1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/EHPersonalities.h"
30 #include "llvm/Analysis/GuardUtils.h"
31 #include "llvm/Analysis/InstructionSimplify.h"
32 #include "llvm/Analysis/Loads.h"
33 #include "llvm/Analysis/LoopInfo.h"
34 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/DiagnosticInfo.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Function.h"
46 #include "llvm/IR/GetElementPtrTypeIterator.h"
47 #include "llvm/IR/GlobalAlias.h"
48 #include "llvm/IR/GlobalValue.h"
49 #include "llvm/IR/GlobalVariable.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/IntrinsicsAArch64.h"
56 #include "llvm/IR/IntrinsicsRISCV.h"
57 #include "llvm/IR/IntrinsicsX86.h"
58 #include "llvm/IR/LLVMContext.h"
59 #include "llvm/IR/Metadata.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PatternMatch.h"
63 #include "llvm/IR/Type.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/CommandLine.h"
68 #include "llvm/Support/Compiler.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/KnownBits.h"
71 #include "llvm/Support/MathExtras.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstdint>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 // According to the LangRef, branching on a poison condition is absolutely
86 // immediate full UB.  However, historically we haven't implemented that
87 // consistently as we had an important transformation (non-trivial unswitch)
88 // which introduced instances of branch on poison/undef to otherwise well
89 // defined programs.  This issue has since been fixed, but the flag is
90 // temporarily retained to easily diagnose potential regressions.
91 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
92                                         cl::Hidden, cl::init(true));
93 
94 
95 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
96 /// returns the element type's bitwidth.
97 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
98   if (unsigned BitWidth = Ty->getScalarSizeInBits())
99     return BitWidth;
100 
101   return DL.getPointerTypeSizeInBits(Ty);
102 }
103 
104 namespace {
105 
106 // Simplifying using an assume can only be done in a particular control-flow
107 // context (the context instruction provides that context). If an assume and
108 // the context instruction are not in the same block then the DT helps in
109 // figuring out if we can use it.
110 struct Query {
111   const DataLayout &DL;
112   AssumptionCache *AC;
113   const Instruction *CxtI;
114   const DominatorTree *DT;
115 
116   // Unlike the other analyses, this may be a nullptr because not all clients
117   // provide it currently.
118   OptimizationRemarkEmitter *ORE;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
124         const DominatorTree *DT, bool UseInstrInfo,
125         OptimizationRemarkEmitter *ORE = nullptr)
126       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
127 };
128 
129 } // end anonymous namespace
130 
131 // Given the provided Value and, potentially, a context instruction, return
132 // the preferred context instruction (if any).
133 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
134   // If we've been provided with a context instruction, then use that (provided
135   // it has been inserted).
136   if (CxtI && CxtI->getParent())
137     return CxtI;
138 
139   // If the value is really an already-inserted instruction, then use that.
140   CxtI = dyn_cast<Instruction>(V);
141   if (CxtI && CxtI->getParent())
142     return CxtI;
143 
144   return nullptr;
145 }
146 
147 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
148   // If we've been provided with a context instruction, then use that (provided
149   // it has been inserted).
150   if (CxtI && CxtI->getParent())
151     return CxtI;
152 
153   // If the value is really an already-inserted instruction, then use that.
154   CxtI = dyn_cast<Instruction>(V1);
155   if (CxtI && CxtI->getParent())
156     return CxtI;
157 
158   CxtI = dyn_cast<Instruction>(V2);
159   if (CxtI && CxtI->getParent())
160     return CxtI;
161 
162   return nullptr;
163 }
164 
165 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
166                                    const APInt &DemandedElts,
167                                    APInt &DemandedLHS, APInt &DemandedRHS) {
168   // The length of scalable vectors is unknown at compile time, thus we
169   // cannot check their values
170   if (isa<ScalableVectorType>(Shuf->getType()))
171     return false;
172 
173   int NumElts =
174       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
175   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
176   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
177   if (DemandedElts.isZero())
178     return true;
179   // Simple case of a shuffle with zeroinitializer.
180   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
181     DemandedLHS.setBit(0);
182     return true;
183   }
184   for (int i = 0; i != NumMaskElts; ++i) {
185     if (!DemandedElts[i])
186       continue;
187     int M = Shuf->getMaskValue(i);
188     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
189 
190     // For undef elements, we don't know anything about the common state of
191     // the shuffle result.
192     if (M == -1)
193       return false;
194     if (M < NumElts)
195       DemandedLHS.setBit(M % NumElts);
196     else
197       DemandedRHS.setBit(M % NumElts);
198   }
199 
200   return true;
201 }
202 
203 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
204                              KnownBits &Known, unsigned Depth, const Query &Q);
205 
206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
207                              const Query &Q) {
208   // FIXME: We currently have no way to represent the DemandedElts of a scalable
209   // vector
210   if (isa<ScalableVectorType>(V->getType())) {
211     Known.resetAll();
212     return;
213   }
214 
215   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
216   APInt DemandedElts =
217       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
218   computeKnownBits(V, DemandedElts, Known, Depth, Q);
219 }
220 
221 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
222                             const DataLayout &DL, unsigned Depth,
223                             AssumptionCache *AC, const Instruction *CxtI,
224                             const DominatorTree *DT,
225                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
226   ::computeKnownBits(V, Known, Depth,
227                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
228 }
229 
230 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
231                             KnownBits &Known, const DataLayout &DL,
232                             unsigned Depth, AssumptionCache *AC,
233                             const Instruction *CxtI, const DominatorTree *DT,
234                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
235   ::computeKnownBits(V, DemandedElts, Known, Depth,
236                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
237 }
238 
239 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
240                                   unsigned Depth, const Query &Q);
241 
242 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
243                                   const Query &Q);
244 
245 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
246                                  unsigned Depth, AssumptionCache *AC,
247                                  const Instruction *CxtI,
248                                  const DominatorTree *DT,
249                                  OptimizationRemarkEmitter *ORE,
250                                  bool UseInstrInfo) {
251   return ::computeKnownBits(
252       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
253 }
254 
255 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
256                                  const DataLayout &DL, unsigned Depth,
257                                  AssumptionCache *AC, const Instruction *CxtI,
258                                  const DominatorTree *DT,
259                                  OptimizationRemarkEmitter *ORE,
260                                  bool UseInstrInfo) {
261   return ::computeKnownBits(
262       V, DemandedElts, Depth,
263       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
264 }
265 
266 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
267                                const DataLayout &DL, AssumptionCache *AC,
268                                const Instruction *CxtI, const DominatorTree *DT,
269                                bool UseInstrInfo) {
270   assert(LHS->getType() == RHS->getType() &&
271          "LHS and RHS should have the same type");
272   assert(LHS->getType()->isIntOrIntVectorTy() &&
273          "LHS and RHS should be integers");
274   // Look for an inverted mask: (X & ~M) op (Y & M).
275   {
276     Value *M;
277     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
278         match(RHS, m_c_And(m_Specific(M), m_Value())))
279       return true;
280     if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
281         match(LHS, m_c_And(m_Specific(M), m_Value())))
282       return true;
283   }
284 
285   // X op (Y & ~X)
286   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
287       match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
288     return true;
289 
290   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
291   // for constant Y.
292   Value *Y;
293   if (match(RHS,
294             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
295       match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
296     return true;
297 
298   // Look for: (A & B) op ~(A | B)
299   {
300     Value *A, *B;
301     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
302         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
303       return true;
304     if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
305         match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
306       return true;
307   }
308   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
309   KnownBits LHSKnown(IT->getBitWidth());
310   KnownBits RHSKnown(IT->getBitWidth());
311   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
312   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
313   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
314 }
315 
316 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
317   return !I->user_empty() && all_of(I->users(), [](const User *U) {
318     ICmpInst::Predicate P;
319     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
320   });
321 }
322 
323 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
324                                    const Query &Q);
325 
326 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
327                                   bool OrZero, unsigned Depth,
328                                   AssumptionCache *AC, const Instruction *CxtI,
329                                   const DominatorTree *DT, bool UseInstrInfo) {
330   return ::isKnownToBeAPowerOfTwo(
331       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
332 }
333 
334 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
335                            unsigned Depth, const Query &Q);
336 
337 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
338 
339 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
340                           AssumptionCache *AC, const Instruction *CxtI,
341                           const DominatorTree *DT, bool UseInstrInfo) {
342   return ::isKnownNonZero(V, Depth,
343                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
344 }
345 
346 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
347                               unsigned Depth, AssumptionCache *AC,
348                               const Instruction *CxtI, const DominatorTree *DT,
349                               bool UseInstrInfo) {
350   KnownBits Known =
351       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
352   return Known.isNonNegative();
353 }
354 
355 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
356                            AssumptionCache *AC, const Instruction *CxtI,
357                            const DominatorTree *DT, bool UseInstrInfo) {
358   if (auto *CI = dyn_cast<ConstantInt>(V))
359     return CI->getValue().isStrictlyPositive();
360 
361   // TODO: We'd doing two recursive queries here.  We should factor this such
362   // that only a single query is needed.
363   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
364          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
365 }
366 
367 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
368                            AssumptionCache *AC, const Instruction *CxtI,
369                            const DominatorTree *DT, bool UseInstrInfo) {
370   KnownBits Known =
371       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
372   return Known.isNegative();
373 }
374 
375 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
376                             const Query &Q);
377 
378 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
379                            const DataLayout &DL, AssumptionCache *AC,
380                            const Instruction *CxtI, const DominatorTree *DT,
381                            bool UseInstrInfo) {
382   return ::isKnownNonEqual(V1, V2, 0,
383                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
384                                  UseInstrInfo, /*ORE=*/nullptr));
385 }
386 
387 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
388                               const Query &Q);
389 
390 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
391                              const DataLayout &DL, unsigned Depth,
392                              AssumptionCache *AC, const Instruction *CxtI,
393                              const DominatorTree *DT, bool UseInstrInfo) {
394   return ::MaskedValueIsZero(
395       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
396 }
397 
398 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
399                                    unsigned Depth, const Query &Q);
400 
401 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
402                                    const Query &Q) {
403   // FIXME: We currently have no way to represent the DemandedElts of a scalable
404   // vector
405   if (isa<ScalableVectorType>(V->getType()))
406     return 1;
407 
408   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
409   APInt DemandedElts =
410       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
411   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
412 }
413 
414 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
415                                   unsigned Depth, AssumptionCache *AC,
416                                   const Instruction *CxtI,
417                                   const DominatorTree *DT, bool UseInstrInfo) {
418   return ::ComputeNumSignBits(
419       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
420 }
421 
422 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
423                                          unsigned Depth, AssumptionCache *AC,
424                                          const Instruction *CxtI,
425                                          const DominatorTree *DT) {
426   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
427   return V->getType()->getScalarSizeInBits() - SignBits + 1;
428 }
429 
430 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
431                                    bool NSW, const APInt &DemandedElts,
432                                    KnownBits &KnownOut, KnownBits &Known2,
433                                    unsigned Depth, const Query &Q) {
434   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
435 
436   // If one operand is unknown and we have no nowrap information,
437   // the result will be unknown independently of the second operand.
438   if (KnownOut.isUnknown() && !NSW)
439     return;
440 
441   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
442   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
443 }
444 
445 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
446                                 const APInt &DemandedElts, KnownBits &Known,
447                                 KnownBits &Known2, unsigned Depth,
448                                 const Query &Q) {
449   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
450   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
451 
452   bool isKnownNegative = false;
453   bool isKnownNonNegative = false;
454   // If the multiplication is known not to overflow, compute the sign bit.
455   if (NSW) {
456     if (Op0 == Op1) {
457       // The product of a number with itself is non-negative.
458       isKnownNonNegative = true;
459     } else {
460       bool isKnownNonNegativeOp1 = Known.isNonNegative();
461       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
462       bool isKnownNegativeOp1 = Known.isNegative();
463       bool isKnownNegativeOp0 = Known2.isNegative();
464       // The product of two numbers with the same sign is non-negative.
465       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
466                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
467       // The product of a negative number and a non-negative number is either
468       // negative or zero.
469       if (!isKnownNonNegative)
470         isKnownNegative =
471             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
472              Known2.isNonZero()) ||
473             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
474     }
475   }
476 
477   bool SelfMultiply = Op0 == Op1;
478   // TODO: SelfMultiply can be poison, but not undef.
479   if (SelfMultiply)
480     SelfMultiply &=
481         isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
482   Known = KnownBits::mul(Known, Known2, SelfMultiply);
483 
484   // Only make use of no-wrap flags if we failed to compute the sign bit
485   // directly.  This matters if the multiplication always overflows, in
486   // which case we prefer to follow the result of the direct computation,
487   // though as the program is invoking undefined behaviour we can choose
488   // whatever we like here.
489   if (isKnownNonNegative && !Known.isNegative())
490     Known.makeNonNegative();
491   else if (isKnownNegative && !Known.isNonNegative())
492     Known.makeNegative();
493 }
494 
495 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
496                                              KnownBits &Known) {
497   unsigned BitWidth = Known.getBitWidth();
498   unsigned NumRanges = Ranges.getNumOperands() / 2;
499   assert(NumRanges >= 1);
500 
501   Known.Zero.setAllBits();
502   Known.One.setAllBits();
503 
504   for (unsigned i = 0; i < NumRanges; ++i) {
505     ConstantInt *Lower =
506         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
507     ConstantInt *Upper =
508         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
509     ConstantRange Range(Lower->getValue(), Upper->getValue());
510 
511     // The first CommonPrefixBits of all values in Range are equal.
512     unsigned CommonPrefixBits =
513         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
514     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
515     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
516     Known.One &= UnsignedMax & Mask;
517     Known.Zero &= ~UnsignedMax & Mask;
518   }
519 }
520 
521 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
522   SmallVector<const Value *, 16> WorkSet(1, I);
523   SmallPtrSet<const Value *, 32> Visited;
524   SmallPtrSet<const Value *, 16> EphValues;
525 
526   // The instruction defining an assumption's condition itself is always
527   // considered ephemeral to that assumption (even if it has other
528   // non-ephemeral users). See r246696's test case for an example.
529   if (is_contained(I->operands(), E))
530     return true;
531 
532   while (!WorkSet.empty()) {
533     const Value *V = WorkSet.pop_back_val();
534     if (!Visited.insert(V).second)
535       continue;
536 
537     // If all uses of this value are ephemeral, then so is this value.
538     if (llvm::all_of(V->users(), [&](const User *U) {
539                                    return EphValues.count(U);
540                                  })) {
541       if (V == E)
542         return true;
543 
544       if (V == I || (isa<Instruction>(V) &&
545                      !cast<Instruction>(V)->mayHaveSideEffects() &&
546                      !cast<Instruction>(V)->isTerminator())) {
547        EphValues.insert(V);
548        if (const User *U = dyn_cast<User>(V))
549          append_range(WorkSet, U->operands());
550       }
551     }
552   }
553 
554   return false;
555 }
556 
557 // Is this an intrinsic that cannot be speculated but also cannot trap?
558 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
559   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
560     return CI->isAssumeLikeIntrinsic();
561 
562   return false;
563 }
564 
565 bool llvm::isValidAssumeForContext(const Instruction *Inv,
566                                    const Instruction *CxtI,
567                                    const DominatorTree *DT) {
568   // There are two restrictions on the use of an assume:
569   //  1. The assume must dominate the context (or the control flow must
570   //     reach the assume whenever it reaches the context).
571   //  2. The context must not be in the assume's set of ephemeral values
572   //     (otherwise we will use the assume to prove that the condition
573   //     feeding the assume is trivially true, thus causing the removal of
574   //     the assume).
575 
576   if (Inv->getParent() == CxtI->getParent()) {
577     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
578     // in the BB.
579     if (Inv->comesBefore(CxtI))
580       return true;
581 
582     // Don't let an assume affect itself - this would cause the problems
583     // `isEphemeralValueOf` is trying to prevent, and it would also make
584     // the loop below go out of bounds.
585     if (Inv == CxtI)
586       return false;
587 
588     // The context comes first, but they're both in the same block.
589     // Make sure there is nothing in between that might interrupt
590     // the control flow, not even CxtI itself.
591     // We limit the scan distance between the assume and its context instruction
592     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
593     // it can be adjusted if needed (could be turned into a cl::opt).
594     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
595     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
596       return false;
597 
598     return !isEphemeralValueOf(Inv, CxtI);
599   }
600 
601   // Inv and CxtI are in different blocks.
602   if (DT) {
603     if (DT->dominates(Inv, CxtI))
604       return true;
605   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
606     // We don't have a DT, but this trivially dominates.
607     return true;
608   }
609 
610   return false;
611 }
612 
613 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
614   // v u> y implies v != 0.
615   if (Pred == ICmpInst::ICMP_UGT)
616     return true;
617 
618   // Special-case v != 0 to also handle v != null.
619   if (Pred == ICmpInst::ICMP_NE)
620     return match(RHS, m_Zero());
621 
622   // All other predicates - rely on generic ConstantRange handling.
623   const APInt *C;
624   if (!match(RHS, m_APInt(C)))
625     return false;
626 
627   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
628   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
629 }
630 
631 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
632   // Use of assumptions is context-sensitive. If we don't have a context, we
633   // cannot use them!
634   if (!Q.AC || !Q.CxtI)
635     return false;
636 
637   if (Q.CxtI && V->getType()->isPointerTy()) {
638     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
639     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
640                               V->getType()->getPointerAddressSpace()))
641       AttrKinds.push_back(Attribute::Dereferenceable);
642 
643     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
644       return true;
645   }
646 
647   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
648     if (!AssumeVH)
649       continue;
650     CallInst *I = cast<CallInst>(AssumeVH);
651     assert(I->getFunction() == Q.CxtI->getFunction() &&
652            "Got assumption for the wrong function!");
653 
654     // Warning: This loop can end up being somewhat performance sensitive.
655     // We're running this loop for once for each value queried resulting in a
656     // runtime of ~O(#assumes * #values).
657 
658     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
659            "must be an assume intrinsic");
660 
661     Value *RHS;
662     CmpInst::Predicate Pred;
663     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
664     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
665       return false;
666 
667     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
668       return true;
669   }
670 
671   return false;
672 }
673 
674 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
675                                        unsigned Depth, const Query &Q) {
676   // Use of assumptions is context-sensitive. If we don't have a context, we
677   // cannot use them!
678   if (!Q.AC || !Q.CxtI)
679     return;
680 
681   unsigned BitWidth = Known.getBitWidth();
682 
683   // Refine Known set if the pointer alignment is set by assume bundles.
684   if (V->getType()->isPointerTy()) {
685     if (RetainedKnowledge RK = getKnowledgeValidInContext(
686             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
687       if (isPowerOf2_64(RK.ArgValue))
688         Known.Zero.setLowBits(Log2_64(RK.ArgValue));
689     }
690   }
691 
692   // Note that the patterns below need to be kept in sync with the code
693   // in AssumptionCache::updateAffectedValues.
694 
695   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
696     if (!AssumeVH)
697       continue;
698     CallInst *I = cast<CallInst>(AssumeVH);
699     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
700            "Got assumption for the wrong function!");
701 
702     // Warning: This loop can end up being somewhat performance sensitive.
703     // We're running this loop for once for each value queried resulting in a
704     // runtime of ~O(#assumes * #values).
705 
706     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
707            "must be an assume intrinsic");
708 
709     Value *Arg = I->getArgOperand(0);
710 
711     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
712       assert(BitWidth == 1 && "assume operand is not i1?");
713       Known.setAllOnes();
714       return;
715     }
716     if (match(Arg, m_Not(m_Specific(V))) &&
717         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
718       assert(BitWidth == 1 && "assume operand is not i1?");
719       Known.setAllZero();
720       return;
721     }
722 
723     // The remaining tests are all recursive, so bail out if we hit the limit.
724     if (Depth == MaxAnalysisRecursionDepth)
725       continue;
726 
727     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
728     if (!Cmp)
729       continue;
730 
731     // We are attempting to compute known bits for the operands of an assume.
732     // Do not try to use other assumptions for those recursive calls because
733     // that can lead to mutual recursion and a compile-time explosion.
734     // An example of the mutual recursion: computeKnownBits can call
735     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
736     // and so on.
737     Query QueryNoAC = Q;
738     QueryNoAC.AC = nullptr;
739 
740     // Note that ptrtoint may change the bitwidth.
741     Value *A, *B;
742     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
743 
744     CmpInst::Predicate Pred;
745     uint64_t C;
746     switch (Cmp->getPredicate()) {
747     default:
748       break;
749     case ICmpInst::ICMP_EQ:
750       // assume(v = a)
751       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
752           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
753         KnownBits RHSKnown =
754             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
755         Known.Zero |= RHSKnown.Zero;
756         Known.One  |= RHSKnown.One;
757       // assume(v & b = a)
758       } else if (match(Cmp,
759                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
760                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
761         KnownBits RHSKnown =
762             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
763         KnownBits MaskKnown =
764             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
765 
766         // For those bits in the mask that are known to be one, we can propagate
767         // known bits from the RHS to V.
768         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
769         Known.One  |= RHSKnown.One  & MaskKnown.One;
770       // assume(~(v & b) = a)
771       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
772                                      m_Value(A))) &&
773                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774         KnownBits RHSKnown =
775             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
776         KnownBits MaskKnown =
777             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
778 
779         // For those bits in the mask that are known to be one, we can propagate
780         // inverted known bits from the RHS to V.
781         Known.Zero |= RHSKnown.One  & MaskKnown.One;
782         Known.One  |= RHSKnown.Zero & MaskKnown.One;
783       // assume(v | b = a)
784       } else if (match(Cmp,
785                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
786                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787         KnownBits RHSKnown =
788             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
789         KnownBits BKnown =
790             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
791 
792         // For those bits in B that are known to be zero, we can propagate known
793         // bits from the RHS to V.
794         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
795         Known.One  |= RHSKnown.One  & BKnown.Zero;
796       // assume(~(v | b) = a)
797       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
798                                      m_Value(A))) &&
799                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
800         KnownBits RHSKnown =
801             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
802         KnownBits BKnown =
803             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
804 
805         // For those bits in B that are known to be zero, we can propagate
806         // inverted known bits from the RHS to V.
807         Known.Zero |= RHSKnown.One  & BKnown.Zero;
808         Known.One  |= RHSKnown.Zero & BKnown.Zero;
809       // assume(v ^ b = a)
810       } else if (match(Cmp,
811                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
812                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
813         KnownBits RHSKnown =
814             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
815         KnownBits BKnown =
816             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
817 
818         // For those bits in B that are known to be zero, we can propagate known
819         // bits from the RHS to V. For those bits in B that are known to be one,
820         // we can propagate inverted known bits from the RHS to V.
821         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
822         Known.One  |= RHSKnown.One  & BKnown.Zero;
823         Known.Zero |= RHSKnown.One  & BKnown.One;
824         Known.One  |= RHSKnown.Zero & BKnown.One;
825       // assume(~(v ^ b) = a)
826       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
827                                      m_Value(A))) &&
828                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
829         KnownBits RHSKnown =
830             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
831         KnownBits BKnown =
832             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
833 
834         // For those bits in B that are known to be zero, we can propagate
835         // inverted known bits from the RHS to V. For those bits in B that are
836         // known to be one, we can propagate known bits from the RHS to V.
837         Known.Zero |= RHSKnown.One  & BKnown.Zero;
838         Known.One  |= RHSKnown.Zero & BKnown.Zero;
839         Known.Zero |= RHSKnown.Zero & BKnown.One;
840         Known.One  |= RHSKnown.One  & BKnown.One;
841       // assume(v << c = a)
842       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
843                                      m_Value(A))) &&
844                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
845         KnownBits RHSKnown =
846             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
847 
848         // For those bits in RHS that are known, we can propagate them to known
849         // bits in V shifted to the right by C.
850         RHSKnown.Zero.lshrInPlace(C);
851         Known.Zero |= RHSKnown.Zero;
852         RHSKnown.One.lshrInPlace(C);
853         Known.One  |= RHSKnown.One;
854       // assume(~(v << c) = a)
855       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
856                                      m_Value(A))) &&
857                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
858         KnownBits RHSKnown =
859             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
860         // For those bits in RHS that are known, we can propagate them inverted
861         // to known bits in V shifted to the right by C.
862         RHSKnown.One.lshrInPlace(C);
863         Known.Zero |= RHSKnown.One;
864         RHSKnown.Zero.lshrInPlace(C);
865         Known.One  |= RHSKnown.Zero;
866       // assume(v >> c = a)
867       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
868                                      m_Value(A))) &&
869                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
870         KnownBits RHSKnown =
871             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
872         // For those bits in RHS that are known, we can propagate them to known
873         // bits in V shifted to the right by C.
874         Known.Zero |= RHSKnown.Zero << C;
875         Known.One  |= RHSKnown.One  << C;
876       // assume(~(v >> c) = a)
877       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
878                                      m_Value(A))) &&
879                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
880         KnownBits RHSKnown =
881             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
882         // For those bits in RHS that are known, we can propagate them inverted
883         // to known bits in V shifted to the right by C.
884         Known.Zero |= RHSKnown.One  << C;
885         Known.One  |= RHSKnown.Zero << C;
886       }
887       break;
888     case ICmpInst::ICMP_SGE:
889       // assume(v >=_s c) where c is non-negative
890       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
891           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
892         KnownBits RHSKnown =
893             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
894 
895         if (RHSKnown.isNonNegative()) {
896           // We know that the sign bit is zero.
897           Known.makeNonNegative();
898         }
899       }
900       break;
901     case ICmpInst::ICMP_SGT:
902       // assume(v >_s c) where c is at least -1.
903       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
904           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905         KnownBits RHSKnown =
906             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
907 
908         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
909           // We know that the sign bit is zero.
910           Known.makeNonNegative();
911         }
912       }
913       break;
914     case ICmpInst::ICMP_SLE:
915       // assume(v <=_s c) where c is negative
916       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918         KnownBits RHSKnown =
919             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
920 
921         if (RHSKnown.isNegative()) {
922           // We know that the sign bit is one.
923           Known.makeNegative();
924         }
925       }
926       break;
927     case ICmpInst::ICMP_SLT:
928       // assume(v <_s c) where c is non-positive
929       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
930           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
931         KnownBits RHSKnown =
932             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
933 
934         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
935           // We know that the sign bit is one.
936           Known.makeNegative();
937         }
938       }
939       break;
940     case ICmpInst::ICMP_ULE:
941       // assume(v <=_u c)
942       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
943           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
944         KnownBits RHSKnown =
945             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
946 
947         // Whatever high bits in c are zero are known to be zero.
948         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
949       }
950       break;
951     case ICmpInst::ICMP_ULT:
952       // assume(v <_u c)
953       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
954           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
955         KnownBits RHSKnown =
956             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
957 
958         // If the RHS is known zero, then this assumption must be wrong (nothing
959         // is unsigned less than zero). Signal a conflict and get out of here.
960         if (RHSKnown.isZero()) {
961           Known.Zero.setAllBits();
962           Known.One.setAllBits();
963           break;
964         }
965 
966         // Whatever high bits in c are zero are known to be zero (if c is a power
967         // of 2, then one more).
968         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
969           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
970         else
971           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
972       }
973       break;
974     }
975   }
976 
977   // If assumptions conflict with each other or previous known bits, then we
978   // have a logical fallacy. It's possible that the assumption is not reachable,
979   // so this isn't a real bug. On the other hand, the program may have undefined
980   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
981   // clear out the known bits, try to warn the user, and hope for the best.
