1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumptionCache.h"
28 #include "llvm/Analysis/GuardUtils.h"
29 #include "llvm/Analysis/InstructionSimplify.h"
30 #include "llvm/Analysis/Loads.h"
31 #include "llvm/Analysis/LoopInfo.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/IR/Argument.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/CallSite.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Metadata.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/PatternMatch.h"
60 #include "llvm/IR/Type.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/KnownBits.h"
68 #include "llvm/Support/MathExtras.h"
69 #include <algorithm>
70 #include <array>
71 #include <cassert>
72 #include <cstdint>
73 #include <iterator>
74 #include <utility>
75 
76 using namespace llvm;
77 using namespace llvm::PatternMatch;
78 
79 const unsigned MaxDepth = 6;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
87 /// returns the element type's bitwidth.
88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
89   if (unsigned BitWidth = Ty->getScalarSizeInBits())
90     return BitWidth;
91 
92   return DL.getIndexTypeSizeInBits(Ty);
93 }
94 
95 namespace {
96 
97 // Simplifying using an assume can only be done in a particular control-flow
98 // context (the context instruction provides that context). If an assume and
99 // the context instruction are not in the same block then the DT helps in
100 // figuring out if we can use it.
101 struct Query {
102   const DataLayout &DL;
103   AssumptionCache *AC;
104   const Instruction *CxtI;
105   const DominatorTree *DT;
106 
107   // Unlike the other analyses, this may be a nullptr because not all clients
108   // provide it currently.
109   OptimizationRemarkEmitter *ORE;
110 
111   /// Set of assumptions that should be excluded from further queries.
112   /// This is because of the potential for mutual recursion to cause
113   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
114   /// classic case of this is assume(x = y), which will attempt to determine
115   /// bits in x from bits in y, which will attempt to determine bits in y from
116   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
117   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
118   /// (all of which can call computeKnownBits), and so on.
119   std::array<const Value *, MaxDepth> Excluded;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   unsigned NumExcluded = 0;
125 
126   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
127         const DominatorTree *DT, bool UseInstrInfo,
128         OptimizationRemarkEmitter *ORE = nullptr)
129       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
130 
131   Query(const Query &Q, const Value *NewExcl)
132       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
133         NumExcluded(Q.NumExcluded) {
134     Excluded = Q.Excluded;
135     Excluded[NumExcluded++] = NewExcl;
136     assert(NumExcluded <= Excluded.size());
137   }
138 
139   bool isExcluded(const Value *Value) const {
140     if (NumExcluded == 0)
141       return false;
142     auto End = Excluded.begin() + NumExcluded;
143     return std::find(Excluded.begin(), End, Value) != End;
144   }
145 };
146 
147 } // end anonymous namespace
148 
149 // Given the provided Value and, potentially, a context instruction, return
150 // the preferred context instruction (if any).
151 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
152   // If we've been provided with a context instruction, then use that (provided
153   // it has been inserted).
154   if (CxtI && CxtI->getParent())
155     return CxtI;
156 
157   // If the value is really an already-inserted instruction, then use that.
158   CxtI = dyn_cast<Instruction>(V);
159   if (CxtI && CxtI->getParent())
160     return CxtI;
161 
162   return nullptr;
163 }
164 
165 static void computeKnownBits(const Value *V, KnownBits &Known,
166                              unsigned Depth, const Query &Q);
167 
168 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
169                             const DataLayout &DL, unsigned Depth,
170                             AssumptionCache *AC, const Instruction *CxtI,
171                             const DominatorTree *DT,
172                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
173   ::computeKnownBits(V, Known, Depth,
174                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
175 }
176 
177 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
178                                   const Query &Q);
179 
180 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
181                                  unsigned Depth, AssumptionCache *AC,
182                                  const Instruction *CxtI,
183                                  const DominatorTree *DT,
184                                  OptimizationRemarkEmitter *ORE,
185                                  bool UseInstrInfo) {
186   return ::computeKnownBits(
187       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
188 }
189 
190 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
191                                const DataLayout &DL, AssumptionCache *AC,
192                                const Instruction *CxtI, const DominatorTree *DT,
193                                bool UseInstrInfo) {
194   assert(LHS->getType() == RHS->getType() &&
195          "LHS and RHS should have the same type");
196   assert(LHS->getType()->isIntOrIntVectorTy() &&
197          "LHS and RHS should be integers");
198   // Look for an inverted mask: (X & ~M) op (Y & M).
199   Value *M;
200   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
201       match(RHS, m_c_And(m_Specific(M), m_Value())))
202     return true;
203   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
204       match(LHS, m_c_And(m_Specific(M), m_Value())))
205     return true;
206   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
207   KnownBits LHSKnown(IT->getBitWidth());
208   KnownBits RHSKnown(IT->getBitWidth());
209   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
210   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
212 }
213 
214 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
215   for (const User *U : CxtI->users()) {
216     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
217       if (IC->isEquality())
218         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
219           if (C->isNullValue())
220             continue;
221     return false;
222   }
223   return true;
224 }
225 
226 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
227                                    const Query &Q);
228 
229 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
230                                   bool OrZero, unsigned Depth,
231                                   AssumptionCache *AC, const Instruction *CxtI,
232                                   const DominatorTree *DT, bool UseInstrInfo) {
233   return ::isKnownToBeAPowerOfTwo(
234       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
235 }
236 
237 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
238 
239 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
240                           AssumptionCache *AC, const Instruction *CxtI,
241                           const DominatorTree *DT, bool UseInstrInfo) {
242   return ::isKnownNonZero(V, Depth,
243                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
244 }
245 
246 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
247                               unsigned Depth, AssumptionCache *AC,
248                               const Instruction *CxtI, const DominatorTree *DT,
249                               bool UseInstrInfo) {
250   KnownBits Known =
251       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
252   return Known.isNonNegative();
253 }
254 
255 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
256                            AssumptionCache *AC, const Instruction *CxtI,
257                            const DominatorTree *DT, bool UseInstrInfo) {
258   if (auto *CI = dyn_cast<ConstantInt>(V))
259     return CI->getValue().isStrictlyPositive();
260 
261   // TODO: We'd doing two recursive queries here.  We should factor this such
262   // that only a single query is needed.
263   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
264          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
265 }
266 
267 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
268                            AssumptionCache *AC, const Instruction *CxtI,
269                            const DominatorTree *DT, bool UseInstrInfo) {
270   KnownBits Known =
271       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
272   return Known.isNegative();
273 }
274 
275 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
276 
277 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
278                            const DataLayout &DL, AssumptionCache *AC,
279                            const Instruction *CxtI, const DominatorTree *DT,
280                            bool UseInstrInfo) {
281   return ::isKnownNonEqual(V1, V2,
282                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
283                                  UseInstrInfo, /*ORE=*/nullptr));
284 }
285 
286 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
287                               const Query &Q);
288 
289 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
290                              const DataLayout &DL, unsigned Depth,
291                              AssumptionCache *AC, const Instruction *CxtI,
292                              const DominatorTree *DT, bool UseInstrInfo) {
293   return ::MaskedValueIsZero(
294       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
295 }
296 
297 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
298                                    const Query &Q);
299 
300 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
301                                   unsigned Depth, AssumptionCache *AC,
302                                   const Instruction *CxtI,
303                                   const DominatorTree *DT, bool UseInstrInfo) {
304   return ::ComputeNumSignBits(
305       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
306 }
307 
308 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
309                                    bool NSW,
310                                    KnownBits &KnownOut, KnownBits &Known2,
311                                    unsigned Depth, const Query &Q) {
312   unsigned BitWidth = KnownOut.getBitWidth();
313 
314   // If an initial sequence of bits in the result is not needed, the
315   // corresponding bits in the operands are not needed.
316   KnownBits LHSKnown(BitWidth);
317   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
318   computeKnownBits(Op1, Known2, Depth + 1, Q);
319 
320   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
321 }
322 
323 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
324                                 KnownBits &Known, KnownBits &Known2,
325                                 unsigned Depth, const Query &Q) {
326   unsigned BitWidth = Known.getBitWidth();
327   computeKnownBits(Op1, Known, Depth + 1, Q);
328   computeKnownBits(Op0, Known2, Depth + 1, Q);
329 
330   bool isKnownNegative = false;
331   bool isKnownNonNegative = false;
332   // If the multiplication is known not to overflow, compute the sign bit.
333   if (NSW) {
334     if (Op0 == Op1) {
335       // The product of a number with itself is non-negative.
336       isKnownNonNegative = true;
337     } else {
338       bool isKnownNonNegativeOp1 = Known.isNonNegative();
339       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
340       bool isKnownNegativeOp1 = Known.isNegative();
341       bool isKnownNegativeOp0 = Known2.isNegative();
342       // The product of two numbers with the same sign is non-negative.
343       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
344         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
345       // The product of a negative number and a non-negative number is either
346       // negative or zero.
347       if (!isKnownNonNegative)
348         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
349                            isKnownNonZero(Op0, Depth, Q)) ||
350                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
351                            isKnownNonZero(Op1, Depth, Q));
352     }
353   }
354 
355   assert(!Known.hasConflict() && !Known2.hasConflict());
356   // Compute a conservative estimate for high known-0 bits.
357   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
358                              Known2.countMinLeadingZeros(),
359                              BitWidth) - BitWidth;
360   LeadZ = std::min(LeadZ, BitWidth);
361 
362   // The result of the bottom bits of an integer multiply can be
363   // inferred by looking at the bottom bits of both operands and
364   // multiplying them together.
365   // We can infer at least the minimum number of known trailing bits
366   // of both operands. Depending on number of trailing zeros, we can
367   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
368   // a and b are divisible by m and n respectively.
369   // We then calculate how many of those bits are inferrable and set
370   // the output. For example, the i8 mul:
371   //  a = XXXX1100 (12)
372   //  b = XXXX1110 (14)
373   // We know the bottom 3 bits are zero since the first can be divided by
374   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
375   // Applying the multiplication to the trimmed arguments gets:
376   //    XX11 (3)
377   //    X111 (7)
378   // -------
379   //    XX11
380   //   XX11
381   //  XX11
382   // XX11
383   // -------
384   // XXXXX01
385   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
386   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
387   // The proof for this can be described as:
388   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
389   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
390   //                    umin(countTrailingZeros(C2), C6) +
391   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
392   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
393   // %aa = shl i8 %a, C5
394   // %bb = shl i8 %b, C6
395   // %aaa = or i8 %aa, C1
396   // %bbb = or i8 %bb, C2
397   // %mul = mul i8 %aaa, %bbb
398   // %mask = and i8 %mul, C7
399   //   =>
400   // %mask = i8 ((C1*C2)&C7)
401   // Where C5, C6 describe the known bits of %a, %b
402   // C1, C2 describe the known bottom bits of %a, %b.
403   // C7 describes the mask of the known bits of the result.
404   APInt Bottom0 = Known.One;
405   APInt Bottom1 = Known2.One;
406 
407   // How many times we'd be able to divide each argument by 2 (shr by 1).
408   // This gives us the number of trailing zeros on the multiplication result.
409   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
410   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
411   unsigned TrailZero0 = Known.countMinTrailingZeros();
412   unsigned TrailZero1 = Known2.countMinTrailingZeros();
413   unsigned TrailZ = TrailZero0 + TrailZero1;
414 
415   // Figure out the fewest known-bits operand.
416   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
417                                       TrailBitsKnown1 - TrailZero1);
418   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
419 
420   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
421                       Bottom1.getLoBits(TrailBitsKnown1);
422 
423   Known.resetAll();
424   Known.Zero.setHighBits(LeadZ);
425   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
426   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
427 
428   // Only make use of no-wrap flags if we failed to compute the sign bit
429   // directly.  This matters if the multiplication always overflows, in
430   // which case we prefer to follow the result of the direct computation,
431   // though as the program is invoking undefined behaviour we can choose
432   // whatever we like here.
433   if (isKnownNonNegative && !Known.isNegative())
434     Known.makeNonNegative();
435   else if (isKnownNegative && !Known.isNonNegative())
436     Known.makeNegative();
437 }
438 
439 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
440                                              KnownBits &Known) {
441   unsigned BitWidth = Known.getBitWidth();
442   unsigned NumRanges = Ranges.getNumOperands() / 2;
443   assert(NumRanges >= 1);
444 
445   Known.Zero.setAllBits();
446   Known.One.setAllBits();
447 
448   for (unsigned i = 0; i < NumRanges; ++i) {
449     ConstantInt *Lower =
450         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
451     ConstantInt *Upper =
452         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
453     ConstantRange Range(Lower->getValue(), Upper->getValue());
454 
455     // The first CommonPrefixBits of all values in Range are equal.
456     unsigned CommonPrefixBits =
457         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
458 
459     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
460     Known.One &= Range.getUnsignedMax() & Mask;
461     Known.Zero &= ~Range.getUnsignedMax() & Mask;
462   }
463 }
464 
465 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
466   SmallVector<const Value *, 16> WorkSet(1, I);
467   SmallPtrSet<const Value *, 32> Visited;
468   SmallPtrSet<const Value *, 16> EphValues;
469 
470   // The instruction defining an assumption's condition itself is always
471   // considered ephemeral to that assumption (even if it has other
472   // non-ephemeral users). See r246696's test case for an example.
473   if (is_contained(I->operands(), E))
474     return true;
475 
476   while (!WorkSet.empty()) {
477     const Value *V = WorkSet.pop_back_val();
478     if (!Visited.insert(V).second)
479       continue;
480 
481     // If all uses of this value are ephemeral, then so is this value.
482     if (llvm::all_of(V->users(), [&](const User *U) {
483                                    return EphValues.count(U);
484                                  })) {
485       if (V == E)
486         return true;
487 
488       if (V == I || isSafeToSpeculativelyExecute(V)) {
489        EphValues.insert(V);
490        if (const User *U = dyn_cast<User>(V))
491          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
492               J != JE; ++J)
493            WorkSet.push_back(*J);
494       }
495     }
496   }
497 
498   return false;
499 }
500 
501 // Is this an intrinsic that cannot be speculated but also cannot trap?
502 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
503   if (const CallInst *CI = dyn_cast<CallInst>(I))
504     if (Function *F = CI->getCalledFunction())
505       switch (F->getIntrinsicID()) {
506       default: break;
507       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
508       case Intrinsic::assume:
509       case Intrinsic::sideeffect:
510       case Intrinsic::dbg_declare:
511       case Intrinsic::dbg_value:
512       case Intrinsic::dbg_label:
513       case Intrinsic::invariant_start:
514       case Intrinsic::invariant_end:
515       case Intrinsic::lifetime_start:
516       case Intrinsic::lifetime_end:
517       case Intrinsic::objectsize:
518       case Intrinsic::ptr_annotation:
519       case Intrinsic::var_annotation:
520         return true;
521       }
522 
523   return false;
524 }
525 
526 bool llvm::isValidAssumeForContext(const Instruction *Inv,
527                                    const Instruction *CxtI,
528                                    const DominatorTree *DT) {
529   // There are two restrictions on the use of an assume:
530   //  1. The assume must dominate the context (or the control flow must
531   //     reach the assume whenever it reaches the context).
532   //  2. The context must not be in the assume's set of ephemeral values
533   //     (otherwise we will use the assume to prove that the condition
534   //     feeding the assume is trivially true, thus causing the removal of
535   //     the assume).
536 
537   if (DT) {
538     if (DT->dominates(Inv, CxtI))
539       return true;
540   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
541     // We don't have a DT, but this trivially dominates.
542     return true;
543   }
544 
545   // With or without a DT, the only remaining case we will check is if the
546   // instructions are in the same BB.  Give up if that is not the case.
547   if (Inv->getParent() != CxtI->getParent())
548     return false;
549 
550   // If we have a dom tree, then we now know that the assume doesn't dominate
551   // the other instruction.  If we don't have a dom tree then we can check if
552   // the assume is first in the BB.
553   if (!DT) {
554     // Search forward from the assume until we reach the context (or the end
555     // of the block); the common case is that the assume will come first.
556     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
557          IE = Inv->getParent()->end(); I != IE; ++I)
558       if (&*I == CxtI)
559         return true;
560   }
561 
562   // The context comes first, but they're both in the same block. Make sure
563   // there is nothing in between that might interrupt the control flow.
564   for (BasicBlock::const_iterator I =
565          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
566        I != IE; ++I)
567     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
568       return false;
569 
570   return !isEphemeralValueOf(Inv, CxtI);
571 }
572 
573 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
574                                        unsigned Depth, const Query &Q) {
575   // Use of assumptions is context-sensitive. If we don't have a context, we
576   // cannot use them!
577   if (!Q.AC || !Q.CxtI)
578     return;
579 
580   unsigned BitWidth = Known.getBitWidth();
581 
582   // Note that the patterns below need to be kept in sync with the code
583   // in AssumptionCache::updateAffectedValues.
584 
585   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
586     if (!AssumeVH)
587       continue;
588     CallInst *I = cast<CallInst>(AssumeVH);
589     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
590            "Got assumption for the wrong function!");
591     if (Q.isExcluded(I))
592       continue;
593 
594     // Warning: This loop can end up being somewhat performance sensitive.
595     // We're running this loop for once for each value queried resulting in a
596     // runtime of ~O(#assumes * #values).
597 
598     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
599            "must be an assume intrinsic");
600 
601     Value *Arg = I->getArgOperand(0);
602 
603     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
604       assert(BitWidth == 1 && "assume operand is not i1?");
605       Known.setAllOnes();
606       return;
607     }
608     if (match(Arg, m_Not(m_Specific(V))) &&
609         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
610       assert(BitWidth == 1 && "assume operand is not i1?");
611       Known.setAllZero();
612       return;
613     }
614 
615     // The remaining tests are all recursive, so bail out if we hit the limit.
616     if (Depth == MaxDepth)
617       continue;
618 
619     Value *A, *B;
620     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
621 
622     CmpInst::Predicate Pred;
623     uint64_t C;
624     // assume(v = a)
625     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
626         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
627       KnownBits RHSKnown(BitWidth);
628       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
629       Known.Zero |= RHSKnown.Zero;
630       Known.One  |= RHSKnown.One;
631     // assume(v & b = a)
632     } else if (match(Arg,
633                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
634                Pred == ICmpInst::ICMP_EQ &&
635                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
636       KnownBits RHSKnown(BitWidth);
637       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
638       KnownBits MaskKnown(BitWidth);
639       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
640 
641       // For those bits in the mask that are known to be one, we can propagate
642       // known bits from the RHS to V.
643       Known.Zero |= RHSKnown.Zero & MaskKnown.One;
644       Known.One  |= RHSKnown.One  & MaskKnown.One;
645     // assume(~(v & b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       KnownBits RHSKnown(BitWidth);
651       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
652       KnownBits MaskKnown(BitWidth);
653       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
654 
655       // For those bits in the mask that are known to be one, we can propagate
656       // inverted known bits from the RHS to V.
657       Known.Zero |= RHSKnown.One  & MaskKnown.One;
658       Known.One  |= RHSKnown.Zero & MaskKnown.One;
659     // assume(v | b = a)
660     } else if (match(Arg,
661                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
662                Pred == ICmpInst::ICMP_EQ &&
663                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
664       KnownBits RHSKnown(BitWidth);
665       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
666       KnownBits BKnown(BitWidth);
667       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
668 
669       // For those bits in B that are known to be zero, we can propagate known
670       // bits from the RHS to V.
671       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
672       Known.One  |= RHSKnown.One  & BKnown.Zero;
673     // assume(~(v | b) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       KnownBits RHSKnown(BitWidth);
679       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
680       KnownBits BKnown(BitWidth);
681       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
682 
683       // For those bits in B that are known to be zero, we can propagate
684       // inverted known bits from the RHS to V.
685       Known.Zero |= RHSKnown.One  & BKnown.Zero;
686       Known.One  |= RHSKnown.Zero & BKnown.Zero;
687     // assume(v ^ b = a)
688     } else if (match(Arg,
689                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
690                Pred == ICmpInst::ICMP_EQ &&
691                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
692       KnownBits RHSKnown(BitWidth);
693       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
694       KnownBits BKnown(BitWidth);
695       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
696 
697       // For those bits in B that are known to be zero, we can propagate known
698       // bits from the RHS to V. For those bits in B that are known to be one,
699       // we can propagate inverted known bits from the RHS to V.
700       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
701       Known.One  |= RHSKnown.One  & BKnown.Zero;
702       Known.Zero |= RHSKnown.One  & BKnown.One;
703       Known.One  |= RHSKnown.Zero & BKnown.One;
704     // assume(~(v ^ b) = a)
705     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
706                                    m_Value(A))) &&
707                Pred == ICmpInst::ICMP_EQ &&
708                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
709       KnownBits RHSKnown(BitWidth);
710       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
711       KnownBits BKnown(BitWidth);
712       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
713 
714       // For those bits in B that are known to be zero, we can propagate
715       // inverted known bits from the RHS to V. For those bits in B that are
716       // known to be one, we can propagate known bits from the RHS to V.
717       Known.Zero |= RHSKnown.One  & BKnown.Zero;
718       Known.One  |= RHSKnown.Zero & BKnown.Zero;
719       Known.Zero |= RHSKnown.Zero & BKnown.One;
720       Known.One  |= RHSKnown.One  & BKnown.One;
721     // assume(v << c = a)
722     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
723                                    m_Value(A))) &&
724                Pred == ICmpInst::ICMP_EQ &&
725                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
726                C < BitWidth) {
727       KnownBits RHSKnown(BitWidth);
728       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
729       // For those bits in RHS that are known, we can propagate them to known
730       // bits in V shifted to the right by C.
731       RHSKnown.Zero.lshrInPlace(C);
732       Known.Zero |= RHSKnown.Zero;
733       RHSKnown.One.lshrInPlace(C);
734       Known.One  |= RHSKnown.One;
735     // assume(~(v << c) = a)
736     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
737                                    m_Value(A))) &&
738                Pred == ICmpInst::ICMP_EQ &&
739                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
740                C < BitWidth) {
741       KnownBits RHSKnown(BitWidth);
742       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
743       // For those bits in RHS that are known, we can propagate them inverted
744       // to known bits in V shifted to the right by C.
