1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we had an important transformation (non-trivial unswitch) 88 // which introduced instances of branch on poison/undef to otherwise well 89 // defined programs. This issue has since been fixed, but the flag is 90 // temporarily retained to easily diagnose potential regressions. 91 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 92 cl::Hidden, cl::init(true)); 93 94 95 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 96 /// returns the element type's bitwidth. 97 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 98 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 99 return BitWidth; 100 101 return DL.getPointerTypeSizeInBits(Ty); 102 } 103 104 namespace { 105 106 // Simplifying using an assume can only be done in a particular control-flow 107 // context (the context instruction provides that context). If an assume and 108 // the context instruction are not in the same block then the DT helps in 109 // figuring out if we can use it. 110 struct Query { 111 const DataLayout &DL; 112 AssumptionCache *AC; 113 const Instruction *CxtI; 114 const DominatorTree *DT; 115 116 // Unlike the other analyses, this may be a nullptr because not all clients 117 // provide it currently. 118 OptimizationRemarkEmitter *ORE; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, bool UseInstrInfo, 125 OptimizationRemarkEmitter *ORE = nullptr) 126 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 127 }; 128 129 } // end anonymous namespace 130 131 // Given the provided Value and, potentially, a context instruction, return 132 // the preferred context instruction (if any). 133 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 134 // If we've been provided with a context instruction, then use that (provided 135 // it has been inserted). 136 if (CxtI && CxtI->getParent()) 137 return CxtI; 138 139 // If the value is really an already-inserted instruction, then use that. 140 CxtI = dyn_cast<Instruction>(V); 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 return nullptr; 145 } 146 147 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V1); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 CxtI = dyn_cast<Instruction>(V2); 159 if (CxtI && CxtI->getParent()) 160 return CxtI; 161 162 return nullptr; 163 } 164 165 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 166 const APInt &DemandedElts, 167 APInt &DemandedLHS, APInt &DemandedRHS) { 168 // The length of scalable vectors is unknown at compile time, thus we 169 // cannot check their values 170 if (isa<ScalableVectorType>(Shuf->getType())) 171 return false; 172 173 int NumElts = 174 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 175 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 177 if (DemandedElts.isZero()) 178 return true; 179 // Simple case of a shuffle with zeroinitializer. 180 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 181 DemandedLHS.setBit(0); 182 return true; 183 } 184 for (int i = 0; i != NumMaskElts; ++i) { 185 if (!DemandedElts[i]) 186 continue; 187 int M = Shuf->getMaskValue(i); 188 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 189 190 // For undef elements, we don't know anything about the common state of 191 // the shuffle result. 192 if (M == -1) 193 return false; 194 if (M < NumElts) 195 DemandedLHS.setBit(M % NumElts); 196 else 197 DemandedRHS.setBit(M % NumElts); 198 } 199 200 return true; 201 } 202 203 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 204 KnownBits &Known, unsigned Depth, const Query &Q); 205 206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 207 const Query &Q) { 208 // FIXME: We currently have no way to represent the DemandedElts of a scalable 209 // vector 210 if (isa<ScalableVectorType>(V->getType())) { 211 Known.resetAll(); 212 return; 213 } 214 215 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 216 APInt DemandedElts = 217 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 218 computeKnownBits(V, DemandedElts, Known, Depth, Q); 219 } 220 221 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 222 const DataLayout &DL, unsigned Depth, 223 AssumptionCache *AC, const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 231 KnownBits &Known, const DataLayout &DL, 232 unsigned Depth, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 235 ::computeKnownBits(V, DemandedElts, Known, Depth, 236 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 237 } 238 239 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 240 unsigned Depth, const Query &Q); 241 242 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 243 const Query &Q); 244 245 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 246 unsigned Depth, AssumptionCache *AC, 247 const Instruction *CxtI, 248 const DominatorTree *DT, 249 OptimizationRemarkEmitter *ORE, 250 bool UseInstrInfo) { 251 return ::computeKnownBits( 252 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 253 } 254 255 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 256 const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, 259 OptimizationRemarkEmitter *ORE, 260 bool UseInstrInfo) { 261 return ::computeKnownBits( 262 V, DemandedElts, Depth, 263 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 264 } 265 266 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 267 const DataLayout &DL, AssumptionCache *AC, 268 const Instruction *CxtI, const DominatorTree *DT, 269 bool UseInstrInfo) { 270 assert(LHS->getType() == RHS->getType() && 271 "LHS and RHS should have the same type"); 272 assert(LHS->getType()->isIntOrIntVectorTy() && 273 "LHS and RHS should be integers"); 274 // Look for an inverted mask: (X & ~M) op (Y & M). 275 { 276 Value *M; 277 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 278 match(RHS, m_c_And(m_Specific(M), m_Value()))) 279 return true; 280 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 281 match(LHS, m_c_And(m_Specific(M), m_Value()))) 282 return true; 283 } 284 285 // X op (Y & ~X) 286 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 287 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 288 return true; 289 290 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 291 // for constant Y. 292 Value *Y; 293 if (match(RHS, 294 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 295 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 296 return true; 297 298 // Look for: (A & B) op ~(A | B) 299 { 300 Value *A, *B; 301 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 302 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 303 return true; 304 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 305 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 306 return true; 307 } 308 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 309 KnownBits LHSKnown(IT->getBitWidth()); 310 KnownBits RHSKnown(IT->getBitWidth()); 311 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 312 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 314 } 315 316 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 317 return !I->user_empty() && all_of(I->users(), [](const User *U) { 318 ICmpInst::Predicate P; 319 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 320 }); 321 } 322 323 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 324 const Query &Q); 325 326 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 327 bool OrZero, unsigned Depth, 328 AssumptionCache *AC, const Instruction *CxtI, 329 const DominatorTree *DT, bool UseInstrInfo) { 330 return ::isKnownToBeAPowerOfTwo( 331 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 332 } 333 334 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 335 unsigned Depth, const Query &Q); 336 337 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 338 339 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 340 AssumptionCache *AC, const Instruction *CxtI, 341 const DominatorTree *DT, bool UseInstrInfo) { 342 return ::isKnownNonZero(V, Depth, 343 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 344 } 345 346 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 347 unsigned Depth, AssumptionCache *AC, 348 const Instruction *CxtI, const DominatorTree *DT, 349 bool UseInstrInfo) { 350 KnownBits Known = 351 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 352 return Known.isNonNegative(); 353 } 354 355 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 356 AssumptionCache *AC, const Instruction *CxtI, 357 const DominatorTree *DT, bool UseInstrInfo) { 358 if (auto *CI = dyn_cast<ConstantInt>(V)) 359 return CI->getValue().isStrictlyPositive(); 360 361 // TODO: We'd doing two recursive queries here. We should factor this such 362 // that only a single query is needed. 363 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 364 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 365 } 366 367 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 368 AssumptionCache *AC, const Instruction *CxtI, 369 const DominatorTree *DT, bool UseInstrInfo) { 370 KnownBits Known = 371 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 372 return Known.isNegative(); 373 } 374 375 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 376 const Query &Q); 377 378 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 379 const DataLayout &DL, AssumptionCache *AC, 380 const Instruction *CxtI, const DominatorTree *DT, 381 bool UseInstrInfo) { 382 return ::isKnownNonEqual(V1, V2, 0, 383 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 384 UseInstrInfo, /*ORE=*/nullptr)); 385 } 386 387 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 388 const Query &Q); 389 390 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 391 const DataLayout &DL, unsigned Depth, 392 AssumptionCache *AC, const Instruction *CxtI, 393 const DominatorTree *DT, bool UseInstrInfo) { 394 return ::MaskedValueIsZero( 395 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 396 } 397 398 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 399 unsigned Depth, const Query &Q); 400 401 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 402 const Query &Q) { 403 // FIXME: We currently have no way to represent the DemandedElts of a scalable 404 // vector 405 if (isa<ScalableVectorType>(V->getType())) 406 return 1; 407 408 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 409 APInt DemandedElts = 410 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 411 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 412 } 413 414 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 415 unsigned Depth, AssumptionCache *AC, 416 const Instruction *CxtI, 417 const DominatorTree *DT, bool UseInstrInfo) { 418 return ::ComputeNumSignBits( 419 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 420 } 421 422 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 423 unsigned Depth, AssumptionCache *AC, 424 const Instruction *CxtI, 425 const DominatorTree *DT) { 426 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 427 return V->getType()->getScalarSizeInBits() - SignBits + 1; 428 } 429 430 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 431 bool NSW, const APInt &DemandedElts, 432 KnownBits &KnownOut, KnownBits &Known2, 433 unsigned Depth, const Query &Q) { 434 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 435 436 // If one operand is unknown and we have no nowrap information, 437 // the result will be unknown independently of the second operand. 438 if (KnownOut.isUnknown() && !NSW) 439 return; 440 441 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 442 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 443 } 444 445 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 446 const APInt &DemandedElts, KnownBits &Known, 447 KnownBits &Known2, unsigned Depth, 448 const Query &Q) { 449 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 450 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 451 452 bool isKnownNegative = false; 453 bool isKnownNonNegative = false; 454 // If the multiplication is known not to overflow, compute the sign bit. 455 if (NSW) { 456 if (Op0 == Op1) { 457 // The product of a number with itself is non-negative. 458 isKnownNonNegative = true; 459 } else { 460 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 461 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 462 bool isKnownNegativeOp1 = Known.isNegative(); 463 bool isKnownNegativeOp0 = Known2.isNegative(); 464 // The product of two numbers with the same sign is non-negative. 465 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 466 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 467 // The product of a negative number and a non-negative number is either 468 // negative or zero. 469 if (!isKnownNonNegative) 470 isKnownNegative = 471 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 472 Known2.isNonZero()) || 473 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 474 } 475 } 476 477 bool SelfMultiply = Op0 == Op1; 478 // TODO: SelfMultiply can be poison, but not undef. 479 if (SelfMultiply) 480 SelfMultiply &= 481 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 482 Known = KnownBits::mul(Known, Known2, SelfMultiply); 483 484 // Only make use of no-wrap flags if we failed to compute the sign bit 485 // directly. This matters if the multiplication always overflows, in 486 // which case we prefer to follow the result of the direct computation, 487 // though as the program is invoking undefined behaviour we can choose 488 // whatever we like here. 489 if (isKnownNonNegative && !Known.isNegative()) 490 Known.makeNonNegative(); 491 else if (isKnownNegative && !Known.isNonNegative()) 492 Known.makeNegative(); 493 } 494 495 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 496 KnownBits &Known) { 497 unsigned BitWidth = Known.getBitWidth(); 498 unsigned NumRanges = Ranges.getNumOperands() / 2; 499 assert(NumRanges >= 1); 500 501 Known.Zero.setAllBits(); 502 Known.One.setAllBits(); 503 504 for (unsigned i = 0; i < NumRanges; ++i) { 505 ConstantInt *Lower = 506 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 507 ConstantInt *Upper = 508 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 509 ConstantRange Range(Lower->getValue(), Upper->getValue()); 510 511 // The first CommonPrefixBits of all values in Range are equal. 512 unsigned CommonPrefixBits = 513 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 514 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 515 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 516 Known.One &= UnsignedMax & Mask; 517 Known.Zero &= ~UnsignedMax & Mask; 518 } 519 } 520 521 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 522 SmallVector<const Value *, 16> WorkSet(1, I); 523 SmallPtrSet<const Value *, 32> Visited; 524 SmallPtrSet<const Value *, 16> EphValues; 525 526 // The instruction defining an assumption's condition itself is always 527 // considered ephemeral to that assumption (even if it has other 528 // non-ephemeral users). See r246696's test case for an example. 529 if (is_contained(I->operands(), E)) 530 return true; 531 532 while (!WorkSet.empty()) { 533 const Value *V = WorkSet.pop_back_val(); 534 if (!Visited.insert(V).second) 535 continue; 536 537 // If all uses of this value are ephemeral, then so is this value. 538 if (llvm::all_of(V->users(), [&](const User *U) { 539 return EphValues.count(U); 540 })) { 541 if (V == E) 542 return true; 543 544 if (V == I || (isa<Instruction>(V) && 545 !cast<Instruction>(V)->mayHaveSideEffects() && 546 !cast<Instruction>(V)->isTerminator())) { 547 EphValues.insert(V); 548 if (const User *U = dyn_cast<User>(V)) 549 append_range(WorkSet, U->operands()); 550 } 551 } 552 } 553 554 return false; 555 } 556 557 // Is this an intrinsic that cannot be speculated but also cannot trap? 558 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 559 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 560 return CI->isAssumeLikeIntrinsic(); 561 562 return false; 563 } 564 565 bool llvm::isValidAssumeForContext(const Instruction *Inv, 566 const Instruction *CxtI, 567 const DominatorTree *DT) { 568 // There are two restrictions on the use of an assume: 569 // 1. The assume must dominate the context (or the control flow must 570 // reach the assume whenever it reaches the context). 571 // 2. The context must not be in the assume's set of ephemeral values 572 // (otherwise we will use the assume to prove that the condition 573 // feeding the assume is trivially true, thus causing the removal of 574 // the assume). 575 576 if (Inv->getParent() == CxtI->getParent()) { 577 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 578 // in the BB. 579 if (Inv->comesBefore(CxtI)) 580 return true; 581 582 // Don't let an assume affect itself - this would cause the problems 583 // `isEphemeralValueOf` is trying to prevent, and it would also make 584 // the loop below go out of bounds. 585 if (Inv == CxtI) 586 return false; 587 588 // The context comes first, but they're both in the same block. 589 // Make sure there is nothing in between that might interrupt 590 // the control flow, not even CxtI itself. 591 // We limit the scan distance between the assume and its context instruction 592 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 593 // it can be adjusted if needed (could be turned into a cl::opt). 594 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 595 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 596 return false; 597 598 return !isEphemeralValueOf(Inv, CxtI); 599 } 600 601 // Inv and CxtI are in different blocks. 602 if (DT) { 603 if (DT->dominates(Inv, CxtI)) 604 return true; 605 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 606 // We don't have a DT, but this trivially dominates. 607 return true; 608 } 609 610 return false; 611 } 612 613 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 614 // v u> y implies v != 0. 615 if (Pred == ICmpInst::ICMP_UGT) 616 return true; 617 618 // Special-case v != 0 to also handle v != null. 619 if (Pred == ICmpInst::ICMP_NE) 620 return match(RHS, m_Zero()); 621 622 // All other predicates - rely on generic ConstantRange handling. 623 const APInt *C; 624 if (!match(RHS, m_APInt(C))) 625 return false; 626 627 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 628 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 629 } 630 631 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return false; 636 637 if (Q.CxtI && V->getType()->isPointerTy()) { 638 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 639 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 640 V->getType()->getPointerAddressSpace())) 641 AttrKinds.push_back(Attribute::Dereferenceable); 642 643 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 644 return true; 645 } 646 647 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 648 if (!AssumeVH) 649 continue; 650 CallInst *I = cast<CallInst>(AssumeVH); 651 assert(I->getFunction() == Q.CxtI->getFunction() && 652 "Got assumption for the wrong function!"); 653 654 // Warning: This loop can end up being somewhat performance sensitive. 655 // We're running this loop for once for each value queried resulting in a 656 // runtime of ~O(#assumes * #values). 657 658 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 659 "must be an assume intrinsic"); 660 661 Value *RHS; 662 CmpInst::Predicate Pred; 663 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 664 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 665 return false; 666 667 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 668 return true; 669 } 670 671 return false; 672 } 673 674 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 675 unsigned Depth, const Query &Q) { 676 // Use of assumptions is context-sensitive. If we don't have a context, we 677 // cannot use them! 678 if (!Q.AC || !Q.CxtI) 679 return; 680 681 unsigned BitWidth = Known.getBitWidth(); 682 683 // Refine Known set if the pointer alignment is set by assume bundles. 684 if (V->getType()->isPointerTy()) { 685 if (RetainedKnowledge RK = getKnowledgeValidInContext( 686 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 687 if (isPowerOf2_64(RK.ArgValue)) 688 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 689 } 690 } 691 692 // Note that the patterns below need to be kept in sync with the code 693 // in AssumptionCache::updateAffectedValues. 694 695 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 696 if (!AssumeVH) 697 continue; 698 CallInst *I = cast<CallInst>(AssumeVH); 699 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 700 "Got assumption for the wrong function!"); 701 702 // Warning: This loop can end up being somewhat performance sensitive. 703 // We're running this loop for once for each value queried resulting in a 704 // runtime of ~O(#assumes * #values). 705 706 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 707 "must be an assume intrinsic"); 708 709 Value *Arg = I->getArgOperand(0); 710 711 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 712 assert(BitWidth == 1 && "assume operand is not i1?"); 713 Known.setAllOnes(); 714 return; 715 } 716 if (match(Arg, m_Not(m_Specific(V))) && 717 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 718 assert(BitWidth == 1 && "assume operand is not i1?"); 719 Known.setAllZero(); 720 return; 721 } 722 723 // The remaining tests are all recursive, so bail out if we hit the limit. 724 if (Depth == MaxAnalysisRecursionDepth) 725 continue; 726 727 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 728 if (!Cmp) 729 continue; 730 731 // We are attempting to compute known bits for the operands of an assume. 732 // Do not try to use other assumptions for those recursive calls because 733 // that can lead to mutual recursion and a compile-time explosion. 734 // An example of the mutual recursion: computeKnownBits can call 735 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 736 // and so on. 737 Query QueryNoAC = Q; 738 QueryNoAC.AC = nullptr; 739 740 // Note that ptrtoint may change the bitwidth. 741 Value *A, *B; 742 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 743 744 CmpInst::Predicate Pred; 745 uint64_t C; 746 switch (Cmp->getPredicate()) { 747 default: 748 break; 749 case ICmpInst::ICMP_EQ: 750 // assume(v = a) 751 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 753 KnownBits RHSKnown = 754 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 755 Known.Zero |= RHSKnown.Zero; 756 Known.One |= RHSKnown.One; 757 // assume(v & b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 763 KnownBits MaskKnown = 764 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 769 Known.One |= RHSKnown.One & MaskKnown.One; 770 // assume(~(v & b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 776 KnownBits MaskKnown = 777 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & MaskKnown.One; 782 Known.One |= RHSKnown.Zero & MaskKnown.One; 783 // assume(v | b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 // assume(~(v | b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 KnownBits BKnown = 803 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & BKnown.Zero; 808 Known.One |= RHSKnown.Zero & BKnown.Zero; 809 // assume(v ^ b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 KnownBits BKnown = 816 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 Known.Zero |= RHSKnown.One & BKnown.One; 824 Known.One |= RHSKnown.Zero & BKnown.One; 825 // assume(~(v ^ b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown = 830 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 831 KnownBits BKnown = 832 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 Known.Zero |= RHSKnown.One & BKnown.Zero; 838 Known.One |= RHSKnown.Zero & BKnown.Zero; 839 Known.Zero |= RHSKnown.Zero & BKnown.One; 840 Known.One |= RHSKnown.One & BKnown.One; 841 // assume(v << c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 847 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 RHSKnown.Zero.lshrInPlace(C); 851 Known.Zero |= RHSKnown.Zero; 852 RHSKnown.One.lshrInPlace(C); 853 Known.One |= RHSKnown.One; 854 // assume(~(v << c) = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown = 859 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 860 // For those bits in RHS that are known, we can propagate them inverted 861 // to known bits in V shifted to the right by C. 862 RHSKnown.One.lshrInPlace(C); 863 Known.Zero |= RHSKnown.One; 864 RHSKnown.Zero.lshrInPlace(C); 865 Known.One |= RHSKnown.Zero; 866 // assume(v >> c = a) 867 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 868 m_Value(A))) && 869 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 870 KnownBits RHSKnown = 871 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 872 // For those bits in RHS that are known, we can propagate them to known 873 // bits in V shifted to the right by C. 874 Known.Zero |= RHSKnown.Zero << C; 875 Known.One |= RHSKnown.One << C; 876 // assume(~(v >> c) = a) 877 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 878 m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 882 // For those bits in RHS that are known, we can propagate them inverted 883 // to known bits in V shifted to the right by C. 884 Known.Zero |= RHSKnown.One << C; 885 Known.One |= RHSKnown.Zero << C; 886 } 887 break; 888 case ICmpInst::ICMP_SGE: 889 // assume(v >=_s c) where c is non-negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNonNegative()) { 896 // We know that the sign bit is zero. 897 Known.makeNonNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SGT: 902 // assume(v >_s c) where c is at least -1. 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 909 // We know that the sign bit is zero. 910 Known.makeNonNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_SLE: 915 // assume(v <=_s c) where c is negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 920 921 if (RHSKnown.isNegative()) { 922 // We know that the sign bit is one. 923 Known.makeNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SLT: 928 // assume(v <_s c) where c is non-positive 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 933 934 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 935 // We know that the sign bit is one. 936 Known.makeNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_ULE: 941 // assume(v <=_u c) 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown = 945 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 946 947 // Whatever high bits in c are zero are known to be zero. 948 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 949 } 950 break; 951 case ICmpInst::ICMP_ULT: 952 // assume(v <_u c) 953 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 954 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 955 KnownBits RHSKnown = 956 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 957 958 // If the RHS is known zero, then this assumption must be wrong (nothing 959 // is unsigned less than zero). Signal a conflict and get out of here. 960 if (RHSKnown.isZero()) { 961 Known.Zero.setAllBits(); 962 Known.One.setAllBits(); 963 break; 964 } 965 966 // Whatever high bits in c are zero are known to be zero (if c is a power 967 // of 2, then one more). 968 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 969 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 970 else 971 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 972 } 973 break; 974 } 975 } 976 977 // If assumptions conflict with each other or previous known bits, then we 978 // have a logical fallacy. It's possible that the assumption is not reachable, 979 // so this isn't a real bug. On the other hand, the program may have undefined 980 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 981 // clear out the known bits, try to warn the user, and hope for the best. 982 if (Known.Zero.intersects(Known.One)) { 983 Known.resetAll(); 984 985 if (Q.ORE) 986 Q.ORE->emit([&]() { 987 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 988 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 989 CxtI) 990 << "Detected conflicting code assumptions. Program may " 991 "have undefined behavior, or compiler may have " 992 "internal error."; 993 }); 994 } 995 } 996 997 /// Compute known bits from a shift operator, including those with a 998 /// non-constant shift amount. Known is the output of this function. Known2 is a 999 /// pre-allocated temporary with the same bit width as Known and on return 1000 /// contains the known bit of the shift value source. KF is an 1001 /// operator-specific function that, given the known-bits and a shift amount, 1002 /// compute the implied known-bits of the shift operator's result respectively 1003 /// for that shift amount. The results from calling KF are conservatively 1004 /// combined for all permitted shift amounts. 1005 static void computeKnownBitsFromShiftOperator( 1006 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1007 KnownBits &Known2, unsigned Depth, const Query &Q, 1008 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 1009 unsigned BitWidth = Known.getBitWidth(); 1010 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1011 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1012 1013 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1014 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1015 // limit value (which implies all bits are known). 1016 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1017 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1018 bool ShiftAmtIsConstant = Known.isConstant(); 1019 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1020 1021 if (ShiftAmtIsConstant) { 1022 Known = KF(Known2, Known); 1023 1024 // If the known bits conflict, this must be an overflowing left shift, so 1025 // the shift result is poison. We can return anything we want. Choose 0 for 1026 // the best folding opportunity. 1027 if (Known.hasConflict()) 1028 Known.setAllZero(); 1029 1030 return; 1031 } 1032 1033 // If the shift amount could be greater than or equal to the bit-width of the 1034 // LHS, the value could be poison, but bail out because the check below is 1035 // expensive. 1036 // TODO: Should we just carry on? 1037 if (MaxShiftAmtIsOutOfRange) { 1038 Known.resetAll(); 1039 return; 1040 } 1041 1042 // It would be more-clearly correct to use the two temporaries for this 1043 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1044 Known.resetAll(); 1045 1046 // If we know the shifter operand is nonzero, we can sometimes infer more 1047 // known bits. However this is expensive to compute, so be lazy about it and 1048 // only compute it when absolutely necessary. 1049 Optional<bool> ShifterOperandIsNonZero; 1050 1051 // Early exit if we can't constrain any well-defined shift amount. 1052 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1053 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1054 ShifterOperandIsNonZero = 1055 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1056 if (!*ShifterOperandIsNonZero) 1057 return; 1058 } 1059 1060 Known.Zero.setAllBits(); 1061 Known.One.setAllBits(); 1062 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1063 // Combine the shifted known input bits only for those shift amounts 1064 // compatible with its known constraints. 