1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <cstring> 40 using namespace llvm; 41 using namespace llvm::PatternMatch; 42 43 const unsigned MaxDepth = 6; 44 45 /// Enable an experimental feature to leverage information about dominating 46 /// conditions to compute known bits. The individual options below control how 47 /// hard we search. The defaults are chosen to be fairly aggressive. If you 48 /// run into compile time problems when testing, scale them back and report 49 /// your findings. 50 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 51 cl::Hidden, cl::init(false)); 52 53 // This is expensive, so we only do it for the top level query value. 54 // (TODO: evaluate cost vs profit, consider higher thresholds) 55 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 56 cl::Hidden, cl::init(1)); 57 58 /// How many dominating blocks should be scanned looking for dominating 59 /// conditions? 60 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 61 cl::Hidden, 62 cl::init(20)); 63 64 // Controls the number of uses of the value searched for possible 65 // dominating comparisons. 66 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 67 cl::Hidden, cl::init(20)); 68 69 // If true, don't consider only compares whose only use is a branch. 70 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 71 cl::Hidden, cl::init(false)); 72 73 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 74 /// 0). For vector types, returns the element type's bitwidth. 75 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 76 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 77 return BitWidth; 78 79 return DL.getPointerTypeSizeInBits(Ty); 80 } 81 82 // Many of these functions have internal versions that take an assumption 83 // exclusion set. This is because of the potential for mutual recursion to 84 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 85 // classic case of this is assume(x = y), which will attempt to determine 86 // bits in x from bits in y, which will attempt to determine bits in y from 87 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 88 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 89 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 90 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 91 92 namespace { 93 // Simplifying using an assume can only be done in a particular control-flow 94 // context (the context instruction provides that context). If an assume and 95 // the context instruction are not in the same block then the DT helps in 96 // figuring out if we can use it. 97 struct Query { 98 ExclInvsSet ExclInvs; 99 AssumptionCache *AC; 100 const Instruction *CxtI; 101 const DominatorTree *DT; 102 103 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 104 const DominatorTree *DT = nullptr) 105 : AC(AC), CxtI(CxtI), DT(DT) {} 106 107 Query(const Query &Q, const Value *NewExcl) 108 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 109 ExclInvs.insert(NewExcl); 110 } 111 }; 112 } // end anonymous namespace 113 114 // Given the provided Value and, potentially, a context instruction, return 115 // the preferred context instruction (if any). 116 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 117 // If we've been provided with a context instruction, then use that (provided 118 // it has been inserted). 119 if (CxtI && CxtI->getParent()) 120 return CxtI; 121 122 // If the value is really an already-inserted instruction, then use that. 123 CxtI = dyn_cast<Instruction>(V); 124 if (CxtI && CxtI->getParent()) 125 return CxtI; 126 127 return nullptr; 128 } 129 130 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 131 const DataLayout &DL, unsigned Depth, 132 const Query &Q); 133 134 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 135 const DataLayout &DL, unsigned Depth, 136 AssumptionCache *AC, const Instruction *CxtI, 137 const DominatorTree *DT) { 138 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 139 Query(AC, safeCxtI(V, CxtI), DT)); 140 } 141 142 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 143 AssumptionCache *AC, const Instruction *CxtI, 144 const DominatorTree *DT) { 145 assert(LHS->getType() == RHS->getType() && 146 "LHS and RHS should have the same type"); 147 assert(LHS->getType()->isIntOrIntVectorTy() && 148 "LHS and RHS should be integers"); 149 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 150 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 151 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 152 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 153 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 154 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 155 } 156 157 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 158 const DataLayout &DL, unsigned Depth, 159 const Query &Q); 160 161 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 162 const DataLayout &DL, unsigned Depth, 163 AssumptionCache *AC, const Instruction *CxtI, 164 const DominatorTree *DT) { 165 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 166 Query(AC, safeCxtI(V, CxtI), DT)); 167 } 168 169 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 170 const Query &Q, const DataLayout &DL); 171 172 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 173 unsigned Depth, AssumptionCache *AC, 174 const Instruction *CxtI, 175 const DominatorTree *DT) { 176 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 177 Query(AC, safeCxtI(V, CxtI), DT), DL); 178 } 179 180 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 181 const Query &Q); 182 183 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 184 AssumptionCache *AC, const Instruction *CxtI, 185 const DominatorTree *DT) { 186 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 187 } 188 189 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 bool NonNegative, Negative; 193 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 194 return NonNegative; 195 } 196 197 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 198 const Query &Q); 199 200 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 201 AssumptionCache *AC, const Instruction *CxtI, 202 const DominatorTree *DT) { 203 return ::isKnownNonEqual(V1, V2, DL, Query(AC, 204 safeCxtI(V1, safeCxtI(V2, CxtI)), 205 DT)); 206 } 207 208 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 209 unsigned Depth, const Query &Q); 210 211 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 212 unsigned Depth, AssumptionCache *AC, 213 const Instruction *CxtI, const DominatorTree *DT) { 214 return ::MaskedValueIsZero(V, Mask, DL, Depth, 215 Query(AC, safeCxtI(V, CxtI), DT)); 216 } 217 218 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 219 unsigned Depth, const Query &Q); 220 221 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT) { 225 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 226 } 227 228 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 229 APInt &KnownZero, APInt &KnownOne, 230 APInt &KnownZero2, APInt &KnownOne2, 231 const DataLayout &DL, unsigned Depth, 232 const Query &Q) { 233 if (!Add) { 234 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 235 // We know that the top bits of C-X are clear if X contains less bits 236 // than C (i.e. no wrap-around can happen). For example, 20-X is 237 // positive if we can prove that X is >= 0 and < 16. 238 if (!CLHS->getValue().isNegative()) { 239 unsigned BitWidth = KnownZero.getBitWidth(); 240 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 241 // NLZ can't be BitWidth with no sign bit 242 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 243 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 244 245 // If all of the MaskV bits are known to be zero, then we know the 246 // output top bits are zero, because we now know that the output is 247 // from [0-C]. 248 if ((KnownZero2 & MaskV) == MaskV) { 249 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 250 // Top bits known zero. 251 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 252 } 253 } 254 } 255 } 256 257 unsigned BitWidth = KnownZero.getBitWidth(); 258 259 // If an initial sequence of bits in the result is not needed, the 260 // corresponding bits in the operands are not needed. 261 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 262 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 263 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 264 265 // Carry in a 1 for a subtract, rather than a 0. 266 APInt CarryIn(BitWidth, 0); 267 if (!Add) { 268 // Sum = LHS + ~RHS + 1 269 std::swap(KnownZero2, KnownOne2); 270 CarryIn.setBit(0); 271 } 272 273 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 274 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 275 276 // Compute known bits of the carry. 277 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 278 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 279 280 // Compute set of known bits (where all three relevant bits are known). 281 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 282 APInt RHSKnown = KnownZero2 | KnownOne2; 283 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 284 APInt Known = LHSKnown & RHSKnown & CarryKnown; 285 286 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 287 "known bits of sum differ"); 288 289 // Compute known bits of the result. 290 KnownZero = ~PossibleSumOne & Known; 291 KnownOne = PossibleSumOne & Known; 292 293 // Are we still trying to solve for the sign bit? 294 if (!Known.isNegative()) { 295 if (NSW) { 296 // Adding two non-negative numbers, or subtracting a negative number from 297 // a non-negative one, can't wrap into negative. 298 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 299 KnownZero |= APInt::getSignBit(BitWidth); 300 // Adding two negative numbers, or subtracting a non-negative number from 301 // a negative one, can't wrap into non-negative. 302 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 303 KnownOne |= APInt::getSignBit(BitWidth); 304 } 305 } 306 } 307 308 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 309 APInt &KnownZero, APInt &KnownOne, 310 APInt &KnownZero2, APInt &KnownOne2, 311 const DataLayout &DL, unsigned Depth, 312 const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 327 bool isKnownNegativeOp1 = KnownOne.isNegative(); 328 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, DL, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, DL, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 356 APInt::getHighBitsSet(BitWidth, LeadZ); 357 358 // Only make use of no-wrap flags if we failed to compute the sign bit 359 // directly. This matters if the multiplication always overflows, in 360 // which case we prefer to follow the result of the direct computation, 361 // though as the program is invoking undefined behaviour we can choose 362 // whatever we like here. 363 if (isKnownNonNegative && !KnownOne.isNegative()) 364 KnownZero.setBit(BitWidth - 1); 365 else if (isKnownNegative && !KnownZero.isNegative()) 366 KnownOne.setBit(BitWidth - 1); 367 } 368 369 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 370 APInt &KnownZero) { 371 unsigned BitWidth = KnownZero.getBitWidth(); 372 unsigned NumRanges = Ranges.getNumOperands() / 2; 373 assert(NumRanges >= 1); 374 375 // Use the high end of the ranges to find leading zeros. 376 unsigned MinLeadingZeros = BitWidth; 377 for (unsigned i = 0; i < NumRanges; ++i) { 378 ConstantInt *Lower = 379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 380 ConstantInt *Upper = 381 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 382 ConstantRange Range(Lower->getValue(), Upper->getValue()); 383 unsigned LeadingZeros = Range.getUnsignedMax().countLeadingZeros(); 384 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 385 } 386 387 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 388 } 389 390 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 391 SmallVector<const Value *, 16> WorkSet(1, I); 392 SmallPtrSet<const Value *, 32> Visited; 393 SmallPtrSet<const Value *, 16> EphValues; 394 395 // The instruction defining an assumption's condition itself is always 396 // considered ephemeral to that assumption (even if it has other 397 // non-ephemeral users). See r246696's test case for an example. 398 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 399 return true; 400 401 while (!WorkSet.empty()) { 402 const Value *V = WorkSet.pop_back_val(); 403 if (!Visited.insert(V).second) 404 continue; 405 406 // If all uses of this value are ephemeral, then so is this value. 407 if (std::all_of(V->user_begin(), V->user_end(), 408 [&](const User *U) { return EphValues.count(U); })) { 409 if (V == E) 410 return true; 411 412 EphValues.insert(V); 413 if (const User *U = dyn_cast<User>(V)) 414 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 415 J != JE; ++J) { 416 if (isSafeToSpeculativelyExecute(*J)) 417 WorkSet.push_back(*J); 418 } 419 } 420 } 421 422 return false; 423 } 424 425 // Is this an intrinsic that cannot be speculated but also cannot trap? 426 static bool isAssumeLikeIntrinsic(const Instruction *I) { 427 if (const CallInst *CI = dyn_cast<CallInst>(I)) 428 if (Function *F = CI->getCalledFunction()) 429 switch (F->getIntrinsicID()) { 430 default: break; 431 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 432 case Intrinsic::assume: 433 case Intrinsic::dbg_declare: 434 case Intrinsic::dbg_value: 435 case Intrinsic::invariant_start: 436 case Intrinsic::invariant_end: 437 case Intrinsic::lifetime_start: 438 case Intrinsic::lifetime_end: 439 case Intrinsic::objectsize: 440 case Intrinsic::ptr_annotation: 441 case Intrinsic::var_annotation: 442 return true; 443 } 444 445 return false; 446 } 447 448 static bool isValidAssumeForContext(Value *V, const Query &Q) { 449 Instruction *Inv = cast<Instruction>(V); 450 451 // There are two restrictions on the use of an assume: 452 // 1. The assume must dominate the context (or the control flow must 453 // reach the assume whenever it reaches the context). 454 // 2. The context must not be in the assume's set of ephemeral values 455 // (otherwise we will use the assume to prove that the condition 456 // feeding the assume is trivially true, thus causing the removal of 457 // the assume). 458 459 if (Q.DT) { 460 if (Q.DT->dominates(Inv, Q.CxtI)) { 461 return true; 462 } else if (Inv->getParent() == Q.CxtI->getParent()) { 463 // The context comes first, but they're both in the same block. Make sure 464 // there is nothing in between that might interrupt the control flow. 465 for (BasicBlock::const_iterator I = 466 std::next(BasicBlock::const_iterator(Q.CxtI)), 467 IE(Inv); I != IE; ++I) 468 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 469 return false; 470 471 return !isEphemeralValueOf(Inv, Q.CxtI); 472 } 473 474 return false; 475 } 476 477 // When we don't have a DT, we do a limited search... 478 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 479 return true; 480 } else if (Inv->getParent() == Q.CxtI->getParent()) { 481 // Search forward from the assume until we reach the context (or the end 482 // of the block); the common case is that the assume will come first. 483 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 484 IE = Inv->getParent()->end(); I != IE; ++I) 485 if (&*I == Q.CxtI) 486 return true; 487 488 // The context must come first... 489 for (BasicBlock::const_iterator I = 490 std::next(BasicBlock::const_iterator(Q.CxtI)), 491 IE(Inv); I != IE; ++I) 492 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 493 return false; 494 495 return !isEphemeralValueOf(Inv, Q.CxtI); 496 } 497 498 return false; 499 } 500 501 bool llvm::isValidAssumeForContext(const Instruction *I, 502 const Instruction *CxtI, 503 const DominatorTree *DT) { 504 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 505 Query(nullptr, CxtI, DT)); 506 } 507 508 template<typename LHS, typename RHS> 509 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 510 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 511 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 512 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 513 } 514 515 template<typename LHS, typename RHS> 516 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 517 BinaryOp_match<RHS, LHS, Instruction::And>> 518 m_c_And(const LHS &L, const RHS &R) { 519 return m_CombineOr(m_And(L, R), m_And(R, L)); 520 } 521 522 template<typename LHS, typename RHS> 523 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 524 BinaryOp_match<RHS, LHS, Instruction::Or>> 525 m_c_Or(const LHS &L, const RHS &R) { 526 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 527 } 528 529 template<typename LHS, typename RHS> 530 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 531 BinaryOp_match<RHS, LHS, Instruction::Xor>> 532 m_c_Xor(const LHS &L, const RHS &R) { 533 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 534 } 535 536 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 537 /// true (at the context instruction.) This is mostly a utility function for 538 /// the prototype dominating conditions reasoning below. 539 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 540 APInt &KnownZero, 541 APInt &KnownOne, 542 const DataLayout &DL, 543 unsigned Depth, const Query &Q) { 544 Value *LHS = Cmp->getOperand(0); 545 Value *RHS = Cmp->getOperand(1); 546 // TODO: We could potentially be more aggressive here. This would be worth 547 // evaluating. If we can, explore commoning this code with the assume 548 // handling logic. 549 if (LHS != V && RHS != V) 550 return; 551 552 const unsigned BitWidth = KnownZero.getBitWidth(); 553 554 switch (Cmp->getPredicate()) { 555 default: 556 // We know nothing from this condition 557 break; 558 // TODO: implement unsigned bound from below (known one bits) 559 // TODO: common condition check implementations with assumes 560 // TODO: implement other patterns from assume (e.g. V & B == A) 561 case ICmpInst::ICMP_SGT: 562 if (LHS == V) { 563 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 564 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 565 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 566 // We know that the sign bit is zero. 567 KnownZero |= APInt::getSignBit(BitWidth); 568 } 569 } 570 break; 571 case ICmpInst::ICMP_EQ: 572 { 573 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 574 if (LHS == V) 575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 576 else if (RHS == V) 577 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 578 else 579 llvm_unreachable("missing use?"); 580 KnownZero |= KnownZeroTemp; 581 KnownOne |= KnownOneTemp; 582 } 583 break; 584 case ICmpInst::ICMP_ULE: 585 if (LHS == V) { 586 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 587 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 588 // The known zero bits carry over 589 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 590 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 591 } 592 break; 593 case ICmpInst::ICMP_ULT: 594 if (LHS == V) { 595 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 596 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 597 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 598 // power of 2, then one more). 