982   if (Known.Zero.intersects(Known.One)) {
983     Known.resetAll();
984 
985     if (Q.ORE)
986       Q.ORE->emit([&]() {
987         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
988         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
989                                           CxtI)
990                << "Detected conflicting code assumptions. Program may "
991                   "have undefined behavior, or compiler may have "
992                   "internal error.";
993       });
994   }
995 }
996 
997 /// Compute known bits from a shift operator, including those with a
998 /// non-constant shift amount. Known is the output of this function. Known2 is a
999 /// pre-allocated temporary with the same bit width as Known and on return
1000 /// contains the known bit of the shift value source. KF is an
1001 /// operator-specific function that, given the known-bits and a shift amount,
1002 /// compute the implied known-bits of the shift operator's result respectively
1003 /// for that shift amount. The results from calling KF are conservatively
1004 /// combined for all permitted shift amounts.
1005 static void computeKnownBitsFromShiftOperator(
1006     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1007     KnownBits &Known2, unsigned Depth, const Query &Q,
1008     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
1009   unsigned BitWidth = Known.getBitWidth();
1010   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1011   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1012 
1013   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1014   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1015   // limit value (which implies all bits are known).
1016   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1017   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1018   bool ShiftAmtIsConstant = Known.isConstant();
1019   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1020 
1021   if (ShiftAmtIsConstant) {
1022     Known = KF(Known2, Known);
1023 
1024     // If the known bits conflict, this must be an overflowing left shift, so
1025     // the shift result is poison. We can return anything we want. Choose 0 for
1026     // the best folding opportunity.
1027     if (Known.hasConflict())
1028       Known.setAllZero();
1029 
1030     return;
1031   }
1032 
1033   // If the shift amount could be greater than or equal to the bit-width of the
1034   // LHS, the value could be poison, but bail out because the check below is
1035   // expensive.
1036   // TODO: Should we just carry on?
1037   if (MaxShiftAmtIsOutOfRange) {
1038     Known.resetAll();
1039     return;
1040   }
1041 
1042   // It would be more-clearly correct to use the two temporaries for this
1043   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1044   Known.resetAll();
1045 
1046   // If we know the shifter operand is nonzero, we can sometimes infer more
1047   // known bits. However this is expensive to compute, so be lazy about it and
1048   // only compute it when absolutely necessary.
1049   Optional<bool> ShifterOperandIsNonZero;
1050 
1051   // Early exit if we can't constrain any well-defined shift amount.
1052   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1053       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1054     ShifterOperandIsNonZero =
1055         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1056     if (!*ShifterOperandIsNonZero)
1057       return;
1058   }
1059 
1060   Known.Zero.setAllBits();
1061   Known.One.setAllBits();
1062   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1063     // Combine the shifted known input bits only for those shift amounts
1064     // compatible with its known constraints.
1065     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1066       continue;
1067     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1068       continue;
1069     // If we know the shifter is nonzero, we may be able to infer more known
1070     // bits. This check is sunk down as far as possible to avoid the expensive
1071     // call to isKnownNonZero if the cheaper checks above fail.
1072     if (ShiftAmt == 0) {
1073       if (!ShifterOperandIsNonZero.hasValue())
1074         ShifterOperandIsNonZero =
1075             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1076       if (*ShifterOperandIsNonZero)
1077         continue;
1078     }
1079 
1080     Known = KnownBits::commonBits(
1081         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1082   }
1083 
1084   // If the known bits conflict, the result is poison. Return a 0 and hope the
1085   // caller can further optimize that.
1086   if (Known.hasConflict())
1087     Known.setAllZero();
1088 }
1089 
1090 static void computeKnownBitsFromOperator(const Operator *I,
1091                                          const APInt &DemandedElts,
1092                                          KnownBits &Known, unsigned Depth,
1093                                          const Query &Q) {
1094   unsigned BitWidth = Known.getBitWidth();
1095 
1096   KnownBits Known2(BitWidth);
1097   switch (I->getOpcode()) {
1098   default: break;
1099   case Instruction::Load:
1100     if (MDNode *MD =
1101             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1102       computeKnownBitsFromRangeMetadata(*MD, Known);
1103     break;
1104   case Instruction::And: {
1105     // If either the LHS or the RHS are Zero, the result is zero.
1106     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1107     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109     Known &= Known2;
1110 
1111     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1112     // here we handle the more general case of adding any odd number by
1113     // matching the form add(x, add(x, y)) where y is odd.
1114     // TODO: This could be generalized to clearing any bit set in y where the
1115     // following bit is known to be unset in y.
1116     Value *X = nullptr, *Y = nullptr;
1117     if (!Known.Zero[0] && !Known.One[0] &&
1118         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1119       Known2.resetAll();
1120       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1121       if (Known2.countMinTrailingOnes() > 0)
1122         Known.Zero.setBit(0);
1123     }
1124     break;
1125   }
1126   case Instruction::Or:
1127     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1128     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1129 
1130     Known |= Known2;
1131     break;
1132   case Instruction::Xor:
1133     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1134     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1135 
1136     Known ^= Known2;
1137     break;
1138   case Instruction::Mul: {
1139     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1140     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1141                         Known, Known2, Depth, Q);
1142     break;
1143   }
1144   case Instruction::UDiv: {
1145     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1146     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1147     Known = KnownBits::udiv(Known, Known2);
1148     break;
1149   }
1150   case Instruction::Select: {
1151     const Value *LHS = nullptr, *RHS = nullptr;
1152     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1153     if (SelectPatternResult::isMinOrMax(SPF)) {
1154       computeKnownBits(RHS, Known, Depth + 1, Q);
1155       computeKnownBits(LHS, Known2, Depth + 1, Q);
1156       switch (SPF) {
1157       default:
1158         llvm_unreachable("Unhandled select pattern flavor!");
1159       case SPF_SMAX:
1160         Known = KnownBits::smax(Known, Known2);
1161         break;
1162       case SPF_SMIN:
1163         Known = KnownBits::smin(Known, Known2);
1164         break;
1165       case SPF_UMAX:
1166         Known = KnownBits::umax(Known, Known2);
1167         break;
1168       case SPF_UMIN:
1169         Known = KnownBits::umin(Known, Known2);
1170         break;
1171       }
1172       break;
1173     }
1174 
1175     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1176     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1177 
1178     // Only known if known in both the LHS and RHS.
1179     Known = KnownBits::commonBits(Known, Known2);
1180 
1181     if (SPF == SPF_ABS) {
1182       // RHS from matchSelectPattern returns the negation part of abs pattern.
1183       // If the negate has an NSW flag we can assume the sign bit of the result
1184       // will be 0 because that makes abs(INT_MIN) undefined.
1185       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1186           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1187         Known.Zero.setSignBit();
1188     }
1189 
1190     break;
1191   }
1192   case Instruction::FPTrunc:
1193   case Instruction::FPExt:
1194   case Instruction::FPToUI:
1195   case Instruction::FPToSI:
1196   case Instruction::SIToFP:
1197   case Instruction::UIToFP:
1198     break; // Can't work with floating point.
1199   case Instruction::PtrToInt:
1200   case Instruction::IntToPtr:
1201     // Fall through and handle them the same as zext/trunc.
1202     LLVM_FALLTHROUGH;
1203   case Instruction::ZExt:
1204   case Instruction::Trunc: {
1205     Type *SrcTy = I->getOperand(0)->getType();
1206 
1207     unsigned SrcBitWidth;
1208     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1209     // which fall through here.
1210     Type *ScalarTy = SrcTy->getScalarType();
1211     SrcBitWidth = ScalarTy->isPointerTy() ?
1212       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1213       Q.DL.getTypeSizeInBits(ScalarTy);
1214 
1215     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1216     Known = Known.anyextOrTrunc(SrcBitWidth);
1217     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1218     Known = Known.zextOrTrunc(BitWidth);
1219     break;
1220   }
1221   case Instruction::BitCast: {
1222     Type *SrcTy = I->getOperand(0)->getType();
1223     if (SrcTy->isIntOrPtrTy() &&
1224         // TODO: For now, not handling conversions like:
1225         // (bitcast i64 %x to <2 x i32>)
1226         !I->getType()->isVectorTy()) {
1227       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1228       break;
1229     }
1230 
1231     // Handle cast from vector integer type to scalar or vector integer.
1232     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1233     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1234         !I->getType()->isIntOrIntVectorTy())
1235       break;
1236 
1237     // Look through a cast from narrow vector elements to wider type.
1238     // Examples: v4i32 -> v2i64, v3i8 -> v24
1239     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1240     if (BitWidth % SubBitWidth == 0) {
1241       // Known bits are automatically intersected across demanded elements of a
1242       // vector. So for example, if a bit is computed as known zero, it must be
1243       // zero across all demanded elements of the vector.
1244       //
1245       // For this bitcast, each demanded element of the output is sub-divided
1246       // across a set of smaller vector elements in the source vector. To get
1247       // the known bits for an entire element of the output, compute the known
1248       // bits for each sub-element sequentially. This is done by shifting the
1249       // one-set-bit demanded elements parameter across the sub-elements for
1250       // consecutive calls to computeKnownBits. We are using the demanded
1251       // elements parameter as a mask operator.
1252       //
1253       // The known bits of each sub-element are then inserted into place
1254       // (dependent on endian) to form the full result of known bits.
1255       unsigned NumElts = DemandedElts.getBitWidth();
1256       unsigned SubScale = BitWidth / SubBitWidth;
1257       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1258       for (unsigned i = 0; i != NumElts; ++i) {
1259         if (DemandedElts[i])
1260           SubDemandedElts.setBit(i * SubScale);
1261       }
1262 
1263       KnownBits KnownSrc(SubBitWidth);
1264       for (unsigned i = 0; i != SubScale; ++i) {
1265         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1266                          Depth + 1, Q);
1267         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1268         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1269       }
1270     }
1271     break;
1272   }
1273   case Instruction::SExt: {
1274     // Compute the bits in the result that are not present in the input.
1275     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1276 
1277     Known = Known.trunc(SrcBitWidth);
1278     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1279     // If the sign bit of the input is known set or clear, then we know the
1280     // top bits of the result.
1281     Known = Known.sext(BitWidth);
1282     break;
1283   }
1284   case Instruction::Shl: {
1285     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1286     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1287       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1288       // If this shift has "nsw" keyword, then the result is either a poison
1289       // value or has the same sign bit as the first operand.
1290       if (NSW) {
1291         if (KnownVal.Zero.isSignBitSet())
1292           Result.Zero.setSignBit();
1293         if (KnownVal.One.isSignBitSet())
1294           Result.One.setSignBit();
1295       }
1296       return Result;
1297     };
1298     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1299                                       KF);
1300     // Trailing zeros of a right-shifted constant never decrease.
1301     const APInt *C;
1302     if (match(I->getOperand(0), m_APInt(C)))
1303       Known.Zero.setLowBits(C->countTrailingZeros());
1304     break;
1305   }
1306   case Instruction::LShr: {
1307     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1308       return KnownBits::lshr(KnownVal, KnownAmt);
1309     };
1310     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1311                                       KF);
1312     // Leading zeros of a left-shifted constant never decrease.
1313     const APInt *C;
1314     if (match(I->getOperand(0), m_APInt(C)))
1315       Known.Zero.setHighBits(C->countLeadingZeros());
1316     break;
1317   }
1318   case Instruction::AShr: {
1319     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1320       return KnownBits::ashr(KnownVal, KnownAmt);
1321     };
1322     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1323                                       KF);
1324     break;
1325   }
1326   case Instruction::Sub: {
1327     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1328     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1329                            DemandedElts, Known, Known2, Depth, Q);
1330     break;
1331   }
1332   case Instruction::Add: {
1333     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1334     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1335                            DemandedElts, Known, Known2, Depth, Q);
1336     break;
1337   }
1338   case Instruction::SRem:
1339     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1340     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1341     Known = KnownBits::srem(Known, Known2);
1342     break;
1343 
1344   case Instruction::URem:
1345     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1346     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1347     Known = KnownBits::urem(Known, Known2);
1348     break;
1349   case Instruction::Alloca:
1350     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1351     break;
1352   case Instruction::GetElementPtr: {
1353     // Analyze all of the subscripts of this getelementptr instruction
1354     // to determine if we can prove known low zero bits.
1355     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1356     // Accumulate the constant indices in a separate variable
1357     // to minimize the number of calls to computeForAddSub.
1358     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1359 
1360     gep_type_iterator GTI = gep_type_begin(I);
1361     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1362       // TrailZ can only become smaller, short-circuit if we hit zero.
1363       if (Known.isUnknown())
1364         break;
1365 
1366       Value *Index = I->getOperand(i);
1367 
1368       // Handle case when index is zero.
1369       Constant *CIndex = dyn_cast<Constant>(Index);
1370       if (CIndex && CIndex->isZeroValue())
1371         continue;
1372 
1373       if (StructType *STy = GTI.getStructTypeOrNull()) {
1374         // Handle struct member offset arithmetic.
1375 
1376         assert(CIndex &&
1377                "Access to structure field must be known at compile time");
1378 
1379         if (CIndex->getType()->isVectorTy())
1380           Index = CIndex->getSplatValue();
1381 
1382         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1383         const StructLayout *SL = Q.DL.getStructLayout(STy);
1384         uint64_t Offset = SL->getElementOffset(Idx);
1385         AccConstIndices += Offset;
1386         continue;
1387       }
1388 
1389       // Handle array index arithmetic.
1390       Type *IndexedTy = GTI.getIndexedType();
1391       if (!IndexedTy->isSized()) {
1392         Known.resetAll();
1393         break;
1394       }
1395 
1396       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1397       KnownBits IndexBits(IndexBitWidth);
1398       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1399       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1400       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1401       KnownBits ScalingFactor(IndexBitWidth);
1402       // Multiply by current sizeof type.
1403       // &A[i] == A + i * sizeof(*A[i]).
1404       if (IndexTypeSize.isScalable()) {
1405         // For scalable types the only thing we know about sizeof is
1406         // that this is a multiple of the minimum size.
1407         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1408       } else if (IndexBits.isConstant()) {
1409         APInt IndexConst = IndexBits.getConstant();
1410         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1411         IndexConst *= ScalingFactor;
1412         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1413         continue;
1414       } else {
1415         ScalingFactor =
1416             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1417       }
1418       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1419 
1420       // If the offsets have a different width from the pointer, according
1421       // to the language reference we need to sign-extend or truncate them
1422       // to the width of the pointer.
1423       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1424 
1425       // Note that inbounds does *not* guarantee nsw for the addition, as only
1426       // the offset is signed, while the base address is unsigned.
1427       Known = KnownBits::computeForAddSub(
1428           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1429     }
1430     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1431       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1432       Known = KnownBits::computeForAddSub(
1433           /*Add=*/true, /*NSW=*/false, Known, Index);
1434     }
1435     break;
1436   }
1437   case Instruction::PHI: {
1438     const PHINode *P = cast<PHINode>(I);
1439     BinaryOperator *BO = nullptr;
1440     Value *R = nullptr, *L = nullptr;
1441     if (matchSimpleRecurrence(P, BO, R, L)) {
1442       // Handle the case of a simple two-predecessor recurrence PHI.
1443       // There's a lot more that could theoretically be done here, but
1444       // this is sufficient to catch some interesting cases.
1445       unsigned Opcode = BO->getOpcode();
1446 
1447       // If this is a shift recurrence, we know the bits being shifted in.
1448       // We can combine that with information about the start value of the
1449       // recurrence to conclude facts about the result.
1450       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1451            Opcode == Instruction::Shl) &&
1452           BO->getOperand(0) == I) {
1453 
1454         // We have matched a recurrence of the form:
1455         // %iv = [R, %entry], [%iv.next, %backedge]
1456         // %iv.next = shift_op %iv, L
1457 
1458         // Recurse with the phi context to avoid concern about whether facts
1459         // inferred hold at original context instruction.  TODO: It may be
1460         // correct to use the original context.  IF warranted, explore and
1461         // add sufficient tests to cover.
1462         Query RecQ = Q;
1463         RecQ.CxtI = P;
1464         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1465         switch (Opcode) {
1466         case Instruction::Shl:
1467           // A shl recurrence will only increase the tailing zeros
1468           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1469           break;
1470         case Instruction::LShr:
1471           // A lshr recurrence will preserve the leading zeros of the
1472           // start value
1473           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1474           break;
1475         case Instruction::AShr:
1476           // An ashr recurrence will extend the initial sign bit
1477           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1478           Known.One.setHighBits(Known2.countMinLeadingOnes());
1479           break;
1480         };
1481       }
1482 
1483       // Check for operations that have the property that if
1484       // both their operands have low zero bits, the result
1485       // will have low zero bits.
1486       if (Opcode == Instruction::Add ||
1487           Opcode == Instruction::Sub ||
1488           Opcode == Instruction::And ||
1489           Opcode == Instruction::Or ||
1490           Opcode == Instruction::Mul) {
1491         // Change the context instruction to the "edge" that flows into the
1492         // phi. This is important because that is where the value is actually
1493         // "evaluated" even though it is used later somewhere else. (see also
1494         // D69571).
1495         Query RecQ = Q;
1496 
1497         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1498         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1499         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1500 
1501         // Ok, we have a PHI of the form L op= R. Check for low
1502         // zero bits.
1503         RecQ.CxtI = RInst;
1504         computeKnownBits(R, Known2, Depth + 1, RecQ);
1505 
1506         // We need to take the minimum number of known bits
1507         KnownBits Known3(BitWidth);
1508         RecQ.CxtI = LInst;
1509         computeKnownBits(L, Known3, Depth + 1, RecQ);
1510 
1511         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1512                                        Known3.countMinTrailingZeros()));
1513 
1514         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1515         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1516           // If initial value of recurrence is nonnegative, and we are adding
1517           // a nonnegative number with nsw, the result can only be nonnegative
1518           // or poison value regardless of the number of times we execute the
1519           // add in phi recurrence. If initial value is negative and we are
1520           // adding a negative number with nsw, the result can only be
1521           // negative or poison value. Similar arguments apply to sub and mul.
1522           //
1523           // (add non-negative, non-negative) --> non-negative
1524           // (add negative, negative) --> negative
1525           if (Opcode == Instruction::Add) {
1526             if (Known2.isNonNegative() && Known3.isNonNegative())
1527               Known.makeNonNegative();
1528             else if (Known2.isNegative() && Known3.isNegative())
1529               Known.makeNegative();
1530           }
1531 
1532           // (sub nsw non-negative, negative) --> non-negative
1533           // (sub nsw negative, non-negative) --> negative
1534           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1535             if (Known2.isNonNegative() && Known3.isNegative())
1536               Known.makeNonNegative();
1537             else if (Known2.isNegative() && Known3.isNonNegative())
1538               Known.makeNegative();
1539           }
1540 
1541           // (mul nsw non-negative, non-negative) --> non-negative
1542           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1543                    Known3.isNonNegative())
1544             Known.makeNonNegative();
1545         }
1546 
1547         break;
1548       }
1549     }
1550 
1551     // Unreachable blocks may have zero-operand PHI nodes.
1552     if (P->getNumIncomingValues() == 0)
1553       break;
1554 
1555     // Otherwise take the unions of the known bit sets of the operands,
1556     // taking conservative care to avoid excessive recursion.
1557     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1558       // Skip if every incoming value references to ourself.
1559       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1560         break;
1561 
1562       Known.Zero.setAllBits();
1563       Known.One.setAllBits();
1564       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1565         Value *IncValue = P->getIncomingValue(u);
1566         // Skip direct self references.
1567         if (IncValue == P) continue;
1568 
1569         // Change the context instruction to the "edge" that flows into the
1570         // phi. This is important because that is where the value is actually
1571         // "evaluated" even though it is used later somewhere else. (see also
1572         // D69571).
1573         Query RecQ = Q;
1574         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1575 
1576         Known2 = KnownBits(BitWidth);
1577         // Recurse, but cap the recursion to one level, because we don't
1578         // want to waste time spinning around in loops.
1579         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1580         Known = KnownBits::commonBits(Known, Known2);
1581         // If all bits have been ruled out, there's no need to check
1582         // more operands.
1583         if (Known.isUnknown())
1584           break;
1585       }
1586     }
1587     break;
1588   }
1589   case Instruction::Call:
1590   case Instruction::Invoke:
1591     // If range metadata is attached to this call, set known bits from that,
1592     // and then intersect with known bits based on other properties of the
1593     // function.
1594     if (MDNode *MD =
1595             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1596       computeKnownBitsFromRangeMetadata(*MD, Known);
1597     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1598       computeKnownBits(RV, Known2, Depth + 1, Q);
1599       Known.Zero |= Known2.Zero;
1600       Known.One |= Known2.One;
1601     }
1602     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1603       switch (II->getIntrinsicID()) {
1604       default: break;
1605       case Intrinsic::abs: {
1606         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1607         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1608         Known = Known2.abs(IntMinIsPoison);
1609         break;
1610       }
1611       case Intrinsic::bitreverse:
1612         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1613         Known.Zero |= Known2.Zero.reverseBits();
1614         Known.One |= Known2.One.reverseBits();
1615         break;
1616       case Intrinsic::bswap:
1617         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1618         Known.Zero |= Known2.Zero.byteSwap();
1619         Known.One |= Known2.One.byteSwap();
1620         break;
1621       case Intrinsic::ctlz: {
1622         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1623         // If we have a known 1, its position is our upper bound.
1624         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1625         // If this call is poison for 0 input, the result will be less than 2^n.
1626         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1627           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1628         unsigned LowBits = Log2_32(PossibleLZ)+1;
1629         Known.Zero.setBitsFrom(LowBits);
1630         break;
1631       }
1632       case Intrinsic::cttz: {
1633         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1634         // If we have a known 1, its position is our upper bound.
1635         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1636         // If this call is poison for 0 input, the result will be less than 2^n.
1637         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1638           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1639         unsigned LowBits = Log2_32(PossibleTZ)+1;
1640         Known.Zero.setBitsFrom(LowBits);
1641         break;
1642       }
1643       case Intrinsic::ctpop: {
1644         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1645         // We can bound the space the count needs.  Also, bits known to be zero
1646         // can't contribute to the population.
1647         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1648         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1649         Known.Zero.setBitsFrom(LowBits);
1650         // TODO: we could bound KnownOne using the lower bound on the number
1651         // of bits which might be set provided by popcnt KnownOne2.
1652         break;
1653       }
1654       case Intrinsic::fshr:
1655       case Intrinsic::fshl: {
1656         const APInt *SA;
1657         if (!match(I->getOperand(2), m_APInt(SA)))
1658           break;
1659 
1660         // Normalize to funnel shift left.
1661         uint64_t ShiftAmt = SA->urem(BitWidth);
1662         if (II->getIntrinsicID() == Intrinsic::fshr)
1663           ShiftAmt = BitWidth - ShiftAmt;
1664 
1665         KnownBits Known3(BitWidth);
1666         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1667         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1668 
1669         Known.Zero =
1670             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1671         Known.One =
1672             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1673         break;
1674       }
1675       case Intrinsic::uadd_sat:
1676       case Intrinsic::usub_sat: {
1677         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1678         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1679         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1680 
1681         // Add: Leading ones of either operand are preserved.
1682         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1683         // as leading zeros in the result.
1684         unsigned LeadingKnown;
1685         if (IsAdd)
1686           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1687                                   Known2.countMinLeadingOnes());
1688         else
1689           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1690                                   Known2.countMinLeadingOnes());
1691 
1692         Known = KnownBits::computeForAddSub(
1693             IsAdd, /* NSW */ false, Known, Known2);
1694 
1695         // We select between the operation result and all-ones/zero
1696         // respectively, so we can preserve known ones/zeros.
1697         if (IsAdd) {
1698           Known.One.setHighBits(LeadingKnown);
1699           Known.Zero.clearAllBits();
1700         } else {
1701           Known.Zero.setHighBits(LeadingKnown);
1702           Known.One.clearAllBits();
1703         }
1704         break;
1705       }
1706       case Intrinsic::umin:
1707         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1708         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1709         Known = KnownBits::umin(Known, Known2);
1710         break;
1711       case Intrinsic::umax:
1712         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1713         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1714         Known = KnownBits::umax(Known, Known2);
1715         break;
1716       case Intrinsic::smin:
1717         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1718         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1719         Known = KnownBits::smin(Known, Known2);
1720         break;
1721       case Intrinsic::smax:
1722         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1723         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1724         Known = KnownBits::smax(Known, Known2);
1725         break;
1726       case Intrinsic::x86_sse42_crc32_64_64:
1727         Known.Zero.setBitsFrom(32);
1728         break;
1729       case Intrinsic::riscv_vsetvli:
1730       case Intrinsic::riscv_vsetvlimax:
1731         // Assume that VL output is positive and would fit in an int32_t.
1732         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1733         if (BitWidth >= 32)
1734           Known.Zero.setBitsFrom(31);
1735         break;
1736       case Intrinsic::vscale: {
1737         if (!II->getParent() || !II->getFunction() ||
1738             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1739           break;
1740 
1741         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1742         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1743 
1744         if (!VScaleMax)
1745           break;
1746 
1747         unsigned VScaleMin = Attr.getVScaleRangeMin();
1748 
1749         // If vscale min = max then we know the exact value at compile time
1750         // and hence we know the exact bits.
1751         if (VScaleMin == VScaleMax) {
1752           Known.One = VScaleMin;
1753           Known.Zero = VScaleMin;
1754           Known.Zero.flipAllBits();
1755           break;
1756         }
1757 
1758         unsigned FirstZeroHighBit =
1759             32 - countLeadingZeros(VScaleMax.getValue());
1760         if (FirstZeroHighBit < BitWidth)
1761           Known.Zero.setBitsFrom(FirstZeroHighBit);
1762 
1763         break;
1764       }
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known = KnownBits::commonBits(Known, Known2);
1795     }
1796     break;
1797   }
1798   case Instruction::InsertElement: {
1799     const Value *Vec = I->getOperand(0);
1800     const Value *Elt = I->getOperand(1);
1801     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1802     // Early out if the index is non-constant or out-of-range.
1803     unsigned NumElts = DemandedElts.getBitWidth();
1804     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1805       Known.resetAll();
1806       return;
1807     }
1808     Known.One.setAllBits();
1809     Known.Zero.setAllBits();
1810     unsigned EltIdx = CIdx->getZExtValue();
1811     // Do we demand the inserted element?
1812     if (DemandedElts[EltIdx]) {
1813       computeKnownBits(Elt, Known, Depth + 1, Q);
1814       // If we don't know any bits, early out.
1815       if (Known.isUnknown())
1816         break;
1817     }
1818     // We don't need the base vector element that has been inserted.
1819     APInt DemandedVecElts = DemandedElts;
1820     DemandedVecElts.clearBit(EltIdx);
1821     if (!!DemandedVecElts) {
1822       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1823       Known = KnownBits::commonBits(Known, Known2);
1824     }
1825     break;
1826   }
1827   case Instruction::ExtractElement: {
1828     // Look through extract element. If the index is non-constant or
1829     // out-of-range demand all elements, otherwise just the extracted element.