745       RHSKnown.One.lshrInPlace(C);
746       Known.Zero |= RHSKnown.One;
747       RHSKnown.Zero.lshrInPlace(C);
748       Known.One  |= RHSKnown.Zero;
749     // assume(v >> c = a)
750     } else if (match(Arg,
751                      m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
752                               m_Value(A))) &&
753                Pred == ICmpInst::ICMP_EQ &&
754                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
755                C < BitWidth) {
756       KnownBits RHSKnown(BitWidth);
757       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
758       // For those bits in RHS that are known, we can propagate them to known
759       // bits in V shifted to the right by C.
760       Known.Zero |= RHSKnown.Zero << C;
761       Known.One  |= RHSKnown.One  << C;
762     // assume(~(v >> c) = a)
763     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
764                                    m_Value(A))) &&
765                Pred == ICmpInst::ICMP_EQ &&
766                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
767                C < BitWidth) {
768       KnownBits RHSKnown(BitWidth);
769       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
770       // For those bits in RHS that are known, we can propagate them inverted
771       // to known bits in V shifted to the right by C.
772       Known.Zero |= RHSKnown.One  << C;
773       Known.One  |= RHSKnown.Zero << C;
774     // assume(v >=_s c) where c is non-negative
775     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
776                Pred == ICmpInst::ICMP_SGE &&
777                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778       KnownBits RHSKnown(BitWidth);
779       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
780 
781       if (RHSKnown.isNonNegative()) {
782         // We know that the sign bit is zero.
783         Known.makeNonNegative();
784       }
785     // assume(v >_s c) where c is at least -1.
786     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
787                Pred == ICmpInst::ICMP_SGT &&
788                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
789       KnownBits RHSKnown(BitWidth);
790       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
791 
792       if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
793         // We know that the sign bit is zero.
794         Known.makeNonNegative();
795       }
796     // assume(v <=_s c) where c is negative
797     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
798                Pred == ICmpInst::ICMP_SLE &&
799                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
800       KnownBits RHSKnown(BitWidth);
801       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
802 
803       if (RHSKnown.isNegative()) {
804         // We know that the sign bit is one.
805         Known.makeNegative();
806       }
807     // assume(v <_s c) where c is non-positive
808     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
809                Pred == ICmpInst::ICMP_SLT &&
810                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
811       KnownBits RHSKnown(BitWidth);
812       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
813 
814       if (RHSKnown.isZero() || RHSKnown.isNegative()) {
815         // We know that the sign bit is one.
816         Known.makeNegative();
817       }
818     // assume(v <=_u c)
819     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
820                Pred == ICmpInst::ICMP_ULE &&
821                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
822       KnownBits RHSKnown(BitWidth);
823       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
824 
825       // Whatever high bits in c are zero are known to be zero.
826       Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
827       // assume(v <_u c)
828     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
829                Pred == ICmpInst::ICMP_ULT &&
830                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
831       KnownBits RHSKnown(BitWidth);
832       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
833 
834       // If the RHS is known zero, then this assumption must be wrong (nothing
835       // is unsigned less than zero). Signal a conflict and get out of here.
836       if (RHSKnown.isZero()) {
837         Known.Zero.setAllBits();
838         Known.One.setAllBits();
839         break;
840       }
841 
842       // Whatever high bits in c are zero are known to be zero (if c is a power
843       // of 2, then one more).
844       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
845         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
846       else
847         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
848     }
849   }
850 
851   // If assumptions conflict with each other or previous known bits, then we
852   // have a logical fallacy. It's possible that the assumption is not reachable,
853   // so this isn't a real bug. On the other hand, the program may have undefined
854   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
855   // clear out the known bits, try to warn the user, and hope for the best.
856   if (Known.Zero.intersects(Known.One)) {
857     Known.resetAll();
858 
859     if (Q.ORE)
860       Q.ORE->emit([&]() {
861         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
862         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
863                                           CxtI)
864                << "Detected conflicting code assumptions. Program may "
865                   "have undefined behavior, or compiler may have "
866                   "internal error.";
867       });
868   }
869 }
870 
871 /// Compute known bits from a shift operator, including those with a
872 /// non-constant shift amount. Known is the output of this function. Known2 is a
873 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
874 /// operator-specific functions that, given the known-zero or known-one bits
875 /// respectively, and a shift amount, compute the implied known-zero or
876 /// known-one bits of the shift operator's result respectively for that shift
877 /// amount. The results from calling KZF and KOF are conservatively combined for
878 /// all permitted shift amounts.
879 static void computeKnownBitsFromShiftOperator(
880     const Operator *I, KnownBits &Known, KnownBits &Known2,
881     unsigned Depth, const Query &Q,
882     function_ref<APInt(const APInt &, unsigned)> KZF,
883     function_ref<APInt(const APInt &, unsigned)> KOF) {
884   unsigned BitWidth = Known.getBitWidth();
885 
886   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
887     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
888 
889     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
890     Known.Zero = KZF(Known.Zero, ShiftAmt);
891     Known.One  = KOF(Known.One, ShiftAmt);
892     // If the known bits conflict, this must be an overflowing left shift, so
893     // the shift result is poison. We can return anything we want. Choose 0 for
894     // the best folding opportunity.
895     if (Known.hasConflict())
896       Known.setAllZero();
897 
898     return;
899   }
900 
901   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
902 
903   // If the shift amount could be greater than or equal to the bit-width of the
904   // LHS, the value could be poison, but bail out because the check below is
905   // expensive. TODO: Should we just carry on?
906   if ((~Known.Zero).uge(BitWidth)) {
907     Known.resetAll();
908     return;
909   }
910 
911   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
912   // BitWidth > 64 and any upper bits are known, we'll end up returning the
913   // limit value (which implies all bits are known).
914   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
915   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
916 
917   // It would be more-clearly correct to use the two temporaries for this
918   // calculation. Reusing the APInts here to prevent unnecessary allocations.
919   Known.resetAll();
920 
921   // If we know the shifter operand is nonzero, we can sometimes infer more
922   // known bits. However this is expensive to compute, so be lazy about it and
923   // only compute it when absolutely necessary.
924   Optional<bool> ShifterOperandIsNonZero;
925 
926   // Early exit if we can't constrain any well-defined shift amount.
927   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
928       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
929     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
930     if (!*ShifterOperandIsNonZero)
931       return;
932   }
933 
934   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
935 
936   Known.Zero.setAllBits();
937   Known.One.setAllBits();
938   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
939     // Combine the shifted known input bits only for those shift amounts
940     // compatible with its known constraints.
941     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
942       continue;
943     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
944       continue;
945     // If we know the shifter is nonzero, we may be able to infer more known
946     // bits. This check is sunk down as far as possible to avoid the expensive
947     // call to isKnownNonZero if the cheaper checks above fail.
948     if (ShiftAmt == 0) {
949       if (!ShifterOperandIsNonZero.hasValue())
950         ShifterOperandIsNonZero =
951             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
952       if (*ShifterOperandIsNonZero)
953         continue;
954     }
955 
956     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
957     Known.One  &= KOF(Known2.One, ShiftAmt);
958   }
959 
960   // If the known bits conflict, the result is poison. Return a 0 and hope the
961   // caller can further optimize that.
962   if (Known.hasConflict())
963     Known.setAllZero();
964 }
965 
966 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
967                                          unsigned Depth, const Query &Q) {
968   unsigned BitWidth = Known.getBitWidth();
969 
970   KnownBits Known2(Known);
971   switch (I->getOpcode()) {
972   default: break;
973   case Instruction::Load:
974     if (MDNode *MD =
975             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
976       computeKnownBitsFromRangeMetadata(*MD, Known);
977     break;
978   case Instruction::And: {
979     // If either the LHS or the RHS are Zero, the result is zero.
980     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
981     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
982 
983     // Output known-1 bits are only known if set in both the LHS & RHS.
984     Known.One &= Known2.One;
985     // Output known-0 are known to be clear if zero in either the LHS | RHS.
986     Known.Zero |= Known2.Zero;
987 
988     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
989     // here we handle the more general case of adding any odd number by
990     // matching the form add(x, add(x, y)) where y is odd.
991     // TODO: This could be generalized to clearing any bit set in y where the
992     // following bit is known to be unset in y.
993     Value *X = nullptr, *Y = nullptr;
994     if (!Known.Zero[0] && !Known.One[0] &&
995         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
996       Known2.resetAll();
997       computeKnownBits(Y, Known2, Depth + 1, Q);
998       if (Known2.countMinTrailingOnes() > 0)
999         Known.Zero.setBit(0);
1000     }
1001     break;
1002   }
1003   case Instruction::Or:
1004     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1005     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1006 
1007     // Output known-0 bits are only known if clear in both the LHS & RHS.
1008     Known.Zero &= Known2.Zero;
1009     // Output known-1 are known to be set if set in either the LHS | RHS.
1010     Known.One |= Known2.One;
1011     break;
1012   case Instruction::Xor: {
1013     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1014     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1015 
1016     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1017     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1018     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1019     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1020     Known.Zero = std::move(KnownZeroOut);
1021     break;
1022   }
1023   case Instruction::Mul: {
1024     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1025     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1026                         Known2, Depth, Q);
1027     break;
1028   }
1029   case Instruction::UDiv: {
1030     // For the purposes of computing leading zeros we can conservatively
1031     // treat a udiv as a logical right shift by the power of 2 known to
1032     // be less than the denominator.
1033     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1034     unsigned LeadZ = Known2.countMinLeadingZeros();
1035 
1036     Known2.resetAll();
1037     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1038     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1039     if (RHSMaxLeadingZeros != BitWidth)
1040       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1041 
1042     Known.Zero.setHighBits(LeadZ);
1043     break;
1044   }
1045   case Instruction::Select: {
1046     const Value *LHS, *RHS;
1047     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1048     if (SelectPatternResult::isMinOrMax(SPF)) {
1049       computeKnownBits(RHS, Known, Depth + 1, Q);
1050       computeKnownBits(LHS, Known2, Depth + 1, Q);
1051     } else {
1052       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1053       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1054     }
1055 
1056     unsigned MaxHighOnes = 0;
1057     unsigned MaxHighZeros = 0;
1058     if (SPF == SPF_SMAX) {
1059       // If both sides are negative, the result is negative.
1060       if (Known.isNegative() && Known2.isNegative())
1061         // We can derive a lower bound on the result by taking the max of the
1062         // leading one bits.
1063         MaxHighOnes =
1064             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1065       // If either side is non-negative, the result is non-negative.
1066       else if (Known.isNonNegative() || Known2.isNonNegative())
1067         MaxHighZeros = 1;
1068     } else if (SPF == SPF_SMIN) {
1069       // If both sides are non-negative, the result is non-negative.
1070       if (Known.isNonNegative() && Known2.isNonNegative())
1071         // We can derive an upper bound on the result by taking the max of the
1072         // leading zero bits.
1073         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1074                                 Known2.countMinLeadingZeros());
1075       // If either side is negative, the result is negative.
1076       else if (Known.isNegative() || Known2.isNegative())
1077         MaxHighOnes = 1;
1078     } else if (SPF == SPF_UMAX) {
1079       // We can derive a lower bound on the result by taking the max of the
1080       // leading one bits.
1081       MaxHighOnes =
1082           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1083     } else if (SPF == SPF_UMIN) {
1084       // We can derive an upper bound on the result by taking the max of the
1085       // leading zero bits.
1086       MaxHighZeros =
1087           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1088     } else if (SPF == SPF_ABS) {
1089       // RHS from matchSelectPattern returns the negation part of abs pattern.
1090       // If the negate has an NSW flag we can assume the sign bit of the result
1091       // will be 0 because that makes abs(INT_MIN) undefined.
1092       if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1093         MaxHighZeros = 1;
1094     }
1095 
1096     // Only known if known in both the LHS and RHS.
1097     Known.One &= Known2.One;
1098     Known.Zero &= Known2.Zero;
1099     if (MaxHighOnes > 0)
1100       Known.One.setHighBits(MaxHighOnes);
1101     if (MaxHighZeros > 0)
1102       Known.Zero.setHighBits(MaxHighZeros);
1103     break;
1104   }
1105   case Instruction::FPTrunc:
1106   case Instruction::FPExt:
1107   case Instruction::FPToUI:
1108   case Instruction::FPToSI:
1109   case Instruction::SIToFP:
1110   case Instruction::UIToFP:
1111     break; // Can't work with floating point.
1112   case Instruction::PtrToInt:
1113   case Instruction::IntToPtr:
1114     // Fall through and handle them the same as zext/trunc.
1115     LLVM_FALLTHROUGH;
1116   case Instruction::ZExt:
1117   case Instruction::Trunc: {
1118     Type *SrcTy = I->getOperand(0)->getType();
1119 
1120     unsigned SrcBitWidth;
1121     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1122     // which fall through here.
1123     Type *ScalarTy = SrcTy->getScalarType();
1124     SrcBitWidth = ScalarTy->isPointerTy() ?
1125       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1126       Q.DL.getTypeSizeInBits(ScalarTy);
1127 
1128     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1129     Known = Known.zextOrTrunc(SrcBitWidth, false);
1130     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1131     Known = Known.zextOrTrunc(BitWidth, true /* ExtendedBitsAreKnownZero */);
1132     break;
1133   }
1134   case Instruction::BitCast: {
1135     Type *SrcTy = I->getOperand(0)->getType();
1136     if (SrcTy->isIntOrPtrTy() &&
1137         // TODO: For now, not handling conversions like:
1138         // (bitcast i64 %x to <2 x i32>)
1139         !I->getType()->isVectorTy()) {
1140       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1141       break;
1142     }
1143     break;
1144   }
1145   case Instruction::SExt: {
1146     // Compute the bits in the result that are not present in the input.
1147     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1148 
1149     Known = Known.trunc(SrcBitWidth);
1150     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1151     // If the sign bit of the input is known set or clear, then we know the
1152     // top bits of the result.
1153     Known = Known.sext(BitWidth);
1154     break;
1155   }
1156   case Instruction::Shl: {
1157     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1158     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1159     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1160       APInt KZResult = KnownZero << ShiftAmt;
1161       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1162       // If this shift has "nsw" keyword, then the result is either a poison
1163       // value or has the same sign bit as the first operand.
1164       if (NSW && KnownZero.isSignBitSet())
1165         KZResult.setSignBit();
1166       return KZResult;
1167     };
1168 
1169     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1170       APInt KOResult = KnownOne << ShiftAmt;
1171       if (NSW && KnownOne.isSignBitSet())
1172         KOResult.setSignBit();
1173       return KOResult;
1174     };
1175 
1176     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1177     break;
1178   }
1179   case Instruction::LShr: {
1180     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1181     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1182       APInt KZResult = KnownZero.lshr(ShiftAmt);
1183       // High bits known zero.
1184       KZResult.setHighBits(ShiftAmt);
1185       return KZResult;
1186     };
1187 
1188     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1189       return KnownOne.lshr(ShiftAmt);
1190     };
1191 
1192     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1193     break;
1194   }
1195   case Instruction::AShr: {
1196     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1197     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1198       return KnownZero.ashr(ShiftAmt);
1199     };
1200 
1201     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1202       return KnownOne.ashr(ShiftAmt);
1203     };
1204 
1205     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1206     break;
1207   }
1208   case Instruction::Sub: {
1209     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1210     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1211                            Known, Known2, Depth, Q);
1212     break;
1213   }
1214   case Instruction::Add: {
1215     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1216     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1217                            Known, Known2, Depth, Q);
1218     break;
1219   }
1220   case Instruction::SRem:
1221     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1222       APInt RA = Rem->getValue().abs();
1223       if (RA.isPowerOf2()) {
1224         APInt LowBits = RA - 1;
1225         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1226 
1227         // The low bits of the first operand are unchanged by the srem.
1228         Known.Zero = Known2.Zero & LowBits;
1229         Known.One = Known2.One & LowBits;
1230 
1231         // If the first operand is non-negative or has all low bits zero, then
1232         // the upper bits are all zero.
1233         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1234           Known.Zero |= ~LowBits;
1235 
1236         // If the first operand is negative and not all low bits are zero, then
1237         // the upper bits are all one.
1238         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1239           Known.One |= ~LowBits;
1240 
1241         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1242         break;
1243       }
1244     }
1245 
1246     // The sign bit is the LHS's sign bit, except when the result of the
1247     // remainder is zero.
1248     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1249     // If it's known zero, our sign bit is also zero.
1250     if (Known2.isNonNegative())
1251       Known.makeNonNegative();
1252 
1253     break;
1254   case Instruction::URem: {
1255     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1256       const APInt &RA = Rem->getValue();
1257       if (RA.isPowerOf2()) {
1258         APInt LowBits = (RA - 1);
1259         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1260         Known.Zero |= ~LowBits;
1261         Known.One &= LowBits;
1262         break;
1263       }
1264     }
1265 
1266     // Since the result is less than or equal to either operand, any leading
1267     // zero bits in either operand must also exist in the result.
1268     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1269     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1270 
1271     unsigned Leaders =
1272         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1273     Known.resetAll();
1274     Known.Zero.setHighBits(Leaders);
1275     break;
1276   }
1277 
1278   case Instruction::Alloca: {
1279     const AllocaInst *AI = cast<AllocaInst>(I);
1280     unsigned Align = AI->getAlignment();
1281     if (Align == 0)
1282       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1283 
1284     if (Align > 0)
1285       Known.Zero.setLowBits(countTrailingZeros(Align));
1286     break;
1287   }
1288   case Instruction::GetElementPtr: {
1289     // Analyze all of the subscripts of this getelementptr instruction
1290     // to determine if we can prove known low zero bits.
1291     KnownBits LocalKnown(BitWidth);
1292     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1293     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1294 
1295     gep_type_iterator GTI = gep_type_begin(I);
1296     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1297       Value *Index = I->getOperand(i);
1298       if (StructType *STy = GTI.getStructTypeOrNull()) {
1299         // Handle struct member offset arithmetic.
1300 
1301         // Handle case when index is vector zeroinitializer
1302         Constant *CIndex = cast<Constant>(Index);
1303         if (CIndex->isZeroValue())
1304           continue;
1305 
1306         if (CIndex->getType()->isVectorTy())
1307           Index = CIndex->getSplatValue();
1308 
1309         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1310         const StructLayout *SL = Q.DL.getStructLayout(STy);
1311         uint64_t Offset = SL->getElementOffset(Idx);
1312         TrailZ = std::min<unsigned>(TrailZ,
1313                                     countTrailingZeros(Offset));
1314       } else {
1315         // Handle array index arithmetic.
1316         Type *IndexedTy = GTI.getIndexedType();
1317         if (!IndexedTy->isSized()) {
1318           TrailZ = 0;
1319           break;
1320         }
1321         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1322         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1323         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1324         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1325         TrailZ = std::min(TrailZ,
1326                           unsigned(countTrailingZeros(TypeSize) +
1327                                    LocalKnown.countMinTrailingZeros()));
1328       }
1329     }
1330 
1331     Known.Zero.setLowBits(TrailZ);
1332     break;
1333   }
1334   case Instruction::PHI: {
1335     const PHINode *P = cast<PHINode>(I);
1336     // Handle the case of a simple two-predecessor recurrence PHI.
1337     // There's a lot more that could theoretically be done here, but
1338     // this is sufficient to catch some interesting cases.
1339     if (P->getNumIncomingValues() == 2) {
1340       for (unsigned i = 0; i != 2; ++i) {
1341         Value *L = P->getIncomingValue(i);
1342         Value *R = P->getIncomingValue(!i);
1343         Operator *LU = dyn_cast<Operator>(L);
1344         if (!LU)
1345           continue;
1346         unsigned Opcode = LU->getOpcode();
1347         // Check for operations that have the property that if
1348         // both their operands have low zero bits, the result
1349         // will have low zero bits.
1350         if (Opcode == Instruction::Add ||
1351             Opcode == Instruction::Sub ||
1352             Opcode == Instruction::And ||
1353             Opcode == Instruction::Or ||
1354             Opcode == Instruction::Mul) {
1355           Value *LL = LU->getOperand(0);
1356           Value *LR = LU->getOperand(1);
1357           // Find a recurrence.
1358           if (LL == I)
1359             L = LR;
1360           else if (LR == I)
1361             L = LL;
1362           else
1363             break;
1364           // Ok, we have a PHI of the form L op= R. Check for low
1365           // zero bits.
1366           computeKnownBits(R, Known2, Depth + 1, Q);
1367 
1368           // We need to take the minimum number of known bits
1369           KnownBits Known3(Known);
1370           computeKnownBits(L, Known3, Depth + 1, Q);
1371 
1372           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1373                                          Known3.countMinTrailingZeros()));
1374 
1375           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1376           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1377             // If initial value of recurrence is nonnegative, and we are adding
1378             // a nonnegative number with nsw, the result can only be nonnegative
1379             // or poison value regardless of the number of times we execute the
1380             // add in phi recurrence. If initial value is negative and we are
1381             // adding a negative number with nsw, the result can only be
1382             // negative or poison value. Similar arguments apply to sub and mul.
1383             //
1384             // (add non-negative, non-negative) --> non-negative
1385             // (add negative, negative) --> negative
1386             if (Opcode == Instruction::Add) {
1387               if (Known2.isNonNegative() && Known3.isNonNegative())
1388                 Known.makeNonNegative();
1389               else if (Known2.isNegative() && Known3.isNegative())
1390                 Known.makeNegative();
1391             }
1392 
1393             // (sub nsw non-negative, negative) --> non-negative
1394             // (sub nsw negative, non-negative) --> negative
1395             else if (Opcode == Instruction::Sub && LL == I) {
1396               if (Known2.isNonNegative() && Known3.isNegative())
1397                 Known.makeNonNegative();
1398               else if (Known2.isNegative() && Known3.isNonNegative())
1399                 Known.makeNegative();
1400             }
1401 
1402             // (mul nsw non-negative, non-negative) --> non-negative
1403             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1404                      Known3.isNonNegative())
1405               Known.makeNonNegative();
1406           }
1407 
1408           break;
1409         }
1410       }
1411     }
1412 
1413     // Unreachable blocks may have zero-operand PHI nodes.
1414     if (P->getNumIncomingValues() == 0)
1415       break;
1416 
1417     // Otherwise take the unions of the known bit sets of the operands,
1418     // taking conservative care to avoid excessive recursion.
1419     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1420       // Skip if every incoming value references to ourself.
1421       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1422         break;
1423 
1424       Known.Zero.setAllBits();
1425       Known.One.setAllBits();
1426       for (Value *IncValue : P->incoming_values()) {
1427         // Skip direct self references.
1428         if (IncValue == P) continue;
1429 
1430         Known2 = KnownBits(BitWidth);
1431         // Recurse, but cap the recursion to one level, because we don't
1432         // want to waste time spinning around in loops.
