case 1393 /// where V is a vector, known zero, and known one values are the 1394 /// same width as the vector element, and the bit is set only if it is true 1395 /// for all of the elements in the vector. 1396 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1397 unsigned Depth, const Query &Q) { 1398 assert(V && "No Value?"); 1399 assert(Depth <= MaxDepth && "Limit Search Depth"); 1400 unsigned BitWidth = KnownZero.getBitWidth(); 1401 1402 assert((V->getType()->isIntOrIntVectorTy() || 1403 V->getType()->isFPOrFPVectorTy() || 1404 V->getType()->getScalarType()->isPointerTy()) && 1405 "Not integer, floating point, or pointer type!"); 1406 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1407 (!V->getType()->isIntOrIntVectorTy() || 1408 V->getType()->getScalarSizeInBits() == BitWidth) && 1409 KnownZero.getBitWidth() == BitWidth && 1410 KnownOne.getBitWidth() == BitWidth && 1411 "V, KnownOne and KnownZero should have same BitWidth"); 1412 1413 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1414 // We know all of the bits for a constant! 1415 KnownOne = CI->getValue(); 1416 KnownZero = ~KnownOne; 1417 return; 1418 } 1419 // Null and aggregate-zero are all-zeros. 1420 if (isa<ConstantPointerNull>(V) || 1421 isa<ConstantAggregateZero>(V)) { 1422 KnownOne.clearAllBits(); 1423 KnownZero = APInt::getAllOnesValue(BitWidth); 1424 return; 1425 } 1426 // Handle a constant vector by taking the intersection of the known bits of 1427 // each element. There is no real need to handle ConstantVector here, because 1428 // we don't handle undef in any particularly useful way. 1429 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1430 // We know that CDS must be a vector of integers. Take the intersection of 1431 // each element. 1432 KnownZero.setAllBits(); KnownOne.setAllBits(); 1433 APInt Elt(KnownZero.getBitWidth(), 0); 1434 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1435 Elt = CDS->getElementAsInteger(i); 1436 KnownZero &= ~Elt; 1437 KnownOne &= Elt; 1438 } 1439 return; 1440 } 1441 1442 // Start out not knowing anything. 1443 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1444 1445 // Limit search depth. 1446 // All recursive calls that increase depth must come after this. 1447 if (Depth == MaxDepth) 1448 return; 1449 1450 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1451 // the bits of its aliasee. 1452 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1453 if (!GA->isInterposable()) 1454 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1455 return; 1456 } 1457 1458 if (Operator *I = dyn_cast<Operator>(V)) 1459 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1460 1461 // Aligned pointers have trailing zeros - refine KnownZero set 1462 if (V->getType()->isPointerTy()) { 1463 unsigned Align = V->getPointerAlignment(Q.DL); 1464 if (Align) 1465 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1466 } 1467 1468 // computeKnownBitsFromAssume strictly refines KnownZero and 1469 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1470 1471 // Check whether a nearby assume intrinsic can determine some known bits. 1472 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1473 1474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1475 } 1476 1477 /// Determine whether the sign bit is known to be zero or one. 1478 /// Convenience wrapper around computeKnownBits. 1479 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1480 unsigned Depth, const Query &Q) { 1481 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1482 if (!BitWidth) { 1483 KnownZero = false; 1484 KnownOne = false; 1485 return; 1486 } 1487 APInt ZeroBits(BitWidth, 0); 1488 APInt OneBits(BitWidth, 0); 1489 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1490 KnownOne = OneBits[BitWidth - 1]; 1491 KnownZero = ZeroBits[BitWidth - 1]; 1492 } 1493 1494 /// Return true if the given value is known to have exactly one 1495 /// bit set when defined. For vectors return true if every element is known to 1496 /// be a power of two when defined. Supports values with integer or pointer 1497 /// types and vectors of integers. 1498 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1499 const Query &Q) { 1500 if (Constant *C = dyn_cast<Constant>(V)) { 1501 if (C->isNullValue()) 1502 return OrZero; 1503 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1504 return CI->getValue().isPowerOf2(); 1505 // TODO: Handle vector constants. 1506 } 1507 1508 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1509 // it is shifted off the end then the result is undefined. 1510 if (match(V, m_Shl(m_One(), m_Value()))) 1511 return true; 1512 1513 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1514 // bottom. If it is shifted off the bottom then the result is undefined. 1515 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1516 return true; 1517 1518 // The remaining tests are all recursive, so bail out if we hit the limit. 1519 if (Depth++ == MaxDepth) 1520 return false; 1521 1522 Value *X = nullptr, *Y = nullptr; 1523 // A shift left or a logical shift right of a power of two is a power of two 1524 // or zero. 1525 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1526 match(V, m_LShr(m_Value(X), m_Value())))) 1527 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1528 1529 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1530 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1531 1532 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1533 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1534 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1535 1536 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1537 // A power of two and'd with anything is a power of two or zero. 1538 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1539 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1540 return true; 1541 // X & (-X) is always a power of two or zero. 1542 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1543 return true; 1544 return false; 1545 } 1546 1547 // Adding a power-of-two or zero to the same power-of-two or zero yields 1548 // either the original power-of-two, a larger power-of-two or zero. 1549 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1550 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1551 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1552 if (match(X, m_And(m_Specific(Y), m_Value())) || 1553 match(X, m_And(m_Value(), m_Specific(Y)))) 1554 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1555 return true; 1556 if (match(Y, m_And(m_Specific(X), m_Value())) || 1557 match(Y, m_And(m_Value(), m_Specific(X)))) 1558 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1559 return true; 1560 1561 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1562 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1563 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1564 1565 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1566 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1567 // If i8 V is a power of two or zero: 1568 // ZeroBits: 1 1 1 0 1 1 1 1 1569 // ~ZeroBits: 0 0 0 1 0 0 0 0 1570 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1571 // If OrZero isn't set, we cannot give back a zero result. 1572 // Make sure either the LHS or RHS has a bit set. 1573 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1574 return true; 1575 } 1576 } 1577 1578 // An exact divide or right shift can only shift off zero bits, so the result 1579 // is a power of two only if the first operand is a power of two and not 1580 // copying a sign bit (sdiv int_min, 2). 1581 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1582 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1583 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1584 Depth, Q); 1585 } 1586 1587 return false; 1588 } 1589 1590 /// \brief Test whether a GEP's result is known to be non-null. 1591 /// 1592 /// Uses properties inherent in a GEP to try to determine whether it is known 1593 /// to be non-null. 1594 /// 1595 /// Currently this routine does not support vector GEPs. 1596 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1597 const Query &Q) { 1598 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1599 return false; 1600 1601 // FIXME: Support vector-GEPs. 1602 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1603 1604 // If the base pointer is non-null, we cannot walk to a null address with an 1605 // inbounds GEP in address space zero. 1606 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1607 return true; 1608 1609 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1610 // If so, then the GEP cannot produce a null pointer, as doing so would 1611 // inherently violate the inbounds contract within address space zero. 1612 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1613 GTI != GTE; ++GTI) { 1614 // Struct types are easy -- they must always be indexed by a constant. 1615 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1616 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1617 unsigned ElementIdx = OpC->getZExtValue(); 1618 const StructLayout *SL = Q.DL.getStructLayout(STy); 1619 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1620 if (ElementOffset > 0) 1621 return true; 1622 continue; 1623 } 1624 1625 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1626 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1627 continue; 1628 1629 // Fast path the constant operand case both for efficiency and so we don't 1630 // increment Depth when just zipping down an all-constant GEP. 1631 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1632 if (!OpC->isZero()) 1633 return true; 1634 continue; 1635 } 1636 1637 // We post-increment Depth here because while isKnownNonZero increments it 1638 // as well, when we pop back up that increment won't persist. We don't want 1639 // to recurse 10k times just because we have 10k GEP operands. We don't 1640 // bail completely out because we want to handle constant GEPs regardless 1641 // of depth. 1642 if (Depth++ >= MaxDepth) 1643 continue; 1644 1645 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1646 return true; 1647 } 1648 1649 return false; 1650 } 1651 1652 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1653 /// ensure that the value it's attached to is never Value? 'RangeType' is 1654 /// is the type of the value described by the range. 1655 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1656 const APInt& Value) { 1657 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1658 assert(NumRanges >= 1); 1659 for (unsigned i = 0; i < NumRanges; ++i) { 1660 ConstantInt *Lower = 1661 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1662 ConstantInt *Upper = 1663 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1664 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1665 if (Range.contains(Value)) 1666 return false; 1667 } 1668 return true; 1669 } 1670 1671 /// Return true if the given value is known to be non-zero when defined. 