1065 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1066 continue; 1067 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1068 continue; 1069 // If we know the shifter is nonzero, we may be able to infer more known 1070 // bits. This check is sunk down as far as possible to avoid the expensive 1071 // call to isKnownNonZero if the cheaper checks above fail. 1072 if (ShiftAmt == 0) { 1073 if (!ShifterOperandIsNonZero.hasValue()) 1074 ShifterOperandIsNonZero = 1075 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1076 if (*ShifterOperandIsNonZero) 1077 continue; 1078 } 1079 1080 Known = KnownBits::commonBits( 1081 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1082 } 1083 1084 // If the known bits conflict, the result is poison. Return a 0 and hope the 1085 // caller can further optimize that. 1086 if (Known.hasConflict()) 1087 Known.setAllZero(); 1088 } 1089 1090 static void computeKnownBitsFromOperator(const Operator *I, 1091 const APInt &DemandedElts, 1092 KnownBits &Known, unsigned Depth, 1093 const Query &Q) { 1094 unsigned BitWidth = Known.getBitWidth(); 1095 1096 KnownBits Known2(BitWidth); 1097 switch (I->getOpcode()) { 1098 default: break; 1099 case Instruction::Load: 1100 if (MDNode *MD = 1101 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1102 computeKnownBitsFromRangeMetadata(*MD, Known); 1103 break; 1104 case Instruction::And: { 1105 // If either the LHS or the RHS are Zero, the result is zero. 1106 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known &= Known2; 1110 1111 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1112 // here we handle the more general case of adding any odd number by 1113 // matching the form add(x, add(x, y)) where y is odd. 1114 // TODO: This could be generalized to clearing any bit set in y where the 1115 // following bit is known to be unset in y. 1116 Value *X = nullptr, *Y = nullptr; 1117 if (!Known.Zero[0] && !Known.One[0] && 1118 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1119 Known2.resetAll(); 1120 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1121 if (Known2.countMinTrailingOnes() > 0) 1122 Known.Zero.setBit(0); 1123 } 1124 break; 1125 } 1126 case Instruction::Or: 1127 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1128 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1129 1130 Known |= Known2; 1131 break; 1132 case Instruction::Xor: 1133 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1135 1136 Known ^= Known2; 1137 break; 1138 case Instruction::Mul: { 1139 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1140 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1141 Known, Known2, Depth, Q); 1142 break; 1143 } 1144 case Instruction::UDiv: { 1145 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1146 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1147 Known = KnownBits::udiv(Known, Known2); 1148 break; 1149 } 1150 case Instruction::Select: { 1151 const Value *LHS = nullptr, *RHS = nullptr; 1152 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1153 if (SelectPatternResult::isMinOrMax(SPF)) { 1154 computeKnownBits(RHS, Known, Depth + 1, Q); 1155 computeKnownBits(LHS, Known2, Depth + 1, Q); 1156 switch (SPF) { 1157 default: 1158 llvm_unreachable("Unhandled select pattern flavor!"); 1159 case SPF_SMAX: 1160 Known = KnownBits::smax(Known, Known2); 1161 break; 1162 case SPF_SMIN: 1163 Known = KnownBits::smin(Known, Known2); 1164 break; 1165 case SPF_UMAX: 1166 Known = KnownBits::umax(Known, Known2); 1167 break; 1168 case SPF_UMIN: 1169 Known = KnownBits::umin(Known, Known2); 1170 break; 1171 } 1172 break; 1173 } 1174 1175 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1176 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1177 1178 // Only known if known in both the LHS and RHS. 1179 Known = KnownBits::commonBits(Known, Known2); 1180 1181 if (SPF == SPF_ABS) { 1182 // RHS from matchSelectPattern returns the negation part of abs pattern. 1183 // If the negate has an NSW flag we can assume the sign bit of the result 1184 // will be 0 because that makes abs(INT_MIN) undefined. 1185 if (match(RHS, m_Neg(m_Specific(LHS))) && 1186 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1187 Known.Zero.setSignBit(); 1188 } 1189 1190 break; 1191 } 1192 case Instruction::FPTrunc: 1193 case Instruction::FPExt: 1194 case Instruction::FPToUI: 1195 case Instruction::FPToSI: 1196 case Instruction::SIToFP: 1197 case Instruction::UIToFP: 1198 break; // Can't work with floating point. 1199 case Instruction::PtrToInt: 1200 case Instruction::IntToPtr: 1201 // Fall through and handle them the same as zext/trunc. 1202 LLVM_FALLTHROUGH; 1203 case Instruction::ZExt: 1204 case Instruction::Trunc: { 1205 Type *SrcTy = I->getOperand(0)->getType(); 1206 1207 unsigned SrcBitWidth; 1208 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1209 // which fall through here. 1210 Type *ScalarTy = SrcTy->getScalarType(); 1211 SrcBitWidth = ScalarTy->isPointerTy() ? 1212 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1213 Q.DL.getTypeSizeInBits(ScalarTy); 1214 1215 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1216 Known = Known.anyextOrTrunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 Known = Known.zextOrTrunc(BitWidth); 1219 break; 1220 } 1221 case Instruction::BitCast: { 1222 Type *SrcTy = I->getOperand(0)->getType(); 1223 if (SrcTy->isIntOrPtrTy() && 1224 // TODO: For now, not handling conversions like: 1225 // (bitcast i64 %x to <2 x i32>) 1226 !I->getType()->isVectorTy()) { 1227 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1228 break; 1229 } 1230 1231 // Handle cast from vector integer type to scalar or vector integer. 1232 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1233 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1234 !I->getType()->isIntOrIntVectorTy()) 1235 break; 1236 1237 // Look through a cast from narrow vector elements to wider type. 1238 // Examples: v4i32 -> v2i64, v3i8 -> v24 1239 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1240 if (BitWidth % SubBitWidth == 0) { 1241 // Known bits are automatically intersected across demanded elements of a 1242 // vector. So for example, if a bit is computed as known zero, it must be 1243 // zero across all demanded elements of the vector. 1244 // 1245 // For this bitcast, each demanded element of the output is sub-divided 1246 // across a set of smaller vector elements in the source vector. To get 1247 // the known bits for an entire element of the output, compute the known 1248 // bits for each sub-element sequentially. This is done by shifting the 1249 // one-set-bit demanded elements parameter across the sub-elements for 1250 // consecutive calls to computeKnownBits. We are using the demanded 1251 // elements parameter as a mask operator. 1252 // 1253 // The known bits of each sub-element are then inserted into place 1254 // (dependent on endian) to form the full result of known bits. 1255 unsigned NumElts = DemandedElts.getBitWidth(); 1256 unsigned SubScale = BitWidth / SubBitWidth; 1257 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1258 for (unsigned i = 0; i != NumElts; ++i) { 1259 if (DemandedElts[i]) 1260 SubDemandedElts.setBit(i * SubScale); 1261 } 1262 1263 KnownBits KnownSrc(SubBitWidth); 1264 for (unsigned i = 0; i != SubScale; ++i) { 1265 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1266 Depth + 1, Q); 1267 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1268 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1269 } 1270 } 1271 break; 1272 } 1273 case Instruction::SExt: { 1274 // Compute the bits in the result that are not present in the input. 1275 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1276 1277 Known = Known.trunc(SrcBitWidth); 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 // If the sign bit of the input is known set or clear, then we know the 1280 // top bits of the result. 1281 Known = Known.sext(BitWidth); 1282 break; 1283 } 1284 case Instruction::Shl: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1287 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1288 // If this shift has "nsw" keyword, then the result is either a poison 1289 // value or has the same sign bit as the first operand. 1290 if (NSW) { 1291 if (KnownVal.Zero.isSignBitSet()) 1292 Result.Zero.setSignBit(); 1293 if (KnownVal.One.isSignBitSet()) 1294 Result.One.setSignBit(); 1295 } 1296 return Result; 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 // Trailing zeros of a right-shifted constant never decrease. 1301 const APInt *C; 1302 if (match(I->getOperand(0), m_APInt(C))) 1303 Known.Zero.setLowBits(C->countTrailingZeros()); 1304 break; 1305 } 1306 case Instruction::LShr: { 1307 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1308 return KnownBits::lshr(KnownVal, KnownAmt); 1309 }; 1310 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1311 KF); 1312 // Leading zeros of a left-shifted constant never decrease. 1313 const APInt *C; 1314 if (match(I->getOperand(0), m_APInt(C))) 1315 Known.Zero.setHighBits(C->countLeadingZeros()); 1316 break; 1317 } 1318 case Instruction::AShr: { 1319 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1320 return KnownBits::ashr(KnownVal, KnownAmt); 1321 }; 1322 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1323 KF); 1324 break; 1325 } 1326 case Instruction::Sub: { 1327 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1328 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1329 DemandedElts, Known, Known2, Depth, Q); 1330 break; 1331 } 1332 case Instruction::Add: { 1333 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1334 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1335 DemandedElts, Known, Known2, Depth, Q); 1336 break; 1337 } 1338 case Instruction::SRem: 1339 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1340 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1341 Known = KnownBits::srem(Known, Known2); 1342 break; 1343 1344 case Instruction::URem: 1345 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1346 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1347 Known = KnownBits::urem(Known, Known2); 1348 break; 1349 case Instruction::Alloca: 1350 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1351 break; 1352 case Instruction::GetElementPtr: { 1353 // Analyze all of the subscripts of this getelementptr instruction 1354 // to determine if we can prove known low zero bits. 1355 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1356 // Accumulate the constant indices in a separate variable 1357 // to minimize the number of calls to computeForAddSub. 1358 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1359 1360 gep_type_iterator GTI = gep_type_begin(I); 1361 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1362 // TrailZ can only become smaller, short-circuit if we hit zero. 1363 if (Known.isUnknown()) 1364 break; 1365 1366 Value *Index = I->getOperand(i); 1367 1368 // Handle case when index is zero. 1369 Constant *CIndex = dyn_cast<Constant>(Index); 1370 if (CIndex && CIndex->isZeroValue()) 1371 continue; 1372 1373 if (StructType *STy = GTI.getStructTypeOrNull()) { 1374 // Handle struct member offset arithmetic. 1375 1376 assert(CIndex && 1377 "Access to structure field must be known at compile time"); 1378 1379 if (CIndex->getType()->isVectorTy()) 1380 Index = CIndex->getSplatValue(); 1381 1382 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1383 const StructLayout *SL = Q.DL.getStructLayout(STy); 1384 uint64_t Offset = SL->getElementOffset(Idx); 1385 AccConstIndices += Offset; 1386 continue; 1387 } 1388 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 Known.resetAll(); 1393 break; 1394 } 1395 1396 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1397 KnownBits IndexBits(IndexBitWidth); 1398 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1399 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1400 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1401 KnownBits ScalingFactor(IndexBitWidth); 1402 // Multiply by current sizeof type. 1403 // &A[i] == A + i * sizeof(*A[i]). 1404 if (IndexTypeSize.isScalable()) { 1405 // For scalable types the only thing we know about sizeof is 1406 // that this is a multiple of the minimum size. 1407 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1408 } else if (IndexBits.isConstant()) { 1409 APInt IndexConst = IndexBits.getConstant(); 1410 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1411 IndexConst *= ScalingFactor; 1412 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1413 continue; 1414 } else { 1415 ScalingFactor = 1416 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1417 } 1418 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1419 1420 // If the offsets have a different width from the pointer, according 1421 // to the language reference we need to sign-extend or truncate them 1422 // to the width of the pointer. 1423 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1424 1425 // Note that inbounds does *not* guarantee nsw for the addition, as only 1426 // the offset is signed, while the base address is unsigned. 1427 Known = KnownBits::computeForAddSub( 1428 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1429 } 1430 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1431 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1432 Known = KnownBits::computeForAddSub( 1433 /*Add=*/true, /*NSW=*/false, Known, Index); 1434 } 1435 break; 1436 } 1437 case Instruction::PHI: { 1438 const PHINode *P = cast<PHINode>(I); 1439 BinaryOperator *BO = nullptr; 1440 Value *R = nullptr, *L = nullptr; 1441 if (matchSimpleRecurrence(P, BO, R, L)) { 1442 // Handle the case of a simple two-predecessor recurrence PHI. 1443 // There's a lot more that could theoretically be done here, but 1444 // this is sufficient to catch some interesting cases. 1445 unsigned Opcode = BO->getOpcode(); 1446 1447 // If this is a shift recurrence, we know the bits being shifted in. 1448 // We can combine that with information about the start value of the 1449 // recurrence to conclude facts about the result. 1450 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1451 Opcode == Instruction::Shl) && 1452 BO->getOperand(0) == I) { 1453 1454 // We have matched a recurrence of the form: 1455 // %iv = [R, %entry], [%iv.next, %backedge] 1456 // %iv.next = shift_op %iv, L 1457 1458 // Recurse with the phi context to avoid concern about whether facts 1459 // inferred hold at original context instruction. TODO: It may be 1460 // correct to use the original context. IF warranted, explore and 1461 // add sufficient tests to cover. 1462 Query RecQ = Q; 1463 RecQ.CxtI = P; 1464 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1465 switch (Opcode) { 1466 case Instruction::Shl: 1467 // A shl recurrence will only increase the tailing zeros 1468 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1469 break; 1470 case Instruction::LShr: 1471 // A lshr recurrence will preserve the leading zeros of the 1472 // start value 1473 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1474 break; 1475 case Instruction::AShr: 1476 // An ashr recurrence will extend the initial sign bit 1477 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1478 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1479 break; 1480 }; 1481 } 1482 1483 // Check for operations that have the property that if 1484 // both their operands have low zero bits, the result 1485 // will have low zero bits. 1486 if (Opcode == Instruction::Add || 1487 Opcode == Instruction::Sub || 1488 Opcode == Instruction::And || 1489 Opcode == Instruction::Or || 1490 Opcode == Instruction::Mul) { 1491 // Change the context instruction to the "edge" that flows into the 1492 // phi. This is important because that is where the value is actually 1493 // "evaluated" even though it is used later somewhere else. (see also 1494 // D69571). 1495 Query RecQ = Q; 1496 1497 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1498 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1499 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1500 1501 // Ok, we have a PHI of the form L op= R. Check for low 1502 // zero bits. 1503 RecQ.CxtI = RInst; 1504 computeKnownBits(R, Known2, Depth + 1, RecQ); 1505 1506 // We need to take the minimum number of known bits 1507 KnownBits Known3(BitWidth); 1508 RecQ.CxtI = LInst; 1509 computeKnownBits(L, Known3, Depth + 1, RecQ); 1510 1511 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1512 Known3.countMinTrailingZeros())); 1513 1514 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1515 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1516 // If initial value of recurrence is nonnegative, and we are adding 1517 // a nonnegative number with nsw, the result can only be nonnegative 1518 // or poison value regardless of the number of times we execute the 1519 // add in phi recurrence. If initial value is negative and we are 1520 // adding a negative number with nsw, the result can only be 1521 // negative or poison value. Similar arguments apply to sub and mul. 1522 // 1523 // (add non-negative, non-negative) --> non-negative 1524 // (add negative, negative) --> negative 1525 if (Opcode == Instruction::Add) { 1526 if (Known2.isNonNegative() && Known3.isNonNegative()) 1527 Known.makeNonNegative(); 1528 else if (Known2.isNegative() && Known3.isNegative()) 1529 Known.makeNegative(); 1530 } 1531 1532 // (sub nsw non-negative, negative) --> non-negative 1533 // (sub nsw negative, non-negative) --> negative 1534 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1535 if (Known2.isNonNegative() && Known3.isNegative()) 1536 Known.makeNonNegative(); 1537 else if (Known2.isNegative() && Known3.isNonNegative()) 1538 Known.makeNegative(); 1539 } 1540 1541 // (mul nsw non-negative, non-negative) --> non-negative 1542 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1543 Known3.isNonNegative()) 1544 Known.makeNonNegative(); 1545 } 1546 1547 break; 1548 } 1549 } 1550 1551 // Unreachable blocks may have zero-operand PHI nodes. 1552 if (P->getNumIncomingValues() == 0) 1553 break; 1554 1555 // Otherwise take the unions of the known bit sets of the operands, 1556 // taking conservative care to avoid excessive recursion. 1557 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1558 // Skip if every incoming value references to ourself. 1559 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1560 break; 1561 1562 Known.Zero.setAllBits(); 1563 Known.One.setAllBits(); 1564 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1565 Value *IncValue = P->getIncomingValue(u); 1566 // Skip direct self references. 1567 if (IncValue == P) continue; 1568 1569 // Change the context instruction to the "edge" that flows into the 1570 // phi. This is important because that is where the value is actually 1571 // "evaluated" even though it is used later somewhere else. (see also 1572 // D69571). 1573 Query RecQ = Q; 1574 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1575 1576 Known2 = KnownBits(BitWidth); 1577 // Recurse, but cap the recursion to one level, because we don't 1578 // want to waste time spinning around in loops. 1579 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1580 Known = KnownBits::commonBits(Known, Known2); 1581 // If all bits have been ruled out, there's no need to check 1582 // more operands. 1583 if (Known.isUnknown()) 1584 break; 1585 } 1586 } 1587 break; 1588 } 1589 case Instruction::Call: 1590 case Instruction::Invoke: 1591 // If range metadata is attached to this call, set known bits from that, 1592 // and then intersect with known bits based on other properties of the 1593 // function. 1594 if (MDNode *MD = 1595 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1596 computeKnownBitsFromRangeMetadata(*MD, Known); 1597 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1598 computeKnownBits(RV, Known2, Depth + 1, Q); 1599 Known.Zero |= Known2.Zero; 1600 Known.One |= Known2.One; 1601 } 1602 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1603 switch (II->getIntrinsicID()) { 1604 default: break; 1605 case Intrinsic::abs: { 1606 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1607 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1608 Known = Known2.abs(IntMinIsPoison); 1609 break; 1610 } 1611 case Intrinsic::bitreverse: 1612 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1613 Known.Zero |= Known2.Zero.reverseBits(); 1614 Known.One |= Known2.One.reverseBits(); 1615 break; 1616 case Intrinsic::bswap: 1617 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1618 Known.Zero |= Known2.Zero.byteSwap(); 1619 Known.One |= Known2.One.byteSwap(); 1620 break; 1621 case Intrinsic::ctlz: { 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 // If we have a known 1, its position is our upper bound. 1624 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1625 // If this call is poison for 0 input, the result will be less than 2^n. 1626 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1627 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1628 unsigned LowBits = Log2_32(PossibleLZ)+1; 1629 Known.Zero.setBitsFrom(LowBits); 1630 break; 1631 } 1632 case Intrinsic::cttz: { 1633 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1634 // If we have a known 1, its position is our upper bound. 1635 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1636 // If this call is poison for 0 input, the result will be less than 2^n. 1637 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1638 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1639 unsigned LowBits = Log2_32(PossibleTZ)+1; 1640 Known.Zero.setBitsFrom(LowBits); 1641 break; 1642 } 1643 case Intrinsic::ctpop: { 1644 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1645 // We can bound the space the count needs. Also, bits known to be zero 1646 // can't contribute to the population. 1647 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1648 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1649 Known.Zero.setBitsFrom(LowBits); 1650 // TODO: we could bound KnownOne using the lower bound on the number 1651 // of bits which might be set provided by popcnt KnownOne2. 1652 break; 1653 } 1654 case Intrinsic::fshr: 1655 case Intrinsic::fshl: { 1656 const APInt *SA; 1657 if (!match(I->getOperand(2), m_APInt(SA))) 1658 break; 1659 1660 // Normalize to funnel shift left. 1661 uint64_t ShiftAmt = SA->urem(BitWidth); 1662 if (II->getIntrinsicID() == Intrinsic::fshr) 1663 ShiftAmt = BitWidth - ShiftAmt; 1664 1665 KnownBits Known3(BitWidth); 1666 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1667 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1668 1669 Known.Zero = 1670 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1671 Known.One = 1672 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1673 break; 1674 } 1675 case Intrinsic::uadd_sat: 1676 case Intrinsic::usub_sat: { 1677 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 1681 // Add: Leading ones of either operand are preserved. 1682 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1683 // as leading zeros in the result. 1684 unsigned LeadingKnown; 1685 if (IsAdd) 1686 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1687 Known2.countMinLeadingOnes()); 1688 else 1689 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1690 Known2.countMinLeadingOnes()); 1691 1692 Known = KnownBits::computeForAddSub( 1693 IsAdd, /* NSW */ false, Known, Known2); 1694 1695 // We select between the operation result and all-ones/zero 1696 // respectively, so we can preserve known ones/zeros. 1697 if (IsAdd) { 1698 Known.One.setHighBits(LeadingKnown); 1699 Known.Zero.clearAllBits(); 1700 } else { 1701 Known.Zero.setHighBits(LeadingKnown); 1702 Known.One.clearAllBits(); 1703 } 1704 break; 1705 } 1706 case Intrinsic::umin: 1707 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1708 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1709 Known = KnownBits::umin(Known, Known2); 1710 break; 1711 case Intrinsic::umax: 1712 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1713 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1714 Known = KnownBits::umax(Known, Known2); 1715 break; 1716 case Intrinsic::smin: 1717 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1718 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1719 Known = KnownBits::smin(Known, Known2); 1720 break; 1721 case Intrinsic::smax: 1722 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1723 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1724 Known = KnownBits::smax(Known, Known2); 1725 break; 1726 case Intrinsic::x86_sse42_crc32_64_64: 1727 Known.Zero.setBitsFrom(32); 1728 break; 1729 case Intrinsic::riscv_vsetvli: 1730 case Intrinsic::riscv_vsetvlimax: 1731 // Assume that VL output is positive and would fit in an int32_t. 1732 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1733 if (BitWidth >= 32) 1734 Known.Zero.setBitsFrom(31); 1735 break; 1736 case Intrinsic::vscale: { 1737 if (!II->getParent() || !II->getFunction() || 1738 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1739 break; 1740 1741 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1742 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1743 1744 if (!VScaleMax) 1745 break; 1746 1747 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1748 1749 // If vscale min = max then we know the exact value at compile time 1750 // and hence we know the exact bits. 1751 if (VScaleMin == VScaleMax) { 1752 Known.One = VScaleMin; 1753 Known.Zero = VScaleMin; 1754 Known.Zero.flipAllBits(); 1755 break; 1756 } 1757 1758 unsigned FirstZeroHighBit = 1759 32 - countLeadingZeros(VScaleMax.getValue()); 1760 if (FirstZeroHighBit < BitWidth) 1761 Known.Zero.setBitsFrom(FirstZeroHighBit); 1762 1763 break; 1764 } 1765 } 1766 } 1767 break; 1768 case Instruction::ShuffleVector: { 1769 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1770 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1771 if (!Shuf) { 1772 Known.resetAll(); 1773 return; 1774 } 1775 // For undef elements, we don't know anything about the common state of 1776 // the shuffle result. 1777 APInt DemandedLHS, DemandedRHS; 1778 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1779 Known.resetAll(); 1780 return; 1781 } 1782 Known.One.setAllBits(); 1783 Known.Zero.setAllBits(); 1784 if (!!DemandedLHS) { 1785 const Value *LHS = Shuf->getOperand(0); 1786 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1787 // If we don't know any bits, early out. 1788 if (Known.isUnknown()) 1789 break; 1790 } 1791 if (!!DemandedRHS) { 1792 const Value *RHS = Shuf->getOperand(1); 1793 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1794 Known = KnownBits::commonBits(Known, Known2); 1795 } 1796 break; 1797 } 1798 case Instruction::InsertElement: { 1799 const Value *Vec = I->getOperand(0); 1800 const Value *Elt = I->getOperand(1); 1801 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1802 // Early out if the index is non-constant or out-of-range. 1803 unsigned NumElts = DemandedElts.getBitWidth(); 1804 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1805 Known.resetAll(); 1806 return; 1807 } 1808 Known.One.setAllBits(); 1809 Known.Zero.setAllBits(); 1810 unsigned EltIdx = CIdx->getZExtValue(); 1811 // Do we demand the inserted element? 1812 if (DemandedElts[EltIdx]) { 1813 computeKnownBits(Elt, Known, Depth + 1, Q); 1814 // If we don't know any bits, early out. 1815 if (Known.isUnknown()) 1816 break; 1817 } 1818 // We don't need the base vector element that has been inserted. 1819 APInt DemandedVecElts = DemandedElts; 1820 DemandedVecElts.clearBit(EltIdx); 1821 if (!!DemandedVecElts) { 1822 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1823 Known = KnownBits::commonBits(Known, Known2); 1824 } 1825 break; 1826 } 1827 case Instruction::ExtractElement: { 1828 // Look through extract element. If the index is non-constant or 1829 // out-of-range demand all elements, otherwise just the extracted element. 1830 const Value *Vec = I->getOperand(0); 1831 const Value *Idx = I->getOperand(1); 1832 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1833 if (isa<ScalableVectorType>(Vec->getType())) { 1834 // FIXME: there's probably *something* we can do with scalable vectors 1835 Known.resetAll(); 1836 break; 1837 } 1838 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1839 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1840 if (CIdx && CIdx->getValue().ult(NumElts)) 1841 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1842 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1843 break; 1844 } 1845 case Instruction::ExtractValue: 1846 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1847 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1848 if (EVI->getNumIndices() != 1) break; 1849 if (EVI->getIndices()[0] == 0) { 1850 switch (II->getIntrinsicID()) { 1851 default: break; 1852 case Intrinsic::uadd_with_overflow: 1853 case Intrinsic::sadd_with_overflow: 1854 computeKnownBitsAddSub(true, II->getArgOperand(0), 1855 II->getArgOperand(1), false, DemandedElts, 1856 Known, Known2, Depth, Q); 1857 break; 1858 case Intrinsic::usub_with_overflow: 1859 case Intrinsic::ssub_with_overflow: 1860 computeKnownBitsAddSub(false, II->getArgOperand(0), 1861 II->getArgOperand(1), false, DemandedElts, 1862 Known, Known2, Depth, Q); 1863 break; 1864 case Intrinsic::umul_with_overflow: 1865 case Intrinsic::smul_with_overflow: 1866 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1867 DemandedElts, Known, Known2, Depth, Q); 1868 break; 1869 } 1870 } 1871 } 1872 break; 1873 case Instruction::Freeze: 1874 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1875 Depth + 1)) 1876 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1877 break; 1878 } 1879 } 1880 1881 /// Determine which bits of V are known to be either zero or one and return 1882 /// them. 1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1884 unsigned Depth, const Query &Q) { 1885 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1886 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1887 return Known; 1888 } 1889 1890 /// Determine which bits of V are known to be either zero or one and return 1891 /// them. 1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1893 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1894 computeKnownBits(V, Known, Depth, Q); 1895 return Known; 1896 } 1897 1898 /// Determine which bits of V are known to be either zero or one and return 1899 /// them in the Known bit set. 1900 /// 1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1902 /// we cannot optimize based on the assumption that it is zero without changing 1903 /// it to be an explicit zero. If we don't change it to zero, other code could 1904 /// optimized based on the contradictory assumption that it is non-zero. 1905 /// Because instcombine aggressively folds operations with undef args anyway, 1906 /// this won't lose us code quality. 1907 /// 1908 /// This function is defined on values with integer type, values with pointer 1909 /// type, and vectors of integers. In the case 1910 /// where V is a vector, known zero, and known one values are the 1911 /// same width as the vector element, and the bit is set only if it is true 1912 /// for all of the demanded elements in the vector specified by DemandedElts. 1913 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1914 KnownBits &Known, unsigned Depth, const Query &Q) { 1915 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1916 // No demanded elts or V is a scalable vector, better to assume we don't 1917 // know anything. 