1830     const Value *Vec = I->getOperand(0);
1831     const Value *Idx = I->getOperand(1);
1832     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1833     if (isa<ScalableVectorType>(Vec->getType())) {
1834       // FIXME: there's probably *something* we can do with scalable vectors
1835       Known.resetAll();
1836       break;
1837     }
1838     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1839     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1840     if (CIdx && CIdx->getValue().ult(NumElts))
1841       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1842     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1843     break;
1844   }
1845   case Instruction::ExtractValue:
1846     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1847       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1848       if (EVI->getNumIndices() != 1) break;
1849       if (EVI->getIndices()[0] == 0) {
1850         switch (II->getIntrinsicID()) {
1851         default: break;
1852         case Intrinsic::uadd_with_overflow:
1853         case Intrinsic::sadd_with_overflow:
1854           computeKnownBitsAddSub(true, II->getArgOperand(0),
1855                                  II->getArgOperand(1), false, DemandedElts,
1856                                  Known, Known2, Depth, Q);
1857           break;
1858         case Intrinsic::usub_with_overflow:
1859         case Intrinsic::ssub_with_overflow:
1860           computeKnownBitsAddSub(false, II->getArgOperand(0),
1861                                  II->getArgOperand(1), false, DemandedElts,
1862                                  Known, Known2, Depth, Q);
1863           break;
1864         case Intrinsic::umul_with_overflow:
1865         case Intrinsic::smul_with_overflow:
1866           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1867                               DemandedElts, Known, Known2, Depth, Q);
1868           break;
1869         }
1870       }
1871     }
1872     break;
1873   case Instruction::Freeze:
1874     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1875                                   Depth + 1))
1876       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1877     break;
1878   }
1879 }
1880 
1881 /// Determine which bits of V are known to be either zero or one and return
1882 /// them.
1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1884                            unsigned Depth, const Query &Q) {
1885   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1886   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1887   return Known;
1888 }
1889 
1890 /// Determine which bits of V are known to be either zero or one and return
1891 /// them.
1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1893   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1894   computeKnownBits(V, Known, Depth, Q);
1895   return Known;
1896 }
1897 
1898 /// Determine which bits of V are known to be either zero or one and return
1899 /// them in the Known bit set.
1900 ///
1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1902 /// we cannot optimize based on the assumption that it is zero without changing
1903 /// it to be an explicit zero.  If we don't change it to zero, other code could
1904 /// optimized based on the contradictory assumption that it is non-zero.
1905 /// Because instcombine aggressively folds operations with undef args anyway,
1906 /// this won't lose us code quality.
1907 ///
1908 /// This function is defined on values with integer type, values with pointer
1909 /// type, and vectors of integers.  In the case
1910 /// where V is a vector, known zero, and known one values are the
1911 /// same width as the vector element, and the bit is set only if it is true
1912 /// for all of the demanded elements in the vector specified by DemandedElts.
1913 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1914                       KnownBits &Known, unsigned Depth, const Query &Q) {
1915   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1916     // No demanded elts or V is a scalable vector, better to assume we don't
1917     // know anything.
1918     Known.resetAll();
1919     return;
1920   }
1921 
1922   assert(V && "No Value?");
1923   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1924 
1925 #ifndef NDEBUG
1926   Type *Ty = V->getType();
1927   unsigned BitWidth = Known.getBitWidth();
1928 
1929   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1930          "Not integer or pointer type!");
1931 
1932   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1933     assert(
1934         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1935         "DemandedElt width should equal the fixed vector number of elements");
1936   } else {
1937     assert(DemandedElts == APInt(1, 1) &&
1938            "DemandedElt width should be 1 for scalars");
1939   }
1940 
1941   Type *ScalarTy = Ty->getScalarType();
1942   if (ScalarTy->isPointerTy()) {
1943     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1944            "V and Known should have same BitWidth");
1945   } else {
1946     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1947            "V and Known should have same BitWidth");
1948   }
1949 #endif
1950 
1951   const APInt *C;
1952   if (match(V, m_APInt(C))) {
1953     // We know all of the bits for a scalar constant or a splat vector constant!
1954     Known = KnownBits::makeConstant(*C);
1955     return;
1956   }
1957   // Null and aggregate-zero are all-zeros.
1958   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1959     Known.setAllZero();
1960     return;
1961   }
1962   // Handle a constant vector by taking the intersection of the known bits of
1963   // each element.
1964   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1965     // We know that CDV must be a vector of integers. Take the intersection of
1966     // each element.
1967     Known.Zero.setAllBits(); Known.One.setAllBits();
1968     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1969       if (!DemandedElts[i])
1970         continue;
1971       APInt Elt = CDV->getElementAsAPInt(i);
1972       Known.Zero &= ~Elt;
1973       Known.One &= Elt;
1974     }
1975     return;
1976   }
1977 
1978   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1979     // We know that CV must be a vector of integers. Take the intersection of
1980     // each element.
1981     Known.Zero.setAllBits(); Known.One.setAllBits();
1982     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1983       if (!DemandedElts[i])
1984         continue;
1985       Constant *Element = CV->getAggregateElement(i);
1986       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1987       if (!ElementCI) {
1988         Known.resetAll();
1989         return;
1990       }
1991       const APInt &Elt = ElementCI->getValue();
1992       Known.Zero &= ~Elt;
1993       Known.One &= Elt;
1994     }
1995     return;
1996   }
1997 
1998   // Start out not knowing anything.
1999   Known.resetAll();
2000 
2001   // We can't imply anything about undefs.
2002   if (isa<UndefValue>(V))
2003     return;
2004 
2005   // There's no point in looking through other users of ConstantData for
2006   // assumptions.  Confirm that we've handled them all.
2007   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2008 
2009   // All recursive calls that increase depth must come after this.
2010   if (Depth == MaxAnalysisRecursionDepth)
2011     return;
2012 
2013   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2014   // the bits of its aliasee.
2015   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2016     if (!GA->isInterposable())
2017       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2018     return;
2019   }
2020 
2021   if (const Operator *I = dyn_cast<Operator>(V))
2022     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2023 
2024   // Aligned pointers have trailing zeros - refine Known.Zero set
2025   if (isa<PointerType>(V->getType())) {
2026     Align Alignment = V->getPointerAlignment(Q.DL);
2027     Known.Zero.setLowBits(Log2(Alignment));
2028   }
2029 
2030   // computeKnownBitsFromAssume strictly refines Known.
2031   // Therefore, we run them after computeKnownBitsFromOperator.
2032 
2033   // Check whether a nearby assume intrinsic can determine some known bits.
2034   computeKnownBitsFromAssume(V, Known, Depth, Q);
2035 
2036   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2037 }
2038 
2039 /// Return true if the given value is known to have exactly one
2040 /// bit set when defined. For vectors return true if every element is known to
2041 /// be a power of two when defined. Supports values with integer or pointer
2042 /// types and vectors of integers.
2043 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2044                             const Query &Q) {
2045   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2046 
2047   // Attempt to match against constants.
2048   if (OrZero && match(V, m_Power2OrZero()))
2049       return true;
2050   if (match(V, m_Power2()))
2051       return true;
2052 
2053   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2054   // it is shifted off the end then the result is undefined.
2055   if (match(V, m_Shl(m_One(), m_Value())))
2056     return true;
2057 
2058   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2059   // the bottom.  If it is shifted off the bottom then the result is undefined.
2060   if (match(V, m_LShr(m_SignMask(), m_Value())))
2061     return true;
2062 
2063   // The remaining tests are all recursive, so bail out if we hit the limit.
2064   if (Depth++ == MaxAnalysisRecursionDepth)
2065     return false;
2066 
2067   Value *X = nullptr, *Y = nullptr;
2068   // A shift left or a logical shift right of a power of two is a power of two
2069   // or zero.
2070   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2071                  match(V, m_LShr(m_Value(X), m_Value()))))
2072     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2073 
2074   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2075     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2076 
2077   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2078     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2079            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2080 
2081   // Peek through min/max.
2082   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2083     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2084            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2085   }
2086 
2087   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2088     // A power of two and'd with anything is a power of two or zero.
2089     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2090         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2091       return true;
2092     // X & (-X) is always a power of two or zero.
2093     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2094       return true;
2095     return false;
2096   }
2097 
2098   // Adding a power-of-two or zero to the same power-of-two or zero yields
2099   // either the original power-of-two, a larger power-of-two or zero.
2100   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2101     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2102     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2103         Q.IIQ.hasNoSignedWrap(VOBO)) {
2104       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2105           match(X, m_And(m_Value(), m_Specific(Y))))
2106         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2107           return true;
2108       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2109           match(Y, m_And(m_Value(), m_Specific(X))))
2110         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2111           return true;
2112 
2113       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2114       KnownBits LHSBits(BitWidth);
2115       computeKnownBits(X, LHSBits, Depth, Q);
2116 
2117       KnownBits RHSBits(BitWidth);
2118       computeKnownBits(Y, RHSBits, Depth, Q);
2119       // If i8 V is a power of two or zero:
2120       //  ZeroBits: 1 1 1 0 1 1 1 1
2121       // ~ZeroBits: 0 0 0 1 0 0 0 0
2122       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2123         // If OrZero isn't set, we cannot give back a zero result.
2124         // Make sure either the LHS or RHS has a bit set.
2125         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2126           return true;
2127     }
2128   }
2129 
2130   // A PHI node is power of two if all incoming values are power of two.
2131   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2132     Query RecQ = Q;
2133 
2134     // Recursively check all incoming values. Limit recursion to 2 levels, so
2135     // that search complexity is limited to number of operands^2.
2136     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2137     return llvm::all_of(PN->operands(), [&](const Use &U) {
2138       // Value is power of 2 if it is coming from PHI node itself by induction.
2139       if (U.get() == PN)
2140         return true;
2141 
2142       // Change the context instruction to the incoming block where it is
2143       // evaluated.
2144       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2145       return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2146     });
2147   }
2148 
2149   // An exact divide or right shift can only shift off zero bits, so the result
2150   // is a power of two only if the first operand is a power of two and not
2151   // copying a sign bit (sdiv int_min, 2).
2152   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2153       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2154     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2155                                   Depth, Q);
2156   }
2157 
2158   return false;
2159 }
2160 
2161 /// Test whether a GEP's result is known to be non-null.
2162 ///
2163 /// Uses properties inherent in a GEP to try to determine whether it is known
2164 /// to be non-null.
2165 ///
2166 /// Currently this routine does not support vector GEPs.
2167 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2168                               const Query &Q) {
2169   const Function *F = nullptr;
2170   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2171     F = I->getFunction();
2172 
2173   if (!GEP->isInBounds() ||
2174       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2175     return false;
2176 
2177   // FIXME: Support vector-GEPs.
2178   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2179 
2180   // If the base pointer is non-null, we cannot walk to a null address with an
2181   // inbounds GEP in address space zero.
2182   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2183     return true;
2184 
2185   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2186   // If so, then the GEP cannot produce a null pointer, as doing so would
2187   // inherently violate the inbounds contract within address space zero.
2188   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2189        GTI != GTE; ++GTI) {
2190     // Struct types are easy -- they must always be indexed by a constant.
2191     if (StructType *STy = GTI.getStructTypeOrNull()) {
2192       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2193       unsigned ElementIdx = OpC->getZExtValue();
2194       const StructLayout *SL = Q.DL.getStructLayout(STy);
2195       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2196       if (ElementOffset > 0)
2197         return true;
2198       continue;
2199     }
2200 
2201     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2202     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2203       continue;
2204 
2205     // Fast path the constant operand case both for efficiency and so we don't
2206     // increment Depth when just zipping down an all-constant GEP.
2207     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2208       if (!OpC->isZero())
2209         return true;
2210       continue;
2211     }
2212 
2213     // We post-increment Depth here because while isKnownNonZero increments it
2214     // as well, when we pop back up that increment won't persist. We don't want
2215     // to recurse 10k times just because we have 10k GEP operands. We don't
2216     // bail completely out because we want to handle constant GEPs regardless
2217     // of depth.
2218     if (Depth++ >= MaxAnalysisRecursionDepth)
2219       continue;
2220 
2221     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2222       return true;
2223   }
2224 
2225   return false;
2226 }
2227 
2228 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2229                                                   const Instruction *CtxI,
2230                                                   const DominatorTree *DT) {
2231   if (isa<Constant>(V))
2232     return false;
2233 
2234   if (!CtxI || !DT)
2235     return false;
2236 
2237   unsigned NumUsesExplored = 0;
2238   for (auto *U : V->users()) {
2239     // Avoid massive lists
2240     if (NumUsesExplored >= DomConditionsMaxUses)
2241       break;
2242     NumUsesExplored++;
2243 
2244     // If the value is used as an argument to a call or invoke, then argument
2245     // attributes may provide an answer about null-ness.
2246     if (const auto *CB = dyn_cast<CallBase>(U))
2247       if (auto *CalledFunc = CB->getCalledFunction())
2248         for (const Argument &Arg : CalledFunc->args())
2249           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2250               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2251               DT->dominates(CB, CtxI))
2252             return true;
2253 
2254     // If the value is used as a load/store, then the pointer must be non null.
2255     if (V == getLoadStorePointerOperand(U)) {
2256       const Instruction *I = cast<Instruction>(U);
2257       if (!NullPointerIsDefined(I->getFunction(),
2258                                 V->getType()->getPointerAddressSpace()) &&
2259           DT->dominates(I, CtxI))
2260         return true;
2261     }
2262 
2263     // Consider only compare instructions uniquely controlling a branch
2264     Value *RHS;
2265     CmpInst::Predicate Pred;
2266     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2267       continue;
2268 
2269     bool NonNullIfTrue;
2270     if (cmpExcludesZero(Pred, RHS))
2271       NonNullIfTrue = true;
2272     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2273       NonNullIfTrue = false;
2274     else
2275       continue;
2276 
2277     SmallVector<const User *, 4> WorkList;
2278     SmallPtrSet<const User *, 4> Visited;
2279     for (auto *CmpU : U->users()) {
2280       assert(WorkList.empty() && "Should be!");
2281       if (Visited.insert(CmpU).second)
2282         WorkList.push_back(CmpU);
2283 
2284       while (!WorkList.empty()) {
2285         auto *Curr = WorkList.pop_back_val();
2286 
2287         // If a user is an AND, add all its users to the work list. We only
2288         // propagate "pred != null" condition through AND because it is only
2289         // correct to assume that all conditions of AND are met in true branch.
2290         // TODO: Support similar logic of OR and EQ predicate?
2291         if (NonNullIfTrue)
2292           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2293             for (auto *CurrU : Curr->users())
2294               if (Visited.insert(CurrU).second)
2295                 WorkList.push_back(CurrU);
2296             continue;
2297           }
2298 
2299         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2300           assert(BI->isConditional() && "uses a comparison!");
2301 
2302           BasicBlock *NonNullSuccessor =
2303               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2304           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2305           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2306             return true;
2307         } else if (NonNullIfTrue && isGuard(Curr) &&
2308                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2309           return true;
2310         }
2311       }
2312     }
2313   }
2314 
2315   return false;
2316 }
2317 
2318 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2319 /// ensure that the value it's attached to is never Value?  'RangeType' is
2320 /// is the type of the value described by the range.
2321 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2322   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2323   assert(NumRanges >= 1);
2324   for (unsigned i = 0; i < NumRanges; ++i) {
2325     ConstantInt *Lower =
2326         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2327     ConstantInt *Upper =
2328         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2329     ConstantRange Range(Lower->getValue(), Upper->getValue());
2330     if (Range.contains(Value))
2331       return false;
2332   }
2333   return true;
2334 }
2335 
2336 /// Try to detect a recurrence that monotonically increases/decreases from a
2337 /// non-zero starting value. These are common as induction variables.
2338 static bool isNonZeroRecurrence(const PHINode *PN) {
2339   BinaryOperator *BO = nullptr;
2340   Value *Start = nullptr, *Step = nullptr;
2341   const APInt *StartC, *StepC;
2342   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2343       !match(Start, m_APInt(StartC)) || StartC->isZero())
2344     return false;
2345 
2346   switch (BO->getOpcode()) {
2347   case Instruction::Add:
2348     // Starting from non-zero and stepping away from zero can never wrap back
2349     // to zero.
2350     return BO->hasNoUnsignedWrap() ||
2351            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2352             StartC->isNegative() == StepC->isNegative());
2353   case Instruction::Mul:
2354     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2355            match(Step, m_APInt(StepC)) && !StepC->isZero();
2356   case Instruction::Shl:
2357     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2358   case Instruction::AShr:
2359   case Instruction::LShr:
2360     return BO->isExact();
2361   default:
2362     return false;
2363   }
2364 }
2365 
2366 /// Return true if the given value is known to be non-zero when defined. For
2367 /// vectors, return true if every demanded element is known to be non-zero when
2368 /// defined. For pointers, if the context instruction and dominator tree are
2369 /// specified, perform context-sensitive analysis and return true if the
2370 /// pointer couldn't possibly be null at the specified instruction.
2371 /// Supports values with integer or pointer type and vectors of integers.
2372 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2373                     const Query &Q) {
2374   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2375   // vector
2376   if (isa<ScalableVectorType>(V->getType()))
2377     return false;
2378 
2379   if (auto *C = dyn_cast<Constant>(V)) {
2380     if (C->isNullValue())
2381       return false;
2382     if (isa<ConstantInt>(C))
2383       // Must be non-zero due to null test above.
2384       return true;
2385 
2386     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2387       // See the comment for IntToPtr/PtrToInt instructions below.
2388       if (CE->getOpcode() == Instruction::IntToPtr ||
2389           CE->getOpcode() == Instruction::PtrToInt)
2390         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2391                 .getFixedSize() <=
2392             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2393           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2394     }
2395 
2396     // For constant vectors, check that all elements are undefined or known
2397     // non-zero to determine that the whole vector is known non-zero.
2398     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2399       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2400         if (!DemandedElts[i])
2401           continue;
2402         Constant *Elt = C->getAggregateElement(i);
2403         if (!Elt || Elt->isNullValue())
2404           return false;
2405         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2406           return false;
2407       }
2408       return true;
2409     }
2410 
2411     // A global variable in address space 0 is non null unless extern weak
2412     // or an absolute symbol reference. Other address spaces may have null as a
2413     // valid address for a global, so we can't assume anything.
2414     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2415       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2416           GV->getType()->getAddressSpace() == 0)
2417         return true;
2418     } else
2419       return false;
2420   }
2421 
2422   if (auto *I = dyn_cast<Instruction>(V)) {
2423     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2424       // If the possible ranges don't contain zero, then the value is
2425       // definitely non-zero.
2426       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2427         const APInt ZeroValue(Ty->getBitWidth(), 0);
2428         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2429           return true;
2430       }
2431     }
2432   }
2433 
2434   if (isKnownNonZeroFromAssume(V, Q))
2435     return true;
2436 
2437   // Some of the tests below are recursive, so bail out if we hit the limit.
2438   if (Depth++ >= MaxAnalysisRecursionDepth)
2439     return false;
2440 
2441   // Check for pointer simplifications.
2442 
2443   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2444     // Alloca never returns null, malloc might.
2445     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2446       return true;
2447 
2448     // A byval, inalloca may not be null in a non-default addres space. A
2449     // nonnull argument is assumed never 0.
2450     if (const Argument *A = dyn_cast<Argument>(V)) {
2451       if (((A->hasPassPointeeByValueCopyAttr() &&
2452             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2453            A->hasNonNullAttr()))
2454         return true;
2455     }
2456 
2457     // A Load tagged with nonnull metadata is never null.
2458     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2459       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2460         return true;
2461 
2462     if (const auto *Call = dyn_cast<CallBase>(V)) {
2463       if (Call->isReturnNonNull())
2464         return true;
2465       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2466         return isKnownNonZero(RP, Depth, Q);
2467     }
2468   }
2469 
2470   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2471     return true;
2472 
2473   // Check for recursive pointer simplifications.
2474   if (V->getType()->isPointerTy()) {
2475     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2476     // do not alter the value, or at least not the nullness property of the
2477     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2478     //
2479     // Note that we have to take special care to avoid looking through
2480     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2481     // as casts that can alter the value, e.g., AddrSpaceCasts.
2482     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2483       return isGEPKnownNonNull(GEP, Depth, Q);
2484 
2485     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2486       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2487 
2488     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2489       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2490           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2491         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2492   }
2493 
2494   // Similar to int2ptr above, we can look through ptr2int here if the cast
2495   // is a no-op or an extend and not a truncate.
2496   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2497     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2498         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2499       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2500 
2501   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2502 
2503   // X | Y != 0 if X != 0 or Y != 0.
2504   Value *X = nullptr, *Y = nullptr;
2505   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2506     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2507            isKnownNonZero(Y, DemandedElts, Depth, Q);
2508 
2509   // ext X != 0 if X != 0.
2510   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2511     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2512 
2513   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2514   // if the lowest bit is shifted off the end.
2515   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2516     // shl nuw can't remove any non-zero bits.
2517     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2518     if (Q.IIQ.hasNoUnsignedWrap(BO))
2519       return isKnownNonZero(X, Depth, Q);
2520 
2521     KnownBits Known(BitWidth);
2522     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2523     if (Known.One[0])
2524       return true;
2525   }
2526   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2527   // defined if the sign bit is shifted off the end.
2528   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2529     // shr exact can only shift out zero bits.
2530     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2531     if (BO->isExact())
2532       return isKnownNonZero(X, Depth, Q);
2533 
2534     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2535     if (Known.isNegative())
2536       return true;
2537 
2538     // If the shifter operand is a constant, and all of the bits shifted
2539     // out are known to be zero, and X is known non-zero then at least one
2540     // non-zero bit must remain.
2541     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2542       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2543       // Is there a known one in the portion not shifted out?
2544       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2545         return true;
2546       // Are all the bits to be shifted out known zero?
2547       if (Known.countMinTrailingZeros() >= ShiftVal)
2548         return isKnownNonZero(X, DemandedElts, Depth, Q);
2549     }
2550   }
2551   // div exact can only produce a zero if the dividend is zero.
2552   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2553     return isKnownNonZero(X, DemandedElts, Depth, Q);
2554   }
2555   // X + Y.
2556   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2557     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2558     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2559 
2560     // If X and Y are both non-negative (as signed values) then their sum is not
2561     // zero unless both X and Y are zero.
2562     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2563       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2564           isKnownNonZero(Y, DemandedElts, Depth, Q))
2565         return true;
2566 
2567     // If X and Y are both negative (as signed values) then their sum is not
2568     // zero unless both X and Y equal INT_MIN.
2569     if (XKnown.isNegative() && YKnown.isNegative()) {
2570       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2571       // The sign bit of X is set.  If some other bit is set then X is not equal
2572       // to INT_MIN.
2573       if (XKnown.One.intersects(Mask))
2574         return true;
2575       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2576       // to INT_MIN.
2577       if (YKnown.One.intersects(Mask))
2578         return true;
2579     }
2580 
2581     // The sum of a non-negative number and a power of two is not zero.
2582     if (XKnown.isNonNegative() &&
2583         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2584       return true;
2585     if (YKnown.isNonNegative() &&
2586         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2587       return true;
2588   }
2589   // X * Y.
2590   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2591     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2592     // If X and Y are non-zero then so is X * Y as long as the multiplication
2593     // does not overflow.
2594     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2595         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2596         isKnownNonZero(Y, DemandedElts, Depth, Q))
2597       return true;
2598   }
2599   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2600   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2601     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2602         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2603       return true;
2604   }
2605   // PHI
2606   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2607     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2608       return true;
2609 
2610     // Check if all incoming values are non-zero using recursion.
2611     Query RecQ = Q;
2612     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2613     return llvm::all_of(PN->operands(), [&](const Use &U) {
2614       if (U.get() == PN)
2615         return true;
2616       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2617       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2618     });
2619   }
2620   // ExtractElement
2621   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2622     const Value *Vec = EEI->getVectorOperand();
2623     const Value *Idx = EEI->getIndexOperand();
2624     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2625     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2626       unsigned NumElts = VecTy->getNumElements();
2627       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2628       if (CIdx && CIdx->getValue().ult(NumElts))
2629         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2630       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2631     }
2632   }
2633   // Freeze
2634   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2635     auto *Op = FI->getOperand(0);
2636     if (isKnownNonZero(Op, Depth, Q) &&
2637         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2638       return true;
2639   }
2640 
2641   KnownBits Known(BitWidth);
2642   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2643   return Known.One != 0;
2644 }
2645 
2646 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2647   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2648   // vector
2649   if (isa<ScalableVectorType>(V->getType()))
2650     return false;
2651 
2652   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2653   APInt DemandedElts =
2654       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2655   return isKnownNonZero(V, DemandedElts, Depth, Q);
2656 }
2657 
2658 /// If the pair of operators are the same invertible function, return the
2659 /// the operands of the function corresponding to each input. Otherwise,
2660 /// return None.  An invertible function is one that is 1-to-1 and maps
2661 /// every input value to exactly one output value.  This is equivalent to
2662 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2663 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2664 static Optional<std::pair<Value*, Value*>>
2665 getInvertibleOperands(const Operator *Op1,
2666                       const Operator *Op2) {
2667   if (Op1->getOpcode() != Op2->getOpcode())
2668     return None;
2669 
2670   auto getOperands = [&](unsigned OpNum) -> auto {
2671     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2672   };
2673 
2674   switch (Op1->getOpcode()) {
2675   default:
2676     break;
2677   case Instruction::Add:
2678   case Instruction::Sub:
2679     if (Op1->getOperand(0) == Op2->getOperand(0))
2680       return getOperands(1);
2681     if (Op1->getOperand(1) == Op2->getOperand(1))
2682       return getOperands(0);
2683     break;
2684   case Instruction::Mul: {
2685     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2686     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2687     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2688     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2689     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2690     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2691         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2692       break;
2693 
2694     // Assume operand order has been canonicalized
2695     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2696         isa<ConstantInt>(Op1->getOperand(1)) &&
2697         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2698       return getOperands(0);
2699     break;
2700   }
2701   case Instruction::Shl: {
2702     // Same as multiplies, with the difference that we don't need to check
2703     // for a non-zero multiply. Shifts always multiply by non-zero.
2704     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2705     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2706     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2707         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2708       break;
2709 
2710     if (Op1->getOperand(1) == Op2->getOperand(1))
2711       return getOperands(0);
2712     break;
2713   }
2714   case Instruction::AShr:
2715   case Instruction::LShr: {
2716     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2717     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2718     if (!PEO1->isExact() || !PEO2->isExact())
2719       break;
2720 
2721     if (Op1->getOperand(1) == Op2->getOperand(1))
2722       return getOperands(0);
2723     break;
2724   }
2725   case Instruction::SExt:
2726   case Instruction::ZExt:
2727     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2728       return getOperands(0);
2729     break;
2730   case Instruction::PHI: {
2731     const PHINode *PN1 = cast<PHINode>(Op1);
2732     const PHINode *PN2 = cast<PHINode>(Op2);
2733 
2734     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2735     // are a single invertible function of the start values? Note that repeated
2736     // application of an invertible function is also invertible
2737     BinaryOperator *BO1 = nullptr;
2738     Value *Start1 = nullptr, *Step1 = nullptr;
2739     BinaryOperator *BO2 = nullptr;
2740     Value *Start2 = nullptr, *Step2 = nullptr;
2741     if (PN1->getParent() != PN2->getParent() ||
2742         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2743         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2744       break;
2745 
2746     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2747                                         cast<Operator>(BO2));
2748     if (!Values)
2749        break;
2750 
2751     // We have to be careful of mutually defined recurrences here.  Ex:
2752     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2753     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2754     // The invertibility of these is complicated, and not worth reasoning
2755     // about (yet?).