1672 /// For vectors return true if every element is known to be non-zero when 1673 /// defined. Supports values with integer or pointer type and vectors of 1674 /// integers. 1675 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1676 if (Constant *C = dyn_cast<Constant>(V)) { 1677 if (C->isNullValue()) 1678 return false; 1679 if (isa<ConstantInt>(C)) 1680 // Must be non-zero due to null test above. 1681 return true; 1682 // TODO: Handle vectors 1683 return false; 1684 } 1685 1686 if (Instruction* I = dyn_cast<Instruction>(V)) { 1687 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1688 // If the possible ranges don't contain zero, then the value is 1689 // definitely non-zero. 1690 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1691 const APInt ZeroValue(Ty->getBitWidth(), 0); 1692 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1693 return true; 1694 } 1695 } 1696 } 1697 1698 // The remaining tests are all recursive, so bail out if we hit the limit. 1699 if (Depth++ >= MaxDepth) 1700 return false; 1701 1702 // Check for pointer simplifications. 1703 if (V->getType()->isPointerTy()) { 1704 if (isKnownNonNull(V)) 1705 return true; 1706 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1707 if (isGEPKnownNonNull(GEP, Depth, Q)) 1708 return true; 1709 } 1710 1711 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1712 1713 // X | Y != 0 if X != 0 or Y != 0. 1714 Value *X = nullptr, *Y = nullptr; 1715 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1716 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1717 1718 // ext X != 0 if X != 0. 1719 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1720 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1721 1722 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1723 // if the lowest bit is shifted off the end. 1724 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1725 // shl nuw can't remove any non-zero bits. 1726 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1727 if (BO->hasNoUnsignedWrap()) 1728 return isKnownNonZero(X, Depth, Q); 1729 1730 APInt KnownZero(BitWidth, 0); 1731 APInt KnownOne(BitWidth, 0); 1732 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1733 if (KnownOne[0]) 1734 return true; 1735 } 1736 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1737 // defined if the sign bit is shifted off the end. 1738 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1739 // shr exact can only shift out zero bits. 1740 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1741 if (BO->isExact()) 1742 return isKnownNonZero(X, Depth, Q); 1743 1744 bool XKnownNonNegative, XKnownNegative; 1745 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1746 if (XKnownNegative) 1747 return true; 1748 1749 // If the shifter operand is a constant, and all of the bits shifted 1750 // out are known to be zero, and X is known non-zero then at least one 1751 // non-zero bit must remain. 1752 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1753 APInt KnownZero(BitWidth, 0); 1754 APInt KnownOne(BitWidth, 0); 1755 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1756 1757 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1758 // Is there a known one in the portion not shifted out? 1759 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1760 return true; 1761 // Are all the bits to be shifted out known zero? 1762 if (KnownZero.countTrailingOnes() >= ShiftVal) 1763 return isKnownNonZero(X, Depth, Q); 1764 } 1765 } 1766 // div exact can only produce a zero if the dividend is zero. 1767 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1768 return isKnownNonZero(X, Depth, Q); 1769 } 1770 // X + Y. 1771 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1772 bool XKnownNonNegative, XKnownNegative; 1773 bool YKnownNonNegative, YKnownNegative; 1774 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1775 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1776 1777 // If X and Y are both non-negative (as signed values) then their sum is not 1778 // zero unless both X and Y are zero. 1779 if (XKnownNonNegative && YKnownNonNegative) 1780 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1781 return true; 1782 1783 // If X and Y are both negative (as signed values) then their sum is not 1784 // zero unless both X and Y equal INT_MIN. 1785 if (BitWidth && XKnownNegative && YKnownNegative) { 1786 APInt KnownZero(BitWidth, 0); 1787 APInt KnownOne(BitWidth, 0); 1788 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1789 // The sign bit of X is set. If some other bit is set then X is not equal 1790 // to INT_MIN. 1791 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1792 if ((KnownOne & Mask) != 0) 1793 return true; 1794 // The sign bit of Y is set. If some other bit is set then Y is not equal 1795 // to INT_MIN. 1796 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1797 if ((KnownOne & Mask) != 0) 1798 return true; 1799 } 1800 1801 // The sum of a non-negative number and a power of two is not zero. 1802 if (XKnownNonNegative && 1803 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1804 return true; 1805 if (YKnownNonNegative && 1806 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1807 return true; 1808 } 1809 // X * Y. 1810 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1811 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1812 // If X and Y are non-zero then so is X * Y as long as the multiplication 1813 // does not overflow. 1814 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1815 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1816 return true; 1817 } 1818 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1819 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1820 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1821 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1822 return true; 1823 } 1824 // PHI 1825 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1826 // Try and detect a recurrence that monotonically increases from a 1827 // starting value, as these are common as induction variables. 1828 if (PN->getNumIncomingValues() == 2) { 1829 Value *Start = PN->getIncomingValue(0); 1830 Value *Induction = PN->getIncomingValue(1); 1831 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1832 std::swap(Start, Induction); 1833 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1834 if (!C->isZero() && !C->isNegative()) { 1835 ConstantInt *X; 1836 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1837 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1838 !X->isNegative()) 1839 return true; 1840 } 1841 } 1842 } 1843 // Check if all incoming values are non-zero constant. 1844 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1845 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1846 }); 1847 if (AllNonZeroConstants) 1848 return true; 1849 } 1850 1851 if (!BitWidth) return false; 1852 APInt KnownZero(BitWidth, 0); 1853 APInt KnownOne(BitWidth, 0); 1854 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1855 return KnownOne != 0; 1856 } 1857 1858 /// Return true if V2 == V1 + X, where X is known non-zero. 1859 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 1860 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1861 if (!BO || BO->getOpcode() != Instruction::Add) 1862 return false; 1863 Value *Op = nullptr; 1864 if (V2 == BO->getOperand(0)) 1865 Op = BO->getOperand(1); 1866 else if (V2 == BO->getOperand(1)) 1867 Op = BO->getOperand(0); 1868 else 1869 return false; 1870 return isKnownNonZero(Op, 0, Q); 1871 } 1872 1873 /// Return true if it is known that V1 != V2. 1874 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 1875 if (V1->getType()->isVectorTy() || V1 == V2) 1876 return false; 1877 if (V1->getType() != V2->getType()) 1878 // We can't look through casts yet. 1879 return false; 1880 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1881 return true; 1882 1883 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1884 // Are any known bits in V1 contradictory to known bits in V2? If V1 1885 // has a known zero where V2 has a known one, they must not be equal. 1886 auto BitWidth = Ty->getBitWidth(); 1887 APInt KnownZero1(BitWidth, 0); 1888 APInt KnownOne1(BitWidth, 0); 1889 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1890 APInt KnownZero2(BitWidth, 0); 1891 APInt KnownOne2(BitWidth, 0); 1892 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1893 1894 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1895 if (OppositeBits.getBoolValue()) 1896 return true; 1897 } 1898 return false; 1899 } 1900 1901 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1902 /// simplify operations downstream. Mask is known to be zero for bits that V 1903 /// cannot have. 1904 /// 1905 /// This function is defined on values with integer type, values with pointer 1906 /// type, and vectors of integers. In the case 1907 /// where V is a vector, the mask, known zero, and known one values are the 1908 /// same width as the vector element, and the bit is set only if it is true 1909 /// for all of the elements in the vector. 1910 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 1911 const Query &Q) { 1912 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1913 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1914 return (KnownZero & Mask) == Mask; 1915 } 1916 1917 1918 1919 /// Return the number of times the sign bit of the register is replicated into 1920 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1921 /// (itself), but other cases can give us information. For example, immediately 1922 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1923 /// other, so we return 3. 1924 /// 1925 /// 'Op' must have a scalar integer type. 1926 /// 1927 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 1928 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 1929 unsigned Tmp, Tmp2; 1930 unsigned FirstAnswer = 1; 1931 1932 // Note that ConstantInt is handled by the general computeKnownBits case 1933 // below. 1934 1935 if (Depth == 6) 1936 return 1; // Limit search depth. 1937 1938 Operator *U = dyn_cast<Operator>(V); 1939 switch (Operator::getOpcode(V)) { 1940 default: break; 1941 case Instruction::SExt: 1942 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1943 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 1944 1945 case Instruction::SDiv: { 1946 const APInt *Denominator; 1947 // sdiv X, C -> adds log(C) sign bits. 1948 if (match(U->getOperand(1), m_APInt(Denominator))) { 1949 1950 // Ignore non-positive denominator. 1951 if (!Denominator->isStrictlyPositive()) 1952 break; 1953 1954 // Calculate the incoming numerator bits. 1955 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1956 1957 // Add floor(log(C)) bits to the numerator bits. 1958 return std::min(TyBits, NumBits + Denominator->logBase2()); 1959 } 1960 break; 1961 } 1962 1963 case Instruction::SRem: { 1964 const APInt *Denominator; 1965 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1966 // positive constant. This let us put a lower bound on the number of sign 1967 // bits. 1968 if (match(U->getOperand(1), m_APInt(Denominator))) { 1969 1970 // Ignore non-positive denominator. 