599 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 600 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 601 SignBits++; 602 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 603 } 604 break; 605 }; 606 } 607 608 /// Compute known bits in 'V' from conditions which are known to be true along 609 /// all paths leading to the context instruction. In particular, look for 610 /// cases where one branch of an interesting condition dominates the context 611 /// instruction. This does not do general dataflow. 612 /// NOTE: This code is EXPERIMENTAL and currently off by default. 613 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 614 APInt &KnownOne, 615 const DataLayout &DL, 616 unsigned Depth, 617 const Query &Q) { 618 // Need both the dominator tree and the query location to do anything useful 619 if (!Q.DT || !Q.CxtI) 620 return; 621 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 622 // The context instruction might be in a statically unreachable block. If 623 // so, asking dominator queries may yield suprising results. (e.g. the block 624 // may not have a dom tree node) 625 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 626 return; 627 628 // Avoid useless work 629 if (auto VI = dyn_cast<Instruction>(V)) 630 if (VI->getParent() == Cxt->getParent()) 631 return; 632 633 // Note: We currently implement two options. It's not clear which of these 634 // will survive long term, we need data for that. 635 // Option 1 - Try walking the dominator tree looking for conditions which 636 // might apply. This works well for local conditions (loop guards, etc..), 637 // but not as well for things far from the context instruction (presuming a 638 // low max blocks explored). If we can set an high enough limit, this would 639 // be all we need. 640 // Option 2 - We restrict out search to those conditions which are uses of 641 // the value we're interested in. This is independent of dom structure, 642 // but is slightly less powerful without looking through lots of use chains. 643 // It does handle conditions far from the context instruction (e.g. early 644 // function exits on entry) really well though. 645 646 // Option 1 - Search the dom tree 647 unsigned NumBlocksExplored = 0; 648 BasicBlock *Current = Cxt->getParent(); 649 while (true) { 650 // Stop searching if we've gone too far up the chain 651 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 652 break; 653 NumBlocksExplored++; 654 655 if (!Q.DT->getNode(Current)->getIDom()) 656 break; 657 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 658 if (!Current) 659 // found function entry 660 break; 661 662 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 663 if (!BI || BI->isUnconditional()) 664 continue; 665 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 666 if (!Cmp) 667 continue; 668 669 // We're looking for conditions that are guaranteed to hold at the context 670 // instruction. Finding a condition where one path dominates the context 671 // isn't enough because both the true and false cases could merge before 672 // the context instruction we're actually interested in. Instead, we need 673 // to ensure that the taken *edge* dominates the context instruction. We 674 // know that the edge must be reachable since we started from a reachable 675 // block. 676 BasicBlock *BB0 = BI->getSuccessor(0); 677 BasicBlockEdge Edge(BI->getParent(), BB0); 678 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 679 continue; 680 681 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 682 Q); 683 } 684 685 // Option 2 - Search the other uses of V 686 unsigned NumUsesExplored = 0; 687 for (auto U : V->users()) { 688 // Avoid massive lists 689 if (NumUsesExplored >= DomConditionsMaxUses) 690 break; 691 NumUsesExplored++; 692 // Consider only compare instructions uniquely controlling a branch 693 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 694 if (!Cmp) 695 continue; 696 697 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 698 continue; 699 700 for (auto *CmpU : Cmp->users()) { 701 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 702 if (!BI || BI->isUnconditional()) 703 continue; 704 // We're looking for conditions that are guaranteed to hold at the 705 // context instruction. Finding a condition where one path dominates 706 // the context isn't enough because both the true and false cases could 707 // merge before the context instruction we're actually interested in. 708 // Instead, we need to ensure that the taken *edge* dominates the context 709 // instruction. 710 BasicBlock *BB0 = BI->getSuccessor(0); 711 BasicBlockEdge Edge(BI->getParent(), BB0); 712 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 713 continue; 714 715 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 716 Q); 717 } 718 } 719 } 720 721 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 722 APInt &KnownOne, const DataLayout &DL, 723 unsigned Depth, const Query &Q) { 724 // Use of assumptions is context-sensitive. If we don't have a context, we 725 // cannot use them! 726 if (!Q.AC || !Q.CxtI) 727 return; 728 729 unsigned BitWidth = KnownZero.getBitWidth(); 730 731 for (auto &AssumeVH : Q.AC->assumptions()) { 732 if (!AssumeVH) 733 continue; 734 CallInst *I = cast<CallInst>(AssumeVH); 735 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 736 "Got assumption for the wrong function!"); 737 if (Q.ExclInvs.count(I)) 738 continue; 739 740 // Warning: This loop can end up being somewhat performance sensetive. 741 // We're running this loop for once for each value queried resulting in a 742 // runtime of ~O(#assumes * #values). 743 744 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 745 "must be an assume intrinsic"); 746 747 Value *Arg = I->getArgOperand(0); 748 749 if (Arg == V && isValidAssumeForContext(I, Q)) { 750 assert(BitWidth == 1 && "assume operand is not i1?"); 751 KnownZero.clearAllBits(); 752 KnownOne.setAllBits(); 753 return; 754 } 755 756 // The remaining tests are all recursive, so bail out if we hit the limit. 757 if (Depth == MaxDepth) 758 continue; 759 760 Value *A, *B; 761 auto m_V = m_CombineOr(m_Specific(V), 762 m_CombineOr(m_PtrToInt(m_Specific(V)), 763 m_BitCast(m_Specific(V)))); 764 765 CmpInst::Predicate Pred; 766 ConstantInt *C; 767 // assume(v = a) 768 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 769 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 770 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 771 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 772 KnownZero |= RHSKnownZero; 773 KnownOne |= RHSKnownOne; 774 // assume(v & b = a) 775 } else if (match(Arg, 776 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 780 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 781 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 782 783 // For those bits in the mask that are known to be one, we can propagate 784 // known bits from the RHS to V. 785 KnownZero |= RHSKnownZero & MaskKnownOne; 786 KnownOne |= RHSKnownOne & MaskKnownOne; 787 // assume(~(v & b) = a) 788 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 789 m_Value(A))) && 790 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 791 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 792 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 793 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 794 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 795 796 // For those bits in the mask that are known to be one, we can propagate 797 // inverted known bits from the RHS to V. 798 KnownZero |= RHSKnownOne & MaskKnownOne; 799 KnownOne |= RHSKnownZero & MaskKnownOne; 800 // assume(v | b = a) 801 } else if (match(Arg, 802 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 803 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 804 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 805 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 806 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 807 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 808 809 // For those bits in B that are known to be zero, we can propagate known 810 // bits from the RHS to V. 811 KnownZero |= RHSKnownZero & BKnownZero; 812 KnownOne |= RHSKnownOne & BKnownZero; 813 // assume(~(v | b) = a) 814 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 815 m_Value(A))) && 816 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 817 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 818 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 819 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 820 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 821 822 // For those bits in B that are known to be zero, we can propagate 823 // inverted known bits from the RHS to V. 824 KnownZero |= RHSKnownOne & BKnownZero; 825 KnownOne |= RHSKnownZero & BKnownZero; 826 // assume(v ^ b = a) 827 } else if (match(Arg, 828 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 829 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 830 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 831 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 832 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 833 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 834 835 // For those bits in B that are known to be zero, we can propagate known 836 // bits from the RHS to V. For those bits in B that are known to be one, 837 // we can propagate inverted known bits from the RHS to V. 838 KnownZero |= RHSKnownZero & BKnownZero; 839 KnownOne |= RHSKnownOne & BKnownZero; 840 KnownZero |= RHSKnownOne & BKnownOne; 841 KnownOne |= RHSKnownZero & BKnownOne; 842 // assume(~(v ^ b) = a) 843 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 844 m_Value(A))) && 845 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 846 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 847 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 848 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 849 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. For those bits in B that are 853 // known to be one, we can propagate known bits from the RHS to V. 854 KnownZero |= RHSKnownOne & BKnownZero; 855 KnownOne |= RHSKnownZero & BKnownZero; 856 KnownZero |= RHSKnownZero & BKnownOne; 857 KnownOne |= RHSKnownOne & BKnownOne; 858 // assume(v << c = a) 859 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 860 m_Value(A))) && 861 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 862 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 863 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 864 // For those bits in RHS that are known, we can propagate them to known 865 // bits in V shifted to the right by C. 866 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 867 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 868 // assume(~(v << c) = a) 869 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 870 m_Value(A))) && 871 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 872 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 873 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 874 // For those bits in RHS that are known, we can propagate them inverted 875 // to known bits in V shifted to the right by C. 876 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 877 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 878 // assume(v >> c = a) 879 } else if (match(Arg, 880 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 881 m_AShr(m_V, m_ConstantInt(C))), 882 m_Value(A))) && 883 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 884 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 885 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 886 // For those bits in RHS that are known, we can propagate them to known 887 // bits in V shifted to the right by C. 888 KnownZero |= RHSKnownZero << C->getZExtValue(); 889 KnownOne |= RHSKnownOne << C->getZExtValue(); 890 // assume(~(v >> c) = a) 891 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 892 m_LShr(m_V, m_ConstantInt(C)), 893 m_AShr(m_V, m_ConstantInt(C)))), 894 m_Value(A))) && 895 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 896 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 897 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 898 // For those bits in RHS that are known, we can propagate them inverted 899 // to known bits in V shifted to the right by C. 900 KnownZero |= RHSKnownOne << C->getZExtValue(); 901 KnownOne |= RHSKnownZero << C->getZExtValue(); 902 // assume(v >=_s c) where c is non-negative 903 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 904 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 905 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 906 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 907 908 if (RHSKnownZero.isNegative()) { 909 // We know that the sign bit is zero. 910 KnownZero |= APInt::getSignBit(BitWidth); 911 } 912 // assume(v >_s c) where c is at least -1. 913 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 914 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 915 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 916 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 917 918 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 919 // We know that the sign bit is zero. 920 KnownZero |= APInt::getSignBit(BitWidth); 921 } 922 // assume(v <=_s c) where c is negative 923 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 924 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 925 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 926 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 927 928 if (RHSKnownOne.isNegative()) { 929 // We know that the sign bit is one. 930 KnownOne |= APInt::getSignBit(BitWidth); 931 } 932 // assume(v <_s c) where c is non-positive 933 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 934 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 937 938 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 939 // We know that the sign bit is one. 940 KnownOne |= APInt::getSignBit(BitWidth); 941 } 942 // assume(v <=_u c) 943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 944 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 945 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 946 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 947 948 // Whatever high bits in c are zero are known to be zero. 949 KnownZero |= 950 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 951 // assume(v <_u c) 952 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 953 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 954 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 955 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 956 957 // Whatever high bits in c are zero are known to be zero (if c is a power 958 // of 2, then one more). 959 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 960 KnownZero |= 961 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 962 else 963 KnownZero |= 964 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 965 } 966 } 967 } 968 969 // Compute known bits from a shift operator, including those with a 970 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 971 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 972 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 973 // functors that, given the known-zero or known-one bits respectively, and a 974 // shift amount, compute the implied known-zero or known-one bits of the shift 975 // operator's result respectively for that shift amount. The results from calling 976 // KZF and KOF are conservatively combined for all permitted shift amounts. 977 template <typename KZFunctor, typename KOFunctor> 978 static void computeKnownBitsFromShiftOperator(Operator *I, 979 APInt &KnownZero, APInt &KnownOne, 980 APInt &KnownZero2, APInt &KnownOne2, 981 const DataLayout &DL, unsigned Depth, const Query &Q, 982 KZFunctor KZF, KOFunctor KOF) { 983 unsigned BitWidth = KnownZero.getBitWidth(); 984 985 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 986 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 987 988 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 989 KnownZero = KZF(KnownZero, ShiftAmt); 990 KnownOne = KOF(KnownOne, ShiftAmt); 991 return; 992 } 993 994 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 995 996 // Note: We cannot use KnownZero.getLimitedValue() here, because if 997 // BitWidth > 64 and any upper bits are known, we'll end up returning the 998 // limit value (which implies all bits are known). 999 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1000 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1001 1002 // It would be more-clearly correct to use the two temporaries for this 1003 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1004 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1005 1006 // If we know the shifter operand is nonzero, we can sometimes infer more 1007 // known bits. However this is expensive to compute, so be lazy about it and 1008 // only compute it when absolutely necessary. 1009 Optional<bool> ShifterOperandIsNonZero; 1010 1011 // Early exit if we can't constrain any well-defined shift amount. 1012 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1013 ShifterOperandIsNonZero = 1014 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1015 if (!*ShifterOperandIsNonZero) 1016 return; 1017 } 1018 1019 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1020 1021 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1022 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1023 // Combine the shifted known input bits only for those shift amounts 1024 // compatible with its known constraints. 