2756     if (Values->first != PN1 || Values->second != PN2)
2757       break;
2758 
2759     return std::make_pair(Start1, Start2);
2760   }
2761   }
2762   return None;
2763 }
2764 
2765 /// Return true if V2 == V1 + X, where X is known non-zero.
2766 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2767                            const Query &Q) {
2768   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2769   if (!BO || BO->getOpcode() != Instruction::Add)
2770     return false;
2771   Value *Op = nullptr;
2772   if (V2 == BO->getOperand(0))
2773     Op = BO->getOperand(1);
2774   else if (V2 == BO->getOperand(1))
2775     Op = BO->getOperand(0);
2776   else
2777     return false;
2778   return isKnownNonZero(Op, Depth + 1, Q);
2779 }
2780 
2781 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2782 /// the multiplication is nuw or nsw.
2783 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2784                           const Query &Q) {
2785   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2786     const APInt *C;
2787     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2788            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2789            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2790   }
2791   return false;
2792 }
2793 
2794 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2795 /// the shift is nuw or nsw.
2796 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2797                           const Query &Q) {
2798   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2799     const APInt *C;
2800     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2801            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2802            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2803   }
2804   return false;
2805 }
2806 
2807 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2808                            unsigned Depth, const Query &Q) {
2809   // Check two PHIs are in same block.
2810   if (PN1->getParent() != PN2->getParent())
2811     return false;
2812 
2813   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2814   bool UsedFullRecursion = false;
2815   for (const BasicBlock *IncomBB : PN1->blocks()) {
2816     if (!VisitedBBs.insert(IncomBB).second)
2817       continue; // Don't reprocess blocks that we have dealt with already.
2818     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2819     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2820     const APInt *C1, *C2;
2821     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2822       continue;
2823 
2824     // Only one pair of phi operands is allowed for full recursion.
2825     if (UsedFullRecursion)
2826       return false;
2827 
2828     Query RecQ = Q;
2829     RecQ.CxtI = IncomBB->getTerminator();
2830     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2831       return false;
2832     UsedFullRecursion = true;
2833   }
2834   return true;
2835 }
2836 
2837 /// Return true if it is known that V1 != V2.
2838 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2839                             const Query &Q) {
2840   if (V1 == V2)
2841     return false;
2842   if (V1->getType() != V2->getType())
2843     // We can't look through casts yet.
2844     return false;
2845 
2846   if (Depth >= MaxAnalysisRecursionDepth)
2847     return false;
2848 
2849   // See if we can recurse through (exactly one of) our operands.  This
2850   // requires our operation be 1-to-1 and map every input value to exactly
2851   // one output value.  Such an operation is invertible.
2852   auto *O1 = dyn_cast<Operator>(V1);
2853   auto *O2 = dyn_cast<Operator>(V2);
2854   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2855     if (auto Values = getInvertibleOperands(O1, O2))
2856       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2857 
2858     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2859       const PHINode *PN2 = cast<PHINode>(V2);
2860       // FIXME: This is missing a generalization to handle the case where one is
2861       // a PHI and another one isn't.
2862       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2863         return true;
2864     };
2865   }
2866 
2867   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2868     return true;
2869 
2870   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2871     return true;
2872 
2873   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2874     return true;
2875 
2876   if (V1->getType()->isIntOrIntVectorTy()) {
2877     // Are any known bits in V1 contradictory to known bits in V2? If V1
2878     // has a known zero where V2 has a known one, they must not be equal.
2879     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2880     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2881 
2882     if (Known1.Zero.intersects(Known2.One) ||
2883         Known2.Zero.intersects(Known1.One))
2884       return true;
2885   }
2886   return false;
2887 }
2888 
2889 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2890 /// simplify operations downstream. Mask is known to be zero for bits that V
2891 /// cannot have.
2892 ///
2893 /// This function is defined on values with integer type, values with pointer
2894 /// type, and vectors of integers.  In the case
2895 /// where V is a vector, the mask, known zero, and known one values are the
2896 /// same width as the vector element, and the bit is set only if it is true
2897 /// for all of the elements in the vector.
2898 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2899                        const Query &Q) {
2900   KnownBits Known(Mask.getBitWidth());
2901   computeKnownBits(V, Known, Depth, Q);
2902   return Mask.isSubsetOf(Known.Zero);
2903 }
2904 
2905 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2906 // Returns the input and lower/upper bounds.
2907 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2908                                 const APInt *&CLow, const APInt *&CHigh) {
2909   assert(isa<Operator>(Select) &&
2910          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2911          "Input should be a Select!");
2912 
2913   const Value *LHS = nullptr, *RHS = nullptr;
2914   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2915   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2916     return false;
2917 
2918   if (!match(RHS, m_APInt(CLow)))
2919     return false;
2920 
2921   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2922   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2923   if (getInverseMinMaxFlavor(SPF) != SPF2)
2924     return false;
2925 
2926   if (!match(RHS2, m_APInt(CHigh)))
2927     return false;
2928 
2929   if (SPF == SPF_SMIN)
2930     std::swap(CLow, CHigh);
2931 
2932   In = LHS2;
2933   return CLow->sle(*CHigh);
2934 }
2935 
2936 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
2937                                          const APInt *&CLow,
2938                                          const APInt *&CHigh) {
2939   assert((II->getIntrinsicID() == Intrinsic::smin ||
2940           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
2941 
2942   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
2943   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
2944   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
2945       !match(II->getArgOperand(1), m_APInt(CLow)) ||
2946       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
2947     return false;
2948 
2949   if (II->getIntrinsicID() == Intrinsic::smin)
2950     std::swap(CLow, CHigh);
2951   return CLow->sle(*CHigh);
2952 }
2953 
2954 /// For vector constants, loop over the elements and find the constant with the
2955 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2956 /// or if any element was not analyzed; otherwise, return the count for the
2957 /// element with the minimum number of sign bits.
2958 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2959                                                  const APInt &DemandedElts,
2960                                                  unsigned TyBits) {
2961   const auto *CV = dyn_cast<Constant>(V);
2962   if (!CV || !isa<FixedVectorType>(CV->getType()))
2963     return 0;
2964 
2965   unsigned MinSignBits = TyBits;
2966   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2967   for (unsigned i = 0; i != NumElts; ++i) {
2968     if (!DemandedElts[i])
2969       continue;
2970     // If we find a non-ConstantInt, bail out.
2971     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2972     if (!Elt)
2973       return 0;
2974 
2975     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2976   }
2977 
2978   return MinSignBits;
2979 }
2980 
2981 static unsigned ComputeNumSignBitsImpl(const Value *V,
2982                                        const APInt &DemandedElts,
2983                                        unsigned Depth, const Query &Q);
2984 
2985 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2986                                    unsigned Depth, const Query &Q) {
2987   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2988   assert(Result > 0 && "At least one sign bit needs to be present!");
2989   return Result;
2990 }
2991 
2992 /// Return the number of times the sign bit of the register is replicated into
2993 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2994 /// (itself), but other cases can give us information. For example, immediately
2995 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2996 /// other, so we return 3. For vectors, return the number of sign bits for the
2997 /// vector element with the minimum number of known sign bits of the demanded
2998 /// elements in the vector specified by DemandedElts.
2999 static unsigned ComputeNumSignBitsImpl(const Value *V,
3000                                        const APInt &DemandedElts,
3001                                        unsigned Depth, const Query &Q) {
3002   Type *Ty = V->getType();
3003 
3004   // FIXME: We currently have no way to represent the DemandedElts of a scalable
3005   // vector
3006   if (isa<ScalableVectorType>(Ty))
3007     return 1;
3008 
3009 #ifndef NDEBUG
3010   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3011 
3012   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3013     assert(
3014         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3015         "DemandedElt width should equal the fixed vector number of elements");
3016   } else {
3017     assert(DemandedElts == APInt(1, 1) &&
3018            "DemandedElt width should be 1 for scalars");
3019   }
3020 #endif
3021 
3022   // We return the minimum number of sign bits that are guaranteed to be present
3023   // in V, so for undef we have to conservatively return 1.  We don't have the
3024   // same behavior for poison though -- that's a FIXME today.
3025 
3026   Type *ScalarTy = Ty->getScalarType();
3027   unsigned TyBits = ScalarTy->isPointerTy() ?
3028     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3029     Q.DL.getTypeSizeInBits(ScalarTy);
3030 
3031   unsigned Tmp, Tmp2;
3032   unsigned FirstAnswer = 1;
3033 
3034   // Note that ConstantInt is handled by the general computeKnownBits case
3035   // below.
3036 
3037   if (Depth == MaxAnalysisRecursionDepth)
3038     return 1;
3039 
3040   if (auto *U = dyn_cast<Operator>(V)) {
3041     switch (Operator::getOpcode(V)) {
3042     default: break;
3043     case Instruction::SExt:
3044       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3045       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3046 
3047     case Instruction::SDiv: {
3048       const APInt *Denominator;
3049       // sdiv X, C -> adds log(C) sign bits.
3050       if (match(U->getOperand(1), m_APInt(Denominator))) {
3051 
3052         // Ignore non-positive denominator.
3053         if (!Denominator->isStrictlyPositive())
3054           break;
3055 
3056         // Calculate the incoming numerator bits.
3057         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3058 
3059         // Add floor(log(C)) bits to the numerator bits.
3060         return std::min(TyBits, NumBits + Denominator->logBase2());
3061       }
3062       break;
3063     }
3064 
3065     case Instruction::SRem: {
3066       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3067 
3068       const APInt *Denominator;
3069       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3070       // positive constant.  This let us put a lower bound on the number of sign
3071       // bits.
3072       if (match(U->getOperand(1), m_APInt(Denominator))) {
3073 
3074         // Ignore non-positive denominator.
3075         if (Denominator->isStrictlyPositive()) {
3076           // Calculate the leading sign bit constraints by examining the
3077           // denominator.  Given that the denominator is positive, there are two
3078           // cases:
3079           //
3080           //  1. The numerator is positive. The result range is [0,C) and
3081           //     [0,C) u< (1 << ceilLogBase2(C)).
3082           //
3083           //  2. The numerator is negative. Then the result range is (-C,0] and
3084           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3085           //
3086           // Thus a lower bound on the number of sign bits is `TyBits -
3087           // ceilLogBase2(C)`.
3088 
3089           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3090           Tmp = std::max(Tmp, ResBits);
3091         }
3092       }
3093       return Tmp;
3094     }
3095 
3096     case Instruction::AShr: {
3097       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3098       // ashr X, C   -> adds C sign bits.  Vectors too.
3099       const APInt *ShAmt;
3100       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3101         if (ShAmt->uge(TyBits))
3102           break; // Bad shift.
3103         unsigned ShAmtLimited = ShAmt->getZExtValue();
3104         Tmp += ShAmtLimited;
3105         if (Tmp > TyBits) Tmp = TyBits;
3106       }
3107       return Tmp;
3108     }
3109     case Instruction::Shl: {
3110       const APInt *ShAmt;
3111       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3112         // shl destroys sign bits.
3113         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3114         if (ShAmt->uge(TyBits) ||   // Bad shift.
3115             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3116         Tmp2 = ShAmt->getZExtValue();
3117         return Tmp - Tmp2;
3118       }
3119       break;
3120     }
3121     case Instruction::And:
3122     case Instruction::Or:
3123     case Instruction::Xor: // NOT is handled here.
3124       // Logical binary ops preserve the number of sign bits at the worst.
3125       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3126       if (Tmp != 1) {
3127         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3128         FirstAnswer = std::min(Tmp, Tmp2);
3129         // We computed what we know about the sign bits as our first
3130         // answer. Now proceed to the generic code that uses
3131         // computeKnownBits, and pick whichever answer is better.
3132       }
3133       break;
3134 
3135     case Instruction::Select: {
3136       // If we have a clamp pattern, we know that the number of sign bits will
3137       // be the minimum of the clamp min/max range.
3138       const Value *X;
3139       const APInt *CLow, *CHigh;
3140       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3141         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3142 
3143       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3144       if (Tmp == 1) break;
3145       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3146       return std::min(Tmp, Tmp2);
3147     }
3148 
3149     case Instruction::Add:
3150       // Add can have at most one carry bit.  Thus we know that the output
3151       // is, at worst, one more bit than the inputs.
3152       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3153       if (Tmp == 1) break;
3154 
3155       // Special case decrementing a value (ADD X, -1):
3156       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3157         if (CRHS->isAllOnesValue()) {
3158           KnownBits Known(TyBits);
3159           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3160 
3161           // If the input is known to be 0 or 1, the output is 0/-1, which is
3162           // all sign bits set.
3163           if ((Known.Zero | 1).isAllOnes())
3164             return TyBits;
3165 
3166           // If we are subtracting one from a positive number, there is no carry
3167           // out of the result.
3168           if (Known.isNonNegative())
3169             return Tmp;
3170         }
3171 
3172       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3173       if (Tmp2 == 1) break;
3174       return std::min(Tmp, Tmp2) - 1;
3175 
3176     case Instruction::Sub:
3177       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3178       if (Tmp2 == 1) break;
3179 
3180       // Handle NEG.
3181       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3182         if (CLHS->isNullValue()) {
3183           KnownBits Known(TyBits);
3184           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3185           // If the input is known to be 0 or 1, the output is 0/-1, which is
3186           // all sign bits set.
3187           if ((Known.Zero | 1).isAllOnes())
3188             return TyBits;
3189 
3190           // If the input is known to be positive (the sign bit is known clear),
3191           // the output of the NEG has the same number of sign bits as the
3192           // input.
3193           if (Known.isNonNegative())
3194             return Tmp2;
3195 
3196           // Otherwise, we treat this like a SUB.
3197         }
3198 
3199       // Sub can have at most one carry bit.  Thus we know that the output
3200       // is, at worst, one more bit than the inputs.
3201       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3202       if (Tmp == 1) break;
3203       return std::min(Tmp, Tmp2) - 1;
3204 
3205     case Instruction::Mul: {
3206       // The output of the Mul can be at most twice the valid bits in the
3207       // inputs.
3208       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3209       if (SignBitsOp0 == 1) break;
3210       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3211       if (SignBitsOp1 == 1) break;
3212       unsigned OutValidBits =
3213           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3214       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3215     }
3216 
3217     case Instruction::PHI: {
3218       const PHINode *PN = cast<PHINode>(U);
3219       unsigned NumIncomingValues = PN->getNumIncomingValues();
3220       // Don't analyze large in-degree PHIs.
3221       if (NumIncomingValues > 4) break;
3222       // Unreachable blocks may have zero-operand PHI nodes.
3223       if (NumIncomingValues == 0) break;
3224 
3225       // Take the minimum of all incoming values.  This can't infinitely loop
3226       // because of our depth threshold.
3227       Query RecQ = Q;
3228       Tmp = TyBits;
3229       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3230         if (Tmp == 1) return Tmp;
3231         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3232         Tmp = std::min(
3233             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3234       }
3235       return Tmp;
3236     }
3237 
3238     case Instruction::Trunc:
3239       // FIXME: it's tricky to do anything useful for this, but it is an
3240       // important case for targets like X86.
3241       break;
3242 
3243     case Instruction::ExtractElement:
3244       // Look through extract element. At the moment we keep this simple and
3245       // skip tracking the specific element. But at least we might find
3246       // information valid for all elements of the vector (for example if vector
3247       // is sign extended, shifted, etc).
3248       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3249 
3250     case Instruction::ShuffleVector: {
3251       // Collect the minimum number of sign bits that are shared by every vector
3252       // element referenced by the shuffle.
3253       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3254       if (!Shuf) {
3255         // FIXME: Add support for shufflevector constant expressions.
3256         return 1;
3257       }
3258       APInt DemandedLHS, DemandedRHS;
3259       // For undef elements, we don't know anything about the common state of
3260       // the shuffle result.
3261       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3262         return 1;
3263       Tmp = std::numeric_limits<unsigned>::max();
3264       if (!!DemandedLHS) {
3265         const Value *LHS = Shuf->getOperand(0);
3266         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3267       }
3268       // If we don't know anything, early out and try computeKnownBits
3269       // fall-back.
3270       if (Tmp == 1)
3271         break;
3272       if (!!DemandedRHS) {
3273         const Value *RHS = Shuf->getOperand(1);
3274         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3275         Tmp = std::min(Tmp, Tmp2);
3276       }
3277       // If we don't know anything, early out and try computeKnownBits
3278       // fall-back.
3279       if (Tmp == 1)
3280         break;
3281       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3282       return Tmp;
3283     }
3284     case Instruction::Call: {
3285       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3286         switch (II->getIntrinsicID()) {
3287         default: break;
3288         case Intrinsic::abs:
3289           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3290           if (Tmp == 1) break;
3291 
3292           // Absolute value reduces number of sign bits by at most 1.
3293           return Tmp - 1;
3294         case Intrinsic::smin:
3295         case Intrinsic::smax: {
3296           const APInt *CLow, *CHigh;
3297           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3298             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3299         }
3300         }
3301       }
3302     }
3303     }
3304   }
3305 
3306   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3307   // use this information.
3308 
3309   // If we can examine all elements of a vector constant successfully, we're
3310   // done (we can't do any better than that). If not, keep trying.
3311   if (unsigned VecSignBits =
3312           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3313     return VecSignBits;
3314 
3315   KnownBits Known(TyBits);
3316   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3317 
3318   // If we know that the sign bit is either zero or one, determine the number of
3319   // identical bits in the top of the input value.
3320   return std::max(FirstAnswer, Known.countMinSignBits());
3321 }
3322 
3323 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3324                                             const TargetLibraryInfo *TLI) {
3325   const Function *F = CB.getCalledFunction();
3326   if (!F)
3327     return Intrinsic::not_intrinsic;
3328 
3329   if (F->isIntrinsic())
3330     return F->getIntrinsicID();
3331 
3332   // We are going to infer semantics of a library function based on mapping it
3333   // to an LLVM intrinsic. Check that the library function is available from
3334   // this callbase and in this environment.
3335   LibFunc Func;
3336   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3337       !CB.onlyReadsMemory())
3338     return Intrinsic::not_intrinsic;
3339 
3340   switch (Func) {
3341   default:
3342     break;
3343   case LibFunc_sin:
3344   case LibFunc_sinf:
3345   case LibFunc_sinl:
3346     return Intrinsic::sin;
3347   case LibFunc_cos:
3348   case LibFunc_cosf:
3349   case LibFunc_cosl:
3350     return Intrinsic::cos;
3351   case LibFunc_exp:
3352   case LibFunc_expf:
3353   case LibFunc_expl:
3354     return Intrinsic::exp;
3355   case LibFunc_exp2:
3356   case LibFunc_exp2f:
3357   case LibFunc_exp2l:
3358     return Intrinsic::exp2;
3359   case LibFunc_log:
3360   case LibFunc_logf:
3361   case LibFunc_logl:
3362     return Intrinsic::log;
3363   case LibFunc_log10:
3364   case LibFunc_log10f:
3365   case LibFunc_log10l:
3366     return Intrinsic::log10;
3367   case LibFunc_log2:
3368   case LibFunc_log2f:
3369   case LibFunc_log2l:
3370     return Intrinsic::log2;
3371   case LibFunc_fabs:
3372   case LibFunc_fabsf:
3373   case LibFunc_fabsl:
3374     return Intrinsic::fabs;
3375   case LibFunc_fmin:
3376   case LibFunc_fminf:
3377   case LibFunc_fminl:
3378     return Intrinsic::minnum;
3379   case LibFunc_fmax:
3380   case LibFunc_fmaxf:
3381   case LibFunc_fmaxl:
3382     return Intrinsic::maxnum;
3383   case LibFunc_copysign:
3384   case LibFunc_copysignf:
3385   case LibFunc_copysignl:
3386     return Intrinsic::copysign;
3387   case LibFunc_floor:
3388   case LibFunc_floorf:
3389   case LibFunc_floorl:
3390     return Intrinsic::floor;
3391   case LibFunc_ceil:
3392   case LibFunc_ceilf:
3393   case LibFunc_ceill:
3394     return Intrinsic::ceil;
3395   case LibFunc_trunc:
3396   case LibFunc_truncf:
3397   case LibFunc_truncl:
3398     return Intrinsic::trunc;
3399   case LibFunc_rint:
3400   case LibFunc_rintf:
3401   case LibFunc_rintl:
3402     return Intrinsic::rint;
3403   case LibFunc_nearbyint:
3404   case LibFunc_nearbyintf:
3405   case LibFunc_nearbyintl:
3406     return Intrinsic::nearbyint;
3407   case LibFunc_round:
3408   case LibFunc_roundf:
3409   case LibFunc_roundl:
3410     return Intrinsic::round;
3411   case LibFunc_roundeven:
3412   case LibFunc_roundevenf:
3413   case LibFunc_roundevenl:
3414     return Intrinsic::roundeven;
3415   case LibFunc_pow:
3416   case LibFunc_powf:
3417   case LibFunc_powl:
3418     return Intrinsic::pow;
3419   case LibFunc_sqrt:
3420   case LibFunc_sqrtf:
3421   case LibFunc_sqrtl:
3422     return Intrinsic::sqrt;
3423   }
3424 
3425   return Intrinsic::not_intrinsic;
3426 }
3427 
3428 /// Return true if we can prove that the specified FP value is never equal to
3429 /// -0.0.
3430 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3431 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3432 ///       the same as +0.0 in floating-point ops.
3433 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3434                                 unsigned Depth) {
3435   if (auto *CFP = dyn_cast<ConstantFP>(V))
3436     return !CFP->getValueAPF().isNegZero();
3437 
3438   if (Depth == MaxAnalysisRecursionDepth)
3439     return false;
3440 
3441   auto *Op = dyn_cast<Operator>(V);
3442   if (!Op)
3443     return false;
3444 
3445   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3446   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3447     return true;
3448 
3449   // sitofp and uitofp turn into +0.0 for zero.
3450   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3451     return true;
3452 
3453   if (auto *Call = dyn_cast<CallInst>(Op)) {
3454     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3455     switch (IID) {
3456     default:
3457       break;
3458     // sqrt(-0.0) = -0.0, no other negative results are possible.
3459     case Intrinsic::sqrt:
3460     case Intrinsic::canonicalize:
3461       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3462     case Intrinsic::experimental_constrained_sqrt: {
3463       // NOTE: This rounding mode restriction may be too strict.
3464       const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3465       if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3466         return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3467       else
3468         return false;
3469     }
3470     // fabs(x) != -0.0
3471     case Intrinsic::fabs:
3472       return true;
3473     // sitofp and uitofp turn into +0.0 for zero.
3474     case Intrinsic::experimental_constrained_sitofp:
3475     case Intrinsic::experimental_constrained_uitofp:
3476       return true;
3477     }
3478   }
3479 
3480   return false;
3481 }
3482 
3483 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3484 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3485 /// bit despite comparing equal.
3486 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3487                                             const TargetLibraryInfo *TLI,
3488                                             bool SignBitOnly,
3489                                             unsigned Depth) {
3490   // TODO: This function does not do the right thing when SignBitOnly is true
3491   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3492   // which flips the sign bits of NaNs.  See
3493   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3494 
3495   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3496     return !CFP->getValueAPF().isNegative() ||
3497            (!SignBitOnly && CFP->getValueAPF().isZero());
3498   }
3499 
3500   // Handle vector of constants.
3501   if (auto *CV = dyn_cast<Constant>(V)) {
3502     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3503       unsigned NumElts = CVFVTy->getNumElements();
3504       for (unsigned i = 0; i != NumElts; ++i) {
3505         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3506         if (!CFP)
3507           return false;
3508         if (CFP->getValueAPF().isNegative() &&
3509             (SignBitOnly || !CFP->getValueAPF().isZero()))
3510           return false;
3511       }
3512 
3513       // All non-negative ConstantFPs.
3514       return true;
3515     }
3516   }
3517 
3518   if (Depth == MaxAnalysisRecursionDepth)
3519     return false;
3520 
3521   const Operator *I = dyn_cast<Operator>(V);
3522   if (!I)
3523     return false;
3524 
3525   switch (I->getOpcode()) {
3526   default:
3527     break;
3528   // Unsigned integers are always nonnegative.
3529   case Instruction::UIToFP:
3530     return true;
3531   case Instruction::FMul:
3532   case Instruction::FDiv:
3533     // X * X is always non-negative or a NaN.
3534     // X / X is always exactly 1.0 or a NaN.
3535     if (I->getOperand(0) == I->getOperand(1) &&
3536         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3537       return true;
3538 
3539     LLVM_FALLTHROUGH;
3540   case Instruction::FAdd:
3541   case Instruction::FRem:
3542     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3543                                            Depth + 1) &&
3544            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3545                                            Depth + 1);
3546   case Instruction::Select:
3547     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3548                                            Depth + 1) &&
3549            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3550                                            Depth + 1);
3551   case Instruction::FPExt:
3552   case Instruction::FPTrunc:
3553     // Widening/narrowing never change sign.
3554     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3555                                            Depth + 1);
3556   case Instruction::ExtractElement:
3557     // Look through extract element. At the moment we keep this simple and skip
3558     // tracking the specific element. But at least we might find information
3559     // valid for all elements of the vector.
3560     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3561                                            Depth + 1);
3562   case Instruction::Call:
3563     const auto *CI = cast<CallInst>(I);
3564     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3565     switch (IID) {
3566     default:
3567       break;
3568     case Intrinsic::maxnum: {
3569       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3570       auto isPositiveNum = [&](Value *V) {
3571         if (SignBitOnly) {
3572           // With SignBitOnly, this is tricky because the result of
3573           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3574           // a constant strictly greater than 0.0.
3575           const APFloat *C;
3576           return match(V, m_APFloat(C)) &&
3577                  *C > APFloat::getZero(C->getSemantics());
3578         }
3579 
3580         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3581         // maxnum can't be ordered-less-than-zero.
3582         return isKnownNeverNaN(V, TLI) &&
3583                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3584       };
3585 
3586       // TODO: This could be improved. We could also check that neither operand
3587       //       has its sign bit set (and at least 1 is not-NAN?).
3588       return isPositiveNum(V0) || isPositiveNum(V1);
3589     }
3590 
3591     case Intrinsic::maximum:
3592       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3593                                              Depth + 1) ||
3594              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3595                                              Depth + 1);
3596     case Intrinsic::minnum:
3597     case Intrinsic::minimum:
3598       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3599                                              Depth + 1) &&
3600              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3601                                              Depth + 1);
3602     case Intrinsic::exp:
3603     case Intrinsic::exp2:
3604     case Intrinsic::fabs:
3605       return true;
3606 
3607     case Intrinsic::sqrt:
3608       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3609       if (!SignBitOnly)
3610         return true;
3611       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3612                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3613 
3614     case Intrinsic::powi:
3615       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3616         // powi(x,n) is non-negative if n is even.
3617         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3618           return true;
3619       }
3620       // TODO: This is not correct.  Given that exp is an integer, here are the
3621       // ways that pow can return a negative value:
3622       //
3623       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3624       //   pow(-0, exp)   --> -inf if exp is negative odd.
3625       //   pow(-0, exp)   --> -0 if exp is positive odd.
3626       //   pow(-inf, exp) --> -0 if exp is negative odd.
3627       //   pow(-inf, exp) --> -inf if exp is positive odd.
3628       //
3629       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3630       // but we must return false if x == -0.  Unfortunately we do not currently
3631       // have a way of expressing this constraint.  See details in
3632       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3633       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3634                                              Depth + 1);
3635 
3636     case Intrinsic::fma:
3637     case Intrinsic::fmuladd:
3638       // x*x+y is non-negative if y is non-negative.