1433         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1434         Known.Zero &= Known2.Zero;
1435         Known.One &= Known2.One;
1436         // If all bits have been ruled out, there's no need to check
1437         // more operands.
1438         if (!Known.Zero && !Known.One)
1439           break;
1440       }
1441     }
1442     break;
1443   }
1444   case Instruction::Call:
1445   case Instruction::Invoke:
1446     // If range metadata is attached to this call, set known bits from that,
1447     // and then intersect with known bits based on other properties of the
1448     // function.
1449     if (MDNode *MD =
1450             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1451       computeKnownBitsFromRangeMetadata(*MD, Known);
1452     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1453       computeKnownBits(RV, Known2, Depth + 1, Q);
1454       Known.Zero |= Known2.Zero;
1455       Known.One |= Known2.One;
1456     }
1457     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1458       switch (II->getIntrinsicID()) {
1459       default: break;
1460       case Intrinsic::bitreverse:
1461         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1462         Known.Zero |= Known2.Zero.reverseBits();
1463         Known.One |= Known2.One.reverseBits();
1464         break;
1465       case Intrinsic::bswap:
1466         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1467         Known.Zero |= Known2.Zero.byteSwap();
1468         Known.One |= Known2.One.byteSwap();
1469         break;
1470       case Intrinsic::ctlz: {
1471         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1472         // If we have a known 1, its position is our upper bound.
1473         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1474         // If this call is undefined for 0, the result will be less than 2^n.
1475         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1476           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1477         unsigned LowBits = Log2_32(PossibleLZ)+1;
1478         Known.Zero.setBitsFrom(LowBits);
1479         break;
1480       }
1481       case Intrinsic::cttz: {
1482         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1483         // If we have a known 1, its position is our upper bound.
1484         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1485         // If this call is undefined for 0, the result will be less than 2^n.
1486         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1487           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1488         unsigned LowBits = Log2_32(PossibleTZ)+1;
1489         Known.Zero.setBitsFrom(LowBits);
1490         break;
1491       }
1492       case Intrinsic::ctpop: {
1493         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1494         // We can bound the space the count needs.  Also, bits known to be zero
1495         // can't contribute to the population.
1496         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1497         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1498         Known.Zero.setBitsFrom(LowBits);
1499         // TODO: we could bound KnownOne using the lower bound on the number
1500         // of bits which might be set provided by popcnt KnownOne2.
1501         break;
1502       }
1503       case Intrinsic::fshr:
1504       case Intrinsic::fshl: {
1505         const APInt *SA;
1506         if (!match(I->getOperand(2), m_APInt(SA)))
1507           break;
1508 
1509         // Normalize to funnel shift left.
1510         uint64_t ShiftAmt = SA->urem(BitWidth);
1511         if (II->getIntrinsicID() == Intrinsic::fshr)
1512           ShiftAmt = BitWidth - ShiftAmt;
1513 
1514         KnownBits Known3(Known);
1515         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1516         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1517 
1518         Known.Zero =
1519             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1520         Known.One =
1521             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1522         break;
1523       }
1524       case Intrinsic::uadd_sat:
1525       case Intrinsic::usub_sat: {
1526         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1527         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1528         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1529 
1530         // Add: Leading ones of either operand are preserved.
1531         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1532         // as leading zeros in the result.
1533         unsigned LeadingKnown;
1534         if (IsAdd)
1535           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1536                                   Known2.countMinLeadingOnes());
1537         else
1538           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1539                                   Known2.countMinLeadingOnes());
1540 
1541         Known = KnownBits::computeForAddSub(
1542             IsAdd, /* NSW */ false, Known, Known2);
1543 
1544         // We select between the operation result and all-ones/zero
1545         // respectively, so we can preserve known ones/zeros.
1546         if (IsAdd) {
1547           Known.One.setHighBits(LeadingKnown);
1548           Known.Zero.clearAllBits();
1549         } else {
1550           Known.Zero.setHighBits(LeadingKnown);
1551           Known.One.clearAllBits();
1552         }
1553         break;
1554       }
1555       case Intrinsic::x86_sse42_crc32_64_64:
1556         Known.Zero.setBitsFrom(32);
1557         break;
1558       }
1559     }
1560     break;
1561   case Instruction::ExtractElement:
1562     // Look through extract element. At the moment we keep this simple and skip
1563     // tracking the specific element. But at least we might find information
1564     // valid for all elements of the vector (for example if vector is sign
1565     // extended, shifted, etc).
1566     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1567     break;
1568   case Instruction::ExtractValue:
1569     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1570       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1571       if (EVI->getNumIndices() != 1) break;
1572       if (EVI->getIndices()[0] == 0) {
1573         switch (II->getIntrinsicID()) {
1574         default: break;
1575         case Intrinsic::uadd_with_overflow:
1576         case Intrinsic::sadd_with_overflow:
1577           computeKnownBitsAddSub(true, II->getArgOperand(0),
1578                                  II->getArgOperand(1), false, Known, Known2,
1579                                  Depth, Q);
1580           break;
1581         case Intrinsic::usub_with_overflow:
1582         case Intrinsic::ssub_with_overflow:
1583           computeKnownBitsAddSub(false, II->getArgOperand(0),
1584                                  II->getArgOperand(1), false, Known, Known2,
1585                                  Depth, Q);
1586           break;
1587         case Intrinsic::umul_with_overflow:
1588         case Intrinsic::smul_with_overflow:
1589           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1590                               Known, Known2, Depth, Q);
1591           break;
1592         }
1593       }
1594     }
1595   }
1596 }
1597 
1598 /// Determine which bits of V are known to be either zero or one and return
1599 /// them.
1600 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1601   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1602   computeKnownBits(V, Known, Depth, Q);
1603   return Known;
1604 }
1605 
1606 /// Determine which bits of V are known to be either zero or one and return
1607 /// them in the Known bit set.
1608 ///
1609 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1610 /// we cannot optimize based on the assumption that it is zero without changing
1611 /// it to be an explicit zero.  If we don't change it to zero, other code could
1612 /// optimized based on the contradictory assumption that it is non-zero.
1613 /// Because instcombine aggressively folds operations with undef args anyway,
1614 /// this won't lose us code quality.
1615 ///
1616 /// This function is defined on values with integer type, values with pointer
1617 /// type, and vectors of integers.  In the case
1618 /// where V is a vector, known zero, and known one values are the
1619 /// same width as the vector element, and the bit is set only if it is true
1620 /// for all of the elements in the vector.
1621 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1622                       const Query &Q) {
1623   assert(V && "No Value?");
1624   assert(Depth <= MaxDepth && "Limit Search Depth");
1625   unsigned BitWidth = Known.getBitWidth();
1626 
1627   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1628           V->getType()->isPtrOrPtrVectorTy()) &&
1629          "Not integer or pointer type!");
1630 
1631   Type *ScalarTy = V->getType()->getScalarType();
1632   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1633     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1634   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1635   (void)BitWidth;
1636   (void)ExpectedWidth;
1637 
1638   const APInt *C;
1639   if (match(V, m_APInt(C))) {
1640     // We know all of the bits for a scalar constant or a splat vector constant!
1641     Known.One = *C;
1642     Known.Zero = ~Known.One;
1643     return;
1644   }
1645   // Null and aggregate-zero are all-zeros.
1646   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1647     Known.setAllZero();
1648     return;
1649   }
1650   // Handle a constant vector by taking the intersection of the known bits of
1651   // each element.
1652   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1653     // We know that CDS must be a vector of integers. Take the intersection of
1654     // each element.
1655     Known.Zero.setAllBits(); Known.One.setAllBits();
1656     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1657       APInt Elt = CDS->getElementAsAPInt(i);
1658       Known.Zero &= ~Elt;
1659       Known.One &= Elt;
1660     }
1661     return;
1662   }
1663 
1664   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1665     // We know that CV must be a vector of integers. Take the intersection of
1666     // each element.
1667     Known.Zero.setAllBits(); Known.One.setAllBits();
1668     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1669       Constant *Element = CV->getAggregateElement(i);
1670       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1671       if (!ElementCI) {
1672         Known.resetAll();
1673         return;
1674       }
1675       const APInt &Elt = ElementCI->getValue();
1676       Known.Zero &= ~Elt;
1677       Known.One &= Elt;
1678     }
1679     return;
1680   }
1681 
1682   // Start out not knowing anything.
1683   Known.resetAll();
1684 
1685   // We can't imply anything about undefs.
1686   if (isa<UndefValue>(V))
1687     return;
1688 
1689   // There's no point in looking through other users of ConstantData for
1690   // assumptions.  Confirm that we've handled them all.
1691   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1692 
1693   // Limit search depth.
1694   // All recursive calls that increase depth must come after this.
1695   if (Depth == MaxDepth)
1696     return;
1697 
1698   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1699   // the bits of its aliasee.
1700   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1701     if (!GA->isInterposable())
1702       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1703     return;
1704   }
1705 
1706   if (const Operator *I = dyn_cast<Operator>(V))
1707     computeKnownBitsFromOperator(I, Known, Depth, Q);
1708 
1709   // Aligned pointers have trailing zeros - refine Known.Zero set
1710   if (V->getType()->isPointerTy()) {
1711     unsigned Align = V->getPointerAlignment(Q.DL);
1712     if (Align)
1713       Known.Zero.setLowBits(countTrailingZeros(Align));
1714   }
1715 
1716   // computeKnownBitsFromAssume strictly refines Known.
1717   // Therefore, we run them after computeKnownBitsFromOperator.
1718 
1719   // Check whether a nearby assume intrinsic can determine some known bits.
1720   computeKnownBitsFromAssume(V, Known, Depth, Q);
1721 
1722   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1723 }
1724 
1725 /// Return true if the given value is known to have exactly one
1726 /// bit set when defined. For vectors return true if every element is known to
1727 /// be a power of two when defined. Supports values with integer or pointer
1728 /// types and vectors of integers.
1729 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1730                             const Query &Q) {
1731   assert(Depth <= MaxDepth && "Limit Search Depth");
1732 
1733   // Attempt to match against constants.
1734   if (OrZero && match(V, m_Power2OrZero()))
1735       return true;
1736   if (match(V, m_Power2()))
1737       return true;
1738 
1739   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1740   // it is shifted off the end then the result is undefined.
1741   if (match(V, m_Shl(m_One(), m_Value())))
1742     return true;
1743 
1744   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1745   // the bottom.  If it is shifted off the bottom then the result is undefined.
1746   if (match(V, m_LShr(m_SignMask(), m_Value())))
1747     return true;
1748 
1749   // The remaining tests are all recursive, so bail out if we hit the limit.
1750   if (Depth++ == MaxDepth)
1751     return false;
1752 
1753   Value *X = nullptr, *Y = nullptr;
1754   // A shift left or a logical shift right of a power of two is a power of two
1755   // or zero.
1756   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1757                  match(V, m_LShr(m_Value(X), m_Value()))))
1758     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1759 
1760   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1761     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1762 
1763   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1764     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1765            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1766 
1767   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1768     // A power of two and'd with anything is a power of two or zero.
1769     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1770         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1771       return true;
1772     // X & (-X) is always a power of two or zero.
1773     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1774       return true;
1775     return false;
1776   }
1777 
1778   // Adding a power-of-two or zero to the same power-of-two or zero yields
1779   // either the original power-of-two, a larger power-of-two or zero.
1780   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1781     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1782     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1783         Q.IIQ.hasNoSignedWrap(VOBO)) {
1784       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1785           match(X, m_And(m_Value(), m_Specific(Y))))
1786         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1787           return true;
1788       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1789           match(Y, m_And(m_Value(), m_Specific(X))))
1790         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1791           return true;
1792 
1793       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1794       KnownBits LHSBits(BitWidth);
1795       computeKnownBits(X, LHSBits, Depth, Q);
1796 
1797       KnownBits RHSBits(BitWidth);
1798       computeKnownBits(Y, RHSBits, Depth, Q);
1799       // If i8 V is a power of two or zero:
1800       //  ZeroBits: 1 1 1 0 1 1 1 1
1801       // ~ZeroBits: 0 0 0 1 0 0 0 0
1802       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1803         // If OrZero isn't set, we cannot give back a zero result.
1804         // Make sure either the LHS or RHS has a bit set.
1805         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1806           return true;
1807     }
1808   }
1809 
1810   // An exact divide or right shift can only shift off zero bits, so the result
1811   // is a power of two only if the first operand is a power of two and not
1812   // copying a sign bit (sdiv int_min, 2).
1813   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1814       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1815     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1816                                   Depth, Q);
1817   }
1818 
1819   return false;
1820 }
1821 
1822 /// Test whether a GEP's result is known to be non-null.
1823 ///
1824 /// Uses properties inherent in a GEP to try to determine whether it is known
1825 /// to be non-null.
1826 ///
1827 /// Currently this routine does not support vector GEPs.
1828 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1829                               const Query &Q) {
1830   const Function *F = nullptr;
1831   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1832     F = I->getFunction();
1833 
1834   if (!GEP->isInBounds() ||
1835       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1836     return false;
1837 
1838   // FIXME: Support vector-GEPs.
1839   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1840 
1841   // If the base pointer is non-null, we cannot walk to a null address with an
1842   // inbounds GEP in address space zero.
1843   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1844     return true;
1845 
1846   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1847   // If so, then the GEP cannot produce a null pointer, as doing so would
1848   // inherently violate the inbounds contract within address space zero.
1849   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1850        GTI != GTE; ++GTI) {
1851     // Struct types are easy -- they must always be indexed by a constant.
1852     if (StructType *STy = GTI.getStructTypeOrNull()) {
1853       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1854       unsigned ElementIdx = OpC->getZExtValue();
1855       const StructLayout *SL = Q.DL.getStructLayout(STy);
1856       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1857       if (ElementOffset > 0)
1858         return true;
1859       continue;
1860     }
1861 
1862     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1863     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1864       continue;
1865 
1866     // Fast path the constant operand case both for efficiency and so we don't
1867     // increment Depth when just zipping down an all-constant GEP.
1868     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1869       if (!OpC->isZero())
1870         return true;
1871       continue;
1872     }
1873 
1874     // We post-increment Depth here because while isKnownNonZero increments it
1875     // as well, when we pop back up that increment won't persist. We don't want
1876     // to recurse 10k times just because we have 10k GEP operands. We don't
1877     // bail completely out because we want to handle constant GEPs regardless
1878     // of depth.
1879     if (Depth++ >= MaxDepth)
1880       continue;
1881 
1882     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1883       return true;
1884   }
1885 
1886   return false;
1887 }
1888 
1889 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1890                                                   const Instruction *CtxI,
1891                                                   const DominatorTree *DT) {
1892   assert(V->getType()->isPointerTy() && "V must be pointer type");
1893   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1894 
1895   if (!CtxI || !DT)
1896     return false;
1897 
1898   unsigned NumUsesExplored = 0;
1899   for (auto *U : V->users()) {
1900     // Avoid massive lists
1901     if (NumUsesExplored >= DomConditionsMaxUses)
1902       break;
1903     NumUsesExplored++;
1904 
1905     // If the value is used as an argument to a call or invoke, then argument
1906     // attributes may provide an answer about null-ness.
1907     if (auto CS = ImmutableCallSite(U))
1908       if (auto *CalledFunc = CS.getCalledFunction())
1909         for (const Argument &Arg : CalledFunc->args())
1910           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1911               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1912             return true;
1913 
1914     // Consider only compare instructions uniquely controlling a branch
1915     CmpInst::Predicate Pred;
1916     if (!match(const_cast<User *>(U),
1917                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1918         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1919       continue;
1920 
1921     SmallVector<const User *, 4> WorkList;
1922     SmallPtrSet<const User *, 4> Visited;
1923     for (auto *CmpU : U->users()) {
1924       assert(WorkList.empty() && "Should be!");
1925       if (Visited.insert(CmpU).second)
1926         WorkList.push_back(CmpU);
1927 
1928       while (!WorkList.empty()) {
1929         auto *Curr = WorkList.pop_back_val();
1930 
1931         // If a user is an AND, add all its users to the work list. We only
1932         // propagate "pred != null" condition through AND because it is only
1933         // correct to assume that all conditions of AND are met in true branch.
1934         // TODO: Support similar logic of OR and EQ predicate?
1935         if (Pred == ICmpInst::ICMP_NE)
1936           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1937             if (BO->getOpcode() == Instruction::And) {
1938               for (auto *BOU : BO->users())
1939                 if (Visited.insert(BOU).second)
1940                   WorkList.push_back(BOU);
1941               continue;
1942             }
1943 
1944         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1945           assert(BI->isConditional() && "uses a comparison!");
1946 
1947           BasicBlock *NonNullSuccessor =
1948               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1949           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1950           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1951             return true;
1952         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1953                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1954           return true;
1955         }
1956       }
1957     }
1958   }
1959 
1960   return false;
1961 }
1962 
1963 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1964 /// ensure that the value it's attached to is never Value?  'RangeType' is
1965 /// is the type of the value described by the range.
1966 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1967   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1968   assert(NumRanges >= 1);
1969   for (unsigned i = 0; i < NumRanges; ++i) {
1970     ConstantInt *Lower =
1971         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1972     ConstantInt *Upper =
1973         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1974     ConstantRange Range(Lower->getValue(), Upper->getValue());
1975     if (Range.contains(Value))
1976       return false;
1977   }
1978   return true;
1979 }
1980 
1981 /// Return true if the given value is known to be non-zero when defined. For
1982 /// vectors, return true if every element is known to be non-zero when
1983 /// defined. For pointers, if the context instruction and dominator tree are
1984 /// specified, perform context-sensitive analysis and return true if the
1985 /// pointer couldn't possibly be null at the specified instruction.
1986 /// Supports values with integer or pointer type and vectors of integers.
1987 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1988   if (auto *C = dyn_cast<Constant>(V)) {
1989     if (C->isNullValue())
1990       return false;
1991     if (isa<ConstantInt>(C))
1992       // Must be non-zero due to null test above.
1993       return true;
1994 
1995     // For constant vectors, check that all elements are undefined or known
1996     // non-zero to determine that the whole vector is known non-zero.
1997     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1998       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1999         Constant *Elt = C->getAggregateElement(i);
2000         if (!Elt || Elt->isNullValue())
2001           return false;
2002         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2003           return false;
2004       }
2005       return true;
2006     }
2007 
2008     // A global variable in address space 0 is non null unless extern weak
2009     // or an absolute symbol reference. Other address spaces may have null as a
2010     // valid address for a global, so we can't assume anything.
2011     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2012       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2013           GV->getType()->getAddressSpace() == 0)
2014         return true;
2015     } else
2016       return false;
2017   }
2018 
2019   if (auto *I = dyn_cast<Instruction>(V)) {
2020     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2021       // If the possible ranges don't contain zero, then the value is
2022       // definitely non-zero.
2023       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2024         const APInt ZeroValue(Ty->getBitWidth(), 0);
2025         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2026           return true;
2027       }
2028     }
2029   }
2030 
2031   // Some of the tests below are recursive, so bail out if we hit the limit.
2032   if (Depth++ >= MaxDepth)
2033     return false;
2034 
2035   // Check for pointer simplifications.
2036   if (V->getType()->isPointerTy()) {
2037     // Alloca never returns null, malloc might.
2038     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2039       return true;
2040 
2041     // A byval, inalloca, or nonnull argument is never null.
2042     if (const Argument *A = dyn_cast<Argument>(V))
2043       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
2044         return true;
2045 
2046     // A Load tagged with nonnull metadata is never null.
2047     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2048       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2049         return true;
2050 
2051     if (const auto *Call = dyn_cast<CallBase>(V)) {
2052       if (Call->isReturnNonNull())
2053         return true;
2054       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
2055         return isKnownNonZero(RP, Depth, Q);
2056     }
2057   }
2058 
2059 
2060   // Check for recursive pointer simplifications.
2061   if (V->getType()->isPointerTy()) {
2062     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2063       return true;
2064 
2065     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2066     // do not alter the value, or at least not the nullness property of the
2067     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2068     //
2069     // Note that we have to take special care to avoid looking through
2070     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2071     // as casts that can alter the value, e.g., AddrSpaceCasts.
2072     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2073       if (isGEPKnownNonNull(GEP, Depth, Q))
2074         return true;
2075 
2076     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2077       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2078 
2079     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2080       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2081           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2082         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2083   }
2084 
2085   // Similar to int2ptr above, we can look through ptr2int here if the cast
2086   // is a no-op or an extend and not a truncate.
2087   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2088     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2089         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2090       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2091 
2092   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2093 
2094   // X | Y != 0 if X != 0 or Y != 0.
2095   Value *X = nullptr, *Y = nullptr;
2096   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2097     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2098 
2099   // ext X != 0 if X != 0.
2100   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2101     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2102 
2103   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2104   // if the lowest bit is shifted off the end.
2105   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2106     // shl nuw can't remove any non-zero bits.
2107     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2108     if (Q.IIQ.hasNoUnsignedWrap(BO))
2109       return isKnownNonZero(X, Depth, Q);
2110 
2111     KnownBits Known(BitWidth);
2112     computeKnownBits(X, Known, Depth, Q);
2113     if (Known.One[0])
2114       return true;
2115   }
2116   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2117   // defined if the sign bit is shifted off the end.
2118   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2119     // shr exact can only shift out zero bits.
2120     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2121     if (BO->isExact())
2122       return isKnownNonZero(X, Depth, Q);
2123 
2124     KnownBits Known = computeKnownBits(X, Depth, Q);
2125     if (Known.isNegative())
2126       return true;
2127 
2128     // If the shifter operand is a constant, and all of the bits shifted
2129     // out are known to be zero, and X is known non-zero then at least one
2130     // non-zero bit must remain.
2131     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2132       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2133       // Is there a known one in the portion not shifted out?
2134       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2135         return true;
2136       // Are all the bits to be shifted out known zero?
2137       if (Known.countMinTrailingZeros() >= ShiftVal)
2138         return isKnownNonZero(X, Depth, Q);
2139     }
2140   }
2141   // div exact can only produce a zero if the dividend is zero.
2142   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2143     return isKnownNonZero(X, Depth, Q);
2144   }
2145   // X + Y.
2146   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2147     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2148     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2149 
2150     // If X and Y are both non-negative (as signed values) then their sum is not
2151     // zero unless both X and Y are zero.