1025 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1026 continue; 1027 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1028 continue; 1029 // If we know the shifter is nonzero, we may be able to infer more known 1030 // bits. This check is sunk down as far as possible to avoid the expensive 1031 // call to isKnownNonZero if the cheaper checks above fail. 1032 if (ShiftAmt == 0) { 1033 if (!ShifterOperandIsNonZero.hasValue()) 1034 ShifterOperandIsNonZero = 1035 isKnownNonZero(I->getOperand(1), DL, Depth + 1, Q); 1036 if (*ShifterOperandIsNonZero) 1037 continue; 1038 } 1039 1040 KnownZero &= KZF(KnownZero2, ShiftAmt); 1041 KnownOne &= KOF(KnownOne2, ShiftAmt); 1042 } 1043 1044 // If there are no compatible shift amounts, then we've proven that the shift 1045 // amount must be >= the BitWidth, and the result is undefined. We could 1046 // return anything we'd like, but we need to make sure the sets of known bits 1047 // stay disjoint (it should be better for some other code to actually 1048 // propagate the undef than to pick a value here using known bits). 1049 if ((KnownZero & KnownOne) != 0) 1050 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1051 } 1052 1053 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1054 APInt &KnownOne, const DataLayout &DL, 1055 unsigned Depth, const Query &Q) { 1056 unsigned BitWidth = KnownZero.getBitWidth(); 1057 1058 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1059 switch (I->getOpcode()) { 1060 default: break; 1061 case Instruction::Load: 1062 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1063 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1064 break; 1065 case Instruction::And: { 1066 // If either the LHS or the RHS are Zero, the result is zero. 1067 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1068 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1069 1070 // Output known-1 bits are only known if set in both the LHS & RHS. 1071 KnownOne &= KnownOne2; 1072 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1073 KnownZero |= KnownZero2; 1074 break; 1075 } 1076 case Instruction::Or: { 1077 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1078 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1079 1080 // Output known-0 bits are only known if clear in both the LHS & RHS. 1081 KnownZero &= KnownZero2; 1082 // Output known-1 are known to be set if set in either the LHS | RHS. 1083 KnownOne |= KnownOne2; 1084 break; 1085 } 1086 case Instruction::Xor: { 1087 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1088 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1089 1090 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1091 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1092 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1093 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1094 KnownZero = KnownZeroOut; 1095 break; 1096 } 1097 case Instruction::Mul: { 1098 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1099 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1100 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1101 break; 1102 } 1103 case Instruction::UDiv: { 1104 // For the purposes of computing leading zeros we can conservatively 1105 // treat a udiv as a logical right shift by the power of 2 known to 1106 // be less than the denominator. 1107 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1108 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1109 1110 KnownOne2.clearAllBits(); 1111 KnownZero2.clearAllBits(); 1112 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1113 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1114 if (RHSUnknownLeadingOnes != BitWidth) 1115 LeadZ = std::min(BitWidth, 1116 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1117 1118 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1119 break; 1120 } 1121 case Instruction::Select: 1122 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1123 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1124 1125 // Only known if known in both the LHS and RHS. 1126 KnownOne &= KnownOne2; 1127 KnownZero &= KnownZero2; 1128 break; 1129 case Instruction::FPTrunc: 1130 case Instruction::FPExt: 1131 case Instruction::FPToUI: 1132 case Instruction::FPToSI: 1133 case Instruction::SIToFP: 1134 case Instruction::UIToFP: 1135 break; // Can't work with floating point. 1136 case Instruction::PtrToInt: 1137 case Instruction::IntToPtr: 1138 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1139 // FALL THROUGH and handle them the same as zext/trunc. 1140 case Instruction::ZExt: 1141 case Instruction::Trunc: { 1142 Type *SrcTy = I->getOperand(0)->getType(); 1143 1144 unsigned SrcBitWidth; 1145 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1146 // which fall through here. 1147 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1148 1149 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1150 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1151 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1152 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1153 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1154 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1155 // Any top bits are known to be zero. 1156 if (BitWidth > SrcBitWidth) 1157 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1158 break; 1159 } 1160 case Instruction::BitCast: { 1161 Type *SrcTy = I->getOperand(0)->getType(); 1162 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1163 SrcTy->isFloatingPointTy()) && 1164 // TODO: For now, not handling conversions like: 1165 // (bitcast i64 %x to <2 x i32>) 1166 !I->getType()->isVectorTy()) { 1167 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1168 break; 1169 } 1170 break; 1171 } 1172 case Instruction::SExt: { 1173 // Compute the bits in the result that are not present in the input. 1174 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1175 1176 KnownZero = KnownZero.trunc(SrcBitWidth); 1177 KnownOne = KnownOne.trunc(SrcBitWidth); 1178 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1179 KnownZero = KnownZero.zext(BitWidth); 1180 KnownOne = KnownOne.zext(BitWidth); 1181 1182 // If the sign bit of the input is known set or clear, then we know the 1183 // top bits of the result. 1184 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1185 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1186 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1187 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1188 break; 1189 } 1190 case Instruction::Shl: { 1191 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1192 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1193 return (KnownZero << ShiftAmt) | 1194 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1195 }; 1196 1197 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1198 return KnownOne << ShiftAmt; 1199 }; 1200 1201 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1202 KnownZero2, KnownOne2, DL, Depth, Q, 1203 KZF, KOF); 1204 break; 1205 } 1206 case Instruction::LShr: { 1207 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1208 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1209 return APIntOps::lshr(KnownZero, ShiftAmt) | 1210 // High bits known zero. 1211 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1212 }; 1213 1214 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1215 return APIntOps::lshr(KnownOne, ShiftAmt); 1216 }; 1217 1218 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1219 KnownZero2, KnownOne2, DL, Depth, Q, 1220 KZF, KOF); 1221 break; 1222 } 1223 case Instruction::AShr: { 1224 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1225 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1226 return APIntOps::ashr(KnownZero, ShiftAmt); 1227 }; 1228 1229 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1230 return APIntOps::ashr(KnownOne, ShiftAmt); 1231 }; 1232 1233 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1234 KnownZero2, KnownOne2, DL, Depth, Q, 1235 KZF, KOF); 1236 break; 1237 } 1238 case Instruction::Sub: { 1239 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1240 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1241 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1242 Depth, Q); 1243 break; 1244 } 1245 case Instruction::Add: { 1246 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1247 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1248 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1249 Depth, Q); 1250 break; 1251 } 1252 case Instruction::SRem: 1253 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1254 APInt RA = Rem->getValue().abs(); 1255 if (RA.isPowerOf2()) { 1256 APInt LowBits = RA - 1; 1257 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1258 Q); 1259 1260 // The low bits of the first operand are unchanged by the srem. 1261 KnownZero = KnownZero2 & LowBits; 1262 KnownOne = KnownOne2 & LowBits; 1263 1264 // If the first operand is non-negative or has all low bits zero, then 1265 // the upper bits are all zero. 1266 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1267 KnownZero |= ~LowBits; 1268 1269 // If the first operand is negative and not all low bits are zero, then 1270 // the upper bits are all one. 1271 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1272 KnownOne |= ~LowBits; 1273 1274 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1275 } 1276 } 1277 1278 // The sign bit is the LHS's sign bit, except when the result of the 1279 // remainder is zero. 1280 if (KnownZero.isNonNegative()) { 1281 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1282 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1283 Depth + 1, Q); 1284 // If it's known zero, our sign bit is also zero. 1285 if (LHSKnownZero.isNegative()) 1286 KnownZero.setBit(BitWidth - 1); 1287 } 1288 1289 break; 1290 case Instruction::URem: { 1291 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1292 APInt RA = Rem->getValue(); 1293 if (RA.isPowerOf2()) { 1294 APInt LowBits = (RA - 1); 1295 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1296 Q); 1297 KnownZero |= ~LowBits; 1298 KnownOne &= LowBits; 1299 break; 1300 } 1301 } 1302 1303 // Since the result is less than or equal to either operand, any leading 1304 // zero bits in either operand must also exist in the result. 1305 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1306 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1307 1308 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1309 KnownZero2.countLeadingOnes()); 1310 KnownOne.clearAllBits(); 1311 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1312 break; 1313 } 1314 1315 case Instruction::Alloca: { 1316 AllocaInst *AI = cast<AllocaInst>(I); 1317 unsigned Align = AI->getAlignment(); 1318 if (Align == 0) 1319 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1320 1321 if (Align > 0) 1322 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1323 break; 1324 } 1325 case Instruction::GetElementPtr: { 1326 // Analyze all of the subscripts of this getelementptr instruction 1327 // to determine if we can prove known low zero bits. 1328 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1329 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1330 Depth + 1, Q); 1331 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1332 1333 gep_type_iterator GTI = gep_type_begin(I); 1334 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1335 Value *Index = I->getOperand(i); 1336 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1337 // Handle struct member offset arithmetic. 1338 1339 // Handle case when index is vector zeroinitializer 1340 Constant *CIndex = cast<Constant>(Index); 1341 if (CIndex->isZeroValue()) 1342 continue; 1343 1344 if (CIndex->getType()->isVectorTy()) 1345 Index = CIndex->getSplatValue(); 1346 1347 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1348 const StructLayout *SL = DL.getStructLayout(STy); 1349 uint64_t Offset = SL->getElementOffset(Idx); 1350 TrailZ = std::min<unsigned>(TrailZ, 1351 countTrailingZeros(Offset)); 1352 } else { 1353 // Handle array index arithmetic. 1354 Type *IndexedTy = GTI.getIndexedType(); 1355 if (!IndexedTy->isSized()) { 1356 TrailZ = 0; 1357 break; 1358 } 1359 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1360 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1361 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1362 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1363 Q); 1364 TrailZ = std::min(TrailZ, 1365 unsigned(countTrailingZeros(TypeSize) + 1366 LocalKnownZero.countTrailingOnes())); 1367 } 1368 } 1369 1370 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1371 break; 1372 } 1373 case Instruction::PHI: { 1374 PHINode *P = cast<PHINode>(I); 1375 // Handle the case of a simple two-predecessor recurrence PHI. 1376 // There's a lot more that could theoretically be done here, but 1377 // this is sufficient to catch some interesting cases. 1378 if (P->getNumIncomingValues() == 2) { 1379 for (unsigned i = 0; i != 2; ++i) { 1380 Value *L = P->getIncomingValue(i); 1381 Value *R = P->getIncomingValue(!i); 1382 Operator *LU = dyn_cast<Operator>(L); 1383 if (!LU) 1384 continue; 1385 unsigned Opcode = LU->getOpcode(); 1386 // Check for operations that have the property that if 1387 // both their operands have low zero bits, the result 1388 // will have low zero bits. 1389 if (Opcode == Instruction::Add || 1390 Opcode == Instruction::Sub || 1391 Opcode == Instruction::And || 1392 Opcode == Instruction::Or || 1393 Opcode == Instruction::Mul) { 1394 Value *LL = LU->getOperand(0); 1395 Value *LR = LU->getOperand(1); 1396 // Find a recurrence. 1397 if (LL == I) 1398 L = LR; 1399 else if (LR == I) 1400 L = LL; 1401 else 1402 break; 1403 // Ok, we have a PHI of the form L op= R. Check for low 1404 // zero bits. 1405 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1406 1407 // We need to take the minimum number of known bits 1408 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1409 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1410 1411 KnownZero = APInt::getLowBitsSet(BitWidth, 1412 std::min(KnownZero2.countTrailingOnes(), 1413 KnownZero3.countTrailingOnes())); 1414 break; 1415 } 1416 } 1417 } 1418 1419 // Unreachable blocks may have zero-operand PHI nodes. 1420 if (P->getNumIncomingValues() == 0) 1421 break; 1422 1423 // Otherwise take the unions of the known bit sets of the operands, 1424 // taking conservative care to avoid excessive recursion. 1425 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1426 // Skip if every incoming value references to ourself. 1427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1428 break; 1429 1430 KnownZero = APInt::getAllOnesValue(BitWidth); 1431 KnownOne = APInt::getAllOnesValue(BitWidth); 1432 for (Value *IncValue : P->incoming_values()) { 1433 // Skip direct self references. 1434 if (IncValue == P) continue; 1435 1436 KnownZero2 = APInt(BitWidth, 0); 1437 KnownOne2 = APInt(BitWidth, 0); 1438 // Recurse, but cap the recursion to one level, because we don't 1439 // want to waste time spinning around in loops. 1440 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1441 MaxDepth - 1, Q); 1442 KnownZero &= KnownZero2; 1443 KnownOne &= KnownOne2; 1444 // If all bits have been ruled out, there's no need to check 1445 // more operands. 1446 if (!KnownZero && !KnownOne) 1447 break; 1448 } 1449 } 1450 break; 1451 } 1452 case Instruction::Call: 1453 case Instruction::Invoke: 1454 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1455 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1456 // If a range metadata is attached to this IntrinsicInst, intersect the 1457 // explicit range specified by the metadata and the implicit range of 1458 // the intrinsic. 1459 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1460 switch (II->getIntrinsicID()) { 1461 default: break; 1462 case Intrinsic::bswap: 1463 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1464 Depth + 1, Q); 1465 KnownZero |= KnownZero2.byteSwap(); 1466 KnownOne |= KnownOne2.byteSwap(); 1467 break; 1468 case Intrinsic::ctlz: 1469 case Intrinsic::cttz: { 1470 unsigned LowBits = Log2_32(BitWidth)+1; 1471 // If this call is undefined for 0, the result will be less than 2^n. 1472 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1473 LowBits -= 1; 1474 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1475 break; 1476 } 1477 case Intrinsic::ctpop: { 1478 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1479 Depth + 1, Q); 1480 // We can bound the space the count needs. Also, bits known to be zero 1481 // can't contribute to the population. 1482 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1483 unsigned LeadingZeros = 1484 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1485 assert(LeadingZeros <= BitWidth); 1486 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1487 KnownOne &= ~KnownZero; 1488 // TODO: we could bound KnownOne using the lower bound on the number 1489 // of bits which might be set provided by popcnt KnownOne2. 1490 break; 1491 } 1492 case Intrinsic::fabs: { 1493 Type *Ty = II->getType(); 1494 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1495 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1496 break; 1497 } 1498 case Intrinsic::x86_sse42_crc32_64_64: 1499 KnownZero |= APInt::getHighBitsSet(64, 32); 1500 break; 1501 } 1502 } 1503 break; 1504 case Instruction::ExtractValue: 1505 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1506 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1507 if (EVI->getNumIndices() != 1) break; 1508 if (EVI->getIndices()[0] == 0) { 1509 switch (II->getIntrinsicID()) { 1510 default: break; 1511 case Intrinsic::uadd_with_overflow: 1512 case Intrinsic::sadd_with_overflow: 1513 computeKnownBitsAddSub(true, II->getArgOperand(0), 1514 II->getArgOperand(1), false, KnownZero, 1515 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1516 break; 1517 case Intrinsic::usub_with_overflow: 1518 case Intrinsic::ssub_with_overflow: 1519 computeKnownBitsAddSub(false, II->getArgOperand(0), 1520 II->getArgOperand(1), false, KnownZero, 1521 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1522 break; 1523 case Intrinsic::umul_with_overflow: 1524 case Intrinsic::smul_with_overflow: 1525 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1526 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1527 Depth, Q); 1528 break; 1529 } 1530 } 1531 } 1532 } 1533 } 1534 1535 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1536 unsigned Align = 0; 1537 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1538 Align = GO->getAlignment(); 1539 if (Align == 0) { 1540 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1541 Type *ObjectType = GVar->getType()->getElementType(); 1542 if (ObjectType->isSized()) { 1543 // If the object is defined in the current Module, we'll be giving 1544 // it the preferred alignment. Otherwise, we have to assume that it 1545 // may only have the minimum ABI alignment. 