1971 if (!Denominator->isStrictlyPositive()) 1972 break; 1973 1974 // Calculate the incoming numerator bits. SRem by a positive constant 1975 // can't lower the number of sign bits. 1976 unsigned NumrBits = 1977 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 1978 1979 // Calculate the leading sign bit constraints by examining the 1980 // denominator. Given that the denominator is positive, there are two 1981 // cases: 1982 // 1983 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1984 // (1 << ceilLogBase2(C)). 1985 // 1986 // 2. the numerator is negative. Then the result range is (-C,0] and 1987 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1988 // 1989 // Thus a lower bound on the number of sign bits is `TyBits - 1990 // ceilLogBase2(C)`. 1991 1992 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1993 return std::max(NumrBits, ResBits); 1994 } 1995 break; 1996 } 1997 1998 case Instruction::AShr: { 1999 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2000 // ashr X, C -> adds C sign bits. Vectors too. 2001 const APInt *ShAmt; 2002 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2003 Tmp += ShAmt->getZExtValue(); 2004 if (Tmp > TyBits) Tmp = TyBits; 2005 } 2006 return Tmp; 2007 } 2008 case Instruction::Shl: { 2009 const APInt *ShAmt; 2010 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2011 // shl destroys sign bits. 2012 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2013 Tmp2 = ShAmt->getZExtValue(); 2014 if (Tmp2 >= TyBits || // Bad shift. 2015 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2016 return Tmp - Tmp2; 2017 } 2018 break; 2019 } 2020 case Instruction::And: 2021 case Instruction::Or: 2022 case Instruction::Xor: // NOT is handled here. 2023 // Logical binary ops preserve the number of sign bits at the worst. 2024 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2025 if (Tmp != 1) { 2026 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2027 FirstAnswer = std::min(Tmp, Tmp2); 2028 // We computed what we know about the sign bits as our first 2029 // answer. Now proceed to the generic code that uses 2030 // computeKnownBits, and pick whichever answer is better. 2031 } 2032 break; 2033 2034 case Instruction::Select: 2035 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2036 if (Tmp == 1) return 1; // Early out. 2037 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2038 return std::min(Tmp, Tmp2); 2039 2040 case Instruction::Add: 2041 // Add can have at most one carry bit. Thus we know that the output 2042 // is, at worst, one more bit than the inputs. 2043 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2044 if (Tmp == 1) return 1; // Early out. 2045 2046 // Special case decrementing a value (ADD X, -1): 2047 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2048 if (CRHS->isAllOnesValue()) { 2049 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2050 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2051 2052 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2053 // sign bits set. 2054 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2055 return TyBits; 2056 2057 // If we are subtracting one from a positive number, there is no carry 2058 // out of the result. 2059 if (KnownZero.isNegative()) 2060 return Tmp; 2061 } 2062 2063 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2064 if (Tmp2 == 1) return 1; 2065 return std::min(Tmp, Tmp2)-1; 2066 2067 case Instruction::Sub: 2068 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2069 if (Tmp2 == 1) return 1; 2070 2071 // Handle NEG. 2072 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2073 if (CLHS->isNullValue()) { 2074 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2075 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2076 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2077 // sign bits set. 2078 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2079 return TyBits; 2080 2081 // If the input is known to be positive (the sign bit is known clear), 2082 // the output of the NEG has the same number of sign bits as the input. 2083 if (KnownZero.isNegative()) 2084 return Tmp2; 2085 2086 // Otherwise, we treat this like a SUB. 2087 } 2088 2089 // Sub can have at most one carry bit. Thus we know that the output 2090 // is, at worst, one more bit than the inputs. 2091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2092 if (Tmp == 1) return 1; // Early out. 2093 return std::min(Tmp, Tmp2)-1; 2094 2095 case Instruction::PHI: { 2096 PHINode *PN = cast<PHINode>(U); 2097 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2098 // Don't analyze large in-degree PHIs. 2099 if (NumIncomingValues > 4) break; 2100 // Unreachable blocks may have zero-operand PHI nodes. 2101 if (NumIncomingValues == 0) break; 2102 2103 // Take the minimum of all incoming values. This can't infinitely loop 2104 // because of our depth threshold. 2105 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2106 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2107 if (Tmp == 1) return Tmp; 2108 Tmp = std::min( 2109 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2110 } 2111 return Tmp; 2112 } 2113 2114 case Instruction::Trunc: 2115 // FIXME: it's tricky to do anything useful for this, but it is an important 2116 // case for targets like X86. 2117 break; 2118 } 2119 2120 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2121 // use this information. 2122 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2123 APInt Mask; 2124 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2125 2126 if (KnownZero.isNegative()) { // sign bit is 0 2127 Mask = KnownZero; 2128 } else if (KnownOne.isNegative()) { // sign bit is 1; 2129 Mask = KnownOne; 2130 } else { 2131 // Nothing known. 2132 return FirstAnswer; 2133 } 2134 2135 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2136 // the number of identical bits in the top of the input value. 2137 Mask = ~Mask; 2138 Mask <<= Mask.getBitWidth()-TyBits; 2139 // Return # leading zeros. We use 'min' here in case Val was zero before 2140 // shifting. We don't want to return '64' as for an i32 "0". 2141 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2142 } 2143 2144 /// This function computes the integer multiple of Base that equals V. 2145 /// If successful, it returns true and returns the multiple in 2146 /// Multiple. If unsuccessful, it returns false. It looks 2147 /// through SExt instructions only if LookThroughSExt is true. 2148 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2149 bool LookThroughSExt, unsigned Depth) { 2150 const unsigned MaxDepth = 6; 2151 2152 assert(V && "No Value?"); 2153 assert(Depth <= MaxDepth && "Limit Search Depth"); 2154 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2155 2156 Type *T = V->getType(); 2157 2158 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2159 2160 if (Base == 0) 2161 return false; 2162 2163 if (Base == 1) { 2164 Multiple = V; 2165 return true; 2166 } 2167 2168 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2169 Constant *BaseVal = ConstantInt::get(T, Base); 2170 if (CO && CO == BaseVal) { 2171 // Multiple is 1. 2172 Multiple = ConstantInt::get(T, 1); 2173 return true; 2174 } 2175 2176 if (CI && CI->getZExtValue() % Base == 0) { 2177 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2178 return true; 2179 } 2180 2181 if (Depth == MaxDepth) return false; // Limit search depth. 2182 2183 Operator *I = dyn_cast<Operator>(V); 2184 if (!I) return false; 2185 2186 switch (I->getOpcode()) { 2187 default: break; 2188 case Instruction::SExt: 2189 if (!LookThroughSExt) return false; 2190 // otherwise fall through to ZExt 2191 case Instruction::ZExt: 2192 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2193 LookThroughSExt, Depth+1); 2194 case Instruction::Shl: 2195 case Instruction::Mul: { 2196 Value *Op0 = I->getOperand(0); 2197 Value *Op1 = I->getOperand(1); 2198 2199 if (I->getOpcode() == Instruction::Shl) { 2200 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2201 if (!Op1CI) return false; 2202 // Turn Op0 << Op1 into Op0 * 2^Op1 2203 APInt Op1Int = Op1CI->getValue(); 2204 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2205 APInt API(Op1Int.getBitWidth(), 0); 2206 API.setBit(BitToSet); 2207 Op1 = ConstantInt::get(V->getContext(), API); 2208 } 2209 2210 Value *Mul0 = nullptr; 2211 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2212 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2213 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2214 if (Op1C->getType()->getPrimitiveSizeInBits() < 2215 MulC->getType()->getPrimitiveSizeInBits()) 2216 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2217 if (Op1C->getType()->getPrimitiveSizeInBits() > 2218 MulC->getType()->getPrimitiveSizeInBits()) 2219 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2220 2221 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2222 Multiple = ConstantExpr::getMul(MulC, Op1C); 2223 return true; 2224 } 2225 2226 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2227 if (Mul0CI->getValue() == 1) { 2228 // V == Base * Op1, so return Op1 2229 Multiple = Op1; 2230 return true; 2231 } 2232 } 2233 2234 Value *Mul1 = nullptr; 2235 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2236 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2237 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2238 if (Op0C->getType()->getPrimitiveSizeInBits() < 2239 MulC->getType()->getPrimitiveSizeInBits()) 2240 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2241 if (Op0C->getType()->getPrimitiveSizeInBits() > 2242 MulC->getType()->getPrimitiveSizeInBits()) 2243 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2244 2245 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2246 Multiple = ConstantExpr::getMul(MulC, Op0C); 2247 return true; 2248 } 2249 2250 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2251 if (Mul1CI->getValue() == 1) { 2252 // V == Base * Op0, so return Op0 2253 Multiple = Op0; 2254 return true; 2255 } 2256 } 2257 } 2258 } 2259 2260 // We could not determine if V is a multiple of Base. 2261 return false; 2262 } 2263 2264 /// Return true if we can prove that the specified FP value is never equal to 2265 /// -0.0. 2266 /// 2267 /// NOTE: this function will need to be revisited when we support non-default 2268 /// rounding modes! 2269 /// 2270 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2271 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2272 return !CFP->getValueAPF().isNegZero(); 2273 2274 // FIXME: Magic number! At the least, this should be given a name because it's 2275 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2276 // expose it as a parameter, so it can be used for testing / experimenting. 2277 if (Depth == 6) 2278 return false; // Limit search depth. 