1918 Known.resetAll(); 1919 return; 1920 } 1921 1922 assert(V && "No Value?"); 1923 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1924 1925 #ifndef NDEBUG 1926 Type *Ty = V->getType(); 1927 unsigned BitWidth = Known.getBitWidth(); 1928 1929 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1930 "Not integer or pointer type!"); 1931 1932 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1933 assert( 1934 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1935 "DemandedElt width should equal the fixed vector number of elements"); 1936 } else { 1937 assert(DemandedElts == APInt(1, 1) && 1938 "DemandedElt width should be 1 for scalars"); 1939 } 1940 1941 Type *ScalarTy = Ty->getScalarType(); 1942 if (ScalarTy->isPointerTy()) { 1943 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1944 "V and Known should have same BitWidth"); 1945 } else { 1946 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1947 "V and Known should have same BitWidth"); 1948 } 1949 #endif 1950 1951 const APInt *C; 1952 if (match(V, m_APInt(C))) { 1953 // We know all of the bits for a scalar constant or a splat vector constant! 1954 Known = KnownBits::makeConstant(*C); 1955 return; 1956 } 1957 // Null and aggregate-zero are all-zeros. 1958 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1959 Known.setAllZero(); 1960 return; 1961 } 1962 // Handle a constant vector by taking the intersection of the known bits of 1963 // each element. 1964 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1965 // We know that CDV must be a vector of integers. Take the intersection of 1966 // each element. 1967 Known.Zero.setAllBits(); Known.One.setAllBits(); 1968 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1969 if (!DemandedElts[i]) 1970 continue; 1971 APInt Elt = CDV->getElementAsAPInt(i); 1972 Known.Zero &= ~Elt; 1973 Known.One &= Elt; 1974 } 1975 return; 1976 } 1977 1978 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1979 // We know that CV must be a vector of integers. Take the intersection of 1980 // each element. 1981 Known.Zero.setAllBits(); Known.One.setAllBits(); 1982 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1983 if (!DemandedElts[i]) 1984 continue; 1985 Constant *Element = CV->getAggregateElement(i); 1986 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1987 if (!ElementCI) { 1988 Known.resetAll(); 1989 return; 1990 } 1991 const APInt &Elt = ElementCI->getValue(); 1992 Known.Zero &= ~Elt; 1993 Known.One &= Elt; 1994 } 1995 return; 1996 } 1997 1998 // Start out not knowing anything. 1999 Known.resetAll(); 2000 2001 // We can't imply anything about undefs. 2002 if (isa<UndefValue>(V)) 2003 return; 2004 2005 // There's no point in looking through other users of ConstantData for 2006 // assumptions. Confirm that we've handled them all. 2007 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2008 2009 // All recursive calls that increase depth must come after this. 2010 if (Depth == MaxAnalysisRecursionDepth) 2011 return; 2012 2013 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2014 // the bits of its aliasee. 2015 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2016 if (!GA->isInterposable()) 2017 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2018 return; 2019 } 2020 2021 if (const Operator *I = dyn_cast<Operator>(V)) 2022 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2023 2024 // Aligned pointers have trailing zeros - refine Known.Zero set 2025 if (isa<PointerType>(V->getType())) { 2026 Align Alignment = V->getPointerAlignment(Q.DL); 2027 Known.Zero.setLowBits(Log2(Alignment)); 2028 } 2029 2030 // computeKnownBitsFromAssume strictly refines Known. 2031 // Therefore, we run them after computeKnownBitsFromOperator. 2032 2033 // Check whether a nearby assume intrinsic can determine some known bits. 2034 computeKnownBitsFromAssume(V, Known, Depth, Q); 2035 2036 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2037 } 2038 2039 /// Return true if the given value is known to have exactly one 2040 /// bit set when defined. For vectors return true if every element is known to 2041 /// be a power of two when defined. Supports values with integer or pointer 2042 /// types and vectors of integers. 2043 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2044 const Query &Q) { 2045 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2046 2047 // Attempt to match against constants. 2048 if (OrZero && match(V, m_Power2OrZero())) 2049 return true; 2050 if (match(V, m_Power2())) 2051 return true; 2052 2053 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2054 // it is shifted off the end then the result is undefined. 2055 if (match(V, m_Shl(m_One(), m_Value()))) 2056 return true; 2057 2058 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2059 // the bottom. If it is shifted off the bottom then the result is undefined. 2060 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2061 return true; 2062 2063 // The remaining tests are all recursive, so bail out if we hit the limit. 2064 if (Depth++ == MaxAnalysisRecursionDepth) 2065 return false; 2066 2067 Value *X = nullptr, *Y = nullptr; 2068 // A shift left or a logical shift right of a power of two is a power of two 2069 // or zero. 2070 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2071 match(V, m_LShr(m_Value(X), m_Value())))) 2072 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2073 2074 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2075 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2076 2077 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2078 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2079 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2080 2081 // Peek through min/max. 2082 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2083 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2084 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2085 } 2086 2087 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2088 // A power of two and'd with anything is a power of two or zero. 2089 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2090 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2091 return true; 2092 // X & (-X) is always a power of two or zero. 2093 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2094 return true; 2095 return false; 2096 } 2097 2098 // Adding a power-of-two or zero to the same power-of-two or zero yields 2099 // either the original power-of-two, a larger power-of-two or zero. 2100 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2101 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2102 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2103 Q.IIQ.hasNoSignedWrap(VOBO)) { 2104 if (match(X, m_And(m_Specific(Y), m_Value())) || 2105 match(X, m_And(m_Value(), m_Specific(Y)))) 2106 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2107 return true; 2108 if (match(Y, m_And(m_Specific(X), m_Value())) || 2109 match(Y, m_And(m_Value(), m_Specific(X)))) 2110 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2111 return true; 2112 2113 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2114 KnownBits LHSBits(BitWidth); 2115 computeKnownBits(X, LHSBits, Depth, Q); 2116 2117 KnownBits RHSBits(BitWidth); 2118 computeKnownBits(Y, RHSBits, Depth, Q); 2119 // If i8 V is a power of two or zero: 2120 // ZeroBits: 1 1 1 0 1 1 1 1 2121 // ~ZeroBits: 0 0 0 1 0 0 0 0 2122 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2123 // If OrZero isn't set, we cannot give back a zero result. 2124 // Make sure either the LHS or RHS has a bit set. 2125 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2126 return true; 2127 } 2128 } 2129 2130 // A PHI node is power of two if all incoming values are power of two. 2131 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2132 Query RecQ = Q; 2133 2134 // Recursively check all incoming values. Limit recursion to 2 levels, so 2135 // that search complexity is limited to number of operands^2. 2136 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2137 return llvm::all_of(PN->operands(), [&](const Use &U) { 2138 // Value is power of 2 if it is coming from PHI node itself by induction. 2139 if (U.get() == PN) 2140 return true; 2141 2142 // Change the context instruction to the incoming block where it is 2143 // evaluated. 2144 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2145 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2146 }); 2147 } 2148 2149 // An exact divide or right shift can only shift off zero bits, so the result 2150 // is a power of two only if the first operand is a power of two and not 2151 // copying a sign bit (sdiv int_min, 2). 2152 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2153 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2154 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2155 Depth, Q); 2156 } 2157 2158 return false; 2159 } 2160 2161 /// Test whether a GEP's result is known to be non-null. 2162 /// 2163 /// Uses properties inherent in a GEP to try to determine whether it is known 2164 /// to be non-null. 2165 /// 2166 /// Currently this routine does not support vector GEPs. 2167 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2168 const Query &Q) { 2169 const Function *F = nullptr; 2170 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2171 F = I->getFunction(); 2172 2173 if (!GEP->isInBounds() || 2174 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2175 return false; 2176 2177 // FIXME: Support vector-GEPs. 2178 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2179 2180 // If the base pointer is non-null, we cannot walk to a null address with an 2181 // inbounds GEP in address space zero. 2182 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2183 return true; 2184 2185 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2186 // If so, then the GEP cannot produce a null pointer, as doing so would 2187 // inherently violate the inbounds contract within address space zero. 2188 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2189 GTI != GTE; ++GTI) { 2190 // Struct types are easy -- they must always be indexed by a constant. 2191 if (StructType *STy = GTI.getStructTypeOrNull()) { 2192 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2193 unsigned ElementIdx = OpC->getZExtValue(); 2194 const StructLayout *SL = Q.DL.getStructLayout(STy); 2195 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2196 if (ElementOffset > 0) 2197 return true; 2198 continue; 2199 } 2200 2201 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2202 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2203 continue; 2204 2205 // Fast path the constant operand case both for efficiency and so we don't 2206 // increment Depth when just zipping down an all-constant GEP. 2207 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2208 if (!OpC->isZero()) 2209 return true; 2210 continue; 2211 } 2212 2213 // We post-increment Depth here because while isKnownNonZero increments it 2214 // as well, when we pop back up that increment won't persist. We don't want 2215 // to recurse 10k times just because we have 10k GEP operands. We don't 2216 // bail completely out because we want to handle constant GEPs regardless 2217 // of depth. 2218 if (Depth++ >= MaxAnalysisRecursionDepth) 2219 continue; 2220 2221 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2222 return true; 2223 } 2224 2225 return false; 2226 } 2227 2228 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2229 const Instruction *CtxI, 2230 const DominatorTree *DT) { 2231 if (isa<Constant>(V)) 2232 return false; 2233 2234 if (!CtxI || !DT) 2235 return false; 2236 2237 unsigned NumUsesExplored = 0; 2238 for (auto *U : V->users()) { 2239 // Avoid massive lists 2240 if (NumUsesExplored >= DomConditionsMaxUses) 2241 break; 2242 NumUsesExplored++; 2243 2244 // If the value is used as an argument to a call or invoke, then argument 2245 // attributes may provide an answer about null-ness. 2246 if (const auto *CB = dyn_cast<CallBase>(U)) 2247 if (auto *CalledFunc = CB->getCalledFunction()) 2248 for (const Argument &Arg : CalledFunc->args()) 2249 if (CB->getArgOperand(Arg.getArgNo()) == V && 2250 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2251 DT->dominates(CB, CtxI)) 2252 return true; 2253 2254 // If the value is used as a load/store, then the pointer must be non null. 2255 if (V == getLoadStorePointerOperand(U)) { 2256 const Instruction *I = cast<Instruction>(U); 2257 if (!NullPointerIsDefined(I->getFunction(), 2258 V->getType()->getPointerAddressSpace()) && 2259 DT->dominates(I, CtxI)) 2260 return true; 2261 } 2262 2263 // Consider only compare instructions uniquely controlling a branch 2264 Value *RHS; 2265 CmpInst::Predicate Pred; 2266 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2267 continue; 2268 2269 bool NonNullIfTrue; 2270 if (cmpExcludesZero(Pred, RHS)) 2271 NonNullIfTrue = true; 2272 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2273 NonNullIfTrue = false; 2274 else 2275 continue; 2276 2277 SmallVector<const User *, 4> WorkList; 2278 SmallPtrSet<const User *, 4> Visited; 2279 for (auto *CmpU : U->users()) { 2280 assert(WorkList.empty() && "Should be!"); 2281 if (Visited.insert(CmpU).second) 2282 WorkList.push_back(CmpU); 2283 2284 while (!WorkList.empty()) { 2285 auto *Curr = WorkList.pop_back_val(); 2286 2287 // If a user is an AND, add all its users to the work list. We only 2288 // propagate "pred != null" condition through AND because it is only 2289 // correct to assume that all conditions of AND are met in true branch. 2290 // TODO: Support similar logic of OR and EQ predicate? 2291 if (NonNullIfTrue) 2292 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2293 for (auto *CurrU : Curr->users()) 2294 if (Visited.insert(CurrU).second) 2295 WorkList.push_back(CurrU); 2296 continue; 2297 } 2298 2299 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2300 assert(BI->isConditional() && "uses a comparison!"); 2301 2302 BasicBlock *NonNullSuccessor = 2303 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2304 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2305 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2306 return true; 2307 } else if (NonNullIfTrue && isGuard(Curr) && 2308 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2309 return true; 2310 } 2311 } 2312 } 2313 } 2314 2315 return false; 2316 } 2317 2318 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2319 /// ensure that the value it's attached to is never Value? 'RangeType' is 2320 /// is the type of the value described by the range. 2321 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2322 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2323 assert(NumRanges >= 1); 2324 for (unsigned i = 0; i < NumRanges; ++i) { 2325 ConstantInt *Lower = 2326 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2327 ConstantInt *Upper = 2328 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2329 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2330 if (Range.contains(Value)) 2331 return false; 2332 } 2333 return true; 2334 } 2335 2336 /// Try to detect a recurrence that monotonically increases/decreases from a 2337 /// non-zero starting value. These are common as induction variables. 2338 static bool isNonZeroRecurrence(const PHINode *PN) { 2339 BinaryOperator *BO = nullptr; 2340 Value *Start = nullptr, *Step = nullptr; 2341 const APInt *StartC, *StepC; 2342 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2343 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2344 return false; 2345 2346 switch (BO->getOpcode()) { 2347 case Instruction::Add: 2348 // Starting from non-zero and stepping away from zero can never wrap back 2349 // to zero. 2350 return BO->hasNoUnsignedWrap() || 2351 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2352 StartC->isNegative() == StepC->isNegative()); 2353 case Instruction::Mul: 2354 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2355 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2356 case Instruction::Shl: 2357 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2358 case Instruction::AShr: 2359 case Instruction::LShr: 2360 return BO->isExact(); 2361 default: 2362 return false; 2363 } 2364 } 2365 2366 /// Return true if the given value is known to be non-zero when defined. For 2367 /// vectors, return true if every demanded element is known to be non-zero when 2368 /// defined. For pointers, if the context instruction and dominator tree are 2369 /// specified, perform context-sensitive analysis and return true if the 2370 /// pointer couldn't possibly be null at the specified instruction. 2371 /// Supports values with integer or pointer type and vectors of integers. 2372 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2373 const Query &Q) { 2374 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2375 // vector 2376 if (isa<ScalableVectorType>(V->getType())) 2377 return false; 2378 2379 if (auto *C = dyn_cast<Constant>(V)) { 2380 if (C->isNullValue()) 2381 return false; 2382 if (isa<ConstantInt>(C)) 2383 // Must be non-zero due to null test above. 2384 return true; 2385 2386 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2387 // See the comment for IntToPtr/PtrToInt instructions below. 2388 if (CE->getOpcode() == Instruction::IntToPtr || 2389 CE->getOpcode() == Instruction::PtrToInt) 2390 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2391 .getFixedSize() <= 2392 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2393 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2394 } 2395 2396 // For constant vectors, check that all elements are undefined or known 2397 // non-zero to determine that the whole vector is known non-zero. 2398 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2399 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2400 if (!DemandedElts[i]) 2401 continue; 2402 Constant *Elt = C->getAggregateElement(i); 2403 if (!Elt || Elt->isNullValue()) 2404 return false; 2405 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2406 return false; 2407 } 2408 return true; 2409 } 2410 2411 // A global variable in address space 0 is non null unless extern weak 2412 // or an absolute symbol reference. Other address spaces may have null as a 2413 // valid address for a global, so we can't assume anything. 2414 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2415 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2416 GV->getType()->getAddressSpace() == 0) 2417 return true; 2418 } else 2419 return false; 2420 } 2421 2422 if (auto *I = dyn_cast<Instruction>(V)) { 2423 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2424 // If the possible ranges don't contain zero, then the value is 2425 // definitely non-zero. 2426 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2427 const APInt ZeroValue(Ty->getBitWidth(), 0); 2428 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2429 return true; 2430 } 2431 } 2432 } 2433 2434 if (isKnownNonZeroFromAssume(V, Q)) 2435 return true; 2436 2437 // Some of the tests below are recursive, so bail out if we hit the limit. 2438 if (Depth++ >= MaxAnalysisRecursionDepth) 2439 return false; 2440 2441 // Check for pointer simplifications. 2442 2443 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2444 // Alloca never returns null, malloc might. 2445 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2446 return true; 2447 2448 // A byval, inalloca may not be null in a non-default addres space. A 2449 // nonnull argument is assumed never 0. 2450 if (const Argument *A = dyn_cast<Argument>(V)) { 2451 if (((A->hasPassPointeeByValueCopyAttr() && 2452 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2453 A->hasNonNullAttr())) 2454 return true; 2455 } 2456 2457 // A Load tagged with nonnull metadata is never null. 2458 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2459 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2460 return true; 2461 2462 if (const auto *Call = dyn_cast<CallBase>(V)) { 2463 if (Call->isReturnNonNull()) 2464 return true; 2465 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2466 return isKnownNonZero(RP, Depth, Q); 2467 } 2468 } 2469 2470 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2471 return true; 2472 2473 // Check for recursive pointer simplifications. 2474 if (V->getType()->isPointerTy()) { 2475 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2476 // do not alter the value, or at least not the nullness property of the 2477 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2478 // 2479 // Note that we have to take special care to avoid looking through 2480 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2481 // as casts that can alter the value, e.g., AddrSpaceCasts. 2482 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2483 return isGEPKnownNonNull(GEP, Depth, Q); 2484 2485 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2486 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2487 2488 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2489 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2490 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2491 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2492 } 2493 2494 // Similar to int2ptr above, we can look through ptr2int here if the cast 2495 // is a no-op or an extend and not a truncate. 2496 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2497 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2498 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2499 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2500 2501 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2502 2503 // X | Y != 0 if X != 0 or Y != 0. 2504 Value *X = nullptr, *Y = nullptr; 2505 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2506 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2507 isKnownNonZero(Y, DemandedElts, Depth, Q); 2508 2509 // ext X != 0 if X != 0. 2510 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2511 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2512 2513 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2514 // if the lowest bit is shifted off the end. 2515 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2516 // shl nuw can't remove any non-zero bits. 2517 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2518 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2519 return isKnownNonZero(X, Depth, Q); 2520 2521 KnownBits Known(BitWidth); 2522 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2523 if (Known.One[0]) 2524 return true; 2525 } 2526 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2527 // defined if the sign bit is shifted off the end. 2528 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2529 // shr exact can only shift out zero bits. 2530 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2531 if (BO->isExact()) 2532 return isKnownNonZero(X, Depth, Q); 2533 2534 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2535 if (Known.isNegative()) 2536 return true; 2537 2538 // If the shifter operand is a constant, and all of the bits shifted 2539 // out are known to be zero, and X is known non-zero then at least one 2540 // non-zero bit must remain. 2541 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2542 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2543 // Is there a known one in the portion not shifted out? 2544 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2545 return true; 2546 // Are all the bits to be shifted out known zero? 2547 if (Known.countMinTrailingZeros() >= ShiftVal) 2548 return isKnownNonZero(X, DemandedElts, Depth, Q); 2549 } 2550 } 2551 // div exact can only produce a zero if the dividend is zero. 2552 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2553 return isKnownNonZero(X, DemandedElts, Depth, Q); 2554 } 2555 // X + Y. 2556 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2557 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2558 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2559 2560 // If X and Y are both non-negative (as signed values) then their sum is not 2561 // zero unless both X and Y are zero. 2562 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2563 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2564 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2565 return true; 2566 2567 // If X and Y are both negative (as signed values) then their sum is not 2568 // zero unless both X and Y equal INT_MIN. 2569 if (XKnown.isNegative() && YKnown.isNegative()) { 2570 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2571 // The sign bit of X is set. If some other bit is set then X is not equal 2572 // to INT_MIN. 2573 if (XKnown.One.intersects(Mask)) 2574 return true; 2575 // The sign bit of Y is set. If some other bit is set then Y is not equal 2576 // to INT_MIN. 2577 if (YKnown.One.intersects(Mask)) 2578 return true; 2579 } 2580 2581 // The sum of a non-negative number and a power of two is not zero. 2582 if (XKnown.isNonNegative() && 2583 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2584 return true; 2585 if (YKnown.isNonNegative() && 2586 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2587 return true; 2588 } 2589 // X * Y. 2590 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2591 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2592 // If X and Y are non-zero then so is X * Y as long as the multiplication 2593 // does not overflow. 2594 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2595 isKnownNonZero(X, DemandedElts, Depth, Q) && 2596 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2597 return true; 2598 } 2599 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2600 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2601 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2602 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2603 return true; 2604 } 2605 // PHI 2606 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2607 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2608 return true; 2609 2610 // Check if all incoming values are non-zero using recursion. 2611 Query RecQ = Q; 2612 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2613 return llvm::all_of(PN->operands(), [&](const Use &U) { 2614 if (U.get() == PN) 2615 return true; 2616 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2617 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2618 }); 2619 } 2620 // ExtractElement 2621 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2622 const Value *Vec = EEI->getVectorOperand(); 2623 const Value *Idx = EEI->getIndexOperand(); 2624 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2625 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2626 unsigned NumElts = VecTy->getNumElements(); 2627 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2628 if (CIdx && CIdx->getValue().ult(NumElts)) 2629 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2630 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2631 } 2632 } 2633 // Freeze 2634 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2635 auto *Op = FI->getOperand(0); 2636 if (isKnownNonZero(Op, Depth, Q) && 2637 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2638 return true; 2639 } 2640 2641 KnownBits Known(BitWidth); 2642 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2643 return Known.One != 0; 2644 } 2645 2646 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2647 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2648 // vector 2649 if (isa<ScalableVectorType>(V->getType())) 2650 return false; 2651 2652 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2653 APInt DemandedElts = 2654 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2655 return isKnownNonZero(V, DemandedElts, Depth, Q); 2656 } 2657 2658 /// If the pair of operators are the same invertible function, return the 2659 /// the operands of the function corresponding to each input. Otherwise, 2660 /// return None. An invertible function is one that is 1-to-1 and maps 2661 /// every input value to exactly one output value. This is equivalent to 2662 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2663 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2664 static Optional<std::pair<Value*, Value*>> 2665 getInvertibleOperands(const Operator *Op1, 2666 const Operator *Op2) { 2667 if (Op1->getOpcode() != Op2->getOpcode()) 2668 return None; 2669 2670 auto getOperands = [&](unsigned OpNum) -> auto { 2671 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2672 }; 2673 2674 switch (Op1->getOpcode()) { 2675 default: 2676 break; 2677 case Instruction::Add: 2678 case Instruction::Sub: 2679 if (Op1->getOperand(0) == Op2->getOperand(0)) 2680 return getOperands(1); 2681 if (Op1->getOperand(1) == Op2->getOperand(1)) 2682 return getOperands(0); 2683 break; 2684 case Instruction::Mul: { 2685 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2686 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2687 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2688 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2689 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2690 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2691 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2692 break; 2693 2694 // Assume operand order has been canonicalized 2695 if (Op1->getOperand(1) == Op2->getOperand(1) && 2696 isa<ConstantInt>(Op1->getOperand(1)) && 2697 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2698 return getOperands(0); 2699 break; 2700 } 2701 case Instruction::Shl: { 2702 // Same as multiplies, with the difference that we don't need to check 2703 // for a non-zero multiply. Shifts always multiply by non-zero. 2704 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2705 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2706 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2707 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2708 break; 2709 2710 if (Op1->getOperand(1) == Op2->getOperand(1)) 2711 return getOperands(0); 2712 break; 2713 } 2714 case Instruction::AShr: 2715 case Instruction::LShr: { 2716 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2717 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2718 if (!PEO1->isExact() || !PEO2->isExact()) 2719 break; 2720 2721 if (Op1->getOperand(1) == Op2->getOperand(1)) 2722 return getOperands(0); 2723 break; 2724 } 2725 case Instruction::SExt: 2726 case Instruction::ZExt: 2727 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2728 return getOperands(0); 2729 break; 2730 case Instruction::PHI: { 2731 const PHINode *PN1 = cast<PHINode>(Op1); 2732 const PHINode *PN2 = cast<PHINode>(Op2); 2733 2734 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2735 // are a single invertible function of the start values? Note that repeated 2736 // application of an invertible function is also invertible 2737 BinaryOperator *BO1 = nullptr; 2738 Value *Start1 = nullptr, *Step1 = nullptr; 2739 BinaryOperator *BO2 = nullptr; 2740 Value *Start2 = nullptr, *Step2 = nullptr; 2741 if (PN1->getParent() != PN2->getParent() || 2742 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2743 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2744 break; 2745 2746 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2747 cast<Operator>(BO2)); 2748 if (!Values) 2749 break; 2750 2751 // We have to be careful of mutually defined recurrences here. Ex: 2752 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2753 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2754 // The invertibility of these is complicated, and not worth reasoning 2755 // about (yet?). 