1546 if (GVar->isStrongDefinitionForLinker()) 1547 Align = DL.getPreferredAlignment(GVar); 1548 else 1549 Align = DL.getABITypeAlignment(ObjectType); 1550 } 1551 } 1552 } 1553 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1554 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1555 1556 if (!Align && A->hasStructRetAttr()) { 1557 // An sret parameter has at least the ABI alignment of the return type. 1558 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1559 if (EltTy->isSized()) 1560 Align = DL.getABITypeAlignment(EltTy); 1561 } 1562 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1563 Align = AI->getAlignment(); 1564 else if (auto CS = ImmutableCallSite(V)) 1565 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1566 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1567 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1568 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1569 Align = CI->getLimitedValue(); 1570 } 1571 1572 return Align; 1573 } 1574 1575 /// Determine which bits of V are known to be either zero or one and return 1576 /// them in the KnownZero/KnownOne bit sets. 1577 /// 1578 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1579 /// we cannot optimize based on the assumption that it is zero without changing 1580 /// it to be an explicit zero. If we don't change it to zero, other code could 1581 /// optimized based on the contradictory assumption that it is non-zero. 1582 /// Because instcombine aggressively folds operations with undef args anyway, 1583 /// this won't lose us code quality. 1584 /// 1585 /// This function is defined on values with integer type, values with pointer 1586 /// type, and vectors of integers. In the case 1587 /// where V is a vector, known zero, and known one values are the 1588 /// same width as the vector element, and the bit is set only if it is true 1589 /// for all of the elements in the vector. 1590 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1591 const DataLayout &DL, unsigned Depth, const Query &Q) { 1592 assert(V && "No Value?"); 1593 assert(Depth <= MaxDepth && "Limit Search Depth"); 1594 unsigned BitWidth = KnownZero.getBitWidth(); 1595 1596 assert((V->getType()->isIntOrIntVectorTy() || 1597 V->getType()->isFPOrFPVectorTy() || 1598 V->getType()->getScalarType()->isPointerTy()) && 1599 "Not integer, floating point, or pointer type!"); 1600 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1601 (!V->getType()->isIntOrIntVectorTy() || 1602 V->getType()->getScalarSizeInBits() == BitWidth) && 1603 KnownZero.getBitWidth() == BitWidth && 1604 KnownOne.getBitWidth() == BitWidth && 1605 "V, KnownOne and KnownZero should have same BitWidth"); 1606 1607 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1608 // We know all of the bits for a constant! 1609 KnownOne = CI->getValue(); 1610 KnownZero = ~KnownOne; 1611 return; 1612 } 1613 // Null and aggregate-zero are all-zeros. 1614 if (isa<ConstantPointerNull>(V) || 1615 isa<ConstantAggregateZero>(V)) { 1616 KnownOne.clearAllBits(); 1617 KnownZero = APInt::getAllOnesValue(BitWidth); 1618 return; 1619 } 1620 // Handle a constant vector by taking the intersection of the known bits of 1621 // each element. There is no real need to handle ConstantVector here, because 1622 // we don't handle undef in any particularly useful way. 1623 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1624 // We know that CDS must be a vector of integers. Take the intersection of 1625 // each element. 1626 KnownZero.setAllBits(); KnownOne.setAllBits(); 1627 APInt Elt(KnownZero.getBitWidth(), 0); 1628 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1629 Elt = CDS->getElementAsInteger(i); 1630 KnownZero &= ~Elt; 1631 KnownOne &= Elt; 1632 } 1633 return; 1634 } 1635 1636 // Start out not knowing anything. 1637 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1638 1639 // Limit search depth. 1640 // All recursive calls that increase depth must come after this. 1641 if (Depth == MaxDepth) 1642 return; 1643 1644 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1645 // the bits of its aliasee. 1646 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1647 if (!GA->mayBeOverridden()) 1648 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1649 return; 1650 } 1651 1652 if (Operator *I = dyn_cast<Operator>(V)) 1653 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1654 1655 // Aligned pointers have trailing zeros - refine KnownZero set 1656 if (V->getType()->isPointerTy()) { 1657 unsigned Align = getAlignment(V, DL); 1658 if (Align) 1659 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1660 } 1661 1662 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1663 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1664 // computeKnownBitsFromOperator. 1665 1666 // Check whether a nearby assume intrinsic can determine some known bits. 1667 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1668 1669 // Check whether there's a dominating condition which implies something about 1670 // this value at the given context. 1671 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1672 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1673 Q); 1674 1675 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1676 } 1677 1678 /// Determine whether the sign bit is known to be zero or one. 1679 /// Convenience wrapper around computeKnownBits. 1680 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1681 const DataLayout &DL, unsigned Depth, const Query &Q) { 1682 unsigned BitWidth = getBitWidth(V->getType(), DL); 1683 if (!BitWidth) { 1684 KnownZero = false; 1685 KnownOne = false; 1686 return; 1687 } 1688 APInt ZeroBits(BitWidth, 0); 1689 APInt OneBits(BitWidth, 0); 1690 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1691 KnownOne = OneBits[BitWidth - 1]; 1692 KnownZero = ZeroBits[BitWidth - 1]; 1693 } 1694 1695 /// Return true if the given value is known to have exactly one 1696 /// bit set when defined. For vectors return true if every element is known to 1697 /// be a power of two when defined. Supports values with integer or pointer 1698 /// types and vectors of integers. 1699 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1700 const Query &Q, const DataLayout &DL) { 1701 if (Constant *C = dyn_cast<Constant>(V)) { 1702 if (C->isNullValue()) 1703 return OrZero; 1704 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1705 return CI->getValue().isPowerOf2(); 1706 // TODO: Handle vector constants. 1707 } 1708 1709 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1710 // it is shifted off the end then the result is undefined. 1711 if (match(V, m_Shl(m_One(), m_Value()))) 1712 return true; 1713 1714 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1715 // bottom. If it is shifted off the bottom then the result is undefined. 1716 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1717 return true; 1718 1719 // The remaining tests are all recursive, so bail out if we hit the limit. 1720 if (Depth++ == MaxDepth) 1721 return false; 1722 1723 Value *X = nullptr, *Y = nullptr; 1724 // A shift of a power of two is a power of two or zero. 1725 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1726 match(V, m_Shr(m_Value(X), m_Value())))) 1727 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1728 1729 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1730 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1731 1732 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1733 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1734 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1735 1736 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1737 // A power of two and'd with anything is a power of two or zero. 1738 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1739 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1740 return true; 1741 // X & (-X) is always a power of two or zero. 1742 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1743 return true; 1744 return false; 1745 } 1746 1747 // Adding a power-of-two or zero to the same power-of-two or zero yields 1748 // either the original power-of-two, a larger power-of-two or zero. 1749 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1750 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1751 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1752 if (match(X, m_And(m_Specific(Y), m_Value())) || 1753 match(X, m_And(m_Value(), m_Specific(Y)))) 1754 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1755 return true; 1756 if (match(Y, m_And(m_Specific(X), m_Value())) || 1757 match(Y, m_And(m_Value(), m_Specific(X)))) 1758 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1759 return true; 1760 1761 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1762 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1763 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1764 1765 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1766 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1767 // If i8 V is a power of two or zero: 1768 // ZeroBits: 1 1 1 0 1 1 1 1 1769 // ~ZeroBits: 0 0 0 1 0 0 0 0 1770 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1771 // If OrZero isn't set, we cannot give back a zero result. 1772 // Make sure either the LHS or RHS has a bit set. 1773 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1774 return true; 1775 } 1776 } 1777 1778 // An exact divide or right shift can only shift off zero bits, so the result 1779 // is a power of two only if the first operand is a power of two and not 1780 // copying a sign bit (sdiv int_min, 2). 1781 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1782 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1783 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1784 Depth, Q, DL); 1785 } 1786 1787 return false; 1788 } 1789 1790 /// \brief Test whether a GEP's result is known to be non-null. 1791 /// 1792 /// Uses properties inherent in a GEP to try to determine whether it is known 1793 /// to be non-null. 1794 /// 1795 /// Currently this routine does not support vector GEPs. 1796 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1797 unsigned Depth, const Query &Q) { 1798 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1799 return false; 1800 1801 // FIXME: Support vector-GEPs. 1802 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1803 1804 // If the base pointer is non-null, we cannot walk to a null address with an 1805 // inbounds GEP in address space zero. 1806 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1807 return true; 1808 1809 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1810 // If so, then the GEP cannot produce a null pointer, as doing so would 1811 // inherently violate the inbounds contract within address space zero. 1812 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1813 GTI != GTE; ++GTI) { 1814 // Struct types are easy -- they must always be indexed by a constant. 1815 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1816 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1817 unsigned ElementIdx = OpC->getZExtValue(); 1818 const StructLayout *SL = DL.getStructLayout(STy); 1819 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1820 if (ElementOffset > 0) 1821 return true; 1822 continue; 1823 } 1824 1825 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1826 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1827 continue; 1828 1829 // Fast path the constant operand case both for efficiency and so we don't 1830 // increment Depth when just zipping down an all-constant GEP. 1831 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1832 if (!OpC->isZero()) 1833 return true; 1834 continue; 1835 } 1836 1837 // We post-increment Depth here because while isKnownNonZero increments it 1838 // as well, when we pop back up that increment won't persist. We don't want 1839 // to recurse 10k times just because we have 10k GEP operands. We don't 1840 // bail completely out because we want to handle constant GEPs regardless 1841 // of depth. 1842 if (Depth++ >= MaxDepth) 1843 continue; 1844 1845 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1846 return true; 1847 } 1848 1849 return false; 1850 } 1851 1852 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1853 /// ensure that the value it's attached to is never Value? 'RangeType' is 1854 /// is the type of the value described by the range. 1855 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1856 const APInt& Value) { 1857 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1858 assert(NumRanges >= 1); 1859 for (unsigned i = 0; i < NumRanges; ++i) { 1860 ConstantInt *Lower = 1861 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1862 ConstantInt *Upper = 1863 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1864 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1865 if (Range.contains(Value)) 1866 return false; 1867 } 1868 return true; 1869 } 1870 1871 /// Return true if the given value is known to be non-zero when defined. 1872 /// For vectors return true if every element is known to be non-zero when 1873 /// defined. Supports values with integer or pointer type and vectors of 1874 /// integers. 1875 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1876 const Query &Q) { 1877 if (Constant *C = dyn_cast<Constant>(V)) { 1878 if (C->isNullValue()) 1879 return false; 1880 if (isa<ConstantInt>(C)) 1881 // Must be non-zero due to null test above. 1882 return true; 1883 // TODO: Handle vectors 1884 return false; 1885 } 1886 1887 if (Instruction* I = dyn_cast<Instruction>(V)) { 1888 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1889 // If the possible ranges don't contain zero, then the value is 1890 // definitely non-zero. 1891 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1892 const APInt ZeroValue(Ty->getBitWidth(), 0); 1893 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1894 return true; 1895 } 1896 } 1897 } 1898 1899 // The remaining tests are all recursive, so bail out if we hit the limit. 1900 if (Depth++ >= MaxDepth) 1901 return false; 1902 1903 // Check for pointer simplifications. 1904 if (V->getType()->isPointerTy()) { 1905 if (isKnownNonNull(V)) 1906 return true; 1907 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1908 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1909 return true; 1910 } 1911 1912 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1913 1914 // X | Y != 0 if X != 0 or Y != 0. 1915 Value *X = nullptr, *Y = nullptr; 1916 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1917 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1918 1919 // ext X != 0 if X != 0. 1920 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1921 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1922 1923 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1924 // if the lowest bit is shifted off the end. 1925 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1926 // shl nuw can't remove any non-zero bits. 1927 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1928 if (BO->hasNoUnsignedWrap()) 1929 return isKnownNonZero(X, DL, Depth, Q); 1930 1931 APInt KnownZero(BitWidth, 0); 1932 APInt KnownOne(BitWidth, 0); 1933 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1934 if (KnownOne[0]) 1935 return true; 1936 } 1937 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1938 // defined if the sign bit is shifted off the end. 1939 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1940 // shr exact can only shift out zero bits. 1941 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1942 if (BO->isExact()) 1943 return isKnownNonZero(X, DL, Depth, Q); 1944 1945 bool XKnownNonNegative, XKnownNegative; 1946 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1947 if (XKnownNegative) 1948 return true; 1949 1950 // If the shifter operand is a constant, and all of the bits shifted 1951 // out are known to be zero, and X is known non-zero then at least one 1952 // non-zero bit must remain. 1953 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1954 APInt KnownZero(BitWidth, 0); 1955 APInt KnownOne(BitWidth, 0); 1956 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1957 1958 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1959 // Is there a known one in the portion not shifted out? 1960 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1961 return true; 1962 // Are all the bits to be shifted out known zero? 1963 if (KnownZero.countTrailingOnes() >= ShiftVal) 1964 return isKnownNonZero(X, DL, Depth, Q); 1965 } 1966 } 1967 // div exact can only produce a zero if the dividend is zero. 1968 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1969 return isKnownNonZero(X, DL, Depth, Q); 1970 } 1971 // X + Y. 1972 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1973 bool XKnownNonNegative, XKnownNegative; 1974 bool YKnownNonNegative, YKnownNegative; 1975 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1976 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1977 1978 // If X and Y are both non-negative (as signed values) then their sum is not 1979 // zero unless both X and Y are zero. 1980 if (XKnownNonNegative && YKnownNonNegative) 1981 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1982 return true; 1983 1984 // If X and Y are both negative (as signed values) then their sum is not 1985 // zero unless both X and Y equal INT_MIN. 1986 if (BitWidth && XKnownNegative && YKnownNegative) { 1987 APInt KnownZero(BitWidth, 0); 1988 APInt KnownOne(BitWidth, 0); 1989 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1990 // The sign bit of X is set. If some other bit is set then X is not equal 1991 // to INT_MIN. 1992 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1993 if ((KnownOne & Mask) != 0) 1994 return true; 1995 // The sign bit of Y is set. If some other bit is set then Y is not equal 1996 // to INT_MIN. 1997 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1998 if ((KnownOne & Mask) != 0) 1999 return true; 2000 } 2001 2002 // The sum of a non-negative number and a power of two is not zero. 2003 if (XKnownNonNegative && 2004 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 2005 return true; 2006 if (YKnownNonNegative && 2007 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 2008 return true; 2009 } 2010 // X * Y. 2011 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2012 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2013 // If X and Y are non-zero then so is X * Y as long as the multiplication 2014 // does not overflow. 