1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 134 const DataLayout &DL, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 assert(LHS->getType() == RHS->getType() && 138 "LHS and RHS should have the same type"); 139 assert(LHS->getType()->isIntOrIntVectorTy() && 140 "LHS and RHS should be integers"); 141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 147 } 148 149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 150 unsigned Depth, const Query &Q); 151 152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 153 const DataLayout &DL, unsigned Depth, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 157 Query(DL, AC, safeCxtI(V, CxtI), DT)); 158 } 159 160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 161 const Query &Q); 162 163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 164 bool OrZero, 165 unsigned Depth, AssumptionCache *AC, 166 const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 173 174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 175 AssumptionCache *AC, const Instruction *CxtI, 176 const DominatorTree *DT) { 177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 181 unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 bool NonNegative, Negative; 185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 186 return NonNegative; 187 } 188 189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 if (auto *CI = dyn_cast<ConstantInt>(V)) 193 return CI->getValue().isStrictlyPositive(); 194 195 // TODO: We'd doing two recursive queries here. We should factor this such 196 // that only a single query is needed. 197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 199 } 200 201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 bool NonNegative, Negative; 205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 206 return Negative; 207 } 208 209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 210 211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 212 const DataLayout &DL, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT) { 215 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 216 safeCxtI(V1, safeCxtI(V2, CxtI)), 217 DT)); 218 } 219 220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 221 const Query &Q); 222 223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 224 const DataLayout &DL, 225 unsigned Depth, AssumptionCache *AC, 226 const Instruction *CxtI, const DominatorTree *DT) { 227 return ::MaskedValueIsZero(V, Mask, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 232 const Query &Q); 233 234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 242 bool NSW, 243 APInt &KnownZero, APInt &KnownOne, 244 APInt &KnownZero2, APInt &KnownOne2, 245 unsigned Depth, const Query &Q) { 246 if (!Add) { 247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 248 // We know that the top bits of C-X are clear if X contains less bits 249 // than C (i.e. no wrap-around can happen). For example, 20-X is 250 // positive if we can prove that X is >= 0 and < 16. 251 if (!CLHS->getValue().isNegative()) { 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 254 // NLZ can't be BitWidth with no sign bit 255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 257 258 // If all of the MaskV bits are known to be zero, then we know the 259 // output top bits are zero, because we now know that the output is 260 // from [0-C]. 261 if ((KnownZero2 & MaskV) == MaskV) { 262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 263 // Top bits known zero. 264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 265 } 266 } 267 } 268 } 269 270 unsigned BitWidth = KnownZero.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 APInt CarryIn(BitWidth, 0); 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(KnownZero2, KnownOne2); 283 CarryIn.setBit(0); 284 } 285 286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 295 APInt RHSKnown = KnownZero2 | KnownOne2; 296 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnown & RHSKnown & CarryKnown; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownZero = ~PossibleSumOne & Known; 304 KnownOne = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isNegative()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 312 KnownZero |= APInt::getSignBit(BitWidth); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 316 KnownOne |= APInt::getSignBit(BitWidth); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 APInt &KnownZero, APInt &KnownOne, 323 APInt &KnownZero2, APInt &KnownOne2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = KnownZero.getBitWidth(); 326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 339 bool isKnownNegativeOp1 = KnownOne.isNegative(); 340 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 // If low bits are zero in either operand, output low known-0 bits. 355 // Also compute a conservative estimate for high known-0 bits. 356 // More trickiness is possible, but this is sufficient for the 357 // interesting case of alignment computation. 358 KnownOne.clearAllBits(); 359 unsigned TrailZ = KnownZero.countTrailingOnes() + 360 KnownZero2.countTrailingOnes(); 361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 362 KnownZero2.countLeadingOnes(), 363 BitWidth) - BitWidth; 364 365 TrailZ = std::min(TrailZ, BitWidth); 366 LeadZ = std::min(LeadZ, BitWidth); 367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 368 APInt::getHighBitsSet(BitWidth, LeadZ); 369 370 // Only make use of no-wrap flags if we failed to compute the sign bit 371 // directly. This matters if the multiplication always overflows, in 372 // which case we prefer to follow the result of the direct computation, 373 // though as the program is invoking undefined behaviour we can choose 374 // whatever we like here. 375 if (isKnownNonNegative && !KnownOne.isNegative()) 376 KnownZero.setBit(BitWidth - 1); 377 else if (isKnownNegative && !KnownZero.isNegative()) 378 KnownOne.setBit(BitWidth - 1); 379 } 380 381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 382 APInt &KnownZero, 383 APInt &KnownOne) { 384 unsigned BitWidth = KnownZero.getBitWidth(); 385 unsigned NumRanges = Ranges.getNumOperands() / 2; 386 assert(NumRanges >= 1); 387 388 KnownZero.setAllBits(); 389 KnownOne.setAllBits(); 390 391 for (unsigned i = 0; i < NumRanges; ++i) { 392 ConstantInt *Lower = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 394 ConstantInt *Upper = 395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 396 ConstantRange Range(Lower->getValue(), Upper->getValue()); 397 398 // The first CommonPrefixBits of all values in Range are equal. 399 unsigned CommonPrefixBits = 400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 401 402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 403 KnownOne &= Range.getUnsignedMax() & Mask; 404 KnownZero &= ~Range.getUnsignedMax() & Mask; 405 } 406 } 407 408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 409 SmallVector<const Value *, 16> WorkSet(1, I); 410 SmallPtrSet<const Value *, 32> Visited; 411 SmallPtrSet<const Value *, 16> EphValues; 412 413 // The instruction defining an assumption's condition itself is always 414 // considered ephemeral to that assumption (even if it has other 415 // non-ephemeral users). See r246696's test case for an example. 416 if (is_contained(I->operands(), E)) 417 return true; 418 419 while (!WorkSet.empty()) { 420 const Value *V = WorkSet.pop_back_val(); 421 if (!Visited.insert(V).second) 422 continue; 423 424 // If all uses of this value are ephemeral, then so is this value. 425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 426 if (V == E) 427 return true; 428 429 EphValues.insert(V); 430 if (const User *U = dyn_cast<User>(V)) 431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 432 J != JE; ++J) { 433 if (isSafeToSpeculativelyExecute(*J)) 434 WorkSet.push_back(*J); 435 } 436 } 437 } 438 439 return false; 440 } 441 442 // Is this an intrinsic that cannot be speculated but also cannot trap? 443 static bool isAssumeLikeIntrinsic(const Instruction *I) { 444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 445 if (Function *F = CI->getCalledFunction()) 446 switch (F->getIntrinsicID()) { 447 default: break; 448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 449 case Intrinsic::assume: 450 case Intrinsic::dbg_declare: 451 case Intrinsic::dbg_value: 452 case Intrinsic::invariant_start: 453 case Intrinsic::invariant_end: 454 case Intrinsic::lifetime_start: 455 case Intrinsic::lifetime_end: 456 case Intrinsic::objectsize: 457 case Intrinsic::ptr_annotation: 458 case Intrinsic::var_annotation: 459 return true; 460 } 461 462 return false; 463 } 464 465 bool llvm::isValidAssumeForContext(const Instruction *Inv, 466 const Instruction *CxtI, 467 const DominatorTree *DT) { 468 469 // There are two restrictions on the use of an assume: 470 // 1. The assume must dominate the context (or the control flow must 471 // reach the assume whenever it reaches the context). 472 // 2. The context must not be in the assume's set of ephemeral values 473 // (otherwise we will use the assume to prove that the condition 474 // feeding the assume is trivially true, thus causing the removal of 475 // the assume). 476 477 if (DT) { 478 if (DT->dominates(Inv, CxtI)) 479 return true; 480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 481 // We don't have a DT, but this trivially dominates. 482 return true; 483 } 484 485 // With or without a DT, the only remaining case we will check is if the 486 // instructions are in the same BB. Give up if that is not the case. 487 if (Inv->getParent() != CxtI->getParent()) 488 return false; 489 490 // If we have a dom tree, then we now know that the assume doens't dominate 491 // the other instruction. If we don't have a dom tree then we can check if 492 // the assume is first in the BB. 493 if (!DT) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 } 501 502 // The context comes first, but they're both in the same block. Make sure 503 // there is nothing in between that might interrupt the control flow. 504 for (BasicBlock::const_iterator I = 505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 506 I != IE; ++I) 507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 508 return false; 509 510 return !isEphemeralValueOf(Inv, CxtI); 511 } 512 513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 514 APInt &KnownOne, unsigned Depth, 515 const Query &Q) { 516 // Use of assumptions is context-sensitive. If we don't have a context, we 517 // cannot use them! 518 if (!Q.AC || !Q.CxtI) 519 return; 520 521 unsigned BitWidth = KnownZero.getBitWidth(); 522 523 for (auto &AssumeVH : Q.AC->assumptions()) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 KnownZero.clearAllBits(); 544 KnownOne.setAllBits(); 545 return; 546 } 547 548 // The remaining tests are all recursive, so bail out if we hit the limit. 549 if (Depth == MaxDepth) 550 continue; 551 552 Value *A, *B; 553 auto m_V = m_CombineOr(m_Specific(V), 554 m_CombineOr(m_PtrToInt(m_Specific(V)), 555 m_BitCast(m_Specific(V)))); 556 557 CmpInst::Predicate Pred; 558 ConstantInt *C; 559 // assume(v = a) 560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 564 KnownZero |= RHSKnownZero; 565 KnownOne |= RHSKnownOne; 566 // assume(v & b = a) 567 } else if (match(Arg, 568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 569 Pred == ICmpInst::ICMP_EQ && 570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 575 576 // For those bits in the mask that are known to be one, we can propagate 577 // known bits from the RHS to V. 578 KnownZero |= RHSKnownZero & MaskKnownOne; 579 KnownOne |= RHSKnownOne & MaskKnownOne; 580 // assume(~(v & b) = a) 581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 582 m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && 584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 589 590 // For those bits in the mask that are known to be one, we can propagate 591 // inverted known bits from the RHS to V. 592 KnownZero |= RHSKnownOne & MaskKnownOne; 593 KnownOne |= RHSKnownZero & MaskKnownOne; 594 // assume(v | b = a) 595 } else if (match(Arg, 596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 597 Pred == ICmpInst::ICMP_EQ && 598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 603 604 // For those bits in B that are known to be zero, we can propagate known 605 // bits from the RHS to V. 606 KnownZero |= RHSKnownZero & BKnownZero; 607 KnownOne |= RHSKnownOne & BKnownZero; 608 // assume(~(v | b) = a) 609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 610 m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && 612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 617 618 // For those bits in B that are known to be zero, we can propagate 619 // inverted known bits from the RHS to V. 620 KnownZero |= RHSKnownOne & BKnownZero; 621 KnownOne |= RHSKnownZero & BKnownZero; 622 // assume(v ^ b = a) 623 } else if (match(Arg, 624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 625 Pred == ICmpInst::ICMP_EQ && 626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 631 632 // For those bits in B that are known to be zero, we can propagate known 633 // bits from the RHS to V. For those bits in B that are known to be one, 634 // we can propagate inverted known bits from the RHS to V. 635 KnownZero |= RHSKnownZero & BKnownZero; 636 KnownOne |= RHSKnownOne & BKnownZero; 637 KnownZero |= RHSKnownOne & BKnownOne; 638 KnownOne |= RHSKnownZero & BKnownOne; 639 // assume(~(v ^ b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 648 649 // For those bits in B that are known to be zero, we can propagate 650 // inverted known bits from the RHS to V. For those bits in B that are 651 // known to be one, we can propagate known bits from the RHS to V. 652 KnownZero |= RHSKnownOne & BKnownZero; 653 KnownOne |= RHSKnownZero & BKnownZero; 654 KnownZero |= RHSKnownZero & BKnownOne; 655 KnownOne |= RHSKnownOne & BKnownOne; 656 // assume(v << c = a) 657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 658 m_Value(A))) && 659 Pred == ICmpInst::ICMP_EQ && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 663 // For those bits in RHS that are known, we can propagate them to known 664 // bits in V shifted to the right by C. 665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 KnownZero |= RHSKnownZero << C->getZExtValue(); 690 KnownOne |= RHSKnownOne << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne << C->getZExtValue(); 703 KnownOne |= RHSKnownZero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 710 711 if (RHSKnownZero.isNegative()) { 712 // We know that the sign bit is zero. 713 KnownZero |= APInt::getSignBit(BitWidth); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 721 722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 723 // We know that the sign bit is zero. 724 KnownZero |= APInt::getSignBit(BitWidth); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownOne.isNegative()) { 734 // We know that the sign bit is one. 735 KnownOne |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 745 // We know that the sign bit is one. 746 KnownOne |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 KnownZero |= 757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 758 // assume(v <_u c) 759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 760 Pred == ICmpInst::ICMP_ULT && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 764 765 // Whatever high bits in c are zero are known to be zero (if c is a power 766 // of 2, then one more). 