2756 if (Values->first != PN1 || Values->second != PN2) 2757 break; 2758 2759 return std::make_pair(Start1, Start2); 2760 } 2761 } 2762 return None; 2763 } 2764 2765 /// Return true if V2 == V1 + X, where X is known non-zero. 2766 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2767 const Query &Q) { 2768 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2769 if (!BO || BO->getOpcode() != Instruction::Add) 2770 return false; 2771 Value *Op = nullptr; 2772 if (V2 == BO->getOperand(0)) 2773 Op = BO->getOperand(1); 2774 else if (V2 == BO->getOperand(1)) 2775 Op = BO->getOperand(0); 2776 else 2777 return false; 2778 return isKnownNonZero(Op, Depth + 1, Q); 2779 } 2780 2781 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2782 /// the multiplication is nuw or nsw. 2783 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2784 const Query &Q) { 2785 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2786 const APInt *C; 2787 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2788 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2789 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2790 } 2791 return false; 2792 } 2793 2794 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2795 /// the shift is nuw or nsw. 2796 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2797 const Query &Q) { 2798 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2799 const APInt *C; 2800 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2801 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2802 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2803 } 2804 return false; 2805 } 2806 2807 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2808 unsigned Depth, const Query &Q) { 2809 // Check two PHIs are in same block. 2810 if (PN1->getParent() != PN2->getParent()) 2811 return false; 2812 2813 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2814 bool UsedFullRecursion = false; 2815 for (const BasicBlock *IncomBB : PN1->blocks()) { 2816 if (!VisitedBBs.insert(IncomBB).second) 2817 continue; // Don't reprocess blocks that we have dealt with already. 2818 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2819 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2820 const APInt *C1, *C2; 2821 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2822 continue; 2823 2824 // Only one pair of phi operands is allowed for full recursion. 2825 if (UsedFullRecursion) 2826 return false; 2827 2828 Query RecQ = Q; 2829 RecQ.CxtI = IncomBB->getTerminator(); 2830 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2831 return false; 2832 UsedFullRecursion = true; 2833 } 2834 return true; 2835 } 2836 2837 /// Return true if it is known that V1 != V2. 2838 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2839 const Query &Q) { 2840 if (V1 == V2) 2841 return false; 2842 if (V1->getType() != V2->getType()) 2843 // We can't look through casts yet. 2844 return false; 2845 2846 if (Depth >= MaxAnalysisRecursionDepth) 2847 return false; 2848 2849 // See if we can recurse through (exactly one of) our operands. This 2850 // requires our operation be 1-to-1 and map every input value to exactly 2851 // one output value. Such an operation is invertible. 2852 auto *O1 = dyn_cast<Operator>(V1); 2853 auto *O2 = dyn_cast<Operator>(V2); 2854 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2855 if (auto Values = getInvertibleOperands(O1, O2)) 2856 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2857 2858 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2859 const PHINode *PN2 = cast<PHINode>(V2); 2860 // FIXME: This is missing a generalization to handle the case where one is 2861 // a PHI and another one isn't. 2862 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2863 return true; 2864 }; 2865 } 2866 2867 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2868 return true; 2869 2870 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2871 return true; 2872 2873 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2874 return true; 2875 2876 if (V1->getType()->isIntOrIntVectorTy()) { 2877 // Are any known bits in V1 contradictory to known bits in V2? If V1 2878 // has a known zero where V2 has a known one, they must not be equal. 2879 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2880 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2881 2882 if (Known1.Zero.intersects(Known2.One) || 2883 Known2.Zero.intersects(Known1.One)) 2884 return true; 2885 } 2886 return false; 2887 } 2888 2889 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2890 /// simplify operations downstream. Mask is known to be zero for bits that V 2891 /// cannot have. 2892 /// 2893 /// This function is defined on values with integer type, values with pointer 2894 /// type, and vectors of integers. In the case 2895 /// where V is a vector, the mask, known zero, and known one values are the 2896 /// same width as the vector element, and the bit is set only if it is true 2897 /// for all of the elements in the vector. 2898 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2899 const Query &Q) { 2900 KnownBits Known(Mask.getBitWidth()); 2901 computeKnownBits(V, Known, Depth, Q); 2902 return Mask.isSubsetOf(Known.Zero); 2903 } 2904 2905 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2906 // Returns the input and lower/upper bounds. 2907 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2908 const APInt *&CLow, const APInt *&CHigh) { 2909 assert(isa<Operator>(Select) && 2910 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2911 "Input should be a Select!"); 2912 2913 const Value *LHS = nullptr, *RHS = nullptr; 2914 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2915 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2916 return false; 2917 2918 if (!match(RHS, m_APInt(CLow))) 2919 return false; 2920 2921 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2922 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2923 if (getInverseMinMaxFlavor(SPF) != SPF2) 2924 return false; 2925 2926 if (!match(RHS2, m_APInt(CHigh))) 2927 return false; 2928 2929 if (SPF == SPF_SMIN) 2930 std::swap(CLow, CHigh); 2931 2932 In = LHS2; 2933 return CLow->sle(*CHigh); 2934 } 2935 2936 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2937 const APInt *&CLow, 2938 const APInt *&CHigh) { 2939 assert((II->getIntrinsicID() == Intrinsic::smin || 2940 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 2941 2942 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 2943 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 2944 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 2945 !match(II->getArgOperand(1), m_APInt(CLow)) || 2946 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 2947 return false; 2948 2949 if (II->getIntrinsicID() == Intrinsic::smin) 2950 std::swap(CLow, CHigh); 2951 return CLow->sle(*CHigh); 2952 } 2953 2954 /// For vector constants, loop over the elements and find the constant with the 2955 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2956 /// or if any element was not analyzed; otherwise, return the count for the 2957 /// element with the minimum number of sign bits. 2958 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2959 const APInt &DemandedElts, 2960 unsigned TyBits) { 2961 const auto *CV = dyn_cast<Constant>(V); 2962 if (!CV || !isa<FixedVectorType>(CV->getType())) 2963 return 0; 2964 2965 unsigned MinSignBits = TyBits; 2966 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2967 for (unsigned i = 0; i != NumElts; ++i) { 2968 if (!DemandedElts[i]) 2969 continue; 2970 // If we find a non-ConstantInt, bail out. 2971 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2972 if (!Elt) 2973 return 0; 2974 2975 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2976 } 2977 2978 return MinSignBits; 2979 } 2980 2981 static unsigned ComputeNumSignBitsImpl(const Value *V, 2982 const APInt &DemandedElts, 2983 unsigned Depth, const Query &Q); 2984 2985 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2986 unsigned Depth, const Query &Q) { 2987 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2988 assert(Result > 0 && "At least one sign bit needs to be present!"); 2989 return Result; 2990 } 2991 2992 /// Return the number of times the sign bit of the register is replicated into 2993 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2994 /// (itself), but other cases can give us information. For example, immediately 2995 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2996 /// other, so we return 3. For vectors, return the number of sign bits for the 2997 /// vector element with the minimum number of known sign bits of the demanded 2998 /// elements in the vector specified by DemandedElts. 2999 static unsigned ComputeNumSignBitsImpl(const Value *V, 3000 const APInt &DemandedElts, 3001 unsigned Depth, const Query &Q) { 3002 Type *Ty = V->getType(); 3003 3004 // FIXME: We currently have no way to represent the DemandedElts of a scalable 3005 // vector 3006 if (isa<ScalableVectorType>(Ty)) 3007 return 1; 3008 3009 #ifndef NDEBUG 3010 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3011 3012 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3013 assert( 3014 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3015 "DemandedElt width should equal the fixed vector number of elements"); 3016 } else { 3017 assert(DemandedElts == APInt(1, 1) && 3018 "DemandedElt width should be 1 for scalars"); 3019 } 3020 #endif 3021 3022 // We return the minimum number of sign bits that are guaranteed to be present 3023 // in V, so for undef we have to conservatively return 1. We don't have the 3024 // same behavior for poison though -- that's a FIXME today. 3025 3026 Type *ScalarTy = Ty->getScalarType(); 3027 unsigned TyBits = ScalarTy->isPointerTy() ? 3028 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3029 Q.DL.getTypeSizeInBits(ScalarTy); 3030 3031 unsigned Tmp, Tmp2; 3032 unsigned FirstAnswer = 1; 3033 3034 // Note that ConstantInt is handled by the general computeKnownBits case 3035 // below. 3036 3037 if (Depth == MaxAnalysisRecursionDepth) 3038 return 1; 3039 3040 if (auto *U = dyn_cast<Operator>(V)) { 3041 switch (Operator::getOpcode(V)) { 3042 default: break; 3043 case Instruction::SExt: 3044 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3045 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3046 3047 case Instruction::SDiv: { 3048 const APInt *Denominator; 3049 // sdiv X, C -> adds log(C) sign bits. 3050 if (match(U->getOperand(1), m_APInt(Denominator))) { 3051 3052 // Ignore non-positive denominator. 3053 if (!Denominator->isStrictlyPositive()) 3054 break; 3055 3056 // Calculate the incoming numerator bits. 3057 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3058 3059 // Add floor(log(C)) bits to the numerator bits. 3060 return std::min(TyBits, NumBits + Denominator->logBase2()); 3061 } 3062 break; 3063 } 3064 3065 case Instruction::SRem: { 3066 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3067 3068 const APInt *Denominator; 3069 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3070 // positive constant. This let us put a lower bound on the number of sign 3071 // bits. 3072 if (match(U->getOperand(1), m_APInt(Denominator))) { 3073 3074 // Ignore non-positive denominator. 3075 if (Denominator->isStrictlyPositive()) { 3076 // Calculate the leading sign bit constraints by examining the 3077 // denominator. Given that the denominator is positive, there are two 3078 // cases: 3079 // 3080 // 1. The numerator is positive. The result range is [0,C) and 3081 // [0,C) u< (1 << ceilLogBase2(C)). 3082 // 3083 // 2. The numerator is negative. Then the result range is (-C,0] and 3084 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3085 // 3086 // Thus a lower bound on the number of sign bits is `TyBits - 3087 // ceilLogBase2(C)`. 3088 3089 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3090 Tmp = std::max(Tmp, ResBits); 3091 } 3092 } 3093 return Tmp; 3094 } 3095 3096 case Instruction::AShr: { 3097 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3098 // ashr X, C -> adds C sign bits. Vectors too. 3099 const APInt *ShAmt; 3100 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3101 if (ShAmt->uge(TyBits)) 3102 break; // Bad shift. 3103 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3104 Tmp += ShAmtLimited; 3105 if (Tmp > TyBits) Tmp = TyBits; 3106 } 3107 return Tmp; 3108 } 3109 case Instruction::Shl: { 3110 const APInt *ShAmt; 3111 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3112 // shl destroys sign bits. 3113 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3114 if (ShAmt->uge(TyBits) || // Bad shift. 3115 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3116 Tmp2 = ShAmt->getZExtValue(); 3117 return Tmp - Tmp2; 3118 } 3119 break; 3120 } 3121 case Instruction::And: 3122 case Instruction::Or: 3123 case Instruction::Xor: // NOT is handled here. 3124 // Logical binary ops preserve the number of sign bits at the worst. 3125 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3126 if (Tmp != 1) { 3127 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3128 FirstAnswer = std::min(Tmp, Tmp2); 3129 // We computed what we know about the sign bits as our first 3130 // answer. Now proceed to the generic code that uses 3131 // computeKnownBits, and pick whichever answer is better. 3132 } 3133 break; 3134 3135 case Instruction::Select: { 3136 // If we have a clamp pattern, we know that the number of sign bits will 3137 // be the minimum of the clamp min/max range. 3138 const Value *X; 3139 const APInt *CLow, *CHigh; 3140 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3141 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3142 3143 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3144 if (Tmp == 1) break; 3145 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3146 return std::min(Tmp, Tmp2); 3147 } 3148 3149 case Instruction::Add: 3150 // Add can have at most one carry bit. Thus we know that the output 3151 // is, at worst, one more bit than the inputs. 3152 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3153 if (Tmp == 1) break; 3154 3155 // Special case decrementing a value (ADD X, -1): 3156 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3157 if (CRHS->isAllOnesValue()) { 3158 KnownBits Known(TyBits); 3159 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3160 3161 // If the input is known to be 0 or 1, the output is 0/-1, which is 3162 // all sign bits set. 3163 if ((Known.Zero | 1).isAllOnes()) 3164 return TyBits; 3165 3166 // If we are subtracting one from a positive number, there is no carry 3167 // out of the result. 3168 if (Known.isNonNegative()) 3169 return Tmp; 3170 } 3171 3172 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3173 if (Tmp2 == 1) break; 3174 return std::min(Tmp, Tmp2) - 1; 3175 3176 case Instruction::Sub: 3177 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3178 if (Tmp2 == 1) break; 3179 3180 // Handle NEG. 3181 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3182 if (CLHS->isNullValue()) { 3183 KnownBits Known(TyBits); 3184 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3185 // If the input is known to be 0 or 1, the output is 0/-1, which is 3186 // all sign bits set. 3187 if ((Known.Zero | 1).isAllOnes()) 3188 return TyBits; 3189 3190 // If the input is known to be positive (the sign bit is known clear), 3191 // the output of the NEG has the same number of sign bits as the 3192 // input. 3193 if (Known.isNonNegative()) 3194 return Tmp2; 3195 3196 // Otherwise, we treat this like a SUB. 3197 } 3198 3199 // Sub can have at most one carry bit. Thus we know that the output 3200 // is, at worst, one more bit than the inputs. 3201 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3202 if (Tmp == 1) break; 3203 return std::min(Tmp, Tmp2) - 1; 3204 3205 case Instruction::Mul: { 3206 // The output of the Mul can be at most twice the valid bits in the 3207 // inputs. 3208 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3209 if (SignBitsOp0 == 1) break; 3210 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3211 if (SignBitsOp1 == 1) break; 3212 unsigned OutValidBits = 3213 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3214 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3215 } 3216 3217 case Instruction::PHI: { 3218 const PHINode *PN = cast<PHINode>(U); 3219 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3220 // Don't analyze large in-degree PHIs. 3221 if (NumIncomingValues > 4) break; 3222 // Unreachable blocks may have zero-operand PHI nodes. 3223 if (NumIncomingValues == 0) break; 3224 3225 // Take the minimum of all incoming values. This can't infinitely loop 3226 // because of our depth threshold. 3227 Query RecQ = Q; 3228 Tmp = TyBits; 3229 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3230 if (Tmp == 1) return Tmp; 3231 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3232 Tmp = std::min( 3233 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3234 } 3235 return Tmp; 3236 } 3237 3238 case Instruction::Trunc: 3239 // FIXME: it's tricky to do anything useful for this, but it is an 3240 // important case for targets like X86. 3241 break; 3242 3243 case Instruction::ExtractElement: 3244 // Look through extract element. At the moment we keep this simple and 3245 // skip tracking the specific element. But at least we might find 3246 // information valid for all elements of the vector (for example if vector 3247 // is sign extended, shifted, etc). 3248 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3249 3250 case Instruction::ShuffleVector: { 3251 // Collect the minimum number of sign bits that are shared by every vector 3252 // element referenced by the shuffle. 3253 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3254 if (!Shuf) { 3255 // FIXME: Add support for shufflevector constant expressions. 3256 return 1; 3257 } 3258 APInt DemandedLHS, DemandedRHS; 3259 // For undef elements, we don't know anything about the common state of 3260 // the shuffle result. 3261 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3262 return 1; 3263 Tmp = std::numeric_limits<unsigned>::max(); 3264 if (!!DemandedLHS) { 3265 const Value *LHS = Shuf->getOperand(0); 3266 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3267 } 3268 // If we don't know anything, early out and try computeKnownBits 3269 // fall-back. 3270 if (Tmp == 1) 3271 break; 3272 if (!!DemandedRHS) { 3273 const Value *RHS = Shuf->getOperand(1); 3274 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3275 Tmp = std::min(Tmp, Tmp2); 3276 } 3277 // If we don't know anything, early out and try computeKnownBits 3278 // fall-back. 3279 if (Tmp == 1) 3280 break; 3281 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3282 return Tmp; 3283 } 3284 case Instruction::Call: { 3285 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3286 switch (II->getIntrinsicID()) { 3287 default: break; 3288 case Intrinsic::abs: 3289 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3290 if (Tmp == 1) break; 3291 3292 // Absolute value reduces number of sign bits by at most 1. 3293 return Tmp - 1; 3294 case Intrinsic::smin: 3295 case Intrinsic::smax: { 3296 const APInt *CLow, *CHigh; 3297 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3298 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3299 } 3300 } 3301 } 3302 } 3303 } 3304 } 3305 3306 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3307 // use this information. 3308 3309 // If we can examine all elements of a vector constant successfully, we're 3310 // done (we can't do any better than that). If not, keep trying. 3311 if (unsigned VecSignBits = 3312 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3313 return VecSignBits; 3314 3315 KnownBits Known(TyBits); 3316 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3317 3318 // If we know that the sign bit is either zero or one, determine the number of 3319 // identical bits in the top of the input value. 3320 return std::max(FirstAnswer, Known.countMinSignBits()); 3321 } 3322 3323 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3324 const TargetLibraryInfo *TLI) { 3325 const Function *F = CB.getCalledFunction(); 3326 if (!F) 3327 return Intrinsic::not_intrinsic; 3328 3329 if (F->isIntrinsic()) 3330 return F->getIntrinsicID(); 3331 3332 // We are going to infer semantics of a library function based on mapping it 3333 // to an LLVM intrinsic. Check that the library function is available from 3334 // this callbase and in this environment. 3335 LibFunc Func; 3336 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3337 !CB.onlyReadsMemory()) 3338 return Intrinsic::not_intrinsic; 3339 3340 switch (Func) { 3341 default: 3342 break; 3343 case LibFunc_sin: 3344 case LibFunc_sinf: 3345 case LibFunc_sinl: 3346 return Intrinsic::sin; 3347 case LibFunc_cos: 3348 case LibFunc_cosf: 3349 case LibFunc_cosl: 3350 return Intrinsic::cos; 3351 case LibFunc_exp: 3352 case LibFunc_expf: 3353 case LibFunc_expl: 3354 return Intrinsic::exp; 3355 case LibFunc_exp2: 3356 case LibFunc_exp2f: 3357 case LibFunc_exp2l: 3358 return Intrinsic::exp2; 3359 case LibFunc_log: 3360 case LibFunc_logf: 3361 case LibFunc_logl: 3362 return Intrinsic::log; 3363 case LibFunc_log10: 3364 case LibFunc_log10f: 3365 case LibFunc_log10l: 3366 return Intrinsic::log10; 3367 case LibFunc_log2: 3368 case LibFunc_log2f: 3369 case LibFunc_log2l: 3370 return Intrinsic::log2; 3371 case LibFunc_fabs: 3372 case LibFunc_fabsf: 3373 case LibFunc_fabsl: 3374 return Intrinsic::fabs; 3375 case LibFunc_fmin: 3376 case LibFunc_fminf: 3377 case LibFunc_fminl: 3378 return Intrinsic::minnum; 3379 case LibFunc_fmax: 3380 case LibFunc_fmaxf: 3381 case LibFunc_fmaxl: 3382 return Intrinsic::maxnum; 3383 case LibFunc_copysign: 3384 case LibFunc_copysignf: 3385 case LibFunc_copysignl: 3386 return Intrinsic::copysign; 3387 case LibFunc_floor: 3388 case LibFunc_floorf: 3389 case LibFunc_floorl: 3390 return Intrinsic::floor; 3391 case LibFunc_ceil: 3392 case LibFunc_ceilf: 3393 case LibFunc_ceill: 3394 return Intrinsic::ceil; 3395 case LibFunc_trunc: 3396 case LibFunc_truncf: 3397 case LibFunc_truncl: 3398 return Intrinsic::trunc; 3399 case LibFunc_rint: 3400 case LibFunc_rintf: 3401 case LibFunc_rintl: 3402 return Intrinsic::rint; 3403 case LibFunc_nearbyint: 3404 case LibFunc_nearbyintf: 3405 case LibFunc_nearbyintl: 3406 return Intrinsic::nearbyint; 3407 case LibFunc_round: 3408 case LibFunc_roundf: 3409 case LibFunc_roundl: 3410 return Intrinsic::round; 3411 case LibFunc_roundeven: 3412 case LibFunc_roundevenf: 3413 case LibFunc_roundevenl: 3414 return Intrinsic::roundeven; 3415 case LibFunc_pow: 3416 case LibFunc_powf: 3417 case LibFunc_powl: 3418 return Intrinsic::pow; 3419 case LibFunc_sqrt: 3420 case LibFunc_sqrtf: 3421 case LibFunc_sqrtl: 3422 return Intrinsic::sqrt; 3423 } 3424 3425 return Intrinsic::not_intrinsic; 3426 } 3427 3428 /// Return true if we can prove that the specified FP value is never equal to 3429 /// -0.0. 3430 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3431 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3432 /// the same as +0.0 in floating-point ops. 3433 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3434 unsigned Depth) { 3435 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3436 return !CFP->getValueAPF().isNegZero(); 3437 3438 if (Depth == MaxAnalysisRecursionDepth) 3439 return false; 3440 3441 auto *Op = dyn_cast<Operator>(V); 3442 if (!Op) 3443 return false; 3444 3445 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3446 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3447 return true; 3448 3449 // sitofp and uitofp turn into +0.0 for zero. 3450 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3451 return true; 3452 3453 if (auto *Call = dyn_cast<CallInst>(Op)) { 3454 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3455 switch (IID) { 3456 default: 3457 break; 3458 // sqrt(-0.0) = -0.0, no other negative results are possible. 3459 case Intrinsic::sqrt: 3460 case Intrinsic::canonicalize: 3461 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3462 case Intrinsic::experimental_constrained_sqrt: { 3463 // NOTE: This rounding mode restriction may be too strict. 3464 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3465 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3466 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3467 else 3468 return false; 3469 } 3470 // fabs(x) != -0.0 3471 case Intrinsic::fabs: 3472 return true; 3473 // sitofp and uitofp turn into +0.0 for zero. 3474 case Intrinsic::experimental_constrained_sitofp: 3475 case Intrinsic::experimental_constrained_uitofp: 3476 return true; 3477 } 3478 } 3479 3480 return false; 3481 } 3482 3483 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3484 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3485 /// bit despite comparing equal. 3486 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3487 const TargetLibraryInfo *TLI, 3488 bool SignBitOnly, 3489 unsigned Depth) { 3490 // TODO: This function does not do the right thing when SignBitOnly is true 3491 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3492 // which flips the sign bits of NaNs. See 3493 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3494 3495 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3496 return !CFP->getValueAPF().isNegative() || 3497 (!SignBitOnly && CFP->getValueAPF().isZero()); 3498 } 3499 3500 // Handle vector of constants. 3501 if (auto *CV = dyn_cast<Constant>(V)) { 3502 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3503 unsigned NumElts = CVFVTy->getNumElements(); 3504 for (unsigned i = 0; i != NumElts; ++i) { 3505 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3506 if (!CFP) 3507 return false; 3508 if (CFP->getValueAPF().isNegative() && 3509 (SignBitOnly || !CFP->getValueAPF().isZero())) 3510 return false; 3511 } 3512 3513 // All non-negative ConstantFPs. 3514 return true; 3515 } 3516 } 3517 3518 if (Depth == MaxAnalysisRecursionDepth) 3519 return false; 3520 3521 const Operator *I = dyn_cast<Operator>(V); 3522 if (!I) 3523 return false; 3524 3525 switch (I->getOpcode()) { 3526 default: 3527 break; 3528 // Unsigned integers are always nonnegative. 3529 case Instruction::UIToFP: 3530 return true; 3531 case Instruction::FMul: 3532 case Instruction::FDiv: 3533 // X * X is always non-negative or a NaN. 3534 // X / X is always exactly 1.0 or a NaN. 3535 if (I->getOperand(0) == I->getOperand(1) && 3536 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3537 return true; 3538 3539 LLVM_FALLTHROUGH; 3540 case Instruction::FAdd: 3541 case Instruction::FRem: 3542 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3543 Depth + 1) && 3544 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3545 Depth + 1); 3546 case Instruction::Select: 3547 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3548 Depth + 1) && 3549 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3550 Depth + 1); 3551 case Instruction::FPExt: 3552 case Instruction::FPTrunc: 3553 // Widening/narrowing never change sign. 3554 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3555 Depth + 1); 3556 case Instruction::ExtractElement: 3557 // Look through extract element. At the moment we keep this simple and skip 3558 // tracking the specific element. But at least we might find information 3559 // valid for all elements of the vector. 3560 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3561 Depth + 1); 3562 case Instruction::Call: 3563 const auto *CI = cast<CallInst>(I); 3564 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3565 switch (IID) { 3566 default: 3567 break; 3568 case Intrinsic::maxnum: { 3569 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3570 auto isPositiveNum = [&](Value *V) { 3571 if (SignBitOnly) { 3572 // With SignBitOnly, this is tricky because the result of 3573 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3574 // a constant strictly greater than 0.0. 3575 const APFloat *C; 3576 return match(V, m_APFloat(C)) && 3577 *C > APFloat::getZero(C->getSemantics()); 3578 } 3579 3580 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3581 // maxnum can't be ordered-less-than-zero. 3582 return isKnownNeverNaN(V, TLI) && 3583 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3584 }; 3585 3586 // TODO: This could be improved. We could also check that neither operand 3587 // has its sign bit set (and at least 1 is not-NAN?). 3588 return isPositiveNum(V0) || isPositiveNum(V1); 3589 } 3590 3591 case Intrinsic::maximum: 3592 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3593 Depth + 1) || 3594 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3595 Depth + 1); 3596 case Intrinsic::minnum: 3597 case Intrinsic::minimum: 3598 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3599 Depth + 1) && 3600 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3601 Depth + 1); 3602 case Intrinsic::exp: 3603 case Intrinsic::exp2: 3604 case Intrinsic::fabs: 3605 return true; 3606 3607 case Intrinsic::sqrt: 3608 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3609 if (!SignBitOnly) 3610 return true; 3611 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3612 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3613 3614 case Intrinsic::powi: 3615 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3616 // powi(x,n) is non-negative if n is even. 3617 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3618 return true; 3619 } 3620 // TODO: This is not correct. Given that exp is an integer, here are the 3621 // ways that pow can return a negative value: 3622 // 3623 // pow(x, exp) --> negative if exp is odd and x is negative. 3624 // pow(-0, exp) --> -inf if exp is negative odd. 3625 // pow(-0, exp) --> -0 if exp is positive odd. 3626 // pow(-inf, exp) --> -0 if exp is negative odd. 3627 // pow(-inf, exp) --> -inf if exp is positive odd. 3628 // 3629 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3630 // but we must return false if x == -0. Unfortunately we do not currently 3631 // have a way of expressing this constraint. See details in 3632 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3633 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3634 Depth + 1); 3635 3636 case Intrinsic::fma: 3637 case Intrinsic::fmuladd: 3638 // x*x+y is non-negative if y is non-negative. 3639 return I->getOperand(0) == I->getOperand(1) && 3640 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3641 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3642 Depth + 1); 3643 } 3644 break; 3645 } 3646 return false; 3647 } 3648 3649 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3650 const TargetLibraryInfo *TLI) { 3651 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3652 } 3653 3654 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3655 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3656 } 3657 3658 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3659 unsigned Depth) { 3660 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3661 3662 // If we're told that infinities won't happen, assume they won't. 3663 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3664 if (FPMathOp->hasNoInfs()) 3665 return true; 3666 3667 // Handle scalar constants. 