2015 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2016 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 2017 return true; 2018 } 2019 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2020 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2021 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 2022 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 2023 return true; 2024 } 2025 // PHI 2026 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2027 // Try and detect a recurrence that monotonically increases from a 2028 // starting value, as these are common as induction variables. 2029 if (PN->getNumIncomingValues() == 2) { 2030 Value *Start = PN->getIncomingValue(0); 2031 Value *Induction = PN->getIncomingValue(1); 2032 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2033 std::swap(Start, Induction); 2034 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2035 if (!C->isZero() && !C->isNegative()) { 2036 ConstantInt *X; 2037 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2038 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2039 !X->isNegative()) 2040 return true; 2041 } 2042 } 2043 } 2044 } 2045 2046 if (!BitWidth) return false; 2047 APInt KnownZero(BitWidth, 0); 2048 APInt KnownOne(BitWidth, 0); 2049 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2050 return KnownOne != 0; 2051 } 2052 2053 /// Return true if V2 == V1 + X, where X is known non-zero. 2054 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL, 2055 const Query &Q) { 2056 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2057 if (!BO || BO->getOpcode() != Instruction::Add) 2058 return false; 2059 Value *Op = nullptr; 2060 if (V2 == BO->getOperand(0)) 2061 Op = BO->getOperand(1); 2062 else if (V2 == BO->getOperand(1)) 2063 Op = BO->getOperand(0); 2064 else 2065 return false; 2066 return isKnownNonZero(Op, DL, 0, Q); 2067 } 2068 2069 /// Return true if it is known that V1 != V2. 2070 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 2071 const Query &Q) { 2072 if (V1->getType()->isVectorTy() || V1 == V2) 2073 return false; 2074 if (V1->getType() != V2->getType()) 2075 // We can't look through casts yet. 2076 return false; 2077 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q)) 2078 return true; 2079 2080 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2081 // Are any known bits in V1 contradictory to known bits in V2? If V1 2082 // has a known zero where V2 has a known one, they must not be equal. 2083 auto BitWidth = Ty->getBitWidth(); 2084 APInt KnownZero1(BitWidth, 0); 2085 APInt KnownOne1(BitWidth, 0); 2086 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q); 2087 APInt KnownZero2(BitWidth, 0); 2088 APInt KnownOne2(BitWidth, 0); 2089 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q); 2090 2091 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2092 if (OppositeBits.getBoolValue()) 2093 return true; 2094 } 2095 return false; 2096 } 2097 2098 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2099 /// simplify operations downstream. Mask is known to be zero for bits that V 2100 /// cannot have. 2101 /// 2102 /// This function is defined on values with integer type, values with pointer 2103 /// type, and vectors of integers. In the case 2104 /// where V is a vector, the mask, known zero, and known one values are the 2105 /// same width as the vector element, and the bit is set only if it is true 2106 /// for all of the elements in the vector. 2107 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 2108 unsigned Depth, const Query &Q) { 2109 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2110 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2111 return (KnownZero & Mask) == Mask; 2112 } 2113 2114 2115 2116 /// Return the number of times the sign bit of the register is replicated into 2117 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2118 /// (itself), but other cases can give us information. For example, immediately 2119 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2120 /// other, so we return 3. 2121 /// 2122 /// 'Op' must have a scalar integer type. 2123 /// 2124 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 2125 const Query &Q) { 2126 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 2127 unsigned Tmp, Tmp2; 2128 unsigned FirstAnswer = 1; 2129 2130 // Note that ConstantInt is handled by the general computeKnownBits case 2131 // below. 2132 2133 if (Depth == 6) 2134 return 1; // Limit search depth. 2135 2136 Operator *U = dyn_cast<Operator>(V); 2137 switch (Operator::getOpcode(V)) { 2138 default: break; 2139 case Instruction::SExt: 2140 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2141 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 2142 2143 case Instruction::SDiv: { 2144 const APInt *Denominator; 2145 // sdiv X, C -> adds log(C) sign bits. 2146 if (match(U->getOperand(1), m_APInt(Denominator))) { 2147 2148 // Ignore non-positive denominator. 2149 if (!Denominator->isStrictlyPositive()) 2150 break; 2151 2152 // Calculate the incoming numerator bits. 2153 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2154 2155 // Add floor(log(C)) bits to the numerator bits. 2156 return std::min(TyBits, NumBits + Denominator->logBase2()); 2157 } 2158 break; 2159 } 2160 2161 case Instruction::SRem: { 2162 const APInt *Denominator; 2163 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2164 // positive constant. This let us put a lower bound on the number of sign 2165 // bits. 2166 if (match(U->getOperand(1), m_APInt(Denominator))) { 2167 2168 // Ignore non-positive denominator. 2169 if (!Denominator->isStrictlyPositive()) 2170 break; 2171 2172 // Calculate the incoming numerator bits. SRem by a positive constant 2173 // can't lower the number of sign bits. 2174 unsigned NumrBits = 2175 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2176 2177 // Calculate the leading sign bit constraints by examining the 2178 // denominator. Given that the denominator is positive, there are two 2179 // cases: 2180 // 2181 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2182 // (1 << ceilLogBase2(C)). 2183 // 2184 // 2. the numerator is negative. Then the result range is (-C,0] and 2185 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2186 // 2187 // Thus a lower bound on the number of sign bits is `TyBits - 2188 // ceilLogBase2(C)`. 2189 2190 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2191 return std::max(NumrBits, ResBits); 2192 } 2193 break; 2194 } 2195 2196 case Instruction::AShr: { 2197 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2198 // ashr X, C -> adds C sign bits. Vectors too. 2199 const APInt *ShAmt; 2200 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2201 Tmp += ShAmt->getZExtValue(); 2202 if (Tmp > TyBits) Tmp = TyBits; 2203 } 2204 return Tmp; 2205 } 2206 case Instruction::Shl: { 2207 const APInt *ShAmt; 2208 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2209 // shl destroys sign bits. 2210 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2211 Tmp2 = ShAmt->getZExtValue(); 2212 if (Tmp2 >= TyBits || // Bad shift. 2213 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2214 return Tmp - Tmp2; 2215 } 2216 break; 2217 } 2218 case Instruction::And: 2219 case Instruction::Or: 2220 case Instruction::Xor: // NOT is handled here. 2221 // Logical binary ops preserve the number of sign bits at the worst. 2222 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2223 if (Tmp != 1) { 2224 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2225 FirstAnswer = std::min(Tmp, Tmp2); 2226 // We computed what we know about the sign bits as our first 2227 // answer. Now proceed to the generic code that uses 2228 // computeKnownBits, and pick whichever answer is better. 2229 } 2230 break; 2231 2232 case Instruction::Select: 2233 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2234 if (Tmp == 1) return 1; // Early out. 2235 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2236 return std::min(Tmp, Tmp2); 2237 2238 case Instruction::Add: 2239 // Add can have at most one carry bit. Thus we know that the output 2240 // is, at worst, one more bit than the inputs. 2241 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2242 if (Tmp == 1) return 1; // Early out. 2243 2244 // Special case decrementing a value (ADD X, -1): 2245 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2246 if (CRHS->isAllOnesValue()) { 2247 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2248 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2249 Q); 2250 2251 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2252 // sign bits set. 2253 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2254 return TyBits; 2255 2256 // If we are subtracting one from a positive number, there is no carry 2257 // out of the result. 2258 if (KnownZero.isNegative()) 2259 return Tmp; 2260 } 2261 2262 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2263 if (Tmp2 == 1) return 1; 2264 return std::min(Tmp, Tmp2)-1; 2265 2266 case Instruction::Sub: 2267 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2268 if (Tmp2 == 1) return 1; 2269 2270 // Handle NEG. 2271 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2272 if (CLHS->isNullValue()) { 2273 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2274 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2275 Q); 2276 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2277 // sign bits set. 2278 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2279 return TyBits; 2280 2281 // If the input is known to be positive (the sign bit is known clear), 2282 // the output of the NEG has the same number of sign bits as the input. 2283 if (KnownZero.isNegative()) 2284 return Tmp2; 2285 2286 // Otherwise, we treat this like a SUB. 2287 } 2288 2289 // Sub can have at most one carry bit. Thus we know that the output 2290 // is, at worst, one more bit than the inputs. 2291 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2292 if (Tmp == 1) return 1; // Early out. 2293 return std::min(Tmp, Tmp2)-1; 2294 2295 case Instruction::PHI: { 2296 PHINode *PN = cast<PHINode>(U); 2297 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2298 // Don't analyze large in-degree PHIs. 2299 if (NumIncomingValues > 4) break; 2300 // Unreachable blocks may have zero-operand PHI nodes. 2301 if (NumIncomingValues == 0) break; 2302 2303 // Take the minimum of all incoming values. This can't infinitely loop 2304 // because of our depth threshold. 2305 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2306 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2307 if (Tmp == 1) return Tmp; 2308 Tmp = std::min( 2309 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2310 } 2311 return Tmp; 2312 } 2313 2314 case Instruction::Trunc: 2315 // FIXME: it's tricky to do anything useful for this, but it is an important 2316 // case for targets like X86. 2317 break; 2318 } 2319 2320 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2321 // use this information. 2322 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2323 APInt Mask; 2324 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2325 2326 if (KnownZero.isNegative()) { // sign bit is 0 2327 Mask = KnownZero; 2328 } else if (KnownOne.isNegative()) { // sign bit is 1; 2329 Mask = KnownOne; 2330 } else { 2331 // Nothing known. 2332 return FirstAnswer; 2333 } 2334 2335 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2336 // the number of identical bits in the top of the input value. 2337 Mask = ~Mask; 2338 Mask <<= Mask.getBitWidth()-TyBits; 2339 // Return # leading zeros. We use 'min' here in case Val was zero before 2340 // shifting. We don't want to return '64' as for an i32 "0". 2341 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2342 } 2343 2344 /// This function computes the integer multiple of Base that equals V. 2345 /// If successful, it returns true and returns the multiple in 2346 /// Multiple. If unsuccessful, it returns false. It looks 2347 /// through SExt instructions only if LookThroughSExt is true. 2348 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2349 bool LookThroughSExt, unsigned Depth) { 2350 const unsigned MaxDepth = 6; 2351 2352 assert(V && "No Value?"); 2353 assert(Depth <= MaxDepth && "Limit Search Depth"); 2354 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2355 2356 Type *T = V->getType(); 2357 2358 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2359 2360 if (Base == 0) 2361 return false; 2362 2363 if (Base == 1) { 2364 Multiple = V; 2365 return true; 2366 } 2367 2368 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2369 Constant *BaseVal = ConstantInt::get(T, Base); 2370 if (CO && CO == BaseVal) { 2371 // Multiple is 1. 2372 Multiple = ConstantInt::get(T, 1); 2373 return true; 2374 } 2375 2376 if (CI && CI->getZExtValue() % Base == 0) { 2377 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2378 return true; 2379 } 2380 2381 if (Depth == MaxDepth) return false; // Limit search depth. 2382 2383 Operator *I = dyn_cast<Operator>(V); 2384 if (!I) return false; 2385 2386 switch (I->getOpcode()) { 2387 default: break; 2388 case Instruction::SExt: 2389 if (!LookThroughSExt) return false; 2390 // otherwise fall through to ZExt 2391 case Instruction::ZExt: 2392 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2393 LookThroughSExt, Depth+1); 2394 case Instruction::Shl: 2395 case Instruction::Mul: { 2396 Value *Op0 = I->getOperand(0); 2397 Value *Op1 = I->getOperand(1); 2398 2399 if (I->getOpcode() == Instruction::Shl) { 2400 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2401 if (!Op1CI) return false; 2402 // Turn Op0 << Op1 into Op0 * 2^Op1 2403 APInt Op1Int = Op1CI->getValue(); 2404 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2405 APInt API(Op1Int.getBitWidth(), 0); 2406 API.setBit(BitToSet); 2407 Op1 = ConstantInt::get(V->getContext(), API); 2408 } 2409 2410 Value *Mul0 = nullptr; 2411 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2412 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2413 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2414 if (Op1C->getType()->getPrimitiveSizeInBits() < 2415 MulC->getType()->getPrimitiveSizeInBits()) 2416 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2417 if (Op1C->getType()->getPrimitiveSizeInBits() > 2418 MulC->getType()->getPrimitiveSizeInBits()) 2419 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2420 2421 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2422 Multiple = ConstantExpr::getMul(MulC, Op1C); 2423 return true; 2424 } 2425 2426 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2427 if (Mul0CI->getValue() == 1) { 2428 // V == Base * Op1, so return Op1 2429 Multiple = Op1; 2430 return true; 2431 } 2432 } 2433 2434 Value *Mul1 = nullptr; 2435 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2436 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2437 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2438 if (Op0C->getType()->getPrimitiveSizeInBits() < 2439 MulC->getType()->getPrimitiveSizeInBits()) 2440 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2441 if (Op0C->getType()->getPrimitiveSizeInBits() > 2442 MulC->getType()->getPrimitiveSizeInBits()) 2443 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2444 2445 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2446 Multiple = ConstantExpr::getMul(MulC, Op0C); 2447 return true; 2448 } 2449 2450 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2451 if (Mul1CI->getValue() == 1) { 2452 // V == Base * Op0, so return Op0 2453 Multiple = Op0; 2454 return true; 2455 } 2456 } 2457 } 2458 } 2459 2460 // We could not determine if V is a multiple of Base. 2461 return false; 2462 } 2463 2464 /// Return true if we can prove that the specified FP value is never equal to 2465 /// -0.0. 2466 /// 2467 /// NOTE: this function will need to be revisited when we support non-default 2468 /// rounding modes! 2469 /// 2470 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2471 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2472 return !CFP->getValueAPF().isNegZero(); 2473 2474 // FIXME: Magic number! At the least, this should be given a name because it's 2475 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2476 // expose it as a parameter, so it can be used for testing / experimenting. 2477 if (Depth == 6) 2478 return false; // Limit search depth. 2479 2480 const Operator *I = dyn_cast<Operator>(V); 2481 if (!I) return false; 2482 2483 // Check if the nsz fast-math flag is set 2484 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2485 if (FPO->hasNoSignedZeros()) 2486 return true; 2487 2488 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2489 if (I->getOpcode() == Instruction::FAdd) 2490 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2491 if (CFP->isNullValue()) 2492 return true; 2493 2494 // sitofp and uitofp turn into +0.0 for zero. 2495 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2496 return true; 2497 2498 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2499 // sqrt(-0.0) = -0.0, no other negative results are possible. 2500 if (II->getIntrinsicID() == Intrinsic::sqrt) 2501 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2502 2503 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2504 if (const Function *F = CI->getCalledFunction()) { 2505 if (F->isDeclaration()) { 2506 // abs(x) != -0.0 2507 if (F->getName() == "abs") return true; 2508 // fabs[lf](x) != -0.0 2509 if (F->getName() == "fabs") return true; 2510 if (F->getName() == "fabsf") return true; 2511 if (F->getName() == "fabsl") return true; 2512 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2513 F->getName() == "sqrtl") 2514 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2515 } 2516 } 2517 2518 return false; 2519 } 2520 2521 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2522 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2523 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2524 2525 // FIXME: Magic number! At the least, this should be given a name because it's 2526 // used similarly in CannotBeNegativeZero(). A better fix may be to 2527 // expose it as a parameter, so it can be used for testing / experimenting. 2528 if (Depth == 6) 2529 return false; // Limit search depth. 