767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 768 KnownZero |= 769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 770 else 771 KnownZero |= 772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 } 776 777 // Compute known bits from a shift operator, including those with a 778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 781 // functors that, given the known-zero or known-one bits respectively, and a 782 // shift amount, compute the implied known-zero or known-one bits of the shift 783 // operator's result respectively for that shift amount. The results from calling 784 // KZF and KOF are conservatively combined for all permitted shift amounts. 785 template <typename KZFunctor, typename KOFunctor> 786 static void computeKnownBitsFromShiftOperator(const Operator *I, 787 APInt &KnownZero, APInt &KnownOne, 788 APInt &KnownZero2, APInt &KnownOne2, 789 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 790 unsigned BitWidth = KnownZero.getBitWidth(); 791 792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 794 795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 796 KnownZero = KZF(KnownZero, ShiftAmt); 797 KnownOne = KOF(KnownOne, ShiftAmt); 798 return; 799 } 800 801 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 802 803 // Note: We cannot use KnownZero.getLimitedValue() here, because if 804 // BitWidth > 64 and any upper bits are known, we'll end up returning the 805 // limit value (which implies all bits are known). 806 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 807 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 808 809 // It would be more-clearly correct to use the two temporaries for this 810 // calculation. Reusing the APInts here to prevent unnecessary allocations. 811 KnownZero.clearAllBits(); 812 KnownOne.clearAllBits(); 813 814 // If we know the shifter operand is nonzero, we can sometimes infer more 815 // known bits. However this is expensive to compute, so be lazy about it and 816 // only compute it when absolutely necessary. 817 Optional<bool> ShifterOperandIsNonZero; 818 819 // Early exit if we can't constrain any well-defined shift amount. 820 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 821 ShifterOperandIsNonZero = 822 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 823 if (!*ShifterOperandIsNonZero) 824 return; 825 } 826 827 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 828 829 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 830 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 831 // Combine the shifted known input bits only for those shift amounts 832 // compatible with its known constraints. 833 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 834 continue; 835 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 836 continue; 837 // If we know the shifter is nonzero, we may be able to infer more known 838 // bits. This check is sunk down as far as possible to avoid the expensive 839 // call to isKnownNonZero if the cheaper checks above fail. 840 if (ShiftAmt == 0) { 841 if (!ShifterOperandIsNonZero.hasValue()) 842 ShifterOperandIsNonZero = 843 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 844 if (*ShifterOperandIsNonZero) 845 continue; 846 } 847 848 KnownZero &= KZF(KnownZero2, ShiftAmt); 849 KnownOne &= KOF(KnownOne2, ShiftAmt); 850 } 851 852 // If there are no compatible shift amounts, then we've proven that the shift 853 // amount must be >= the BitWidth, and the result is undefined. We could 854 // return anything we'd like, but we need to make sure the sets of known bits 855 // stay disjoint (it should be better for some other code to actually 856 // propagate the undef than to pick a value here using known bits). 857 if ((KnownZero & KnownOne) != 0) { 858 KnownZero.clearAllBits(); 859 KnownOne.clearAllBits(); 860 } 861 } 862 863 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 864 APInt &KnownOne, unsigned Depth, 865 const Query &Q) { 866 unsigned BitWidth = KnownZero.getBitWidth(); 867 868 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 869 switch (I->getOpcode()) { 870 default: break; 871 case Instruction::Load: 872 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 873 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 874 break; 875 case Instruction::And: { 876 // If either the LHS or the RHS are Zero, the result is zero. 877 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 878 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 879 880 // Output known-1 bits are only known if set in both the LHS & RHS. 881 KnownOne &= KnownOne2; 882 // Output known-0 are known to be clear if zero in either the LHS | RHS. 883 KnownZero |= KnownZero2; 884 885 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 886 // here we handle the more general case of adding any odd number by 887 // matching the form add(x, add(x, y)) where y is odd. 888 // TODO: This could be generalized to clearing any bit set in y where the 889 // following bit is known to be unset in y. 890 Value *Y = nullptr; 891 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 892 m_Value(Y))) || 893 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 894 m_Value(Y)))) { 895 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 896 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 897 if (KnownOne3.countTrailingOnes() > 0) 898 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 899 } 900 break; 901 } 902 case Instruction::Or: { 903 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 904 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 905 906 // Output known-0 bits are only known if clear in both the LHS & RHS. 907 KnownZero &= KnownZero2; 908 // Output known-1 are known to be set if set in either the LHS | RHS. 909 KnownOne |= KnownOne2; 910 break; 911 } 912 case Instruction::Xor: { 913 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 914 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 915 916 // Output known-0 bits are known if clear or set in both the LHS & RHS. 917 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 918 // Output known-1 are known to be set if set in only one of the LHS, RHS. 919 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 920 KnownZero = KnownZeroOut; 921 break; 922 } 923 case Instruction::Mul: { 924 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 925 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 926 KnownOne, KnownZero2, KnownOne2, Depth, Q); 927 break; 928 } 929 case Instruction::UDiv: { 930 // For the purposes of computing leading zeros we can conservatively 931 // treat a udiv as a logical right shift by the power of 2 known to 932 // be less than the denominator. 933 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 934 unsigned LeadZ = KnownZero2.countLeadingOnes(); 935 936 KnownOne2.clearAllBits(); 937 KnownZero2.clearAllBits(); 938 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 939 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 940 if (RHSUnknownLeadingOnes != BitWidth) 941 LeadZ = std::min(BitWidth, 942 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 943 944 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 945 break; 946 } 947 case Instruction::Select: { 948 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 949 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 950 951 const Value *LHS; 952 const Value *RHS; 953 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 954 if (SelectPatternResult::isMinOrMax(SPF)) { 955 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 956 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 957 } else { 958 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 959 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 960 } 961 962 unsigned MaxHighOnes = 0; 963 unsigned MaxHighZeros = 0; 964 if (SPF == SPF_SMAX) { 965 // If both sides are negative, the result is negative. 966 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 967 // We can derive a lower bound on the result by taking the max of the 968 // leading one bits. 969 MaxHighOnes = 970 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 971 // If either side is non-negative, the result is non-negative. 972 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 973 MaxHighZeros = 1; 974 } else if (SPF == SPF_SMIN) { 975 // If both sides are non-negative, the result is non-negative. 976 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 977 // We can derive an upper bound on the result by taking the max of the 978 // leading zero bits. 979 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 980 KnownZero2.countLeadingOnes()); 981 // If either side is negative, the result is negative. 982 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 983 MaxHighOnes = 1; 984 } else if (SPF == SPF_UMAX) { 985 // We can derive a lower bound on the result by taking the max of the 986 // leading one bits. 987 MaxHighOnes = 988 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 989 } else if (SPF == SPF_UMIN) { 990 // We can derive an upper bound on the result by taking the max of the 991 // leading zero bits. 992 MaxHighZeros = 993 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 994 } 995 996 // Only known if known in both the LHS and RHS. 997 KnownOne &= KnownOne2; 998 KnownZero &= KnownZero2; 999 if (MaxHighOnes > 0) 1000 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1001 if (MaxHighZeros > 0) 1002 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1003 break; 1004 } 1005 case Instruction::FPTrunc: 1006 case Instruction::FPExt: 1007 case Instruction::FPToUI: 1008 case Instruction::FPToSI: 1009 case Instruction::SIToFP: 1010 case Instruction::UIToFP: 1011 break; // Can't work with floating point. 1012 case Instruction::PtrToInt: 1013 case Instruction::IntToPtr: 1014 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1015 // FALL THROUGH and handle them the same as zext/trunc. 1016 case Instruction::ZExt: 1017 case Instruction::Trunc: { 1018 Type *SrcTy = I->getOperand(0)->getType(); 1019 1020 unsigned SrcBitWidth; 1021 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1022 // which fall through here. 1023 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1024 1025 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1026 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1027 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1028 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1029 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1030 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1031 // Any top bits are known to be zero. 1032 if (BitWidth > SrcBitWidth) 1033 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1034 break; 1035 } 1036 case Instruction::BitCast: { 1037 Type *SrcTy = I->getOperand(0)->getType(); 1038 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1039 // TODO: For now, not handling conversions like: 1040 // (bitcast i64 %x to <2 x i32>) 1041 !I->getType()->isVectorTy()) { 1042 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1043 break; 1044 } 1045 break; 1046 } 1047 case Instruction::SExt: { 1048 // Compute the bits in the result that are not present in the input. 1049 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1050 1051 KnownZero = KnownZero.trunc(SrcBitWidth); 1052 KnownOne = KnownOne.trunc(SrcBitWidth); 1053 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1054 KnownZero = KnownZero.zext(BitWidth); 1055 KnownOne = KnownOne.zext(BitWidth); 1056 1057 // If the sign bit of the input is known set or clear, then we know the 1058 // top bits of the result. 