2152     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2153       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2154         return true;
2155 
2156     // If X and Y are both negative (as signed values) then their sum is not
2157     // zero unless both X and Y equal INT_MIN.
2158     if (XKnown.isNegative() && YKnown.isNegative()) {
2159       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2160       // The sign bit of X is set.  If some other bit is set then X is not equal
2161       // to INT_MIN.
2162       if (XKnown.One.intersects(Mask))
2163         return true;
2164       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2165       // to INT_MIN.
2166       if (YKnown.One.intersects(Mask))
2167         return true;
2168     }
2169 
2170     // The sum of a non-negative number and a power of two is not zero.
2171     if (XKnown.isNonNegative() &&
2172         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2173       return true;
2174     if (YKnown.isNonNegative() &&
2175         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2176       return true;
2177   }
2178   // X * Y.
2179   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2180     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2181     // If X and Y are non-zero then so is X * Y as long as the multiplication
2182     // does not overflow.
2183     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2184         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2185       return true;
2186   }
2187   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2188   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2189     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2190         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2191       return true;
2192   }
2193   // PHI
2194   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2195     // Try and detect a recurrence that monotonically increases from a
2196     // starting value, as these are common as induction variables.
2197     if (PN->getNumIncomingValues() == 2) {
2198       Value *Start = PN->getIncomingValue(0);
2199       Value *Induction = PN->getIncomingValue(1);
2200       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2201         std::swap(Start, Induction);
2202       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2203         if (!C->isZero() && !C->isNegative()) {
2204           ConstantInt *X;
2205           if (Q.IIQ.UseInstrInfo &&
2206               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2207                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2208               !X->isNegative())
2209             return true;
2210         }
2211       }
2212     }
2213     // Check if all incoming values are non-zero constant.
2214     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2215       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2216     });
2217     if (AllNonZeroConstants)
2218       return true;
2219   }
2220 
2221   KnownBits Known(BitWidth);
2222   computeKnownBits(V, Known, Depth, Q);
2223   return Known.One != 0;
2224 }
2225 
2226 /// Return true if V2 == V1 + X, where X is known non-zero.
2227 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2228   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2229   if (!BO || BO->getOpcode() != Instruction::Add)
2230     return false;
2231   Value *Op = nullptr;
2232   if (V2 == BO->getOperand(0))
2233     Op = BO->getOperand(1);
2234   else if (V2 == BO->getOperand(1))
2235     Op = BO->getOperand(0);
2236   else
2237     return false;
2238   return isKnownNonZero(Op, 0, Q);
2239 }
2240 
2241 /// Return true if it is known that V1 != V2.
2242 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2243   if (V1 == V2)
2244     return false;
2245   if (V1->getType() != V2->getType())
2246     // We can't look through casts yet.
2247     return false;
2248   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2249     return true;
2250 
2251   if (V1->getType()->isIntOrIntVectorTy()) {
2252     // Are any known bits in V1 contradictory to known bits in V2? If V1
2253     // has a known zero where V2 has a known one, they must not be equal.
2254     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2255     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2256 
2257     if (Known1.Zero.intersects(Known2.One) ||
2258         Known2.Zero.intersects(Known1.One))
2259       return true;
2260   }
2261   return false;
2262 }
2263 
2264 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2265 /// simplify operations downstream. Mask is known to be zero for bits that V
2266 /// cannot have.
2267 ///
2268 /// This function is defined on values with integer type, values with pointer
2269 /// type, and vectors of integers.  In the case
2270 /// where V is a vector, the mask, known zero, and known one values are the
2271 /// same width as the vector element, and the bit is set only if it is true
2272 /// for all of the elements in the vector.
2273 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2274                        const Query &Q) {
2275   KnownBits Known(Mask.getBitWidth());
2276   computeKnownBits(V, Known, Depth, Q);
2277   return Mask.isSubsetOf(Known.Zero);
2278 }
2279 
2280 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2281 // Returns the input and lower/upper bounds.
2282 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2283                                 const APInt *&CLow, const APInt *&CHigh) {
2284   assert(isa<Operator>(Select) &&
2285          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2286          "Input should be a Select!");
2287 
2288   const Value *LHS, *RHS, *LHS2, *RHS2;
2289   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2290   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2291     return false;
2292 
2293   if (!match(RHS, m_APInt(CLow)))
2294     return false;
2295 
2296   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2297   if (getInverseMinMaxFlavor(SPF) != SPF2)
2298     return false;
2299 
2300   if (!match(RHS2, m_APInt(CHigh)))
2301     return false;
2302 
2303   if (SPF == SPF_SMIN)
2304     std::swap(CLow, CHigh);
2305 
2306   In = LHS2;
2307   return CLow->sle(*CHigh);
2308 }
2309 
2310 /// For vector constants, loop over the elements and find the constant with the
2311 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2312 /// or if any element was not analyzed; otherwise, return the count for the
2313 /// element with the minimum number of sign bits.
2314 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2315                                                  unsigned TyBits) {
2316   const auto *CV = dyn_cast<Constant>(V);
2317   if (!CV || !CV->getType()->isVectorTy())
2318     return 0;
2319 
2320   unsigned MinSignBits = TyBits;
2321   unsigned NumElts = CV->getType()->getVectorNumElements();
2322   for (unsigned i = 0; i != NumElts; ++i) {
2323     // If we find a non-ConstantInt, bail out.
2324     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2325     if (!Elt)
2326       return 0;
2327 
2328     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2329   }
2330 
2331   return MinSignBits;
2332 }
2333 
2334 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2335                                        const Query &Q);
2336 
2337 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2338                                    const Query &Q) {
2339   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2340   assert(Result > 0 && "At least one sign bit needs to be present!");
2341   return Result;
2342 }
2343 
2344 /// Return the number of times the sign bit of the register is replicated into
2345 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2346 /// (itself), but other cases can give us information. For example, immediately
2347 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2348 /// other, so we return 3. For vectors, return the number of sign bits for the
2349 /// vector element with the minimum number of known sign bits.
2350 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2351                                        const Query &Q) {
2352   assert(Depth <= MaxDepth && "Limit Search Depth");
2353 
2354   // We return the minimum number of sign bits that are guaranteed to be present
2355   // in V, so for undef we have to conservatively return 1.  We don't have the
2356   // same behavior for poison though -- that's a FIXME today.
2357 
2358   Type *ScalarTy = V->getType()->getScalarType();
2359   unsigned TyBits = ScalarTy->isPointerTy() ?
2360     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2361     Q.DL.getTypeSizeInBits(ScalarTy);
2362 
2363   unsigned Tmp, Tmp2;
2364   unsigned FirstAnswer = 1;
2365 
2366   // Note that ConstantInt is handled by the general computeKnownBits case
2367   // below.
2368 
2369   if (Depth == MaxDepth)
2370     return 1;  // Limit search depth.
2371 
2372   const Operator *U = dyn_cast<Operator>(V);
2373   switch (Operator::getOpcode(V)) {
2374   default: break;
2375   case Instruction::SExt:
2376     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2377     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2378 
2379   case Instruction::SDiv: {
2380     const APInt *Denominator;
2381     // sdiv X, C -> adds log(C) sign bits.
2382     if (match(U->getOperand(1), m_APInt(Denominator))) {
2383 
2384       // Ignore non-positive denominator.
2385       if (!Denominator->isStrictlyPositive())
2386         break;
2387 
2388       // Calculate the incoming numerator bits.
2389       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2390 
2391       // Add floor(log(C)) bits to the numerator bits.
2392       return std::min(TyBits, NumBits + Denominator->logBase2());
2393     }
2394     break;
2395   }
2396 
2397   case Instruction::SRem: {
2398     const APInt *Denominator;
2399     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2400     // positive constant.  This let us put a lower bound on the number of sign
2401     // bits.
2402     if (match(U->getOperand(1), m_APInt(Denominator))) {
2403 
2404       // Ignore non-positive denominator.
2405       if (!Denominator->isStrictlyPositive())
2406         break;
2407 
2408       // Calculate the incoming numerator bits. SRem by a positive constant
2409       // can't lower the number of sign bits.
2410       unsigned NumrBits =
2411           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2412 
2413       // Calculate the leading sign bit constraints by examining the
2414       // denominator.  Given that the denominator is positive, there are two
2415       // cases:
2416       //
2417       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2418       //     (1 << ceilLogBase2(C)).
2419       //
2420       //  2. the numerator is negative.  Then the result range is (-C,0] and
2421       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2422       //
2423       // Thus a lower bound on the number of sign bits is `TyBits -
2424       // ceilLogBase2(C)`.
2425 
2426       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2427       return std::max(NumrBits, ResBits);
2428     }
2429     break;
2430   }
2431 
2432   case Instruction::AShr: {
2433     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2434     // ashr X, C   -> adds C sign bits.  Vectors too.
2435     const APInt *ShAmt;
2436     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2437       if (ShAmt->uge(TyBits))
2438         break;  // Bad shift.
2439       unsigned ShAmtLimited = ShAmt->getZExtValue();
2440       Tmp += ShAmtLimited;
2441       if (Tmp > TyBits) Tmp = TyBits;
2442     }
2443     return Tmp;
2444   }
2445   case Instruction::Shl: {
2446     const APInt *ShAmt;
2447     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2448       // shl destroys sign bits.
2449       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2450       if (ShAmt->uge(TyBits) ||      // Bad shift.
2451           ShAmt->uge(Tmp)) break;    // Shifted all sign bits out.
2452       Tmp2 = ShAmt->getZExtValue();
2453       return Tmp - Tmp2;
2454     }
2455     break;
2456   }
2457   case Instruction::And:
2458   case Instruction::Or:
2459   case Instruction::Xor:    // NOT is handled here.
2460     // Logical binary ops preserve the number of sign bits at the worst.
2461     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2462     if (Tmp != 1) {
2463       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2464       FirstAnswer = std::min(Tmp, Tmp2);
2465       // We computed what we know about the sign bits as our first
2466       // answer. Now proceed to the generic code that uses
2467       // computeKnownBits, and pick whichever answer is better.
2468     }
2469     break;
2470 
2471   case Instruction::Select: {
2472     // If we have a clamp pattern, we know that the number of sign bits will be
2473     // the minimum of the clamp min/max range.
2474     const Value *X;
2475     const APInt *CLow, *CHigh;
2476     if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2477       return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2478 
2479     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2480     if (Tmp == 1) break;
2481     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2482     return std::min(Tmp, Tmp2);
2483   }
2484 
2485   case Instruction::Add:
2486     // Add can have at most one carry bit.  Thus we know that the output
2487     // is, at worst, one more bit than the inputs.
2488     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2489     if (Tmp == 1) break;
2490 
2491     // Special case decrementing a value (ADD X, -1):
2492     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2493       if (CRHS->isAllOnesValue()) {
2494         KnownBits Known(TyBits);
2495         computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2496 
2497         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2498         // sign bits set.
2499         if ((Known.Zero | 1).isAllOnesValue())
2500           return TyBits;
2501 
2502         // If we are subtracting one from a positive number, there is no carry
2503         // out of the result.
2504         if (Known.isNonNegative())
2505           return Tmp;
2506       }
2507 
2508     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2509     if (Tmp2 == 1) break;
2510     return std::min(Tmp, Tmp2)-1;
2511 
2512   case Instruction::Sub:
2513     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2514     if (Tmp2 == 1) break;
2515 
2516     // Handle NEG.
2517     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2518       if (CLHS->isNullValue()) {
2519         KnownBits Known(TyBits);
2520         computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2521         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2522         // sign bits set.
2523         if ((Known.Zero | 1).isAllOnesValue())
2524           return TyBits;
2525 
2526         // If the input is known to be positive (the sign bit is known clear),
2527         // the output of the NEG has the same number of sign bits as the input.
2528         if (Known.isNonNegative())
2529           return Tmp2;
2530 
2531         // Otherwise, we treat this like a SUB.
2532       }
2533 
2534     // Sub can have at most one carry bit.  Thus we know that the output
2535     // is, at worst, one more bit than the inputs.
2536     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2537     if (Tmp == 1) break;
2538     return std::min(Tmp, Tmp2)-1;
2539 
2540   case Instruction::Mul: {
2541     // The output of the Mul can be at most twice the valid bits in the inputs.
2542     unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2543     if (SignBitsOp0 == 1) break;
2544     unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2545     if (SignBitsOp1 == 1) break;
2546     unsigned OutValidBits =
2547         (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2548     return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2549   }
2550 
2551   case Instruction::PHI: {
2552     const PHINode *PN = cast<PHINode>(U);
2553     unsigned NumIncomingValues = PN->getNumIncomingValues();
2554     // Don't analyze large in-degree PHIs.
2555     if (NumIncomingValues > 4) break;
2556     // Unreachable blocks may have zero-operand PHI nodes.
2557     if (NumIncomingValues == 0) break;
2558 
2559     // Take the minimum of all incoming values.  This can't infinitely loop
2560     // because of our depth threshold.
2561     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2562     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2563       if (Tmp == 1) return Tmp;
2564       Tmp = std::min(
2565           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2566     }
2567     return Tmp;
2568   }
2569 
2570   case Instruction::Trunc:
2571     // FIXME: it's tricky to do anything useful for this, but it is an important
2572     // case for targets like X86.
2573     break;
2574 
2575   case Instruction::ExtractElement:
2576     // Look through extract element. At the moment we keep this simple and skip
2577     // tracking the specific element. But at least we might find information
2578     // valid for all elements of the vector (for example if vector is sign
2579     // extended, shifted, etc).
2580     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2581 
2582   case Instruction::ShuffleVector: {
2583     // TODO: This is copied almost directly from the SelectionDAG version of
2584     //       ComputeNumSignBits. It would be better if we could share common
2585     //       code. If not, make sure that changes are translated to the DAG.
2586 
2587     // Collect the minimum number of sign bits that are shared by every vector
2588     // element referenced by the shuffle.
2589     auto *Shuf = cast<ShuffleVectorInst>(U);
2590     int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
2591     int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
2592     APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
2593     for (int i = 0; i != NumMaskElts; ++i) {
2594       int M = Shuf->getMaskValue(i);
2595       assert(M < NumElts * 2 && "Invalid shuffle mask constant");
2596       // For undef elements, we don't know anything about the common state of
2597       // the shuffle result.
2598       if (M == -1)
2599         return 1;
2600       if (M < NumElts)
2601         DemandedLHS.setBit(M % NumElts);
2602       else
2603         DemandedRHS.setBit(M % NumElts);
2604     }
2605     Tmp = std::numeric_limits<unsigned>::max();
2606     if (!!DemandedLHS)
2607       Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
2608     if (!!DemandedRHS) {
2609       Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
2610       Tmp = std::min(Tmp, Tmp2);
2611     }
2612     // If we don't know anything, early out and try computeKnownBits fall-back.
2613     if (Tmp == 1)
2614       break;
2615     assert(Tmp <= V->getType()->getScalarSizeInBits() &&
2616            "Failed to determine minimum sign bits");
2617     return Tmp;
2618   }
2619   }
2620 
2621   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2622   // use this information.
2623 
2624   // If we can examine all elements of a vector constant successfully, we're
2625   // done (we can't do any better than that). If not, keep trying.
2626   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2627     return VecSignBits;
2628 
2629   KnownBits Known(TyBits);
2630   computeKnownBits(V, Known, Depth, Q);
2631 
2632   // If we know that the sign bit is either zero or one, determine the number of
2633   // identical bits in the top of the input value.
2634   return std::max(FirstAnswer, Known.countMinSignBits());
2635 }
2636 
2637 /// This function computes the integer multiple of Base that equals V.
2638 /// If successful, it returns true and returns the multiple in
2639 /// Multiple. If unsuccessful, it returns false. It looks
2640 /// through SExt instructions only if LookThroughSExt is true.
2641 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2642                            bool LookThroughSExt, unsigned Depth) {
2643   const unsigned MaxDepth = 6;
2644 
2645   assert(V && "No Value?");
2646   assert(Depth <= MaxDepth && "Limit Search Depth");
2647   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2648 
2649   Type *T = V->getType();
2650 
2651   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2652 
2653   if (Base == 0)
2654     return false;
2655 
2656   if (Base == 1) {
2657     Multiple = V;
2658     return true;
2659   }
2660 
2661   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2662   Constant *BaseVal = ConstantInt::get(T, Base);
2663   if (CO && CO == BaseVal) {
2664     // Multiple is 1.
2665     Multiple = ConstantInt::get(T, 1);
2666     return true;
2667   }
2668 
2669   if (CI && CI->getZExtValue() % Base == 0) {
2670     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2671     return true;
2672   }
2673 
2674   if (Depth == MaxDepth) return false;  // Limit search depth.
2675 
2676   Operator *I = dyn_cast<Operator>(V);
2677   if (!I) return false;
2678 
2679   switch (I->getOpcode()) {
2680   default: break;
2681   case Instruction::SExt:
2682     if (!LookThroughSExt) return false;
2683     // otherwise fall through to ZExt
2684     LLVM_FALLTHROUGH;
2685   case Instruction::ZExt:
2686     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2687                            LookThroughSExt, Depth+1);
2688   case Instruction::Shl:
2689   case Instruction::Mul: {
2690     Value *Op0 = I->getOperand(0);
2691     Value *Op1 = I->getOperand(1);
2692 
2693     if (I->getOpcode() == Instruction::Shl) {
2694       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2695       if (!Op1CI) return false;
2696       // Turn Op0 << Op1 into Op0 * 2^Op1
2697       APInt Op1Int = Op1CI->getValue();
2698       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2699       APInt API(Op1Int.getBitWidth(), 0);
2700       API.setBit(BitToSet);
2701       Op1 = ConstantInt::get(V->getContext(), API);
2702     }
2703 
2704     Value *Mul0 = nullptr;
2705     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2706       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2707         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2708           if (Op1C->getType()->getPrimitiveSizeInBits() <
2709               MulC->getType()->getPrimitiveSizeInBits())
2710             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2711           if (Op1C->getType()->getPrimitiveSizeInBits() >
2712               MulC->getType()->getPrimitiveSizeInBits())
2713             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2714 
2715           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2716           Multiple = ConstantExpr::getMul(MulC, Op1C);
2717           return true;
2718         }
2719 
2720       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2721         if (Mul0CI->getValue() == 1) {
2722           // V == Base * Op1, so return Op1
2723           Multiple = Op1;
2724           return true;
2725         }
2726     }
2727 
2728     Value *Mul1 = nullptr;
2729     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2730       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2731         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2732           if (Op0C->getType()->getPrimitiveSizeInBits() <
2733               MulC->getType()->getPrimitiveSizeInBits())
2734             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2735           if (Op0C->getType()->getPrimitiveSizeInBits() >
2736               MulC->getType()->getPrimitiveSizeInBits())
2737             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2738 
2739           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2740           Multiple = ConstantExpr::getMul(MulC, Op0C);
2741           return true;
2742         }
2743 
2744       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2745         if (Mul1CI->getValue() == 1) {
2746           // V == Base * Op0, so return Op0
2747           Multiple = Op0;
2748           return true;
2749         }
2750     }
2751   }
2752   }
2753 
2754   // We could not determine if V is a multiple of Base.
2755   return false;
2756 }
2757 
2758 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2759                                             const TargetLibraryInfo *TLI) {
2760   const Function *F = ICS.getCalledFunction();
2761   if (!F)
2762     return Intrinsic::not_intrinsic;
2763 
2764   if (F->isIntrinsic())
2765     return F->getIntrinsicID();
2766 
2767   if (!TLI)
2768     return Intrinsic::not_intrinsic;
2769 
2770   LibFunc Func;
2771   // We're going to make assumptions on the semantics of the functions, check
2772   // that the target knows that it's available in this environment and it does
2773   // not have local linkage.
2774   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2775     return Intrinsic::not_intrinsic;
2776 
2777   if (!ICS.onlyReadsMemory())
2778     return Intrinsic::not_intrinsic;
2779 
2780   // Otherwise check if we have a call to a function that can be turned into a
2781   // vector intrinsic.
2782   switch (Func) {
2783   default:
2784     break;
2785   case LibFunc_sin:
2786   case LibFunc_sinf:
2787   case LibFunc_sinl:
2788     return Intrinsic::sin;
2789   case LibFunc_cos:
2790   case LibFunc_cosf:
2791   case LibFunc_cosl:
2792     return Intrinsic::cos;
2793   case LibFunc_exp:
2794   case LibFunc_expf:
2795   case LibFunc_expl:
2796     return Intrinsic::exp;
2797   case LibFunc_exp2:
2798   case LibFunc_exp2f:
2799   case LibFunc_exp2l:
2800     return Intrinsic::exp2;
2801   case LibFunc_log:
2802   case LibFunc_logf:
2803   case LibFunc_logl:
2804     return Intrinsic::log;
2805   case LibFunc_log10:
2806   case LibFunc_log10f:
2807   case LibFunc_log10l:
2808     return Intrinsic::log10;
2809   case LibFunc_log2:
2810   case LibFunc_log2f:
2811   case LibFunc_log2l:
2812     return Intrinsic::log2;
2813   case LibFunc_fabs:
2814   case LibFunc_fabsf:
2815   case LibFunc_fabsl:
2816     return Intrinsic::fabs;
2817   case LibFunc_fmin:
2818   case LibFunc_fminf:
2819   case LibFunc_fminl:
2820     return Intrinsic::minnum;
2821   case LibFunc_fmax:
2822   case LibFunc_fmaxf:
2823   case LibFunc_fmaxl:
2824     return Intrinsic::maxnum;
2825   case LibFunc_copysign:
2826   case LibFunc_copysignf:
2827   case LibFunc_copysignl:
2828     return Intrinsic::copysign;
2829   case LibFunc_floor:
2830   case LibFunc_floorf:
2831   case LibFunc_floorl:
2832     return Intrinsic::floor;
2833   case LibFunc_ceil:
2834   case LibFunc_ceilf:
2835   case LibFunc_ceill:
2836     return Intrinsic::ceil;
2837   case LibFunc_trunc:
2838   case LibFunc_truncf:
2839   case LibFunc_truncl:
2840     return Intrinsic::trunc;
2841   case LibFunc_rint:
2842   case LibFunc_rintf:
2843   case LibFunc_rintl:
2844     return Intrinsic::rint;
2845   case LibFunc_nearbyint:
2846   case LibFunc_nearbyintf:
2847   case LibFunc_nearbyintl:
2848     return Intrinsic::nearbyint;
2849   case LibFunc_round:
2850   case LibFunc_roundf:
2851   case LibFunc_roundl:
2852     return Intrinsic::round;
2853   case LibFunc_pow:
2854   case LibFunc_powf:
2855   case LibFunc_powl:
2856     return Intrinsic::pow;
2857   case LibFunc_sqrt:
2858   case LibFunc_sqrtf:
2859   case LibFunc_sqrtl:
2860     return Intrinsic::sqrt;
2861   }
2862 
2863   return Intrinsic::not_intrinsic;
2864 }
2865 
2866 /// Return true if we can prove that the specified FP value is never equal to
2867 /// -0.0.