2530 2531 const Operator *I = dyn_cast<Operator>(V); 2532 if (!I) return false; 2533 2534 switch (I->getOpcode()) { 2535 default: break; 2536 case Instruction::FMul: 2537 // x*x is always non-negative or a NaN. 2538 if (I->getOperand(0) == I->getOperand(1)) 2539 return true; 2540 // Fall through 2541 case Instruction::FAdd: 2542 case Instruction::FDiv: 2543 case Instruction::FRem: 2544 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2545 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2546 case Instruction::FPExt: 2547 case Instruction::FPTrunc: 2548 // Widening/narrowing never change sign. 2549 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2550 case Instruction::Call: 2551 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2552 switch (II->getIntrinsicID()) { 2553 default: break; 2554 case Intrinsic::exp: 2555 case Intrinsic::exp2: 2556 case Intrinsic::fabs: 2557 case Intrinsic::sqrt: 2558 return true; 2559 case Intrinsic::powi: 2560 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2561 // powi(x,n) is non-negative if n is even. 2562 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2563 return true; 2564 } 2565 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2566 case Intrinsic::fma: 2567 case Intrinsic::fmuladd: 2568 // x*x+y is non-negative if y is non-negative. 2569 return I->getOperand(0) == I->getOperand(1) && 2570 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2571 } 2572 break; 2573 } 2574 return false; 2575 } 2576 2577 /// If the specified value can be set by repeating the same byte in memory, 2578 /// return the i8 value that it is represented with. This is 2579 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2580 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2581 /// byte store (e.g. i16 0x1234), return null. 2582 Value *llvm::isBytewiseValue(Value *V) { 2583 // All byte-wide stores are splatable, even of arbitrary variables. 2584 if (V->getType()->isIntegerTy(8)) return V; 2585 2586 // Handle 'null' ConstantArrayZero etc. 2587 if (Constant *C = dyn_cast<Constant>(V)) 2588 if (C->isNullValue()) 2589 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2590 2591 // Constant float and double values can be handled as integer values if the 2592 // corresponding integer value is "byteable". An important case is 0.0. 2593 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2594 if (CFP->getType()->isFloatTy()) 2595 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2596 if (CFP->getType()->isDoubleTy()) 2597 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2598 // Don't handle long double formats, which have strange constraints. 2599 } 2600 2601 // We can handle constant integers that are multiple of 8 bits. 2602 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2603 if (CI->getBitWidth() % 8 == 0) { 2604 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2605 2606 if (!CI->getValue().isSplat(8)) 2607 return nullptr; 2608 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2609 } 2610 } 2611 2612 // A ConstantDataArray/Vector is splatable if all its members are equal and 2613 // also splatable. 2614 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2615 Value *Elt = CA->getElementAsConstant(0); 2616 Value *Val = isBytewiseValue(Elt); 2617 if (!Val) 2618 return nullptr; 2619 2620 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2621 if (CA->getElementAsConstant(I) != Elt) 2622 return nullptr; 2623 2624 return Val; 2625 } 2626 2627 // Conceptually, we could handle things like: 2628 // %a = zext i8 %X to i16 2629 // %b = shl i16 %a, 8 2630 // %c = or i16 %a, %b 2631 // but until there is an example that actually needs this, it doesn't seem 2632 // worth worrying about. 2633 return nullptr; 2634 } 2635 2636 2637 // This is the recursive version of BuildSubAggregate. It takes a few different 2638 // arguments. Idxs is the index within the nested struct From that we are 2639 // looking at now (which is of type IndexedType). IdxSkip is the number of 2640 // indices from Idxs that should be left out when inserting into the resulting 2641 // struct. To is the result struct built so far, new insertvalue instructions 2642 // build on that. 2643 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2644 SmallVectorImpl<unsigned> &Idxs, 2645 unsigned IdxSkip, 2646 Instruction *InsertBefore) { 2647 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2648 if (STy) { 2649 // Save the original To argument so we can modify it 2650 Value *OrigTo = To; 2651 // General case, the type indexed by Idxs is a struct 2652 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2653 // Process each struct element recursively 2654 Idxs.push_back(i); 2655 Value *PrevTo = To; 2656 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2657 InsertBefore); 2658 Idxs.pop_back(); 2659 if (!To) { 2660 // Couldn't find any inserted value for this index? Cleanup 2661 while (PrevTo != OrigTo) { 2662 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2663 PrevTo = Del->getAggregateOperand(); 2664 Del->eraseFromParent(); 2665 } 2666 // Stop processing elements 2667 break; 2668 } 2669 } 2670 // If we successfully found a value for each of our subaggregates 2671 if (To) 2672 return To; 2673 } 2674 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2675 // the struct's elements had a value that was inserted directly. In the latter 2676 // case, perhaps we can't determine each of the subelements individually, but 2677 // we might be able to find the complete struct somewhere. 2678 2679 // Find the value that is at that particular spot 2680 Value *V = FindInsertedValue(From, Idxs); 2681 2682 if (!V) 2683 return nullptr; 2684 2685 // Insert the value in the new (sub) aggregrate 2686 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2687 "tmp", InsertBefore); 2688 } 2689 2690 // This helper takes a nested struct and extracts a part of it (which is again a 2691 // struct) into a new value. For example, given the struct: 2692 // { a, { b, { c, d }, e } } 2693 // and the indices "1, 1" this returns 2694 // { c, d }. 2695 // 2696 // It does this by inserting an insertvalue for each element in the resulting 2697 // struct, as opposed to just inserting a single struct. This will only work if 2698 // each of the elements of the substruct are known (ie, inserted into From by an 2699 // insertvalue instruction somewhere). 2700 // 2701 // All inserted insertvalue instructions are inserted before InsertBefore 2702 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2703 Instruction *InsertBefore) { 2704 assert(InsertBefore && "Must have someplace to insert!"); 2705 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2706 idx_range); 2707 Value *To = UndefValue::get(IndexedType); 2708 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2709 unsigned IdxSkip = Idxs.size(); 2710 2711 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2712 } 2713 2714 /// Given an aggregrate and an sequence of indices, see if 2715 /// the scalar value indexed is already around as a register, for example if it 2716 /// were inserted directly into the aggregrate. 2717 /// 2718 /// If InsertBefore is not null, this function will duplicate (modified) 2719 /// insertvalues when a part of a nested struct is extracted. 2720 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2721 Instruction *InsertBefore) { 2722 // Nothing to index? Just return V then (this is useful at the end of our 2723 // recursion). 2724 if (idx_range.empty()) 2725 return V; 2726 // We have indices, so V should have an indexable type. 2727 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2728 "Not looking at a struct or array?"); 2729 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2730 "Invalid indices for type?"); 2731 2732 if (Constant *C = dyn_cast<Constant>(V)) { 2733 C = C->getAggregateElement(idx_range[0]); 2734 if (!C) return nullptr; 2735 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2736 } 2737 2738 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2739 // Loop the indices for the insertvalue instruction in parallel with the 2740 // requested indices 2741 const unsigned *req_idx = idx_range.begin(); 2742 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2743 i != e; ++i, ++req_idx) { 2744 if (req_idx == idx_range.end()) { 2745 // We can't handle this without inserting insertvalues 2746 if (!InsertBefore) 2747 return nullptr; 2748 2749 // The requested index identifies a part of a nested aggregate. Handle 2750 // this specially. For example, 2751 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2752 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2753 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2754 // This can be changed into 2755 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2756 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2757 // which allows the unused 0,0 element from the nested struct to be 2758 // removed. 2759 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2760 InsertBefore); 2761 } 2762 2763 // This insert value inserts something else than what we are looking for. 2764 // See if the (aggregate) value inserted into has the value we are 2765 // looking for, then. 2766 if (*req_idx != *i) 2767 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2768 InsertBefore); 2769 } 2770 // If we end up here, the indices of the insertvalue match with those 2771 // requested (though possibly only partially). Now we recursively look at 2772 // the inserted value, passing any remaining indices. 2773 return FindInsertedValue(I->getInsertedValueOperand(), 2774 makeArrayRef(req_idx, idx_range.end()), 2775 InsertBefore); 2776 } 2777 2778 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2779 // If we're extracting a value from an aggregate that was extracted from 2780 // something else, we can extract from that something else directly instead. 2781 // However, we will need to chain I's indices with the requested indices. 2782 2783 // Calculate the number of indices required 2784 unsigned size = I->getNumIndices() + idx_range.size(); 2785 // Allocate some space to put the new indices in 2786 SmallVector<unsigned, 5> Idxs; 2787 Idxs.reserve(size); 2788 // Add indices from the extract value instruction 2789 Idxs.append(I->idx_begin(), I->idx_end()); 2790 2791 // Add requested indices 2792 Idxs.append(idx_range.begin(), idx_range.end()); 2793 2794 assert(Idxs.size() == size 2795 && "Number of indices added not correct?"); 2796 2797 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2798 } 2799 // Otherwise, we don't know (such as, extracting from a function return value 2800 // or load instruction) 2801 return nullptr; 2802 } 2803 2804 /// Analyze the specified pointer to see if it can be expressed as a base 2805 /// pointer plus a constant offset. Return the base and offset to the caller. 2806 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2807 const DataLayout &DL) { 2808 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2809 APInt ByteOffset(BitWidth, 0); 2810 while (1) { 2811 if (Ptr->getType()->isVectorTy()) 2812 break; 2813 2814 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2815 APInt GEPOffset(BitWidth, 0); 2816 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2817 break; 2818 2819 ByteOffset += GEPOffset; 2820 2821 Ptr = GEP->getPointerOperand(); 2822 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2823 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2824 Ptr = cast<Operator>(Ptr)->getOperand(0); 2825 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2826 if (GA->mayBeOverridden()) 2827 break; 2828 Ptr = GA->getAliasee(); 2829 } else { 2830 break; 2831 } 2832 } 2833 Offset = ByteOffset.getSExtValue(); 2834 return Ptr; 2835 } 2836 2837 2838 /// This function computes the length of a null-terminated C string pointed to 2839 /// by V. If successful, it returns true and returns the string in Str. 2840 /// If unsuccessful, it returns false. 2841 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2842 uint64_t Offset, bool TrimAtNul) { 2843 assert(V); 2844 2845 // Look through bitcast instructions and geps. 2846 V = V->stripPointerCasts(); 2847 2848 // If the value is a GEP instruction or constant expression, treat it as an 2849 // offset. 2850 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2851 // Make sure the GEP has exactly three arguments. 2852 if (GEP->getNumOperands() != 3) 2853 return false; 2854 2855 // Make sure the index-ee is a pointer to array of i8. 2856 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2857 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2858 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2859 return false; 2860 2861 // Check to make sure that the first operand of the GEP is an integer and 2862 // has value 0 so that we are sure we're indexing into the initializer. 2863 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2864 if (!FirstIdx || !FirstIdx->isZero()) 2865 return false; 2866 2867 // If the second index isn't a ConstantInt, then this is a variable index 2868 // into the array. If this occurs, we can't say anything meaningful about 2869 // the string. 2870 uint64_t StartIdx = 0; 2871 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2872 StartIdx = CI->getZExtValue(); 2873 else 2874 return false; 2875 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2876 TrimAtNul); 2877 } 2878 2879 // The GEP instruction, constant or instruction, must reference a global 2880 // variable that is a constant and is initialized. The referenced constant 2881 // initializer is the array that we'll use for optimization. 2882 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2883 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2884 return false; 2885 2886 // Handle the all-zeros case 2887 if (GV->getInitializer()->isNullValue()) { 2888 // This is a degenerate case. The initializer is constant zero so the 2889 // length of the string must be zero. 2890 Str = ""; 2891 return true; 2892 } 2893 2894 // Must be a Constant Array 2895 const ConstantDataArray *Array = 2896 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2897 if (!Array || !Array->isString()) 2898 return false; 2899 2900 // Get the number of elements in the array 2901 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2902 2903 // Start out with the entire array in the StringRef. 2904 Str = Array->getAsString(); 2905 2906 if (Offset > NumElts) 2907 return false; 2908 2909 // Skip over 'offset' bytes. 2910 Str = Str.substr(Offset); 2911 2912 if (TrimAtNul) { 2913 // Trim off the \0 and anything after it. If the array is not nul 2914 // terminated, we just return the whole end of string. The client may know 2915 // some other way that the string is length-bound. 2916 Str = Str.substr(0, Str.find('\0')); 2917 } 2918 return true; 2919 } 2920 2921 // These next two are very similar to the above, but also look through PHI 2922 // nodes. 2923 // TODO: See if we can integrate these two together. 2924 2925 /// If we can compute the length of the string pointed to by 2926 /// the specified pointer, return 'len+1'. If we can't, return 0. 2927 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2928 // Look through noop bitcast instructions. 2929 V = V->stripPointerCasts(); 2930 2931 // If this is a PHI node, there are two cases: either we have already seen it 2932 // or we haven't. 2933 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2934 if (!PHIs.insert(PN).second) 2935 return ~0ULL; // already in the set. 2936 2937 // If it was new, see if all the input strings are the same length. 2938 uint64_t LenSoFar = ~0ULL; 2939 for (Value *IncValue : PN->incoming_values()) { 2940 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2941 if (Len == 0) return 0; // Unknown length -> unknown. 2942 2943 if (Len == ~0ULL) continue; 2944 2945 if (Len != LenSoFar && LenSoFar != ~0ULL) 2946 return 0; // Disagree -> unknown. 2947 LenSoFar = Len; 2948 } 2949 2950 // Success, all agree. 2951 return LenSoFar; 2952 } 2953 2954 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2955 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2956 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2957 if (Len1 == 0) return 0; 2958 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2959 if (Len2 == 0) return 0; 2960 if (Len1 == ~0ULL) return Len2; 2961 if (Len2 == ~0ULL) return Len1; 2962 if (Len1 != Len2) return 0; 2963 return Len1; 2964 } 2965 2966 // Otherwise, see if we can read the string. 2967 StringRef StrData; 2968 if (!getConstantStringInfo(V, StrData)) 2969 return 0; 2970 2971 return StrData.size()+1; 2972 } 2973 2974 /// If we can compute the length of the string pointed to by 2975 /// the specified pointer, return 'len+1'. If we can't, return 0. 2976 uint64_t llvm::GetStringLength(Value *V) { 2977 if (!V->getType()->isPointerTy()) return 0; 2978 2979 SmallPtrSet<PHINode*, 32> PHIs; 2980 uint64_t Len = GetStringLengthH(V, PHIs); 2981 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2982 // an empty string as a length. 2983 return Len == ~0ULL ? 1 : Len; 2984 } 2985 2986 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2987 /// previous iteration of the loop was referring to the same object as \p PN. 2988 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2989 // Find the loop-defined value. 2990 Loop *L = LI->getLoopFor(PN->getParent()); 2991 if (PN->getNumIncomingValues() != 2) 2992 return true; 2993 2994 // Find the value from previous iteration. 2995 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2996 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2997 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2998 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2999 return true; 3000 3001 // If a new pointer is loaded in the loop, the pointer references a different 3002 // object in every iteration. E.g.: 3003 // for (i) 3004 // int *p = a[i]; 3005 // ... 3006 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3007 if (!L->isLoopInvariant(Load->getPointerOperand())) 3008 return false; 3009 return true; 3010 } 3011 3012 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3013 unsigned MaxLookup) { 3014 if (!V->getType()->isPointerTy()) 3015 return V; 3016 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3017 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3018 V = GEP->getPointerOperand(); 3019 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3020 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3021 V = cast<Operator>(V)->getOperand(0); 3022 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3023 if (GA->mayBeOverridden()) 3024 return V; 3025 V = GA->getAliasee(); 3026 } else { 3027 // See if InstructionSimplify knows any relevant tricks. 