1059 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1060 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1061 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1062 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1063 break; 1064 } 1065 case Instruction::Shl: { 1066 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1067 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1068 return (KnownZero << ShiftAmt) | 1069 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1070 }; 1071 1072 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1073 return KnownOne << ShiftAmt; 1074 }; 1075 1076 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1077 KnownZero2, KnownOne2, Depth, Q, KZF, 1078 KOF); 1079 break; 1080 } 1081 case Instruction::LShr: { 1082 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1083 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1084 return APIntOps::lshr(KnownZero, ShiftAmt) | 1085 // High bits known zero. 1086 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1087 }; 1088 1089 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1090 return APIntOps::lshr(KnownOne, ShiftAmt); 1091 }; 1092 1093 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1094 KnownZero2, KnownOne2, Depth, Q, KZF, 1095 KOF); 1096 break; 1097 } 1098 case Instruction::AShr: { 1099 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1100 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1101 return APIntOps::ashr(KnownZero, ShiftAmt); 1102 }; 1103 1104 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1105 return APIntOps::ashr(KnownOne, ShiftAmt); 1106 }; 1107 1108 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1109 KnownZero2, KnownOne2, Depth, Q, KZF, 1110 KOF); 1111 break; 1112 } 1113 case Instruction::Sub: { 1114 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1115 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1116 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1117 Q); 1118 break; 1119 } 1120 case Instruction::Add: { 1121 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1122 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1123 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1124 Q); 1125 break; 1126 } 1127 case Instruction::SRem: 1128 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1129 APInt RA = Rem->getValue().abs(); 1130 if (RA.isPowerOf2()) { 1131 APInt LowBits = RA - 1; 1132 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1133 Q); 1134 1135 // The low bits of the first operand are unchanged by the srem. 1136 KnownZero = KnownZero2 & LowBits; 1137 KnownOne = KnownOne2 & LowBits; 1138 1139 // If the first operand is non-negative or has all low bits zero, then 1140 // the upper bits are all zero. 1141 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1142 KnownZero |= ~LowBits; 1143 1144 // If the first operand is negative and not all low bits are zero, then 1145 // the upper bits are all one. 1146 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1147 KnownOne |= ~LowBits; 1148 1149 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1150 } 1151 } 1152 1153 // The sign bit is the LHS's sign bit, except when the result of the 1154 // remainder is zero. 1155 if (KnownZero.isNonNegative()) { 1156 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1157 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1158 Q); 1159 // If it's known zero, our sign bit is also zero. 1160 if (LHSKnownZero.isNegative()) 1161 KnownZero.setBit(BitWidth - 1); 1162 } 1163 1164 break; 1165 case Instruction::URem: { 1166 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1167 const APInt &RA = Rem->getValue(); 1168 if (RA.isPowerOf2()) { 1169 APInt LowBits = (RA - 1); 1170 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1171 KnownZero |= ~LowBits; 1172 KnownOne &= LowBits; 1173 break; 1174 } 1175 } 1176 1177 // Since the result is less than or equal to either operand, any leading 1178 // zero bits in either operand must also exist in the result. 1179 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1180 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1181 1182 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1183 KnownZero2.countLeadingOnes()); 1184 KnownOne.clearAllBits(); 1185 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1186 break; 1187 } 1188 1189 case Instruction::Alloca: { 1190 const AllocaInst *AI = cast<AllocaInst>(I); 1191 unsigned Align = AI->getAlignment(); 1192 if (Align == 0) 1193 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1194 1195 if (Align > 0) 1196 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1197 break; 1198 } 1199 case Instruction::GetElementPtr: { 1200 // Analyze all of the subscripts of this getelementptr instruction 1201 // to determine if we can prove known low zero bits. 1202 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1203 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1204 Q); 1205 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1206 1207 gep_type_iterator GTI = gep_type_begin(I); 1208 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1209 Value *Index = I->getOperand(i); 1210 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1211 // Handle struct member offset arithmetic. 1212 1213 // Handle case when index is vector zeroinitializer 1214 Constant *CIndex = cast<Constant>(Index); 1215 if (CIndex->isZeroValue()) 1216 continue; 1217 1218 if (CIndex->getType()->isVectorTy()) 1219 Index = CIndex->getSplatValue(); 1220 1221 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1222 const StructLayout *SL = Q.DL.getStructLayout(STy); 1223 uint64_t Offset = SL->getElementOffset(Idx); 1224 TrailZ = std::min<unsigned>(TrailZ, 1225 countTrailingZeros(Offset)); 1226 } else { 1227 // Handle array index arithmetic. 1228 Type *IndexedTy = GTI.getIndexedType(); 1229 if (!IndexedTy->isSized()) { 1230 TrailZ = 0; 1231 break; 1232 } 1233 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1234 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1235 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1236 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1237 TrailZ = std::min(TrailZ, 1238 unsigned(countTrailingZeros(TypeSize) + 1239 LocalKnownZero.countTrailingOnes())); 1240 } 1241 } 1242 1243 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1244 break; 1245 } 1246 case Instruction::PHI: { 1247 const PHINode *P = cast<PHINode>(I); 1248 // Handle the case of a simple two-predecessor recurrence PHI. 1249 // There's a lot more that could theoretically be done here, but 1250 // this is sufficient to catch some interesting cases. 1251 if (P->getNumIncomingValues() == 2) { 1252 for (unsigned i = 0; i != 2; ++i) { 1253 Value *L = P->getIncomingValue(i); 1254 Value *R = P->getIncomingValue(!i); 1255 Operator *LU = dyn_cast<Operator>(L); 1256 if (!LU) 1257 continue; 1258 unsigned Opcode = LU->getOpcode(); 1259 // Check for operations that have the property that if 1260 // both their operands have low zero bits, the result 1261 // will have low zero bits. Also check for operations 1262 // that are known to produce non-negative or negative 1263 // recurrence values. 1264 if (Opcode == Instruction::Add || 1265 Opcode == Instruction::Sub || 1266 Opcode == Instruction::And || 1267 Opcode == Instruction::Or || 1268 Opcode == Instruction::Mul) { 1269 Value *LL = LU->getOperand(0); 1270 Value *LR = LU->getOperand(1); 1271 // Find a recurrence. 1272 if (LL == I) 1273 L = LR; 1274 else if (LR == I) 1275 L = LL; 1276 else 1277 break; 1278 // Ok, we have a PHI of the form L op= R. Check for low 1279 // zero bits. 1280 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1281 1282 // We need to take the minimum number of known bits 1283 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1284 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1285 1286 KnownZero = APInt::getLowBitsSet(BitWidth, 1287 std::min(KnownZero2.countTrailingOnes(), 1288 KnownZero3.countTrailingOnes())); 1289 1290 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1291 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1292 // If initial value of recurrence is nonnegative, and we are adding 1293 // a nonnegative number with nsw, the result can only be nonnegative 1294 // or poison value regardless of the number of times we execute the 1295 // add in phi recurrence. If initial value is negative and we are 1296 // adding a negative number with nsw, the result can only be 1297 // negative or poison value. Similar arguments apply to sub and mul. 1298 // 1299 // (add non-negative, non-negative) --> non-negative 1300 // (add negative, negative) --> negative 1301 if (Opcode == Instruction::Add) { 1302 if (KnownZero2.isNegative() && KnownZero3.isNegative()) 1303 KnownZero.setBit(BitWidth - 1); 1304 else if (KnownOne2.isNegative() && KnownOne3.isNegative()) 1305 KnownOne.setBit(BitWidth - 1); 1306 } 1307 1308 // (sub nsw non-negative, negative) --> non-negative 1309 // (sub nsw negative, non-negative) --> negative 1310 else if (Opcode == Instruction::Sub && LL == I) { 1311 if (KnownZero2.isNegative() && KnownOne3.isNegative()) 1312 KnownZero.setBit(BitWidth - 1); 1313 else if (KnownOne2.isNegative() && KnownZero3.isNegative()) 1314 KnownOne.setBit(BitWidth - 1); 1315 } 1316 1317 // (mul nsw non-negative, non-negative) --> non-negative 1318 else if (Opcode == Instruction::Mul && KnownZero2.isNegative() && 1319 KnownZero3.isNegative()) 1320 KnownZero.setBit(BitWidth - 1); 1321 } 1322 1323 break; 1324 } 1325 } 1326 } 1327 1328 // Unreachable blocks may have zero-operand PHI nodes. 1329 if (P->getNumIncomingValues() == 0) 1330 break; 1331 1332 // Otherwise take the unions of the known bit sets of the operands, 1333 // taking conservative care to avoid excessive recursion. 1334 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1335 // Skip if every incoming value references to ourself. 1336 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1337 break; 1338 1339 KnownZero = APInt::getAllOnesValue(BitWidth); 1340 KnownOne = APInt::getAllOnesValue(BitWidth); 1341 for (Value *IncValue : P->incoming_values()) { 1342 // Skip direct self references. 1343 if (IncValue == P) continue; 1344 1345 KnownZero2 = APInt(BitWidth, 0); 1346 KnownOne2 = APInt(BitWidth, 0); 1347 // Recurse, but cap the recursion to one level, because we don't 1348 // want to waste time spinning around in loops. 1349 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1350 KnownZero &= KnownZero2; 1351 KnownOne &= KnownOne2; 1352 // If all bits have been ruled out, there's no need to check 1353 // more operands. 1354 if (!KnownZero && !KnownOne) 1355 break; 1356 } 1357 } 1358 break; 1359 } 1360 case Instruction::Call: 1361 case Instruction::Invoke: 1362 // If range metadata is attached to this call, set known bits from that, 1363 // and then intersect with known bits based on other properties of the 1364 // function. 1365 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1366 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1367 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1368 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1369 KnownZero |= KnownZero2; 1370 KnownOne |= KnownOne2; 1371 } 1372 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1373 switch (II->getIntrinsicID()) { 1374 default: break; 1375 case Intrinsic::bswap: 1376 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1377 KnownZero |= KnownZero2.byteSwap(); 1378 KnownOne |= KnownOne2.byteSwap(); 1379 break; 1380 case Intrinsic::ctlz: 1381 case Intrinsic::cttz: { 1382 unsigned LowBits = Log2_32(BitWidth)+1; 1383 // If this call is undefined for 0, the result will be less than 2^n. 1384 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1385 LowBits -= 1; 1386 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1387 break; 1388 } 1389 case Intrinsic::ctpop: { 1390 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1391 // We can bound the space the count needs. Also, bits known to be zero 1392 // can't contribute to the population. 1393 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1394 unsigned LeadingZeros = 1395 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1396 assert(LeadingZeros <= BitWidth); 1397 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1398 KnownOne &= ~KnownZero; 1399 // TODO: we could bound KnownOne using the lower bound on the number 1400 // of bits which might be set provided by popcnt KnownOne2. 1401 break; 1402 } 1403 case Intrinsic::x86_sse42_crc32_64_64: 1404 KnownZero |= APInt::getHighBitsSet(64, 32); 1405 break; 1406 } 1407 } 1408 break; 1409 case Instruction::ExtractValue: 1410 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1411 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1412 if (EVI->getNumIndices() != 1) break; 1413 if (EVI->getIndices()[0] == 0) { 1414 switch (II->getIntrinsicID()) { 1415 default: break; 1416 case Intrinsic::uadd_with_overflow: 1417 case Intrinsic::sadd_with_overflow: 1418 computeKnownBitsAddSub(true, II->getArgOperand(0), 1419 II->getArgOperand(1), false, KnownZero, 1420 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1421 break; 1422 case Intrinsic::usub_with_overflow: 1423 case Intrinsic::ssub_with_overflow: 1424 computeKnownBitsAddSub(false, II->getArgOperand(0), 1425 II->getArgOperand(1), false, KnownZero, 1426 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1427 break; 1428 case Intrinsic::umul_with_overflow: 1429 case Intrinsic::smul_with_overflow: 1430 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1431 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1432 Q); 1433 break; 1434 } 1435 } 1436 } 1437 } 1438 } 1439 1440 /// Determine which bits of V are known to be either zero or one and return 1441 /// them in the KnownZero/KnownOne bit sets. 1442 /// 1443 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1444 /// we cannot optimize based on the assumption that it is zero without changing 1445 /// it to be an explicit zero. If we don't change it to zero, other code could 1446 /// optimized based on the contradictory assumption that it is non-zero. 1447 /// Because instcombine aggressively folds operations with undef args anyway, 1448 /// this won't lose us code quality. 1449 /// 1450 /// This function is defined on values with integer type, values with pointer 1451 /// type, and vectors of integers. In the case 1452 /// where V is a vector, known zero, and known one values are the 1453 /// same width as the vector element, and the bit is set only if it is true 1454 /// for all of the elements in the vector. 1455 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1456 unsigned Depth, const Query &Q) { 1457 assert(V && "No Value?"); 1458 assert(Depth <= MaxDepth && "Limit Search Depth"); 1459 unsigned BitWidth = KnownZero.getBitWidth(); 1460 1461 assert((V->getType()->isIntOrIntVectorTy() || 1462 V->getType()->getScalarType()->isPointerTy()) && 1463 "Not integer or pointer type!"); 1464 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1465 (!V->getType()->isIntOrIntVectorTy() || 1466 V->getType()->getScalarSizeInBits() == BitWidth) && 1467 KnownZero.getBitWidth() == BitWidth && 1468 KnownOne.getBitWidth() == BitWidth && 1469 "V, KnownOne and KnownZero should have same BitWidth"); 1470 1471 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1472 // We know all of the bits for a constant! 1473 KnownOne = CI->getValue(); 1474 KnownZero = ~KnownOne; 1475 return; 1476 } 1477 // Null and aggregate-zero are all-zeros. 