3668 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3669 return !CFP->isInfinity(); 3670 3671 if (Depth == MaxAnalysisRecursionDepth) 3672 return false; 3673 3674 if (auto *Inst = dyn_cast<Instruction>(V)) { 3675 switch (Inst->getOpcode()) { 3676 case Instruction::Select: { 3677 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3678 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3679 } 3680 case Instruction::SIToFP: 3681 case Instruction::UIToFP: { 3682 // Get width of largest magnitude integer (remove a bit if signed). 3683 // This still works for a signed minimum value because the largest FP 3684 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3685 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3686 if (Inst->getOpcode() == Instruction::SIToFP) 3687 --IntSize; 3688 3689 // If the exponent of the largest finite FP value can hold the largest 3690 // integer, the result of the cast must be finite. 3691 Type *FPTy = Inst->getType()->getScalarType(); 3692 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3693 } 3694 default: 3695 break; 3696 } 3697 } 3698 3699 // try to handle fixed width vector constants 3700 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3701 if (VFVTy && isa<Constant>(V)) { 3702 // For vectors, verify that each element is not infinity. 3703 unsigned NumElts = VFVTy->getNumElements(); 3704 for (unsigned i = 0; i != NumElts; ++i) { 3705 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3706 if (!Elt) 3707 return false; 3708 if (isa<UndefValue>(Elt)) 3709 continue; 3710 auto *CElt = dyn_cast<ConstantFP>(Elt); 3711 if (!CElt || CElt->isInfinity()) 3712 return false; 3713 } 3714 // All elements were confirmed non-infinity or undefined. 3715 return true; 3716 } 3717 3718 // was not able to prove that V never contains infinity 3719 return false; 3720 } 3721 3722 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3723 unsigned Depth) { 3724 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3725 3726 // If we're told that NaNs won't happen, assume they won't. 3727 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3728 if (FPMathOp->hasNoNaNs()) 3729 return true; 3730 3731 // Handle scalar constants. 3732 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3733 return !CFP->isNaN(); 3734 3735 if (Depth == MaxAnalysisRecursionDepth) 3736 return false; 3737 3738 if (auto *Inst = dyn_cast<Instruction>(V)) { 3739 switch (Inst->getOpcode()) { 3740 case Instruction::FAdd: 3741 case Instruction::FSub: 3742 // Adding positive and negative infinity produces NaN. 3743 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3744 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3745 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3746 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3747 3748 case Instruction::FMul: 3749 // Zero multiplied with infinity produces NaN. 3750 // FIXME: If neither side can be zero fmul never produces NaN. 3751 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3752 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3753 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3754 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3755 3756 case Instruction::FDiv: 3757 case Instruction::FRem: 3758 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3759 return false; 3760 3761 case Instruction::Select: { 3762 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3763 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3764 } 3765 case Instruction::SIToFP: 3766 case Instruction::UIToFP: 3767 return true; 3768 case Instruction::FPTrunc: 3769 case Instruction::FPExt: 3770 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3771 default: 3772 break; 3773 } 3774 } 3775 3776 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3777 switch (II->getIntrinsicID()) { 3778 case Intrinsic::canonicalize: 3779 case Intrinsic::fabs: 3780 case Intrinsic::copysign: 3781 case Intrinsic::exp: 3782 case Intrinsic::exp2: 3783 case Intrinsic::floor: 3784 case Intrinsic::ceil: 3785 case Intrinsic::trunc: 3786 case Intrinsic::rint: 3787 case Intrinsic::nearbyint: 3788 case Intrinsic::round: 3789 case Intrinsic::roundeven: 3790 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3791 case Intrinsic::sqrt: 3792 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3793 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3794 case Intrinsic::minnum: 3795 case Intrinsic::maxnum: 3796 // If either operand is not NaN, the result is not NaN. 3797 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3798 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3799 default: 3800 return false; 3801 } 3802 } 3803 3804 // Try to handle fixed width vector constants 3805 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3806 if (VFVTy && isa<Constant>(V)) { 3807 // For vectors, verify that each element is not NaN. 3808 unsigned NumElts = VFVTy->getNumElements(); 3809 for (unsigned i = 0; i != NumElts; ++i) { 3810 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3811 if (!Elt) 3812 return false; 3813 if (isa<UndefValue>(Elt)) 3814 continue; 3815 auto *CElt = dyn_cast<ConstantFP>(Elt); 3816 if (!CElt || CElt->isNaN()) 3817 return false; 3818 } 3819 // All elements were confirmed not-NaN or undefined. 3820 return true; 3821 } 3822 3823 // Was not able to prove that V never contains NaN 3824 return false; 3825 } 3826 3827 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3828 3829 // All byte-wide stores are splatable, even of arbitrary variables. 3830 if (V->getType()->isIntegerTy(8)) 3831 return V; 3832 3833 LLVMContext &Ctx = V->getContext(); 3834 3835 // Undef don't care. 3836 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3837 if (isa<UndefValue>(V)) 3838 return UndefInt8; 3839 3840 // Return Undef for zero-sized type. 3841 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3842 return UndefInt8; 3843 3844 Constant *C = dyn_cast<Constant>(V); 3845 if (!C) { 3846 // Conceptually, we could handle things like: 3847 // %a = zext i8 %X to i16 3848 // %b = shl i16 %a, 8 3849 // %c = or i16 %a, %b 3850 // but until there is an example that actually needs this, it doesn't seem 3851 // worth worrying about. 3852 return nullptr; 3853 } 3854 3855 // Handle 'null' ConstantArrayZero etc. 3856 if (C->isNullValue()) 3857 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3858 3859 // Constant floating-point values can be handled as integer values if the 3860 // corresponding integer value is "byteable". An important case is 0.0. 3861 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3862 Type *Ty = nullptr; 3863 if (CFP->getType()->isHalfTy()) 3864 Ty = Type::getInt16Ty(Ctx); 3865 else if (CFP->getType()->isFloatTy()) 3866 Ty = Type::getInt32Ty(Ctx); 3867 else if (CFP->getType()->isDoubleTy()) 3868 Ty = Type::getInt64Ty(Ctx); 3869 // Don't handle long double formats, which have strange constraints. 3870 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3871 : nullptr; 3872 } 3873 3874 // We can handle constant integers that are multiple of 8 bits. 3875 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3876 if (CI->getBitWidth() % 8 == 0) { 3877 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3878 if (!CI->getValue().isSplat(8)) 3879 return nullptr; 3880 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3881 } 3882 } 3883 3884 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3885 if (CE->getOpcode() == Instruction::IntToPtr) { 3886 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3887 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3888 return isBytewiseValue( 3889 ConstantExpr::getIntegerCast(CE->getOperand(0), 3890 Type::getIntNTy(Ctx, BitWidth), false), 3891 DL); 3892 } 3893 } 3894 } 3895 3896 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3897 if (LHS == RHS) 3898 return LHS; 3899 if (!LHS || !RHS) 3900 return nullptr; 3901 if (LHS == UndefInt8) 3902 return RHS; 3903 if (RHS == UndefInt8) 3904 return LHS; 3905 return nullptr; 3906 }; 3907 3908 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3909 Value *Val = UndefInt8; 3910 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3911 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3912 return nullptr; 3913 return Val; 3914 } 3915 3916 if (isa<ConstantAggregate>(C)) { 3917 Value *Val = UndefInt8; 3918 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3919 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3920 return nullptr; 3921 return Val; 3922 } 3923 3924 // Don't try to handle the handful of other constants. 3925 return nullptr; 3926 } 3927 3928 // This is the recursive version of BuildSubAggregate. It takes a few different 3929 // arguments. Idxs is the index within the nested struct From that we are 3930 // looking at now (which is of type IndexedType). IdxSkip is the number of 3931 // indices from Idxs that should be left out when inserting into the resulting 3932 // struct. To is the result struct built so far, new insertvalue instructions 3933 // build on that. 3934 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3935 SmallVectorImpl<unsigned> &Idxs, 3936 unsigned IdxSkip, 3937 Instruction *InsertBefore) { 3938 StructType *STy = dyn_cast<StructType>(IndexedType); 3939 if (STy) { 3940 // Save the original To argument so we can modify it 3941 Value *OrigTo = To; 3942 // General case, the type indexed by Idxs is a struct 3943 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3944 // Process each struct element recursively 3945 Idxs.push_back(i); 3946 Value *PrevTo = To; 3947 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3948 InsertBefore); 3949 Idxs.pop_back(); 3950 if (!To) { 3951 // Couldn't find any inserted value for this index? Cleanup 3952 while (PrevTo != OrigTo) { 3953 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3954 PrevTo = Del->getAggregateOperand(); 3955 Del->eraseFromParent(); 3956 } 3957 // Stop processing elements 3958 break; 3959 } 3960 } 3961 // If we successfully found a value for each of our subaggregates 3962 if (To) 3963 return To; 3964 } 3965 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3966 // the struct's elements had a value that was inserted directly. In the latter 3967 // case, perhaps we can't determine each of the subelements individually, but 3968 // we might be able to find the complete struct somewhere. 3969 3970 // Find the value that is at that particular spot 3971 Value *V = FindInsertedValue(From, Idxs); 3972 3973 if (!V) 3974 return nullptr; 3975 3976 // Insert the value in the new (sub) aggregate 3977 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3978 "tmp", InsertBefore); 3979 } 3980 3981 // This helper takes a nested struct and extracts a part of it (which is again a 3982 // struct) into a new value. For example, given the struct: 3983 // { a, { b, { c, d }, e } } 3984 // and the indices "1, 1" this returns 3985 // { c, d }. 3986 // 3987 // It does this by inserting an insertvalue for each element in the resulting 3988 // struct, as opposed to just inserting a single struct. This will only work if 3989 // each of the elements of the substruct are known (ie, inserted into From by an 3990 // insertvalue instruction somewhere). 3991 // 3992 // All inserted insertvalue instructions are inserted before InsertBefore 3993 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3994 Instruction *InsertBefore) { 3995 assert(InsertBefore && "Must have someplace to insert!"); 3996 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3997 idx_range); 3998 Value *To = UndefValue::get(IndexedType); 3999 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4000 unsigned IdxSkip = Idxs.size(); 4001 4002 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4003 } 4004 4005 /// Given an aggregate and a sequence of indices, see if the scalar value 4006 /// indexed is already around as a register, for example if it was inserted 4007 /// directly into the aggregate. 4008 /// 4009 /// If InsertBefore is not null, this function will duplicate (modified) 4010 /// insertvalues when a part of a nested struct is extracted. 4011 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4012 Instruction *InsertBefore) { 4013 // Nothing to index? Just return V then (this is useful at the end of our 4014 // recursion). 4015 if (idx_range.empty()) 4016 return V; 4017 // We have indices, so V should have an indexable type. 4018 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4019 "Not looking at a struct or array?"); 4020 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4021 "Invalid indices for type?"); 4022 4023 if (Constant *C = dyn_cast<Constant>(V)) { 4024 C = C->getAggregateElement(idx_range[0]); 4025 if (!C) return nullptr; 4026 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4027 } 4028 4029 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4030 // Loop the indices for the insertvalue instruction in parallel with the 4031 // requested indices 4032 const unsigned *req_idx = idx_range.begin(); 4033 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4034 i != e; ++i, ++req_idx) { 4035 if (req_idx == idx_range.end()) { 4036 // We can't handle this without inserting insertvalues 4037 if (!InsertBefore) 4038 return nullptr; 4039 4040 // The requested index identifies a part of a nested aggregate. Handle 4041 // this specially. For example, 4042 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4043 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4044 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4045 // This can be changed into 4046 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4047 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4048 // which allows the unused 0,0 element from the nested struct to be 4049 // removed. 4050 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4051 InsertBefore); 4052 } 4053 4054 // This insert value inserts something else than what we are looking for. 4055 // See if the (aggregate) value inserted into has the value we are 4056 // looking for, then. 4057 if (*req_idx != *i) 4058 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4059 InsertBefore); 4060 } 4061 // If we end up here, the indices of the insertvalue match with those 4062 // requested (though possibly only partially). Now we recursively look at 4063 // the inserted value, passing any remaining indices. 4064 return FindInsertedValue(I->getInsertedValueOperand(), 4065 makeArrayRef(req_idx, idx_range.end()), 4066 InsertBefore); 4067 } 4068 4069 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4070 // If we're extracting a value from an aggregate that was extracted from 4071 // something else, we can extract from that something else directly instead. 4072 // However, we will need to chain I's indices with the requested indices. 4073 4074 // Calculate the number of indices required 4075 unsigned size = I->getNumIndices() + idx_range.size(); 4076 // Allocate some space to put the new indices in 4077 SmallVector<unsigned, 5> Idxs; 4078 Idxs.reserve(size); 4079 // Add indices from the extract value instruction 4080 Idxs.append(I->idx_begin(), I->idx_end()); 4081 4082 // Add requested indices 4083 Idxs.append(idx_range.begin(), idx_range.end()); 4084 4085 assert(Idxs.size() == size 4086 && "Number of indices added not correct?"); 4087 4088 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4089 } 4090 // Otherwise, we don't know (such as, extracting from a function return value 4091 // or load instruction) 4092 return nullptr; 4093 } 4094 4095 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4096 unsigned CharSize) { 4097 // Make sure the GEP has exactly three arguments. 4098 if (GEP->getNumOperands() != 3) 4099 return false; 4100 4101 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4102 // CharSize. 4103 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4104 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4105 return false; 4106 4107 // Check to make sure that the first operand of the GEP is an integer and 4108 // has value 0 so that we are sure we're indexing into the initializer. 4109 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4110 if (!FirstIdx || !FirstIdx->isZero()) 4111 return false; 4112 4113 return true; 4114 } 4115 4116 bool llvm::getConstantDataArrayInfo(const Value *V, 4117 ConstantDataArraySlice &Slice, 4118 unsigned ElementSize, uint64_t Offset) { 4119 assert(V); 4120 4121 // Look through bitcast instructions and geps. 4122 V = V->stripPointerCasts(); 4123 4124 // If the value is a GEP instruction or constant expression, treat it as an 4125 // offset. 4126 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4127 // The GEP operator should be based on a pointer to string constant, and is 4128 // indexing into the string constant. 4129 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4130 return false; 4131 4132 // If the second index isn't a ConstantInt, then this is a variable index 4133 // into the array. If this occurs, we can't say anything meaningful about 4134 // the string. 4135 uint64_t StartIdx = 0; 4136 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4137 StartIdx = CI->getZExtValue(); 4138 else 4139 return false; 4140 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4141 StartIdx + Offset); 4142 } 4143 4144 // The GEP instruction, constant or instruction, must reference a global 4145 // variable that is a constant and is initialized. The referenced constant 4146 // initializer is the array that we'll use for optimization. 4147 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4148 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4149 return false; 4150 4151 const ConstantDataArray *Array; 4152 ArrayType *ArrayTy; 4153 if (GV->getInitializer()->isNullValue()) { 4154 Type *GVTy = GV->getValueType(); 4155 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4156 // A zeroinitializer for the array; there is no ConstantDataArray. 4157 Array = nullptr; 4158 } else { 4159 const DataLayout &DL = GV->getParent()->getDataLayout(); 4160 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4161 uint64_t Length = SizeInBytes / (ElementSize / 8); 4162 if (Length <= Offset) 4163 return false; 4164 4165 Slice.Array = nullptr; 4166 Slice.Offset = 0; 4167 Slice.Length = Length - Offset; 4168 return true; 4169 } 4170 } else { 4171 // This must be a ConstantDataArray. 4172 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4173 if (!Array) 4174 return false; 4175 ArrayTy = Array->getType(); 4176 } 4177 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4178 return false; 4179 4180 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4181 if (Offset > NumElts) 4182 return false; 4183 4184 Slice.Array = Array; 4185 Slice.Offset = Offset; 4186 Slice.Length = NumElts - Offset; 4187 return true; 4188 } 4189 4190 /// This function computes the length of a null-terminated C string pointed to 4191 /// by V. If successful, it returns true and returns the string in Str. 4192 /// If unsuccessful, it returns false. 4193 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4194 uint64_t Offset, bool TrimAtNul) { 4195 ConstantDataArraySlice Slice; 4196 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4197 return false; 4198 4199 if (Slice.Array == nullptr) { 4200 if (TrimAtNul) { 4201 Str = StringRef(); 4202 return true; 4203 } 4204 if (Slice.Length == 1) { 4205 Str = StringRef("", 1); 4206 return true; 4207 } 4208 // We cannot instantiate a StringRef as we do not have an appropriate string 4209 // of 0s at hand. 4210 return false; 4211 } 4212 4213 // Start out with the entire array in the StringRef. 4214 Str = Slice.Array->getAsString(); 4215 // Skip over 'offset' bytes. 4216 Str = Str.substr(Slice.Offset); 4217 4218 if (TrimAtNul) { 4219 // Trim off the \0 and anything after it. If the array is not nul 4220 // terminated, we just return the whole end of string. The client may know 4221 // some other way that the string is length-bound. 4222 Str = Str.substr(0, Str.find('\0')); 4223 } 4224 return true; 4225 } 4226 4227 // These next two are very similar to the above, but also look through PHI 4228 // nodes. 4229 // TODO: See if we can integrate these two together. 4230 4231 /// If we can compute the length of the string pointed to by 4232 /// the specified pointer, return 'len+1'. If we can't, return 0. 4233 static uint64_t GetStringLengthH(const Value *V, 4234 SmallPtrSetImpl<const PHINode*> &PHIs, 4235 unsigned CharSize) { 4236 // Look through noop bitcast instructions. 4237 V = V->stripPointerCasts(); 4238 4239 // If this is a PHI node, there are two cases: either we have already seen it 4240 // or we haven't. 4241 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4242 if (!PHIs.insert(PN).second) 4243 return ~0ULL; // already in the set. 4244 4245 // If it was new, see if all the input strings are the same length. 4246 uint64_t LenSoFar = ~0ULL; 4247 for (Value *IncValue : PN->incoming_values()) { 4248 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4249 if (Len == 0) return 0; // Unknown length -> unknown. 4250 4251 if (Len == ~0ULL) continue; 4252 4253 if (Len != LenSoFar && LenSoFar != ~0ULL) 4254 return 0; // Disagree -> unknown. 4255 LenSoFar = Len; 4256 } 4257 4258 // Success, all agree. 4259 return LenSoFar; 4260 } 4261 4262 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4263 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4264 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4265 if (Len1 == 0) return 0; 4266 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4267 if (Len2 == 0) return 0; 4268 if (Len1 == ~0ULL) return Len2; 4269 if (Len2 == ~0ULL) return Len1; 4270 if (Len1 != Len2) return 0; 4271 return Len1; 4272 } 4273 4274 // Otherwise, see if we can read the string. 4275 ConstantDataArraySlice Slice; 4276 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4277 return 0; 4278 4279 if (Slice.Array == nullptr) 4280 return 1; 4281 4282 // Search for nul characters 4283 unsigned NullIndex = 0; 4284 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4285 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4286 break; 4287 } 4288 4289 return NullIndex + 1; 4290 } 4291 4292 /// If we can compute the length of the string pointed to by 4293 /// the specified pointer, return 'len+1'. If we can't, return 0. 4294 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4295 if (!V->getType()->isPointerTy()) 4296 return 0; 4297 4298 SmallPtrSet<const PHINode*, 32> PHIs; 4299 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4300 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4301 // an empty string as a length. 4302 return Len == ~0ULL ? 1 : Len; 4303 } 4304 4305 const Value * 4306 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4307 bool MustPreserveNullness) { 4308 assert(Call && 4309 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4310 if (const Value *RV = Call->getReturnedArgOperand()) 4311 return RV; 4312 // This can be used only as a aliasing property. 4313 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4314 Call, MustPreserveNullness)) 4315 return Call->getArgOperand(0); 4316 return nullptr; 4317 } 4318 4319 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4320 const CallBase *Call, bool MustPreserveNullness) { 4321 switch (Call->getIntrinsicID()) { 4322 case Intrinsic::launder_invariant_group: 4323 case Intrinsic::strip_invariant_group: 4324 case Intrinsic::aarch64_irg: 4325 case Intrinsic::aarch64_tagp: 4326 return true; 4327 case Intrinsic::ptrmask: 4328 return !MustPreserveNullness; 4329 default: 4330 return false; 4331 } 4332 } 4333 4334 /// \p PN defines a loop-variant pointer to an object. Check if the 4335 /// previous iteration of the loop was referring to the same object as \p PN. 4336 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4337 const LoopInfo *LI) { 4338 // Find the loop-defined value. 4339 Loop *L = LI->getLoopFor(PN->getParent()); 4340 if (PN->getNumIncomingValues() != 2) 4341 return true; 4342 4343 // Find the value from previous iteration. 4344 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4345 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4346 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4347 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4348 return true; 4349 4350 // If a new pointer is loaded in the loop, the pointer references a different 4351 // object in every iteration. E.g.: 4352 // for (i) 4353 // int *p = a[i]; 4354 // ... 4355 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4356 if (!L->isLoopInvariant(Load->getPointerOperand())) 4357 return false; 4358 return true; 4359 } 4360 4361 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4362 if (!V->getType()->isPointerTy()) 4363 return V; 4364 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4365 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4366 V = GEP->getPointerOperand(); 4367 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4368 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4369 V = cast<Operator>(V)->getOperand(0); 4370 if (!V->getType()->isPointerTy()) 4371 return V; 4372 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4373 if (GA->isInterposable()) 4374 return V; 4375 V = GA->getAliasee(); 4376 } else { 4377 if (auto *PHI = dyn_cast<PHINode>(V)) { 4378 // Look through single-arg phi nodes created by LCSSA. 4379 if (PHI->getNumIncomingValues() == 1) { 4380 V = PHI->getIncomingValue(0); 4381 continue; 4382 } 4383 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4384 // CaptureTracking can know about special capturing properties of some 4385 // intrinsics like launder.invariant.group, that can't be expressed with 4386 // the attributes, but have properties like returning aliasing pointer. 4387 // Because some analysis may assume that nocaptured pointer is not 4388 // returned from some special intrinsic (because function would have to 4389 // be marked with returns attribute), it is crucial to use this function 4390 // because it should be in sync with CaptureTracking. Not using it may 4391 // cause weird miscompilations where 2 aliasing pointers are assumed to 4392 // noalias. 4393 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4394 V = RP; 4395 continue; 4396 } 4397 } 4398 4399 return V; 4400 } 4401 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4402 } 4403 return V; 4404 } 4405 4406 void llvm::getUnderlyingObjects(const Value *V, 4407 SmallVectorImpl<const Value *> &Objects, 4408 LoopInfo *LI, unsigned MaxLookup) { 4409 SmallPtrSet<const Value *, 4> Visited; 4410 SmallVector<const Value *, 4> Worklist; 4411 Worklist.push_back(V); 4412 do { 4413 const Value *P = Worklist.pop_back_val(); 4414 P = getUnderlyingObject(P, MaxLookup); 4415 4416 if (!Visited.insert(P).second) 4417 continue; 4418 4419 if (auto *SI = dyn_cast<SelectInst>(P)) { 4420 Worklist.push_back(SI->getTrueValue()); 4421 Worklist.push_back(SI->getFalseValue()); 4422 continue; 4423 } 4424 4425 if (auto *PN = dyn_cast<PHINode>(P)) { 4426 // If this PHI changes the underlying object in every iteration of the 4427 // loop, don't look through it. Consider: 4428 // int **A; 4429 // for (i) { 4430 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4431 // Curr = A[i]; 4432 // *Prev, *Curr; 4433 // 4434 // Prev is tracking Curr one iteration behind so they refer to different 4435 // underlying objects. 4436 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4437 isSameUnderlyingObjectInLoop(PN, LI)) 4438 append_range(Worklist, PN->incoming_values()); 4439 continue; 4440 } 4441 4442 Objects.push_back(P); 4443 } while (!Worklist.empty()); 4444 } 4445 4446 /// This is the function that does the work of looking through basic 4447 /// ptrtoint+arithmetic+inttoptr sequences. 4448 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4449 do { 4450 if (const Operator *U = dyn_cast<Operator>(V)) { 4451 // If we find a ptrtoint, we can transfer control back to the 4452 // regular getUnderlyingObjectFromInt. 4453 if (U->getOpcode() == Instruction::PtrToInt) 4454 return U->getOperand(0); 4455 // If we find an add of a constant, a multiplied value, or a phi, it's 4456 // likely that the other operand will lead us to the base 4457 // object. We don't have to worry about the case where the 4458 // object address is somehow being computed by the multiply, 4459 // because our callers only care when the result is an 4460 // identifiable object. 4461 if (U->getOpcode() != Instruction::Add || 4462 (!isa<ConstantInt>(U->getOperand(1)) && 4463 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4464 !isa<PHINode>(U->getOperand(1)))) 4465 return V; 4466 V = U->getOperand(0); 4467 } else { 4468 return V; 4469 } 4470 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4471 } while (true); 4472 } 4473 4474 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4475 /// ptrtoint+arithmetic+inttoptr sequences. 4476 /// It returns false if unidentified object is found in getUnderlyingObjects. 4477 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4478 SmallVectorImpl<Value *> &Objects) { 4479 SmallPtrSet<const Value *, 16> Visited; 4480 SmallVector<const Value *, 4> Working(1, V); 4481 do { 4482 V = Working.pop_back_val(); 4483 4484 SmallVector<const Value *, 4> Objs; 4485 getUnderlyingObjects(V, Objs); 4486 4487 for (const Value *V : Objs) { 4488 if (!Visited.insert(V).second) 4489 continue; 4490 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4491 const Value *O = 4492 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4493 if (O->getType()->isPointerTy()) { 4494 Working.push_back(O); 4495 continue; 4496 } 4497 } 4498 // If getUnderlyingObjects fails to find an identifiable object, 4499 // getUnderlyingObjectsForCodeGen also fails for safety. 4500 if (!isIdentifiedObject(V)) { 4501 Objects.clear(); 4502 return false; 4503 } 4504 Objects.push_back(const_cast<Value *>(V)); 4505 } 4506 } while (!Working.empty()); 4507 return true; 4508 } 4509 4510 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4511 AllocaInst *Result = nullptr; 4512 SmallPtrSet<Value *, 4> Visited; 4513 SmallVector<Value *, 4> Worklist; 4514 4515 auto AddWork = [&](Value *V) { 4516 if (Visited.insert(V).second) 4517 Worklist.push_back(V); 4518 }; 4519 4520 AddWork(V); 4521 do { 4522 V = Worklist.pop_back_val(); 4523 assert(Visited.count(V)); 4524 4525 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4526 if (Result && Result != AI) 4527 return nullptr; 4528 Result = AI; 4529 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4530 AddWork(CI->getOperand(0)); 4531 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4532 for (Value *IncValue : PN->incoming_values()) 4533 AddWork(IncValue); 4534 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4535 AddWork(SI->getTrueValue()); 4536 AddWork(SI->getFalseValue()); 4537 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4538 if (OffsetZero && !GEP->hasAllZeroIndices()) 4539 return nullptr; 4540 AddWork(GEP->getPointerOperand()); 4541 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4542 Value *Returned = CB->getReturnedArgOperand(); 4543 if (Returned) 4544 AddWork(Returned); 4545 else 4546 return nullptr; 4547 } else { 4548 return nullptr; 4549 } 4550 } while (!Worklist.empty()); 4551 4552 return Result; 4553 } 4554 4555 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4556 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4557 for (const User *U : V->users()) { 4558 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4559 if (!II) 4560 return false; 4561 4562 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4563 continue; 4564 4565 if (AllowDroppable && II->isDroppable()) 4566 continue; 4567 4568 return false; 4569 } 4570 return true; 4571 } 4572 4573 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4574 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4575 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4576 } 4577 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4578 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4579 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4580 } 4581 4582 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4583 if (!LI.isUnordered()) 4584 return true; 4585 const Function &F = *LI.getFunction(); 4586 // Speculative load may create a race that did not exist in the source. 