3028 if (Instruction *I = dyn_cast<Instruction>(V)) 3029 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3030 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3031 V = Simplified; 3032 continue; 3033 } 3034 3035 return V; 3036 } 3037 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3038 } 3039 return V; 3040 } 3041 3042 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3043 const DataLayout &DL, LoopInfo *LI, 3044 unsigned MaxLookup) { 3045 SmallPtrSet<Value *, 4> Visited; 3046 SmallVector<Value *, 4> Worklist; 3047 Worklist.push_back(V); 3048 do { 3049 Value *P = Worklist.pop_back_val(); 3050 P = GetUnderlyingObject(P, DL, MaxLookup); 3051 3052 if (!Visited.insert(P).second) 3053 continue; 3054 3055 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3056 Worklist.push_back(SI->getTrueValue()); 3057 Worklist.push_back(SI->getFalseValue()); 3058 continue; 3059 } 3060 3061 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3062 // If this PHI changes the underlying object in every iteration of the 3063 // loop, don't look through it. Consider: 3064 // int **A; 3065 // for (i) { 3066 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3067 // Curr = A[i]; 3068 // *Prev, *Curr; 3069 // 3070 // Prev is tracking Curr one iteration behind so they refer to different 3071 // underlying objects. 3072 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3073 isSameUnderlyingObjectInLoop(PN, LI)) 3074 for (Value *IncValue : PN->incoming_values()) 3075 Worklist.push_back(IncValue); 3076 continue; 3077 } 3078 3079 Objects.push_back(P); 3080 } while (!Worklist.empty()); 3081 } 3082 3083 /// Return true if the only users of this pointer are lifetime markers. 3084 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3085 for (const User *U : V->users()) { 3086 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3087 if (!II) return false; 3088 3089 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3090 II->getIntrinsicID() != Intrinsic::lifetime_end) 3091 return false; 3092 } 3093 return true; 3094 } 3095 3096 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3097 Type *Ty, const DataLayout &DL, 3098 const Instruction *CtxI, 3099 const DominatorTree *DT, 3100 const TargetLibraryInfo *TLI) { 3101 assert(Offset.isNonNegative() && "offset can't be negative"); 3102 assert(Ty->isSized() && "must be sized"); 3103 3104 APInt DerefBytes(Offset.getBitWidth(), 0); 3105 bool CheckForNonNull = false; 3106 if (const Argument *A = dyn_cast<Argument>(BV)) { 3107 DerefBytes = A->getDereferenceableBytes(); 3108 if (!DerefBytes.getBoolValue()) { 3109 DerefBytes = A->getDereferenceableOrNullBytes(); 3110 CheckForNonNull = true; 3111 } 3112 } else if (auto CS = ImmutableCallSite(BV)) { 3113 DerefBytes = CS.getDereferenceableBytes(0); 3114 if (!DerefBytes.getBoolValue()) { 3115 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3116 CheckForNonNull = true; 3117 } 3118 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3119 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3120 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3121 DerefBytes = CI->getLimitedValue(); 3122 } 3123 if (!DerefBytes.getBoolValue()) { 3124 if (MDNode *MD = 3125 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3126 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3127 DerefBytes = CI->getLimitedValue(); 3128 } 3129 CheckForNonNull = true; 3130 } 3131 } 3132 3133 if (DerefBytes.getBoolValue()) 3134 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3135 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3136 return true; 3137 3138 return false; 3139 } 3140 3141 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3142 const Instruction *CtxI, 3143 const DominatorTree *DT, 3144 const TargetLibraryInfo *TLI) { 3145 Type *VTy = V->getType(); 3146 Type *Ty = VTy->getPointerElementType(); 3147 if (!Ty->isSized()) 3148 return false; 3149 3150 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3151 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3152 } 3153 3154 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3155 const DataLayout &DL) { 3156 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3157 3158 if (!BaseAlign) { 3159 Type *Ty = Base->getType()->getPointerElementType(); 3160 BaseAlign = DL.getABITypeAlignment(Ty); 3161 } 3162 3163 APInt Alignment(Offset.getBitWidth(), Align); 3164 3165 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3166 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3167 } 3168 3169 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3170 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 3171 return isAligned(Base, Offset, Align, DL); 3172 } 3173 3174 /// Test if V is always a pointer to allocated and suitably aligned memory for 3175 /// a simple load or store. 3176 static bool isDereferenceableAndAlignedPointer( 3177 const Value *V, unsigned Align, const DataLayout &DL, 3178 const Instruction *CtxI, const DominatorTree *DT, 3179 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3180 // Note that it is not safe to speculate into a malloc'd region because 3181 // malloc may return null. 3182 3183 // These are obviously ok if aligned. 3184 if (isa<AllocaInst>(V)) 3185 return isAligned(V, Align, DL); 3186 3187 // It's not always safe to follow a bitcast, for example: 3188 // bitcast i8* (alloca i8) to i32* 3189 // would result in a 4-byte load from a 1-byte alloca. However, 3190 // if we're casting from a pointer from a type of larger size 3191 // to a type of smaller size (or the same size), and the alignment 3192 // is at least as large as for the resulting pointer type, then 3193 // we can look through the bitcast. 3194 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3195 Type *STy = BC->getSrcTy()->getPointerElementType(), 3196 *DTy = BC->getDestTy()->getPointerElementType(); 3197 if (STy->isSized() && DTy->isSized() && 3198 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3199 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3200 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3201 CtxI, DT, TLI, Visited); 3202 } 3203 3204 // Global variables which can't collapse to null are ok. 3205 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3206 if (!GV->hasExternalWeakLinkage()) 3207 return isAligned(V, Align, DL); 3208 3209 // byval arguments are okay. 3210 if (const Argument *A = dyn_cast<Argument>(V)) 3211 if (A->hasByValAttr()) 3212 return isAligned(V, Align, DL); 3213 3214 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3215 return isAligned(V, Align, DL); 3216 3217 // For GEPs, determine if the indexing lands within the allocated object. 3218 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3219 Type *VTy = GEP->getType(); 3220 Type *Ty = VTy->getPointerElementType(); 3221 const Value *Base = GEP->getPointerOperand(); 3222 3223 // Conservatively require that the base pointer be fully dereferenceable 3224 // and aligned. 3225 if (!Visited.insert(Base).second) 3226 return false; 3227 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3228 Visited)) 3229 return false; 3230 3231 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3232 if (!GEP->accumulateConstantOffset(DL, Offset)) 3233 return false; 3234 3235 // Check if the load is within the bounds of the underlying object 3236 // and offset is aligned. 3237 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3238 Type *BaseType = Base->getType()->getPointerElementType(); 3239 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3240 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3241 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3242 } 3243 3244 // For gc.relocate, look through relocations 3245 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3246 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3247 GCRelocateOperands RelocateInst(I); 3248 return isDereferenceableAndAlignedPointer( 3249 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3250 } 3251 3252 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3253 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3254 CtxI, DT, TLI, Visited); 3255 3256 // If we don't know, assume the worst. 3257 return false; 3258 } 3259 3260 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3261 const DataLayout &DL, 3262 const Instruction *CtxI, 3263 const DominatorTree *DT, 3264 const TargetLibraryInfo *TLI) { 3265 // When dereferenceability information is provided by a dereferenceable 3266 // attribute, we know exactly how many bytes are dereferenceable. If we can 3267 // determine the exact offset to the attributed variable, we can use that 3268 // information here. 3269 Type *VTy = V->getType(); 3270 Type *Ty = VTy->getPointerElementType(); 3271 3272 // Require ABI alignment for loads without alignment specification 3273 if (Align == 0) 3274 Align = DL.getABITypeAlignment(Ty); 3275 3276 if (Ty->isSized()) { 3277 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3278 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3279 3280 if (Offset.isNonNegative()) 3281 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3282 isAligned(BV, Offset, Align, DL)) 3283 return true; 3284 } 3285 3286 SmallPtrSet<const Value *, 32> Visited; 3287 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3288 Visited); 3289 } 3290 3291 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3292 const Instruction *CtxI, 3293 const DominatorTree *DT, 3294 const TargetLibraryInfo *TLI) { 3295 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3296 } 3297 3298 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3299 const Instruction *CtxI, 3300 const DominatorTree *DT, 3301 const TargetLibraryInfo *TLI) { 3302 const Operator *Inst = dyn_cast<Operator>(V); 3303 if (!Inst) 3304 return false; 3305 3306 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3307 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3308 if (C->canTrap()) 3309 return false; 3310 3311 switch (Inst->getOpcode()) { 3312 default: 3313 return true; 3314 case Instruction::UDiv: 3315 case Instruction::URem: { 3316 // x / y is undefined if y == 0. 3317 const APInt *V; 3318 if (match(Inst->getOperand(1), m_APInt(V))) 3319 return *V != 0; 3320 return false; 3321 } 3322 case Instruction::SDiv: 3323 case Instruction::SRem: { 3324 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3325 const APInt *Numerator, *Denominator; 3326 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3327 return false; 3328 // We cannot hoist this division if the denominator is 0. 3329 if (*Denominator == 0) 3330 return false; 3331 // It's safe to hoist if the denominator is not 0 or -1. 3332 if (*Denominator != -1) 3333 return true; 3334 // At this point we know that the denominator is -1. It is safe to hoist as 3335 // long we know that the numerator is not INT_MIN. 3336 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3337 return !Numerator->isMinSignedValue(); 3338 // The numerator *might* be MinSignedValue. 3339 return false; 3340 } 3341 case Instruction::Load: { 3342 const LoadInst *LI = cast<LoadInst>(Inst); 3343 if (!LI->isUnordered() || 3344 // Speculative load may create a race that did not exist in the source. 3345 LI->getParent()->getParent()->hasFnAttribute( 3346 Attribute::SanitizeThread) || 3347 // Speculative load may load data from dirty regions. 3348 LI->getParent()->getParent()->hasFnAttribute( 3349 Attribute::SanitizeAddress)) 3350 return false; 3351 const DataLayout &DL = LI->getModule()->getDataLayout(); 3352 return isDereferenceableAndAlignedPointer( 3353 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3354 } 3355 case Instruction::Call: { 3356 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3357 switch (II->getIntrinsicID()) { 3358 // These synthetic intrinsics have no side-effects and just mark 3359 // information about their operands. 3360 // FIXME: There are other no-op synthetic instructions that potentially 3361 // should be considered at least *safe* to speculate... 3362 case Intrinsic::dbg_declare: 3363 case Intrinsic::dbg_value: 3364 return true; 3365 3366 case Intrinsic::bswap: 3367 case Intrinsic::ctlz: 3368 case Intrinsic::ctpop: 3369 case Intrinsic::cttz: 3370 case Intrinsic::objectsize: 3371 case Intrinsic::sadd_with_overflow: 3372 case Intrinsic::smul_with_overflow: 3373 case Intrinsic::ssub_with_overflow: 3374 case Intrinsic::uadd_with_overflow: 3375 case Intrinsic::umul_with_overflow: 3376 case Intrinsic::usub_with_overflow: 3377 return true; 3378 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3379 // errno like libm sqrt would. 3380 case Intrinsic::sqrt: 3381 case Intrinsic::fma: 3382 case Intrinsic::fmuladd: 3383 case Intrinsic::fabs: 3384 case Intrinsic::minnum: 3385 case Intrinsic::maxnum: 3386 return true; 3387 // TODO: some fp intrinsics are marked as having the same error handling 3388 // as libm. They're safe to speculate when they won't error. 3389 // TODO: are convert_{from,to}_fp16 safe? 3390 // TODO: can we list target-specific intrinsics here? 3391 default: break; 3392 } 3393 } 3394 return false; // The called function could have undefined behavior or 3395 // side-effects, even if marked readnone nounwind. 3396 } 3397 case Instruction::VAArg: 3398 case Instruction::Alloca: 3399 case Instruction::Invoke: 3400 case Instruction::PHI: 3401 case Instruction::Store: 3402 case Instruction::Ret: 3403 case Instruction::Br: 3404 case Instruction::IndirectBr: 3405 case Instruction::Switch: 3406 case Instruction::Unreachable: 3407 case Instruction::Fence: 3408 case Instruction::AtomicRMW: 3409 case Instruction::AtomicCmpXchg: 3410 case Instruction::LandingPad: 3411 case Instruction::Resume: 3412 case Instruction::CatchPad: 3413 case Instruction::CatchEndPad: 3414 case Instruction::CatchRet: 3415 case Instruction::CleanupPad: 3416 case Instruction::CleanupEndPad: 3417 case Instruction::CleanupRet: 3418 case Instruction::TerminatePad: 3419 return false; // Misc instructions which have effects 3420 } 3421 } 3422 3423 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3424 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3425 } 3426 3427 /// Return true if we know that the specified value is never null. 3428 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3429 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3430 3431 // Alloca never returns null, malloc might. 3432 if (isa<AllocaInst>(V)) return true; 3433 3434 // A byval, inalloca, or nonnull argument is never null. 3435 if (const Argument *A = dyn_cast<Argument>(V)) 3436 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3437 3438 // A global variable in address space 0 is non null unless extern weak. 3439 // Other address spaces may have null as a valid address for a global, 3440 // so we can't assume anything. 3441 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3442 return !GV->hasExternalWeakLinkage() && 3443 GV->getType()->getAddressSpace() == 0; 3444 3445 // A Load tagged w/nonnull metadata is never null. 3446 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3447 return LI->getMetadata(LLVMContext::MD_nonnull); 3448 3449 if (auto CS = ImmutableCallSite(V)) 3450 if (CS.isReturnNonNull()) 3451 return true; 3452 3453 // operator new never returns null. 3454 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3455 return true; 3456 3457 return false; 3458 } 3459 3460 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3461 const Instruction *CtxI, 3462 const DominatorTree *DT) { 3463 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3464 3465 unsigned NumUsesExplored = 0; 3466 for (auto U : V->users()) { 3467 // Avoid massive lists 3468 if (NumUsesExplored >= DomConditionsMaxUses) 3469 break; 3470 NumUsesExplored++; 3471 // Consider only compare instructions uniquely controlling a branch 3472 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3473 if (!Cmp) 3474 continue; 3475 3476 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3477 continue; 3478 3479 for (auto *CmpU : Cmp->users()) { 3480 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3481 if (!BI) 3482 continue; 3483 3484 assert(BI->isConditional() && "uses a comparison!"); 3485 3486 BasicBlock *NonNullSuccessor = nullptr; 3487 CmpInst::Predicate Pred; 3488 3489 if (match(const_cast<ICmpInst*>(Cmp), 3490 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3491 if (Pred == ICmpInst::ICMP_EQ) 3492 NonNullSuccessor = BI->getSuccessor(1); 3493 else if (Pred == ICmpInst::ICMP_NE) 3494 NonNullSuccessor = BI->getSuccessor(0); 3495 } 3496 3497 if (NonNullSuccessor) { 3498 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3499 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3500 return true; 3501 } 3502 } 3503 } 3504 3505 return false; 3506 } 3507 3508 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3509 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3510 if (isKnownNonNull(V, TLI)) 3511 return true; 3512 3513 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3514 } 3515 3516 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3517 const DataLayout &DL, 3518 AssumptionCache *AC, 3519 const Instruction *CxtI, 3520 const DominatorTree *DT) { 3521 // Multiplying n * m significant bits yields a result of n + m significant 3522 // bits. If the total number of significant bits does not exceed the 3523 // result bit width (minus 1), there is no overflow. 3524 // This means if we have enough leading zero bits in the operands 3525 // we can guarantee that the result does not overflow. 3526 // Ref: "Hacker's Delight" by Henry Warren 3527 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3528 APInt LHSKnownZero(BitWidth, 0); 3529 APInt LHSKnownOne(BitWidth, 0); 3530 APInt RHSKnownZero(BitWidth, 0); 3531 APInt RHSKnownOne(BitWidth, 0); 3532 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3533 DT); 3534 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3535 DT); 3536 // Note that underestimating the number of zero bits gives a more 3537 // conservative answer. 3538 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3539 RHSKnownZero.countLeadingOnes(); 3540 // First handle the easy case: if we have enough zero bits there's 3541 // definitely no overflow. 3542 if (ZeroBits >= BitWidth) 3543 return OverflowResult::NeverOverflows; 3544 3545 // Get the largest possible values for each operand. 3546 APInt LHSMax = ~LHSKnownZero; 3547 APInt RHSMax = ~RHSKnownZero; 3548 3549 // We know the multiply operation doesn't overflow if the maximum values for 3550 // each operand will not overflow after we multiply them together. 3551 bool MaxOverflow; 3552 LHSMax.umul_ov(RHSMax, MaxOverflow); 3553 if (!MaxOverflow) 3554 return OverflowResult::NeverOverflows; 3555 3556 // We know it always overflows if multiplying the smallest possible values for 3557 // the operands also results in overflow. 