1478 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1479 KnownOne.clearAllBits(); 1480 KnownZero = APInt::getAllOnesValue(BitWidth); 1481 return; 1482 } 1483 // Handle a constant vector by taking the intersection of the known bits of 1484 // each element. 1485 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1486 // We know that CDS must be a vector of integers. Take the intersection of 1487 // each element. 1488 KnownZero.setAllBits(); KnownOne.setAllBits(); 1489 APInt Elt(KnownZero.getBitWidth(), 0); 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 Elt = CDS->getElementAsInteger(i); 1492 KnownZero &= ~Elt; 1493 KnownOne &= Elt; 1494 } 1495 return; 1496 } 1497 1498 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1499 // We know that CV must be a vector of integers. Take the intersection of 1500 // each element. 1501 KnownZero.setAllBits(); KnownOne.setAllBits(); 1502 APInt Elt(KnownZero.getBitWidth(), 0); 1503 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1504 Constant *Element = CV->getAggregateElement(i); 1505 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1506 if (!ElementCI) { 1507 KnownZero.clearAllBits(); 1508 KnownOne.clearAllBits(); 1509 return; 1510 } 1511 Elt = ElementCI->getValue(); 1512 KnownZero &= ~Elt; 1513 KnownOne &= Elt; 1514 } 1515 return; 1516 } 1517 1518 // Start out not knowing anything. 1519 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1520 1521 // Limit search depth. 1522 // All recursive calls that increase depth must come after this. 1523 if (Depth == MaxDepth) 1524 return; 1525 1526 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1527 // the bits of its aliasee. 1528 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1529 if (!GA->isInterposable()) 1530 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1531 return; 1532 } 1533 1534 if (const Operator *I = dyn_cast<Operator>(V)) 1535 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1536 1537 // Aligned pointers have trailing zeros - refine KnownZero set 1538 if (V->getType()->isPointerTy()) { 1539 unsigned Align = V->getPointerAlignment(Q.DL); 1540 if (Align) 1541 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1542 } 1543 1544 // computeKnownBitsFromAssume strictly refines KnownZero and 1545 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1546 1547 // Check whether a nearby assume intrinsic can determine some known bits. 1548 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1549 1550 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1551 } 1552 1553 /// Determine whether the sign bit is known to be zero or one. 1554 /// Convenience wrapper around computeKnownBits. 1555 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1556 unsigned Depth, const Query &Q) { 1557 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1558 if (!BitWidth) { 1559 KnownZero = false; 1560 KnownOne = false; 1561 return; 1562 } 1563 APInt ZeroBits(BitWidth, 0); 1564 APInt OneBits(BitWidth, 0); 1565 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1566 KnownOne = OneBits[BitWidth - 1]; 1567 KnownZero = ZeroBits[BitWidth - 1]; 1568 } 1569 1570 /// Return true if the given value is known to have exactly one 1571 /// bit set when defined. For vectors return true if every element is known to 1572 /// be a power of two when defined. Supports values with integer or pointer 1573 /// types and vectors of integers. 1574 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1575 const Query &Q) { 1576 if (const Constant *C = dyn_cast<Constant>(V)) { 1577 if (C->isNullValue()) 1578 return OrZero; 1579 1580 const APInt *ConstIntOrConstSplatInt; 1581 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1582 return ConstIntOrConstSplatInt->isPowerOf2(); 1583 } 1584 1585 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1586 // it is shifted off the end then the result is undefined. 1587 if (match(V, m_Shl(m_One(), m_Value()))) 1588 return true; 1589 1590 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1591 // bottom. If it is shifted off the bottom then the result is undefined. 1592 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1593 return true; 1594 1595 // The remaining tests are all recursive, so bail out if we hit the limit. 1596 if (Depth++ == MaxDepth) 1597 return false; 1598 1599 Value *X = nullptr, *Y = nullptr; 1600 // A shift left or a logical shift right of a power of two is a power of two 1601 // or zero. 1602 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1603 match(V, m_LShr(m_Value(X), m_Value())))) 1604 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1605 1606 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1607 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1608 1609 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1610 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1611 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1612 1613 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1614 // A power of two and'd with anything is a power of two or zero. 1615 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1616 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1617 return true; 1618 // X & (-X) is always a power of two or zero. 1619 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1620 return true; 1621 return false; 1622 } 1623 1624 // Adding a power-of-two or zero to the same power-of-two or zero yields 1625 // either the original power-of-two, a larger power-of-two or zero. 1626 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1627 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1628 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1629 if (match(X, m_And(m_Specific(Y), m_Value())) || 1630 match(X, m_And(m_Value(), m_Specific(Y)))) 1631 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1632 return true; 1633 if (match(Y, m_And(m_Specific(X), m_Value())) || 1634 match(Y, m_And(m_Value(), m_Specific(X)))) 1635 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1636 return true; 1637 1638 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1639 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1640 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1641 1642 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1643 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1644 // If i8 V is a power of two or zero: 1645 // ZeroBits: 1 1 1 0 1 1 1 1 1646 // ~ZeroBits: 0 0 0 1 0 0 0 0 1647 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1648 // If OrZero isn't set, we cannot give back a zero result. 1649 // Make sure either the LHS or RHS has a bit set. 1650 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1651 return true; 1652 } 1653 } 1654 1655 // An exact divide or right shift can only shift off zero bits, so the result 1656 // is a power of two only if the first operand is a power of two and not 1657 // copying a sign bit (sdiv int_min, 2). 1658 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1659 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1660 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1661 Depth, Q); 1662 } 1663 1664 return false; 1665 } 1666 1667 /// \brief Test whether a GEP's result is known to be non-null. 1668 /// 1669 /// Uses properties inherent in a GEP to try to determine whether it is known 1670 /// to be non-null. 1671 /// 1672 /// Currently this routine does not support vector GEPs. 1673 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1674 const Query &Q) { 1675 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1676 return false; 1677 1678 // FIXME: Support vector-GEPs. 1679 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1680 1681 // If the base pointer is non-null, we cannot walk to a null address with an 1682 // inbounds GEP in address space zero. 1683 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1684 return true; 1685 1686 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1687 // If so, then the GEP cannot produce a null pointer, as doing so would 1688 // inherently violate the inbounds contract within address space zero. 1689 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1690 GTI != GTE; ++GTI) { 1691 // Struct types are easy -- they must always be indexed by a constant. 1692 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1693 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1694 unsigned ElementIdx = OpC->getZExtValue(); 1695 const StructLayout *SL = Q.DL.getStructLayout(STy); 1696 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1697 if (ElementOffset > 0) 1698 return true; 1699 continue; 1700 } 1701 1702 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1703 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1704 continue; 1705 1706 // Fast path the constant operand case both for efficiency and so we don't 1707 // increment Depth when just zipping down an all-constant GEP. 1708 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1709 if (!OpC->isZero()) 1710 return true; 1711 continue; 1712 } 1713 1714 // We post-increment Depth here because while isKnownNonZero increments it 1715 // as well, when we pop back up that increment won't persist. We don't want 1716 // to recurse 10k times just because we have 10k GEP operands. We don't 1717 // bail completely out because we want to handle constant GEPs regardless 1718 // of depth. 1719 if (Depth++ >= MaxDepth) 1720 continue; 1721 1722 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1723 return true; 1724 } 1725 1726 return false; 1727 } 1728 1729 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1730 /// ensure that the value it's attached to is never Value? 'RangeType' is 1731 /// is the type of the value described by the range. 1732 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1733 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1734 assert(NumRanges >= 1); 1735 for (unsigned i = 0; i < NumRanges; ++i) { 1736 ConstantInt *Lower = 1737 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1738 ConstantInt *Upper = 1739 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1740 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1741 if (Range.contains(Value)) 1742 return false; 1743 } 1744 return true; 1745 } 1746 1747 /// Return true if the given value is known to be non-zero when defined. 1748 /// For vectors return true if every element is known to be non-zero when 1749 /// defined. Supports values with integer or pointer type and vectors of 1750 /// integers. 1751 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1752 if (auto *C = dyn_cast<Constant>(V)) { 1753 if (C->isNullValue()) 1754 return false; 1755 if (isa<ConstantInt>(C)) 1756 // Must be non-zero due to null test above. 1757 return true; 1758 1759 // For constant vectors, check that all elements are undefined or known 1760 // non-zero to determine that the whole vector is known non-zero. 1761 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1762 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1763 Constant *Elt = C->getAggregateElement(i); 1764 if (!Elt || Elt->isNullValue()) 1765 return false; 1766 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1767 return false; 1768 } 1769 return true; 1770 } 1771 1772 return false; 1773 } 1774 1775 if (auto *I = dyn_cast<Instruction>(V)) { 1776 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1777 // If the possible ranges don't contain zero, then the value is 1778 // definitely non-zero. 1779 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1780 const APInt ZeroValue(Ty->getBitWidth(), 0); 1781 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1782 return true; 1783 } 1784 } 1785 } 1786 1787 // The remaining tests are all recursive, so bail out if we hit the limit. 1788 if (Depth++ >= MaxDepth) 1789 return false; 1790 1791 // Check for pointer simplifications. 1792 if (V->getType()->isPointerTy()) { 1793 if (isKnownNonNull(V)) 1794 return true; 1795 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1796 if (isGEPKnownNonNull(GEP, Depth, Q)) 1797 return true; 1798 } 1799 1800 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1801 1802 // X | Y != 0 if X != 0 or Y != 0. 1803 Value *X = nullptr, *Y = nullptr; 1804 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1805 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1806 1807 // ext X != 0 if X != 0. 1808 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1809 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1810 1811 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1812 // if the lowest bit is shifted off the end. 1813 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1814 // shl nuw can't remove any non-zero bits. 1815 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1816 if (BO->hasNoUnsignedWrap()) 1817 return isKnownNonZero(X, Depth, Q); 1818 1819 APInt KnownZero(BitWidth, 0); 1820 APInt KnownOne(BitWidth, 0); 1821 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1822 if (KnownOne[0]) 1823 return true; 1824 } 1825 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1826 // defined if the sign bit is shifted off the end. 1827 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1828 // shr exact can only shift out zero bits. 1829 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1830 if (BO->isExact()) 1831 return isKnownNonZero(X, Depth, Q); 1832 1833 bool XKnownNonNegative, XKnownNegative; 1834 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1835 if (XKnownNegative) 1836 return true; 1837 1838 // If the shifter operand is a constant, and all of the bits shifted 1839 // out are known to be zero, and X is known non-zero then at least one 1840 // non-zero bit must remain. 