4587 return F.hasFnAttribute(Attribute::SanitizeThread) || 4588 // Speculative load may load data from dirty regions. 4589 F.hasFnAttribute(Attribute::SanitizeAddress) || 4590 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4591 } 4592 4593 4594 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4595 const Instruction *CtxI, 4596 const DominatorTree *DT, 4597 const TargetLibraryInfo *TLI) { 4598 const Operator *Inst = dyn_cast<Operator>(V); 4599 if (!Inst) 4600 return false; 4601 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI); 4602 } 4603 4604 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, 4605 const Operator *Inst, 4606 const Instruction *CtxI, 4607 const DominatorTree *DT, 4608 const TargetLibraryInfo *TLI) { 4609 #ifndef NDEBUG 4610 if (Inst->getOpcode() != Opcode) { 4611 // Check that the operands are actually compatible with the Opcode override. 4612 auto hasEqualReturnAndLeadingOperandTypes = 4613 [](const Operator *Inst, unsigned NumLeadingOperands) { 4614 if (Inst->getNumOperands() < NumLeadingOperands) 4615 return false; 4616 const Type *ExpectedType = Inst->getType(); 4617 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 4618 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 4619 return false; 4620 return true; 4621 }; 4622 assert(!Instruction::isBinaryOp(Opcode) || 4623 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 4624 assert(!Instruction::isUnaryOp(Opcode) || 4625 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 4626 } 4627 #endif 4628 4629 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4630 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4631 if (C->canTrap()) 4632 return false; 4633 4634 switch (Opcode) { 4635 default: 4636 return true; 4637 case Instruction::UDiv: 4638 case Instruction::URem: { 4639 // x / y is undefined if y == 0. 4640 const APInt *V; 4641 if (match(Inst->getOperand(1), m_APInt(V))) 4642 return *V != 0; 4643 return false; 4644 } 4645 case Instruction::SDiv: 4646 case Instruction::SRem: { 4647 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4648 const APInt *Numerator, *Denominator; 4649 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4650 return false; 4651 // We cannot hoist this division if the denominator is 0. 4652 if (*Denominator == 0) 4653 return false; 4654 // It's safe to hoist if the denominator is not 0 or -1. 4655 if (!Denominator->isAllOnes()) 4656 return true; 4657 // At this point we know that the denominator is -1. It is safe to hoist as 4658 // long we know that the numerator is not INT_MIN. 4659 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4660 return !Numerator->isMinSignedValue(); 4661 // The numerator *might* be MinSignedValue. 4662 return false; 4663 } 4664 case Instruction::Load: { 4665 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 4666 if (!LI) 4667 return false; 4668 if (mustSuppressSpeculation(*LI)) 4669 return false; 4670 const DataLayout &DL = LI->getModule()->getDataLayout(); 4671 return isDereferenceableAndAlignedPointer( 4672 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4673 TLI); 4674 } 4675 case Instruction::Call: { 4676 auto *CI = dyn_cast<const CallInst>(Inst); 4677 if (!CI) 4678 return false; 4679 const Function *Callee = CI->getCalledFunction(); 4680 4681 // The called function could have undefined behavior or side-effects, even 4682 // if marked readnone nounwind. 4683 return Callee && Callee->isSpeculatable(); 4684 } 4685 case Instruction::VAArg: 4686 case Instruction::Alloca: 4687 case Instruction::Invoke: 4688 case Instruction::CallBr: 4689 case Instruction::PHI: 4690 case Instruction::Store: 4691 case Instruction::Ret: 4692 case Instruction::Br: 4693 case Instruction::IndirectBr: 4694 case Instruction::Switch: 4695 case Instruction::Unreachable: 4696 case Instruction::Fence: 4697 case Instruction::AtomicRMW: 4698 case Instruction::AtomicCmpXchg: 4699 case Instruction::LandingPad: 4700 case Instruction::Resume: 4701 case Instruction::CatchSwitch: 4702 case Instruction::CatchPad: 4703 case Instruction::CatchRet: 4704 case Instruction::CleanupPad: 4705 case Instruction::CleanupRet: 4706 return false; // Misc instructions which have effects 4707 } 4708 } 4709 4710 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4711 if (I.mayReadOrWriteMemory()) 4712 // Memory dependency possible 4713 return true; 4714 if (!isSafeToSpeculativelyExecute(&I)) 4715 // Can't move above a maythrow call or infinite loop. Or if an 4716 // inalloca alloca, above a stacksave call. 4717 return true; 4718 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4719 // 1) Can't reorder two inf-loop calls, even if readonly 4720 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4721 // safe to speculative execute. (Inverse of above) 4722 return true; 4723 return false; 4724 } 4725 4726 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4727 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4728 switch (OR) { 4729 case ConstantRange::OverflowResult::MayOverflow: 4730 return OverflowResult::MayOverflow; 4731 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4732 return OverflowResult::AlwaysOverflowsLow; 4733 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4734 return OverflowResult::AlwaysOverflowsHigh; 4735 case ConstantRange::OverflowResult::NeverOverflows: 4736 return OverflowResult::NeverOverflows; 4737 } 4738 llvm_unreachable("Unknown OverflowResult"); 4739 } 4740 4741 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4742 static ConstantRange computeConstantRangeIncludingKnownBits( 4743 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4744 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4745 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4746 KnownBits Known = computeKnownBits( 4747 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4748 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4749 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4750 ConstantRange::PreferredRangeType RangeType = 4751 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4752 return CR1.intersectWith(CR2, RangeType); 4753 } 4754 4755 OverflowResult llvm::computeOverflowForUnsignedMul( 4756 const Value *LHS, const Value *RHS, const DataLayout &DL, 4757 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4758 bool UseInstrInfo) { 4759 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4760 nullptr, UseInstrInfo); 4761 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4762 nullptr, UseInstrInfo); 4763 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4764 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4765 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4766 } 4767 4768 OverflowResult 4769 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4770 const DataLayout &DL, AssumptionCache *AC, 4771 const Instruction *CxtI, 4772 const DominatorTree *DT, bool UseInstrInfo) { 4773 // Multiplying n * m significant bits yields a result of n + m significant 4774 // bits. If the total number of significant bits does not exceed the 4775 // result bit width (minus 1), there is no overflow. 4776 // This means if we have enough leading sign bits in the operands 4777 // we can guarantee that the result does not overflow. 4778 // Ref: "Hacker's Delight" by Henry Warren 4779 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4780 4781 // Note that underestimating the number of sign bits gives a more 4782 // conservative answer. 4783 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4784 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4785 4786 // First handle the easy case: if we have enough sign bits there's 4787 // definitely no overflow. 4788 if (SignBits > BitWidth + 1) 4789 return OverflowResult::NeverOverflows; 4790 4791 // There are two ambiguous cases where there can be no overflow: 4792 // SignBits == BitWidth + 1 and 4793 // SignBits == BitWidth 4794 // The second case is difficult to check, therefore we only handle the 4795 // first case. 4796 if (SignBits == BitWidth + 1) { 4797 // It overflows only when both arguments are negative and the true 4798 // product is exactly the minimum negative number. 4799 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4800 // For simplicity we just check if at least one side is not negative. 4801 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4802 nullptr, UseInstrInfo); 4803 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4804 nullptr, UseInstrInfo); 4805 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4806 return OverflowResult::NeverOverflows; 4807 } 4808 return OverflowResult::MayOverflow; 4809 } 4810 4811 OverflowResult llvm::computeOverflowForUnsignedAdd( 4812 const Value *LHS, const Value *RHS, const DataLayout &DL, 4813 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4814 bool UseInstrInfo) { 4815 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4816 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4817 nullptr, UseInstrInfo); 4818 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4819 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4820 nullptr, UseInstrInfo); 4821 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4822 } 4823 4824 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4825 const Value *RHS, 4826 const AddOperator *Add, 4827 const DataLayout &DL, 4828 AssumptionCache *AC, 4829 const Instruction *CxtI, 4830 const DominatorTree *DT) { 4831 if (Add && Add->hasNoSignedWrap()) { 4832 return OverflowResult::NeverOverflows; 4833 } 4834 4835 // If LHS and RHS each have at least two sign bits, the addition will look 4836 // like 4837 // 4838 // XX..... + 4839 // YY..... 4840 // 4841 // If the carry into the most significant position is 0, X and Y can't both 4842 // be 1 and therefore the carry out of the addition is also 0. 4843 // 4844 // If the carry into the most significant position is 1, X and Y can't both 4845 // be 0 and therefore the carry out of the addition is also 1. 4846 // 4847 // Since the carry into the most significant position is always equal to 4848 // the carry out of the addition, there is no signed overflow. 4849 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4850 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4851 return OverflowResult::NeverOverflows; 4852 4853 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4854 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4855 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4856 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4857 OverflowResult OR = 4858 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4859 if (OR != OverflowResult::MayOverflow) 4860 return OR; 4861 4862 // The remaining code needs Add to be available. Early returns if not so. 4863 if (!Add) 4864 return OverflowResult::MayOverflow; 4865 4866 // If the sign of Add is the same as at least one of the operands, this add 4867 // CANNOT overflow. If this can be determined from the known bits of the 4868 // operands the above signedAddMayOverflow() check will have already done so. 4869 // The only other way to improve on the known bits is from an assumption, so 4870 // call computeKnownBitsFromAssume() directly. 4871 bool LHSOrRHSKnownNonNegative = 4872 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4873 bool LHSOrRHSKnownNegative = 4874 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4875 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4876 KnownBits AddKnown(LHSRange.getBitWidth()); 4877 computeKnownBitsFromAssume( 4878 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4879 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4880 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4881 return OverflowResult::NeverOverflows; 4882 } 4883 4884 return OverflowResult::MayOverflow; 4885 } 4886 4887 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4888 const Value *RHS, 4889 const DataLayout &DL, 4890 AssumptionCache *AC, 4891 const Instruction *CxtI, 4892 const DominatorTree *DT) { 4893 // X - (X % ?) 4894 // The remainder of a value can't have greater magnitude than itself, 4895 // so the subtraction can't overflow. 4896 // TODO: There are other patterns like this. 4897 // See simplifyICmpWithBinOpOnLHS() for candidates. 4898 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) && 4899 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4900 return OverflowResult::NeverOverflows; 4901 4902 // Checking for conditions implied by dominating conditions may be expensive. 4903 // Limit it to usub_with_overflow calls for now. 4904 if (match(CxtI, 4905 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4906 if (auto C = 4907 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4908 if (*C) 4909 return OverflowResult::NeverOverflows; 4910 return OverflowResult::AlwaysOverflowsLow; 4911 } 4912 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4913 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4914 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4915 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4916 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4917 } 4918 4919 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4920 const Value *RHS, 4921 const DataLayout &DL, 4922 AssumptionCache *AC, 4923 const Instruction *CxtI, 4924 const DominatorTree *DT) { 4925 // X - (X % ?) 4926 // The remainder of a value can't have greater magnitude than itself, 4927 // so the subtraction can't overflow. 4928 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) && 4929 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4930 return OverflowResult::NeverOverflows; 4931 4932 // If LHS and RHS each have at least two sign bits, the subtraction 4933 // cannot overflow. 4934 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4935 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4936 return OverflowResult::NeverOverflows; 4937 4938 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4939 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4940 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4941 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4942 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4943 } 4944 4945 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4946 const DominatorTree &DT) { 4947 SmallVector<const BranchInst *, 2> GuardingBranches; 4948 SmallVector<const ExtractValueInst *, 2> Results; 4949 4950 for (const User *U : WO->users()) { 4951 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4952 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4953 4954 if (EVI->getIndices()[0] == 0) 4955 Results.push_back(EVI); 4956 else { 4957 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4958 4959 for (const auto *U : EVI->users()) 4960 if (const auto *B = dyn_cast<BranchInst>(U)) { 4961 assert(B->isConditional() && "How else is it using an i1?"); 4962 GuardingBranches.push_back(B); 4963 } 4964 } 4965 } else { 4966 // We are using the aggregate directly in a way we don't want to analyze 4967 // here (storing it to a global, say). 4968 return false; 4969 } 4970 } 4971 4972 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4973 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4974 if (!NoWrapEdge.isSingleEdge()) 4975 return false; 4976 4977 // Check if all users of the add are provably no-wrap. 4978 for (const auto *Result : Results) { 4979 // If the extractvalue itself is not executed on overflow, the we don't 4980 // need to check each use separately, since domination is transitive. 4981 if (DT.dominates(NoWrapEdge, Result->getParent())) 4982 continue; 4983 4984 for (auto &RU : Result->uses()) 4985 if (!DT.dominates(NoWrapEdge, RU)) 4986 return false; 4987 } 4988 4989 return true; 4990 }; 4991 4992 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4993 } 4994 4995 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4996 bool ConsiderFlags) { 4997 4998 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4999 return true; 5000 5001 unsigned Opcode = Op->getOpcode(); 5002 5003 // Check whether opcode is a poison/undef-generating operation 5004 switch (Opcode) { 5005 case Instruction::Shl: 5006 case Instruction::AShr: 5007 case Instruction::LShr: { 5008 // Shifts return poison if shiftwidth is larger than the bitwidth. 5009 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 5010 SmallVector<Constant *, 4> ShiftAmounts; 5011 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 5012 unsigned NumElts = FVTy->getNumElements(); 5013 for (unsigned i = 0; i < NumElts; ++i) 5014 ShiftAmounts.push_back(C->getAggregateElement(i)); 5015 } else if (isa<ScalableVectorType>(C->getType())) 5016 return true; // Can't tell, just return true to be safe 5017 else 5018 ShiftAmounts.push_back(C); 5019 5020 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 5021 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5022 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5023 }); 5024 return !Safe; 5025 } 5026 return true; 5027 } 5028 case Instruction::FPToSI: 5029 case Instruction::FPToUI: 5030 // fptosi/ui yields poison if the resulting value does not fit in the 5031 // destination type. 5032 return true; 5033 case Instruction::Call: 5034 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5035 switch (II->getIntrinsicID()) { 5036 // TODO: Add more intrinsics. 5037 case Intrinsic::ctpop: 5038 case Intrinsic::sadd_with_overflow: 5039 case Intrinsic::ssub_with_overflow: 5040 case Intrinsic::smul_with_overflow: 5041 case Intrinsic::uadd_with_overflow: 5042 case Intrinsic::usub_with_overflow: 5043 case Intrinsic::umul_with_overflow: 5044 return false; 5045 } 5046 } 5047 LLVM_FALLTHROUGH; 5048 case Instruction::CallBr: 5049 case Instruction::Invoke: { 5050 const auto *CB = cast<CallBase>(Op); 5051 return !CB->hasRetAttr(Attribute::NoUndef); 5052 } 5053 case Instruction::InsertElement: 5054 case Instruction::ExtractElement: { 5055 // If index exceeds the length of the vector, it returns poison 5056 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5057 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5058 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5059 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5060 return true; 5061 return false; 5062 } 5063 case Instruction::ShuffleVector: { 5064 // shufflevector may return undef. 5065 if (PoisonOnly) 5066 return false; 5067 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5068 ? cast<ConstantExpr>(Op)->getShuffleMask() 5069 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5070 return is_contained(Mask, UndefMaskElem); 5071 } 5072 case Instruction::FNeg: 5073 case Instruction::PHI: 5074 case Instruction::Select: 5075 case Instruction::URem: 5076 case Instruction::SRem: 5077 case Instruction::ExtractValue: 5078 case Instruction::InsertValue: 5079 case Instruction::Freeze: 5080 case Instruction::ICmp: 5081 case Instruction::FCmp: 5082 return false; 5083 case Instruction::GetElementPtr: 5084 // inbounds is handled above 5085 // TODO: what about inrange on constexpr? 5086 return false; 5087 default: { 5088 const auto *CE = dyn_cast<ConstantExpr>(Op); 5089 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5090 return false; 5091 else if (Instruction::isBinaryOp(Opcode)) 5092 return false; 5093 // Be conservative and return true. 5094 return true; 5095 } 5096 } 5097 } 5098 5099 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5100 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5101 } 5102 5103 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5104 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5105 } 5106 5107 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5108 const Value *V, unsigned Depth) { 5109 if (ValAssumedPoison == V) 5110 return true; 5111 5112 const unsigned MaxDepth = 2; 5113 if (Depth >= MaxDepth) 5114 return false; 5115 5116 if (const auto *I = dyn_cast<Instruction>(V)) { 5117 if (propagatesPoison(cast<Operator>(I))) 5118 return any_of(I->operands(), [=](const Value *Op) { 5119 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5120 }); 5121 5122 // 'select ValAssumedPoison, _, _' is poison. 5123 if (const auto *SI = dyn_cast<SelectInst>(I)) 5124 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5125 Depth + 1); 5126 // V = extractvalue V0, idx 5127 // V2 = extractvalue V0, idx2 5128 // V0's elements are all poison or not. (e.g., add_with_overflow) 5129 const WithOverflowInst *II; 5130 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5131 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5132 llvm::is_contained(II->args(), ValAssumedPoison))) 5133 return true; 5134 } 5135 return false; 5136 } 5137 5138 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5139 unsigned Depth) { 5140 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5141 return true; 5142 5143 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5144 return true; 5145 5146 const unsigned MaxDepth = 2; 5147 if (Depth >= MaxDepth) 5148 return false; 5149 5150 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5151 if (I && !canCreatePoison(cast<Operator>(I))) { 5152 return all_of(I->operands(), [=](const Value *Op) { 5153 return impliesPoison(Op, V, Depth + 1); 5154 }); 5155 } 5156 return false; 5157 } 5158 5159 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5160 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5161 } 5162 5163 static bool programUndefinedIfUndefOrPoison(const Value *V, 5164 bool PoisonOnly); 5165 5166 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5167 AssumptionCache *AC, 5168 const Instruction *CtxI, 5169 const DominatorTree *DT, 5170 unsigned Depth, bool PoisonOnly) { 5171 if (Depth >= MaxAnalysisRecursionDepth) 5172 return false; 5173 5174 if (isa<MetadataAsValue>(V)) 5175 return false; 5176 5177 if (const auto *A = dyn_cast<Argument>(V)) { 5178 if (A->hasAttribute(Attribute::NoUndef)) 5179 return true; 5180 } 5181 5182 if (auto *C = dyn_cast<Constant>(V)) { 5183 if (isa<UndefValue>(C)) 5184 return PoisonOnly && !isa<PoisonValue>(C); 5185 5186 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5187 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5188 return true; 5189 5190 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5191 return (PoisonOnly ? !C->containsPoisonElement() 5192 : !C->containsUndefOrPoisonElement()) && 5193 !C->containsConstantExpression(); 5194 } 5195 5196 // Strip cast operations from a pointer value. 5197 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5198 // inbounds with zero offset. To guarantee that the result isn't poison, the 5199 // stripped pointer is checked as it has to be pointing into an allocated 5200 // object or be null `null` to ensure `inbounds` getelement pointers with a 5201 // zero offset could not produce poison. 5202 // It can strip off addrspacecast that do not change bit representation as 5203 // well. We believe that such addrspacecast is equivalent to no-op. 5204 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5205 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5206 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5207 return true; 5208 5209 auto OpCheck = [&](const Value *V) { 5210 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5211 PoisonOnly); 5212 }; 5213 5214 if (auto *Opr = dyn_cast<Operator>(V)) { 5215 // If the value is a freeze instruction, then it can never 5216 // be undef or poison. 5217 if (isa<FreezeInst>(V)) 5218 return true; 5219 5220 if (const auto *CB = dyn_cast<CallBase>(V)) { 5221 if (CB->hasRetAttr(Attribute::NoUndef)) 5222 return true; 5223 } 5224 5225 if (const auto *PN = dyn_cast<PHINode>(V)) { 5226 unsigned Num = PN->getNumIncomingValues(); 5227 bool IsWellDefined = true; 5228 for (unsigned i = 0; i < Num; ++i) { 5229 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5230 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5231 DT, Depth + 1, PoisonOnly)) { 5232 IsWellDefined = false; 5233 break; 5234 } 5235 } 5236 if (IsWellDefined) 5237 return true; 5238 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5239 return true; 5240 } 5241 5242 if (auto *I = dyn_cast<LoadInst>(V)) 5243 if (I->hasMetadata(LLVMContext::MD_noundef) || 5244 I->hasMetadata(LLVMContext::MD_dereferenceable) || 5245 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 5246 return true; 5247 5248 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5249 return true; 5250 5251 // CxtI may be null or a cloned instruction. 5252 if (!CtxI || !CtxI->getParent() || !DT) 5253 return false; 5254 5255 auto *DNode = DT->getNode(CtxI->getParent()); 5256 if (!DNode) 5257 // Unreachable block 5258 return false; 5259 5260 // If V is used as a branch condition before reaching CtxI, V cannot be 5261 // undef or poison. 5262 // br V, BB1, BB2 5263 // BB1: 5264 // CtxI ; V cannot be undef or poison here 5265 auto *Dominator = DNode->getIDom(); 5266 while (Dominator) { 5267 auto *TI = Dominator->getBlock()->getTerminator(); 5268 5269 Value *Cond = nullptr; 5270 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5271 if (BI->isConditional()) 5272 Cond = BI->getCondition(); 5273 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5274 Cond = SI->getCondition(); 5275 } 5276 5277 if (Cond) { 5278 if (Cond == V) 5279 return true; 5280 else if (PoisonOnly && isa<Operator>(Cond)) { 5281 // For poison, we can analyze further 5282 auto *Opr = cast<Operator>(Cond); 5283 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5284 return true; 5285 } 5286 } 5287 5288 Dominator = Dominator->getIDom(); 5289 } 5290 5291 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5292 return true; 5293 5294 return false; 5295 } 5296 5297 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5298 const Instruction *CtxI, 5299 const DominatorTree *DT, 5300 unsigned Depth) { 5301 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5302 } 5303 5304 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5305 const Instruction *CtxI, 5306 const DominatorTree *DT, unsigned Depth) { 5307 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5308 } 5309 5310 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5311 const DataLayout &DL, 5312 AssumptionCache *AC, 5313 const Instruction *CxtI, 5314 const DominatorTree *DT) { 5315 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5316 Add, DL, AC, CxtI, DT); 5317 } 5318 5319 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5320 const Value *RHS, 5321 const DataLayout &DL, 5322 AssumptionCache *AC, 5323 const Instruction *CxtI, 5324 const DominatorTree *DT) { 5325 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5326 } 5327 5328 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5329 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5330 // of time because it's possible for another thread to interfere with it for an 5331 // arbitrary length of time, but programs aren't allowed to rely on that. 5332 5333 // If there is no successor, then execution can't transfer to it. 5334 if (isa<ReturnInst>(I)) 5335 return false; 5336 if (isa<UnreachableInst>(I)) 5337 return false; 5338 5339 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5340 // Instruction::willReturn. 5341 // 5342 // FIXME: Move this check into Instruction::willReturn. 5343 if (isa<CatchPadInst>(I)) { 5344 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5345 default: 5346 // A catchpad may invoke exception object constructors and such, which 5347 // in some languages can be arbitrary code, so be conservative by default. 5348 return false; 5349 case EHPersonality::CoreCLR: 5350 // For CoreCLR, it just involves a type test. 5351 return true; 5352 } 5353 } 5354 5355 // An instruction that returns without throwing must transfer control flow 5356 // to a successor. 5357 return !I->mayThrow() && I->willReturn(); 5358 } 5359 5360 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5361 // TODO: This is slightly conservative for invoke instruction since exiting 5362 // via an exception *is* normal control for them. 5363 for (const Instruction &I : *BB) 5364 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5365 return false; 5366 return true; 5367 } 5368 5369 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5370 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5371 unsigned ScanLimit) { 5372 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5373 ScanLimit); 5374 } 5375 5376 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5377 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5378 assert(ScanLimit && "scan limit must be non-zero"); 5379 for (const Instruction &I : Range) { 5380 if (isa<DbgInfoIntrinsic>(I)) 5381 continue; 5382 if (--ScanLimit == 0) 5383 return false; 5384 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5385 return false; 5386 } 5387 return true; 5388 } 5389 5390 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5391 const Loop *L) { 5392 // The loop header is guaranteed to be executed for every iteration. 5393 // 5394 // FIXME: Relax this constraint to cover all basic blocks that are 5395 // guaranteed to be executed at every iteration. 5396 if (I->getParent() != L->getHeader()) return false; 5397 5398 for (const Instruction &LI : *L->getHeader()) { 5399 if (&LI == I) return true; 5400 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5401 } 5402 llvm_unreachable("Instruction not contained in its own parent basic block."); 5403 } 5404 5405 bool llvm::propagatesPoison(const Operator *I) { 5406 switch (I->getOpcode()) { 5407 case Instruction::Freeze: 5408 case Instruction::Select: 5409 case Instruction::PHI: 5410 case Instruction::Invoke: 5411 return false; 5412 case Instruction::Call: 5413 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5414 switch (II->getIntrinsicID()) { 5415 // TODO: Add more intrinsics. 5416 case Intrinsic::sadd_with_overflow: 5417 case Intrinsic::ssub_with_overflow: 5418 case Intrinsic::smul_with_overflow: 5419 case Intrinsic::uadd_with_overflow: 5420 case Intrinsic::usub_with_overflow: 5421 case Intrinsic::umul_with_overflow: 5422 // If an input is a vector containing a poison element, the 5423 // two output vectors (calculated results, overflow bits)' 5424 // corresponding lanes are poison. 5425 return true; 5426 case Intrinsic::ctpop: 5427 return true; 5428 } 5429 } 5430 return false; 5431 case Instruction::ICmp: 5432 case Instruction::FCmp: 5433 case Instruction::GetElementPtr: 5434 return true; 5435 default: 5436 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5437 return true; 5438 5439 // Be conservative and return false. 