2868 ///
2869 /// NOTE: this function will need to be revisited when we support non-default
2870 /// rounding modes!
2871 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2872                                 unsigned Depth) {
2873   if (auto *CFP = dyn_cast<ConstantFP>(V))
2874     return !CFP->getValueAPF().isNegZero();
2875 
2876   // Limit search depth.
2877   if (Depth == MaxDepth)
2878     return false;
2879 
2880   auto *Op = dyn_cast<Operator>(V);
2881   if (!Op)
2882     return false;
2883 
2884   // Check if the nsz fast-math flag is set.
2885   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2886     if (FPO->hasNoSignedZeros())
2887       return true;
2888 
2889   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2890   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2891     return true;
2892 
2893   // sitofp and uitofp turn into +0.0 for zero.
2894   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2895     return true;
2896 
2897   if (auto *Call = dyn_cast<CallInst>(Op)) {
2898     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2899     switch (IID) {
2900     default:
2901       break;
2902     // sqrt(-0.0) = -0.0, no other negative results are possible.
2903     case Intrinsic::sqrt:
2904     case Intrinsic::canonicalize:
2905       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2906     // fabs(x) != -0.0
2907     case Intrinsic::fabs:
2908       return true;
2909     }
2910   }
2911 
2912   return false;
2913 }
2914 
2915 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2916 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2917 /// bit despite comparing equal.
2918 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2919                                             const TargetLibraryInfo *TLI,
2920                                             bool SignBitOnly,
2921                                             unsigned Depth) {
2922   // TODO: This function does not do the right thing when SignBitOnly is true
2923   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2924   // which flips the sign bits of NaNs.  See
2925   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2926 
2927   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2928     return !CFP->getValueAPF().isNegative() ||
2929            (!SignBitOnly && CFP->getValueAPF().isZero());
2930   }
2931 
2932   // Handle vector of constants.
2933   if (auto *CV = dyn_cast<Constant>(V)) {
2934     if (CV->getType()->isVectorTy()) {
2935       unsigned NumElts = CV->getType()->getVectorNumElements();
2936       for (unsigned i = 0; i != NumElts; ++i) {
2937         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2938         if (!CFP)
2939           return false;
2940         if (CFP->getValueAPF().isNegative() &&
2941             (SignBitOnly || !CFP->getValueAPF().isZero()))
2942           return false;
2943       }
2944 
2945       // All non-negative ConstantFPs.
2946       return true;
2947     }
2948   }
2949 
2950   if (Depth == MaxDepth)
2951     return false; // Limit search depth.
2952 
2953   const Operator *I = dyn_cast<Operator>(V);
2954   if (!I)
2955     return false;
2956 
2957   switch (I->getOpcode()) {
2958   default:
2959     break;
2960   // Unsigned integers are always nonnegative.
2961   case Instruction::UIToFP:
2962     return true;
2963   case Instruction::FMul:
2964     // x*x is always non-negative or a NaN.
2965     if (I->getOperand(0) == I->getOperand(1) &&
2966         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2967       return true;
2968 
2969     LLVM_FALLTHROUGH;
2970   case Instruction::FAdd:
2971   case Instruction::FDiv:
2972   case Instruction::FRem:
2973     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2974                                            Depth + 1) &&
2975            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2976                                            Depth + 1);
2977   case Instruction::Select:
2978     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2979                                            Depth + 1) &&
2980            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2981                                            Depth + 1);
2982   case Instruction::FPExt:
2983   case Instruction::FPTrunc:
2984     // Widening/narrowing never change sign.
2985     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2986                                            Depth + 1);
2987   case Instruction::ExtractElement:
2988     // Look through extract element. At the moment we keep this simple and skip
2989     // tracking the specific element. But at least we might find information
2990     // valid for all elements of the vector.
2991     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2992                                            Depth + 1);
2993   case Instruction::Call:
2994     const auto *CI = cast<CallInst>(I);
2995     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2996     switch (IID) {
2997     default:
2998       break;
2999     case Intrinsic::maxnum:
3000       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
3001               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
3002                                               SignBitOnly, Depth + 1)) ||
3003             (isKnownNeverNaN(I->getOperand(1), TLI) &&
3004               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
3005                                               SignBitOnly, Depth + 1));
3006 
3007     case Intrinsic::maximum:
3008       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3009                                              Depth + 1) ||
3010              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3011                                              Depth + 1);
3012     case Intrinsic::minnum:
3013     case Intrinsic::minimum:
3014       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3015                                              Depth + 1) &&
3016              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3017                                              Depth + 1);
3018     case Intrinsic::exp:
3019     case Intrinsic::exp2:
3020     case Intrinsic::fabs:
3021       return true;
3022 
3023     case Intrinsic::sqrt:
3024       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3025       if (!SignBitOnly)
3026         return true;
3027       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3028                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3029 
3030     case Intrinsic::powi:
3031       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3032         // powi(x,n) is non-negative if n is even.
3033         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3034           return true;
3035       }
3036       // TODO: This is not correct.  Given that exp is an integer, here are the
3037       // ways that pow can return a negative value:
3038       //
3039       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3040       //   pow(-0, exp)   --> -inf if exp is negative odd.
3041       //   pow(-0, exp)   --> -0 if exp is positive odd.
3042       //   pow(-inf, exp) --> -0 if exp is negative odd.
3043       //   pow(-inf, exp) --> -inf if exp is positive odd.
3044       //
3045       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3046       // but we must return false if x == -0.  Unfortunately we do not currently
3047       // have a way of expressing this constraint.  See details in
3048       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3049       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3050                                              Depth + 1);
3051 
3052     case Intrinsic::fma:
3053     case Intrinsic::fmuladd:
3054       // x*x+y is non-negative if y is non-negative.
3055       return I->getOperand(0) == I->getOperand(1) &&
3056              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3057              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3058                                              Depth + 1);
3059     }
3060     break;
3061   }
3062   return false;
3063 }
3064 
3065 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3066                                        const TargetLibraryInfo *TLI) {
3067   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3068 }
3069 
3070 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3071   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3072 }
3073 
3074 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3075                            unsigned Depth) {
3076   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3077 
3078   // If we're told that NaNs won't happen, assume they won't.
3079   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3080     if (FPMathOp->hasNoNaNs())
3081       return true;
3082 
3083   // Handle scalar constants.
3084   if (auto *CFP = dyn_cast<ConstantFP>(V))
3085     return !CFP->isNaN();
3086 
3087   if (Depth == MaxDepth)
3088     return false;
3089 
3090   if (auto *Inst = dyn_cast<Instruction>(V)) {
3091     switch (Inst->getOpcode()) {
3092     case Instruction::FAdd:
3093     case Instruction::FMul:
3094     case Instruction::FSub:
3095     case Instruction::FDiv:
3096     case Instruction::FRem: {
3097       // TODO: Need isKnownNeverInfinity
3098       return false;
3099     }
3100     case Instruction::Select: {
3101       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3102              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3103     }
3104     case Instruction::SIToFP:
3105     case Instruction::UIToFP:
3106       return true;
3107     case Instruction::FPTrunc:
3108     case Instruction::FPExt:
3109       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3110     default:
3111       break;
3112     }
3113   }
3114 
3115   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3116     switch (II->getIntrinsicID()) {
3117     case Intrinsic::canonicalize:
3118     case Intrinsic::fabs:
3119     case Intrinsic::copysign:
3120     case Intrinsic::exp:
3121     case Intrinsic::exp2:
3122     case Intrinsic::floor:
3123     case Intrinsic::ceil:
3124     case Intrinsic::trunc:
3125     case Intrinsic::rint:
3126     case Intrinsic::nearbyint:
3127     case Intrinsic::round:
3128       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3129     case Intrinsic::sqrt:
3130       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3131              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3132     default:
3133       return false;
3134     }
3135   }
3136 
3137   // Bail out for constant expressions, but try to handle vector constants.
3138   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3139     return false;
3140 
3141   // For vectors, verify that each element is not NaN.
3142   unsigned NumElts = V->getType()->getVectorNumElements();
3143   for (unsigned i = 0; i != NumElts; ++i) {
3144     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3145     if (!Elt)
3146       return false;
3147     if (isa<UndefValue>(Elt))
3148       continue;
3149     auto *CElt = dyn_cast<ConstantFP>(Elt);
3150     if (!CElt || CElt->isNaN())
3151       return false;
3152   }
3153   // All elements were confirmed not-NaN or undefined.
3154   return true;
3155 }
3156 
3157 Value *llvm::isBytewiseValue(Value *V) {
3158 
3159   // All byte-wide stores are splatable, even of arbitrary variables.
3160   if (V->getType()->isIntegerTy(8))
3161     return V;
3162 
3163   LLVMContext &Ctx = V->getContext();
3164 
3165   // Undef don't care.
3166   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3167   if (isa<UndefValue>(V))
3168     return UndefInt8;
3169 
3170   Constant *C = dyn_cast<Constant>(V);
3171   if (!C) {
3172     // Conceptually, we could handle things like:
3173     //   %a = zext i8 %X to i16
3174     //   %b = shl i16 %a, 8
3175     //   %c = or i16 %a, %b
3176     // but until there is an example that actually needs this, it doesn't seem
3177     // worth worrying about.
3178     return nullptr;
3179   }
3180 
3181   // Handle 'null' ConstantArrayZero etc.
3182   if (C->isNullValue())
3183     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3184 
3185   // Constant floating-point values can be handled as integer values if the
3186   // corresponding integer value is "byteable".  An important case is 0.0.
3187   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3188     Type *Ty = nullptr;
3189     if (CFP->getType()->isHalfTy())
3190       Ty = Type::getInt16Ty(Ctx);
3191     else if (CFP->getType()->isFloatTy())
3192       Ty = Type::getInt32Ty(Ctx);
3193     else if (CFP->getType()->isDoubleTy())
3194       Ty = Type::getInt64Ty(Ctx);
3195     // Don't handle long double formats, which have strange constraints.
3196     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
3197   }
3198 
3199   // We can handle constant integers that are multiple of 8 bits.
3200   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3201     if (CI->getBitWidth() % 8 == 0) {
3202       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3203       if (!CI->getValue().isSplat(8))
3204         return nullptr;
3205       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3206     }
3207   }
3208 
3209   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3210     if (LHS == RHS)
3211       return LHS;
3212     if (!LHS || !RHS)
3213       return nullptr;
3214     if (LHS == UndefInt8)
3215       return RHS;
3216     if (RHS == UndefInt8)
3217       return LHS;
3218     return nullptr;
3219   };
3220 
3221   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3222     Value *Val = UndefInt8;
3223     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3224       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
3225         return nullptr;
3226     return Val;
3227   }
3228 
3229   if (isa<ConstantVector>(C)) {
3230     Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
3231     return Splat ? isBytewiseValue(Splat) : nullptr;
3232   }
3233 
3234   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
3235     Value *Val = UndefInt8;
3236     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3237       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
3238         return nullptr;
3239     return Val;
3240   }
3241 
3242   // Don't try to handle the handful of other constants.
3243   return nullptr;
3244 }
3245 
3246 // This is the recursive version of BuildSubAggregate. It takes a few different
3247 // arguments. Idxs is the index within the nested struct From that we are
3248 // looking at now (which is of type IndexedType). IdxSkip is the number of
3249 // indices from Idxs that should be left out when inserting into the resulting
3250 // struct. To is the result struct built so far, new insertvalue instructions
3251 // build on that.
3252 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3253                                 SmallVectorImpl<unsigned> &Idxs,
3254                                 unsigned IdxSkip,
3255                                 Instruction *InsertBefore) {
3256   StructType *STy = dyn_cast<StructType>(IndexedType);
3257   if (STy) {
3258     // Save the original To argument so we can modify it
3259     Value *OrigTo = To;
3260     // General case, the type indexed by Idxs is a struct
3261     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3262       // Process each struct element recursively
3263       Idxs.push_back(i);
3264       Value *PrevTo = To;
3265       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3266                              InsertBefore);
3267       Idxs.pop_back();
3268       if (!To) {
3269         // Couldn't find any inserted value for this index? Cleanup
3270         while (PrevTo != OrigTo) {
3271           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3272           PrevTo = Del->getAggregateOperand();
3273           Del->eraseFromParent();
3274         }
3275         // Stop processing elements
3276         break;
3277       }
3278     }
3279     // If we successfully found a value for each of our subaggregates
3280     if (To)
3281       return To;
3282   }
3283   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3284   // the struct's elements had a value that was inserted directly. In the latter
3285   // case, perhaps we can't determine each of the subelements individually, but
3286   // we might be able to find the complete struct somewhere.
3287 
3288   // Find the value that is at that particular spot
3289   Value *V = FindInsertedValue(From, Idxs);
3290 
3291   if (!V)
3292     return nullptr;
3293 
3294   // Insert the value in the new (sub) aggregate
3295   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3296                                  "tmp", InsertBefore);
3297 }
3298 
3299 // This helper takes a nested struct and extracts a part of it (which is again a
3300 // struct) into a new value. For example, given the struct:
3301 // { a, { b, { c, d }, e } }
3302 // and the indices "1, 1" this returns
3303 // { c, d }.
3304 //
3305 // It does this by inserting an insertvalue for each element in the resulting
3306 // struct, as opposed to just inserting a single struct. This will only work if
3307 // each of the elements of the substruct are known (ie, inserted into From by an
3308 // insertvalue instruction somewhere).
3309 //
3310 // All inserted insertvalue instructions are inserted before InsertBefore
3311 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3312                                 Instruction *InsertBefore) {
3313   assert(InsertBefore && "Must have someplace to insert!");
3314   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3315                                                              idx_range);
3316   Value *To = UndefValue::get(IndexedType);
3317   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3318   unsigned IdxSkip = Idxs.size();
3319 
3320   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3321 }
3322 
3323 /// Given an aggregate and a sequence of indices, see if the scalar value
3324 /// indexed is already around as a register, for example if it was inserted
3325 /// directly into the aggregate.
3326 ///
3327 /// If InsertBefore is not null, this function will duplicate (modified)
3328 /// insertvalues when a part of a nested struct is extracted.
3329 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3330                                Instruction *InsertBefore) {
3331   // Nothing to index? Just return V then (this is useful at the end of our
3332   // recursion).
3333   if (idx_range.empty())
3334     return V;
3335   // We have indices, so V should have an indexable type.
3336   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3337          "Not looking at a struct or array?");
3338   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3339          "Invalid indices for type?");
3340 
3341   if (Constant *C = dyn_cast<Constant>(V)) {
3342     C = C->getAggregateElement(idx_range[0]);
3343     if (!C) return nullptr;
3344     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3345   }
3346 
3347   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3348     // Loop the indices for the insertvalue instruction in parallel with the
3349     // requested indices
3350     const unsigned *req_idx = idx_range.begin();
3351     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3352          i != e; ++i, ++req_idx) {
3353       if (req_idx == idx_range.end()) {
3354         // We can't handle this without inserting insertvalues
3355         if (!InsertBefore)
3356           return nullptr;
3357 
3358         // The requested index identifies a part of a nested aggregate. Handle
3359         // this specially. For example,
3360         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3361         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3362         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3363         // This can be changed into
3364         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3365         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3366         // which allows the unused 0,0 element from the nested struct to be
3367         // removed.
3368         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3369                                  InsertBefore);
3370       }
3371 
3372       // This insert value inserts something else than what we are looking for.
3373       // See if the (aggregate) value inserted into has the value we are
3374       // looking for, then.
3375       if (*req_idx != *i)
3376         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3377                                  InsertBefore);
3378     }
3379     // If we end up here, the indices of the insertvalue match with those
3380     // requested (though possibly only partially). Now we recursively look at
3381     // the inserted value, passing any remaining indices.
3382     return FindInsertedValue(I->getInsertedValueOperand(),
3383                              makeArrayRef(req_idx, idx_range.end()),
3384                              InsertBefore);
3385   }
3386 
3387   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3388     // If we're extracting a value from an aggregate that was extracted from
3389     // something else, we can extract from that something else directly instead.
3390     // However, we will need to chain I's indices with the requested indices.
3391 
3392     // Calculate the number of indices required
3393     unsigned size = I->getNumIndices() + idx_range.size();
3394     // Allocate some space to put the new indices in
3395     SmallVector<unsigned, 5> Idxs;
3396     Idxs.reserve(size);
3397     // Add indices from the extract value instruction
3398     Idxs.append(I->idx_begin(), I->idx_end());
3399 
3400     // Add requested indices
3401     Idxs.append(idx_range.begin(), idx_range.end());
3402 
3403     assert(Idxs.size() == size
3404            && "Number of indices added not correct?");
3405 
3406     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3407   }
3408   // Otherwise, we don't know (such as, extracting from a function return value
3409   // or load instruction)
3410   return nullptr;
3411 }
3412 
3413 /// Analyze the specified pointer to see if it can be expressed as a base
3414 /// pointer plus a constant offset. Return the base and offset to the caller.
3415 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3416                                               const DataLayout &DL) {
3417   unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3418   APInt ByteOffset(BitWidth, 0);
3419 
3420   // We walk up the defs but use a visited set to handle unreachable code. In
3421   // that case, we stop after accumulating the cycle once (not that it
3422   // matters).
3423   SmallPtrSet<Value *, 16> Visited;
3424   while (Visited.insert(Ptr).second) {
3425     if (Ptr->getType()->isVectorTy())
3426       break;
3427 
3428     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3429       // If one of the values we have visited is an addrspacecast, then
3430       // the pointer type of this GEP may be different from the type
3431       // of the Ptr parameter which was passed to this function.  This
3432       // means when we construct GEPOffset, we need to use the size
3433       // of GEP's pointer type rather than the size of the original
3434       // pointer type.
3435       APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3436       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3437         break;
3438 
3439       APInt OrigByteOffset(ByteOffset);
3440       ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
3441       if (ByteOffset.getMinSignedBits() > 64) {
3442         // Stop traversal if the pointer offset wouldn't fit into int64_t
3443         // (this should be removed if Offset is updated to an APInt)
3444         ByteOffset = OrigByteOffset;
3445         break;
3446       }
3447 
3448       Ptr = GEP->getPointerOperand();
3449     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3450                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3451       Ptr = cast<Operator>(Ptr)->getOperand(0);
3452     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3453       if (GA->isInterposable())
3454         break;
3455       Ptr = GA->getAliasee();
3456     } else {
3457       break;
3458     }
3459   }
3460   Offset = ByteOffset.getSExtValue();
3461   return Ptr;
3462 }
3463 
3464 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3465                                        unsigned CharSize) {
3466   // Make sure the GEP has exactly three arguments.
3467   if (GEP->getNumOperands() != 3)
3468     return false;
3469 
3470   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3471   // CharSize.
3472   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3473   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3474     return false;
3475 
3476   // Check to make sure that the first operand of the GEP is an integer and
3477   // has value 0 so that we are sure we're indexing into the initializer.
3478   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3479   if (!FirstIdx || !FirstIdx->isZero())
3480     return false;
3481 
3482   return true;
3483 }
3484 
3485 bool llvm::getConstantDataArrayInfo(const Value *V,
3486                                     ConstantDataArraySlice &Slice,
3487                                     unsigned ElementSize, uint64_t Offset) {
3488   assert(V);
3489 
3490   // Look through bitcast instructions and geps.
3491   V = V->stripPointerCasts();
3492 
3493   // If the value is a GEP instruction or constant expression, treat it as an
3494   // offset.
3495   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3496     // The GEP operator should be based on a pointer to string constant, and is
3497     // indexing into the string constant.
3498     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3499       return false;
3500 
3501     // If the second index isn't a ConstantInt, then this is a variable index
3502     // into the array.  If this occurs, we can't say anything meaningful about
3503     // the string.
3504     uint64_t StartIdx = 0;
3505     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3506       StartIdx = CI->getZExtValue();
3507     else
3508       return false;
3509     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3510                                     StartIdx + Offset);
3511   }
3512 
3513   // The GEP instruction, constant or instruction, must reference a global
3514   // variable that is a constant and is initialized. The referenced constant
3515   // initializer is the array that we'll use for optimization.
3516   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3517   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3518     return false;
3519 
3520   const ConstantDataArray *Array;
3521   ArrayType *ArrayTy;
3522   if (GV->getInitializer()->isNullValue()) {
3523     Type *GVTy = GV->getValueType();
3524     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3525       // A zeroinitializer for the array; there is no ConstantDataArray.
3526       Array = nullptr;
3527     } else {
3528       const DataLayout &DL = GV->getParent()->getDataLayout();
3529       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3530       uint64_t Length = SizeInBytes / (ElementSize / 8);
3531       if (Length <= Offset)
3532         return false;
3533 
3534       Slice.Array = nullptr;
3535       Slice.Offset = 0;
3536       Slice.Length = Length - Offset;
3537       return true;
3538     }
3539   } else {
3540     // This must be a ConstantDataArray.
3541     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3542     if (!Array)
3543       return false;
3544     ArrayTy = Array->getType();
3545   }
3546   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3547     return false;
3548 
3549   uint64_t NumElts = ArrayTy->getArrayNumElements();
3550   if (Offset > NumElts)
3551     return false;
3552 
3553   Slice.Array = Array;
3554   Slice.Offset = Offset;
3555   Slice.Length = NumElts - Offset;
3556   return true;
3557 }
3558 
3559 /// This function computes the length of a null-terminated C string pointed to
3560 /// by V. If successful, it returns true and returns the string in Str.
3561 /// If unsuccessful, it returns false.
3562 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3563                                  uint64_t Offset, bool TrimAtNul) {
3564   ConstantDataArraySlice Slice;
3565   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3566     return false;
3567 
3568   if (Slice.Array == nullptr) {
3569     if (TrimAtNul) {
3570       Str = StringRef();
3571       return true;
3572     }
3573     if (Slice.Length == 1) {
3574       Str = StringRef("", 1);
3575       return true;
3576     }
3577     // We cannot instantiate a StringRef as we do not have an appropriate string
3578     // of 0s at hand.