3639       return I->getOperand(0) == I->getOperand(1) &&
3640              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3641              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3642                                              Depth + 1);
3643     }
3644     break;
3645   }
3646   return false;
3647 }
3648 
3649 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3650                                        const TargetLibraryInfo *TLI) {
3651   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3652 }
3653 
3654 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3655   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3656 }
3657 
3658 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3659                                 unsigned Depth) {
3660   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3661 
3662   // If we're told that infinities won't happen, assume they won't.
3663   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3664     if (FPMathOp->hasNoInfs())
3665       return true;
3666 
3667   // Handle scalar constants.
3668   if (auto *CFP = dyn_cast<ConstantFP>(V))
3669     return !CFP->isInfinity();
3670 
3671   if (Depth == MaxAnalysisRecursionDepth)
3672     return false;
3673 
3674   if (auto *Inst = dyn_cast<Instruction>(V)) {
3675     switch (Inst->getOpcode()) {
3676     case Instruction::Select: {
3677       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3678              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3679     }
3680     case Instruction::SIToFP:
3681     case Instruction::UIToFP: {
3682       // Get width of largest magnitude integer (remove a bit if signed).
3683       // This still works for a signed minimum value because the largest FP
3684       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3685       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3686       if (Inst->getOpcode() == Instruction::SIToFP)
3687         --IntSize;
3688 
3689       // If the exponent of the largest finite FP value can hold the largest
3690       // integer, the result of the cast must be finite.
3691       Type *FPTy = Inst->getType()->getScalarType();
3692       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3693     }
3694     default:
3695       break;
3696     }
3697   }
3698 
3699   // try to handle fixed width vector constants
3700   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3701   if (VFVTy && isa<Constant>(V)) {
3702     // For vectors, verify that each element is not infinity.
3703     unsigned NumElts = VFVTy->getNumElements();
3704     for (unsigned i = 0; i != NumElts; ++i) {
3705       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3706       if (!Elt)
3707         return false;
3708       if (isa<UndefValue>(Elt))
3709         continue;
3710       auto *CElt = dyn_cast<ConstantFP>(Elt);
3711       if (!CElt || CElt->isInfinity())
3712         return false;
3713     }
3714     // All elements were confirmed non-infinity or undefined.
3715     return true;
3716   }
3717 
3718   // was not able to prove that V never contains infinity
3719   return false;
3720 }
3721 
3722 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3723                            unsigned Depth) {
3724   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3725 
3726   // If we're told that NaNs won't happen, assume they won't.
3727   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3728     if (FPMathOp->hasNoNaNs())
3729       return true;
3730 
3731   // Handle scalar constants.
3732   if (auto *CFP = dyn_cast<ConstantFP>(V))
3733     return !CFP->isNaN();
3734 
3735   if (Depth == MaxAnalysisRecursionDepth)
3736     return false;
3737 
3738   if (auto *Inst = dyn_cast<Instruction>(V)) {
3739     switch (Inst->getOpcode()) {
3740     case Instruction::FAdd:
3741     case Instruction::FSub:
3742       // Adding positive and negative infinity produces NaN.
3743       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3744              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3745              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3746               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3747 
3748     case Instruction::FMul:
3749       // Zero multiplied with infinity produces NaN.
3750       // FIXME: If neither side can be zero fmul never produces NaN.
3751       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3752              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3753              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3754              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3755 
3756     case Instruction::FDiv:
3757     case Instruction::FRem:
3758       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3759       return false;
3760 
3761     case Instruction::Select: {
3762       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3763              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3764     }
3765     case Instruction::SIToFP:
3766     case Instruction::UIToFP:
3767       return true;
3768     case Instruction::FPTrunc:
3769     case Instruction::FPExt:
3770       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3771     default:
3772       break;
3773     }
3774   }
3775 
3776   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3777     switch (II->getIntrinsicID()) {
3778     case Intrinsic::canonicalize:
3779     case Intrinsic::fabs:
3780     case Intrinsic::copysign:
3781     case Intrinsic::exp:
3782     case Intrinsic::exp2:
3783     case Intrinsic::floor:
3784     case Intrinsic::ceil:
3785     case Intrinsic::trunc:
3786     case Intrinsic::rint:
3787     case Intrinsic::nearbyint:
3788     case Intrinsic::round:
3789     case Intrinsic::roundeven:
3790       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3791     case Intrinsic::sqrt:
3792       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3793              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3794     case Intrinsic::minnum:
3795     case Intrinsic::maxnum:
3796       // If either operand is not NaN, the result is not NaN.
3797       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3798              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3799     default:
3800       return false;
3801     }
3802   }
3803 
3804   // Try to handle fixed width vector constants
3805   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3806   if (VFVTy && isa<Constant>(V)) {
3807     // For vectors, verify that each element is not NaN.
3808     unsigned NumElts = VFVTy->getNumElements();
3809     for (unsigned i = 0; i != NumElts; ++i) {
3810       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3811       if (!Elt)
3812         return false;
3813       if (isa<UndefValue>(Elt))
3814         continue;
3815       auto *CElt = dyn_cast<ConstantFP>(Elt);
3816       if (!CElt || CElt->isNaN())
3817         return false;
3818     }
3819     // All elements were confirmed not-NaN or undefined.
3820     return true;
3821   }
3822 
3823   // Was not able to prove that V never contains NaN
3824   return false;
3825 }
3826 
3827 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3828 
3829   // All byte-wide stores are splatable, even of arbitrary variables.
3830   if (V->getType()->isIntegerTy(8))
3831     return V;
3832 
3833   LLVMContext &Ctx = V->getContext();
3834 
3835   // Undef don't care.
3836   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3837   if (isa<UndefValue>(V))
3838     return UndefInt8;
3839 
3840   // Return Undef for zero-sized type.
3841   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3842     return UndefInt8;
3843 
3844   Constant *C = dyn_cast<Constant>(V);
3845   if (!C) {
3846     // Conceptually, we could handle things like:
3847     //   %a = zext i8 %X to i16
3848     //   %b = shl i16 %a, 8
3849     //   %c = or i16 %a, %b
3850     // but until there is an example that actually needs this, it doesn't seem
3851     // worth worrying about.
3852     return nullptr;
3853   }
3854 
3855   // Handle 'null' ConstantArrayZero etc.
3856   if (C->isNullValue())
3857     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3858 
3859   // Constant floating-point values can be handled as integer values if the
3860   // corresponding integer value is "byteable".  An important case is 0.0.
3861   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3862     Type *Ty = nullptr;
3863     if (CFP->getType()->isHalfTy())
3864       Ty = Type::getInt16Ty(Ctx);
3865     else if (CFP->getType()->isFloatTy())
3866       Ty = Type::getInt32Ty(Ctx);
3867     else if (CFP->getType()->isDoubleTy())
3868       Ty = Type::getInt64Ty(Ctx);
3869     // Don't handle long double formats, which have strange constraints.
3870     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3871               : nullptr;
3872   }
3873 
3874   // We can handle constant integers that are multiple of 8 bits.
3875   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3876     if (CI->getBitWidth() % 8 == 0) {
3877       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3878       if (!CI->getValue().isSplat(8))
3879         return nullptr;
3880       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3881     }
3882   }
3883 
3884   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3885     if (CE->getOpcode() == Instruction::IntToPtr) {
3886       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3887         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3888         return isBytewiseValue(
3889             ConstantExpr::getIntegerCast(CE->getOperand(0),
3890                                          Type::getIntNTy(Ctx, BitWidth), false),
3891             DL);
3892       }
3893     }
3894   }
3895 
3896   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3897     if (LHS == RHS)
3898       return LHS;
3899     if (!LHS || !RHS)
3900       return nullptr;
3901     if (LHS == UndefInt8)
3902       return RHS;
3903     if (RHS == UndefInt8)
3904       return LHS;
3905     return nullptr;
3906   };
3907 
3908   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3909     Value *Val = UndefInt8;
3910     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3911       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3912         return nullptr;
3913     return Val;
3914   }
3915 
3916   if (isa<ConstantAggregate>(C)) {
3917     Value *Val = UndefInt8;
3918     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3919       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3920         return nullptr;
3921     return Val;
3922   }
3923 
3924   // Don't try to handle the handful of other constants.
3925   return nullptr;
3926 }
3927 
3928 // This is the recursive version of BuildSubAggregate. It takes a few different
3929 // arguments. Idxs is the index within the nested struct From that we are
3930 // looking at now (which is of type IndexedType). IdxSkip is the number of
3931 // indices from Idxs that should be left out when inserting into the resulting
3932 // struct. To is the result struct built so far, new insertvalue instructions
3933 // build on that.
3934 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3935                                 SmallVectorImpl<unsigned> &Idxs,
3936                                 unsigned IdxSkip,
3937                                 Instruction *InsertBefore) {
3938   StructType *STy = dyn_cast<StructType>(IndexedType);
3939   if (STy) {
3940     // Save the original To argument so we can modify it
3941     Value *OrigTo = To;
3942     // General case, the type indexed by Idxs is a struct
3943     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3944       // Process each struct element recursively
3945       Idxs.push_back(i);
3946       Value *PrevTo = To;
3947       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3948                              InsertBefore);
3949       Idxs.pop_back();
3950       if (!To) {
3951         // Couldn't find any inserted value for this index? Cleanup
3952         while (PrevTo != OrigTo) {
3953           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3954           PrevTo = Del->getAggregateOperand();
3955           Del->eraseFromParent();
3956         }
3957         // Stop processing elements
3958         break;
3959       }
3960     }
3961     // If we successfully found a value for each of our subaggregates
3962     if (To)
3963       return To;
3964   }
3965   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3966   // the struct's elements had a value that was inserted directly. In the latter
3967   // case, perhaps we can't determine each of the subelements individually, but
3968   // we might be able to find the complete struct somewhere.
3969 
3970   // Find the value that is at that particular spot
3971   Value *V = FindInsertedValue(From, Idxs);
3972 
3973   if (!V)
3974     return nullptr;
3975 
3976   // Insert the value in the new (sub) aggregate
3977   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3978                                  "tmp", InsertBefore);
3979 }
3980 
3981 // This helper takes a nested struct and extracts a part of it (which is again a
3982 // struct) into a new value. For example, given the struct:
3983 // { a, { b, { c, d }, e } }
3984 // and the indices "1, 1" this returns
3985 // { c, d }.
3986 //
3987 // It does this by inserting an insertvalue for each element in the resulting
3988 // struct, as opposed to just inserting a single struct. This will only work if
3989 // each of the elements of the substruct are known (ie, inserted into From by an
3990 // insertvalue instruction somewhere).
3991 //
3992 // All inserted insertvalue instructions are inserted before InsertBefore
3993 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3994                                 Instruction *InsertBefore) {
3995   assert(InsertBefore && "Must have someplace to insert!");
3996   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3997                                                              idx_range);
3998   Value *To = UndefValue::get(IndexedType);
3999   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4000   unsigned IdxSkip = Idxs.size();
4001 
4002   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4003 }
4004 
4005 /// Given an aggregate and a sequence of indices, see if the scalar value
4006 /// indexed is already around as a register, for example if it was inserted
4007 /// directly into the aggregate.
4008 ///
4009 /// If InsertBefore is not null, this function will duplicate (modified)
4010 /// insertvalues when a part of a nested struct is extracted.
4011 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4012                                Instruction *InsertBefore) {
4013   // Nothing to index? Just return V then (this is useful at the end of our
4014   // recursion).
4015   if (idx_range.empty())
4016     return V;
4017   // We have indices, so V should have an indexable type.
4018   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4019          "Not looking at a struct or array?");
4020   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4021          "Invalid indices for type?");
4022 
4023   if (Constant *C = dyn_cast<Constant>(V)) {
4024     C = C->getAggregateElement(idx_range[0]);
4025     if (!C) return nullptr;
4026     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4027   }
4028 
4029   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4030     // Loop the indices for the insertvalue instruction in parallel with the
4031     // requested indices
4032     const unsigned *req_idx = idx_range.begin();
4033     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4034          i != e; ++i, ++req_idx) {
4035       if (req_idx == idx_range.end()) {
4036         // We can't handle this without inserting insertvalues
4037         if (!InsertBefore)
4038           return nullptr;
4039 
4040         // The requested index identifies a part of a nested aggregate. Handle
4041         // this specially. For example,
4042         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4043         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4044         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4045         // This can be changed into
4046         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4047         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4048         // which allows the unused 0,0 element from the nested struct to be
4049         // removed.
4050         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4051                                  InsertBefore);
4052       }
4053 
4054       // This insert value inserts something else than what we are looking for.
4055       // See if the (aggregate) value inserted into has the value we are
4056       // looking for, then.
4057       if (*req_idx != *i)
4058         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4059                                  InsertBefore);
4060     }
4061     // If we end up here, the indices of the insertvalue match with those
4062     // requested (though possibly only partially). Now we recursively look at
4063     // the inserted value, passing any remaining indices.
4064     return FindInsertedValue(I->getInsertedValueOperand(),
4065                              makeArrayRef(req_idx, idx_range.end()),
4066                              InsertBefore);
4067   }
4068 
4069   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4070     // If we're extracting a value from an aggregate that was extracted from
4071     // something else, we can extract from that something else directly instead.
4072     // However, we will need to chain I's indices with the requested indices.
4073 
4074     // Calculate the number of indices required
4075     unsigned size = I->getNumIndices() + idx_range.size();
4076     // Allocate some space to put the new indices in
4077     SmallVector<unsigned, 5> Idxs;
4078     Idxs.reserve(size);
4079     // Add indices from the extract value instruction
4080     Idxs.append(I->idx_begin(), I->idx_end());
4081 
4082     // Add requested indices
4083     Idxs.append(idx_range.begin(), idx_range.end());
4084 
4085     assert(Idxs.size() == size
4086            && "Number of indices added not correct?");
4087 
4088     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4089   }
4090   // Otherwise, we don't know (such as, extracting from a function return value
4091   // or load instruction)
4092   return nullptr;
4093 }
4094 
4095 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4096                                        unsigned CharSize) {
4097   // Make sure the GEP has exactly three arguments.
4098   if (GEP->getNumOperands() != 3)
4099     return false;
4100 
4101   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4102   // CharSize.
4103   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4104   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4105     return false;
4106 
4107   // Check to make sure that the first operand of the GEP is an integer and
4108   // has value 0 so that we are sure we're indexing into the initializer.
4109   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4110   if (!FirstIdx || !FirstIdx->isZero())
4111     return false;
4112 
4113   return true;
4114 }
4115 
4116 bool llvm::getConstantDataArrayInfo(const Value *V,
4117                                     ConstantDataArraySlice &Slice,
4118                                     unsigned ElementSize, uint64_t Offset) {
4119   assert(V);
4120 
4121   // Look through bitcast instructions and geps.
4122   V = V->stripPointerCasts();
4123 
4124   // If the value is a GEP instruction or constant expression, treat it as an
4125   // offset.
4126   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4127     // The GEP operator should be based on a pointer to string constant, and is
4128     // indexing into the string constant.
4129     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
4130       return false;
4131 
4132     // If the second index isn't a ConstantInt, then this is a variable index
4133     // into the array.  If this occurs, we can't say anything meaningful about
4134     // the string.
4135     uint64_t StartIdx = 0;
4136     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
4137       StartIdx = CI->getZExtValue();
4138     else
4139       return false;
4140     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
4141                                     StartIdx + Offset);
4142   }
4143 
4144   // The GEP instruction, constant or instruction, must reference a global
4145   // variable that is a constant and is initialized. The referenced constant
4146   // initializer is the array that we'll use for optimization.
4147   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4148   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4149     return false;
4150 
4151   const ConstantDataArray *Array;
4152   ArrayType *ArrayTy;
4153   if (GV->getInitializer()->isNullValue()) {
4154     Type *GVTy = GV->getValueType();
4155     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
4156       // A zeroinitializer for the array; there is no ConstantDataArray.
4157       Array = nullptr;
4158     } else {
4159       const DataLayout &DL = GV->getParent()->getDataLayout();
4160       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4161       uint64_t Length = SizeInBytes / (ElementSize / 8);
4162       if (Length <= Offset)
4163         return false;
4164 
4165       Slice.Array = nullptr;
4166       Slice.Offset = 0;
4167       Slice.Length = Length - Offset;
4168       return true;
4169     }
4170   } else {
4171     // This must be a ConstantDataArray.
4172     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
4173     if (!Array)
4174       return false;
4175     ArrayTy = Array->getType();
4176   }
4177   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4178     return false;
4179 
4180   uint64_t NumElts = ArrayTy->getArrayNumElements();
4181   if (Offset > NumElts)
4182     return false;
4183 
4184   Slice.Array = Array;
4185   Slice.Offset = Offset;
4186   Slice.Length = NumElts - Offset;
4187   return true;
4188 }
4189 
4190 /// This function computes the length of a null-terminated C string pointed to
4191 /// by V. If successful, it returns true and returns the string in Str.
4192 /// If unsuccessful, it returns false.
4193 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4194                                  uint64_t Offset, bool TrimAtNul) {
4195   ConstantDataArraySlice Slice;
4196   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4197     return false;
4198 
4199   if (Slice.Array == nullptr) {
4200     if (TrimAtNul) {
4201       Str = StringRef();
4202       return true;
4203     }
4204     if (Slice.Length == 1) {
4205       Str = StringRef("", 1);
4206       return true;
4207     }
4208     // We cannot instantiate a StringRef as we do not have an appropriate string
4209     // of 0s at hand.
4210     return false;
4211   }
4212 
4213   // Start out with the entire array in the StringRef.
4214   Str = Slice.Array->getAsString();
4215   // Skip over 'offset' bytes.
4216   Str = Str.substr(Slice.Offset);
4217 
4218   if (TrimAtNul) {
4219     // Trim off the \0 and anything after it.  If the array is not nul
4220     // terminated, we just return the whole end of string.  The client may know
4221     // some other way that the string is length-bound.
4222     Str = Str.substr(0, Str.find('\0'));
4223   }
4224   return true;
4225 }
4226 
4227 // These next two are very similar to the above, but also look through PHI
4228 // nodes.
4229 // TODO: See if we can integrate these two together.
4230 
4231 /// If we can compute the length of the string pointed to by
4232 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4233 static uint64_t GetStringLengthH(const Value *V,
4234                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4235                                  unsigned CharSize) {
4236   // Look through noop bitcast instructions.
4237   V = V->stripPointerCasts();
4238 
4239   // If this is a PHI node, there are two cases: either we have already seen it
4240   // or we haven't.
4241   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4242     if (!PHIs.insert(PN).second)
4243       return ~0ULL;  // already in the set.
4244 
4245     // If it was new, see if all the input strings are the same length.
4246     uint64_t LenSoFar = ~0ULL;
4247     for (Value *IncValue : PN->incoming_values()) {
4248       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4249       if (Len == 0) return 0; // Unknown length -> unknown.
4250 
4251       if (Len == ~0ULL) continue;
4252 
4253       if (Len != LenSoFar && LenSoFar != ~0ULL)
4254         return 0;    // Disagree -> unknown.
4255       LenSoFar = Len;
4256     }
4257 
4258     // Success, all agree.
4259     return LenSoFar;
4260   }
4261 
4262   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4263   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4264     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4265     if (Len1 == 0) return 0;
4266     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4267     if (Len2 == 0) return 0;
4268     if (Len1 == ~0ULL) return Len2;
4269     if (Len2 == ~0ULL) return Len1;
4270     if (Len1 != Len2) return 0;
4271     return Len1;
4272   }
4273 
4274   // Otherwise, see if we can read the string.
4275   ConstantDataArraySlice Slice;
4276   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4277     return 0;
4278 
4279   if (Slice.Array == nullptr)
4280     return 1;
4281 
4282   // Search for nul characters
4283   unsigned NullIndex = 0;
4284   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4285     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4286       break;
4287   }
4288 
4289   return NullIndex + 1;
4290 }
4291 
4292 /// If we can compute the length of the string pointed to by
4293 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4294 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4295   if (!V->getType()->isPointerTy())
4296     return 0;
4297 
4298   SmallPtrSet<const PHINode*, 32> PHIs;
4299   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4300   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4301   // an empty string as a length.
4302   return Len == ~0ULL ? 1 : Len;
4303 }
4304 
4305 const Value *
4306 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4307                                            bool MustPreserveNullness) {
4308   assert(Call &&
4309          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4310   if (const Value *RV = Call->getReturnedArgOperand())
4311     return RV;
4312   // This can be used only as a aliasing property.
4313   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4314           Call, MustPreserveNullness))
4315     return Call->getArgOperand(0);
4316   return nullptr;
4317 }
4318 
4319 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4320     const CallBase *Call, bool MustPreserveNullness) {
4321   switch (Call->getIntrinsicID()) {
4322   case Intrinsic::launder_invariant_group:
4323   case Intrinsic::strip_invariant_group:
4324   case Intrinsic::aarch64_irg:
4325   case Intrinsic::aarch64_tagp:
4326     return true;
4327   case Intrinsic::ptrmask:
4328     return !MustPreserveNullness;
4329   default:
4330     return false;
4331   }
4332 }
4333 
4334 /// \p PN defines a loop-variant pointer to an object.  Check if the
4335 /// previous iteration of the loop was referring to the same object as \p PN.
4336 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4337                                          const LoopInfo *LI) {
4338   // Find the loop-defined value.
4339   Loop *L = LI->getLoopFor(PN->getParent());
4340   if (PN->getNumIncomingValues() != 2)
4341     return true;
4342 
4343   // Find the value from previous iteration.
4344   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4345   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4346     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4347   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4348     return true;
4349 
4350   // If a new pointer is loaded in the loop, the pointer references a different
4351   // object in every iteration.  E.g.:
4352   //    for (i)
4353   //       int *p = a[i];
4354   //       ...
4355   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4356     if (!L->isLoopInvariant(Load->getPointerOperand()))
4357       return false;
4358   return true;
4359 }
4360 
4361 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4362   if (!V->getType()->isPointerTy())
4363     return V;
4364   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4365     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4366       V = GEP->getPointerOperand();
4367     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4368                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4369       V = cast<Operator>(V)->getOperand(0);
4370       if (!V->getType()->isPointerTy())
4371         return V;
4372     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4373       if (GA->isInterposable())
4374         return V;
4375       V = GA->getAliasee();
4376     } else {
4377       if (auto *PHI = dyn_cast<PHINode>(V)) {
4378         // Look through single-arg phi nodes created by LCSSA.
4379         if (PHI->getNumIncomingValues() == 1) {
4380           V = PHI->getIncomingValue(0);
4381           continue;
4382         }
4383       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4384         // CaptureTracking can know about special capturing properties of some
4385         // intrinsics like launder.invariant.group, that can't be expressed with
4386         // the attributes, but have properties like returning aliasing pointer.
4387         // Because some analysis may assume that nocaptured pointer is not
4388         // returned from some special intrinsic (because function would have to
4389         // be marked with returns attribute), it is crucial to use this function
4390         // because it should be in sync with CaptureTracking. Not using it may
4391         // cause weird miscompilations where 2 aliasing pointers are assumed to
4392         // noalias.
4393         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4394           V = RP;
4395           continue;
4396         }
4397       }
4398 
4399       return V;
4400     }
4401     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4402   }
4403   return V;
4404 }
4405 
4406 void llvm::getUnderlyingObjects(const Value *V,
4407                                 SmallVectorImpl<const Value *> &Objects,
4408                                 LoopInfo *LI, unsigned MaxLookup) {
4409   SmallPtrSet<const Value *, 4> Visited;
4410   SmallVector<const Value *, 4> Worklist;
4411   Worklist.push_back(V);
4412   do {
4413     const Value *P = Worklist.pop_back_val();
4414     P = getUnderlyingObject(P, MaxLookup);
4415 
4416     if (!Visited.insert(P).second)
4417       continue;
4418 
4419     if (auto *SI = dyn_cast<SelectInst>(P)) {
4420       Worklist.push_back(SI->getTrueValue());
4421       Worklist.push_back(SI->getFalseValue());
4422       continue;
4423     }
4424 
4425     if (auto *PN = dyn_cast<PHINode>(P)) {
4426       // If this PHI changes the underlying object in every iteration of the
4427       // loop, don't look through it.  Consider:
4428       //   int **A;
4429       //   for (i) {
4430       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4431       //     Curr = A[i];
4432       //     *Prev, *Curr;
4433       //
4434       // Prev is tracking Curr one iteration behind so they refer to different
4435       // underlying objects.
4436       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4437           isSameUnderlyingObjectInLoop(PN, LI))
4438         append_range(Worklist, PN->incoming_values());
4439       continue;
4440     }
4441 
4442     Objects.push_back(P);
4443   } while (!Worklist.empty());
4444 }
4445 
4446 /// This is the function that does the work of looking through basic
4447 /// ptrtoint+arithmetic+inttoptr sequences.
4448 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4449   do {
4450     if (const Operator *U = dyn_cast<Operator>(V)) {
4451       // If we find a ptrtoint, we can transfer control back to the
4452       // regular getUnderlyingObjectFromInt.
4453       if (U->getOpcode() == Instruction::PtrToInt)
4454         return U->getOperand(0);
4455       // If we find an add of a constant, a multiplied value, or a phi, it's
4456       // likely that the other operand will lead us to the base
4457       // object. We don't have to worry about the case where the
4458       // object address is somehow being computed by the multiply,
4459       // because our callers only care when the result is an
4460       // identifiable object.
4461       if (U->getOpcode() != Instruction::Add ||
4462           (!isa<ConstantInt>(U->getOperand(1)) &&
4463            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4464            !isa<PHINode>(U->getOperand(1))))
4465         return V;
4466       V = U->getOperand(0);
4467     } else {
4468       return V;
4469     }
4470     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4471   } while (true);
4472 }
4473 
4474 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4475 /// ptrtoint+arithmetic+inttoptr sequences.
4476 /// It returns false if unidentified object is found in getUnderlyingObjects.
4477 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4478                                           SmallVectorImpl<Value *> &Objects) {
4479   SmallPtrSet<const Value *, 16> Visited;
4480   SmallVector<const Value *, 4> Working(1, V);
4481   do {
4482     V = Working.pop_back_val();
4483 
4484     SmallVector<const Value *, 4> Objs;
4485     getUnderlyingObjects(V, Objs);
4486 
4487     for (const Value *V : Objs) {
4488       if (!Visited.insert(V).second)
4489         continue;
4490       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4491         const Value *O =
4492           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4493         if (O->getType()->isPointerTy()) {
4494           Working.push_back(O);
4495           continue;
4496         }
4497       }
4498       // If getUnderlyingObjects fails to find an identifiable object,
4499       // getUnderlyingObjectsForCodeGen also fails for safety.