5440 return false; 5441 } 5442 } 5443 5444 void llvm::getGuaranteedWellDefinedOps( 5445 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5446 switch (I->getOpcode()) { 5447 case Instruction::Store: 5448 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5449 break; 5450 5451 case Instruction::Load: 5452 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5453 break; 5454 5455 // Since dereferenceable attribute imply noundef, atomic operations 5456 // also implicitly have noundef pointers too 5457 case Instruction::AtomicCmpXchg: 5458 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5459 break; 5460 5461 case Instruction::AtomicRMW: 5462 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5463 break; 5464 5465 case Instruction::Call: 5466 case Instruction::Invoke: { 5467 const CallBase *CB = cast<CallBase>(I); 5468 if (CB->isIndirectCall()) 5469 Operands.insert(CB->getCalledOperand()); 5470 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5471 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5472 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5473 Operands.insert(CB->getArgOperand(i)); 5474 } 5475 break; 5476 } 5477 case Instruction::Ret: 5478 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5479 Operands.insert(I->getOperand(0)); 5480 break; 5481 default: 5482 break; 5483 } 5484 } 5485 5486 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5487 SmallPtrSetImpl<const Value *> &Operands) { 5488 getGuaranteedWellDefinedOps(I, Operands); 5489 switch (I->getOpcode()) { 5490 // Divisors of these operations are allowed to be partially undef. 5491 case Instruction::UDiv: 5492 case Instruction::SDiv: 5493 case Instruction::URem: 5494 case Instruction::SRem: 5495 Operands.insert(I->getOperand(1)); 5496 break; 5497 case Instruction::Switch: 5498 if (BranchOnPoisonAsUB) 5499 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5500 break; 5501 case Instruction::Br: { 5502 auto *BR = cast<BranchInst>(I); 5503 if (BranchOnPoisonAsUB && BR->isConditional()) 5504 Operands.insert(BR->getCondition()); 5505 break; 5506 } 5507 default: 5508 break; 5509 } 5510 } 5511 5512 bool llvm::mustTriggerUB(const Instruction *I, 5513 const SmallSet<const Value *, 16>& KnownPoison) { 5514 SmallPtrSet<const Value *, 4> NonPoisonOps; 5515 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5516 5517 for (const auto *V : NonPoisonOps) 5518 if (KnownPoison.count(V)) 5519 return true; 5520 5521 return false; 5522 } 5523 5524 static bool programUndefinedIfUndefOrPoison(const Value *V, 5525 bool PoisonOnly) { 5526 // We currently only look for uses of values within the same basic 5527 // block, as that makes it easier to guarantee that the uses will be 5528 // executed given that Inst is executed. 5529 // 5530 // FIXME: Expand this to consider uses beyond the same basic block. To do 5531 // this, look out for the distinction between post-dominance and strong 5532 // post-dominance. 5533 const BasicBlock *BB = nullptr; 5534 BasicBlock::const_iterator Begin; 5535 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5536 BB = Inst->getParent(); 5537 Begin = Inst->getIterator(); 5538 Begin++; 5539 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5540 BB = &Arg->getParent()->getEntryBlock(); 5541 Begin = BB->begin(); 5542 } else { 5543 return false; 5544 } 5545 5546 // Limit number of instructions we look at, to avoid scanning through large 5547 // blocks. The current limit is chosen arbitrarily. 5548 unsigned ScanLimit = 32; 5549 BasicBlock::const_iterator End = BB->end(); 5550 5551 if (!PoisonOnly) { 5552 // Since undef does not propagate eagerly, be conservative & just check 5553 // whether a value is directly passed to an instruction that must take 5554 // well-defined operands. 5555 5556 for (auto &I : make_range(Begin, End)) { 5557 if (isa<DbgInfoIntrinsic>(I)) 5558 continue; 5559 if (--ScanLimit == 0) 5560 break; 5561 5562 SmallPtrSet<const Value *, 4> WellDefinedOps; 5563 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5564 if (WellDefinedOps.contains(V)) 5565 return true; 5566 5567 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5568 break; 5569 } 5570 return false; 5571 } 5572 5573 // Set of instructions that we have proved will yield poison if Inst 5574 // does. 5575 SmallSet<const Value *, 16> YieldsPoison; 5576 SmallSet<const BasicBlock *, 4> Visited; 5577 5578 YieldsPoison.insert(V); 5579 auto Propagate = [&](const User *User) { 5580 if (propagatesPoison(cast<Operator>(User))) 5581 YieldsPoison.insert(User); 5582 }; 5583 for_each(V->users(), Propagate); 5584 Visited.insert(BB); 5585 5586 while (true) { 5587 for (auto &I : make_range(Begin, End)) { 5588 if (isa<DbgInfoIntrinsic>(I)) 5589 continue; 5590 if (--ScanLimit == 0) 5591 return false; 5592 if (mustTriggerUB(&I, YieldsPoison)) 5593 return true; 5594 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5595 return false; 5596 5597 // Mark poison that propagates from I through uses of I. 5598 if (YieldsPoison.count(&I)) 5599 for_each(I.users(), Propagate); 5600 } 5601 5602 BB = BB->getSingleSuccessor(); 5603 if (!BB || !Visited.insert(BB).second) 5604 break; 5605 5606 Begin = BB->getFirstNonPHI()->getIterator(); 5607 End = BB->end(); 5608 } 5609 return false; 5610 } 5611 5612 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5613 return ::programUndefinedIfUndefOrPoison(Inst, false); 5614 } 5615 5616 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5617 return ::programUndefinedIfUndefOrPoison(Inst, true); 5618 } 5619 5620 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5621 if (FMF.noNaNs()) 5622 return true; 5623 5624 if (auto *C = dyn_cast<ConstantFP>(V)) 5625 return !C->isNaN(); 5626 5627 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5628 if (!C->getElementType()->isFloatingPointTy()) 5629 return false; 5630 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5631 if (C->getElementAsAPFloat(I).isNaN()) 5632 return false; 5633 } 5634 return true; 5635 } 5636 5637 if (isa<ConstantAggregateZero>(V)) 5638 return true; 5639 5640 return false; 5641 } 5642 5643 static bool isKnownNonZero(const Value *V) { 5644 if (auto *C = dyn_cast<ConstantFP>(V)) 5645 return !C->isZero(); 5646 5647 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5648 if (!C->getElementType()->isFloatingPointTy()) 5649 return false; 5650 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5651 if (C->getElementAsAPFloat(I).isZero()) 5652 return false; 5653 } 5654 return true; 5655 } 5656 5657 return false; 5658 } 5659 5660 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5661 /// Given non-min/max outer cmp/select from the clamp pattern this 5662 /// function recognizes if it can be substitued by a "canonical" min/max 5663 /// pattern. 5664 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5665 Value *CmpLHS, Value *CmpRHS, 5666 Value *TrueVal, Value *FalseVal, 5667 Value *&LHS, Value *&RHS) { 5668 // Try to match 5669 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5670 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5671 // and return description of the outer Max/Min. 5672 5673 // First, check if select has inverse order: 5674 if (CmpRHS == FalseVal) { 5675 std::swap(TrueVal, FalseVal); 5676 Pred = CmpInst::getInversePredicate(Pred); 5677 } 5678 5679 // Assume success now. If there's no match, callers should not use these anyway. 5680 LHS = TrueVal; 5681 RHS = FalseVal; 5682 5683 const APFloat *FC1; 5684 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5685 return {SPF_UNKNOWN, SPNB_NA, false}; 5686 5687 const APFloat *FC2; 5688 switch (Pred) { 5689 case CmpInst::FCMP_OLT: 5690 case CmpInst::FCMP_OLE: 5691 case CmpInst::FCMP_ULT: 5692 case CmpInst::FCMP_ULE: 5693 if (match(FalseVal, 5694 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5695 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5696 *FC1 < *FC2) 5697 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5698 break; 5699 case CmpInst::FCMP_OGT: 5700 case CmpInst::FCMP_OGE: 5701 case CmpInst::FCMP_UGT: 5702 case CmpInst::FCMP_UGE: 5703 if (match(FalseVal, 5704 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5705 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5706 *FC1 > *FC2) 5707 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5708 break; 5709 default: 5710 break; 5711 } 5712 5713 return {SPF_UNKNOWN, SPNB_NA, false}; 5714 } 5715 5716 /// Recognize variations of: 5717 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5718 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5719 Value *CmpLHS, Value *CmpRHS, 5720 Value *TrueVal, Value *FalseVal) { 5721 // Swap the select operands and predicate to match the patterns below. 5722 if (CmpRHS != TrueVal) { 5723 Pred = ICmpInst::getSwappedPredicate(Pred); 5724 std::swap(TrueVal, FalseVal); 5725 } 5726 const APInt *C1; 5727 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5728 const APInt *C2; 5729 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5730 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5731 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5732 return {SPF_SMAX, SPNB_NA, false}; 5733 5734 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5735 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5736 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5737 return {SPF_SMIN, SPNB_NA, false}; 5738 5739 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5740 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5741 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5742 return {SPF_UMAX, SPNB_NA, false}; 5743 5744 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5745 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5746 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5747 return {SPF_UMIN, SPNB_NA, false}; 5748 } 5749 return {SPF_UNKNOWN, SPNB_NA, false}; 5750 } 5751 5752 /// Recognize variations of: 5753 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5754 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5755 Value *CmpLHS, Value *CmpRHS, 5756 Value *TVal, Value *FVal, 5757 unsigned Depth) { 5758 // TODO: Allow FP min/max with nnan/nsz. 5759 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5760 5761 Value *A = nullptr, *B = nullptr; 5762 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5763 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5764 return {SPF_UNKNOWN, SPNB_NA, false}; 5765 5766 Value *C = nullptr, *D = nullptr; 5767 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5768 if (L.Flavor != R.Flavor) 5769 return {SPF_UNKNOWN, SPNB_NA, false}; 5770 5771 // We have something like: x Pred y ? min(a, b) : min(c, d). 5772 // Try to match the compare to the min/max operations of the select operands. 5773 // First, make sure we have the right compare predicate. 5774 switch (L.Flavor) { 5775 case SPF_SMIN: 5776 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5777 Pred = ICmpInst::getSwappedPredicate(Pred); 5778 std::swap(CmpLHS, CmpRHS); 5779 } 5780 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5781 break; 5782 return {SPF_UNKNOWN, SPNB_NA, false}; 5783 case SPF_SMAX: 5784 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5785 Pred = ICmpInst::getSwappedPredicate(Pred); 5786 std::swap(CmpLHS, CmpRHS); 5787 } 5788 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5789 break; 5790 return {SPF_UNKNOWN, SPNB_NA, false}; 5791 case SPF_UMIN: 5792 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5793 Pred = ICmpInst::getSwappedPredicate(Pred); 5794 std::swap(CmpLHS, CmpRHS); 5795 } 5796 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5797 break; 5798 return {SPF_UNKNOWN, SPNB_NA, false}; 5799 case SPF_UMAX: 5800 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5801 Pred = ICmpInst::getSwappedPredicate(Pred); 5802 std::swap(CmpLHS, CmpRHS); 5803 } 5804 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5805 break; 5806 return {SPF_UNKNOWN, SPNB_NA, false}; 5807 default: 5808 return {SPF_UNKNOWN, SPNB_NA, false}; 5809 } 5810 5811 // If there is a common operand in the already matched min/max and the other 5812 // min/max operands match the compare operands (either directly or inverted), 5813 // then this is min/max of the same flavor. 5814 5815 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5816 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5817 if (D == B) { 5818 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5819 match(A, m_Not(m_Specific(CmpRHS))))) 5820 return {L.Flavor, SPNB_NA, false}; 5821 } 5822 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5823 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5824 if (C == B) { 5825 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5826 match(A, m_Not(m_Specific(CmpRHS))))) 5827 return {L.Flavor, SPNB_NA, false}; 5828 } 5829 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5830 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5831 if (D == A) { 5832 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5833 match(B, m_Not(m_Specific(CmpRHS))))) 5834 return {L.Flavor, SPNB_NA, false}; 5835 } 5836 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5837 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5838 if (C == A) { 5839 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5840 match(B, m_Not(m_Specific(CmpRHS))))) 5841 return {L.Flavor, SPNB_NA, false}; 5842 } 5843 5844 return {SPF_UNKNOWN, SPNB_NA, false}; 5845 } 5846 5847 /// If the input value is the result of a 'not' op, constant integer, or vector 5848 /// splat of a constant integer, return the bitwise-not source value. 5849 /// TODO: This could be extended to handle non-splat vector integer constants. 5850 static Value *getNotValue(Value *V) { 5851 Value *NotV; 5852 if (match(V, m_Not(m_Value(NotV)))) 5853 return NotV; 5854 5855 const APInt *C; 5856 if (match(V, m_APInt(C))) 5857 return ConstantInt::get(V->getType(), ~(*C)); 5858 5859 return nullptr; 5860 } 5861 5862 /// Match non-obvious integer minimum and maximum sequences. 5863 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5864 Value *CmpLHS, Value *CmpRHS, 5865 Value *TrueVal, Value *FalseVal, 5866 Value *&LHS, Value *&RHS, 5867 unsigned Depth) { 5868 // Assume success. If there's no match, callers should not use these anyway. 5869 LHS = TrueVal; 5870 RHS = FalseVal; 5871 5872 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5873 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5874 return SPR; 5875 5876 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5877 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5878 return SPR; 5879 5880 // Look through 'not' ops to find disguised min/max. 5881 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5882 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5883 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5884 switch (Pred) { 5885 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5886 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5887 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5888 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5889 default: break; 5890 } 5891 } 5892 5893 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5894 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5895 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5896 switch (Pred) { 5897 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5898 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5899 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5900 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5901 default: break; 5902 } 5903 } 5904 5905 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5906 return {SPF_UNKNOWN, SPNB_NA, false}; 5907 5908 const APInt *C1; 5909 if (!match(CmpRHS, m_APInt(C1))) 5910 return {SPF_UNKNOWN, SPNB_NA, false}; 5911 5912 // An unsigned min/max can be written with a signed compare. 5913 const APInt *C2; 5914 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5915 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5916 // Is the sign bit set? 5917 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5918 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5919 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5920 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5921 5922 // Is the sign bit clear? 5923 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5924 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5925 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5926 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5927 } 5928 5929 return {SPF_UNKNOWN, SPNB_NA, false}; 5930 } 5931 5932 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5933 assert(X && Y && "Invalid operand"); 5934 5935 // X = sub (0, Y) || X = sub nsw (0, Y) 5936 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5937 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5938 return true; 5939 5940 // Y = sub (0, X) || Y = sub nsw (0, X) 5941 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5942 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5943 return true; 5944 5945 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5946 Value *A, *B; 5947 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5948 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5949 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5950 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5951 } 5952 5953 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5954 FastMathFlags FMF, 5955 Value *CmpLHS, Value *CmpRHS, 5956 Value *TrueVal, Value *FalseVal, 5957 Value *&LHS, Value *&RHS, 5958 unsigned Depth) { 5959 if (CmpInst::isFPPredicate(Pred)) { 5960 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5961 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5962 // purpose of identifying min/max. Disregard vector constants with undefined 5963 // elements because those can not be back-propagated for analysis. 5964 Value *OutputZeroVal = nullptr; 5965 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5966 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5967 OutputZeroVal = TrueVal; 5968 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5969 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5970 OutputZeroVal = FalseVal; 5971 5972 if (OutputZeroVal) { 5973 if (match(CmpLHS, m_AnyZeroFP())) 5974 CmpLHS = OutputZeroVal; 5975 if (match(CmpRHS, m_AnyZeroFP())) 5976 CmpRHS = OutputZeroVal; 5977 } 5978 } 5979 5980 LHS = CmpLHS; 5981 RHS = CmpRHS; 5982 5983 // Signed zero may return inconsistent results between implementations. 5984 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5985 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5986 // Therefore, we behave conservatively and only proceed if at least one of the 5987 // operands is known to not be zero or if we don't care about signed zero. 5988 switch (Pred) { 5989 default: break; 5990 // FIXME: Include OGT/OLT/UGT/ULT. 5991 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5992 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5993 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5994 !isKnownNonZero(CmpRHS)) 5995 return {SPF_UNKNOWN, SPNB_NA, false}; 5996 } 5997 5998 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5999 bool Ordered = false; 6000 6001 // When given one NaN and one non-NaN input: 6002 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 6003 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 6004 // ordered comparison fails), which could be NaN or non-NaN. 6005 // so here we discover exactly what NaN behavior is required/accepted. 6006 if (CmpInst::isFPPredicate(Pred)) { 6007 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 6008 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 6009 6010 if (LHSSafe && RHSSafe) { 6011 // Both operands are known non-NaN. 6012 NaNBehavior = SPNB_RETURNS_ANY; 6013 } else if (CmpInst::isOrdered(Pred)) { 6014 // An ordered comparison will return false when given a NaN, so it 6015 // returns the RHS. 6016 Ordered = true; 6017 if (LHSSafe) 6018 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6019 NaNBehavior = SPNB_RETURNS_NAN; 6020 else if (RHSSafe) 6021 NaNBehavior = SPNB_RETURNS_OTHER; 6022 else 6023 // Completely unsafe. 6024 return {SPF_UNKNOWN, SPNB_NA, false}; 6025 } else { 6026 Ordered = false; 6027 // An unordered comparison will return true when given a NaN, so it 6028 // returns the LHS. 6029 if (LHSSafe) 6030 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6031 NaNBehavior = SPNB_RETURNS_OTHER; 6032 else if (RHSSafe) 6033 NaNBehavior = SPNB_RETURNS_NAN; 6034 else 6035 // Completely unsafe. 6036 return {SPF_UNKNOWN, SPNB_NA, false}; 6037 } 6038 } 6039 6040 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6041 std::swap(CmpLHS, CmpRHS); 6042 Pred = CmpInst::getSwappedPredicate(Pred); 6043 if (NaNBehavior == SPNB_RETURNS_NAN) 6044 NaNBehavior = SPNB_RETURNS_OTHER; 6045 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6046 NaNBehavior = SPNB_RETURNS_NAN; 6047 Ordered = !Ordered; 6048 } 6049 6050 // ([if]cmp X, Y) ? X : Y 6051 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6052 switch (Pred) { 6053 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6054 case ICmpInst::ICMP_UGT: 6055 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6056 case ICmpInst::ICMP_SGT: 6057 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6058 case ICmpInst::ICMP_ULT: 6059 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6060 case ICmpInst::ICMP_SLT: 6061 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6062 case FCmpInst::FCMP_UGT: 6063 case FCmpInst::FCMP_UGE: 6064 case FCmpInst::FCMP_OGT: 6065 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6066 case FCmpInst::FCMP_ULT: 6067 case FCmpInst::FCMP_ULE: 6068 case FCmpInst::FCMP_OLT: 6069 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6070 } 6071 } 6072 6073 if (isKnownNegation(TrueVal, FalseVal)) { 6074 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6075 // match against either LHS or sext(LHS). 6076 auto MaybeSExtCmpLHS = 6077 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6078 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6079 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6080 if (match(TrueVal, MaybeSExtCmpLHS)) { 6081 // Set the return values. If the compare uses the negated value (-X >s 0), 6082 // swap the return values because the negated value is always 'RHS'. 6083 LHS = TrueVal; 6084 RHS = FalseVal; 6085 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6086 std::swap(LHS, RHS); 6087 6088 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6089 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6090 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6091 return {SPF_ABS, SPNB_NA, false}; 6092 6093 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6094 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6095 return {SPF_ABS, SPNB_NA, false}; 6096 6097 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6098 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6099 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6100 return {SPF_NABS, SPNB_NA, false}; 6101 } 6102 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6103 // Set the return values. If the compare uses the negated value (-X >s 0), 6104 // swap the return values because the negated value is always 'RHS'. 6105 LHS = FalseVal; 6106 RHS = TrueVal; 6107 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6108 std::swap(LHS, RHS); 6109 6110 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6111 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6112 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6113 return {SPF_NABS, SPNB_NA, false}; 6114 6115 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6116 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6117 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6118 return {SPF_ABS, SPNB_NA, false}; 6119 } 6120 } 6121 6122 if (CmpInst::isIntPredicate(Pred)) 6123 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6124 6125 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6126 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6127 // semantics than minNum. Be conservative in such case. 6128 if (NaNBehavior != SPNB_RETURNS_ANY || 6129 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6130 !isKnownNonZero(CmpRHS))) 6131 return {SPF_UNKNOWN, SPNB_NA, false}; 6132 6133 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6134 } 6135 6136 /// Helps to match a select pattern in case of a type mismatch. 6137 /// 6138 /// The function processes the case when type of true and false values of a 6139 /// select instruction differs from type of the cmp instruction operands because 6140 /// of a cast instruction. The function checks if it is legal to move the cast 6141 /// operation after "select". If yes, it returns the new second value of 6142 /// "select" (with the assumption that cast is moved): 6143 /// 1. As operand of cast instruction when both values of "select" are same cast 6144 /// instructions. 6145 /// 2. As restored constant (by applying reverse cast operation) when the first 6146 /// value of the "select" is a cast operation and the second value is a 6147 /// constant. 6148 /// NOTE: We return only the new second value because the first value could be 6149 /// accessed as operand of cast instruction. 6150 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6151 Instruction::CastOps *CastOp) { 6152 auto *Cast1 = dyn_cast<CastInst>(V1); 6153 if (!Cast1) 6154 return nullptr; 6155 6156 *CastOp = Cast1->getOpcode(); 6157 Type *SrcTy = Cast1->getSrcTy(); 6158 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6159 // If V1 and V2 are both the same cast from the same type, look through V1. 6160 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6161 return Cast2->getOperand(0); 6162 return nullptr; 6163 } 6164 6165 auto *C = dyn_cast<Constant>(V2); 6166 if (!C) 6167 return nullptr; 6168 6169 Constant *CastedTo = nullptr; 6170 switch (*CastOp) { 6171 case Instruction::ZExt: 6172 if (CmpI->isUnsigned()) 6173 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6174 break; 6175 case Instruction::SExt: 6176 if (CmpI->isSigned()) 6177 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6178 break; 6179 case Instruction::Trunc: 6180 Constant *CmpConst; 6181 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6182 CmpConst->getType() == SrcTy) { 6183 // Here we have the following case: 6184 // 6185 // %cond = cmp iN %x, CmpConst 6186 // %tr = trunc iN %x to iK 6187 // %narrowsel = select i1 %cond, iK %t, iK C 6188 // 6189 // We can always move trunc after select operation: 6190 // 6191 // %cond = cmp iN %x, CmpConst 6192 // %widesel = select i1 %cond, iN %x, iN CmpConst 6193 // %tr = trunc iN %widesel to iK 6194 // 6195 // Note that C could be extended in any way because we don't care about 6196 // upper bits after truncation. It can't be abs pattern, because it would 6197 // look like: 6198 // 6199 // select i1 %cond, x, -x. 6200 // 6201 // So only min/max pattern could be matched. Such match requires widened C 6202 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6203 // CmpConst == C is checked below. 6204 CastedTo = CmpConst; 6205 } else { 6206 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6207 } 6208 break; 6209 case Instruction::FPTrunc: 6210 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6211 break; 6212 case Instruction::FPExt: 6213 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6214 break; 6215 case Instruction::FPToUI: 6216 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6217 break; 6218 case Instruction::FPToSI: 6219 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6220 break; 6221 case Instruction::UIToFP: 6222 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6223 break; 6224 case Instruction::SIToFP: 6225 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6226 break; 6227 default: 6228 break; 6229 } 6230 6231 if (!CastedTo) 6232 return nullptr; 6233 6234 // Make sure the cast doesn't lose any information. 6235 Constant *CastedBack = 6236 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6237 if (CastedBack != C) 6238 return nullptr; 6239 6240 return CastedTo; 6241 } 6242 6243 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6244 Instruction::CastOps *CastOp, 6245 unsigned Depth) { 6246 if (Depth >= MaxAnalysisRecursionDepth) 6247 return {SPF_UNKNOWN, SPNB_NA, false}; 6248 6249 SelectInst *SI = dyn_cast<SelectInst>(V); 6250 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6251 6252 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6253 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6254 6255 Value *TrueVal = SI->getTrueValue(); 6256 Value *FalseVal = SI->getFalseValue(); 6257 6258 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6259 CastOp, Depth); 6260 } 6261 6262 SelectPatternResult llvm::matchDecomposedSelectPattern( 6263 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6264 Instruction::CastOps *CastOp, unsigned Depth) { 6265 CmpInst::Predicate Pred = CmpI->getPredicate(); 6266 Value *CmpLHS = CmpI->getOperand(0); 6267 Value *CmpRHS = CmpI->getOperand(1); 6268 FastMathFlags FMF; 6269 if (isa<FPMathOperator>(CmpI)) 6270 FMF = CmpI->getFastMathFlags(); 6271 6272 // Bail out early. 6273 if (CmpI->isEquality()) 6274 return {SPF_UNKNOWN, SPNB_NA, false}; 6275 6276 // Deal with type mismatches. 6277 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6278 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6279 // If this is a potential fmin/fmax with a cast to integer, then ignore 6280 // -0.0 because there is no corresponding integer value. 6281 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6282 FMF.setNoSignedZeros(); 6283 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6284 cast<CastInst>(TrueVal)->getOperand(0), C, 6285 LHS, RHS, Depth); 6286 } 6287 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6288 // If this is a potential fmin/fmax with a cast to integer, then ignore 6289 // -0.0 because there is no corresponding integer value. 6290 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6291 FMF.setNoSignedZeros(); 6292 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6293 C, cast<CastInst>(FalseVal)->getOperand(0), 6294 LHS, RHS, Depth); 6295 } 6296 } 6297 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6298 LHS, RHS, Depth); 6299 } 6300 6301 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6302 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6303 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6304 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6305 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6306 if (SPF == SPF_FMINNUM) 6307 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6308 if (SPF == SPF_FMAXNUM) 6309 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6310 llvm_unreachable("unhandled!"); 6311 } 6312 6313 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6314 if (SPF == SPF_SMIN) return SPF_SMAX; 6315 if (SPF == SPF_UMIN) return SPF_UMAX; 6316 if (SPF == SPF_SMAX) return SPF_SMIN; 6317 if (SPF == SPF_UMAX) return SPF_UMIN; 6318 llvm_unreachable("unhandled!"); 6319 } 6320 6321 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6322 switch (MinMaxID) { 6323 case Intrinsic::smax: return Intrinsic::smin; 6324 case Intrinsic::smin: return Intrinsic::smax; 6325 case Intrinsic::umax: return Intrinsic::umin; 6326 case Intrinsic::umin: return Intrinsic::umax; 6327 default: llvm_unreachable("Unexpected intrinsic"); 6328 } 6329 } 6330 6331 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6332 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6333 } 6334 6335 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6336 switch (SPF) { 6337 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6338 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6339 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6340 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6341 default: llvm_unreachable("Unexpected flavor"); 6342 } 6343 } 6344 6345 std::pair<Intrinsic::ID, bool> 6346 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6347 // Check if VL contains select instructions that can be folded into a min/max 6348 // vector intrinsic and return the intrinsic if it is possible. 