1841 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1842 APInt KnownZero(BitWidth, 0); 1843 APInt KnownOne(BitWidth, 0); 1844 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1845 1846 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1847 // Is there a known one in the portion not shifted out? 1848 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1849 return true; 1850 // Are all the bits to be shifted out known zero? 1851 if (KnownZero.countTrailingOnes() >= ShiftVal) 1852 return isKnownNonZero(X, Depth, Q); 1853 } 1854 } 1855 // div exact can only produce a zero if the dividend is zero. 1856 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1857 return isKnownNonZero(X, Depth, Q); 1858 } 1859 // X + Y. 1860 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1861 bool XKnownNonNegative, XKnownNegative; 1862 bool YKnownNonNegative, YKnownNegative; 1863 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1864 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1865 1866 // If X and Y are both non-negative (as signed values) then their sum is not 1867 // zero unless both X and Y are zero. 1868 if (XKnownNonNegative && YKnownNonNegative) 1869 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1870 return true; 1871 1872 // If X and Y are both negative (as signed values) then their sum is not 1873 // zero unless both X and Y equal INT_MIN. 1874 if (BitWidth && XKnownNegative && YKnownNegative) { 1875 APInt KnownZero(BitWidth, 0); 1876 APInt KnownOne(BitWidth, 0); 1877 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1878 // The sign bit of X is set. If some other bit is set then X is not equal 1879 // to INT_MIN. 1880 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1881 if ((KnownOne & Mask) != 0) 1882 return true; 1883 // The sign bit of Y is set. If some other bit is set then Y is not equal 1884 // to INT_MIN. 1885 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1886 if ((KnownOne & Mask) != 0) 1887 return true; 1888 } 1889 1890 // The sum of a non-negative number and a power of two is not zero. 1891 if (XKnownNonNegative && 1892 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1893 return true; 1894 if (YKnownNonNegative && 1895 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1896 return true; 1897 } 1898 // X * Y. 1899 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1900 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1901 // If X and Y are non-zero then so is X * Y as long as the multiplication 1902 // does not overflow. 1903 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1904 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1905 return true; 1906 } 1907 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1908 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1909 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1910 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1911 return true; 1912 } 1913 // PHI 1914 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1915 // Try and detect a recurrence that monotonically increases from a 1916 // starting value, as these are common as induction variables. 1917 if (PN->getNumIncomingValues() == 2) { 1918 Value *Start = PN->getIncomingValue(0); 1919 Value *Induction = PN->getIncomingValue(1); 1920 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1921 std::swap(Start, Induction); 1922 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1923 if (!C->isZero() && !C->isNegative()) { 1924 ConstantInt *X; 1925 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1926 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1927 !X->isNegative()) 1928 return true; 1929 } 1930 } 1931 } 1932 // Check if all incoming values are non-zero constant. 1933 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1934 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1935 }); 1936 if (AllNonZeroConstants) 1937 return true; 1938 } 1939 1940 if (!BitWidth) return false; 1941 APInt KnownZero(BitWidth, 0); 1942 APInt KnownOne(BitWidth, 0); 1943 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1944 return KnownOne != 0; 1945 } 1946 1947 /// Return true if V2 == V1 + X, where X is known non-zero. 1948 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1949 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1950 if (!BO || BO->getOpcode() != Instruction::Add) 1951 return false; 1952 Value *Op = nullptr; 1953 if (V2 == BO->getOperand(0)) 1954 Op = BO->getOperand(1); 1955 else if (V2 == BO->getOperand(1)) 1956 Op = BO->getOperand(0); 1957 else 1958 return false; 1959 return isKnownNonZero(Op, 0, Q); 1960 } 1961 1962 /// Return true if it is known that V1 != V2. 1963 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1964 if (V1->getType()->isVectorTy() || V1 == V2) 1965 return false; 1966 if (V1->getType() != V2->getType()) 1967 // We can't look through casts yet. 1968 return false; 1969 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1970 return true; 1971 1972 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1973 // Are any known bits in V1 contradictory to known bits in V2? If V1 1974 // has a known zero where V2 has a known one, they must not be equal. 1975 auto BitWidth = Ty->getBitWidth(); 1976 APInt KnownZero1(BitWidth, 0); 1977 APInt KnownOne1(BitWidth, 0); 1978 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1979 APInt KnownZero2(BitWidth, 0); 1980 APInt KnownOne2(BitWidth, 0); 1981 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1982 1983 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1984 if (OppositeBits.getBoolValue()) 1985 return true; 1986 } 1987 return false; 1988 } 1989 1990 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1991 /// simplify operations downstream. Mask is known to be zero for bits that V 1992 /// cannot have. 1993 /// 1994 /// This function is defined on values with integer type, values with pointer 1995 /// type, and vectors of integers. In the case 1996 /// where V is a vector, the mask, known zero, and known one values are the 1997 /// same width as the vector element, and the bit is set only if it is true 1998 /// for all of the elements in the vector. 1999 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2000 const Query &Q) { 2001 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2002 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2003 return (KnownZero & Mask) == Mask; 2004 } 2005 2006 /// For vector constants, loop over the elements and find the constant with the 2007 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2008 /// or if any element was not analyzed; otherwise, return the count for the 2009 /// element with the minimum number of sign bits. 2010 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2011 unsigned TyBits) { 2012 const auto *CV = dyn_cast<Constant>(V); 2013 if (!CV || !CV->getType()->isVectorTy()) 2014 return 0; 2015 2016 unsigned MinSignBits = TyBits; 2017 unsigned NumElts = CV->getType()->getVectorNumElements(); 2018 for (unsigned i = 0; i != NumElts; ++i) { 2019 // If we find a non-ConstantInt, bail out. 2020 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2021 if (!Elt) 2022 return 0; 2023 2024 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2025 APInt EltVal = Elt->getValue(); 2026 if (EltVal.isNegative()) 2027 EltVal = ~EltVal; 2028 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2029 } 2030 2031 return MinSignBits; 2032 } 2033 2034 /// Return the number of times the sign bit of the register is replicated into 2035 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2036 /// (itself), but other cases can give us information. For example, immediately 2037 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2038 /// other, so we return 3. For vectors, return the number of sign bits for the 2039 /// vector element with the mininum number of known sign bits. 2040 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2041 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2042 unsigned Tmp, Tmp2; 2043 unsigned FirstAnswer = 1; 2044 2045 // Note that ConstantInt is handled by the general computeKnownBits case 2046 // below. 2047 2048 if (Depth == 6) 2049 return 1; // Limit search depth. 2050 2051 const Operator *U = dyn_cast<Operator>(V); 2052 switch (Operator::getOpcode(V)) { 2053 default: break; 2054 case Instruction::SExt: 2055 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2056 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2057 2058 case Instruction::SDiv: { 2059 const APInt *Denominator; 2060 // sdiv X, C -> adds log(C) sign bits. 2061 if (match(U->getOperand(1), m_APInt(Denominator))) { 2062 2063 // Ignore non-positive denominator. 2064 if (!Denominator->isStrictlyPositive()) 2065 break; 2066 2067 // Calculate the incoming numerator bits. 2068 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2069 2070 // Add floor(log(C)) bits to the numerator bits. 2071 return std::min(TyBits, NumBits + Denominator->logBase2()); 2072 } 2073 break; 2074 } 2075 2076 case Instruction::SRem: { 2077 const APInt *Denominator; 2078 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2079 // positive constant. This let us put a lower bound on the number of sign 2080 // bits. 2081 if (match(U->getOperand(1), m_APInt(Denominator))) { 2082 2083 // Ignore non-positive denominator. 2084 if (!Denominator->isStrictlyPositive()) 2085 break; 2086 2087 // Calculate the incoming numerator bits. SRem by a positive constant 2088 // can't lower the number of sign bits. 2089 unsigned NumrBits = 2090 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2091 2092 // Calculate the leading sign bit constraints by examining the 2093 // denominator. Given that the denominator is positive, there are two 2094 // cases: 2095 // 2096 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2097 // (1 << ceilLogBase2(C)). 2098 // 2099 // 2. the numerator is negative. Then the result range is (-C,0] and 2100 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2101 // 2102 // Thus a lower bound on the number of sign bits is `TyBits - 2103 // ceilLogBase2(C)`. 2104 2105 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2106 return std::max(NumrBits, ResBits); 2107 } 2108 break; 2109 } 2110 2111 case Instruction::AShr: { 2112 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2113 // ashr X, C -> adds C sign bits. Vectors too. 2114 const APInt *ShAmt; 2115 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2116 Tmp += ShAmt->getZExtValue(); 2117 if (Tmp > TyBits) Tmp = TyBits; 2118 } 2119 return Tmp; 2120 } 2121 case Instruction::Shl: { 2122 const APInt *ShAmt; 2123 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2124 // shl destroys sign bits. 2125 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2126 Tmp2 = ShAmt->getZExtValue(); 2127 if (Tmp2 >= TyBits || // Bad shift. 2128 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2129 return Tmp - Tmp2; 2130 } 2131 break; 2132 } 2133 case Instruction::And: 2134 case Instruction::Or: 2135 case Instruction::Xor: // NOT is handled here. 2136 // Logical binary ops preserve the number of sign bits at the worst. 2137 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2138 if (Tmp != 1) { 2139 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2140 FirstAnswer = std::min(Tmp, Tmp2); 2141 // We computed what we know about the sign bits as our first 2142 // answer. Now proceed to the generic code that uses 2143 // computeKnownBits, and pick whichever answer is better. 2144 } 2145 break; 2146 2147 case Instruction::Select: 2148 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2149 if (Tmp == 1) return 1; // Early out. 2150 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2151 return std::min(Tmp, Tmp2); 2152 2153 case Instruction::Add: 2154 // Add can have at most one carry bit. Thus we know that the output 2155 // is, at worst, one more bit than the inputs. 2156 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2157 if (Tmp == 1) return 1; // Early out. 2158 2159 // Special case decrementing a value (ADD X, -1): 2160 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2161 if (CRHS->isAllOnesValue()) { 2162 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2163 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2164 2165 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2166 // sign bits set. 2167 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2168 return TyBits; 2169 2170 // If we are subtracting one from a positive number, there is no carry 2171 // out of the result. 2172 if (KnownZero.isNegative()) 2173 return Tmp; 2174 } 2175 2176 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2177 if (Tmp2 == 1) return 1; 2178 return std::min(Tmp, Tmp2)-1; 2179 2180 case Instruction::Sub: 2181 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2182 if (Tmp2 == 1) return 1; 2183 2184 // Handle NEG. 2185 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2186 if (CLHS->isNullValue()) { 2187 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2188 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2189 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2190 // sign bits set. 2191 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2192 return TyBits; 2193 2194 // If the input is known to be positive (the sign bit is known clear), 2195 // the output of the NEG has the same number of sign bits as the input. 2196 if (KnownZero.isNegative()) 2197 return Tmp2; 2198 2199 // Otherwise, we treat this like a SUB. 2200 } 2201 2202 // Sub can have at most one carry bit. Thus we know that the output 2203 // is, at worst, one more bit than the inputs. 2204 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2205 if (Tmp == 1) return 1; // Early out. 2206 return std::min(Tmp, Tmp2)-1; 2207 2208 case Instruction::PHI: { 2209 const PHINode *PN = cast<PHINode>(U); 2210 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2211 // Don't analyze large in-degree PHIs. 2212 if (NumIncomingValues > 4) break; 2213 // Unreachable blocks may have zero-operand PHI nodes. 2214 if (NumIncomingValues == 0) break; 2215 2216 // Take the minimum of all incoming values. This can't infinitely loop 2217 // because of our depth threshold. 2218 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2219 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2220 if (Tmp == 1) return Tmp; 2221 Tmp = std::min( 2222 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2223 } 2224 return Tmp; 2225 } 2226 2227 case Instruction::Trunc: 2228 // FIXME: it's tricky to do anything useful for this, but it is an important 2229 // case for targets like X86. 2230 break; 2231 } 2232 2233 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2234 // use this information. 2235 2236 // If we can examine all elements of a vector constant successfully, we're 2237 // done (we can't do any better than that). If not, keep trying. 