3579     return false;
3580   }
3581 
3582   // Start out with the entire array in the StringRef.
3583   Str = Slice.Array->getAsString();
3584   // Skip over 'offset' bytes.
3585   Str = Str.substr(Slice.Offset);
3586 
3587   if (TrimAtNul) {
3588     // Trim off the \0 and anything after it.  If the array is not nul
3589     // terminated, we just return the whole end of string.  The client may know
3590     // some other way that the string is length-bound.
3591     Str = Str.substr(0, Str.find('\0'));
3592   }
3593   return true;
3594 }
3595 
3596 // These next two are very similar to the above, but also look through PHI
3597 // nodes.
3598 // TODO: See if we can integrate these two together.
3599 
3600 /// If we can compute the length of the string pointed to by
3601 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3602 static uint64_t GetStringLengthH(const Value *V,
3603                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3604                                  unsigned CharSize) {
3605   // Look through noop bitcast instructions.
3606   V = V->stripPointerCasts();
3607 
3608   // If this is a PHI node, there are two cases: either we have already seen it
3609   // or we haven't.
3610   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3611     if (!PHIs.insert(PN).second)
3612       return ~0ULL;  // already in the set.
3613 
3614     // If it was new, see if all the input strings are the same length.
3615     uint64_t LenSoFar = ~0ULL;
3616     for (Value *IncValue : PN->incoming_values()) {
3617       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3618       if (Len == 0) return 0; // Unknown length -> unknown.
3619 
3620       if (Len == ~0ULL) continue;
3621 
3622       if (Len != LenSoFar && LenSoFar != ~0ULL)
3623         return 0;    // Disagree -> unknown.
3624       LenSoFar = Len;
3625     }
3626 
3627     // Success, all agree.
3628     return LenSoFar;
3629   }
3630 
3631   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3632   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3633     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3634     if (Len1 == 0) return 0;
3635     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3636     if (Len2 == 0) return 0;
3637     if (Len1 == ~0ULL) return Len2;
3638     if (Len2 == ~0ULL) return Len1;
3639     if (Len1 != Len2) return 0;
3640     return Len1;
3641   }
3642 
3643   // Otherwise, see if we can read the string.
3644   ConstantDataArraySlice Slice;
3645   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3646     return 0;
3647 
3648   if (Slice.Array == nullptr)
3649     return 1;
3650 
3651   // Search for nul characters
3652   unsigned NullIndex = 0;
3653   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3654     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3655       break;
3656   }
3657 
3658   return NullIndex + 1;
3659 }
3660 
3661 /// If we can compute the length of the string pointed to by
3662 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3663 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3664   if (!V->getType()->isPointerTy())
3665     return 0;
3666 
3667   SmallPtrSet<const PHINode*, 32> PHIs;
3668   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3669   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3670   // an empty string as a length.
3671   return Len == ~0ULL ? 1 : Len;
3672 }
3673 
3674 const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
3675   assert(Call &&
3676          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
3677   if (const Value *RV = Call->getReturnedArgOperand())
3678     return RV;
3679   // This can be used only as a aliasing property.
3680   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
3681     return Call->getArgOperand(0);
3682   return nullptr;
3683 }
3684 
3685 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3686     const CallBase *Call) {
3687   return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
3688          Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
3689 }
3690 
3691 /// \p PN defines a loop-variant pointer to an object.  Check if the
3692 /// previous iteration of the loop was referring to the same object as \p PN.
3693 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3694                                          const LoopInfo *LI) {
3695   // Find the loop-defined value.
3696   Loop *L = LI->getLoopFor(PN->getParent());
3697   if (PN->getNumIncomingValues() != 2)
3698     return true;
3699 
3700   // Find the value from previous iteration.
3701   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3702   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3703     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3704   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3705     return true;
3706 
3707   // If a new pointer is loaded in the loop, the pointer references a different
3708   // object in every iteration.  E.g.:
3709   //    for (i)
3710   //       int *p = a[i];
3711   //       ...
3712   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3713     if (!L->isLoopInvariant(Load->getPointerOperand()))
3714       return false;
3715   return true;
3716 }
3717 
3718 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3719                                  unsigned MaxLookup) {
3720   if (!V->getType()->isPointerTy())
3721     return V;
3722   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3723     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3724       V = GEP->getPointerOperand();
3725     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3726                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3727       V = cast<Operator>(V)->getOperand(0);
3728     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3729       if (GA->isInterposable())
3730         return V;
3731       V = GA->getAliasee();
3732     } else if (isa<AllocaInst>(V)) {
3733       // An alloca can't be further simplified.
3734       return V;
3735     } else {
3736       if (auto *Call = dyn_cast<CallBase>(V)) {
3737         // CaptureTracking can know about special capturing properties of some
3738         // intrinsics like launder.invariant.group, that can't be expressed with
3739         // the attributes, but have properties like returning aliasing pointer.
3740         // Because some analysis may assume that nocaptured pointer is not
3741         // returned from some special intrinsic (because function would have to
3742         // be marked with returns attribute), it is crucial to use this function
3743         // because it should be in sync with CaptureTracking. Not using it may
3744         // cause weird miscompilations where 2 aliasing pointers are assumed to
3745         // noalias.
3746         if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
3747           V = RP;
3748           continue;
3749         }
3750       }
3751 
3752       // See if InstructionSimplify knows any relevant tricks.
3753       if (Instruction *I = dyn_cast<Instruction>(V))
3754         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3755         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3756           V = Simplified;
3757           continue;
3758         }
3759 
3760       return V;
3761     }
3762     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3763   }
3764   return V;
3765 }
3766 
3767 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3768                                 const DataLayout &DL, LoopInfo *LI,
3769                                 unsigned MaxLookup) {
3770   SmallPtrSet<Value *, 4> Visited;
3771   SmallVector<Value *, 4> Worklist;
3772   Worklist.push_back(V);
3773   do {
3774     Value *P = Worklist.pop_back_val();
3775     P = GetUnderlyingObject(P, DL, MaxLookup);
3776 
3777     if (!Visited.insert(P).second)
3778       continue;
3779 
3780     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3781       Worklist.push_back(SI->getTrueValue());
3782       Worklist.push_back(SI->getFalseValue());
3783       continue;
3784     }
3785 
3786     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3787       // If this PHI changes the underlying object in every iteration of the
3788       // loop, don't look through it.  Consider:
3789       //   int **A;
3790       //   for (i) {
3791       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3792       //     Curr = A[i];
3793       //     *Prev, *Curr;
3794       //
3795       // Prev is tracking Curr one iteration behind so they refer to different
3796       // underlying objects.
3797       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3798           isSameUnderlyingObjectInLoop(PN, LI))
3799         for (Value *IncValue : PN->incoming_values())
3800           Worklist.push_back(IncValue);
3801       continue;
3802     }
3803 
3804     Objects.push_back(P);
3805   } while (!Worklist.empty());
3806 }
3807 
3808 /// This is the function that does the work of looking through basic
3809 /// ptrtoint+arithmetic+inttoptr sequences.
3810 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3811   do {
3812     if (const Operator *U = dyn_cast<Operator>(V)) {
3813       // If we find a ptrtoint, we can transfer control back to the
3814       // regular getUnderlyingObjectFromInt.
3815       if (U->getOpcode() == Instruction::PtrToInt)
3816         return U->getOperand(0);
3817       // If we find an add of a constant, a multiplied value, or a phi, it's
3818       // likely that the other operand will lead us to the base
3819       // object. We don't have to worry about the case where the
3820       // object address is somehow being computed by the multiply,
3821       // because our callers only care when the result is an
3822       // identifiable object.
3823       if (U->getOpcode() != Instruction::Add ||
3824           (!isa<ConstantInt>(U->getOperand(1)) &&
3825            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3826            !isa<PHINode>(U->getOperand(1))))
3827         return V;
3828       V = U->getOperand(0);
3829     } else {
3830       return V;
3831     }
3832     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3833   } while (true);
3834 }
3835 
3836 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3837 /// ptrtoint+arithmetic+inttoptr sequences.
3838 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3839 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3840                           SmallVectorImpl<Value *> &Objects,
3841                           const DataLayout &DL) {
3842   SmallPtrSet<const Value *, 16> Visited;
3843   SmallVector<const Value *, 4> Working(1, V);
3844   do {
3845     V = Working.pop_back_val();
3846 
3847     SmallVector<Value *, 4> Objs;
3848     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3849 
3850     for (Value *V : Objs) {
3851       if (!Visited.insert(V).second)
3852         continue;
3853       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3854         const Value *O =
3855           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3856         if (O->getType()->isPointerTy()) {
3857           Working.push_back(O);
3858           continue;
3859         }
3860       }
3861       // If GetUnderlyingObjects fails to find an identifiable object,
3862       // getUnderlyingObjectsForCodeGen also fails for safety.
3863       if (!isIdentifiedObject(V)) {
3864         Objects.clear();
3865         return false;
3866       }
3867       Objects.push_back(const_cast<Value *>(V));
3868     }
3869   } while (!Working.empty());
3870   return true;
3871 }
3872 
3873 /// Return true if the only users of this pointer are lifetime markers.
3874 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3875   for (const User *U : V->users()) {
3876     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3877     if (!II) return false;
3878 
3879     if (!II->isLifetimeStartOrEnd())
3880       return false;
3881   }
3882   return true;
3883 }
3884 
3885 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3886                                         const Instruction *CtxI,
3887                                         const DominatorTree *DT) {
3888   const Operator *Inst = dyn_cast<Operator>(V);
3889   if (!Inst)
3890     return false;
3891 
3892   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3893     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3894       if (C->canTrap())
3895         return false;
3896 
3897   switch (Inst->getOpcode()) {
3898   default:
3899     return true;
3900   case Instruction::UDiv:
3901   case Instruction::URem: {
3902     // x / y is undefined if y == 0.
3903     const APInt *V;
3904     if (match(Inst->getOperand(1), m_APInt(V)))
3905       return *V != 0;
3906     return false;
3907   }
3908   case Instruction::SDiv:
3909   case Instruction::SRem: {
3910     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3911     const APInt *Numerator, *Denominator;
3912     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3913       return false;
3914     // We cannot hoist this division if the denominator is 0.
3915     if (*Denominator == 0)
3916       return false;
3917     // It's safe to hoist if the denominator is not 0 or -1.
3918     if (*Denominator != -1)
3919       return true;
3920     // At this point we know that the denominator is -1.  It is safe to hoist as
3921     // long we know that the numerator is not INT_MIN.
3922     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3923       return !Numerator->isMinSignedValue();
3924     // The numerator *might* be MinSignedValue.
3925     return false;
3926   }
3927   case Instruction::Load: {
3928     const LoadInst *LI = cast<LoadInst>(Inst);
3929     if (!LI->isUnordered() ||
3930         // Speculative load may create a race that did not exist in the source.
3931         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3932         // Speculative load may load data from dirty regions.
3933         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3934         LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3935       return false;
3936     const DataLayout &DL = LI->getModule()->getDataLayout();
3937     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3938                                               LI->getAlignment(), DL, CtxI, DT);
3939   }
3940   case Instruction::Call: {
3941     auto *CI = cast<const CallInst>(Inst);
3942     const Function *Callee = CI->getCalledFunction();
3943 
3944     // The called function could have undefined behavior or side-effects, even
3945     // if marked readnone nounwind.
3946     return Callee && Callee->isSpeculatable();
3947   }
3948   case Instruction::VAArg:
3949   case Instruction::Alloca:
3950   case Instruction::Invoke:
3951   case Instruction::CallBr:
3952   case Instruction::PHI:
3953   case Instruction::Store:
3954   case Instruction::Ret:
3955   case Instruction::Br:
3956   case Instruction::IndirectBr:
3957   case Instruction::Switch:
3958   case Instruction::Unreachable:
3959   case Instruction::Fence:
3960   case Instruction::AtomicRMW:
3961   case Instruction::AtomicCmpXchg:
3962   case Instruction::LandingPad:
3963   case Instruction::Resume:
3964   case Instruction::CatchSwitch:
3965   case Instruction::CatchPad:
3966   case Instruction::CatchRet:
3967   case Instruction::CleanupPad:
3968   case Instruction::CleanupRet:
3969     return false; // Misc instructions which have effects
3970   }
3971 }
3972 
3973 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3974   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3975 }
3976 
3977 OverflowResult llvm::computeOverflowForUnsignedMul(
3978     const Value *LHS, const Value *RHS, const DataLayout &DL,
3979     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3980     bool UseInstrInfo) {
3981   // Multiplying n * m significant bits yields a result of n + m significant
3982   // bits. If the total number of significant bits does not exceed the
3983   // result bit width (minus 1), there is no overflow.
3984   // This means if we have enough leading zero bits in the operands
3985   // we can guarantee that the result does not overflow.
3986   // Ref: "Hacker's Delight" by Henry Warren
3987   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3988   KnownBits LHSKnown(BitWidth);
3989   KnownBits RHSKnown(BitWidth);
3990   computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3991                    UseInstrInfo);
3992   computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3993                    UseInstrInfo);
3994   // Note that underestimating the number of zero bits gives a more
3995   // conservative answer.
3996   unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3997                       RHSKnown.countMinLeadingZeros();
3998   // First handle the easy case: if we have enough zero bits there's
3999   // definitely no overflow.
4000   if (ZeroBits >= BitWidth)
4001     return OverflowResult::NeverOverflows;
4002 
4003   // Get the largest possible values for each operand.
4004   APInt LHSMax = ~LHSKnown.Zero;
4005   APInt RHSMax = ~RHSKnown.Zero;
4006 
4007   // We know the multiply operation doesn't overflow if the maximum values for
4008   // each operand will not overflow after we multiply them together.
4009   bool MaxOverflow;
4010   (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
4011   if (!MaxOverflow)
4012     return OverflowResult::NeverOverflows;
4013 
4014   // We know it always overflows if multiplying the smallest possible values for
4015   // the operands also results in overflow.
4016   bool MinOverflow;
4017   (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
4018   if (MinOverflow)
4019     return OverflowResult::AlwaysOverflows;
4020 
4021   return OverflowResult::MayOverflow;
4022 }
4023 
4024 OverflowResult
4025 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4026                                   const DataLayout &DL, AssumptionCache *AC,
4027                                   const Instruction *CxtI,
4028                                   const DominatorTree *DT, bool UseInstrInfo) {
4029   // Multiplying n * m significant bits yields a result of n + m significant
4030   // bits. If the total number of significant bits does not exceed the
4031   // result bit width (minus 1), there is no overflow.
4032   // This means if we have enough leading sign bits in the operands
4033   // we can guarantee that the result does not overflow.
4034   // Ref: "Hacker's Delight" by Henry Warren
4035   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4036 
4037   // Note that underestimating the number of sign bits gives a more
4038   // conservative answer.
4039   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4040                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4041 
4042   // First handle the easy case: if we have enough sign bits there's
4043   // definitely no overflow.
4044   if (SignBits > BitWidth + 1)
4045     return OverflowResult::NeverOverflows;
4046 
4047   // There are two ambiguous cases where there can be no overflow:
4048   //   SignBits == BitWidth + 1    and
4049   //   SignBits == BitWidth
4050   // The second case is difficult to check, therefore we only handle the
4051   // first case.
4052   if (SignBits == BitWidth + 1) {
4053     // It overflows only when both arguments are negative and the true
4054     // product is exactly the minimum negative number.
4055     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4056     // For simplicity we just check if at least one side is not negative.
4057     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4058                                           nullptr, UseInstrInfo);
4059     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4060                                           nullptr, UseInstrInfo);
4061     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4062       return OverflowResult::NeverOverflows;
4063   }
4064   return OverflowResult::MayOverflow;
4065 }
4066 
4067 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4068 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4069   switch (OR) {
4070     case ConstantRange::OverflowResult::MayOverflow:
4071       return OverflowResult::MayOverflow;
4072     case ConstantRange::OverflowResult::AlwaysOverflows:
4073       return OverflowResult::AlwaysOverflows;
4074     case ConstantRange::OverflowResult::NeverOverflows:
4075       return OverflowResult::NeverOverflows;
4076   }
4077   llvm_unreachable("Unknown OverflowResult");
4078 }
4079 
4080 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4081 static ConstantRange computeConstantRangeIncludingKnownBits(
4082     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4083     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4084     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4085   KnownBits Known = computeKnownBits(
4086       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4087   ConstantRange CR = computeConstantRange(V, UseInstrInfo);
4088   return ConstantRange::fromKnownBits(Known, ForSigned).intersectWith(CR);
4089 }
4090 
4091 OverflowResult llvm::computeOverflowForUnsignedAdd(
4092     const Value *LHS, const Value *RHS, const DataLayout &DL,
4093     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4094     bool UseInstrInfo) {
4095   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4096       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4097       nullptr, UseInstrInfo);
4098   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4099       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4100       nullptr, UseInstrInfo);
4101   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4102 }
4103 
4104 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4105                                                   const Value *RHS,
4106                                                   const AddOperator *Add,
4107                                                   const DataLayout &DL,
4108                                                   AssumptionCache *AC,
4109                                                   const Instruction *CxtI,
4110                                                   const DominatorTree *DT) {
4111   if (Add && Add->hasNoSignedWrap()) {
4112     return OverflowResult::NeverOverflows;
4113   }
4114 
4115   // If LHS and RHS each have at least two sign bits, the addition will look
4116   // like
4117   //
4118   // XX..... +
4119   // YY.....
4120   //
4121   // If the carry into the most significant position is 0, X and Y can't both
4122   // be 1 and therefore the carry out of the addition is also 0.
4123   //
4124   // If the carry into the most significant position is 1, X and Y can't both
4125   // be 0 and therefore the carry out of the addition is also 1.
4126   //
4127   // Since the carry into the most significant position is always equal to
4128   // the carry out of the addition, there is no signed overflow.
4129   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4130       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4131     return OverflowResult::NeverOverflows;
4132 
4133   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4134   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4135   ConstantRange LHSRange =
4136       ConstantRange::fromKnownBits(LHSKnown, /*signed*/ true);
4137   ConstantRange RHSRange =
4138       ConstantRange::fromKnownBits(RHSKnown, /*signed*/ true);
4139   OverflowResult OR =
4140       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4141   if (OR != OverflowResult::MayOverflow)
4142     return OR;
4143 
4144   // The remaining code needs Add to be available. Early returns if not so.
4145   if (!Add)
4146     return OverflowResult::MayOverflow;
4147 
4148   // If the sign of Add is the same as at least one of the operands, this add
4149   // CANNOT overflow. If this can be determined from the known bits of the
4150   // operands the above signedAddMayOverflow() check will have already done so.
4151   // The only other way to improve on the known bits is from an assumption, so
4152   // call computeKnownBitsFromAssume() directly.
4153   bool LHSOrRHSKnownNonNegative =
4154       (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4155   bool LHSOrRHSKnownNegative =
4156       (LHSKnown.isNegative() || RHSKnown.isNegative());
4157   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4158     KnownBits AddKnown(LHSKnown.getBitWidth());
4159     computeKnownBitsFromAssume(
4160         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4161     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4162         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4163       return OverflowResult::NeverOverflows;
4164   }
4165 
4166   return OverflowResult::MayOverflow;
4167 }
4168 
4169 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4170                                                    const Value *RHS,
4171                                                    const DataLayout &DL,
4172                                                    AssumptionCache *AC,
4173                                                    const Instruction *CxtI,
4174                                                    const DominatorTree *DT) {
4175   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4176       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4177   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4178       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4179   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4180 }
4181 
4182 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4183                                                  const Value *RHS,
4184                                                  const DataLayout &DL,
4185                                                  AssumptionCache *AC,
4186                                                  const Instruction *CxtI,
4187                                                  const DominatorTree *DT) {
4188   // If LHS and RHS each have at least two sign bits, the subtraction
4189   // cannot overflow.
4190   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4191       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4192     return OverflowResult::NeverOverflows;
4193 
4194   KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4195   KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4196   ConstantRange LHSRange =
4197       ConstantRange::fromKnownBits(LHSKnown, /*signed*/ true);
4198   ConstantRange RHSRange =
4199       ConstantRange::fromKnownBits(RHSKnown, /*signed*/ true);
4200   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4201 }
4202 
4203 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4204                                      const DominatorTree &DT) {
4205 #ifndef NDEBUG
4206   auto IID = II->getIntrinsicID();
4207   assert((IID == Intrinsic::sadd_with_overflow ||
4208           IID == Intrinsic::uadd_with_overflow ||
4209           IID == Intrinsic::ssub_with_overflow ||
4210           IID == Intrinsic::usub_with_overflow ||
4211           IID == Intrinsic::smul_with_overflow ||
4212           IID == Intrinsic::umul_with_overflow) &&
4213          "Not an overflow intrinsic!");
4214 #endif
4215 
4216   SmallVector<const BranchInst *, 2> GuardingBranches;
4217   SmallVector<const ExtractValueInst *, 2> Results;
4218 
4219   for (const User *U : II->users()) {
4220     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4221       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4222 
4223       if (EVI->getIndices()[0] == 0)
4224         Results.push_back(EVI);
4225       else {
4226         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4227 
4228         for (const auto *U : EVI->users())
4229           if (const auto *B = dyn_cast<BranchInst>(U)) {
4230             assert(B->isConditional() && "How else is it using an i1?");
4231             GuardingBranches.push_back(B);
4232           }
4233       }
4234     } else {
4235       // We are using the aggregate directly in a way we don't want to analyze
4236       // here (storing it to a global, say).
4237       return false;
4238     }
4239   }
4240 
4241   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4242     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4243     if (!NoWrapEdge.isSingleEdge())
4244       return false;
4245 
4246     // Check if all users of the add are provably no-wrap.
4247     for (const auto *Result : Results) {
4248       // If the extractvalue itself is not executed on overflow, the we don't
4249       // need to check each use separately, since domination is transitive.
4250       if (DT.dominates(NoWrapEdge, Result->getParent()))
4251         continue;
4252 
4253       for (auto &RU : Result->uses())
4254         if (!DT.dominates(NoWrapEdge, RU))
4255           return false;
4256     }
4257 
4258     return true;
4259   };
4260 
4261   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4262 }
4263 
4264 
4265 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4266                                                  const DataLayout &DL,
4267                                                  AssumptionCache *AC,
4268                                                  const Instruction *CxtI,
4269                                                  const DominatorTree *DT) {
4270   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4271                                        Add, DL, AC, CxtI, DT);
4272 }
4273 
4274 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4275                                                  const Value *RHS,
4276                                                  const DataLayout &DL,
4277                                                  AssumptionCache *AC,
4278                                                  const Instruction *CxtI,
4279                                                  const DominatorTree *DT) {
4280   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4281 }
4282 
4283 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4284   // A memory operation returns normally if it isn't volatile. A volatile
4285   // operation is allowed to trap.