2279 2280 const Operator *I = dyn_cast<Operator>(V); 2281 if (!I) return false; 2282 2283 // Check if the nsz fast-math flag is set 2284 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2285 if (FPO->hasNoSignedZeros()) 2286 return true; 2287 2288 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2289 if (I->getOpcode() == Instruction::FAdd) 2290 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2291 if (CFP->isNullValue()) 2292 return true; 2293 2294 // sitofp and uitofp turn into +0.0 for zero. 2295 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2296 return true; 2297 2298 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2299 // sqrt(-0.0) = -0.0, no other negative results are possible. 2300 if (II->getIntrinsicID() == Intrinsic::sqrt) 2301 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2302 2303 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2304 if (const Function *F = CI->getCalledFunction()) { 2305 if (F->isDeclaration()) { 2306 // abs(x) != -0.0 2307 if (F->getName() == "abs") return true; 2308 // fabs[lf](x) != -0.0 2309 if (F->getName() == "fabs") return true; 2310 if (F->getName() == "fabsf") return true; 2311 if (F->getName() == "fabsl") return true; 2312 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2313 F->getName() == "sqrtl") 2314 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2315 } 2316 } 2317 2318 return false; 2319 } 2320 2321 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2322 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2323 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2324 2325 // FIXME: Magic number! At the least, this should be given a name because it's 2326 // used similarly in CannotBeNegativeZero(). A better fix may be to 2327 // expose it as a parameter, so it can be used for testing / experimenting. 2328 if (Depth == 6) 2329 return false; // Limit search depth. 2330 2331 const Operator *I = dyn_cast<Operator>(V); 2332 if (!I) return false; 2333 2334 switch (I->getOpcode()) { 2335 default: break; 2336 // Unsigned integers are always nonnegative. 2337 case Instruction::UIToFP: 2338 return true; 2339 case Instruction::FMul: 2340 // x*x is always non-negative or a NaN. 2341 if (I->getOperand(0) == I->getOperand(1)) 2342 return true; 2343 // Fall through 2344 case Instruction::FAdd: 2345 case Instruction::FDiv: 2346 case Instruction::FRem: 2347 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2348 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2349 case Instruction::Select: 2350 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2351 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2352 case Instruction::FPExt: 2353 case Instruction::FPTrunc: 2354 // Widening/narrowing never change sign. 2355 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2356 case Instruction::Call: 2357 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2358 switch (II->getIntrinsicID()) { 2359 default: break; 2360 case Intrinsic::maxnum: 2361 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2362 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2363 case Intrinsic::minnum: 2364 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2365 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2366 case Intrinsic::exp: 2367 case Intrinsic::exp2: 2368 case Intrinsic::fabs: 2369 case Intrinsic::sqrt: 2370 return true; 2371 case Intrinsic::powi: 2372 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2373 // powi(x,n) is non-negative if n is even. 2374 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2375 return true; 2376 } 2377 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2378 case Intrinsic::fma: 2379 case Intrinsic::fmuladd: 2380 // x*x+y is non-negative if y is non-negative. 2381 return I->getOperand(0) == I->getOperand(1) && 2382 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2383 } 2384 break; 2385 } 2386 return false; 2387 } 2388 2389 /// If the specified value can be set by repeating the same byte in memory, 2390 /// return the i8 value that it is represented with. This is 2391 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2392 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2393 /// byte store (e.g. i16 0x1234), return null. 2394 Value *llvm::isBytewiseValue(Value *V) { 2395 // All byte-wide stores are splatable, even of arbitrary variables. 2396 if (V->getType()->isIntegerTy(8)) return V; 2397 2398 // Handle 'null' ConstantArrayZero etc. 2399 if (Constant *C = dyn_cast<Constant>(V)) 2400 if (C->isNullValue()) 2401 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2402 2403 // Constant float and double values can be handled as integer values if the 2404 // corresponding integer value is "byteable". An important case is 0.0. 2405 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2406 if (CFP->getType()->isFloatTy()) 2407 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2408 if (CFP->getType()->isDoubleTy()) 2409 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2410 // Don't handle long double formats, which have strange constraints. 2411 } 2412 2413 // We can handle constant integers that are multiple of 8 bits. 2414 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2415 if (CI->getBitWidth() % 8 == 0) { 2416 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2417 2418 if (!CI->getValue().isSplat(8)) 2419 return nullptr; 2420 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2421 } 2422 } 2423 2424 // A ConstantDataArray/Vector is splatable if all its members are equal and 2425 // also splatable. 2426 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2427 Value *Elt = CA->getElementAsConstant(0); 2428 Value *Val = isBytewiseValue(Elt); 2429 if (!Val) 2430 return nullptr; 2431 2432 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2433 if (CA->getElementAsConstant(I) != Elt) 2434 return nullptr; 2435 2436 return Val; 2437 } 2438 2439 // Conceptually, we could handle things like: 2440 // %a = zext i8 %X to i16 2441 // %b = shl i16 %a, 8 2442 // %c = or i16 %a, %b 2443 // but until there is an example that actually needs this, it doesn't seem 2444 // worth worrying about. 2445 return nullptr; 2446 } 2447 2448 2449 // This is the recursive version of BuildSubAggregate. It takes a few different 2450 // arguments. Idxs is the index within the nested struct From that we are 2451 // looking at now (which is of type IndexedType). IdxSkip is the number of 2452 // indices from Idxs that should be left out when inserting into the resulting 2453 // struct. To is the result struct built so far, new insertvalue instructions 2454 // build on that. 2455 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2456 SmallVectorImpl<unsigned> &Idxs, 2457 unsigned IdxSkip, 2458 Instruction *InsertBefore) { 2459 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2460 if (STy) { 2461 // Save the original To argument so we can modify it 2462 Value *OrigTo = To; 2463 // General case, the type indexed by Idxs is a struct 2464 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2465 // Process each struct element recursively 2466 Idxs.push_back(i); 2467 Value *PrevTo = To; 2468 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2469 InsertBefore); 2470 Idxs.pop_back(); 2471 if (!To) { 2472 // Couldn't find any inserted value for this index? Cleanup 2473 while (PrevTo != OrigTo) { 2474 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2475 PrevTo = Del->getAggregateOperand(); 2476 Del->eraseFromParent(); 2477 } 2478 // Stop processing elements 2479 break; 2480 } 2481 } 2482 // If we successfully found a value for each of our subaggregates 2483 if (To) 2484 return To; 2485 } 2486 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2487 // the struct's elements had a value that was inserted directly. In the latter 2488 // case, perhaps we can't determine each of the subelements individually, but 2489 // we might be able to find the complete struct somewhere. 2490 2491 // Find the value that is at that particular spot 2492 Value *V = FindInsertedValue(From, Idxs); 2493 2494 if (!V) 2495 return nullptr; 2496 2497 // Insert the value in the new (sub) aggregrate 2498 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2499 "tmp", InsertBefore); 2500 } 2501 2502 // This helper takes a nested struct and extracts a part of it (which is again a 2503 // struct) into a new value. For example, given the struct: 2504 // { a, { b, { c, d }, e } } 2505 // and the indices "1, 1" this returns 2506 // { c, d }. 2507 // 2508 // It does this by inserting an insertvalue for each element in the resulting 2509 // struct, as opposed to just inserting a single struct. This will only work if 2510 // each of the elements of the substruct are known (ie, inserted into From by an 2511 // insertvalue instruction somewhere). 2512 // 2513 // All inserted insertvalue instructions are inserted before InsertBefore 2514 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2515 Instruction *InsertBefore) { 2516 assert(InsertBefore && "Must have someplace to insert!"); 2517 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2518 idx_range); 2519 Value *To = UndefValue::get(IndexedType); 2520 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2521 unsigned IdxSkip = Idxs.size(); 2522 2523 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2524 } 2525 2526 /// Given an aggregrate and an sequence of indices, see if 2527 /// the scalar value indexed is already around as a register, for example if it 2528 /// were inserted directly into the aggregrate. 2529 /// 2530 /// If InsertBefore is not null, this function will duplicate (modified) 2531 /// insertvalues when a part of a nested struct is extracted. 2532 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2533 Instruction *InsertBefore) { 2534 // Nothing to index? Just return V then (this is useful at the end of our 2535 // recursion). 2536 if (idx_range.empty()) 2537 return V; 2538 // We have indices, so V should have an indexable type. 2539 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2540 "Not looking at a struct or array?"); 2541 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2542 "Invalid indices for type?"); 2543 2544 if (Constant *C = dyn_cast<Constant>(V)) { 2545 C = C->getAggregateElement(idx_range[0]); 2546 if (!C) return nullptr; 2547 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2548 } 2549 2550 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2551 // Loop the indices for the insertvalue instruction in parallel with the 2552 // requested indices 2553 const unsigned *req_idx = idx_range.begin(); 2554 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2555 i != e; ++i, ++req_idx) { 2556 if (req_idx == idx_range.end()) { 2557 // We can't handle this without inserting insertvalues 2558 if (!InsertBefore) 2559 return nullptr; 2560 2561 // The requested index identifies a part of a nested aggregate. Handle 2562 // this specially. For example, 2563 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2564 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2565 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2566 // This can be changed into 2567 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2568 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2569 // which allows the unused 0,0 element from the nested struct to be 2570 // removed. 