4500       if (!isIdentifiedObject(V)) {
4501         Objects.clear();
4502         return false;
4503       }
4504       Objects.push_back(const_cast<Value *>(V));
4505     }
4506   } while (!Working.empty());
4507   return true;
4508 }
4509 
4510 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4511   AllocaInst *Result = nullptr;
4512   SmallPtrSet<Value *, 4> Visited;
4513   SmallVector<Value *, 4> Worklist;
4514 
4515   auto AddWork = [&](Value *V) {
4516     if (Visited.insert(V).second)
4517       Worklist.push_back(V);
4518   };
4519 
4520   AddWork(V);
4521   do {
4522     V = Worklist.pop_back_val();
4523     assert(Visited.count(V));
4524 
4525     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4526       if (Result && Result != AI)
4527         return nullptr;
4528       Result = AI;
4529     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4530       AddWork(CI->getOperand(0));
4531     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4532       for (Value *IncValue : PN->incoming_values())
4533         AddWork(IncValue);
4534     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4535       AddWork(SI->getTrueValue());
4536       AddWork(SI->getFalseValue());
4537     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4538       if (OffsetZero && !GEP->hasAllZeroIndices())
4539         return nullptr;
4540       AddWork(GEP->getPointerOperand());
4541     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4542       Value *Returned = CB->getReturnedArgOperand();
4543       if (Returned)
4544         AddWork(Returned);
4545       else
4546         return nullptr;
4547     } else {
4548       return nullptr;
4549     }
4550   } while (!Worklist.empty());
4551 
4552   return Result;
4553 }
4554 
4555 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4556     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4557   for (const User *U : V->users()) {
4558     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4559     if (!II)
4560       return false;
4561 
4562     if (AllowLifetime && II->isLifetimeStartOrEnd())
4563       continue;
4564 
4565     if (AllowDroppable && II->isDroppable())
4566       continue;
4567 
4568     return false;
4569   }
4570   return true;
4571 }
4572 
4573 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4574   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4575       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4576 }
4577 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4578   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4579       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4580 }
4581 
4582 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4583   if (!LI.isUnordered())
4584     return true;
4585   const Function &F = *LI.getFunction();
4586   // Speculative load may create a race that did not exist in the source.
4587   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4588     // Speculative load may load data from dirty regions.
4589     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4590     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4591 }
4592 
4593 
4594 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4595                                         const Instruction *CtxI,
4596                                         const DominatorTree *DT,
4597                                         const TargetLibraryInfo *TLI) {
4598   const Operator *Inst = dyn_cast<Operator>(V);
4599   if (!Inst)
4600     return false;
4601   return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI);
4602 }
4603 
4604 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode,
4605                                         const Operator *Inst,
4606                                         const Instruction *CtxI,
4607                                         const DominatorTree *DT,
4608                                         const TargetLibraryInfo *TLI) {
4609 #ifndef NDEBUG
4610   if (Inst->getOpcode() != Opcode) {
4611     // Check that the operands are actually compatible with the Opcode override.
4612     auto hasEqualReturnAndLeadingOperandTypes =
4613         [](const Operator *Inst, unsigned NumLeadingOperands) {
4614           if (Inst->getNumOperands() < NumLeadingOperands)
4615             return false;
4616           const Type *ExpectedType = Inst->getType();
4617           for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4618             if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4619               return false;
4620           return true;
4621         };
4622     assert(!Instruction::isBinaryOp(Opcode) ||
4623            hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4624     assert(!Instruction::isUnaryOp(Opcode) ||
4625            hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4626   }
4627 #endif
4628 
4629   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4630     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4631       if (C->canTrap())
4632         return false;
4633 
4634   switch (Opcode) {
4635   default:
4636     return true;
4637   case Instruction::UDiv:
4638   case Instruction::URem: {
4639     // x / y is undefined if y == 0.
4640     const APInt *V;
4641     if (match(Inst->getOperand(1), m_APInt(V)))
4642       return *V != 0;
4643     return false;
4644   }
4645   case Instruction::SDiv:
4646   case Instruction::SRem: {
4647     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4648     const APInt *Numerator, *Denominator;
4649     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4650       return false;
4651     // We cannot hoist this division if the denominator is 0.
4652     if (*Denominator == 0)
4653       return false;
4654     // It's safe to hoist if the denominator is not 0 or -1.
4655     if (!Denominator->isAllOnes())
4656       return true;
4657     // At this point we know that the denominator is -1.  It is safe to hoist as
4658     // long we know that the numerator is not INT_MIN.
4659     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4660       return !Numerator->isMinSignedValue();
4661     // The numerator *might* be MinSignedValue.
4662     return false;
4663   }
4664   case Instruction::Load: {
4665     const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4666     if (!LI)
4667       return false;
4668     if (mustSuppressSpeculation(*LI))
4669       return false;
4670     const DataLayout &DL = LI->getModule()->getDataLayout();
4671     return isDereferenceableAndAlignedPointer(
4672         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4673         TLI);
4674   }
4675   case Instruction::Call: {
4676     auto *CI = dyn_cast<const CallInst>(Inst);
4677     if (!CI)
4678       return false;
4679     const Function *Callee = CI->getCalledFunction();
4680 
4681     // The called function could have undefined behavior or side-effects, even
4682     // if marked readnone nounwind.
4683     return Callee && Callee->isSpeculatable();
4684   }
4685   case Instruction::VAArg:
4686   case Instruction::Alloca:
4687   case Instruction::Invoke:
4688   case Instruction::CallBr:
4689   case Instruction::PHI:
4690   case Instruction::Store:
4691   case Instruction::Ret:
4692   case Instruction::Br:
4693   case Instruction::IndirectBr:
4694   case Instruction::Switch:
4695   case Instruction::Unreachable:
4696   case Instruction::Fence:
4697   case Instruction::AtomicRMW:
4698   case Instruction::AtomicCmpXchg:
4699   case Instruction::LandingPad:
4700   case Instruction::Resume:
4701   case Instruction::CatchSwitch:
4702   case Instruction::CatchPad:
4703   case Instruction::CatchRet:
4704   case Instruction::CleanupPad:
4705   case Instruction::CleanupRet:
4706     return false; // Misc instructions which have effects
4707   }
4708 }
4709 
4710 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4711   if (I.mayReadOrWriteMemory())
4712     // Memory dependency possible
4713     return true;
4714   if (!isSafeToSpeculativelyExecute(&I))
4715     // Can't move above a maythrow call or infinite loop.  Or if an
4716     // inalloca alloca, above a stacksave call.
4717     return true;
4718   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4719     // 1) Can't reorder two inf-loop calls, even if readonly
4720     // 2) Also can't reorder an inf-loop call below a instruction which isn't
4721     //    safe to speculative execute.  (Inverse of above)
4722     return true;
4723   return false;
4724 }
4725 
4726 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4727 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4728   switch (OR) {
4729     case ConstantRange::OverflowResult::MayOverflow:
4730       return OverflowResult::MayOverflow;
4731     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4732       return OverflowResult::AlwaysOverflowsLow;
4733     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4734       return OverflowResult::AlwaysOverflowsHigh;
4735     case ConstantRange::OverflowResult::NeverOverflows:
4736       return OverflowResult::NeverOverflows;
4737   }
4738   llvm_unreachable("Unknown OverflowResult");
4739 }
4740 
4741 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4742 static ConstantRange computeConstantRangeIncludingKnownBits(
4743     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4744     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4745     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4746   KnownBits Known = computeKnownBits(
4747       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4748   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4749   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4750   ConstantRange::PreferredRangeType RangeType =
4751       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4752   return CR1.intersectWith(CR2, RangeType);
4753 }
4754 
4755 OverflowResult llvm::computeOverflowForUnsignedMul(
4756     const Value *LHS, const Value *RHS, const DataLayout &DL,
4757     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4758     bool UseInstrInfo) {
4759   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4760                                         nullptr, UseInstrInfo);
4761   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4762                                         nullptr, UseInstrInfo);
4763   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4764   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4765   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4766 }
4767 
4768 OverflowResult
4769 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4770                                   const DataLayout &DL, AssumptionCache *AC,
4771                                   const Instruction *CxtI,
4772                                   const DominatorTree *DT, bool UseInstrInfo) {
4773   // Multiplying n * m significant bits yields a result of n + m significant
4774   // bits. If the total number of significant bits does not exceed the
4775   // result bit width (minus 1), there is no overflow.
4776   // This means if we have enough leading sign bits in the operands
4777   // we can guarantee that the result does not overflow.
4778   // Ref: "Hacker's Delight" by Henry Warren
4779   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4780 
4781   // Note that underestimating the number of sign bits gives a more
4782   // conservative answer.
4783   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4784                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4785 
4786   // First handle the easy case: if we have enough sign bits there's
4787   // definitely no overflow.
4788   if (SignBits > BitWidth + 1)
4789     return OverflowResult::NeverOverflows;
4790 
4791   // There are two ambiguous cases where there can be no overflow:
4792   //   SignBits == BitWidth + 1    and
4793   //   SignBits == BitWidth
4794   // The second case is difficult to check, therefore we only handle the
4795   // first case.
4796   if (SignBits == BitWidth + 1) {
4797     // It overflows only when both arguments are negative and the true
4798     // product is exactly the minimum negative number.
4799     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4800     // For simplicity we just check if at least one side is not negative.
4801     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4802                                           nullptr, UseInstrInfo);
4803     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4804                                           nullptr, UseInstrInfo);
4805     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4806       return OverflowResult::NeverOverflows;
4807   }
4808   return OverflowResult::MayOverflow;
4809 }
4810 
4811 OverflowResult llvm::computeOverflowForUnsignedAdd(
4812     const Value *LHS, const Value *RHS, const DataLayout &DL,
4813     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4814     bool UseInstrInfo) {
4815   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4816       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4817       nullptr, UseInstrInfo);
4818   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4819       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4820       nullptr, UseInstrInfo);
4821   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4822 }
4823 
4824 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4825                                                   const Value *RHS,
4826                                                   const AddOperator *Add,
4827                                                   const DataLayout &DL,
4828                                                   AssumptionCache *AC,
4829                                                   const Instruction *CxtI,
4830                                                   const DominatorTree *DT) {
4831   if (Add && Add->hasNoSignedWrap()) {
4832     return OverflowResult::NeverOverflows;
4833   }
4834 
4835   // If LHS and RHS each have at least two sign bits, the addition will look
4836   // like
4837   //
4838   // XX..... +
4839   // YY.....
4840   //
4841   // If the carry into the most significant position is 0, X and Y can't both
4842   // be 1 and therefore the carry out of the addition is also 0.
4843   //
4844   // If the carry into the most significant position is 1, X and Y can't both
4845   // be 0 and therefore the carry out of the addition is also 1.
4846   //
4847   // Since the carry into the most significant position is always equal to
4848   // the carry out of the addition, there is no signed overflow.
4849   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4850       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4851     return OverflowResult::NeverOverflows;
4852 
4853   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4854       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4855   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4856       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4857   OverflowResult OR =
4858       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4859   if (OR != OverflowResult::MayOverflow)
4860     return OR;
4861 
4862   // The remaining code needs Add to be available. Early returns if not so.
4863   if (!Add)
4864     return OverflowResult::MayOverflow;
4865 
4866   // If the sign of Add is the same as at least one of the operands, this add
4867   // CANNOT overflow. If this can be determined from the known bits of the
4868   // operands the above signedAddMayOverflow() check will have already done so.
4869   // The only other way to improve on the known bits is from an assumption, so
4870   // call computeKnownBitsFromAssume() directly.
4871   bool LHSOrRHSKnownNonNegative =
4872       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4873   bool LHSOrRHSKnownNegative =
4874       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4875   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4876     KnownBits AddKnown(LHSRange.getBitWidth());
4877     computeKnownBitsFromAssume(
4878         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4879     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4880         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4881       return OverflowResult::NeverOverflows;
4882   }
4883 
4884   return OverflowResult::MayOverflow;
4885 }
4886 
4887 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4888                                                    const Value *RHS,
4889                                                    const DataLayout &DL,
4890                                                    AssumptionCache *AC,
4891                                                    const Instruction *CxtI,
4892                                                    const DominatorTree *DT) {
4893   // X - (X % ?)
4894   // The remainder of a value can't have greater magnitude than itself,
4895   // so the subtraction can't overflow.
4896   // TODO: There are other patterns like this.
4897   //       See simplifyICmpWithBinOpOnLHS() for candidates.
4898   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) &&
4899       isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4900     return OverflowResult::NeverOverflows;
4901 
4902   // Checking for conditions implied by dominating conditions may be expensive.
4903   // Limit it to usub_with_overflow calls for now.
4904   if (match(CxtI,
4905             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4906     if (auto C =
4907             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4908       if (*C)
4909         return OverflowResult::NeverOverflows;
4910       return OverflowResult::AlwaysOverflowsLow;
4911     }
4912   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4913       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4914   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4915       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4916   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4917 }
4918 
4919 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4920                                                  const Value *RHS,
4921                                                  const DataLayout &DL,
4922                                                  AssumptionCache *AC,
4923                                                  const Instruction *CxtI,
4924                                                  const DominatorTree *DT) {
4925   // X - (X % ?)
4926   // The remainder of a value can't have greater magnitude than itself,
4927   // so the subtraction can't overflow.
4928   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) &&
4929       isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4930     return OverflowResult::NeverOverflows;
4931 
4932   // If LHS and RHS each have at least two sign bits, the subtraction
4933   // cannot overflow.
4934   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4935       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4936     return OverflowResult::NeverOverflows;
4937 
4938   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4939       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4940   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4941       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4942   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4943 }
4944 
4945 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4946                                      const DominatorTree &DT) {
4947   SmallVector<const BranchInst *, 2> GuardingBranches;
4948   SmallVector<const ExtractValueInst *, 2> Results;
4949 
4950   for (const User *U : WO->users()) {
4951     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4952       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4953 
4954       if (EVI->getIndices()[0] == 0)
4955         Results.push_back(EVI);
4956       else {
4957         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4958 
4959         for (const auto *U : EVI->users())
4960           if (const auto *B = dyn_cast<BranchInst>(U)) {
4961             assert(B->isConditional() && "How else is it using an i1?");
4962             GuardingBranches.push_back(B);
4963           }
4964       }
4965     } else {
4966       // We are using the aggregate directly in a way we don't want to analyze
4967       // here (storing it to a global, say).
4968       return false;
4969     }
4970   }
4971 
4972   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4973     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4974     if (!NoWrapEdge.isSingleEdge())
4975       return false;
4976 
4977     // Check if all users of the add are provably no-wrap.
4978     for (const auto *Result : Results) {
4979       // If the extractvalue itself is not executed on overflow, the we don't
4980       // need to check each use separately, since domination is transitive.
4981       if (DT.dominates(NoWrapEdge, Result->getParent()))
4982         continue;
4983 
4984       for (auto &RU : Result->uses())
4985         if (!DT.dominates(NoWrapEdge, RU))
4986           return false;
4987     }
4988 
4989     return true;
4990   };
4991 
4992   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4993 }
4994 
4995 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
4996                                    bool ConsiderFlags) {
4997 
4998   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
4999     return true;
5000 
5001   unsigned Opcode = Op->getOpcode();
5002 
5003   // Check whether opcode is a poison/undef-generating operation
5004   switch (Opcode) {
5005   case Instruction::Shl:
5006   case Instruction::AShr:
5007   case Instruction::LShr: {
5008     // Shifts return poison if shiftwidth is larger than the bitwidth.
5009     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
5010       SmallVector<Constant *, 4> ShiftAmounts;
5011       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5012         unsigned NumElts = FVTy->getNumElements();
5013         for (unsigned i = 0; i < NumElts; ++i)
5014           ShiftAmounts.push_back(C->getAggregateElement(i));
5015       } else if (isa<ScalableVectorType>(C->getType()))
5016         return true; // Can't tell, just return true to be safe
5017       else
5018         ShiftAmounts.push_back(C);
5019 
5020       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
5021         auto *CI = dyn_cast_or_null<ConstantInt>(C);
5022         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5023       });
5024       return !Safe;
5025     }
5026     return true;
5027   }
5028   case Instruction::FPToSI:
5029   case Instruction::FPToUI:
5030     // fptosi/ui yields poison if the resulting value does not fit in the
5031     // destination type.
5032     return true;
5033   case Instruction::Call:
5034     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5035       switch (II->getIntrinsicID()) {
5036       // TODO: Add more intrinsics.
5037       case Intrinsic::ctpop:
5038       case Intrinsic::sadd_with_overflow:
5039       case Intrinsic::ssub_with_overflow:
5040       case Intrinsic::smul_with_overflow:
5041       case Intrinsic::uadd_with_overflow:
5042       case Intrinsic::usub_with_overflow:
5043       case Intrinsic::umul_with_overflow:
5044         return false;
5045       }
5046     }
5047     LLVM_FALLTHROUGH;
5048   case Instruction::CallBr:
5049   case Instruction::Invoke: {
5050     const auto *CB = cast<CallBase>(Op);
5051     return !CB->hasRetAttr(Attribute::NoUndef);
5052   }
5053   case Instruction::InsertElement:
5054   case Instruction::ExtractElement: {
5055     // If index exceeds the length of the vector, it returns poison
5056     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5057     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5058     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5059     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5060       return true;
5061     return false;
5062   }
5063   case Instruction::ShuffleVector: {
5064     // shufflevector may return undef.
5065     if (PoisonOnly)
5066       return false;
5067     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5068                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5069                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5070     return is_contained(Mask, UndefMaskElem);
5071   }
5072   case Instruction::FNeg:
5073   case Instruction::PHI:
5074   case Instruction::Select:
5075   case Instruction::URem:
5076   case Instruction::SRem:
5077   case Instruction::ExtractValue:
5078   case Instruction::InsertValue:
5079   case Instruction::Freeze:
5080   case Instruction::ICmp:
5081   case Instruction::FCmp:
5082     return false;
5083   case Instruction::GetElementPtr:
5084     // inbounds is handled above
5085     // TODO: what about inrange on constexpr?
5086     return false;
5087   default: {
5088     const auto *CE = dyn_cast<ConstantExpr>(Op);
5089     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5090       return false;
5091     else if (Instruction::isBinaryOp(Opcode))
5092       return false;
5093     // Be conservative and return true.
5094     return true;
5095   }
5096   }
5097 }
5098 
5099 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5100   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5101 }
5102 
5103 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5104   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5105 }
5106 
5107 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5108                                   const Value *V, unsigned Depth) {
5109   if (ValAssumedPoison == V)
5110     return true;
5111 
5112   const unsigned MaxDepth = 2;
5113   if (Depth >= MaxDepth)
5114     return false;
5115 
5116   if (const auto *I = dyn_cast<Instruction>(V)) {
5117     if (propagatesPoison(cast<Operator>(I)))
5118       return any_of(I->operands(), [=](const Value *Op) {
5119         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5120       });
5121 
5122     // 'select ValAssumedPoison, _, _' is poison.
5123     if (const auto *SI = dyn_cast<SelectInst>(I))
5124       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5125                                    Depth + 1);
5126     // V  = extractvalue V0, idx
5127     // V2 = extractvalue V0, idx2
5128     // V0's elements are all poison or not. (e.g., add_with_overflow)
5129     const WithOverflowInst *II;
5130     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5131         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5132          llvm::is_contained(II->args(), ValAssumedPoison)))
5133       return true;
5134   }
5135   return false;
5136 }
5137 
5138 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5139                           unsigned Depth) {
5140   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5141     return true;
5142 
5143   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5144     return true;
5145 
5146   const unsigned MaxDepth = 2;
5147   if (Depth >= MaxDepth)
5148     return false;
5149 
5150   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5151   if (I && !canCreatePoison(cast<Operator>(I))) {
5152     return all_of(I->operands(), [=](const Value *Op) {
5153       return impliesPoison(Op, V, Depth + 1);
5154     });
5155   }
5156   return false;
5157 }
5158 
5159 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5160   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5161 }
5162 
5163 static bool programUndefinedIfUndefOrPoison(const Value *V,
5164                                             bool PoisonOnly);
5165 
5166 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5167                                              AssumptionCache *AC,
5168                                              const Instruction *CtxI,
5169                                              const DominatorTree *DT,
5170                                              unsigned Depth, bool PoisonOnly) {
5171   if (Depth >= MaxAnalysisRecursionDepth)
5172     return false;
5173 
5174   if (isa<MetadataAsValue>(V))
5175     return false;
5176 
5177   if (const auto *A = dyn_cast<Argument>(V)) {
5178     if (A->hasAttribute(Attribute::NoUndef))
5179       return true;
5180   }
5181 
5182   if (auto *C = dyn_cast<Constant>(V)) {
5183     if (isa<UndefValue>(C))
5184       return PoisonOnly && !isa<PoisonValue>(C);
5185 
5186     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5187         isa<ConstantPointerNull>(C) || isa<Function>(C))
5188       return true;
5189 
5190     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5191       return (PoisonOnly ? !C->containsPoisonElement()
5192                          : !C->containsUndefOrPoisonElement()) &&
5193              !C->containsConstantExpression();
5194   }
5195 
5196   // Strip cast operations from a pointer value.
5197   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5198   // inbounds with zero offset. To guarantee that the result isn't poison, the
5199   // stripped pointer is checked as it has to be pointing into an allocated
5200   // object or be null `null` to ensure `inbounds` getelement pointers with a
5201   // zero offset could not produce poison.
5202   // It can strip off addrspacecast that do not change bit representation as
5203   // well. We believe that such addrspacecast is equivalent to no-op.
5204   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5205   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5206       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5207     return true;
5208 
5209   auto OpCheck = [&](const Value *V) {
5210     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5211                                             PoisonOnly);
5212   };
5213 
5214   if (auto *Opr = dyn_cast<Operator>(V)) {
5215     // If the value is a freeze instruction, then it can never
5216     // be undef or poison.
5217     if (isa<FreezeInst>(V))
5218       return true;
5219 
5220     if (const auto *CB = dyn_cast<CallBase>(V)) {
5221       if (CB->hasRetAttr(Attribute::NoUndef))
5222         return true;
5223     }
5224 
5225     if (const auto *PN = dyn_cast<PHINode>(V)) {
5226       unsigned Num = PN->getNumIncomingValues();
5227       bool IsWellDefined = true;
5228       for (unsigned i = 0; i < Num; ++i) {
5229         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5230         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5231                                               DT, Depth + 1, PoisonOnly)) {
5232           IsWellDefined = false;
5233           break;
5234         }
5235       }
5236       if (IsWellDefined)
5237         return true;
5238     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5239       return true;
5240   }
5241 
5242   if (auto *I = dyn_cast<LoadInst>(V))
5243     if (I->hasMetadata(LLVMContext::MD_noundef) ||
5244         I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5245         I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5246       return true;
5247 
5248   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5249     return true;
5250 
5251   // CxtI may be null or a cloned instruction.
5252   if (!CtxI || !CtxI->getParent() || !DT)
5253     return false;
5254 
5255   auto *DNode = DT->getNode(CtxI->getParent());
5256   if (!DNode)
5257     // Unreachable block
5258     return false;
5259 
5260   // If V is used as a branch condition before reaching CtxI, V cannot be
5261   // undef or poison.
5262   //   br V, BB1, BB2
5263   // BB1:
5264   //   CtxI ; V cannot be undef or poison here
5265   auto *Dominator = DNode->getIDom();
5266   while (Dominator) {
5267     auto *TI = Dominator->getBlock()->getTerminator();
5268 
5269     Value *Cond = nullptr;
5270     if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5271       if (BI->isConditional())
5272         Cond = BI->getCondition();
5273     } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5274       Cond = SI->getCondition();
5275     }
5276 
5277     if (Cond) {
5278       if (Cond == V)
5279         return true;
5280       else if (PoisonOnly && isa<Operator>(Cond)) {
5281         // For poison, we can analyze further
5282         auto *Opr = cast<Operator>(Cond);
5283         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5284           return true;
5285       }
5286     }
5287 
5288     Dominator = Dominator->getIDom();
5289   }
5290 
5291   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5292     return true;
5293 
5294   return false;
5295 }
5296 
5297 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5298                                             const Instruction *CtxI,
5299                                             const DominatorTree *DT,
5300                                             unsigned Depth) {
5301   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5302 }
5303 
5304 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5305                                      const Instruction *CtxI,
5306                                      const DominatorTree *DT, unsigned Depth) {
5307   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5308 }
5309 
5310 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5311                                                  const DataLayout &DL,
5312                                                  AssumptionCache *AC,
5313                                                  const Instruction *CxtI,
5314                                                  const DominatorTree *DT) {
5315   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5316                                        Add, DL, AC, CxtI, DT);
5317 }
5318 
5319 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5320                                                  const Value *RHS,
5321                                                  const DataLayout &DL,
5322                                                  AssumptionCache *AC,
5323                                                  const Instruction *CxtI,
5324                                                  const DominatorTree *DT) {
5325   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5326 }
5327 
5328 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5329   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5330   // of time because it's possible for another thread to interfere with it for an
5331   // arbitrary length of time, but programs aren't allowed to rely on that.
5332 
5333   // If there is no successor, then execution can't transfer to it.
5334   if (isa<ReturnInst>(I))
5335     return false;
5336   if (isa<UnreachableInst>(I))
5337     return false;
5338 
5339   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5340   // Instruction::willReturn.
5341   //
5342   // FIXME: Move this check into Instruction::willReturn.
5343   if (isa<CatchPadInst>(I)) {
5344     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5345     default:
5346       // A catchpad may invoke exception object constructors and such, which
5347       // in some languages can be arbitrary code, so be conservative by default.
5348       return false;
5349     case EHPersonality::CoreCLR:
5350       // For CoreCLR, it just involves a type test.
5351       return true;
5352     }
5353   }
5354 
5355   // An instruction that returns without throwing must transfer control flow
5356   // to a successor.
5357   return !I->mayThrow() && I->willReturn();
5358 }
5359 
5360 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5361   // TODO: This is slightly conservative for invoke instruction since exiting
5362   // via an exception *is* normal control for them.
5363   for (const Instruction &I : *BB)
5364     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5365       return false;
5366   return true;
5367 }
5368 
5369 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5370    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5371    unsigned ScanLimit) {
5372   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5373                                                     ScanLimit);
5374 }
5375 
5376 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5377    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5378   assert(ScanLimit && "scan limit must be non-zero");
5379   for (const Instruction &I : Range) {
5380     if (isa<DbgInfoIntrinsic>(I))
5381         continue;
5382     if (--ScanLimit == 0)
5383       return false;
5384     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5385       return false;
5386   }
5387   return true;
5388 }
5389 
5390 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5391                                                   const Loop *L) {
5392   // The loop header is guaranteed to be executed for every iteration.
5393   //
5394   // FIXME: Relax this constraint to cover all basic blocks that are
5395   // guaranteed to be executed at every iteration.
5396   if (I->getParent() != L->getHeader()) return false;
5397 
5398   for (const Instruction &LI : *L->getHeader()) {
5399     if (&LI == I) return true;
5400     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5401   }
5402   llvm_unreachable("Instruction not contained in its own parent basic block.");
5403 }
5404 
5405 bool llvm::propagatesPoison(const Operator *I) {
5406   switch (I->getOpcode()) {
5407   case Instruction::Freeze:
5408   case Instruction::Select:
5409   case Instruction::PHI:
5410   case Instruction::Invoke:
5411     return false;
5412   case Instruction::Call:
5413     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5414       switch (II->getIntrinsicID()) {
5415       // TODO: Add more intrinsics.
5416       case Intrinsic::sadd_with_overflow:
5417       case Intrinsic::ssub_with_overflow:
5418       case Intrinsic::smul_with_overflow:
5419       case Intrinsic::uadd_with_overflow:
5420       case Intrinsic::usub_with_overflow:
5421       case Intrinsic::umul_with_overflow:
5422         // If an input is a vector containing a poison element, the
5423         // two output vectors (calculated results, overflow bits)'
5424         // corresponding lanes are poison.
5425         return true;
5426       case Intrinsic::ctpop:
5427         return true;
5428       }
5429     }
5430     return false;
5431   case Instruction::ICmp:
5432   case Instruction::FCmp:
5433   case Instruction::GetElementPtr:
5434     return true;
5435   default:
5436     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5437       return true;
5438 
5439     // Be conservative and return false.