4286   //
4287   // An atomic operation isn't guaranteed to return in a reasonable amount of
4288   // time because it's possible for another thread to interfere with it for an
4289   // arbitrary length of time, but programs aren't allowed to rely on that.
4290   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4291     return !LI->isVolatile();
4292   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4293     return !SI->isVolatile();
4294   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4295     return !CXI->isVolatile();
4296   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4297     return !RMWI->isVolatile();
4298   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4299     return !MII->isVolatile();
4300 
4301   // If there is no successor, then execution can't transfer to it.
4302   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4303     return !CRI->unwindsToCaller();
4304   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4305     return !CatchSwitch->unwindsToCaller();
4306   if (isa<ResumeInst>(I))
4307     return false;
4308   if (isa<ReturnInst>(I))
4309     return false;
4310   if (isa<UnreachableInst>(I))
4311     return false;
4312 
4313   // Calls can throw, or contain an infinite loop, or kill the process.
4314   if (auto CS = ImmutableCallSite(I)) {
4315     // Call sites that throw have implicit non-local control flow.
4316     if (!CS.doesNotThrow())
4317       return false;
4318 
4319     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4320     // etc. and thus not return.  However, LLVM already assumes that
4321     //
4322     //  - Thread exiting actions are modeled as writes to memory invisible to
4323     //    the program.
4324     //
4325     //  - Loops that don't have side effects (side effects are volatile/atomic
4326     //    stores and IO) always terminate (see http://llvm.org/PR965).
4327     //    Furthermore IO itself is also modeled as writes to memory invisible to
4328     //    the program.
4329     //
4330     // We rely on those assumptions here, and use the memory effects of the call
4331     // target as a proxy for checking that it always returns.
4332 
4333     // FIXME: This isn't aggressive enough; a call which only writes to a global
4334     // is guaranteed to return.
4335     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4336            match(I, m_Intrinsic<Intrinsic::assume>()) ||
4337            match(I, m_Intrinsic<Intrinsic::sideeffect>()) ||
4338            match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>());
4339   }
4340 
4341   // Other instructions return normally.
4342   return true;
4343 }
4344 
4345 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4346   // TODO: This is slightly conservative for invoke instruction since exiting
4347   // via an exception *is* normal control for them.
4348   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4349     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4350       return false;
4351   return true;
4352 }
4353 
4354 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4355                                                   const Loop *L) {
4356   // The loop header is guaranteed to be executed for every iteration.
4357   //
4358   // FIXME: Relax this constraint to cover all basic blocks that are
4359   // guaranteed to be executed at every iteration.
4360   if (I->getParent() != L->getHeader()) return false;
4361 
4362   for (const Instruction &LI : *L->getHeader()) {
4363     if (&LI == I) return true;
4364     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4365   }
4366   llvm_unreachable("Instruction not contained in its own parent basic block.");
4367 }
4368 
4369 bool llvm::propagatesFullPoison(const Instruction *I) {
4370   switch (I->getOpcode()) {
4371   case Instruction::Add:
4372   case Instruction::Sub:
4373   case Instruction::Xor:
4374   case Instruction::Trunc:
4375   case Instruction::BitCast:
4376   case Instruction::AddrSpaceCast:
4377   case Instruction::Mul:
4378   case Instruction::Shl:
4379   case Instruction::GetElementPtr:
4380     // These operations all propagate poison unconditionally. Note that poison
4381     // is not any particular value, so xor or subtraction of poison with
4382     // itself still yields poison, not zero.
4383     return true;
4384 
4385   case Instruction::AShr:
4386   case Instruction::SExt:
4387     // For these operations, one bit of the input is replicated across
4388     // multiple output bits. A replicated poison bit is still poison.
4389     return true;
4390 
4391   case Instruction::ICmp:
4392     // Comparing poison with any value yields poison.  This is why, for
4393     // instance, x s< (x +nsw 1) can be folded to true.
4394     return true;
4395 
4396   default:
4397     return false;
4398   }
4399 }
4400 
4401 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4402   switch (I->getOpcode()) {
4403     case Instruction::Store:
4404       return cast<StoreInst>(I)->getPointerOperand();
4405 
4406     case Instruction::Load:
4407       return cast<LoadInst>(I)->getPointerOperand();
4408 
4409     case Instruction::AtomicCmpXchg:
4410       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4411 
4412     case Instruction::AtomicRMW:
4413       return cast<AtomicRMWInst>(I)->getPointerOperand();
4414 
4415     case Instruction::UDiv:
4416     case Instruction::SDiv:
4417     case Instruction::URem:
4418     case Instruction::SRem:
4419       return I->getOperand(1);
4420 
4421     default:
4422       return nullptr;
4423   }
4424 }
4425 
4426 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4427   // We currently only look for uses of poison values within the same basic
4428   // block, as that makes it easier to guarantee that the uses will be
4429   // executed given that PoisonI is executed.
4430   //
4431   // FIXME: Expand this to consider uses beyond the same basic block. To do
4432   // this, look out for the distinction between post-dominance and strong
4433   // post-dominance.
4434   const BasicBlock *BB = PoisonI->getParent();
4435 
4436   // Set of instructions that we have proved will yield poison if PoisonI
4437   // does.
4438   SmallSet<const Value *, 16> YieldsPoison;
4439   SmallSet<const BasicBlock *, 4> Visited;
4440   YieldsPoison.insert(PoisonI);
4441   Visited.insert(PoisonI->getParent());
4442 
4443   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4444 
4445   unsigned Iter = 0;
4446   while (Iter++ < MaxDepth) {
4447     for (auto &I : make_range(Begin, End)) {
4448       if (&I != PoisonI) {
4449         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4450         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4451           return true;
4452         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4453           return false;
4454       }
4455 
4456       // Mark poison that propagates from I through uses of I.
4457       if (YieldsPoison.count(&I)) {
4458         for (const User *User : I.users()) {
4459           const Instruction *UserI = cast<Instruction>(User);
4460           if (propagatesFullPoison(UserI))
4461             YieldsPoison.insert(User);
4462         }
4463       }
4464     }
4465 
4466     if (auto *NextBB = BB->getSingleSuccessor()) {
4467       if (Visited.insert(NextBB).second) {
4468         BB = NextBB;
4469         Begin = BB->getFirstNonPHI()->getIterator();
4470         End = BB->end();
4471         continue;
4472       }
4473     }
4474 
4475     break;
4476   }
4477   return false;
4478 }
4479 
4480 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4481   if (FMF.noNaNs())
4482     return true;
4483 
4484   if (auto *C = dyn_cast<ConstantFP>(V))
4485     return !C->isNaN();
4486 
4487   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4488     if (!C->getElementType()->isFloatingPointTy())
4489       return false;
4490     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4491       if (C->getElementAsAPFloat(I).isNaN())
4492         return false;
4493     }
4494     return true;
4495   }
4496 
4497   return false;
4498 }
4499 
4500 static bool isKnownNonZero(const Value *V) {
4501   if (auto *C = dyn_cast<ConstantFP>(V))
4502     return !C->isZero();
4503 
4504   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
4505     if (!C->getElementType()->isFloatingPointTy())
4506       return false;
4507     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
4508       if (C->getElementAsAPFloat(I).isZero())
4509         return false;
4510     }
4511     return true;
4512   }
4513 
4514   return false;
4515 }
4516 
4517 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4518 /// Given non-min/max outer cmp/select from the clamp pattern this
4519 /// function recognizes if it can be substitued by a "canonical" min/max
4520 /// pattern.
4521 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4522                                                Value *CmpLHS, Value *CmpRHS,
4523                                                Value *TrueVal, Value *FalseVal,
4524                                                Value *&LHS, Value *&RHS) {
4525   // Try to match
4526   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4527   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4528   // and return description of the outer Max/Min.
4529 
4530   // First, check if select has inverse order:
4531   if (CmpRHS == FalseVal) {
4532     std::swap(TrueVal, FalseVal);
4533     Pred = CmpInst::getInversePredicate(Pred);
4534   }
4535 
4536   // Assume success now. If there's no match, callers should not use these anyway.
4537   LHS = TrueVal;
4538   RHS = FalseVal;
4539 
4540   const APFloat *FC1;
4541   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4542     return {SPF_UNKNOWN, SPNB_NA, false};
4543 
4544   const APFloat *FC2;
4545   switch (Pred) {
4546   case CmpInst::FCMP_OLT:
4547   case CmpInst::FCMP_OLE:
4548   case CmpInst::FCMP_ULT:
4549   case CmpInst::FCMP_ULE:
4550     if (match(FalseVal,
4551               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4552                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4553         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4554       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4555     break;
4556   case CmpInst::FCMP_OGT:
4557   case CmpInst::FCMP_OGE:
4558   case CmpInst::FCMP_UGT:
4559   case CmpInst::FCMP_UGE:
4560     if (match(FalseVal,
4561               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4562                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4563         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4564       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4565     break;
4566   default:
4567     break;
4568   }
4569 
4570   return {SPF_UNKNOWN, SPNB_NA, false};
4571 }
4572 
4573 /// Recognize variations of:
4574 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4575 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4576                                       Value *CmpLHS, Value *CmpRHS,
4577                                       Value *TrueVal, Value *FalseVal) {
4578   // Swap the select operands and predicate to match the patterns below.
4579   if (CmpRHS != TrueVal) {
4580     Pred = ICmpInst::getSwappedPredicate(Pred);
4581     std::swap(TrueVal, FalseVal);
4582   }
4583   const APInt *C1;
4584   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4585     const APInt *C2;
4586     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4587     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4588         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4589       return {SPF_SMAX, SPNB_NA, false};
4590 
4591     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4592     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4593         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4594       return {SPF_SMIN, SPNB_NA, false};
4595 
4596     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4597     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4598         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4599       return {SPF_UMAX, SPNB_NA, false};
4600 
4601     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4602     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4603         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4604       return {SPF_UMIN, SPNB_NA, false};
4605   }
4606   return {SPF_UNKNOWN, SPNB_NA, false};
4607 }
4608 
4609 /// Recognize variations of:
4610 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4611 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4612                                                Value *CmpLHS, Value *CmpRHS,
4613                                                Value *TVal, Value *FVal,
4614                                                unsigned Depth) {
4615   // TODO: Allow FP min/max with nnan/nsz.
4616   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4617 
4618   Value *A, *B;
4619   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4620   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4621     return {SPF_UNKNOWN, SPNB_NA, false};
4622 
4623   Value *C, *D;
4624   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4625   if (L.Flavor != R.Flavor)
4626     return {SPF_UNKNOWN, SPNB_NA, false};
4627 
4628   // We have something like: x Pred y ? min(a, b) : min(c, d).
4629   // Try to match the compare to the min/max operations of the select operands.
4630   // First, make sure we have the right compare predicate.
4631   switch (L.Flavor) {
4632   case SPF_SMIN:
4633     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4634       Pred = ICmpInst::getSwappedPredicate(Pred);
4635       std::swap(CmpLHS, CmpRHS);
4636     }
4637     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4638       break;
4639     return {SPF_UNKNOWN, SPNB_NA, false};
4640   case SPF_SMAX:
4641     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4642       Pred = ICmpInst::getSwappedPredicate(Pred);
4643       std::swap(CmpLHS, CmpRHS);
4644     }
4645     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4646       break;
4647     return {SPF_UNKNOWN, SPNB_NA, false};
4648   case SPF_UMIN:
4649     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4650       Pred = ICmpInst::getSwappedPredicate(Pred);
4651       std::swap(CmpLHS, CmpRHS);
4652     }
4653     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4654       break;
4655     return {SPF_UNKNOWN, SPNB_NA, false};
4656   case SPF_UMAX:
4657     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4658       Pred = ICmpInst::getSwappedPredicate(Pred);
4659       std::swap(CmpLHS, CmpRHS);
4660     }
4661     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4662       break;
4663     return {SPF_UNKNOWN, SPNB_NA, false};
4664   default:
4665     return {SPF_UNKNOWN, SPNB_NA, false};
4666   }
4667 
4668   // If there is a common operand in the already matched min/max and the other
4669   // min/max operands match the compare operands (either directly or inverted),
4670   // then this is min/max of the same flavor.
4671 
4672   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4673   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4674   if (D == B) {
4675     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4676                                          match(A, m_Not(m_Specific(CmpRHS)))))
4677       return {L.Flavor, SPNB_NA, false};
4678   }
4679   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4680   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4681   if (C == B) {
4682     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4683                                          match(A, m_Not(m_Specific(CmpRHS)))))
4684       return {L.Flavor, SPNB_NA, false};
4685   }
4686   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4687   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4688   if (D == A) {
4689     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4690                                          match(B, m_Not(m_Specific(CmpRHS)))))
4691       return {L.Flavor, SPNB_NA, false};
4692   }
4693   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4694   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4695   if (C == A) {
4696     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4697                                          match(B, m_Not(m_Specific(CmpRHS)))))
4698       return {L.Flavor, SPNB_NA, false};
4699   }
4700 
4701   return {SPF_UNKNOWN, SPNB_NA, false};
4702 }
4703 
4704 /// Match non-obvious integer minimum and maximum sequences.
4705 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4706                                        Value *CmpLHS, Value *CmpRHS,
4707                                        Value *TrueVal, Value *FalseVal,
4708                                        Value *&LHS, Value *&RHS,
4709                                        unsigned Depth) {
4710   // Assume success. If there's no match, callers should not use these anyway.
4711   LHS = TrueVal;
4712   RHS = FalseVal;
4713 
4714   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4715   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4716     return SPR;
4717 
4718   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4719   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4720     return SPR;
4721 
4722   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4723     return {SPF_UNKNOWN, SPNB_NA, false};
4724 
4725   // Z = X -nsw Y
4726   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4727   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4728   if (match(TrueVal, m_Zero()) &&
4729       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4730     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4731 
4732   // Z = X -nsw Y
4733   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4734   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4735   if (match(FalseVal, m_Zero()) &&
4736       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4737     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4738 
4739   const APInt *C1;
4740   if (!match(CmpRHS, m_APInt(C1)))
4741     return {SPF_UNKNOWN, SPNB_NA, false};
4742 
4743   // An unsigned min/max can be written with a signed compare.
4744   const APInt *C2;
4745   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4746       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4747     // Is the sign bit set?
4748     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4749     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4750     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4751         C2->isMaxSignedValue())
4752       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4753 
4754     // Is the sign bit clear?
4755     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4756     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4757     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4758         C2->isMinSignedValue())
4759       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4760   }
4761 
4762   // Look through 'not' ops to find disguised signed min/max.
4763   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4764   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4765   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4766       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4767     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4768 
4769   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4770   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4771   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4772       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4773     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4774 
4775   return {SPF_UNKNOWN, SPNB_NA, false};
4776 }
4777 
4778 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4779   assert(X && Y && "Invalid operand");
4780 
4781   // X = sub (0, Y) || X = sub nsw (0, Y)
4782   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4783       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4784     return true;
4785 
4786   // Y = sub (0, X) || Y = sub nsw (0, X)
4787   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4788       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4789     return true;
4790 
4791   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4792   Value *A, *B;
4793   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4794                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4795          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4796                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4797 }
4798 
4799 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4800                                               FastMathFlags FMF,
4801                                               Value *CmpLHS, Value *CmpRHS,
4802                                               Value *TrueVal, Value *FalseVal,
4803                                               Value *&LHS, Value *&RHS,
4804                                               unsigned Depth) {
4805   if (CmpInst::isFPPredicate(Pred)) {
4806     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
4807     // 0.0 operand, set the compare's 0.0 operands to that same value for the
4808     // purpose of identifying min/max. Disregard vector constants with undefined
4809     // elements because those can not be back-propagated for analysis.
4810     Value *OutputZeroVal = nullptr;
4811     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
4812         !cast<Constant>(TrueVal)->containsUndefElement())
4813       OutputZeroVal = TrueVal;
4814     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
4815              !cast<Constant>(FalseVal)->containsUndefElement())
4816       OutputZeroVal = FalseVal;
4817 
4818     if (OutputZeroVal) {
4819       if (match(CmpLHS, m_AnyZeroFP()))
4820         CmpLHS = OutputZeroVal;
4821       if (match(CmpRHS, m_AnyZeroFP()))
4822         CmpRHS = OutputZeroVal;
4823     }
4824   }
4825 
4826   LHS = CmpLHS;
4827   RHS = CmpRHS;
4828 
4829   // Signed zero may return inconsistent results between implementations.
4830   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4831   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4832   // Therefore, we behave conservatively and only proceed if at least one of the
4833   // operands is known to not be zero or if we don't care about signed zero.
4834   switch (Pred) {
4835   default: break;
4836   // FIXME: Include OGT/OLT/UGT/ULT.
4837   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4838   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4839     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4840         !isKnownNonZero(CmpRHS))
4841       return {SPF_UNKNOWN, SPNB_NA, false};
4842   }
4843 
4844   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4845   bool Ordered = false;
4846 
4847   // When given one NaN and one non-NaN input:
4848   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4849   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4850   //     ordered comparison fails), which could be NaN or non-NaN.
4851   // so here we discover exactly what NaN behavior is required/accepted.
4852   if (CmpInst::isFPPredicate(Pred)) {
4853     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4854     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4855 
4856     if (LHSSafe && RHSSafe) {
4857       // Both operands are known non-NaN.
4858       NaNBehavior = SPNB_RETURNS_ANY;
4859     } else if (CmpInst::isOrdered(Pred)) {
4860       // An ordered comparison will return false when given a NaN, so it
4861       // returns the RHS.
4862       Ordered = true;
4863       if (LHSSafe)
4864         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4865         NaNBehavior = SPNB_RETURNS_NAN;
4866       else if (RHSSafe)
4867         NaNBehavior = SPNB_RETURNS_OTHER;
4868       else
4869         // Completely unsafe.
4870         return {SPF_UNKNOWN, SPNB_NA, false};
4871     } else {
4872       Ordered = false;
4873       // An unordered comparison will return true when given a NaN, so it
4874       // returns the LHS.
4875       if (LHSSafe)
4876         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4877         NaNBehavior = SPNB_RETURNS_OTHER;
4878       else if (RHSSafe)
4879         NaNBehavior = SPNB_RETURNS_NAN;
4880       else
4881         // Completely unsafe.
4882         return {SPF_UNKNOWN, SPNB_NA, false};
4883     }
4884   }
4885 
4886   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4887     std::swap(CmpLHS, CmpRHS);
4888     Pred = CmpInst::getSwappedPredicate(Pred);
4889     if (NaNBehavior == SPNB_RETURNS_NAN)
4890       NaNBehavior = SPNB_RETURNS_OTHER;
4891     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4892       NaNBehavior = SPNB_RETURNS_NAN;
4893     Ordered = !Ordered;
4894   }
4895 
4896   // ([if]cmp X, Y) ? X : Y
4897   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4898     switch (Pred) {
4899     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4900     case ICmpInst::ICMP_UGT:
4901     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4902     case ICmpInst::ICMP_SGT:
4903     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4904     case ICmpInst::ICMP_ULT:
4905     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4906     case ICmpInst::ICMP_SLT:
4907     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4908     case FCmpInst::FCMP_UGT:
4909     case FCmpInst::FCMP_UGE:
4910     case FCmpInst::FCMP_OGT:
4911     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4912     case FCmpInst::FCMP_ULT:
4913     case FCmpInst::FCMP_ULE:
4914     case FCmpInst::FCMP_OLT:
4915     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4916     }
4917   }
4918 
4919   if (isKnownNegation(TrueVal, FalseVal)) {
4920     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4921     // match against either LHS or sext(LHS).
4922     auto MaybeSExtCmpLHS =
4923         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4924     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4925     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4926     if (match(TrueVal, MaybeSExtCmpLHS)) {
4927       // Set the return values. If the compare uses the negated value (-X >s 0),
4928       // swap the return values because the negated value is always 'RHS'.
4929       LHS = TrueVal;
4930       RHS = FalseVal;
4931       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4932         std::swap(LHS, RHS);
4933 
4934       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4935       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4936       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4937         return {SPF_ABS, SPNB_NA, false};
4938 
4939       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
4940       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
4941         return {SPF_ABS, SPNB_NA, false};
4942 
4943       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4944       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4945       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4946         return {SPF_NABS, SPNB_NA, false};
4947     }
4948     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4949       // Set the return values. If the compare uses the negated value (-X >s 0),
4950       // swap the return values because the negated value is always 'RHS'.
4951       LHS = FalseVal;
4952       RHS = TrueVal;
4953       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4954         std::swap(LHS, RHS);
4955 
4956       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4957       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4958       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4959         return {SPF_NABS, SPNB_NA, false};
4960 
4961       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4962       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4963       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4964         return {SPF_ABS, SPNB_NA, false};
4965     }
4966   }
4967 
4968   if (CmpInst::isIntPredicate(Pred))
4969     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4970 
4971   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4972   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4973   // semantics than minNum. Be conservative in such case.
4974   if (NaNBehavior != SPNB_RETURNS_ANY ||
4975       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4976        !isKnownNonZero(CmpRHS)))
4977     return {SPF_UNKNOWN, SPNB_NA, false};
4978 
4979   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4980 }
4981 
4982 /// Helps to match a select pattern in case of a type mismatch.
4983 ///
4984 /// The function processes the case when type of true and false values of a
4985 /// select instruction differs from type of the cmp instruction operands because
4986 /// of a cast instruction. The function checks if it is legal to move the cast
4987 /// operation after "select". If yes, it returns the new second value of
4988 /// "select" (with the assumption that cast is moved):
4989 /// 1. As operand of cast instruction when both values of "select" are same cast
4990 /// instructions.
4991 /// 2. As restored constant (by applying reverse cast operation) when the first
4992 /// value of the "select" is a cast operation and the second value is a
4993 /// constant.
4994 /// NOTE: We return only the new second value because the first value could be
4995 /// accessed as operand of cast instruction.