2571 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2572 InsertBefore); 2573 } 2574 2575 // This insert value inserts something else than what we are looking for. 2576 // See if the (aggregate) value inserted into has the value we are 2577 // looking for, then. 2578 if (*req_idx != *i) 2579 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2580 InsertBefore); 2581 } 2582 // If we end up here, the indices of the insertvalue match with those 2583 // requested (though possibly only partially). Now we recursively look at 2584 // the inserted value, passing any remaining indices. 2585 return FindInsertedValue(I->getInsertedValueOperand(), 2586 makeArrayRef(req_idx, idx_range.end()), 2587 InsertBefore); 2588 } 2589 2590 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2591 // If we're extracting a value from an aggregate that was extracted from 2592 // something else, we can extract from that something else directly instead. 2593 // However, we will need to chain I's indices with the requested indices. 2594 2595 // Calculate the number of indices required 2596 unsigned size = I->getNumIndices() + idx_range.size(); 2597 // Allocate some space to put the new indices in 2598 SmallVector<unsigned, 5> Idxs; 2599 Idxs.reserve(size); 2600 // Add indices from the extract value instruction 2601 Idxs.append(I->idx_begin(), I->idx_end()); 2602 2603 // Add requested indices 2604 Idxs.append(idx_range.begin(), idx_range.end()); 2605 2606 assert(Idxs.size() == size 2607 && "Number of indices added not correct?"); 2608 2609 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2610 } 2611 // Otherwise, we don't know (such as, extracting from a function return value 2612 // or load instruction) 2613 return nullptr; 2614 } 2615 2616 /// Analyze the specified pointer to see if it can be expressed as a base 2617 /// pointer plus a constant offset. Return the base and offset to the caller. 2618 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2619 const DataLayout &DL) { 2620 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2621 APInt ByteOffset(BitWidth, 0); 2622 2623 // We walk up the defs but use a visited set to handle unreachable code. In 2624 // that case, we stop after accumulating the cycle once (not that it 2625 // matters). 2626 SmallPtrSet<Value *, 16> Visited; 2627 while (Visited.insert(Ptr).second) { 2628 if (Ptr->getType()->isVectorTy()) 2629 break; 2630 2631 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2632 APInt GEPOffset(BitWidth, 0); 2633 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2634 break; 2635 2636 ByteOffset += GEPOffset; 2637 2638 Ptr = GEP->getPointerOperand(); 2639 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2640 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2641 Ptr = cast<Operator>(Ptr)->getOperand(0); 2642 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2643 if (GA->isInterposable()) 2644 break; 2645 Ptr = GA->getAliasee(); 2646 } else { 2647 break; 2648 } 2649 } 2650 Offset = ByteOffset.getSExtValue(); 2651 return Ptr; 2652 } 2653 2654 2655 /// This function computes the length of a null-terminated C string pointed to 2656 /// by V. If successful, it returns true and returns the string in Str. 2657 /// If unsuccessful, it returns false. 2658 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2659 uint64_t Offset, bool TrimAtNul) { 2660 assert(V); 2661 2662 // Look through bitcast instructions and geps. 2663 V = V->stripPointerCasts(); 2664 2665 // If the value is a GEP instruction or constant expression, treat it as an 2666 // offset. 2667 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2668 // Make sure the GEP has exactly three arguments. 2669 if (GEP->getNumOperands() != 3) 2670 return false; 2671 2672 // Make sure the index-ee is a pointer to array of i8. 2673 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2674 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2675 return false; 2676 2677 // Check to make sure that the first operand of the GEP is an integer and 2678 // has value 0 so that we are sure we're indexing into the initializer. 2679 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2680 if (!FirstIdx || !FirstIdx->isZero()) 2681 return false; 2682 2683 // If the second index isn't a ConstantInt, then this is a variable index 2684 // into the array. If this occurs, we can't say anything meaningful about 2685 // the string. 2686 uint64_t StartIdx = 0; 2687 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2688 StartIdx = CI->getZExtValue(); 2689 else 2690 return false; 2691 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2692 TrimAtNul); 2693 } 2694 2695 // The GEP instruction, constant or instruction, must reference a global 2696 // variable that is a constant and is initialized. The referenced constant 2697 // initializer is the array that we'll use for optimization. 2698 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2699 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2700 return false; 2701 2702 // Handle the all-zeros case 2703 if (GV->getInitializer()->isNullValue()) { 2704 // This is a degenerate case. The initializer is constant zero so the 2705 // length of the string must be zero. 2706 Str = ""; 2707 return true; 2708 } 2709 2710 // Must be a Constant Array 2711 const ConstantDataArray *Array = 2712 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2713 if (!Array || !Array->isString()) 2714 return false; 2715 2716 // Get the number of elements in the array 2717 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2718 2719 // Start out with the entire array in the StringRef. 2720 Str = Array->getAsString(); 2721 2722 if (Offset > NumElts) 2723 return false; 2724 2725 // Skip over 'offset' bytes. 2726 Str = Str.substr(Offset); 2727 2728 if (TrimAtNul) { 2729 // Trim off the \0 and anything after it. If the array is not nul 2730 // terminated, we just return the whole end of string. The client may know 2731 // some other way that the string is length-bound. 2732 Str = Str.substr(0, Str.find('\0')); 2733 } 2734 return true; 2735 } 2736 2737 // These next two are very similar to the above, but also look through PHI 2738 // nodes. 2739 // TODO: See if we can integrate these two together. 2740 2741 /// If we can compute the length of the string pointed to by 2742 /// the specified pointer, return 'len+1'. If we can't, return 0. 2743 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2744 // Look through noop bitcast instructions. 2745 V = V->stripPointerCasts(); 2746 2747 // If this is a PHI node, there are two cases: either we have already seen it 2748 // or we haven't. 2749 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2750 if (!PHIs.insert(PN).second) 2751 return ~0ULL; // already in the set. 2752 2753 // If it was new, see if all the input strings are the same length. 2754 uint64_t LenSoFar = ~0ULL; 2755 for (Value *IncValue : PN->incoming_values()) { 2756 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2757 if (Len == 0) return 0; // Unknown length -> unknown. 2758 2759 if (Len == ~0ULL) continue; 2760 2761 if (Len != LenSoFar && LenSoFar != ~0ULL) 2762 return 0; // Disagree -> unknown. 2763 LenSoFar = Len; 2764 } 2765 2766 // Success, all agree. 2767 return LenSoFar; 2768 } 2769 2770 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2771 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2772 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2773 if (Len1 == 0) return 0; 2774 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2775 if (Len2 == 0) return 0; 2776 if (Len1 == ~0ULL) return Len2; 2777 if (Len2 == ~0ULL) return Len1; 2778 if (Len1 != Len2) return 0; 2779 return Len1; 2780 } 2781 2782 // Otherwise, see if we can read the string. 2783 StringRef StrData; 2784 if (!getConstantStringInfo(V, StrData)) 2785 return 0; 2786 2787 return StrData.size()+1; 2788 } 2789 2790 /// If we can compute the length of the string pointed to by 2791 /// the specified pointer, return 'len+1'. If we can't, return 0. 2792 uint64_t llvm::GetStringLength(Value *V) { 2793 if (!V->getType()->isPointerTy()) return 0; 2794 2795 SmallPtrSet<PHINode*, 32> PHIs; 2796 uint64_t Len = GetStringLengthH(V, PHIs); 2797 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2798 // an empty string as a length. 2799 return Len == ~0ULL ? 1 : Len; 2800 } 2801 2802 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2803 /// previous iteration of the loop was referring to the same object as \p PN. 2804 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2805 // Find the loop-defined value. 2806 Loop *L = LI->getLoopFor(PN->getParent()); 2807 if (PN->getNumIncomingValues() != 2) 2808 return true; 2809 2810 // Find the value from previous iteration. 2811 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2812 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2813 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2814 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2815 return true; 2816 2817 // If a new pointer is loaded in the loop, the pointer references a different 2818 // object in every iteration. E.g.: 2819 // for (i) 2820 // int *p = a[i]; 2821 // ... 2822 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2823 if (!L->isLoopInvariant(Load->getPointerOperand())) 2824 return false; 2825 return true; 2826 } 2827 2828 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2829 unsigned MaxLookup) { 2830 if (!V->getType()->isPointerTy()) 2831 return V; 2832 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2833 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2834 V = GEP->getPointerOperand(); 2835 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2836 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2837 V = cast<Operator>(V)->getOperand(0); 2838 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2839 if (GA->isInterposable()) 2840 return V; 2841 V = GA->getAliasee(); 2842 } else { 2843 // See if InstructionSimplify knows any relevant tricks. 2844 if (Instruction *I = dyn_cast<Instruction>(V)) 2845 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2846 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2847 V = Simplified; 2848 continue; 2849 } 2850 2851 return V; 2852 } 2853 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2854 } 2855 return V; 2856 } 2857 2858 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2859 const DataLayout &DL, LoopInfo *LI, 2860 unsigned MaxLookup) { 2861 SmallPtrSet<Value *, 4> Visited; 2862 SmallVector<Value *, 4> Worklist; 2863 Worklist.push_back(V); 2864 do { 2865 Value *P = Worklist.pop_back_val(); 2866 P = GetUnderlyingObject(P, DL, MaxLookup); 2867 2868 if (!Visited.insert(P).second) 2869 continue; 2870 2871 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2872 Worklist.push_back(SI->getTrueValue()); 2873 Worklist.push_back(SI->getFalseValue()); 2874 continue; 2875 } 2876 2877 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2878 // If this PHI changes the underlying object in every iteration of the 2879 // loop, don't look through it. Consider: 2880 // int **A; 2881 // for (i) { 2882 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2883 // Curr = A[i]; 2884 // *Prev, *Curr; 2885 // 2886 // Prev is tracking Curr one iteration behind so they refer to different 2887 // underlying objects. 