2238 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2239 return VecSignBits; 2240 2241 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2242 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2243 2244 // If we know that the sign bit is either zero or one, determine the number of 2245 // identical bits in the top of the input value. 2246 if (KnownZero.isNegative()) 2247 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2248 2249 if (KnownOne.isNegative()) 2250 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2251 2252 // computeKnownBits gave us no extra information about the top bits. 2253 return FirstAnswer; 2254 } 2255 2256 /// This function computes the integer multiple of Base that equals V. 2257 /// If successful, it returns true and returns the multiple in 2258 /// Multiple. If unsuccessful, it returns false. It looks 2259 /// through SExt instructions only if LookThroughSExt is true. 2260 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2261 bool LookThroughSExt, unsigned Depth) { 2262 const unsigned MaxDepth = 6; 2263 2264 assert(V && "No Value?"); 2265 assert(Depth <= MaxDepth && "Limit Search Depth"); 2266 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2267 2268 Type *T = V->getType(); 2269 2270 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2271 2272 if (Base == 0) 2273 return false; 2274 2275 if (Base == 1) { 2276 Multiple = V; 2277 return true; 2278 } 2279 2280 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2281 Constant *BaseVal = ConstantInt::get(T, Base); 2282 if (CO && CO == BaseVal) { 2283 // Multiple is 1. 2284 Multiple = ConstantInt::get(T, 1); 2285 return true; 2286 } 2287 2288 if (CI && CI->getZExtValue() % Base == 0) { 2289 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2290 return true; 2291 } 2292 2293 if (Depth == MaxDepth) return false; // Limit search depth. 2294 2295 Operator *I = dyn_cast<Operator>(V); 2296 if (!I) return false; 2297 2298 switch (I->getOpcode()) { 2299 default: break; 2300 case Instruction::SExt: 2301 if (!LookThroughSExt) return false; 2302 // otherwise fall through to ZExt 2303 case Instruction::ZExt: 2304 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2305 LookThroughSExt, Depth+1); 2306 case Instruction::Shl: 2307 case Instruction::Mul: { 2308 Value *Op0 = I->getOperand(0); 2309 Value *Op1 = I->getOperand(1); 2310 2311 if (I->getOpcode() == Instruction::Shl) { 2312 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2313 if (!Op1CI) return false; 2314 // Turn Op0 << Op1 into Op0 * 2^Op1 2315 APInt Op1Int = Op1CI->getValue(); 2316 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2317 APInt API(Op1Int.getBitWidth(), 0); 2318 API.setBit(BitToSet); 2319 Op1 = ConstantInt::get(V->getContext(), API); 2320 } 2321 2322 Value *Mul0 = nullptr; 2323 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2324 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2325 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2326 if (Op1C->getType()->getPrimitiveSizeInBits() < 2327 MulC->getType()->getPrimitiveSizeInBits()) 2328 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2329 if (Op1C->getType()->getPrimitiveSizeInBits() > 2330 MulC->getType()->getPrimitiveSizeInBits()) 2331 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2332 2333 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2334 Multiple = ConstantExpr::getMul(MulC, Op1C); 2335 return true; 2336 } 2337 2338 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2339 if (Mul0CI->getValue() == 1) { 2340 // V == Base * Op1, so return Op1 2341 Multiple = Op1; 2342 return true; 2343 } 2344 } 2345 2346 Value *Mul1 = nullptr; 2347 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2348 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2349 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2350 if (Op0C->getType()->getPrimitiveSizeInBits() < 2351 MulC->getType()->getPrimitiveSizeInBits()) 2352 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2353 if (Op0C->getType()->getPrimitiveSizeInBits() > 2354 MulC->getType()->getPrimitiveSizeInBits()) 2355 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2356 2357 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2358 Multiple = ConstantExpr::getMul(MulC, Op0C); 2359 return true; 2360 } 2361 2362 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2363 if (Mul1CI->getValue() == 1) { 2364 // V == Base * Op0, so return Op0 2365 Multiple = Op0; 2366 return true; 2367 } 2368 } 2369 } 2370 } 2371 2372 // We could not determine if V is a multiple of Base. 2373 return false; 2374 } 2375 2376 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2377 const TargetLibraryInfo *TLI) { 2378 const Function *F = ICS.getCalledFunction(); 2379 if (!F) 2380 return Intrinsic::not_intrinsic; 2381 2382 if (F->isIntrinsic()) 2383 return F->getIntrinsicID(); 2384 2385 if (!TLI) 2386 return Intrinsic::not_intrinsic; 2387 2388 LibFunc::Func Func; 2389 // We're going to make assumptions on the semantics of the functions, check 2390 // that the target knows that it's available in this environment and it does 2391 // not have local linkage. 2392 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2393 return Intrinsic::not_intrinsic; 2394 2395 if (!ICS.onlyReadsMemory()) 2396 return Intrinsic::not_intrinsic; 2397 2398 // Otherwise check if we have a call to a function that can be turned into a 2399 // vector intrinsic. 2400 switch (Func) { 2401 default: 2402 break; 2403 case LibFunc::sin: 2404 case LibFunc::sinf: 2405 case LibFunc::sinl: 2406 return Intrinsic::sin; 2407 case LibFunc::cos: 2408 case LibFunc::cosf: 2409 case LibFunc::cosl: 2410 return Intrinsic::cos; 2411 case LibFunc::exp: 2412 case LibFunc::expf: 2413 case LibFunc::expl: 2414 return Intrinsic::exp; 2415 case LibFunc::exp2: 2416 case LibFunc::exp2f: 2417 case LibFunc::exp2l: 2418 return Intrinsic::exp2; 2419 case LibFunc::log: 2420 case LibFunc::logf: 2421 case LibFunc::logl: 2422 return Intrinsic::log; 2423 case LibFunc::log10: 2424 case LibFunc::log10f: 2425 case LibFunc::log10l: 2426 return Intrinsic::log10; 2427 case LibFunc::log2: 2428 case LibFunc::log2f: 2429 case LibFunc::log2l: 2430 return Intrinsic::log2; 2431 case LibFunc::fabs: 2432 case LibFunc::fabsf: 2433 case LibFunc::fabsl: 2434 return Intrinsic::fabs; 2435 case LibFunc::fmin: 2436 case LibFunc::fminf: 2437 case LibFunc::fminl: 2438 return Intrinsic::minnum; 2439 case LibFunc::fmax: 2440 case LibFunc::fmaxf: 2441 case LibFunc::fmaxl: 2442 return Intrinsic::maxnum; 2443 case LibFunc::copysign: 2444 case LibFunc::copysignf: 2445 case LibFunc::copysignl: 2446 return Intrinsic::copysign; 2447 case LibFunc::floor: 2448 case LibFunc::floorf: 2449 case LibFunc::floorl: 2450 return Intrinsic::floor; 2451 case LibFunc::ceil: 2452 case LibFunc::ceilf: 2453 case LibFunc::ceill: 2454 return Intrinsic::ceil; 2455 case LibFunc::trunc: 2456 case LibFunc::truncf: 2457 case LibFunc::truncl: 2458 return Intrinsic::trunc; 2459 case LibFunc::rint: 2460 case LibFunc::rintf: 2461 case LibFunc::rintl: 2462 return Intrinsic::rint; 2463 case LibFunc::nearbyint: 2464 case LibFunc::nearbyintf: 2465 case LibFunc::nearbyintl: 2466 return Intrinsic::nearbyint; 2467 case LibFunc::round: 2468 case LibFunc::roundf: 2469 case LibFunc::roundl: 2470 return Intrinsic::round; 2471 case LibFunc::pow: 2472 case LibFunc::powf: 2473 case LibFunc::powl: 2474 return Intrinsic::pow; 2475 case LibFunc::sqrt: 2476 case LibFunc::sqrtf: 2477 case LibFunc::sqrtl: 2478 if (ICS->hasNoNaNs()) 2479 return Intrinsic::sqrt; 2480 return Intrinsic::not_intrinsic; 2481 } 2482 2483 return Intrinsic::not_intrinsic; 2484 } 2485 2486 /// Return true if we can prove that the specified FP value is never equal to 2487 /// -0.0. 2488 /// 2489 /// NOTE: this function will need to be revisited when we support non-default 2490 /// rounding modes! 2491 /// 2492 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2493 unsigned Depth) { 2494 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2495 return !CFP->getValueAPF().isNegZero(); 2496 2497 // FIXME: Magic number! At the least, this should be given a name because it's 2498 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2499 // expose it as a parameter, so it can be used for testing / experimenting. 2500 if (Depth == 6) 2501 return false; // Limit search depth. 2502 2503 const Operator *I = dyn_cast<Operator>(V); 2504 if (!I) return false; 2505 2506 // Check if the nsz fast-math flag is set 2507 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2508 if (FPO->hasNoSignedZeros()) 2509 return true; 2510 2511 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2512 if (I->getOpcode() == Instruction::FAdd) 2513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2514 if (CFP->isNullValue()) 2515 return true; 2516 2517 // sitofp and uitofp turn into +0.0 for zero. 2518 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2519 return true; 2520 2521 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2522 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2523 switch (IID) { 2524 default: 2525 break; 2526 // sqrt(-0.0) = -0.0, no other negative results are possible. 2527 case Intrinsic::sqrt: 2528 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2529 // fabs(x) != -0.0 2530 case Intrinsic::fabs: 2531 return true; 2532 } 2533 } 2534 2535 return false; 2536 } 2537 2538 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2539 const TargetLibraryInfo *TLI, 2540 unsigned Depth) { 2541 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2542 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2543 2544 // FIXME: Magic number! At the least, this should be given a name because it's 2545 // used similarly in CannotBeNegativeZero(). A better fix may be to 2546 // expose it as a parameter, so it can be used for testing / experimenting. 2547 if (Depth == 6) 2548 return false; // Limit search depth. 2549 2550 const Operator *I = dyn_cast<Operator>(V); 2551 if (!I) return false; 2552 2553 switch (I->getOpcode()) { 2554 default: break; 2555 // Unsigned integers are always nonnegative. 2556 case Instruction::UIToFP: 2557 return true; 2558 case Instruction::FMul: 2559 // x*x is always non-negative or a NaN. 2560 if (I->getOperand(0) == I->getOperand(1)) 2561 return true; 2562 // Fall through 2563 case Instruction::FAdd: 2564 case Instruction::FDiv: 2565 case Instruction::FRem: 2566 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2567 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2568 case Instruction::Select: 2569 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2570 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2571 case Instruction::FPExt: 2572 case Instruction::FPTrunc: 2573 // Widening/narrowing never change sign. 2574 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2575 case Instruction::Call: 2576 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2577 switch (IID) { 2578 default: 2579 break; 2580 case Intrinsic::maxnum: 2581 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2582 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2583 case Intrinsic::minnum: 2584 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2585 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2586 case Intrinsic::exp: 2587 case Intrinsic::exp2: 2588 case Intrinsic::fabs: 2589 case Intrinsic::sqrt: 2590 return true; 2591 case Intrinsic::powi: 2592 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2593 // powi(x,n) is non-negative if n is even. 2594 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2595 return true; 2596 } 2597 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2598 case Intrinsic::fma: 2599 case Intrinsic::fmuladd: 2600 // x*x+y is non-negative if y is non-negative. 2601 return I->getOperand(0) == I->getOperand(1) && 2602 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2603 } 2604 break; 2605 } 2606 return false; 2607 } 2608 2609 /// If the specified value can be set by repeating the same byte in memory, 2610 /// return the i8 value that it is represented with. This is 2611 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2612 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2613 /// byte store (e.g. i16 0x1234), return null. 2614 Value *llvm::isBytewiseValue(Value *V) { 2615 // All byte-wide stores are splatable, even of arbitrary variables. 2616 if (V->getType()->isIntegerTy(8)) return V; 2617 2618 // Handle 'null' ConstantArrayZero etc. 2619 if (Constant *C = dyn_cast<Constant>(V)) 2620 if (C->isNullValue()) 2621 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2622 2623 // Constant float and double values can be handled as integer values if the 2624 // corresponding integer value is "byteable". An important case is 0.0. 2625 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2626 if (CFP->getType()->isFloatTy()) 2627 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2628 if (CFP->getType()->isDoubleTy()) 2629 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2630 // Don't handle long double formats, which have strange constraints. 2631 } 2632 2633 // We can handle constant integers that are multiple of 8 bits. 2634 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2635 if (CI->getBitWidth() % 8 == 0) { 2636 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2637 2638 if (!CI->getValue().isSplat(8)) 2639 return nullptr; 2640 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2641 } 2642 } 2643 2644 // A ConstantDataArray/Vector is splatable if all its members are equal and 2645 // also splatable. 2646 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2647 Value *Elt = CA->getElementAsConstant(0); 2648 Value *Val = isBytewiseValue(Elt); 2649 if (!Val) 2650 return nullptr; 2651 2652 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2653 if (CA->getElementAsConstant(I) != Elt) 2654 return nullptr; 2655 2656 return Val; 2657 } 2658 2659 // Conceptually, we could handle things like: 2660 // %a = zext i8 %X to i16 2661 // %b = shl i16 %a, 8 2662 // %c = or i16 %a, %b 2663 // but until there is an example that actually needs this, it doesn't seem 2664 // worth worrying about. 