3558 bool MinOverflow; 3559 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3560 if (MinOverflow) 3561 return OverflowResult::AlwaysOverflows; 3562 3563 return OverflowResult::MayOverflow; 3564 } 3565 3566 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3567 const DataLayout &DL, 3568 AssumptionCache *AC, 3569 const Instruction *CxtI, 3570 const DominatorTree *DT) { 3571 bool LHSKnownNonNegative, LHSKnownNegative; 3572 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3573 AC, CxtI, DT); 3574 if (LHSKnownNonNegative || LHSKnownNegative) { 3575 bool RHSKnownNonNegative, RHSKnownNegative; 3576 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3577 AC, CxtI, DT); 3578 3579 if (LHSKnownNegative && RHSKnownNegative) { 3580 // The sign bit is set in both cases: this MUST overflow. 3581 // Create a simple add instruction, and insert it into the struct. 3582 return OverflowResult::AlwaysOverflows; 3583 } 3584 3585 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3586 // The sign bit is clear in both cases: this CANNOT overflow. 3587 // Create a simple add instruction, and insert it into the struct. 3588 return OverflowResult::NeverOverflows; 3589 } 3590 } 3591 3592 return OverflowResult::MayOverflow; 3593 } 3594 3595 static OverflowResult computeOverflowForSignedAdd( 3596 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3597 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3598 if (Add && Add->hasNoSignedWrap()) { 3599 return OverflowResult::NeverOverflows; 3600 } 3601 3602 bool LHSKnownNonNegative, LHSKnownNegative; 3603 bool RHSKnownNonNegative, RHSKnownNegative; 3604 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3605 AC, CxtI, DT); 3606 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3607 AC, CxtI, DT); 3608 3609 if ((LHSKnownNonNegative && RHSKnownNegative) || 3610 (LHSKnownNegative && RHSKnownNonNegative)) { 3611 // The sign bits are opposite: this CANNOT overflow. 3612 return OverflowResult::NeverOverflows; 3613 } 3614 3615 // The remaining code needs Add to be available. Early returns if not so. 3616 if (!Add) 3617 return OverflowResult::MayOverflow; 3618 3619 // If the sign of Add is the same as at least one of the operands, this add 3620 // CANNOT overflow. This is particularly useful when the sum is 3621 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3622 // operands. 3623 bool LHSOrRHSKnownNonNegative = 3624 (LHSKnownNonNegative || RHSKnownNonNegative); 3625 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3626 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3627 bool AddKnownNonNegative, AddKnownNegative; 3628 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3629 /*Depth=*/0, AC, CxtI, DT); 3630 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3631 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3632 return OverflowResult::NeverOverflows; 3633 } 3634 } 3635 3636 return OverflowResult::MayOverflow; 3637 } 3638 3639 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3640 const DataLayout &DL, 3641 AssumptionCache *AC, 3642 const Instruction *CxtI, 3643 const DominatorTree *DT) { 3644 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3645 Add, DL, AC, CxtI, DT); 3646 } 3647 3648 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3649 const DataLayout &DL, 3650 AssumptionCache *AC, 3651 const Instruction *CxtI, 3652 const DominatorTree *DT) { 3653 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3654 } 3655 3656 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3657 // FIXME: This conservative implementation can be relaxed. E.g. most 3658 // atomic operations are guaranteed to terminate on most platforms 3659 // and most functions terminate. 3660 3661 return !I->isAtomic() && // atomics may never succeed on some platforms 3662 !isa<CallInst>(I) && // could throw and might not terminate 3663 !isa<InvokeInst>(I) && // might not terminate and could throw to 3664 // non-successor (see bug 24185 for details). 3665 !isa<ResumeInst>(I) && // has no successors 3666 !isa<ReturnInst>(I); // has no successors 3667 } 3668 3669 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3670 const Loop *L) { 3671 // The loop header is guaranteed to be executed for every iteration. 3672 // 3673 // FIXME: Relax this constraint to cover all basic blocks that are 3674 // guaranteed to be executed at every iteration. 3675 if (I->getParent() != L->getHeader()) return false; 3676 3677 for (const Instruction &LI : *L->getHeader()) { 3678 if (&LI == I) return true; 3679 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3680 } 3681 llvm_unreachable("Instruction not contained in its own parent basic block."); 3682 } 3683 3684 bool llvm::propagatesFullPoison(const Instruction *I) { 3685 switch (I->getOpcode()) { 3686 case Instruction::Add: 3687 case Instruction::Sub: 3688 case Instruction::Xor: 3689 case Instruction::Trunc: 3690 case Instruction::BitCast: 3691 case Instruction::AddrSpaceCast: 3692 // These operations all propagate poison unconditionally. Note that poison 3693 // is not any particular value, so xor or subtraction of poison with 3694 // itself still yields poison, not zero. 3695 return true; 3696 3697 case Instruction::AShr: 3698 case Instruction::SExt: 3699 // For these operations, one bit of the input is replicated across 3700 // multiple output bits. A replicated poison bit is still poison. 3701 return true; 3702 3703 case Instruction::Shl: { 3704 // Left shift *by* a poison value is poison. The number of 3705 // positions to shift is unsigned, so no negative values are 3706 // possible there. Left shift by zero places preserves poison. So 3707 // it only remains to consider left shift of poison by a positive 3708 // number of places. 3709 // 3710 // A left shift by a positive number of places leaves the lowest order bit 3711 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3712 // make the poison operand violate that flag, yielding a fresh full-poison 3713 // value. 3714 auto *OBO = cast<OverflowingBinaryOperator>(I); 3715 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3716 } 3717 3718 case Instruction::Mul: { 3719 // A multiplication by zero yields a non-poison zero result, so we need to 3720 // rule out zero as an operand. Conservatively, multiplication by a 3721 // non-zero constant is not multiplication by zero. 3722 // 3723 // Multiplication by a non-zero constant can leave some bits 3724 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3725 // order bit unpoisoned. So we need to consider that. 3726 // 3727 // Multiplication by 1 preserves poison. If the multiplication has a 3728 // no-wrap flag, then we can make the poison operand violate that flag 3729 // when multiplied by any integer other than 0 and 1. 3730 auto *OBO = cast<OverflowingBinaryOperator>(I); 3731 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3732 for (Value *V : OBO->operands()) { 3733 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3734 // A ConstantInt cannot yield poison, so we can assume that it is 3735 // the other operand that is poison. 3736 return !CI->isZero(); 3737 } 3738 } 3739 } 3740 return false; 3741 } 3742 3743 case Instruction::GetElementPtr: 3744 // A GEP implicitly represents a sequence of additions, subtractions, 3745 // truncations, sign extensions and multiplications. The multiplications 3746 // are by the non-zero sizes of some set of types, so we do not have to be 3747 // concerned with multiplication by zero. If the GEP is in-bounds, then 3748 // these operations are implicitly no-signed-wrap so poison is propagated 3749 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3750 return cast<GEPOperator>(I)->isInBounds(); 3751 3752 default: 3753 return false; 3754 } 3755 } 3756 3757 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3758 switch (I->getOpcode()) { 3759 case Instruction::Store: 3760 return cast<StoreInst>(I)->getPointerOperand(); 3761 3762 case Instruction::Load: 3763 return cast<LoadInst>(I)->getPointerOperand(); 3764 3765 case Instruction::AtomicCmpXchg: 3766 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3767 3768 case Instruction::AtomicRMW: 3769 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3770 3771 case Instruction::UDiv: 3772 case Instruction::SDiv: 3773 case Instruction::URem: 3774 case Instruction::SRem: 3775 return I->getOperand(1); 3776 3777 default: 3778 return nullptr; 3779 } 3780 } 3781 3782 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3783 // We currently only look for uses of poison values within the same basic 3784 // block, as that makes it easier to guarantee that the uses will be 3785 // executed given that PoisonI is executed. 3786 // 3787 // FIXME: Expand this to consider uses beyond the same basic block. To do 3788 // this, look out for the distinction between post-dominance and strong 3789 // post-dominance. 3790 const BasicBlock *BB = PoisonI->getParent(); 3791 3792 // Set of instructions that we have proved will yield poison if PoisonI 3793 // does. 3794 SmallSet<const Value *, 16> YieldsPoison; 3795 YieldsPoison.insert(PoisonI); 3796 3797 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3798 I != E; ++I) { 3799 if (&*I != PoisonI) { 3800 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3801 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3802 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3803 return false; 3804 } 3805 3806 // Mark poison that propagates from I through uses of I. 3807 if (YieldsPoison.count(&*I)) { 3808 for (const User *User : I->users()) { 3809 const Instruction *UserI = cast<Instruction>(User); 3810 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3811 YieldsPoison.insert(User); 3812 } 3813 } 3814 } 3815 return false; 3816 } 3817 3818 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3819 if (FMF.noNaNs()) 3820 return true; 3821 3822 if (auto *C = dyn_cast<ConstantFP>(V)) 3823 return !C->isNaN(); 3824 return false; 3825 } 3826 3827 static bool isKnownNonZero(Value *V) { 3828 if (auto *C = dyn_cast<ConstantFP>(V)) 3829 return !C->isZero(); 3830 return false; 3831 } 3832 3833 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3834 FastMathFlags FMF, 3835 Value *CmpLHS, Value *CmpRHS, 3836 Value *TrueVal, Value *FalseVal, 3837 Value *&LHS, Value *&RHS) { 3838 LHS = CmpLHS; 3839 RHS = CmpRHS; 3840 3841 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3842 // return inconsistent results between implementations. 3843 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3844 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3845 // Therefore we behave conservatively and only proceed if at least one of the 3846 // operands is known to not be zero, or if we don't care about signed zeroes. 3847 switch (Pred) { 3848 default: break; 3849 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3850 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3851 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3852 !isKnownNonZero(CmpRHS)) 3853 return {SPF_UNKNOWN, SPNB_NA, false}; 3854 } 3855 3856 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3857 bool Ordered = false; 3858 3859 // When given one NaN and one non-NaN input: 3860 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3861 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3862 // ordered comparison fails), which could be NaN or non-NaN. 3863 // so here we discover exactly what NaN behavior is required/accepted. 3864 if (CmpInst::isFPPredicate(Pred)) { 3865 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3866 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3867 3868 if (LHSSafe && RHSSafe) { 3869 // Both operands are known non-NaN. 3870 NaNBehavior = SPNB_RETURNS_ANY; 3871 } else if (CmpInst::isOrdered(Pred)) { 3872 // An ordered comparison will return false when given a NaN, so it 3873 // returns the RHS. 3874 Ordered = true; 3875 if (LHSSafe) 3876 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3877 NaNBehavior = SPNB_RETURNS_NAN; 3878 else if (RHSSafe) 3879 NaNBehavior = SPNB_RETURNS_OTHER; 3880 else 3881 // Completely unsafe. 3882 return {SPF_UNKNOWN, SPNB_NA, false}; 3883 } else { 3884 Ordered = false; 3885 // An unordered comparison will return true when given a NaN, so it 3886 // returns the LHS. 3887 if (LHSSafe) 3888 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3889 NaNBehavior = SPNB_RETURNS_OTHER; 3890 else if (RHSSafe) 3891 NaNBehavior = SPNB_RETURNS_NAN; 3892 else 3893 // Completely unsafe. 3894 return {SPF_UNKNOWN, SPNB_NA, false}; 3895 } 3896 } 3897 3898 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3899 std::swap(CmpLHS, CmpRHS); 3900 Pred = CmpInst::getSwappedPredicate(Pred); 3901 if (NaNBehavior == SPNB_RETURNS_NAN) 3902 NaNBehavior = SPNB_RETURNS_OTHER; 3903 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3904 NaNBehavior = SPNB_RETURNS_NAN; 3905 Ordered = !Ordered; 3906 } 3907 3908 // ([if]cmp X, Y) ? X : Y 3909 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3910 switch (Pred) { 3911 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3912 case ICmpInst::ICMP_UGT: 3913 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3914 case ICmpInst::ICMP_SGT: 3915 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3916 case ICmpInst::ICMP_ULT: 3917 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3918 case ICmpInst::ICMP_SLT: 3919 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3920 case FCmpInst::FCMP_UGT: 3921 case FCmpInst::FCMP_UGE: 3922 case FCmpInst::FCMP_OGT: 3923 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3924 case FCmpInst::FCMP_ULT: 3925 case FCmpInst::FCMP_ULE: 3926 case FCmpInst::FCMP_OLT: 3927 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3928 } 3929 } 3930 3931 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3932 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3933 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3934 3935 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3936 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3937 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3938 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3939 } 3940 3941 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3942 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3943 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3944 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3945 } 3946 } 3947 3948 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3949 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3950 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3951 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3952 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3953 LHS = TrueVal; 3954 RHS = FalseVal; 3955 return {SPF_SMIN, SPNB_NA, false}; 3956 } 3957 } 3958 } 3959 3960 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3961 3962 return {SPF_UNKNOWN, SPNB_NA, false}; 3963 } 3964 3965 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3966 Instruction::CastOps *CastOp) { 3967 CastInst *CI = dyn_cast<CastInst>(V1); 3968 Constant *C = dyn_cast<Constant>(V2); 3969 CastInst *CI2 = dyn_cast<CastInst>(V2); 3970 if (!CI) 3971 return nullptr; 3972 *CastOp = CI->getOpcode(); 3973 3974 if (CI2) { 3975 // If V1 and V2 are both the same cast from the same type, we can look 3976 // through V1. 3977 if (CI2->getOpcode() == CI->getOpcode() && 3978 CI2->getSrcTy() == CI->getSrcTy()) 3979 return CI2->getOperand(0); 3980 return nullptr; 3981 } else if (!C) { 3982 return nullptr; 3983 } 3984 3985 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3986 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3987 // This is only valid if the truncated value can be sign-extended 3988 // back to the original value. 3989 if (ConstantExpr::getSExt(T, C->getType()) == C) 3990 return T; 3991 return nullptr; 3992 } 3993 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3994 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3995 3996 if (isa<TruncInst>(CI)) 3997 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3998 3999 if (isa<FPToUIInst>(CI)) 4000 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4001 4002 if (isa<FPToSIInst>(CI)) 4003 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4004 4005 if (isa<UIToFPInst>(CI)) 4006 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4007 4008 if (isa<SIToFPInst>(CI)) 4009 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4010 4011 if (isa<FPTruncInst>(CI)) 4012 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4013 4014 if (isa<FPExtInst>(CI)) 4015 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4016 4017 return nullptr; 4018 } 4019 4020 SelectPatternResult llvm::matchSelectPattern(Value *V, 4021 Value *&LHS, Value *&RHS, 4022 Instruction::CastOps *CastOp) { 4023 SelectInst *SI = dyn_cast<SelectInst>(V); 4024 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4025 4026 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4027 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4028 4029 CmpInst::Predicate Pred = CmpI->getPredicate(); 4030 Value *CmpLHS = CmpI->getOperand(0); 4031 Value *CmpRHS = CmpI->getOperand(1); 4032 Value *TrueVal = SI->getTrueValue(); 4033 Value *FalseVal = SI->getFalseValue(); 4034 FastMathFlags FMF; 4035 if (isa<FPMathOperator>(CmpI)) 4036 FMF = CmpI->getFastMathFlags(); 4037 4038 // Bail out early. 4039 if (CmpI->isEquality()) 4040 return {SPF_UNKNOWN, SPNB_NA, false}; 4041 4042 // Deal with type mismatches. 4043 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4044 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4045 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4046 cast<CastInst>(TrueVal)->getOperand(0), C, 4047 LHS, RHS); 4048 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4049 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4050 C, cast<CastInst>(FalseVal)->getOperand(0), 4051 LHS, RHS); 4052 } 4053 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4054 LHS, RHS); 4055 } 4056 4057 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4058 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4059 assert(NumRanges >= 1 && "Must have at least one range!"); 4060 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4061 4062 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4063 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4064 4065 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4066 4067 for (unsigned i = 1; i < NumRanges; ++i) { 4068 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4069 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4070 4071 // Note: unionWith will potentially create a range that contains values not 4072 // contained in any of the original N ranges. 4073 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4074 } 4075 4076 return CR; 4077 } 4078