2888 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2889 isSameUnderlyingObjectInLoop(PN, LI)) 2890 for (Value *IncValue : PN->incoming_values()) 2891 Worklist.push_back(IncValue); 2892 continue; 2893 } 2894 2895 Objects.push_back(P); 2896 } while (!Worklist.empty()); 2897 } 2898 2899 /// Return true if the only users of this pointer are lifetime markers. 2900 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2901 for (const User *U : V->users()) { 2902 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2903 if (!II) return false; 2904 2905 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2906 II->getIntrinsicID() != Intrinsic::lifetime_end) 2907 return false; 2908 } 2909 return true; 2910 } 2911 2912 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 2913 const Instruction *CtxI, 2914 const DominatorTree *DT, 2915 const TargetLibraryInfo *TLI) { 2916 const Operator *Inst = dyn_cast<Operator>(V); 2917 if (!Inst) 2918 return false; 2919 2920 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2921 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2922 if (C->canTrap()) 2923 return false; 2924 2925 switch (Inst->getOpcode()) { 2926 default: 2927 return true; 2928 case Instruction::UDiv: 2929 case Instruction::URem: { 2930 // x / y is undefined if y == 0. 2931 const APInt *V; 2932 if (match(Inst->getOperand(1), m_APInt(V))) 2933 return *V != 0; 2934 return false; 2935 } 2936 case Instruction::SDiv: 2937 case Instruction::SRem: { 2938 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2939 const APInt *Numerator, *Denominator; 2940 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 2941 return false; 2942 // We cannot hoist this division if the denominator is 0. 2943 if (*Denominator == 0) 2944 return false; 2945 // It's safe to hoist if the denominator is not 0 or -1. 2946 if (*Denominator != -1) 2947 return true; 2948 // At this point we know that the denominator is -1. It is safe to hoist as 2949 // long we know that the numerator is not INT_MIN. 2950 if (match(Inst->getOperand(0), m_APInt(Numerator))) 2951 return !Numerator->isMinSignedValue(); 2952 // The numerator *might* be MinSignedValue. 2953 return false; 2954 } 2955 case Instruction::Load: { 2956 const LoadInst *LI = cast<LoadInst>(Inst); 2957 if (!LI->isUnordered() || 2958 // Speculative load may create a race that did not exist in the source. 2959 LI->getParent()->getParent()->hasFnAttribute( 2960 Attribute::SanitizeThread) || 2961 // Speculative load may load data from dirty regions. 2962 LI->getParent()->getParent()->hasFnAttribute( 2963 Attribute::SanitizeAddress)) 2964 return false; 2965 const DataLayout &DL = LI->getModule()->getDataLayout(); 2966 return isDereferenceableAndAlignedPointer( 2967 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 2968 } 2969 case Instruction::Call: { 2970 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2971 switch (II->getIntrinsicID()) { 2972 // These synthetic intrinsics have no side-effects and just mark 2973 // information about their operands. 2974 // FIXME: There are other no-op synthetic instructions that potentially 2975 // should be considered at least *safe* to speculate... 2976 case Intrinsic::dbg_declare: 2977 case Intrinsic::dbg_value: 2978 return true; 2979 2980 case Intrinsic::bswap: 2981 case Intrinsic::ctlz: 2982 case Intrinsic::ctpop: 2983 case Intrinsic::cttz: 2984 case Intrinsic::objectsize: 2985 case Intrinsic::sadd_with_overflow: 2986 case Intrinsic::smul_with_overflow: 2987 case Intrinsic::ssub_with_overflow: 2988 case Intrinsic::uadd_with_overflow: 2989 case Intrinsic::umul_with_overflow: 2990 case Intrinsic::usub_with_overflow: 2991 return true; 2992 // These intrinsics are defined to have the same behavior as libm 2993 // functions except for setting errno. 2994 case Intrinsic::sqrt: 2995 case Intrinsic::fma: 2996 case Intrinsic::fmuladd: 2997 return true; 2998 // These intrinsics are defined to have the same behavior as libm 2999 // functions, and the corresponding libm functions never set errno. 3000 case Intrinsic::trunc: 3001 case Intrinsic::copysign: 3002 case Intrinsic::fabs: 3003 case Intrinsic::minnum: 3004 case Intrinsic::maxnum: 3005 return true; 3006 // These intrinsics are defined to have the same behavior as libm 3007 // functions, which never overflow when operating on the IEEE754 types 3008 // that we support, and never set errno otherwise. 3009 case Intrinsic::ceil: 3010 case Intrinsic::floor: 3011 case Intrinsic::nearbyint: 3012 case Intrinsic::rint: 3013 case Intrinsic::round: 3014 return true; 3015 // TODO: are convert_{from,to}_fp16 safe? 3016 // TODO: can we list target-specific intrinsics here? 3017 default: break; 3018 } 3019 } 3020 return false; // The called function could have undefined behavior or 3021 // side-effects, even if marked readnone nounwind. 3022 } 3023 case Instruction::VAArg: 3024 case Instruction::Alloca: 3025 case Instruction::Invoke: 3026 case Instruction::PHI: 3027 case Instruction::Store: 3028 case Instruction::Ret: 3029 case Instruction::Br: 3030 case Instruction::IndirectBr: 3031 case Instruction::Switch: 3032 case Instruction::Unreachable: 3033 case Instruction::Fence: 3034 case Instruction::AtomicRMW: 3035 case Instruction::AtomicCmpXchg: 3036 case Instruction::LandingPad: 3037 case Instruction::Resume: 3038 case Instruction::CatchSwitch: 3039 case Instruction::CatchPad: 3040 case Instruction::CatchRet: 3041 case Instruction::CleanupPad: 3042 case Instruction::CleanupRet: 3043 return false; // Misc instructions which have effects 3044 } 3045 } 3046 3047 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3048 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3049 } 3050 3051 /// Return true if we know that the specified value is never null. 3052 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3053 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3054 3055 // Alloca never returns null, malloc might. 3056 if (isa<AllocaInst>(V)) return true; 3057 3058 // A byval, inalloca, or nonnull argument is never null. 3059 if (const Argument *A = dyn_cast<Argument>(V)) 3060 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3061 3062 // A global variable in address space 0 is non null unless extern weak. 3063 // Other address spaces may have null as a valid address for a global, 3064 // so we can't assume anything. 3065 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3066 return !GV->hasExternalWeakLinkage() && 3067 GV->getType()->getAddressSpace() == 0; 3068 3069 // A Load tagged w/nonnull metadata is never null. 3070 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3071 return LI->getMetadata(LLVMContext::MD_nonnull); 3072 3073 if (auto CS = ImmutableCallSite(V)) 3074 if (CS.isReturnNonNull()) 3075 return true; 3076 3077 return false; 3078 } 3079 3080 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3081 const Instruction *CtxI, 3082 const DominatorTree *DT) { 3083 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3084 3085 unsigned NumUsesExplored = 0; 3086 for (auto U : V->users()) { 3087 // Avoid massive lists 3088 if (NumUsesExplored >= DomConditionsMaxUses) 3089 break; 3090 NumUsesExplored++; 3091 // Consider only compare instructions uniquely controlling a branch 3092 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3093 if (!Cmp) 3094 continue; 3095 3096 for (auto *CmpU : Cmp->users()) { 3097 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3098 if (!BI) 3099 continue; 3100 3101 assert(BI->isConditional() && "uses a comparison!"); 3102 3103 BasicBlock *NonNullSuccessor = nullptr; 3104 CmpInst::Predicate Pred; 3105 3106 if (match(const_cast<ICmpInst*>(Cmp), 3107 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3108 if (Pred == ICmpInst::ICMP_EQ) 3109 NonNullSuccessor = BI->getSuccessor(1); 3110 else if (Pred == ICmpInst::ICMP_NE) 3111 NonNullSuccessor = BI->getSuccessor(0); 3112 } 3113 3114 if (NonNullSuccessor) { 3115 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3116 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3117 return true; 3118 } 3119 } 3120 } 3121 3122 return false; 3123 } 3124 3125 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3126 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3127 if (isKnownNonNull(V, TLI)) 3128 return true; 3129 3130 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3131 } 3132 3133 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3134 const DataLayout &DL, 3135 AssumptionCache *AC, 3136 const Instruction *CxtI, 3137 const DominatorTree *DT) { 3138 // Multiplying n * m significant bits yields a result of n + m significant 3139 // bits. If the total number of significant bits does not exceed the 3140 // result bit width (minus 1), there is no overflow. 3141 // This means if we have enough leading zero bits in the operands 3142 // we can guarantee that the result does not overflow. 3143 // Ref: "Hacker's Delight" by Henry Warren 3144 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3145 APInt LHSKnownZero(BitWidth, 0); 3146 APInt LHSKnownOne(BitWidth, 0); 3147 APInt RHSKnownZero(BitWidth, 0); 3148 APInt RHSKnownOne(BitWidth, 0); 3149 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3150 DT); 3151 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3152 DT); 3153 // Note that underestimating the number of zero bits gives a more 3154 // conservative answer. 3155 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3156 RHSKnownZero.countLeadingOnes(); 3157 // First handle the easy case: if we have enough zero bits there's 3158 // definitely no overflow. 3159 if (ZeroBits >= BitWidth) 3160 return OverflowResult::NeverOverflows; 3161 3162 // Get the largest possible values for each operand. 3163 APInt LHSMax = ~LHSKnownZero; 3164 APInt RHSMax = ~RHSKnownZero; 3165 3166 // We know the multiply operation doesn't overflow if the maximum values for 3167 // each operand will not overflow after we multiply them together. 3168 bool MaxOverflow; 3169 LHSMax.umul_ov(RHSMax, MaxOverflow); 3170 if (!MaxOverflow) 3171 return OverflowResult::NeverOverflows; 3172 3173 // We know it always overflows if multiplying the smallest possible values for 3174 // the operands also results in overflow. 