5440     return false;
5441   }
5442 }
5443 
5444 void llvm::getGuaranteedWellDefinedOps(
5445     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5446   switch (I->getOpcode()) {
5447     case Instruction::Store:
5448       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5449       break;
5450 
5451     case Instruction::Load:
5452       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5453       break;
5454 
5455     // Since dereferenceable attribute imply noundef, atomic operations
5456     // also implicitly have noundef pointers too
5457     case Instruction::AtomicCmpXchg:
5458       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5459       break;
5460 
5461     case Instruction::AtomicRMW:
5462       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5463       break;
5464 
5465     case Instruction::Call:
5466     case Instruction::Invoke: {
5467       const CallBase *CB = cast<CallBase>(I);
5468       if (CB->isIndirectCall())
5469         Operands.insert(CB->getCalledOperand());
5470       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5471         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5472             CB->paramHasAttr(i, Attribute::Dereferenceable))
5473           Operands.insert(CB->getArgOperand(i));
5474       }
5475       break;
5476     }
5477     case Instruction::Ret:
5478       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5479         Operands.insert(I->getOperand(0));
5480       break;
5481     default:
5482       break;
5483   }
5484 }
5485 
5486 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5487                                      SmallPtrSetImpl<const Value *> &Operands) {
5488   getGuaranteedWellDefinedOps(I, Operands);
5489   switch (I->getOpcode()) {
5490   // Divisors of these operations are allowed to be partially undef.
5491   case Instruction::UDiv:
5492   case Instruction::SDiv:
5493   case Instruction::URem:
5494   case Instruction::SRem:
5495     Operands.insert(I->getOperand(1));
5496     break;
5497   case Instruction::Switch:
5498     if (BranchOnPoisonAsUB)
5499       Operands.insert(cast<SwitchInst>(I)->getCondition());
5500     break;
5501   case Instruction::Br: {
5502     auto *BR = cast<BranchInst>(I);
5503     if (BranchOnPoisonAsUB && BR->isConditional())
5504       Operands.insert(BR->getCondition());
5505     break;
5506   }
5507   default:
5508     break;
5509   }
5510 }
5511 
5512 bool llvm::mustTriggerUB(const Instruction *I,
5513                          const SmallSet<const Value *, 16>& KnownPoison) {
5514   SmallPtrSet<const Value *, 4> NonPoisonOps;
5515   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5516 
5517   for (const auto *V : NonPoisonOps)
5518     if (KnownPoison.count(V))
5519       return true;
5520 
5521   return false;
5522 }
5523 
5524 static bool programUndefinedIfUndefOrPoison(const Value *V,
5525                                             bool PoisonOnly) {
5526   // We currently only look for uses of values within the same basic
5527   // block, as that makes it easier to guarantee that the uses will be
5528   // executed given that Inst is executed.
5529   //
5530   // FIXME: Expand this to consider uses beyond the same basic block. To do
5531   // this, look out for the distinction between post-dominance and strong
5532   // post-dominance.
5533   const BasicBlock *BB = nullptr;
5534   BasicBlock::const_iterator Begin;
5535   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5536     BB = Inst->getParent();
5537     Begin = Inst->getIterator();
5538     Begin++;
5539   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5540     BB = &Arg->getParent()->getEntryBlock();
5541     Begin = BB->begin();
5542   } else {
5543     return false;
5544   }
5545 
5546   // Limit number of instructions we look at, to avoid scanning through large
5547   // blocks. The current limit is chosen arbitrarily.
5548   unsigned ScanLimit = 32;
5549   BasicBlock::const_iterator End = BB->end();
5550 
5551   if (!PoisonOnly) {
5552     // Since undef does not propagate eagerly, be conservative & just check
5553     // whether a value is directly passed to an instruction that must take
5554     // well-defined operands.
5555 
5556     for (auto &I : make_range(Begin, End)) {
5557       if (isa<DbgInfoIntrinsic>(I))
5558         continue;
5559       if (--ScanLimit == 0)
5560         break;
5561 
5562       SmallPtrSet<const Value *, 4> WellDefinedOps;
5563       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5564       if (WellDefinedOps.contains(V))
5565         return true;
5566 
5567       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5568         break;
5569     }
5570     return false;
5571   }
5572 
5573   // Set of instructions that we have proved will yield poison if Inst
5574   // does.
5575   SmallSet<const Value *, 16> YieldsPoison;
5576   SmallSet<const BasicBlock *, 4> Visited;
5577 
5578   YieldsPoison.insert(V);
5579   auto Propagate = [&](const User *User) {
5580     if (propagatesPoison(cast<Operator>(User)))
5581       YieldsPoison.insert(User);
5582   };
5583   for_each(V->users(), Propagate);
5584   Visited.insert(BB);
5585 
5586   while (true) {
5587     for (auto &I : make_range(Begin, End)) {
5588       if (isa<DbgInfoIntrinsic>(I))
5589         continue;
5590       if (--ScanLimit == 0)
5591         return false;
5592       if (mustTriggerUB(&I, YieldsPoison))
5593         return true;
5594       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5595         return false;
5596 
5597       // Mark poison that propagates from I through uses of I.
5598       if (YieldsPoison.count(&I))
5599         for_each(I.users(), Propagate);
5600     }
5601 
5602     BB = BB->getSingleSuccessor();
5603     if (!BB || !Visited.insert(BB).second)
5604       break;
5605 
5606     Begin = BB->getFirstNonPHI()->getIterator();
5607     End = BB->end();
5608   }
5609   return false;
5610 }
5611 
5612 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5613   return ::programUndefinedIfUndefOrPoison(Inst, false);
5614 }
5615 
5616 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5617   return ::programUndefinedIfUndefOrPoison(Inst, true);
5618 }
5619 
5620 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5621   if (FMF.noNaNs())
5622     return true;
5623 
5624   if (auto *C = dyn_cast<ConstantFP>(V))
5625     return !C->isNaN();
5626 
5627   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5628     if (!C->getElementType()->isFloatingPointTy())
5629       return false;
5630     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5631       if (C->getElementAsAPFloat(I).isNaN())
5632         return false;
5633     }
5634     return true;
5635   }
5636 
5637   if (isa<ConstantAggregateZero>(V))
5638     return true;
5639 
5640   return false;
5641 }
5642 
5643 static bool isKnownNonZero(const Value *V) {
5644   if (auto *C = dyn_cast<ConstantFP>(V))
5645     return !C->isZero();
5646 
5647   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5648     if (!C->getElementType()->isFloatingPointTy())
5649       return false;
5650     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5651       if (C->getElementAsAPFloat(I).isZero())
5652         return false;
5653     }
5654     return true;
5655   }
5656 
5657   return false;
5658 }
5659 
5660 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5661 /// Given non-min/max outer cmp/select from the clamp pattern this
5662 /// function recognizes if it can be substitued by a "canonical" min/max
5663 /// pattern.
5664 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5665                                                Value *CmpLHS, Value *CmpRHS,
5666                                                Value *TrueVal, Value *FalseVal,
5667                                                Value *&LHS, Value *&RHS) {
5668   // Try to match
5669   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5670   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5671   // and return description of the outer Max/Min.
5672 
5673   // First, check if select has inverse order:
5674   if (CmpRHS == FalseVal) {
5675     std::swap(TrueVal, FalseVal);
5676     Pred = CmpInst::getInversePredicate(Pred);
5677   }
5678 
5679   // Assume success now. If there's no match, callers should not use these anyway.
5680   LHS = TrueVal;
5681   RHS = FalseVal;
5682 
5683   const APFloat *FC1;
5684   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5685     return {SPF_UNKNOWN, SPNB_NA, false};
5686 
5687   const APFloat *FC2;
5688   switch (Pred) {
5689   case CmpInst::FCMP_OLT:
5690   case CmpInst::FCMP_OLE:
5691   case CmpInst::FCMP_ULT:
5692   case CmpInst::FCMP_ULE:
5693     if (match(FalseVal,
5694               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5695                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5696         *FC1 < *FC2)
5697       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5698     break;
5699   case CmpInst::FCMP_OGT:
5700   case CmpInst::FCMP_OGE:
5701   case CmpInst::FCMP_UGT:
5702   case CmpInst::FCMP_UGE:
5703     if (match(FalseVal,
5704               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5705                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5706         *FC1 > *FC2)
5707       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5708     break;
5709   default:
5710     break;
5711   }
5712 
5713   return {SPF_UNKNOWN, SPNB_NA, false};
5714 }
5715 
5716 /// Recognize variations of:
5717 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5718 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5719                                       Value *CmpLHS, Value *CmpRHS,
5720                                       Value *TrueVal, Value *FalseVal) {
5721   // Swap the select operands and predicate to match the patterns below.
5722   if (CmpRHS != TrueVal) {
5723     Pred = ICmpInst::getSwappedPredicate(Pred);
5724     std::swap(TrueVal, FalseVal);
5725   }
5726   const APInt *C1;
5727   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5728     const APInt *C2;
5729     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5730     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5731         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5732       return {SPF_SMAX, SPNB_NA, false};
5733 
5734     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5735     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5736         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5737       return {SPF_SMIN, SPNB_NA, false};
5738 
5739     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5740     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5741         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5742       return {SPF_UMAX, SPNB_NA, false};
5743 
5744     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5745     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5746         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5747       return {SPF_UMIN, SPNB_NA, false};
5748   }
5749   return {SPF_UNKNOWN, SPNB_NA, false};
5750 }
5751 
5752 /// Recognize variations of:
5753 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5754 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5755                                                Value *CmpLHS, Value *CmpRHS,
5756                                                Value *TVal, Value *FVal,
5757                                                unsigned Depth) {
5758   // TODO: Allow FP min/max with nnan/nsz.
5759   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5760 
5761   Value *A = nullptr, *B = nullptr;
5762   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5763   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5764     return {SPF_UNKNOWN, SPNB_NA, false};
5765 
5766   Value *C = nullptr, *D = nullptr;
5767   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5768   if (L.Flavor != R.Flavor)
5769     return {SPF_UNKNOWN, SPNB_NA, false};
5770 
5771   // We have something like: x Pred y ? min(a, b) : min(c, d).
5772   // Try to match the compare to the min/max operations of the select operands.
5773   // First, make sure we have the right compare predicate.
5774   switch (L.Flavor) {
5775   case SPF_SMIN:
5776     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5777       Pred = ICmpInst::getSwappedPredicate(Pred);
5778       std::swap(CmpLHS, CmpRHS);
5779     }
5780     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5781       break;
5782     return {SPF_UNKNOWN, SPNB_NA, false};
5783   case SPF_SMAX:
5784     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5785       Pred = ICmpInst::getSwappedPredicate(Pred);
5786       std::swap(CmpLHS, CmpRHS);
5787     }
5788     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5789       break;
5790     return {SPF_UNKNOWN, SPNB_NA, false};
5791   case SPF_UMIN:
5792     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5793       Pred = ICmpInst::getSwappedPredicate(Pred);
5794       std::swap(CmpLHS, CmpRHS);
5795     }
5796     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5797       break;
5798     return {SPF_UNKNOWN, SPNB_NA, false};
5799   case SPF_UMAX:
5800     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5801       Pred = ICmpInst::getSwappedPredicate(Pred);
5802       std::swap(CmpLHS, CmpRHS);
5803     }
5804     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5805       break;
5806     return {SPF_UNKNOWN, SPNB_NA, false};
5807   default:
5808     return {SPF_UNKNOWN, SPNB_NA, false};
5809   }
5810 
5811   // If there is a common operand in the already matched min/max and the other
5812   // min/max operands match the compare operands (either directly or inverted),
5813   // then this is min/max of the same flavor.
5814 
5815   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5816   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5817   if (D == B) {
5818     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5819                                          match(A, m_Not(m_Specific(CmpRHS)))))
5820       return {L.Flavor, SPNB_NA, false};
5821   }
5822   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5823   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5824   if (C == B) {
5825     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5826                                          match(A, m_Not(m_Specific(CmpRHS)))))
5827       return {L.Flavor, SPNB_NA, false};
5828   }
5829   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5830   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5831   if (D == A) {
5832     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5833                                          match(B, m_Not(m_Specific(CmpRHS)))))
5834       return {L.Flavor, SPNB_NA, false};
5835   }
5836   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5837   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5838   if (C == A) {
5839     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5840                                          match(B, m_Not(m_Specific(CmpRHS)))))
5841       return {L.Flavor, SPNB_NA, false};
5842   }
5843 
5844   return {SPF_UNKNOWN, SPNB_NA, false};
5845 }
5846 
5847 /// If the input value is the result of a 'not' op, constant integer, or vector
5848 /// splat of a constant integer, return the bitwise-not source value.
5849 /// TODO: This could be extended to handle non-splat vector integer constants.
5850 static Value *getNotValue(Value *V) {
5851   Value *NotV;
5852   if (match(V, m_Not(m_Value(NotV))))
5853     return NotV;
5854 
5855   const APInt *C;
5856   if (match(V, m_APInt(C)))
5857     return ConstantInt::get(V->getType(), ~(*C));
5858 
5859   return nullptr;
5860 }
5861 
5862 /// Match non-obvious integer minimum and maximum sequences.
5863 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5864                                        Value *CmpLHS, Value *CmpRHS,
5865                                        Value *TrueVal, Value *FalseVal,
5866                                        Value *&LHS, Value *&RHS,
5867                                        unsigned Depth) {
5868   // Assume success. If there's no match, callers should not use these anyway.
5869   LHS = TrueVal;
5870   RHS = FalseVal;
5871 
5872   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5873   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5874     return SPR;
5875 
5876   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5877   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5878     return SPR;
5879 
5880   // Look through 'not' ops to find disguised min/max.
5881   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5882   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5883   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5884     switch (Pred) {
5885     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5886     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5887     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5888     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5889     default: break;
5890     }
5891   }
5892 
5893   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5894   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5895   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5896     switch (Pred) {
5897     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5898     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5899     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5900     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5901     default: break;
5902     }
5903   }
5904 
5905   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5906     return {SPF_UNKNOWN, SPNB_NA, false};
5907 
5908   const APInt *C1;
5909   if (!match(CmpRHS, m_APInt(C1)))
5910     return {SPF_UNKNOWN, SPNB_NA, false};
5911 
5912   // An unsigned min/max can be written with a signed compare.
5913   const APInt *C2;
5914   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5915       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5916     // Is the sign bit set?
5917     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5918     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5919     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
5920       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5921 
5922     // Is the sign bit clear?
5923     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5924     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5925     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
5926       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5927   }
5928 
5929   return {SPF_UNKNOWN, SPNB_NA, false};
5930 }
5931 
5932 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5933   assert(X && Y && "Invalid operand");
5934 
5935   // X = sub (0, Y) || X = sub nsw (0, Y)
5936   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5937       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5938     return true;
5939 
5940   // Y = sub (0, X) || Y = sub nsw (0, X)
5941   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5942       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5943     return true;
5944 
5945   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5946   Value *A, *B;
5947   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5948                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5949          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5950                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5951 }
5952 
5953 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5954                                               FastMathFlags FMF,
5955                                               Value *CmpLHS, Value *CmpRHS,
5956                                               Value *TrueVal, Value *FalseVal,
5957                                               Value *&LHS, Value *&RHS,
5958                                               unsigned Depth) {
5959   if (CmpInst::isFPPredicate(Pred)) {
5960     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5961     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5962     // purpose of identifying min/max. Disregard vector constants with undefined
5963     // elements because those can not be back-propagated for analysis.
5964     Value *OutputZeroVal = nullptr;
5965     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5966         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
5967       OutputZeroVal = TrueVal;
5968     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5969              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
5970       OutputZeroVal = FalseVal;
5971 
5972     if (OutputZeroVal) {
5973       if (match(CmpLHS, m_AnyZeroFP()))
5974         CmpLHS = OutputZeroVal;
5975       if (match(CmpRHS, m_AnyZeroFP()))
5976         CmpRHS = OutputZeroVal;
5977     }
5978   }
5979 
5980   LHS = CmpLHS;
5981   RHS = CmpRHS;
5982 
5983   // Signed zero may return inconsistent results between implementations.
5984   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5985   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5986   // Therefore, we behave conservatively and only proceed if at least one of the
5987   // operands is known to not be zero or if we don't care about signed zero.
5988   switch (Pred) {
5989   default: break;
5990   // FIXME: Include OGT/OLT/UGT/ULT.
5991   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5992   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5993     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5994         !isKnownNonZero(CmpRHS))
5995       return {SPF_UNKNOWN, SPNB_NA, false};
5996   }
5997 
5998   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5999   bool Ordered = false;
6000 
6001   // When given one NaN and one non-NaN input:
6002   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6003   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6004   //     ordered comparison fails), which could be NaN or non-NaN.
6005   // so here we discover exactly what NaN behavior is required/accepted.
6006   if (CmpInst::isFPPredicate(Pred)) {
6007     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6008     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6009 
6010     if (LHSSafe && RHSSafe) {
6011       // Both operands are known non-NaN.
6012       NaNBehavior = SPNB_RETURNS_ANY;
6013     } else if (CmpInst::isOrdered(Pred)) {
6014       // An ordered comparison will return false when given a NaN, so it
6015       // returns the RHS.
6016       Ordered = true;
6017       if (LHSSafe)
6018         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6019         NaNBehavior = SPNB_RETURNS_NAN;
6020       else if (RHSSafe)
6021         NaNBehavior = SPNB_RETURNS_OTHER;
6022       else
6023         // Completely unsafe.
6024         return {SPF_UNKNOWN, SPNB_NA, false};
6025     } else {
6026       Ordered = false;
6027       // An unordered comparison will return true when given a NaN, so it
6028       // returns the LHS.
6029       if (LHSSafe)
6030         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6031         NaNBehavior = SPNB_RETURNS_OTHER;
6032       else if (RHSSafe)
6033         NaNBehavior = SPNB_RETURNS_NAN;
6034       else
6035         // Completely unsafe.
6036         return {SPF_UNKNOWN, SPNB_NA, false};
6037     }
6038   }
6039 
6040   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6041     std::swap(CmpLHS, CmpRHS);
6042     Pred = CmpInst::getSwappedPredicate(Pred);
6043     if (NaNBehavior == SPNB_RETURNS_NAN)
6044       NaNBehavior = SPNB_RETURNS_OTHER;
6045     else if (NaNBehavior == SPNB_RETURNS_OTHER)
6046       NaNBehavior = SPNB_RETURNS_NAN;
6047     Ordered = !Ordered;
6048   }
6049 
6050   // ([if]cmp X, Y) ? X : Y
6051   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6052     switch (Pred) {
6053     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6054     case ICmpInst::ICMP_UGT:
6055     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6056     case ICmpInst::ICMP_SGT:
6057     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6058     case ICmpInst::ICMP_ULT:
6059     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6060     case ICmpInst::ICMP_SLT:
6061     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6062     case FCmpInst::FCMP_UGT:
6063     case FCmpInst::FCMP_UGE:
6064     case FCmpInst::FCMP_OGT:
6065     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6066     case FCmpInst::FCMP_ULT:
6067     case FCmpInst::FCMP_ULE:
6068     case FCmpInst::FCMP_OLT:
6069     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6070     }
6071   }
6072 
6073   if (isKnownNegation(TrueVal, FalseVal)) {
6074     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6075     // match against either LHS or sext(LHS).
6076     auto MaybeSExtCmpLHS =
6077         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6078     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6079     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6080     if (match(TrueVal, MaybeSExtCmpLHS)) {
6081       // Set the return values. If the compare uses the negated value (-X >s 0),
6082       // swap the return values because the negated value is always 'RHS'.
6083       LHS = TrueVal;
6084       RHS = FalseVal;
6085       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6086         std::swap(LHS, RHS);
6087 
6088       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6089       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6090       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6091         return {SPF_ABS, SPNB_NA, false};
6092 
6093       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6094       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6095         return {SPF_ABS, SPNB_NA, false};
6096 
6097       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6098       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6099       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6100         return {SPF_NABS, SPNB_NA, false};
6101     }
6102     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6103       // Set the return values. If the compare uses the negated value (-X >s 0),
6104       // swap the return values because the negated value is always 'RHS'.
6105       LHS = FalseVal;
6106       RHS = TrueVal;
6107       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6108         std::swap(LHS, RHS);
6109 
6110       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6111       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6112       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6113         return {SPF_NABS, SPNB_NA, false};
6114 
6115       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6116       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6117       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6118         return {SPF_ABS, SPNB_NA, false};
6119     }
6120   }
6121 
6122   if (CmpInst::isIntPredicate(Pred))
6123     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6124 
6125   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6126   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6127   // semantics than minNum. Be conservative in such case.
6128   if (NaNBehavior != SPNB_RETURNS_ANY ||
6129       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6130        !isKnownNonZero(CmpRHS)))
6131     return {SPF_UNKNOWN, SPNB_NA, false};
6132 
6133   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6134 }
6135 
6136 /// Helps to match a select pattern in case of a type mismatch.
6137 ///
6138 /// The function processes the case when type of true and false values of a
6139 /// select instruction differs from type of the cmp instruction operands because
6140 /// of a cast instruction. The function checks if it is legal to move the cast
6141 /// operation after "select". If yes, it returns the new second value of
6142 /// "select" (with the assumption that cast is moved):
6143 /// 1. As operand of cast instruction when both values of "select" are same cast
6144 /// instructions.
6145 /// 2. As restored constant (by applying reverse cast operation) when the first
6146 /// value of the "select" is a cast operation and the second value is a
6147 /// constant.
6148 /// NOTE: We return only the new second value because the first value could be
6149 /// accessed as operand of cast instruction.
6150 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6151                               Instruction::CastOps *CastOp) {
6152   auto *Cast1 = dyn_cast<CastInst>(V1);
6153   if (!Cast1)
6154     return nullptr;
6155 
6156   *CastOp = Cast1->getOpcode();
6157   Type *SrcTy = Cast1->getSrcTy();
6158   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6159     // If V1 and V2 are both the same cast from the same type, look through V1.
6160     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6161       return Cast2->getOperand(0);
6162     return nullptr;
6163   }
6164 
6165   auto *C = dyn_cast<Constant>(V2);
6166   if (!C)
6167     return nullptr;
6168 
6169   Constant *CastedTo = nullptr;
6170   switch (*CastOp) {
6171   case Instruction::ZExt:
6172     if (CmpI->isUnsigned())
6173       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6174     break;
6175   case Instruction::SExt:
6176     if (CmpI->isSigned())
6177       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6178     break;
6179   case Instruction::Trunc:
6180     Constant *CmpConst;
6181     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6182         CmpConst->getType() == SrcTy) {
6183       // Here we have the following case:
6184       //
6185       //   %cond = cmp iN %x, CmpConst
6186       //   %tr = trunc iN %x to iK
6187       //   %narrowsel = select i1 %cond, iK %t, iK C
6188       //
6189       // We can always move trunc after select operation:
6190       //
6191       //   %cond = cmp iN %x, CmpConst
6192       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6193       //   %tr = trunc iN %widesel to iK
6194       //
6195       // Note that C could be extended in any way because we don't care about
6196       // upper bits after truncation. It can't be abs pattern, because it would
6197       // look like:
6198       //
6199       //   select i1 %cond, x, -x.
6200       //
6201       // So only min/max pattern could be matched. Such match requires widened C
6202       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6203       // CmpConst == C is checked below.
6204       CastedTo = CmpConst;
6205     } else {
6206       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6207     }
6208     break;
6209   case Instruction::FPTrunc:
6210     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6211     break;
6212   case Instruction::FPExt:
6213     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6214     break;
6215   case Instruction::FPToUI:
6216     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6217     break;
6218   case Instruction::FPToSI:
6219     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6220     break;
6221   case Instruction::UIToFP:
6222     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6223     break;
6224   case Instruction::SIToFP:
6225     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6226     break;
6227   default:
6228     break;
6229   }
6230 
6231   if (!CastedTo)
6232     return nullptr;
6233 
6234   // Make sure the cast doesn't lose any information.
6235   Constant *CastedBack =
6236       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6237   if (CastedBack != C)
6238     return nullptr;
6239 
6240   return CastedTo;
6241 }
6242 
6243 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6244                                              Instruction::CastOps *CastOp,
6245                                              unsigned Depth) {
6246   if (Depth >= MaxAnalysisRecursionDepth)
6247     return {SPF_UNKNOWN, SPNB_NA, false};
6248 
6249   SelectInst *SI = dyn_cast<SelectInst>(V);
6250   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6251 
6252   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6253   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6254 
6255   Value *TrueVal = SI->getTrueValue();
6256   Value *FalseVal = SI->getFalseValue();
6257 
6258   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6259                                             CastOp, Depth);
6260 }
6261 
6262 SelectPatternResult llvm::matchDecomposedSelectPattern(
6263     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6264     Instruction::CastOps *CastOp, unsigned Depth) {
6265   CmpInst::Predicate Pred = CmpI->getPredicate();
6266   Value *CmpLHS = CmpI->getOperand(0);
6267   Value *CmpRHS = CmpI->getOperand(1);
6268   FastMathFlags FMF;
6269   if (isa<FPMathOperator>(CmpI))
6270     FMF = CmpI->getFastMathFlags();
6271 
6272   // Bail out early.
6273   if (CmpI->isEquality())
6274     return {SPF_UNKNOWN, SPNB_NA, false};
6275 
6276   // Deal with type mismatches.
6277   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6278     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6279       // If this is a potential fmin/fmax with a cast to integer, then ignore
6280       // -0.0 because there is no corresponding integer value.
6281       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6282         FMF.setNoSignedZeros();
6283       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6284                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6285                                   LHS, RHS, Depth);
6286     }
6287     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6288       // If this is a potential fmin/fmax with a cast to integer, then ignore
6289       // -0.0 because there is no corresponding integer value.
6290       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6291         FMF.setNoSignedZeros();
6292       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6293                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6294                                   LHS, RHS, Depth);
6295     }
6296   }
6297   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6298                               LHS, RHS, Depth);
6299 }
6300 
6301 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6302   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6303   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6304   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6305   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6306   if (SPF == SPF_FMINNUM)
6307     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6308   if (SPF == SPF_FMAXNUM)
6309     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6310   llvm_unreachable("unhandled!");
6311 }
6312 
6313 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6314   if (SPF == SPF_SMIN) return SPF_SMAX;
6315   if (SPF == SPF_UMIN) return SPF_UMAX;
6316   if (SPF == SPF_SMAX) return SPF_SMIN;
6317   if (SPF == SPF_UMAX) return SPF_UMIN;
6318   llvm_unreachable("unhandled!");
6319 }
6320 
6321 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6322   switch (MinMaxID) {
6323   case Intrinsic::smax: return Intrinsic::smin;
6324   case Intrinsic::smin: return Intrinsic::smax;
6325   case Intrinsic::umax: return Intrinsic::umin;
6326   case Intrinsic::umin: return Intrinsic::umax;
6327   default: llvm_unreachable("Unexpected intrinsic");
6328   }
6329 }
6330 
6331 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6332   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6333 }
6334 
6335 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6336   switch (SPF) {
6337   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6338   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6339   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6340   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6341   default: llvm_unreachable("Unexpected flavor");
6342   }
6343 }
6344 
6345 std::pair<Intrinsic::ID, bool>
6346 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6347   // Check if VL contains select instructions that can be folded into a min/max
6348   // vector intrinsic and return the intrinsic if it is possible.
6349   // TODO: Support floating point min/max.