2665 return nullptr; 2666 } 2667 2668 2669 // This is the recursive version of BuildSubAggregate. It takes a few different 2670 // arguments. Idxs is the index within the nested struct From that we are 2671 // looking at now (which is of type IndexedType). IdxSkip is the number of 2672 // indices from Idxs that should be left out when inserting into the resulting 2673 // struct. To is the result struct built so far, new insertvalue instructions 2674 // build on that. 2675 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2676 SmallVectorImpl<unsigned> &Idxs, 2677 unsigned IdxSkip, 2678 Instruction *InsertBefore) { 2679 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2680 if (STy) { 2681 // Save the original To argument so we can modify it 2682 Value *OrigTo = To; 2683 // General case, the type indexed by Idxs is a struct 2684 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2685 // Process each struct element recursively 2686 Idxs.push_back(i); 2687 Value *PrevTo = To; 2688 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2689 InsertBefore); 2690 Idxs.pop_back(); 2691 if (!To) { 2692 // Couldn't find any inserted value for this index? Cleanup 2693 while (PrevTo != OrigTo) { 2694 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2695 PrevTo = Del->getAggregateOperand(); 2696 Del->eraseFromParent(); 2697 } 2698 // Stop processing elements 2699 break; 2700 } 2701 } 2702 // If we successfully found a value for each of our subaggregates 2703 if (To) 2704 return To; 2705 } 2706 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2707 // the struct's elements had a value that was inserted directly. In the latter 2708 // case, perhaps we can't determine each of the subelements individually, but 2709 // we might be able to find the complete struct somewhere. 2710 2711 // Find the value that is at that particular spot 2712 Value *V = FindInsertedValue(From, Idxs); 2713 2714 if (!V) 2715 return nullptr; 2716 2717 // Insert the value in the new (sub) aggregrate 2718 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2719 "tmp", InsertBefore); 2720 } 2721 2722 // This helper takes a nested struct and extracts a part of it (which is again a 2723 // struct) into a new value. For example, given the struct: 2724 // { a, { b, { c, d }, e } } 2725 // and the indices "1, 1" this returns 2726 // { c, d }. 2727 // 2728 // It does this by inserting an insertvalue for each element in the resulting 2729 // struct, as opposed to just inserting a single struct. This will only work if 2730 // each of the elements of the substruct are known (ie, inserted into From by an 2731 // insertvalue instruction somewhere). 2732 // 2733 // All inserted insertvalue instructions are inserted before InsertBefore 2734 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2735 Instruction *InsertBefore) { 2736 assert(InsertBefore && "Must have someplace to insert!"); 2737 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2738 idx_range); 2739 Value *To = UndefValue::get(IndexedType); 2740 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2741 unsigned IdxSkip = Idxs.size(); 2742 2743 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2744 } 2745 2746 /// Given an aggregrate and an sequence of indices, see if 2747 /// the scalar value indexed is already around as a register, for example if it 2748 /// were inserted directly into the aggregrate. 2749 /// 2750 /// If InsertBefore is not null, this function will duplicate (modified) 2751 /// insertvalues when a part of a nested struct is extracted. 2752 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2753 Instruction *InsertBefore) { 2754 // Nothing to index? Just return V then (this is useful at the end of our 2755 // recursion). 2756 if (idx_range.empty()) 2757 return V; 2758 // We have indices, so V should have an indexable type. 2759 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2760 "Not looking at a struct or array?"); 2761 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2762 "Invalid indices for type?"); 2763 2764 if (Constant *C = dyn_cast<Constant>(V)) { 2765 C = C->getAggregateElement(idx_range[0]); 2766 if (!C) return nullptr; 2767 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2768 } 2769 2770 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2771 // Loop the indices for the insertvalue instruction in parallel with the 2772 // requested indices 2773 const unsigned *req_idx = idx_range.begin(); 2774 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2775 i != e; ++i, ++req_idx) { 2776 if (req_idx == idx_range.end()) { 2777 // We can't handle this without inserting insertvalues 2778 if (!InsertBefore) 2779 return nullptr; 2780 2781 // The requested index identifies a part of a nested aggregate. Handle 2782 // this specially. For example, 2783 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2784 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2785 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2786 // This can be changed into 2787 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2788 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2789 // which allows the unused 0,0 element from the nested struct to be 2790 // removed. 2791 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2792 InsertBefore); 2793 } 2794 2795 // This insert value inserts something else than what we are looking for. 2796 // See if the (aggregate) value inserted into has the value we are 2797 // looking for, then. 2798 if (*req_idx != *i) 2799 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2800 InsertBefore); 2801 } 2802 // If we end up here, the indices of the insertvalue match with those 2803 // requested (though possibly only partially). Now we recursively look at 2804 // the inserted value, passing any remaining indices. 2805 return FindInsertedValue(I->getInsertedValueOperand(), 2806 makeArrayRef(req_idx, idx_range.end()), 2807 InsertBefore); 2808 } 2809 2810 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2811 // If we're extracting a value from an aggregate that was extracted from 2812 // something else, we can extract from that something else directly instead. 2813 // However, we will need to chain I's indices with the requested indices. 2814 2815 // Calculate the number of indices required 2816 unsigned size = I->getNumIndices() + idx_range.size(); 2817 // Allocate some space to put the new indices in 2818 SmallVector<unsigned, 5> Idxs; 2819 Idxs.reserve(size); 2820 // Add indices from the extract value instruction 2821 Idxs.append(I->idx_begin(), I->idx_end()); 2822 2823 // Add requested indices 2824 Idxs.append(idx_range.begin(), idx_range.end()); 2825 2826 assert(Idxs.size() == size 2827 && "Number of indices added not correct?"); 2828 2829 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2830 } 2831 // Otherwise, we don't know (such as, extracting from a function return value 2832 // or load instruction) 2833 return nullptr; 2834 } 2835 2836 /// Analyze the specified pointer to see if it can be expressed as a base 2837 /// pointer plus a constant offset. Return the base and offset to the caller. 2838 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2839 const DataLayout &DL) { 2840 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2841 APInt ByteOffset(BitWidth, 0); 2842 2843 // We walk up the defs but use a visited set to handle unreachable code. In 2844 // that case, we stop after accumulating the cycle once (not that it 2845 // matters). 2846 SmallPtrSet<Value *, 16> Visited; 2847 while (Visited.insert(Ptr).second) { 2848 if (Ptr->getType()->isVectorTy()) 2849 break; 2850 2851 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2852 APInt GEPOffset(BitWidth, 0); 2853 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2854 break; 2855 2856 ByteOffset += GEPOffset; 2857 2858 Ptr = GEP->getPointerOperand(); 2859 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2860 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2861 Ptr = cast<Operator>(Ptr)->getOperand(0); 2862 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2863 if (GA->isInterposable()) 2864 break; 2865 Ptr = GA->getAliasee(); 2866 } else { 2867 break; 2868 } 2869 } 2870 Offset = ByteOffset.getSExtValue(); 2871 return Ptr; 2872 } 2873 2874 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2875 // Make sure the GEP has exactly three arguments. 2876 if (GEP->getNumOperands() != 3) 2877 return false; 2878 2879 // Make sure the index-ee is a pointer to array of i8. 2880 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2881 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2882 return false; 2883 2884 // Check to make sure that the first operand of the GEP is an integer and 2885 // has value 0 so that we are sure we're indexing into the initializer. 2886 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2887 if (!FirstIdx || !FirstIdx->isZero()) 2888 return false; 2889 2890 return true; 2891 } 2892 2893 /// This function computes the length of a null-terminated C string pointed to 2894 /// by V. If successful, it returns true and returns the string in Str. 2895 /// If unsuccessful, it returns false. 2896 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2897 uint64_t Offset, bool TrimAtNul) { 2898 assert(V); 2899 2900 // Look through bitcast instructions and geps. 2901 V = V->stripPointerCasts(); 2902 2903 // If the value is a GEP instruction or constant expression, treat it as an 2904 // offset. 2905 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2906 // The GEP operator should be based on a pointer to string constant, and is 2907 // indexing into the string constant. 2908 if (!isGEPBasedOnPointerToString(GEP)) 2909 return false; 2910 2911 // If the second index isn't a ConstantInt, then this is a variable index 2912 // into the array. If this occurs, we can't say anything meaningful about 2913 // the string. 2914 uint64_t StartIdx = 0; 2915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2916 StartIdx = CI->getZExtValue(); 2917 else 2918 return false; 2919 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2920 TrimAtNul); 2921 } 2922 2923 // The GEP instruction, constant or instruction, must reference a global 2924 // variable that is a constant and is initialized. The referenced constant 2925 // initializer is the array that we'll use for optimization. 2926 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2927 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2928 return false; 2929 2930 // Handle the all-zeros case. 2931 if (GV->getInitializer()->isNullValue()) { 2932 // This is a degenerate case. The initializer is constant zero so the 2933 // length of the string must be zero. 2934 Str = ""; 2935 return true; 2936 } 2937 2938 // This must be a ConstantDataArray. 2939 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2940 if (!Array || !Array->isString()) 2941 return false; 2942 2943 // Get the number of elements in the array. 2944 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2945 2946 // Start out with the entire array in the StringRef. 2947 Str = Array->getAsString(); 2948 2949 if (Offset > NumElts) 2950 return false; 2951 2952 // Skip over 'offset' bytes. 2953 Str = Str.substr(Offset); 2954 2955 if (TrimAtNul) { 2956 // Trim off the \0 and anything after it. If the array is not nul 2957 // terminated, we just return the whole end of string. The client may know 2958 // some other way that the string is length-bound. 2959 Str = Str.substr(0, Str.find('\0')); 2960 } 2961 return true; 2962 } 2963 2964 // These next two are very similar to the above, but also look through PHI 2965 // nodes. 2966 // TODO: See if we can integrate these two together. 2967 2968 /// If we can compute the length of the string pointed to by 2969 /// the specified pointer, return 'len+1'. If we can't, return 0. 2970 static uint64_t GetStringLengthH(const Value *V, 2971 SmallPtrSetImpl<const PHINode*> &PHIs) { 2972 // Look through noop bitcast instructions. 2973 V = V->stripPointerCasts(); 2974 2975 // If this is a PHI node, there are two cases: either we have already seen it 2976 // or we haven't. 2977 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2978 if (!PHIs.insert(PN).second) 2979 return ~0ULL; // already in the set. 2980 2981 // If it was new, see if all the input strings are the same length. 2982 uint64_t LenSoFar = ~0ULL; 2983 for (Value *IncValue : PN->incoming_values()) { 2984 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2985 if (Len == 0) return 0; // Unknown length -> unknown. 2986 2987 if (Len == ~0ULL) continue; 2988 2989 if (Len != LenSoFar && LenSoFar != ~0ULL) 2990 return 0; // Disagree -> unknown. 2991 LenSoFar = Len; 2992 } 2993 2994 // Success, all agree. 2995 return LenSoFar; 2996 } 2997 2998 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2999 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3000 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3001 if (Len1 == 0) return 0; 3002 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3003 if (Len2 == 0) return 0; 3004 if (Len1 == ~0ULL) return Len2; 3005 if (Len2 == ~0ULL) return Len1; 3006 if (Len1 != Len2) return 0; 3007 return Len1; 3008 } 3009 3010 // Otherwise, see if we can read the string. 3011 StringRef StrData; 3012 if (!getConstantStringInfo(V, StrData)) 3013 return 0; 3014 3015 return StrData.size()+1; 3016 } 3017 3018 /// If we can compute the length of the string pointed to by 3019 /// the specified pointer, return 'len+1'. If we can't, return 0. 3020 uint64_t llvm::GetStringLength(const Value *V) { 3021 if (!V->getType()->isPointerTy()) return 0; 3022 3023 SmallPtrSet<const PHINode*, 32> PHIs; 3024 uint64_t Len = GetStringLengthH(V, PHIs); 3025 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3026 // an empty string as a length. 3027 return Len == ~0ULL ? 1 : Len; 3028 } 3029 3030 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3031 /// previous iteration of the loop was referring to the same object as \p PN. 3032 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3033 const LoopInfo *LI) { 3034 // Find the loop-defined value. 3035 Loop *L = LI->getLoopFor(PN->getParent()); 3036 if (PN->getNumIncomingValues() != 2) 3037 return true; 3038 3039 // Find the value from previous iteration. 