6349 // TODO: Support floating point min/max. 6350 bool AllCmpSingleUse = true; 6351 SelectPatternResult SelectPattern; 6352 SelectPattern.Flavor = SPF_UNKNOWN; 6353 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6354 Value *LHS, *RHS; 6355 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6356 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6357 CurrentPattern.Flavor == SPF_FMINNUM || 6358 CurrentPattern.Flavor == SPF_FMAXNUM || 6359 !I->getType()->isIntOrIntVectorTy()) 6360 return false; 6361 if (SelectPattern.Flavor != SPF_UNKNOWN && 6362 SelectPattern.Flavor != CurrentPattern.Flavor) 6363 return false; 6364 SelectPattern = CurrentPattern; 6365 AllCmpSingleUse &= 6366 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6367 return true; 6368 })) { 6369 switch (SelectPattern.Flavor) { 6370 case SPF_SMIN: 6371 return {Intrinsic::smin, AllCmpSingleUse}; 6372 case SPF_UMIN: 6373 return {Intrinsic::umin, AllCmpSingleUse}; 6374 case SPF_SMAX: 6375 return {Intrinsic::smax, AllCmpSingleUse}; 6376 case SPF_UMAX: 6377 return {Intrinsic::umax, AllCmpSingleUse}; 6378 default: 6379 llvm_unreachable("unexpected select pattern flavor"); 6380 } 6381 } 6382 return {Intrinsic::not_intrinsic, false}; 6383 } 6384 6385 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6386 Value *&Start, Value *&Step) { 6387 // Handle the case of a simple two-predecessor recurrence PHI. 6388 // There's a lot more that could theoretically be done here, but 6389 // this is sufficient to catch some interesting cases. 6390 if (P->getNumIncomingValues() != 2) 6391 return false; 6392 6393 for (unsigned i = 0; i != 2; ++i) { 6394 Value *L = P->getIncomingValue(i); 6395 Value *R = P->getIncomingValue(!i); 6396 Operator *LU = dyn_cast<Operator>(L); 6397 if (!LU) 6398 continue; 6399 unsigned Opcode = LU->getOpcode(); 6400 6401 switch (Opcode) { 6402 default: 6403 continue; 6404 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6405 case Instruction::LShr: 6406 case Instruction::AShr: 6407 case Instruction::Shl: 6408 case Instruction::Add: 6409 case Instruction::Sub: 6410 case Instruction::And: 6411 case Instruction::Or: 6412 case Instruction::Mul: { 6413 Value *LL = LU->getOperand(0); 6414 Value *LR = LU->getOperand(1); 6415 // Find a recurrence. 6416 if (LL == P) 6417 L = LR; 6418 else if (LR == P) 6419 L = LL; 6420 else 6421 continue; // Check for recurrence with L and R flipped. 6422 6423 break; // Match! 6424 } 6425 }; 6426 6427 // We have matched a recurrence of the form: 6428 // %iv = [R, %entry], [%iv.next, %backedge] 6429 // %iv.next = binop %iv, L 6430 // OR 6431 // %iv = [R, %entry], [%iv.next, %backedge] 6432 // %iv.next = binop L, %iv 6433 BO = cast<BinaryOperator>(LU); 6434 Start = R; 6435 Step = L; 6436 return true; 6437 } 6438 return false; 6439 } 6440 6441 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6442 Value *&Start, Value *&Step) { 6443 BinaryOperator *BO = nullptr; 6444 P = dyn_cast<PHINode>(I->getOperand(0)); 6445 if (!P) 6446 P = dyn_cast<PHINode>(I->getOperand(1)); 6447 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6448 } 6449 6450 /// Return true if "icmp Pred LHS RHS" is always true. 6451 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6452 const Value *RHS, const DataLayout &DL, 6453 unsigned Depth) { 6454 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6455 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6456 return true; 6457 6458 switch (Pred) { 6459 default: 6460 return false; 6461 6462 case CmpInst::ICMP_SLE: { 6463 const APInt *C; 6464 6465 // LHS s<= LHS +_{nsw} C if C >= 0 6466 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6467 return !C->isNegative(); 6468 return false; 6469 } 6470 6471 case CmpInst::ICMP_ULE: { 6472 const APInt *C; 6473 6474 // LHS u<= LHS +_{nuw} C for any C 6475 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6476 return true; 6477 6478 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6479 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6480 const Value *&X, 6481 const APInt *&CA, const APInt *&CB) { 6482 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6483 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6484 return true; 6485 6486 // If X & C == 0 then (X | C) == X +_{nuw} C 6487 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6488 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6489 KnownBits Known(CA->getBitWidth()); 6490 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6491 /*CxtI*/ nullptr, /*DT*/ nullptr); 6492 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6493 return true; 6494 } 6495 6496 return false; 6497 }; 6498 6499 const Value *X; 6500 const APInt *CLHS, *CRHS; 6501 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6502 return CLHS->ule(*CRHS); 6503 6504 return false; 6505 } 6506 } 6507 } 6508 6509 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6510 /// ALHS ARHS" is true. Otherwise, return None. 6511 static Optional<bool> 6512 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6513 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6514 const DataLayout &DL, unsigned Depth) { 6515 switch (Pred) { 6516 default: 6517 return None; 6518 6519 case CmpInst::ICMP_SLT: 6520 case CmpInst::ICMP_SLE: 6521 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6522 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6523 return true; 6524 return None; 6525 6526 case CmpInst::ICMP_ULT: 6527 case CmpInst::ICMP_ULE: 6528 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6529 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6530 return true; 6531 return None; 6532 } 6533 } 6534 6535 /// Return true if the operands of the two compares match. IsSwappedOps is true 6536 /// when the operands match, but are swapped. 6537 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6538 const Value *BLHS, const Value *BRHS, 6539 bool &IsSwappedOps) { 6540 6541 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6542 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6543 return IsMatchingOps || IsSwappedOps; 6544 } 6545 6546 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6547 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6548 /// Otherwise, return None if we can't infer anything. 6549 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6550 CmpInst::Predicate BPred, 6551 bool AreSwappedOps) { 6552 // Canonicalize the predicate as if the operands were not commuted. 6553 if (AreSwappedOps) 6554 BPred = ICmpInst::getSwappedPredicate(BPred); 6555 6556 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6557 return true; 6558 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6559 return false; 6560 6561 return None; 6562 } 6563 6564 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6565 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6566 /// Otherwise, return None if we can't infer anything. 6567 static Optional<bool> 6568 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6569 const ConstantInt *C1, 6570 CmpInst::Predicate BPred, 6571 const ConstantInt *C2) { 6572 ConstantRange DomCR = 6573 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6574 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6575 ConstantRange Intersection = DomCR.intersectWith(CR); 6576 ConstantRange Difference = DomCR.difference(CR); 6577 if (Intersection.isEmptySet()) 6578 return false; 6579 if (Difference.isEmptySet()) 6580 return true; 6581 return None; 6582 } 6583 6584 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6585 /// false. Otherwise, return None if we can't infer anything. 6586 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6587 CmpInst::Predicate BPred, 6588 const Value *BLHS, const Value *BRHS, 6589 const DataLayout &DL, bool LHSIsTrue, 6590 unsigned Depth) { 6591 Value *ALHS = LHS->getOperand(0); 6592 Value *ARHS = LHS->getOperand(1); 6593 6594 // The rest of the logic assumes the LHS condition is true. If that's not the 6595 // case, invert the predicate to make it so. 6596 CmpInst::Predicate APred = 6597 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6598 6599 // Can we infer anything when the two compares have matching operands? 6600 bool AreSwappedOps; 6601 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6602 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6603 APred, BPred, AreSwappedOps)) 6604 return Implication; 6605 // No amount of additional analysis will infer the second condition, so 6606 // early exit. 6607 return None; 6608 } 6609 6610 // Can we infer anything when the LHS operands match and the RHS operands are 6611 // constants (not necessarily matching)? 6612 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6613 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6614 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6615 return Implication; 6616 // No amount of additional analysis will infer the second condition, so 6617 // early exit. 6618 return None; 6619 } 6620 6621 if (APred == BPred) 6622 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6623 return None; 6624 } 6625 6626 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6627 /// false. Otherwise, return None if we can't infer anything. We expect the 6628 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6629 static Optional<bool> 6630 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6631 const Value *RHSOp0, const Value *RHSOp1, 6632 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6633 // The LHS must be an 'or', 'and', or a 'select' instruction. 6634 assert((LHS->getOpcode() == Instruction::And || 6635 LHS->getOpcode() == Instruction::Or || 6636 LHS->getOpcode() == Instruction::Select) && 6637 "Expected LHS to be 'and', 'or', or 'select'."); 6638 6639 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6640 6641 // If the result of an 'or' is false, then we know both legs of the 'or' are 6642 // false. Similarly, if the result of an 'and' is true, then we know both 6643 // legs of the 'and' are true. 6644 const Value *ALHS, *ARHS; 6645 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6646 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6647 // FIXME: Make this non-recursion. 6648 if (Optional<bool> Implication = isImpliedCondition( 6649 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6650 return Implication; 6651 if (Optional<bool> Implication = isImpliedCondition( 6652 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6653 return Implication; 6654 return None; 6655 } 6656 return None; 6657 } 6658 6659 Optional<bool> 6660 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6661 const Value *RHSOp0, const Value *RHSOp1, 6662 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6663 // Bail out when we hit the limit. 6664 if (Depth == MaxAnalysisRecursionDepth) 6665 return None; 6666 6667 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6668 // example. 6669 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6670 return None; 6671 6672 Type *OpTy = LHS->getType(); 6673 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6674 6675 // FIXME: Extending the code below to handle vectors. 6676 if (OpTy->isVectorTy()) 6677 return None; 6678 6679 assert(OpTy->isIntegerTy(1) && "implied by above"); 6680 6681 // Both LHS and RHS are icmps. 6682 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6683 if (LHSCmp) 6684 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6685 Depth); 6686 6687 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6688 /// the RHS to be an icmp. 6689 /// FIXME: Add support for and/or/select on the RHS. 6690 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6691 if ((LHSI->getOpcode() == Instruction::And || 6692 LHSI->getOpcode() == Instruction::Or || 6693 LHSI->getOpcode() == Instruction::Select)) 6694 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6695 Depth); 6696 } 6697 return None; 6698 } 6699 6700 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6701 const DataLayout &DL, bool LHSIsTrue, 6702 unsigned Depth) { 6703 // LHS ==> RHS by definition 6704 if (LHS == RHS) 6705 return LHSIsTrue; 6706 6707 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6708 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6709 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6710 LHSIsTrue, Depth); 6711 6712 if (Depth == MaxAnalysisRecursionDepth) 6713 return None; 6714 6715 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6716 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6717 const Value *RHS1, *RHS2; 6718 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6719 if (Optional<bool> Imp = 6720 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6721 if (*Imp == true) 6722 return true; 6723 if (Optional<bool> Imp = 6724 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6725 if (*Imp == true) 6726 return true; 6727 } 6728 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 6729 if (Optional<bool> Imp = 6730 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6731 if (*Imp == false) 6732 return false; 6733 if (Optional<bool> Imp = 6734 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6735 if (*Imp == false) 6736 return false; 6737 } 6738 6739 return None; 6740 } 6741 6742 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6743 // condition dominating ContextI or nullptr, if no condition is found. 6744 static std::pair<Value *, bool> 6745 getDomPredecessorCondition(const Instruction *ContextI) { 6746 if (!ContextI || !ContextI->getParent()) 6747 return {nullptr, false}; 6748 6749 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6750 // dominator tree (eg, from a SimplifyQuery) instead? 6751 const BasicBlock *ContextBB = ContextI->getParent(); 6752 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6753 if (!PredBB) 6754 return {nullptr, false}; 6755 6756 // We need a conditional branch in the predecessor. 6757 Value *PredCond; 6758 BasicBlock *TrueBB, *FalseBB; 6759 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6760 return {nullptr, false}; 6761 6762 // The branch should get simplified. Don't bother simplifying this condition. 6763 if (TrueBB == FalseBB) 6764 return {nullptr, false}; 6765 6766 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6767 "Predecessor block does not point to successor?"); 6768 6769 // Is this condition implied by the predecessor condition? 6770 return {PredCond, TrueBB == ContextBB}; 6771 } 6772 6773 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6774 const Instruction *ContextI, 6775 const DataLayout &DL) { 6776 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6777 auto PredCond = getDomPredecessorCondition(ContextI); 6778 if (PredCond.first) 6779 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6780 return None; 6781 } 6782 6783 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6784 const Value *LHS, const Value *RHS, 6785 const Instruction *ContextI, 6786 const DataLayout &DL) { 6787 auto PredCond = getDomPredecessorCondition(ContextI); 6788 if (PredCond.first) 6789 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6790 PredCond.second); 6791 return None; 6792 } 6793 6794 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6795 APInt &Upper, const InstrInfoQuery &IIQ, 6796 bool PreferSignedRange) { 6797 unsigned Width = Lower.getBitWidth(); 6798 const APInt *C; 6799 switch (BO.getOpcode()) { 6800 case Instruction::Add: 6801 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6802 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6803 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6804 6805 // If the caller expects a signed compare, then try to use a signed range. 6806 // Otherwise if both no-wraps are set, use the unsigned range because it 6807 // is never larger than the signed range. Example: 6808 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6809 if (PreferSignedRange && HasNSW && HasNUW) 6810 HasNUW = false; 6811 6812 if (HasNUW) { 6813 // 'add nuw x, C' produces [C, UINT_MAX]. 6814 Lower = *C; 6815 } else if (HasNSW) { 6816 if (C->isNegative()) { 6817 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6818 Lower = APInt::getSignedMinValue(Width); 6819 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6820 } else { 6821 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6822 Lower = APInt::getSignedMinValue(Width) + *C; 6823 Upper = APInt::getSignedMaxValue(Width) + 1; 6824 } 6825 } 6826 } 6827 break; 6828 6829 case Instruction::And: 6830 if (match(BO.getOperand(1), m_APInt(C))) 6831 // 'and x, C' produces [0, C]. 6832 Upper = *C + 1; 6833 break; 6834 6835 case Instruction::Or: 6836 if (match(BO.getOperand(1), m_APInt(C))) 6837 // 'or x, C' produces [C, UINT_MAX]. 6838 Lower = *C; 6839 break; 6840 6841 case Instruction::AShr: 6842 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6843 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6844 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6845 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6846 } else if (match(BO.getOperand(0), m_APInt(C))) { 6847 unsigned ShiftAmount = Width - 1; 6848 if (!C->isZero() && IIQ.isExact(&BO)) 6849 ShiftAmount = C->countTrailingZeros(); 6850 if (C->isNegative()) { 6851 // 'ashr C, x' produces [C, C >> (Width-1)] 6852 Lower = *C; 6853 Upper = C->ashr(ShiftAmount) + 1; 6854 } else { 6855 // 'ashr C, x' produces [C >> (Width-1), C] 6856 Lower = C->ashr(ShiftAmount); 6857 Upper = *C + 1; 6858 } 6859 } 6860 break; 6861 6862 case Instruction::LShr: 6863 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6864 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6865 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6866 } else if (match(BO.getOperand(0), m_APInt(C))) { 6867 // 'lshr C, x' produces [C >> (Width-1), C]. 6868 unsigned ShiftAmount = Width - 1; 6869 if (!C->isZero() && IIQ.isExact(&BO)) 6870 ShiftAmount = C->countTrailingZeros(); 6871 Lower = C->lshr(ShiftAmount); 6872 Upper = *C + 1; 6873 } 6874 break; 6875 6876 case Instruction::Shl: 6877 if (match(BO.getOperand(0), m_APInt(C))) { 6878 if (IIQ.hasNoUnsignedWrap(&BO)) { 6879 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6880 Lower = *C; 6881 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6882 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6883 if (C->isNegative()) { 6884 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6885 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6886 Lower = C->shl(ShiftAmount); 6887 Upper = *C + 1; 6888 } else { 6889 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6890 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6891 Lower = *C; 6892 Upper = C->shl(ShiftAmount) + 1; 6893 } 6894 } 6895 } 6896 break; 6897 6898 case Instruction::SDiv: 6899 if (match(BO.getOperand(1), m_APInt(C))) { 6900 APInt IntMin = APInt::getSignedMinValue(Width); 6901 APInt IntMax = APInt::getSignedMaxValue(Width); 6902 if (C->isAllOnes()) { 6903 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6904 // where C != -1 and C != 0 and C != 1 6905 Lower = IntMin + 1; 6906 Upper = IntMax + 1; 6907 } else if (C->countLeadingZeros() < Width - 1) { 6908 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6909 // where C != -1 and C != 0 and C != 1 6910 Lower = IntMin.sdiv(*C); 6911 Upper = IntMax.sdiv(*C); 6912 if (Lower.sgt(Upper)) 6913 std::swap(Lower, Upper); 6914 Upper = Upper + 1; 6915 assert(Upper != Lower && "Upper part of range has wrapped!"); 6916 } 6917 } else if (match(BO.getOperand(0), m_APInt(C))) { 6918 if (C->isMinSignedValue()) { 6919 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6920 Lower = *C; 6921 Upper = Lower.lshr(1) + 1; 6922 } else { 6923 // 'sdiv C, x' produces [-|C|, |C|]. 6924 Upper = C->abs() + 1; 6925 Lower = (-Upper) + 1; 6926 } 6927 } 6928 break; 6929 6930 case Instruction::UDiv: 6931 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6932 // 'udiv x, C' produces [0, UINT_MAX / C]. 6933 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6934 } else if (match(BO.getOperand(0), m_APInt(C))) { 6935 // 'udiv C, x' produces [0, C]. 6936 Upper = *C + 1; 6937 } 6938 break; 6939 6940 case Instruction::SRem: 6941 if (match(BO.getOperand(1), m_APInt(C))) { 6942 // 'srem x, C' produces (-|C|, |C|). 6943 Upper = C->abs(); 6944 Lower = (-Upper) + 1; 6945 } 6946 break; 6947 6948 case Instruction::URem: 6949 if (match(BO.getOperand(1), m_APInt(C))) 6950 // 'urem x, C' produces [0, C). 6951 Upper = *C; 6952 break; 6953 6954 default: 6955 break; 6956 } 6957 } 6958 6959 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6960 APInt &Upper) { 6961 unsigned Width = Lower.getBitWidth(); 6962 const APInt *C; 6963 switch (II.getIntrinsicID()) { 6964 case Intrinsic::ctpop: 6965 case Intrinsic::ctlz: 6966 case Intrinsic::cttz: 6967 // Maximum of set/clear bits is the bit width. 6968 assert(Lower == 0 && "Expected lower bound to be zero"); 6969 Upper = Width + 1; 6970 break; 6971 case Intrinsic::uadd_sat: 6972 // uadd.sat(x, C) produces [C, UINT_MAX]. 6973 if (match(II.getOperand(0), m_APInt(C)) || 6974 match(II.getOperand(1), m_APInt(C))) 6975 Lower = *C; 6976 break; 6977 case Intrinsic::sadd_sat: 6978 if (match(II.getOperand(0), m_APInt(C)) || 6979 match(II.getOperand(1), m_APInt(C))) { 6980 if (C->isNegative()) { 6981 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6982 Lower = APInt::getSignedMinValue(Width); 6983 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6984 } else { 6985 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6986 Lower = APInt::getSignedMinValue(Width) + *C; 6987 Upper = APInt::getSignedMaxValue(Width) + 1; 6988 } 6989 } 6990 break; 6991 case Intrinsic::usub_sat: 6992 // usub.sat(C, x) produces [0, C]. 6993 if (match(II.getOperand(0), m_APInt(C))) 6994 Upper = *C + 1; 6995 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6996 else if (match(II.getOperand(1), m_APInt(C))) 6997 Upper = APInt::getMaxValue(Width) - *C + 1; 6998 break; 6999 case Intrinsic::ssub_sat: 7000 if (match(II.getOperand(0), m_APInt(C))) { 7001 if (C->isNegative()) { 7002 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 7003 Lower = APInt::getSignedMinValue(Width); 7004 Upper = *C - APInt::getSignedMinValue(Width) + 1; 7005 } else { 7006 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 7007 Lower = *C - APInt::getSignedMaxValue(Width); 7008 Upper = APInt::getSignedMaxValue(Width) + 1; 7009 } 7010 } else if (match(II.getOperand(1), m_APInt(C))) { 7011 if (C->isNegative()) { 7012 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 7013 Lower = APInt::getSignedMinValue(Width) - *C; 7014 Upper = APInt::getSignedMaxValue(Width) + 1; 7015 } else { 7016 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 7017 Lower = APInt::getSignedMinValue(Width); 7018 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 7019 } 7020 } 7021 break; 7022 case Intrinsic::umin: 7023 case Intrinsic::umax: 7024 case Intrinsic::smin: 7025 case Intrinsic::smax: 7026 if (!match(II.getOperand(0), m_APInt(C)) && 7027 !match(II.getOperand(1), m_APInt(C))) 7028 break; 7029 7030 switch (II.getIntrinsicID()) { 7031 case Intrinsic::umin: 7032 Upper = *C + 1; 7033 break; 7034 case Intrinsic::umax: 7035 Lower = *C; 7036 break; 7037 case Intrinsic::smin: 7038 Lower = APInt::getSignedMinValue(Width); 7039 Upper = *C + 1; 7040 break; 7041 case Intrinsic::smax: 7042 Lower = *C; 7043 Upper = APInt::getSignedMaxValue(Width) + 1; 7044 break; 7045 default: 7046 llvm_unreachable("Must be min/max intrinsic"); 7047 } 7048 break; 7049 case Intrinsic::abs: 7050 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7051 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7052 if (match(II.getOperand(1), m_One())) 7053 Upper = APInt::getSignedMaxValue(Width) + 1; 7054 else 7055 Upper = APInt::getSignedMinValue(Width) + 1; 7056 break; 7057 default: 7058 break; 7059 } 7060 } 7061 7062 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7063 APInt &Upper, const InstrInfoQuery &IIQ) { 7064 const Value *LHS = nullptr, *RHS = nullptr; 7065 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7066 if (R.Flavor == SPF_UNKNOWN) 7067 return; 7068 7069 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7070 7071 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7072 // If the negation part of the abs (in RHS) has the NSW flag, 7073 // then the result of abs(X) is [0..SIGNED_MAX], 7074 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7075 Lower = APInt::getZero(BitWidth); 7076 if (match(RHS, m_Neg(m_Specific(LHS))) && 7077 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7078 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7079 else 7080 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7081 return; 7082 } 7083 7084 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7085 // The result of -abs(X) is <= 0. 7086 Lower = APInt::getSignedMinValue(BitWidth); 7087 Upper = APInt(BitWidth, 1); 7088 return; 7089 } 7090 7091 const APInt *C; 7092 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7093 return; 7094 7095 switch (R.Flavor) { 7096 case SPF_UMIN: 7097 Upper = *C + 1; 7098 break; 7099 case SPF_UMAX: 7100 Lower = *C; 7101 break; 7102 case SPF_SMIN: 7103 Lower = APInt::getSignedMinValue(BitWidth); 7104 Upper = *C + 1; 7105 break; 7106 case SPF_SMAX: 7107 Lower = *C; 7108 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7109 break; 7110 default: 7111 break; 7112 } 7113 } 7114 7115 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7116 // The maximum representable value of a half is 65504. For floats the maximum 7117 // value is 3.4e38 which requires roughly 129 bits. 7118 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7119 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7120 return; 7121 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7122 Lower = APInt(BitWidth, -65504); 7123 Upper = APInt(BitWidth, 65505); 7124 } 7125 7126 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7127 // For a fptoui the lower limit is left as 0. 7128 Upper = APInt(BitWidth, 65505); 7129 } 7130 } 7131 7132 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7133 bool UseInstrInfo, AssumptionCache *AC, 7134 const Instruction *CtxI, 7135 const DominatorTree *DT, 7136 unsigned Depth) { 7137 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7138 7139 if (Depth == MaxAnalysisRecursionDepth) 7140 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7141 7142 const APInt *C; 7143 if (match(V, m_APInt(C))) 7144 return ConstantRange(*C); 7145 7146 InstrInfoQuery IIQ(UseInstrInfo); 7147 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7148 APInt Lower = APInt(BitWidth, 0); 7149 APInt Upper = APInt(BitWidth, 0); 7150 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7151 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7152 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7153 setLimitsForIntrinsic(*II, Lower, Upper); 7154 else if (auto *SI = dyn_cast<SelectInst>(V)) 7155 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7156 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7157 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7158 7159 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7160 7161 if (auto *I = dyn_cast<Instruction>(V)) 7162 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7163 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7164 7165 if (CtxI && AC) { 7166 // Try to restrict the range based on information from assumptions. 7167 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7168 if (!AssumeVH) 7169 continue; 7170 CallInst *I = cast<CallInst>(AssumeVH); 7171 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7172 "Got assumption for the wrong function!"); 7173 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7174 "must be an assume intrinsic"); 7175 7176 if (!isValidAssumeForContext(I, CtxI, DT)) 7177 continue; 7178 Value *Arg = I->getArgOperand(0); 7179 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7180 // Currently we just use information from comparisons. 7181 if (!Cmp || Cmp->getOperand(0) != V) 7182 continue; 7183 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7184 ConstantRange RHS = 7185 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7186 UseInstrInfo, AC, I, DT, Depth + 1); 7187 CR = CR.intersectWith( 7188 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7189 } 7190 } 7191 7192 return CR; 7193 } 7194 7195 static Optional<int64_t> 7196 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7197 // Skip over the first indices. 7198 gep_type_iterator GTI = gep_type_begin(GEP); 7199 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7200 /*skip along*/; 7201 7202 // Compute the offset implied by the rest of the indices. 7203 int64_t Offset = 0; 7204 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7205 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7206 if (!OpC) 7207 return None; 7208 if (OpC->isZero()) 7209 continue; // No offset. 7210 7211 // Handle struct indices, which add their field offset to the pointer. 7212 if (StructType *STy = GTI.getStructTypeOrNull()) { 7213 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7214 continue; 7215 } 7216 7217 // Otherwise, we have a sequential type like an array or fixed-length 7218 // vector. Multiply the index by the ElementSize. 7219 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7220 if (Size.isScalable()) 7221 return None; 7222 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7223 } 7224 7225 return Offset; 7226 } 7227 7228 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7229 const DataLayout &DL) { 7230 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7231 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7232 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7233 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7234 7235 // Handle the trivial case first. 7236 if (Ptr1 == Ptr2) 7237 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7238 7239 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7240 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7241 7242 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7243 // base. After that base, they may have some number of common (and 7244 // potentially variable) indices. After that they handle some constant 7245 // offset, which determines their offset from each other. At this point, we 7246 // handle no other case. 7247 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7248 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7249 return None; 7250 7251 // Skip any common indices and track the GEP types. 7252 unsigned Idx = 1; 7253 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7254 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7255 break; 7256 7257 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7258 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7259 if (!IOffset1 || !IOffset2) 7260 return None; 7261 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7262 Offset1.getSExtValue(); 7263 } 7264