6350   bool AllCmpSingleUse = true;
6351   SelectPatternResult SelectPattern;
6352   SelectPattern.Flavor = SPF_UNKNOWN;
6353   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6354         Value *LHS, *RHS;
6355         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6356         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6357             CurrentPattern.Flavor == SPF_FMINNUM ||
6358             CurrentPattern.Flavor == SPF_FMAXNUM ||
6359             !I->getType()->isIntOrIntVectorTy())
6360           return false;
6361         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6362             SelectPattern.Flavor != CurrentPattern.Flavor)
6363           return false;
6364         SelectPattern = CurrentPattern;
6365         AllCmpSingleUse &=
6366             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6367         return true;
6368       })) {
6369     switch (SelectPattern.Flavor) {
6370     case SPF_SMIN:
6371       return {Intrinsic::smin, AllCmpSingleUse};
6372     case SPF_UMIN:
6373       return {Intrinsic::umin, AllCmpSingleUse};
6374     case SPF_SMAX:
6375       return {Intrinsic::smax, AllCmpSingleUse};
6376     case SPF_UMAX:
6377       return {Intrinsic::umax, AllCmpSingleUse};
6378     default:
6379       llvm_unreachable("unexpected select pattern flavor");
6380     }
6381   }
6382   return {Intrinsic::not_intrinsic, false};
6383 }
6384 
6385 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6386                                  Value *&Start, Value *&Step) {
6387   // Handle the case of a simple two-predecessor recurrence PHI.
6388   // There's a lot more that could theoretically be done here, but
6389   // this is sufficient to catch some interesting cases.
6390   if (P->getNumIncomingValues() != 2)
6391     return false;
6392 
6393   for (unsigned i = 0; i != 2; ++i) {
6394     Value *L = P->getIncomingValue(i);
6395     Value *R = P->getIncomingValue(!i);
6396     Operator *LU = dyn_cast<Operator>(L);
6397     if (!LU)
6398       continue;
6399     unsigned Opcode = LU->getOpcode();
6400 
6401     switch (Opcode) {
6402     default:
6403       continue;
6404     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6405     case Instruction::LShr:
6406     case Instruction::AShr:
6407     case Instruction::Shl:
6408     case Instruction::Add:
6409     case Instruction::Sub:
6410     case Instruction::And:
6411     case Instruction::Or:
6412     case Instruction::Mul: {
6413       Value *LL = LU->getOperand(0);
6414       Value *LR = LU->getOperand(1);
6415       // Find a recurrence.
6416       if (LL == P)
6417         L = LR;
6418       else if (LR == P)
6419         L = LL;
6420       else
6421         continue; // Check for recurrence with L and R flipped.
6422 
6423       break; // Match!
6424     }
6425     };
6426 
6427     // We have matched a recurrence of the form:
6428     //   %iv = [R, %entry], [%iv.next, %backedge]
6429     //   %iv.next = binop %iv, L
6430     // OR
6431     //   %iv = [R, %entry], [%iv.next, %backedge]
6432     //   %iv.next = binop L, %iv
6433     BO = cast<BinaryOperator>(LU);
6434     Start = R;
6435     Step = L;
6436     return true;
6437   }
6438   return false;
6439 }
6440 
6441 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6442                                  Value *&Start, Value *&Step) {
6443   BinaryOperator *BO = nullptr;
6444   P = dyn_cast<PHINode>(I->getOperand(0));
6445   if (!P)
6446     P = dyn_cast<PHINode>(I->getOperand(1));
6447   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6448 }
6449 
6450 /// Return true if "icmp Pred LHS RHS" is always true.
6451 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6452                             const Value *RHS, const DataLayout &DL,
6453                             unsigned Depth) {
6454   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6455   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6456     return true;
6457 
6458   switch (Pred) {
6459   default:
6460     return false;
6461 
6462   case CmpInst::ICMP_SLE: {
6463     const APInt *C;
6464 
6465     // LHS s<= LHS +_{nsw} C   if C >= 0
6466     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6467       return !C->isNegative();
6468     return false;
6469   }
6470 
6471   case CmpInst::ICMP_ULE: {
6472     const APInt *C;
6473 
6474     // LHS u<= LHS +_{nuw} C   for any C
6475     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6476       return true;
6477 
6478     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6479     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6480                                        const Value *&X,
6481                                        const APInt *&CA, const APInt *&CB) {
6482       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6483           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6484         return true;
6485 
6486       // If X & C == 0 then (X | C) == X +_{nuw} C
6487       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6488           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6489         KnownBits Known(CA->getBitWidth());
6490         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6491                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6492         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6493           return true;
6494       }
6495 
6496       return false;
6497     };
6498 
6499     const Value *X;
6500     const APInt *CLHS, *CRHS;
6501     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6502       return CLHS->ule(*CRHS);
6503 
6504     return false;
6505   }
6506   }
6507 }
6508 
6509 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6510 /// ALHS ARHS" is true.  Otherwise, return None.
6511 static Optional<bool>
6512 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6513                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6514                       const DataLayout &DL, unsigned Depth) {
6515   switch (Pred) {
6516   default:
6517     return None;
6518 
6519   case CmpInst::ICMP_SLT:
6520   case CmpInst::ICMP_SLE:
6521     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6522         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6523       return true;
6524     return None;
6525 
6526   case CmpInst::ICMP_ULT:
6527   case CmpInst::ICMP_ULE:
6528     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6529         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6530       return true;
6531     return None;
6532   }
6533 }
6534 
6535 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6536 /// when the operands match, but are swapped.
6537 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6538                           const Value *BLHS, const Value *BRHS,
6539                           bool &IsSwappedOps) {
6540 
6541   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6542   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6543   return IsMatchingOps || IsSwappedOps;
6544 }
6545 
6546 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6547 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6548 /// Otherwise, return None if we can't infer anything.
6549 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6550                                                     CmpInst::Predicate BPred,
6551                                                     bool AreSwappedOps) {
6552   // Canonicalize the predicate as if the operands were not commuted.
6553   if (AreSwappedOps)
6554     BPred = ICmpInst::getSwappedPredicate(BPred);
6555 
6556   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6557     return true;
6558   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6559     return false;
6560 
6561   return None;
6562 }
6563 
6564 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6565 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6566 /// Otherwise, return None if we can't infer anything.
6567 static Optional<bool>
6568 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6569                                  const ConstantInt *C1,
6570                                  CmpInst::Predicate BPred,
6571                                  const ConstantInt *C2) {
6572   ConstantRange DomCR =
6573       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6574   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6575   ConstantRange Intersection = DomCR.intersectWith(CR);
6576   ConstantRange Difference = DomCR.difference(CR);
6577   if (Intersection.isEmptySet())
6578     return false;
6579   if (Difference.isEmptySet())
6580     return true;
6581   return None;
6582 }
6583 
6584 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6585 /// false.  Otherwise, return None if we can't infer anything.
6586 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6587                                          CmpInst::Predicate BPred,
6588                                          const Value *BLHS, const Value *BRHS,
6589                                          const DataLayout &DL, bool LHSIsTrue,
6590                                          unsigned Depth) {
6591   Value *ALHS = LHS->getOperand(0);
6592   Value *ARHS = LHS->getOperand(1);
6593 
6594   // The rest of the logic assumes the LHS condition is true.  If that's not the
6595   // case, invert the predicate to make it so.
6596   CmpInst::Predicate APred =
6597       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6598 
6599   // Can we infer anything when the two compares have matching operands?
6600   bool AreSwappedOps;
6601   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6602     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6603             APred, BPred, AreSwappedOps))
6604       return Implication;
6605     // No amount of additional analysis will infer the second condition, so
6606     // early exit.
6607     return None;
6608   }
6609 
6610   // Can we infer anything when the LHS operands match and the RHS operands are
6611   // constants (not necessarily matching)?
6612   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6613     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6614             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6615       return Implication;
6616     // No amount of additional analysis will infer the second condition, so
6617     // early exit.
6618     return None;
6619   }
6620 
6621   if (APred == BPred)
6622     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6623   return None;
6624 }
6625 
6626 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6627 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6628 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6629 static Optional<bool>
6630 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6631                    const Value *RHSOp0, const Value *RHSOp1,
6632                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6633   // The LHS must be an 'or', 'and', or a 'select' instruction.
6634   assert((LHS->getOpcode() == Instruction::And ||
6635           LHS->getOpcode() == Instruction::Or ||
6636           LHS->getOpcode() == Instruction::Select) &&
6637          "Expected LHS to be 'and', 'or', or 'select'.");
6638 
6639   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6640 
6641   // If the result of an 'or' is false, then we know both legs of the 'or' are
6642   // false.  Similarly, if the result of an 'and' is true, then we know both
6643   // legs of the 'and' are true.
6644   const Value *ALHS, *ARHS;
6645   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6646       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6647     // FIXME: Make this non-recursion.
6648     if (Optional<bool> Implication = isImpliedCondition(
6649             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6650       return Implication;
6651     if (Optional<bool> Implication = isImpliedCondition(
6652             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6653       return Implication;
6654     return None;
6655   }
6656   return None;
6657 }
6658 
6659 Optional<bool>
6660 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6661                          const Value *RHSOp0, const Value *RHSOp1,
6662                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6663   // Bail out when we hit the limit.
6664   if (Depth == MaxAnalysisRecursionDepth)
6665     return None;
6666 
6667   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6668   // example.
6669   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6670     return None;
6671 
6672   Type *OpTy = LHS->getType();
6673   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6674 
6675   // FIXME: Extending the code below to handle vectors.
6676   if (OpTy->isVectorTy())
6677     return None;
6678 
6679   assert(OpTy->isIntegerTy(1) && "implied by above");
6680 
6681   // Both LHS and RHS are icmps.
6682   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6683   if (LHSCmp)
6684     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6685                               Depth);
6686 
6687   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6688   /// the RHS to be an icmp.
6689   /// FIXME: Add support for and/or/select on the RHS.
6690   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6691     if ((LHSI->getOpcode() == Instruction::And ||
6692          LHSI->getOpcode() == Instruction::Or ||
6693          LHSI->getOpcode() == Instruction::Select))
6694       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6695                                 Depth);
6696   }
6697   return None;
6698 }
6699 
6700 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6701                                         const DataLayout &DL, bool LHSIsTrue,
6702                                         unsigned Depth) {
6703   // LHS ==> RHS by definition
6704   if (LHS == RHS)
6705     return LHSIsTrue;
6706 
6707   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6708     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6709                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6710                               LHSIsTrue, Depth);
6711 
6712   if (Depth == MaxAnalysisRecursionDepth)
6713     return None;
6714 
6715   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6716   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6717   const Value *RHS1, *RHS2;
6718   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6719     if (Optional<bool> Imp =
6720             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6721       if (*Imp == true)
6722         return true;
6723     if (Optional<bool> Imp =
6724             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6725       if (*Imp == true)
6726         return true;
6727   }
6728   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
6729     if (Optional<bool> Imp =
6730             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6731       if (*Imp == false)
6732         return false;
6733     if (Optional<bool> Imp =
6734             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6735       if (*Imp == false)
6736         return false;
6737   }
6738 
6739   return None;
6740 }
6741 
6742 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6743 // condition dominating ContextI or nullptr, if no condition is found.
6744 static std::pair<Value *, bool>
6745 getDomPredecessorCondition(const Instruction *ContextI) {
6746   if (!ContextI || !ContextI->getParent())
6747     return {nullptr, false};
6748 
6749   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6750   // dominator tree (eg, from a SimplifyQuery) instead?
6751   const BasicBlock *ContextBB = ContextI->getParent();
6752   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6753   if (!PredBB)
6754     return {nullptr, false};
6755 
6756   // We need a conditional branch in the predecessor.
6757   Value *PredCond;
6758   BasicBlock *TrueBB, *FalseBB;
6759   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6760     return {nullptr, false};
6761 
6762   // The branch should get simplified. Don't bother simplifying this condition.
6763   if (TrueBB == FalseBB)
6764     return {nullptr, false};
6765 
6766   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6767          "Predecessor block does not point to successor?");
6768 
6769   // Is this condition implied by the predecessor condition?
6770   return {PredCond, TrueBB == ContextBB};
6771 }
6772 
6773 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6774                                              const Instruction *ContextI,
6775                                              const DataLayout &DL) {
6776   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6777   auto PredCond = getDomPredecessorCondition(ContextI);
6778   if (PredCond.first)
6779     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6780   return None;
6781 }
6782 
6783 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6784                                              const Value *LHS, const Value *RHS,
6785                                              const Instruction *ContextI,
6786                                              const DataLayout &DL) {
6787   auto PredCond = getDomPredecessorCondition(ContextI);
6788   if (PredCond.first)
6789     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6790                               PredCond.second);
6791   return None;
6792 }
6793 
6794 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6795                               APInt &Upper, const InstrInfoQuery &IIQ,
6796                               bool PreferSignedRange) {
6797   unsigned Width = Lower.getBitWidth();
6798   const APInt *C;
6799   switch (BO.getOpcode()) {
6800   case Instruction::Add:
6801     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6802       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6803       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6804 
6805       // If the caller expects a signed compare, then try to use a signed range.
6806       // Otherwise if both no-wraps are set, use the unsigned range because it
6807       // is never larger than the signed range. Example:
6808       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6809       if (PreferSignedRange && HasNSW && HasNUW)
6810         HasNUW = false;
6811 
6812       if (HasNUW) {
6813         // 'add nuw x, C' produces [C, UINT_MAX].
6814         Lower = *C;
6815       } else if (HasNSW) {
6816         if (C->isNegative()) {
6817           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6818           Lower = APInt::getSignedMinValue(Width);
6819           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6820         } else {
6821           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6822           Lower = APInt::getSignedMinValue(Width) + *C;
6823           Upper = APInt::getSignedMaxValue(Width) + 1;
6824         }
6825       }
6826     }
6827     break;
6828 
6829   case Instruction::And:
6830     if (match(BO.getOperand(1), m_APInt(C)))
6831       // 'and x, C' produces [0, C].
6832       Upper = *C + 1;
6833     break;
6834 
6835   case Instruction::Or:
6836     if (match(BO.getOperand(1), m_APInt(C)))
6837       // 'or x, C' produces [C, UINT_MAX].
6838       Lower = *C;
6839     break;
6840 
6841   case Instruction::AShr:
6842     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6843       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6844       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6845       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6846     } else if (match(BO.getOperand(0), m_APInt(C))) {
6847       unsigned ShiftAmount = Width - 1;
6848       if (!C->isZero() && IIQ.isExact(&BO))
6849         ShiftAmount = C->countTrailingZeros();
6850       if (C->isNegative()) {
6851         // 'ashr C, x' produces [C, C >> (Width-1)]
6852         Lower = *C;
6853         Upper = C->ashr(ShiftAmount) + 1;
6854       } else {
6855         // 'ashr C, x' produces [C >> (Width-1), C]
6856         Lower = C->ashr(ShiftAmount);
6857         Upper = *C + 1;
6858       }
6859     }
6860     break;
6861 
6862   case Instruction::LShr:
6863     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6864       // 'lshr x, C' produces [0, UINT_MAX >> C].
6865       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6866     } else if (match(BO.getOperand(0), m_APInt(C))) {
6867       // 'lshr C, x' produces [C >> (Width-1), C].
6868       unsigned ShiftAmount = Width - 1;
6869       if (!C->isZero() && IIQ.isExact(&BO))
6870         ShiftAmount = C->countTrailingZeros();
6871       Lower = C->lshr(ShiftAmount);
6872       Upper = *C + 1;
6873     }
6874     break;
6875 
6876   case Instruction::Shl:
6877     if (match(BO.getOperand(0), m_APInt(C))) {
6878       if (IIQ.hasNoUnsignedWrap(&BO)) {
6879         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6880         Lower = *C;
6881         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6882       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6883         if (C->isNegative()) {
6884           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6885           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6886           Lower = C->shl(ShiftAmount);
6887           Upper = *C + 1;
6888         } else {
6889           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6890           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6891           Lower = *C;
6892           Upper = C->shl(ShiftAmount) + 1;
6893         }
6894       }
6895     }
6896     break;
6897 
6898   case Instruction::SDiv:
6899     if (match(BO.getOperand(1), m_APInt(C))) {
6900       APInt IntMin = APInt::getSignedMinValue(Width);
6901       APInt IntMax = APInt::getSignedMaxValue(Width);
6902       if (C->isAllOnes()) {
6903         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6904         //    where C != -1 and C != 0 and C != 1
6905         Lower = IntMin + 1;
6906         Upper = IntMax + 1;
6907       } else if (C->countLeadingZeros() < Width - 1) {
6908         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6909         //    where C != -1 and C != 0 and C != 1
6910         Lower = IntMin.sdiv(*C);
6911         Upper = IntMax.sdiv(*C);
6912         if (Lower.sgt(Upper))
6913           std::swap(Lower, Upper);
6914         Upper = Upper + 1;
6915         assert(Upper != Lower && "Upper part of range has wrapped!");
6916       }
6917     } else if (match(BO.getOperand(0), m_APInt(C))) {
6918       if (C->isMinSignedValue()) {
6919         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6920         Lower = *C;
6921         Upper = Lower.lshr(1) + 1;
6922       } else {
6923         // 'sdiv C, x' produces [-|C|, |C|].
6924         Upper = C->abs() + 1;
6925         Lower = (-Upper) + 1;
6926       }
6927     }
6928     break;
6929 
6930   case Instruction::UDiv:
6931     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6932       // 'udiv x, C' produces [0, UINT_MAX / C].
6933       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6934     } else if (match(BO.getOperand(0), m_APInt(C))) {
6935       // 'udiv C, x' produces [0, C].
6936       Upper = *C + 1;
6937     }
6938     break;
6939 
6940   case Instruction::SRem:
6941     if (match(BO.getOperand(1), m_APInt(C))) {
6942       // 'srem x, C' produces (-|C|, |C|).
6943       Upper = C->abs();
6944       Lower = (-Upper) + 1;
6945     }
6946     break;
6947 
6948   case Instruction::URem:
6949     if (match(BO.getOperand(1), m_APInt(C)))
6950       // 'urem x, C' produces [0, C).
6951       Upper = *C;
6952     break;
6953 
6954   default:
6955     break;
6956   }
6957 }
6958 
6959 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6960                                   APInt &Upper) {
6961   unsigned Width = Lower.getBitWidth();
6962   const APInt *C;
6963   switch (II.getIntrinsicID()) {
6964   case Intrinsic::ctpop:
6965   case Intrinsic::ctlz:
6966   case Intrinsic::cttz:
6967     // Maximum of set/clear bits is the bit width.
6968     assert(Lower == 0 && "Expected lower bound to be zero");
6969     Upper = Width + 1;
6970     break;
6971   case Intrinsic::uadd_sat:
6972     // uadd.sat(x, C) produces [C, UINT_MAX].
6973     if (match(II.getOperand(0), m_APInt(C)) ||
6974         match(II.getOperand(1), m_APInt(C)))
6975       Lower = *C;
6976     break;
6977   case Intrinsic::sadd_sat:
6978     if (match(II.getOperand(0), m_APInt(C)) ||
6979         match(II.getOperand(1), m_APInt(C))) {
6980       if (C->isNegative()) {
6981         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6982         Lower = APInt::getSignedMinValue(Width);
6983         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6984       } else {
6985         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6986         Lower = APInt::getSignedMinValue(Width) + *C;
6987         Upper = APInt::getSignedMaxValue(Width) + 1;
6988       }
6989     }
6990     break;
6991   case Intrinsic::usub_sat:
6992     // usub.sat(C, x) produces [0, C].
6993     if (match(II.getOperand(0), m_APInt(C)))
6994       Upper = *C + 1;
6995     // usub.sat(x, C) produces [0, UINT_MAX - C].
6996     else if (match(II.getOperand(1), m_APInt(C)))
6997       Upper = APInt::getMaxValue(Width) - *C + 1;
6998     break;
6999   case Intrinsic::ssub_sat:
7000     if (match(II.getOperand(0), m_APInt(C))) {
7001       if (C->isNegative()) {
7002         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7003         Lower = APInt::getSignedMinValue(Width);
7004         Upper = *C - APInt::getSignedMinValue(Width) + 1;
7005       } else {
7006         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7007         Lower = *C - APInt::getSignedMaxValue(Width);
7008         Upper = APInt::getSignedMaxValue(Width) + 1;
7009       }
7010     } else if (match(II.getOperand(1), m_APInt(C))) {
7011       if (C->isNegative()) {
7012         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7013         Lower = APInt::getSignedMinValue(Width) - *C;
7014         Upper = APInt::getSignedMaxValue(Width) + 1;
7015       } else {
7016         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7017         Lower = APInt::getSignedMinValue(Width);
7018         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7019       }
7020     }
7021     break;
7022   case Intrinsic::umin:
7023   case Intrinsic::umax:
7024   case Intrinsic::smin:
7025   case Intrinsic::smax:
7026     if (!match(II.getOperand(0), m_APInt(C)) &&
7027         !match(II.getOperand(1), m_APInt(C)))
7028       break;
7029 
7030     switch (II.getIntrinsicID()) {
7031     case Intrinsic::umin:
7032       Upper = *C + 1;
7033       break;
7034     case Intrinsic::umax:
7035       Lower = *C;
7036       break;
7037     case Intrinsic::smin:
7038       Lower = APInt::getSignedMinValue(Width);
7039       Upper = *C + 1;
7040       break;
7041     case Intrinsic::smax:
7042       Lower = *C;
7043       Upper = APInt::getSignedMaxValue(Width) + 1;
7044       break;
7045     default:
7046       llvm_unreachable("Must be min/max intrinsic");
7047     }
7048     break;
7049   case Intrinsic::abs:
7050     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7051     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7052     if (match(II.getOperand(1), m_One()))
7053       Upper = APInt::getSignedMaxValue(Width) + 1;
7054     else
7055       Upper = APInt::getSignedMinValue(Width) + 1;
7056     break;
7057   default:
7058     break;
7059   }
7060 }
7061 
7062 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7063                                       APInt &Upper, const InstrInfoQuery &IIQ) {
7064   const Value *LHS = nullptr, *RHS = nullptr;
7065   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7066   if (R.Flavor == SPF_UNKNOWN)
7067     return;
7068 
7069   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7070 
7071   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7072     // If the negation part of the abs (in RHS) has the NSW flag,
7073     // then the result of abs(X) is [0..SIGNED_MAX],
7074     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7075     Lower = APInt::getZero(BitWidth);
7076     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7077         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7078       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7079     else
7080       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7081     return;
7082   }
7083 
7084   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7085     // The result of -abs(X) is <= 0.
7086     Lower = APInt::getSignedMinValue(BitWidth);
7087     Upper = APInt(BitWidth, 1);
7088     return;
7089   }
7090 
7091   const APInt *C;
7092   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7093     return;
7094 
7095   switch (R.Flavor) {
7096     case SPF_UMIN:
7097       Upper = *C + 1;
7098       break;
7099     case SPF_UMAX:
7100       Lower = *C;
7101       break;
7102     case SPF_SMIN:
7103       Lower = APInt::getSignedMinValue(BitWidth);
7104       Upper = *C + 1;
7105       break;
7106     case SPF_SMAX:
7107       Lower = *C;
7108       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7109       break;
7110     default:
7111       break;
7112   }
7113 }
7114 
7115 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7116   // The maximum representable value of a half is 65504. For floats the maximum
7117   // value is 3.4e38 which requires roughly 129 bits.
7118   unsigned BitWidth = I->getType()->getScalarSizeInBits();
7119   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7120     return;
7121   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7122     Lower = APInt(BitWidth, -65504);
7123     Upper = APInt(BitWidth, 65505);
7124   }
7125 
7126   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7127     // For a fptoui the lower limit is left as 0.
7128     Upper = APInt(BitWidth, 65505);
7129   }
7130 }
7131 
7132 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7133                                          bool UseInstrInfo, AssumptionCache *AC,
7134                                          const Instruction *CtxI,
7135                                          const DominatorTree *DT,
7136                                          unsigned Depth) {
7137   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7138 
7139   if (Depth == MaxAnalysisRecursionDepth)
7140     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7141 
7142   const APInt *C;
7143   if (match(V, m_APInt(C)))
7144     return ConstantRange(*C);
7145 
7146   InstrInfoQuery IIQ(UseInstrInfo);
7147   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7148   APInt Lower = APInt(BitWidth, 0);
7149   APInt Upper = APInt(BitWidth, 0);
7150   if (auto *BO = dyn_cast<BinaryOperator>(V))
7151     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7152   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7153     setLimitsForIntrinsic(*II, Lower, Upper);
7154   else if (auto *SI = dyn_cast<SelectInst>(V))
7155     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7156   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7157     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7158 
7159   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7160 
7161   if (auto *I = dyn_cast<Instruction>(V))
7162     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7163       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7164 
7165   if (CtxI && AC) {
7166     // Try to restrict the range based on information from assumptions.
7167     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7168       if (!AssumeVH)
7169         continue;
7170       CallInst *I = cast<CallInst>(AssumeVH);
7171       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7172              "Got assumption for the wrong function!");
7173       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7174              "must be an assume intrinsic");
7175 
7176       if (!isValidAssumeForContext(I, CtxI, DT))
7177         continue;
7178       Value *Arg = I->getArgOperand(0);
7179       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7180       // Currently we just use information from comparisons.
7181       if (!Cmp || Cmp->getOperand(0) != V)
7182         continue;
7183       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7184       ConstantRange RHS =
7185           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7186                                UseInstrInfo, AC, I, DT, Depth + 1);
7187       CR = CR.intersectWith(
7188           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7189     }
7190   }
7191 
7192   return CR;
7193 }
7194 
7195 static Optional<int64_t>
7196 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7197   // Skip over the first indices.
7198   gep_type_iterator GTI = gep_type_begin(GEP);
7199   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7200     /*skip along*/;
7201 
7202   // Compute the offset implied by the rest of the indices.
7203   int64_t Offset = 0;
7204   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7205     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7206     if (!OpC)
7207       return None;
7208     if (OpC->isZero())
7209       continue; // No offset.
7210 
7211     // Handle struct indices, which add their field offset to the pointer.
7212     if (StructType *STy = GTI.getStructTypeOrNull()) {
7213       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7214       continue;
7215     }
7216 
7217     // Otherwise, we have a sequential type like an array or fixed-length
7218     // vector. Multiply the index by the ElementSize.
7219     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7220     if (Size.isScalable())
7221       return None;
7222     Offset += Size.getFixedSize() * OpC->getSExtValue();
7223   }
7224 
7225   return Offset;
7226 }
7227 
7228 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7229                                         const DataLayout &DL) {
7230   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7231   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7232   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7233   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7234 
7235   // Handle the trivial case first.
7236   if (Ptr1 == Ptr2)
7237     return Offset2.getSExtValue() - Offset1.getSExtValue();
7238 
7239   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7240   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7241 
7242   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7243   // base.  After that base, they may have some number of common (and
7244   // potentially variable) indices.  After that they handle some constant
7245   // offset, which determines their offset from each other.  At this point, we
7246   // handle no other case.
7247   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7248       GEP1->getSourceElementType() != GEP2->getSourceElementType())
7249     return None;
7250 
7251   // Skip any common indices and track the GEP types.
7252   unsigned Idx = 1;
7253   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7254     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7255       break;
7256 
7257   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7258   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7259   if (!IOffset1 || !IOffset2)
7260     return None;
7261   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7262          Offset1.getSExtValue();
7263 }
7264