3175 bool MinOverflow; 3176 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3177 if (MinOverflow) 3178 return OverflowResult::AlwaysOverflows; 3179 3180 return OverflowResult::MayOverflow; 3181 } 3182 3183 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3184 const DataLayout &DL, 3185 AssumptionCache *AC, 3186 const Instruction *CxtI, 3187 const DominatorTree *DT) { 3188 bool LHSKnownNonNegative, LHSKnownNegative; 3189 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3190 AC, CxtI, DT); 3191 if (LHSKnownNonNegative || LHSKnownNegative) { 3192 bool RHSKnownNonNegative, RHSKnownNegative; 3193 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3194 AC, CxtI, DT); 3195 3196 if (LHSKnownNegative && RHSKnownNegative) { 3197 // The sign bit is set in both cases: this MUST overflow. 3198 // Create a simple add instruction, and insert it into the struct. 3199 return OverflowResult::AlwaysOverflows; 3200 } 3201 3202 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3203 // The sign bit is clear in both cases: this CANNOT overflow. 3204 // Create a simple add instruction, and insert it into the struct. 3205 return OverflowResult::NeverOverflows; 3206 } 3207 } 3208 3209 return OverflowResult::MayOverflow; 3210 } 3211 3212 static OverflowResult computeOverflowForSignedAdd( 3213 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3214 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3215 if (Add && Add->hasNoSignedWrap()) { 3216 return OverflowResult::NeverOverflows; 3217 } 3218 3219 bool LHSKnownNonNegative, LHSKnownNegative; 3220 bool RHSKnownNonNegative, RHSKnownNegative; 3221 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3222 AC, CxtI, DT); 3223 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3224 AC, CxtI, DT); 3225 3226 if ((LHSKnownNonNegative && RHSKnownNegative) || 3227 (LHSKnownNegative && RHSKnownNonNegative)) { 3228 // The sign bits are opposite: this CANNOT overflow. 3229 return OverflowResult::NeverOverflows; 3230 } 3231 3232 // The remaining code needs Add to be available. Early returns if not so. 3233 if (!Add) 3234 return OverflowResult::MayOverflow; 3235 3236 // If the sign of Add is the same as at least one of the operands, this add 3237 // CANNOT overflow. This is particularly useful when the sum is 3238 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3239 // operands. 3240 bool LHSOrRHSKnownNonNegative = 3241 (LHSKnownNonNegative || RHSKnownNonNegative); 3242 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3243 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3244 bool AddKnownNonNegative, AddKnownNegative; 3245 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3246 /*Depth=*/0, AC, CxtI, DT); 3247 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3248 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3249 return OverflowResult::NeverOverflows; 3250 } 3251 } 3252 3253 return OverflowResult::MayOverflow; 3254 } 3255 3256 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3257 const DataLayout &DL, 3258 AssumptionCache *AC, 3259 const Instruction *CxtI, 3260 const DominatorTree *DT) { 3261 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3262 Add, DL, AC, CxtI, DT); 3263 } 3264 3265 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3266 const DataLayout &DL, 3267 AssumptionCache *AC, 3268 const Instruction *CxtI, 3269 const DominatorTree *DT) { 3270 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3271 } 3272 3273 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3274 // FIXME: This conservative implementation can be relaxed. E.g. most 3275 // atomic operations are guaranteed to terminate on most platforms 3276 // and most functions terminate. 3277 3278 return !I->isAtomic() && // atomics may never succeed on some platforms 3279 !isa<CallInst>(I) && // could throw and might not terminate 3280 !isa<InvokeInst>(I) && // might not terminate and could throw to 3281 // non-successor (see bug 24185 for details). 3282 !isa<ResumeInst>(I) && // has no successors 3283 !isa<ReturnInst>(I); // has no successors 3284 } 3285 3286 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3287 const Loop *L) { 3288 // The loop header is guaranteed to be executed for every iteration. 3289 // 3290 // FIXME: Relax this constraint to cover all basic blocks that are 3291 // guaranteed to be executed at every iteration. 3292 if (I->getParent() != L->getHeader()) return false; 3293 3294 for (const Instruction &LI : *L->getHeader()) { 3295 if (&LI == I) return true; 3296 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3297 } 3298 llvm_unreachable("Instruction not contained in its own parent basic block."); 3299 } 3300 3301 bool llvm::propagatesFullPoison(const Instruction *I) { 3302 switch (I->getOpcode()) { 3303 case Instruction::Add: 3304 case Instruction::Sub: 3305 case Instruction::Xor: 3306 case Instruction::Trunc: 3307 case Instruction::BitCast: 3308 case Instruction::AddrSpaceCast: 3309 // These operations all propagate poison unconditionally. Note that poison 3310 // is not any particular value, so xor or subtraction of poison with 3311 // itself still yields poison, not zero. 3312 return true; 3313 3314 case Instruction::AShr: 3315 case Instruction::SExt: 3316 // For these operations, one bit of the input is replicated across 3317 // multiple output bits. A replicated poison bit is still poison. 3318 return true; 3319 3320 case Instruction::Shl: { 3321 // Left shift *by* a poison value is poison. The number of 3322 // positions to shift is unsigned, so no negative values are 3323 // possible there. Left shift by zero places preserves poison. So 3324 // it only remains to consider left shift of poison by a positive 3325 // number of places. 3326 // 3327 // A left shift by a positive number of places leaves the lowest order bit 3328 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3329 // make the poison operand violate that flag, yielding a fresh full-poison 3330 // value. 3331 auto *OBO = cast<OverflowingBinaryOperator>(I); 3332 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3333 } 3334 3335 case Instruction::Mul: { 3336 // A multiplication by zero yields a non-poison zero result, so we need to 3337 // rule out zero as an operand. Conservatively, multiplication by a 3338 // non-zero constant is not multiplication by zero. 3339 // 3340 // Multiplication by a non-zero constant can leave some bits 3341 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3342 // order bit unpoisoned. So we need to consider that. 3343 // 3344 // Multiplication by 1 preserves poison. If the multiplication has a 3345 // no-wrap flag, then we can make the poison operand violate that flag 3346 // when multiplied by any integer other than 0 and 1. 3347 auto *OBO = cast<OverflowingBinaryOperator>(I); 3348 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3349 for (Value *V : OBO->operands()) { 3350 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3351 // A ConstantInt cannot yield poison, so we can assume that it is 3352 // the other operand that is poison. 3353 return !CI->isZero(); 3354 } 3355 } 3356 } 3357 return false; 3358 } 3359 3360 case Instruction::GetElementPtr: 3361 // A GEP implicitly represents a sequence of additions, subtractions, 3362 // truncations, sign extensions and multiplications. The multiplications 3363 // are by the non-zero sizes of some set of types, so we do not have to be 3364 // concerned with multiplication by zero. If the GEP is in-bounds, then 3365 // these operations are implicitly no-signed-wrap so poison is propagated 3366 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3367 return cast<GEPOperator>(I)->isInBounds(); 3368 3369 default: 3370 return false; 3371 } 3372 } 3373 3374 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3375 switch (I->getOpcode()) { 3376 case Instruction::Store: 3377 return cast<StoreInst>(I)->getPointerOperand(); 3378 3379 case Instruction::Load: 3380 return cast<LoadInst>(I)->getPointerOperand(); 3381 3382 case Instruction::AtomicCmpXchg: 3383 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3384 3385 case Instruction::AtomicRMW: 3386 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3387 3388 case Instruction::UDiv: 3389 case Instruction::SDiv: 3390 case Instruction::URem: 3391 case Instruction::SRem: 3392 return I->getOperand(1); 3393 3394 default: 3395 return nullptr; 3396 } 3397 } 3398 3399 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3400 // We currently only look for uses of poison values within the same basic 3401 // block, as that makes it easier to guarantee that the uses will be 3402 // executed given that PoisonI is executed. 3403 // 3404 // FIXME: Expand this to consider uses beyond the same basic block. To do 3405 // this, look out for the distinction between post-dominance and strong 3406 // post-dominance. 3407 const BasicBlock *BB = PoisonI->getParent(); 3408 3409 // Set of instructions that we have proved will yield poison if PoisonI 3410 // does. 3411 SmallSet<const Value *, 16> YieldsPoison; 3412 YieldsPoison.insert(PoisonI); 3413 3414 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3415 I != E; ++I) { 3416 if (&*I != PoisonI) { 3417 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3418 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3419 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3420 return false; 3421 } 3422 3423 // Mark poison that propagates from I through uses of I. 3424 if (YieldsPoison.count(&*I)) { 3425 for (const User *User : I->users()) { 3426 const Instruction *UserI = cast<Instruction>(User); 3427 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3428 YieldsPoison.insert(User); 3429 } 3430 } 3431 } 3432 return false; 3433 } 3434 3435 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3436 if (FMF.noNaNs()) 3437 return true; 3438 3439 if (auto *C = dyn_cast<ConstantFP>(V)) 3440 return !C->isNaN(); 3441 return false; 3442 } 3443 3444 static bool isKnownNonZero(Value *V) { 3445 if (auto *C = dyn_cast<ConstantFP>(V)) 3446 return !C->isZero(); 3447 return false; 3448 } 3449 3450 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3451 FastMathFlags FMF, 3452 Value *CmpLHS, Value *CmpRHS, 3453 Value *TrueVal, Value *FalseVal, 3454 Value *&LHS, Value *&RHS) { 3455 LHS = CmpLHS; 3456 RHS = CmpRHS; 3457 3458 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3459 // return inconsistent results between implementations. 3460 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3461 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3462 // Therefore we behave conservatively and only proceed if at least one of the 3463 // operands is known to not be zero, or if we don't care about signed zeroes. 3464 switch (Pred) { 3465 default: break; 3466 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3467 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3468 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3469 !isKnownNonZero(CmpRHS)) 3470 return {SPF_UNKNOWN, SPNB_NA, false}; 3471 } 3472 3473 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3474 bool Ordered = false; 3475 3476 // When given one NaN and one non-NaN input: 3477 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3478 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3479 // ordered comparison fails), which could be NaN or non-NaN. 3480 // so here we discover exactly what NaN behavior is required/accepted. 