4996 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4997                               Instruction::CastOps *CastOp) {
4998   auto *Cast1 = dyn_cast<CastInst>(V1);
4999   if (!Cast1)
5000     return nullptr;
5001 
5002   *CastOp = Cast1->getOpcode();
5003   Type *SrcTy = Cast1->getSrcTy();
5004   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5005     // If V1 and V2 are both the same cast from the same type, look through V1.
5006     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5007       return Cast2->getOperand(0);
5008     return nullptr;
5009   }
5010 
5011   auto *C = dyn_cast<Constant>(V2);
5012   if (!C)
5013     return nullptr;
5014 
5015   Constant *CastedTo = nullptr;
5016   switch (*CastOp) {
5017   case Instruction::ZExt:
5018     if (CmpI->isUnsigned())
5019       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5020     break;
5021   case Instruction::SExt:
5022     if (CmpI->isSigned())
5023       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5024     break;
5025   case Instruction::Trunc:
5026     Constant *CmpConst;
5027     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5028         CmpConst->getType() == SrcTy) {
5029       // Here we have the following case:
5030       //
5031       //   %cond = cmp iN %x, CmpConst
5032       //   %tr = trunc iN %x to iK
5033       //   %narrowsel = select i1 %cond, iK %t, iK C
5034       //
5035       // We can always move trunc after select operation:
5036       //
5037       //   %cond = cmp iN %x, CmpConst
5038       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5039       //   %tr = trunc iN %widesel to iK
5040       //
5041       // Note that C could be extended in any way because we don't care about
5042       // upper bits after truncation. It can't be abs pattern, because it would
5043       // look like:
5044       //
5045       //   select i1 %cond, x, -x.
5046       //
5047       // So only min/max pattern could be matched. Such match requires widened C
5048       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5049       // CmpConst == C is checked below.
5050       CastedTo = CmpConst;
5051     } else {
5052       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5053     }
5054     break;
5055   case Instruction::FPTrunc:
5056     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5057     break;
5058   case Instruction::FPExt:
5059     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5060     break;
5061   case Instruction::FPToUI:
5062     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5063     break;
5064   case Instruction::FPToSI:
5065     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5066     break;
5067   case Instruction::UIToFP:
5068     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5069     break;
5070   case Instruction::SIToFP:
5071     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5072     break;
5073   default:
5074     break;
5075   }
5076 
5077   if (!CastedTo)
5078     return nullptr;
5079 
5080   // Make sure the cast doesn't lose any information.
5081   Constant *CastedBack =
5082       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5083   if (CastedBack != C)
5084     return nullptr;
5085 
5086   return CastedTo;
5087 }
5088 
5089 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5090                                              Instruction::CastOps *CastOp,
5091                                              unsigned Depth) {
5092   if (Depth >= MaxDepth)
5093     return {SPF_UNKNOWN, SPNB_NA, false};
5094 
5095   SelectInst *SI = dyn_cast<SelectInst>(V);
5096   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5097 
5098   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5099   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5100 
5101   CmpInst::Predicate Pred = CmpI->getPredicate();
5102   Value *CmpLHS = CmpI->getOperand(0);
5103   Value *CmpRHS = CmpI->getOperand(1);
5104   Value *TrueVal = SI->getTrueValue();
5105   Value *FalseVal = SI->getFalseValue();
5106   FastMathFlags FMF;
5107   if (isa<FPMathOperator>(CmpI))
5108     FMF = CmpI->getFastMathFlags();
5109 
5110   // Bail out early.
5111   if (CmpI->isEquality())
5112     return {SPF_UNKNOWN, SPNB_NA, false};
5113 
5114   // Deal with type mismatches.
5115   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5116     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5117       // If this is a potential fmin/fmax with a cast to integer, then ignore
5118       // -0.0 because there is no corresponding integer value.
5119       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5120         FMF.setNoSignedZeros();
5121       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5122                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5123                                   LHS, RHS, Depth);
5124     }
5125     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5126       // If this is a potential fmin/fmax with a cast to integer, then ignore
5127       // -0.0 because there is no corresponding integer value.
5128       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5129         FMF.setNoSignedZeros();
5130       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5131                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5132                                   LHS, RHS, Depth);
5133     }
5134   }
5135   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5136                               LHS, RHS, Depth);
5137 }
5138 
5139 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5140   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5141   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5142   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5143   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5144   if (SPF == SPF_FMINNUM)
5145     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5146   if (SPF == SPF_FMAXNUM)
5147     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5148   llvm_unreachable("unhandled!");
5149 }
5150 
5151 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5152   if (SPF == SPF_SMIN) return SPF_SMAX;
5153   if (SPF == SPF_UMIN) return SPF_UMAX;
5154   if (SPF == SPF_SMAX) return SPF_SMIN;
5155   if (SPF == SPF_UMAX) return SPF_UMIN;
5156   llvm_unreachable("unhandled!");
5157 }
5158 
5159 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5160   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5161 }
5162 
5163 /// Return true if "icmp Pred LHS RHS" is always true.
5164 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5165                             const Value *RHS, const DataLayout &DL,
5166                             unsigned Depth) {
5167   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5168   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5169     return true;
5170 
5171   switch (Pred) {
5172   default:
5173     return false;
5174 
5175   case CmpInst::ICMP_SLE: {
5176     const APInt *C;
5177 
5178     // LHS s<= LHS +_{nsw} C   if C >= 0
5179     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5180       return !C->isNegative();
5181     return false;
5182   }
5183 
5184   case CmpInst::ICMP_ULE: {
5185     const APInt *C;
5186 
5187     // LHS u<= LHS +_{nuw} C   for any C
5188     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5189       return true;
5190 
5191     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5192     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5193                                        const Value *&X,
5194                                        const APInt *&CA, const APInt *&CB) {
5195       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5196           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5197         return true;
5198 
5199       // If X & C == 0 then (X | C) == X +_{nuw} C
5200       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5201           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5202         KnownBits Known(CA->getBitWidth());
5203         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5204                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5205         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5206           return true;
5207       }
5208 
5209       return false;
5210     };
5211 
5212     const Value *X;
5213     const APInt *CLHS, *CRHS;
5214     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5215       return CLHS->ule(*CRHS);
5216 
5217     return false;
5218   }
5219   }
5220 }
5221 
5222 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5223 /// ALHS ARHS" is true.  Otherwise, return None.
5224 static Optional<bool>
5225 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5226                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5227                       const DataLayout &DL, unsigned Depth) {
5228   switch (Pred) {
5229   default:
5230     return None;
5231 
5232   case CmpInst::ICMP_SLT:
5233   case CmpInst::ICMP_SLE:
5234     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5235         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5236       return true;
5237     return None;
5238 
5239   case CmpInst::ICMP_ULT:
5240   case CmpInst::ICMP_ULE:
5241     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5242         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5243       return true;
5244     return None;
5245   }
5246 }
5247 
5248 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5249 /// when the operands match, but are swapped.
5250 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5251                           const Value *BLHS, const Value *BRHS,
5252                           bool &IsSwappedOps) {
5253 
5254   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5255   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5256   return IsMatchingOps || IsSwappedOps;
5257 }
5258 
5259 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5260 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5261 /// Otherwise, return None if we can't infer anything.
5262 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5263                                                     CmpInst::Predicate BPred,
5264                                                     bool AreSwappedOps) {
5265   // Canonicalize the predicate as if the operands were not commuted.
5266   if (AreSwappedOps)
5267     BPred = ICmpInst::getSwappedPredicate(BPred);
5268 
5269   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5270     return true;
5271   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5272     return false;
5273 
5274   return None;
5275 }
5276 
5277 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
5278 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
5279 /// Otherwise, return None if we can't infer anything.
5280 static Optional<bool>
5281 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
5282                                  const ConstantInt *C1,
5283                                  CmpInst::Predicate BPred,
5284                                  const ConstantInt *C2) {
5285   ConstantRange DomCR =
5286       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5287   ConstantRange CR =
5288       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5289   ConstantRange Intersection = DomCR.intersectWith(CR);
5290   ConstantRange Difference = DomCR.difference(CR);
5291   if (Intersection.isEmptySet())
5292     return false;
5293   if (Difference.isEmptySet())
5294     return true;
5295   return None;
5296 }
5297 
5298 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5299 /// false.  Otherwise, return None if we can't infer anything.
5300 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5301                                          const ICmpInst *RHS,
5302                                          const DataLayout &DL, bool LHSIsTrue,
5303                                          unsigned Depth) {
5304   Value *ALHS = LHS->getOperand(0);
5305   Value *ARHS = LHS->getOperand(1);
5306   // The rest of the logic assumes the LHS condition is true.  If that's not the
5307   // case, invert the predicate to make it so.
5308   ICmpInst::Predicate APred =
5309       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5310 
5311   Value *BLHS = RHS->getOperand(0);
5312   Value *BRHS = RHS->getOperand(1);
5313   ICmpInst::Predicate BPred = RHS->getPredicate();
5314 
5315   // Can we infer anything when the two compares have matching operands?
5316   bool AreSwappedOps;
5317   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
5318     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5319             APred, BPred, AreSwappedOps))
5320       return Implication;
5321     // No amount of additional analysis will infer the second condition, so
5322     // early exit.
5323     return None;
5324   }
5325 
5326   // Can we infer anything when the LHS operands match and the RHS operands are
5327   // constants (not necessarily matching)?
5328   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5329     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5330             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
5331       return Implication;
5332     // No amount of additional analysis will infer the second condition, so
5333     // early exit.
5334     return None;
5335   }
5336 
5337   if (APred == BPred)
5338     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5339   return None;
5340 }
5341 
5342 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5343 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5344 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5345 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5346                                          const ICmpInst *RHS,
5347                                          const DataLayout &DL, bool LHSIsTrue,
5348                                          unsigned Depth) {
5349   // The LHS must be an 'or' or an 'and' instruction.
5350   assert((LHS->getOpcode() == Instruction::And ||
5351           LHS->getOpcode() == Instruction::Or) &&
5352          "Expected LHS to be 'and' or 'or'.");
5353 
5354   assert(Depth <= MaxDepth && "Hit recursion limit");
5355 
5356   // If the result of an 'or' is false, then we know both legs of the 'or' are
5357   // false.  Similarly, if the result of an 'and' is true, then we know both
5358   // legs of the 'and' are true.
5359   Value *ALHS, *ARHS;
5360   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5361       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5362     // FIXME: Make this non-recursion.
5363     if (Optional<bool> Implication =
5364             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5365       return Implication;
5366     if (Optional<bool> Implication =
5367             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5368       return Implication;
5369     return None;
5370   }
5371   return None;
5372 }
5373 
5374 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5375                                         const DataLayout &DL, bool LHSIsTrue,
5376                                         unsigned Depth) {
5377   // Bail out when we hit the limit.
5378   if (Depth == MaxDepth)
5379     return None;
5380 
5381   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5382   // example.
5383   if (LHS->getType() != RHS->getType())
5384     return None;
5385 
5386   Type *OpTy = LHS->getType();
5387   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5388 
5389   // LHS ==> RHS by definition
5390   if (LHS == RHS)
5391     return LHSIsTrue;
5392 
5393   // FIXME: Extending the code below to handle vectors.
5394   if (OpTy->isVectorTy())
5395     return None;
5396 
5397   assert(OpTy->isIntegerTy(1) && "implied by above");
5398 
5399   // Both LHS and RHS are icmps.
5400   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5401   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5402   if (LHSCmp && RHSCmp)
5403     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5404 
5405   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5406   // an icmp. FIXME: Add support for and/or on the RHS.
5407   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5408   if (LHSBO && RHSCmp) {
5409     if ((LHSBO->getOpcode() == Instruction::And ||
5410          LHSBO->getOpcode() == Instruction::Or))
5411       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5412   }
5413   return None;
5414 }
5415 
5416 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
5417                                              const Instruction *ContextI,
5418                                              const DataLayout &DL) {
5419   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
5420   if (!ContextI || !ContextI->getParent())
5421     return None;
5422 
5423   // TODO: This is a poor/cheap way to determine dominance. Should we use a
5424   // dominator tree (eg, from a SimplifyQuery) instead?
5425   const BasicBlock *ContextBB = ContextI->getParent();
5426   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
5427   if (!PredBB)
5428     return None;
5429 
5430   // We need a conditional branch in the predecessor.
5431   Value *PredCond;
5432   BasicBlock *TrueBB, *FalseBB;
5433   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
5434     return None;
5435 
5436   // The branch should get simplified. Don't bother simplifying this condition.
5437   if (TrueBB == FalseBB)
5438     return None;
5439 
5440   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
5441          "Predecessor block does not point to successor?");
5442 
5443   // Is this condition implied by the predecessor condition?
5444   bool CondIsTrue = TrueBB == ContextBB;
5445   return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
5446 }
5447 
5448 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
5449                               APInt &Upper, const InstrInfoQuery &IIQ) {
5450   unsigned Width = Lower.getBitWidth();
5451   const APInt *C;
5452   switch (BO.getOpcode()) {
5453   case Instruction::Add:
5454     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5455       // FIXME: If we have both nuw and nsw, we should reduce the range further.
5456       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5457         // 'add nuw x, C' produces [C, UINT_MAX].
5458         Lower = *C;
5459       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
5460         if (C->isNegative()) {
5461           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
5462           Lower = APInt::getSignedMinValue(Width);
5463           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5464         } else {
5465           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
5466           Lower = APInt::getSignedMinValue(Width) + *C;
5467           Upper = APInt::getSignedMaxValue(Width) + 1;
5468         }
5469       }
5470     }
5471     break;
5472 
5473   case Instruction::And:
5474     if (match(BO.getOperand(1), m_APInt(C)))
5475       // 'and x, C' produces [0, C].
5476       Upper = *C + 1;
5477     break;
5478 
5479   case Instruction::Or:
5480     if (match(BO.getOperand(1), m_APInt(C)))
5481       // 'or x, C' produces [C, UINT_MAX].
5482       Lower = *C;
5483     break;
5484 
5485   case Instruction::AShr:
5486     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5487       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
5488       Lower = APInt::getSignedMinValue(Width).ashr(*C);
5489       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
5490     } else if (match(BO.getOperand(0), m_APInt(C))) {
5491       unsigned ShiftAmount = Width - 1;
5492       if (!C->isNullValue() && IIQ.isExact(&BO))
5493         ShiftAmount = C->countTrailingZeros();
5494       if (C->isNegative()) {
5495         // 'ashr C, x' produces [C, C >> (Width-1)]
5496         Lower = *C;
5497         Upper = C->ashr(ShiftAmount) + 1;
5498       } else {
5499         // 'ashr C, x' produces [C >> (Width-1), C]
5500         Lower = C->ashr(ShiftAmount);
5501         Upper = *C + 1;
5502       }
5503     }
5504     break;
5505 
5506   case Instruction::LShr:
5507     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
5508       // 'lshr x, C' produces [0, UINT_MAX >> C].
5509       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
5510     } else if (match(BO.getOperand(0), m_APInt(C))) {
5511       // 'lshr C, x' produces [C >> (Width-1), C].
5512       unsigned ShiftAmount = Width - 1;
5513       if (!C->isNullValue() && IIQ.isExact(&BO))
5514         ShiftAmount = C->countTrailingZeros();
5515       Lower = C->lshr(ShiftAmount);
5516       Upper = *C + 1;
5517     }
5518     break;
5519 
5520   case Instruction::Shl:
5521     if (match(BO.getOperand(0), m_APInt(C))) {
5522       if (IIQ.hasNoUnsignedWrap(&BO)) {
5523         // 'shl nuw C, x' produces [C, C << CLZ(C)]
5524         Lower = *C;
5525         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
5526       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
5527         if (C->isNegative()) {
5528           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
5529           unsigned ShiftAmount = C->countLeadingOnes() - 1;
5530           Lower = C->shl(ShiftAmount);
5531           Upper = *C + 1;
5532         } else {
5533           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
5534           unsigned ShiftAmount = C->countLeadingZeros() - 1;
5535           Lower = *C;
5536           Upper = C->shl(ShiftAmount) + 1;
5537         }
5538       }
5539     }
5540     break;
5541 
5542   case Instruction::SDiv:
5543     if (match(BO.getOperand(1), m_APInt(C))) {
5544       APInt IntMin = APInt::getSignedMinValue(Width);
5545       APInt IntMax = APInt::getSignedMaxValue(Width);
5546       if (C->isAllOnesValue()) {
5547         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
5548         //    where C != -1 and C != 0 and C != 1
5549         Lower = IntMin + 1;
5550         Upper = IntMax + 1;
5551       } else if (C->countLeadingZeros() < Width - 1) {
5552         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
5553         //    where C != -1 and C != 0 and C != 1
5554         Lower = IntMin.sdiv(*C);
5555         Upper = IntMax.sdiv(*C);
5556         if (Lower.sgt(Upper))
5557           std::swap(Lower, Upper);
5558         Upper = Upper + 1;
5559         assert(Upper != Lower && "Upper part of range has wrapped!");
5560       }
5561     } else if (match(BO.getOperand(0), m_APInt(C))) {
5562       if (C->isMinSignedValue()) {
5563         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
5564         Lower = *C;
5565         Upper = Lower.lshr(1) + 1;
5566       } else {
5567         // 'sdiv C, x' produces [-|C|, |C|].
5568         Upper = C->abs() + 1;
5569         Lower = (-Upper) + 1;
5570       }
5571     }
5572     break;
5573 
5574   case Instruction::UDiv:
5575     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
5576       // 'udiv x, C' produces [0, UINT_MAX / C].
5577       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
5578     } else if (match(BO.getOperand(0), m_APInt(C))) {
5579       // 'udiv C, x' produces [0, C].
5580       Upper = *C + 1;
5581     }
5582     break;
5583 
5584   case Instruction::SRem:
5585     if (match(BO.getOperand(1), m_APInt(C))) {
5586       // 'srem x, C' produces (-|C|, |C|).
5587       Upper = C->abs();
5588       Lower = (-Upper) + 1;
5589     }
5590     break;
5591 
5592   case Instruction::URem:
5593     if (match(BO.getOperand(1), m_APInt(C)))
5594       // 'urem x, C' produces [0, C).
5595       Upper = *C;
5596     break;
5597 
5598   default:
5599     break;
5600   }
5601 }
5602 
5603 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
5604                                   APInt &Upper) {
5605   unsigned Width = Lower.getBitWidth();
5606   const APInt *C;
5607   switch (II.getIntrinsicID()) {
5608   case Intrinsic::uadd_sat:
5609     // uadd.sat(x, C) produces [C, UINT_MAX].
5610     if (match(II.getOperand(0), m_APInt(C)) ||
5611         match(II.getOperand(1), m_APInt(C)))
5612       Lower = *C;
5613     break;
5614   case Intrinsic::sadd_sat:
5615     if (match(II.getOperand(0), m_APInt(C)) ||
5616         match(II.getOperand(1), m_APInt(C))) {
5617       if (C->isNegative()) {
5618         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
5619         Lower = APInt::getSignedMinValue(Width);
5620         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
5621       } else {
5622         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
5623         Lower = APInt::getSignedMinValue(Width) + *C;
5624         Upper = APInt::getSignedMaxValue(Width) + 1;
5625       }
5626     }
5627     break;
5628   case Intrinsic::usub_sat:
5629     // usub.sat(C, x) produces [0, C].
5630     if (match(II.getOperand(0), m_APInt(C)))
5631       Upper = *C + 1;
5632     // usub.sat(x, C) produces [0, UINT_MAX - C].
5633     else if (match(II.getOperand(1), m_APInt(C)))
5634       Upper = APInt::getMaxValue(Width) - *C + 1;
5635     break;
5636   case Intrinsic::ssub_sat:
5637     if (match(II.getOperand(0), m_APInt(C))) {
5638       if (C->isNegative()) {
5639         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
5640         Lower = APInt::getSignedMinValue(Width);
5641         Upper = *C - APInt::getSignedMinValue(Width) + 1;
5642       } else {
5643         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
5644         Lower = *C - APInt::getSignedMaxValue(Width);
5645         Upper = APInt::getSignedMaxValue(Width) + 1;
5646       }
5647     } else if (match(II.getOperand(1), m_APInt(C))) {
5648       if (C->isNegative()) {
5649         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
5650         Lower = APInt::getSignedMinValue(Width) - *C;
5651         Upper = APInt::getSignedMaxValue(Width) + 1;
5652       } else {
5653         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
5654         Lower = APInt::getSignedMinValue(Width);
5655         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
5656       }
5657     }
5658     break;
5659   default:
5660     break;
5661   }
5662 }
5663 
5664 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
5665                                       APInt &Upper) {
5666   const Value *LHS, *RHS;
5667   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
5668   if (R.Flavor == SPF_UNKNOWN)
5669     return;
5670 
5671   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
5672 
5673   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
5674     // If the negation part of the abs (in RHS) has the NSW flag,
5675     // then the result of abs(X) is [0..SIGNED_MAX],
5676     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
5677     Lower = APInt::getNullValue(BitWidth);
5678     if (cast<Instruction>(RHS)->hasNoSignedWrap())
5679       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
5680     else
5681       Upper = APInt::getSignedMinValue(BitWidth) + 1;
5682     return;
5683   }
5684 
5685   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
5686     // The result of -abs(X) is <= 0.
5687     Lower = APInt::getSignedMinValue(BitWidth);
5688     Upper = APInt(BitWidth, 1);
5689     return;
5690   }
5691 
5692   // TODO Handle min/max flavors.
5693 }
5694 
5695 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) {
5696   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
5697 
5698   const APInt *C;
5699   if (match(V, m_APInt(C)))
5700     return ConstantRange(*C);
5701 
5702   InstrInfoQuery IIQ(UseInstrInfo);
5703   unsigned BitWidth = V->getType()->getScalarSizeInBits();
5704   APInt Lower = APInt(BitWidth, 0);
5705   APInt Upper = APInt(BitWidth, 0);
5706   if (auto *BO = dyn_cast<BinaryOperator>(V))
5707     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
5708   else if (auto *II = dyn_cast<IntrinsicInst>(V))
5709     setLimitsForIntrinsic(*II, Lower, Upper);
5710   else if (auto *SI = dyn_cast<SelectInst>(V))
5711     setLimitsForSelectPattern(*SI, Lower, Upper);
5712 
5713   ConstantRange CR = Lower != Upper ? ConstantRange(Lower, Upper)
5714                                     : ConstantRange::getFull(BitWidth);
5715 
5716   if (auto *I = dyn_cast<Instruction>(V))
5717     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
5718       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
5719 
5720   return CR;
5721 }
5722