3481 if (CmpInst::isFPPredicate(Pred)) { 3482 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3483 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3484 3485 if (LHSSafe && RHSSafe) { 3486 // Both operands are known non-NaN. 3487 NaNBehavior = SPNB_RETURNS_ANY; 3488 } else if (CmpInst::isOrdered(Pred)) { 3489 // An ordered comparison will return false when given a NaN, so it 3490 // returns the RHS. 3491 Ordered = true; 3492 if (LHSSafe) 3493 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3494 NaNBehavior = SPNB_RETURNS_NAN; 3495 else if (RHSSafe) 3496 NaNBehavior = SPNB_RETURNS_OTHER; 3497 else 3498 // Completely unsafe. 3499 return {SPF_UNKNOWN, SPNB_NA, false}; 3500 } else { 3501 Ordered = false; 3502 // An unordered comparison will return true when given a NaN, so it 3503 // returns the LHS. 3504 if (LHSSafe) 3505 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3506 NaNBehavior = SPNB_RETURNS_OTHER; 3507 else if (RHSSafe) 3508 NaNBehavior = SPNB_RETURNS_NAN; 3509 else 3510 // Completely unsafe. 3511 return {SPF_UNKNOWN, SPNB_NA, false}; 3512 } 3513 } 3514 3515 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3516 std::swap(CmpLHS, CmpRHS); 3517 Pred = CmpInst::getSwappedPredicate(Pred); 3518 if (NaNBehavior == SPNB_RETURNS_NAN) 3519 NaNBehavior = SPNB_RETURNS_OTHER; 3520 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3521 NaNBehavior = SPNB_RETURNS_NAN; 3522 Ordered = !Ordered; 3523 } 3524 3525 // ([if]cmp X, Y) ? X : Y 3526 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3527 switch (Pred) { 3528 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3529 case ICmpInst::ICMP_UGT: 3530 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3531 case ICmpInst::ICMP_SGT: 3532 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3533 case ICmpInst::ICMP_ULT: 3534 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3535 case ICmpInst::ICMP_SLT: 3536 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3537 case FCmpInst::FCMP_UGT: 3538 case FCmpInst::FCMP_UGE: 3539 case FCmpInst::FCMP_OGT: 3540 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3541 case FCmpInst::FCMP_ULT: 3542 case FCmpInst::FCMP_ULE: 3543 case FCmpInst::FCMP_OLT: 3544 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3545 } 3546 } 3547 3548 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3549 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3550 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3551 3552 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3553 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3554 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3555 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3556 } 3557 3558 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3559 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3560 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3561 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3562 } 3563 } 3564 3565 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3566 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3567 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3568 ~C1->getValue() == C2->getValue() && 3569 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3570 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3571 LHS = TrueVal; 3572 RHS = FalseVal; 3573 return {SPF_SMIN, SPNB_NA, false}; 3574 } 3575 } 3576 } 3577 3578 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3579 3580 return {SPF_UNKNOWN, SPNB_NA, false}; 3581 } 3582 3583 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3584 Instruction::CastOps *CastOp) { 3585 CastInst *CI = dyn_cast<CastInst>(V1); 3586 Constant *C = dyn_cast<Constant>(V2); 3587 CastInst *CI2 = dyn_cast<CastInst>(V2); 3588 if (!CI) 3589 return nullptr; 3590 *CastOp = CI->getOpcode(); 3591 3592 if (CI2) { 3593 // If V1 and V2 are both the same cast from the same type, we can look 3594 // through V1. 3595 if (CI2->getOpcode() == CI->getOpcode() && 3596 CI2->getSrcTy() == CI->getSrcTy()) 3597 return CI2->getOperand(0); 3598 return nullptr; 3599 } else if (!C) { 3600 return nullptr; 3601 } 3602 3603 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3604 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3605 // This is only valid if the truncated value can be sign-extended 3606 // back to the original value. 3607 if (ConstantExpr::getSExt(T, C->getType()) == C) 3608 return T; 3609 return nullptr; 3610 } 3611 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3612 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3613 3614 if (isa<TruncInst>(CI)) 3615 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3616 3617 if (isa<FPToUIInst>(CI)) 3618 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3619 3620 if (isa<FPToSIInst>(CI)) 3621 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3622 3623 if (isa<UIToFPInst>(CI)) 3624 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3625 3626 if (isa<SIToFPInst>(CI)) 3627 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3628 3629 if (isa<FPTruncInst>(CI)) 3630 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3631 3632 if (isa<FPExtInst>(CI)) 3633 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3634 3635 return nullptr; 3636 } 3637 3638 SelectPatternResult llvm::matchSelectPattern(Value *V, 3639 Value *&LHS, Value *&RHS, 3640 Instruction::CastOps *CastOp) { 3641 SelectInst *SI = dyn_cast<SelectInst>(V); 3642 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3643 3644 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3645 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3646 3647 CmpInst::Predicate Pred = CmpI->getPredicate(); 3648 Value *CmpLHS = CmpI->getOperand(0); 3649 Value *CmpRHS = CmpI->getOperand(1); 3650 Value *TrueVal = SI->getTrueValue(); 3651 Value *FalseVal = SI->getFalseValue(); 3652 FastMathFlags FMF; 3653 if (isa<FPMathOperator>(CmpI)) 3654 FMF = CmpI->getFastMathFlags(); 3655 3656 // Bail out early. 3657 if (CmpI->isEquality()) 3658 return {SPF_UNKNOWN, SPNB_NA, false}; 3659 3660 // Deal with type mismatches. 3661 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3662 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3663 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3664 cast<CastInst>(TrueVal)->getOperand(0), C, 3665 LHS, RHS); 3666 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3667 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3668 C, cast<CastInst>(FalseVal)->getOperand(0), 3669 LHS, RHS); 3670 } 3671 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3672 LHS, RHS); 3673 } 3674 3675 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 3676 const unsigned NumRanges = Ranges.getNumOperands() / 2; 3677 assert(NumRanges >= 1 && "Must have at least one range!"); 3678 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 3679 3680 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 3681 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 3682 3683 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 3684 3685 for (unsigned i = 1; i < NumRanges; ++i) { 3686 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 3687 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 3688 3689 // Note: unionWith will potentially create a range that contains values not 3690 // contained in any of the original N ranges. 3691 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 3692 } 3693 3694 return CR; 3695 } 3696 3697 /// Return true if "icmp Pred LHS RHS" is always true. 3698 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 3699 const DataLayout &DL, unsigned Depth, 3700 AssumptionCache *AC, const Instruction *CxtI, 3701 const DominatorTree *DT) { 3702 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 3703 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 3704 return true; 3705 3706 switch (Pred) { 3707 default: 3708 return false; 3709 3710 case CmpInst::ICMP_SLE: { 3711 const APInt *C; 3712 3713 // LHS s<= LHS +_{nsw} C if C >= 0 3714 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 3715 return !C->isNegative(); 3716 return false; 3717 } 3718 3719 case CmpInst::ICMP_ULE: { 3720 const APInt *C; 3721 3722 // LHS u<= LHS +_{nuw} C for any C 3723 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 3724 return true; 3725 3726 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 3727 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 3728 const APInt *&CA, const APInt *&CB) { 3729 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 3730 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 3731 return true; 3732 3733 // If X & C == 0 then (X | C) == X +_{nuw} C 3734 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 3735 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 3736 unsigned BitWidth = CA->getBitWidth(); 3737 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 3738 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 3739 3740 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 3741 return true; 3742 } 3743 3744 return false; 3745 }; 3746 3747 Value *X; 3748 const APInt *CLHS, *CRHS; 3749 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 3750 return CLHS->ule(*CRHS); 3751 3752 return false; 3753 } 3754 } 3755 } 3756 3757 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 3758 /// ALHS ARHS" is true. 3759 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 3760 Value *ARHS, Value *BLHS, Value *BRHS, 3761 const DataLayout &DL, unsigned Depth, 3762 AssumptionCache *AC, const Instruction *CxtI, 3763 const DominatorTree *DT) { 3764 switch (Pred) { 3765 default: 3766 return false; 3767 3768 case CmpInst::ICMP_SLT: 3769 case CmpInst::ICMP_SLE: 3770 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 3771 DT) && 3772 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 3773 DT); 3774 3775 case CmpInst::ICMP_ULT: 3776 case CmpInst::ICMP_ULE: 3777 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 3778 DT) && 3779 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 3780 DT); 3781 } 3782 } 3783 3784 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 3785 unsigned Depth, AssumptionCache *AC, 3786 const Instruction *CxtI, 3787 const DominatorTree *DT) { 3788 assert(LHS->getType() == RHS->getType() && "mismatched type"); 3789 Type *OpTy = LHS->getType(); 3790 assert(OpTy->getScalarType()->isIntegerTy(1)); 3791 3792 // LHS ==> RHS by definition 3793 if (LHS == RHS) return true; 3794 3795 if (OpTy->isVectorTy()) 3796 // TODO: extending the code below to handle vectors 3797 return false; 3798 assert(OpTy->isIntegerTy(1) && "implied by above"); 3799 3800 ICmpInst::Predicate APred, BPred; 3801 Value *ALHS, *ARHS; 3802 Value *BLHS, *BRHS; 3803 3804 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 3805 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 3806 return false; 3807 3808 if (APred == BPred) 3809 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 3810 CxtI, DT); 3811 3812 return false; 3813 } 3814