3040 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3041 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3042 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3043 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3044 return true; 3045 3046 // If a new pointer is loaded in the loop, the pointer references a different 3047 // object in every iteration. E.g.: 3048 // for (i) 3049 // int *p = a[i]; 3050 // ... 3051 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3052 if (!L->isLoopInvariant(Load->getPointerOperand())) 3053 return false; 3054 return true; 3055 } 3056 3057 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3058 unsigned MaxLookup) { 3059 if (!V->getType()->isPointerTy()) 3060 return V; 3061 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3062 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3063 V = GEP->getPointerOperand(); 3064 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3065 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3066 V = cast<Operator>(V)->getOperand(0); 3067 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3068 if (GA->isInterposable()) 3069 return V; 3070 V = GA->getAliasee(); 3071 } else { 3072 if (auto CS = CallSite(V)) 3073 if (Value *RV = CS.getReturnedArgOperand()) { 3074 V = RV; 3075 continue; 3076 } 3077 3078 // See if InstructionSimplify knows any relevant tricks. 3079 if (Instruction *I = dyn_cast<Instruction>(V)) 3080 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3081 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3082 V = Simplified; 3083 continue; 3084 } 3085 3086 return V; 3087 } 3088 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3089 } 3090 return V; 3091 } 3092 3093 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3094 const DataLayout &DL, LoopInfo *LI, 3095 unsigned MaxLookup) { 3096 SmallPtrSet<Value *, 4> Visited; 3097 SmallVector<Value *, 4> Worklist; 3098 Worklist.push_back(V); 3099 do { 3100 Value *P = Worklist.pop_back_val(); 3101 P = GetUnderlyingObject(P, DL, MaxLookup); 3102 3103 if (!Visited.insert(P).second) 3104 continue; 3105 3106 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3107 Worklist.push_back(SI->getTrueValue()); 3108 Worklist.push_back(SI->getFalseValue()); 3109 continue; 3110 } 3111 3112 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3113 // If this PHI changes the underlying object in every iteration of the 3114 // loop, don't look through it. Consider: 3115 // int **A; 3116 // for (i) { 3117 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3118 // Curr = A[i]; 3119 // *Prev, *Curr; 3120 // 3121 // Prev is tracking Curr one iteration behind so they refer to different 3122 // underlying objects. 3123 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3124 isSameUnderlyingObjectInLoop(PN, LI)) 3125 for (Value *IncValue : PN->incoming_values()) 3126 Worklist.push_back(IncValue); 3127 continue; 3128 } 3129 3130 Objects.push_back(P); 3131 } while (!Worklist.empty()); 3132 } 3133 3134 /// Return true if the only users of this pointer are lifetime markers. 3135 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3136 for (const User *U : V->users()) { 3137 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3138 if (!II) return false; 3139 3140 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3141 II->getIntrinsicID() != Intrinsic::lifetime_end) 3142 return false; 3143 } 3144 return true; 3145 } 3146 3147 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3148 const Instruction *CtxI, 3149 const DominatorTree *DT) { 3150 const Operator *Inst = dyn_cast<Operator>(V); 3151 if (!Inst) 3152 return false; 3153 3154 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3155 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3156 if (C->canTrap()) 3157 return false; 3158 3159 switch (Inst->getOpcode()) { 3160 default: 3161 return true; 3162 case Instruction::UDiv: 3163 case Instruction::URem: { 3164 // x / y is undefined if y == 0. 3165 const APInt *V; 3166 if (match(Inst->getOperand(1), m_APInt(V))) 3167 return *V != 0; 3168 return false; 3169 } 3170 case Instruction::SDiv: 3171 case Instruction::SRem: { 3172 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3173 const APInt *Numerator, *Denominator; 3174 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3175 return false; 3176 // We cannot hoist this division if the denominator is 0. 3177 if (*Denominator == 0) 3178 return false; 3179 // It's safe to hoist if the denominator is not 0 or -1. 3180 if (*Denominator != -1) 3181 return true; 3182 // At this point we know that the denominator is -1. It is safe to hoist as 3183 // long we know that the numerator is not INT_MIN. 3184 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3185 return !Numerator->isMinSignedValue(); 3186 // The numerator *might* be MinSignedValue. 3187 return false; 3188 } 3189 case Instruction::Load: { 3190 const LoadInst *LI = cast<LoadInst>(Inst); 3191 if (!LI->isUnordered() || 3192 // Speculative load may create a race that did not exist in the source. 3193 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3194 // Speculative load may load data from dirty regions. 3195 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3196 return false; 3197 const DataLayout &DL = LI->getModule()->getDataLayout(); 3198 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3199 LI->getAlignment(), DL, CtxI, DT); 3200 } 3201 case Instruction::Call: { 3202 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3203 switch (II->getIntrinsicID()) { 3204 // These synthetic intrinsics have no side-effects and just mark 3205 // information about their operands. 3206 // FIXME: There are other no-op synthetic instructions that potentially 3207 // should be considered at least *safe* to speculate... 3208 case Intrinsic::dbg_declare: 3209 case Intrinsic::dbg_value: 3210 return true; 3211 3212 case Intrinsic::bswap: 3213 case Intrinsic::ctlz: 3214 case Intrinsic::ctpop: 3215 case Intrinsic::cttz: 3216 case Intrinsic::objectsize: 3217 case Intrinsic::sadd_with_overflow: 3218 case Intrinsic::smul_with_overflow: 3219 case Intrinsic::ssub_with_overflow: 3220 case Intrinsic::uadd_with_overflow: 3221 case Intrinsic::umul_with_overflow: 3222 case Intrinsic::usub_with_overflow: 3223 return true; 3224 // These intrinsics are defined to have the same behavior as libm 3225 // functions except for setting errno. 3226 case Intrinsic::sqrt: 3227 case Intrinsic::fma: 3228 case Intrinsic::fmuladd: 3229 return true; 3230 // These intrinsics are defined to have the same behavior as libm 3231 // functions, and the corresponding libm functions never set errno. 3232 case Intrinsic::trunc: 3233 case Intrinsic::copysign: 3234 case Intrinsic::fabs: 3235 case Intrinsic::minnum: 3236 case Intrinsic::maxnum: 3237 return true; 3238 // These intrinsics are defined to have the same behavior as libm 3239 // functions, which never overflow when operating on the IEEE754 types 3240 // that we support, and never set errno otherwise. 3241 case Intrinsic::ceil: 3242 case Intrinsic::floor: 3243 case Intrinsic::nearbyint: 3244 case Intrinsic::rint: 3245 case Intrinsic::round: 3246 return true; 3247 // TODO: are convert_{from,to}_fp16 safe? 3248 // TODO: can we list target-specific intrinsics here? 3249 default: break; 3250 } 3251 } 3252 return false; // The called function could have undefined behavior or 3253 // side-effects, even if marked readnone nounwind. 3254 } 3255 case Instruction::VAArg: 3256 case Instruction::Alloca: 3257 case Instruction::Invoke: 3258 case Instruction::PHI: 3259 case Instruction::Store: 3260 case Instruction::Ret: 3261 case Instruction::Br: 3262 case Instruction::IndirectBr: 3263 case Instruction::Switch: 3264 case Instruction::Unreachable: 3265 case Instruction::Fence: 3266 case Instruction::AtomicRMW: 3267 case Instruction::AtomicCmpXchg: 3268 case Instruction::LandingPad: 3269 case Instruction::Resume: 3270 case Instruction::CatchSwitch: 3271 case Instruction::CatchPad: 3272 case Instruction::CatchRet: 3273 case Instruction::CleanupPad: 3274 case Instruction::CleanupRet: 3275 return false; // Misc instructions which have effects 3276 } 3277 } 3278 3279 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3280 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3281 } 3282 3283 /// Return true if we know that the specified value is never null. 3284 bool llvm::isKnownNonNull(const Value *V) { 3285 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3286 3287 // Alloca never returns null, malloc might. 3288 if (isa<AllocaInst>(V)) return true; 3289 3290 // A byval, inalloca, or nonnull argument is never null. 3291 if (const Argument *A = dyn_cast<Argument>(V)) 3292 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3293 3294 // A global variable in address space 0 is non null unless extern weak. 3295 // Other address spaces may have null as a valid address for a global, 3296 // so we can't assume anything. 3297 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3298 return !GV->hasExternalWeakLinkage() && 3299 GV->getType()->getAddressSpace() == 0; 3300 3301 // A Load tagged with nonnull metadata is never null. 3302 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3303 return LI->getMetadata(LLVMContext::MD_nonnull); 3304 3305 if (auto CS = ImmutableCallSite(V)) 3306 if (CS.isReturnNonNull()) 3307 return true; 3308 3309 return false; 3310 } 3311 3312 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3313 const Instruction *CtxI, 3314 const DominatorTree *DT) { 3315 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3316 3317 unsigned NumUsesExplored = 0; 3318 for (auto *U : V->users()) { 3319 // Avoid massive lists 3320 if (NumUsesExplored >= DomConditionsMaxUses) 3321 break; 3322 NumUsesExplored++; 3323 // Consider only compare instructions uniquely controlling a branch 3324 CmpInst::Predicate Pred; 3325 if (!match(const_cast<User *>(U), 3326 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3327 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3328 continue; 3329 3330 for (auto *CmpU : U->users()) { 3331 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3332 assert(BI->isConditional() && "uses a comparison!"); 3333 3334 BasicBlock *NonNullSuccessor = 3335 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3336 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3337 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3338 return true; 3339 } else if (Pred == ICmpInst::ICMP_NE && 3340 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3341 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3342 return true; 3343 } 3344 } 3345 } 3346 3347 return false; 3348 } 3349 3350 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3351 const DominatorTree *DT) { 3352 if (isKnownNonNull(V)) 3353 return true; 3354 3355 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3356 } 3357 3358 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3359 const Value *RHS, 3360 const DataLayout &DL, 3361 AssumptionCache *AC, 3362 const Instruction *CxtI, 3363 const DominatorTree *DT) { 3364 // Multiplying n * m significant bits yields a result of n + m significant 3365 // bits. If the total number of significant bits does not exceed the 3366 // result bit width (minus 1), there is no overflow. 3367 // This means if we have enough leading zero bits in the operands 3368 // we can guarantee that the result does not overflow. 3369 // Ref: "Hacker's Delight" by Henry Warren 3370 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3371 APInt LHSKnownZero(BitWidth, 0); 3372 APInt LHSKnownOne(BitWidth, 0); 3373 APInt RHSKnownZero(BitWidth, 0); 3374 APInt RHSKnownOne(BitWidth, 0); 3375 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3376 DT); 3377 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3378 DT); 3379 // Note that underestimating the number of zero bits gives a more 3380 // conservative answer. 3381 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3382 RHSKnownZero.countLeadingOnes(); 3383 // First handle the easy case: if we have enough zero bits there's 3384 // definitely no overflow. 3385 if (ZeroBits >= BitWidth) 3386 return OverflowResult::NeverOverflows; 3387 3388 // Get the largest possible values for each operand. 3389 APInt LHSMax = ~LHSKnownZero; 3390 APInt RHSMax = ~RHSKnownZero; 3391 3392 // We know the multiply operation doesn't overflow if the maximum values for 3393 // each operand will not overflow after we multiply them together. 3394 bool MaxOverflow; 3395 LHSMax.umul_ov(RHSMax, MaxOverflow); 3396 if (!MaxOverflow) 3397 return OverflowResult::NeverOverflows; 3398 3399 // We know it always overflows if multiplying the smallest possible values for 3400 // the operands also results in overflow. 3401 bool MinOverflow; 3402 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3403 if (MinOverflow) 3404 return OverflowResult::AlwaysOverflows; 3405 3406 return OverflowResult::MayOverflow; 3407 } 3408 3409 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3410 const Value *RHS, 3411 const DataLayout &DL, 3412 AssumptionCache *AC, 3413 const Instruction *CxtI, 3414 const DominatorTree *DT) { 3415 bool LHSKnownNonNegative, LHSKnownNegative; 3416 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3417 AC, CxtI, DT); 3418 if (LHSKnownNonNegative || LHSKnownNegative) { 3419 bool RHSKnownNonNegative, RHSKnownNegative; 3420 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3421 AC, CxtI, DT); 3422 3423 if (LHSKnownNegative && RHSKnownNegative) { 3424 // The sign bit is set in both cases: this MUST overflow. 3425 // Create a simple add instruction, and insert it into the struct. 3426 return OverflowResult::AlwaysOverflows; 3427 } 3428 3429 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3430 // The sign bit is clear in both cases: this CANNOT overflow. 3431 // Create a simple add instruction, and insert it into the struct. 3432 return OverflowResult::NeverOverflows; 3433 } 3434 } 3435 3436 return OverflowResult::MayOverflow; 3437 } 3438 3439 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3440 const Value *RHS, 3441 const AddOperator *Add, 3442 const DataLayout &DL, 3443 AssumptionCache *AC, 3444 const Instruction *CxtI, 3445 const DominatorTree *DT) { 3446 if (Add && Add->hasNoSignedWrap()) { 3447 return OverflowResult::NeverOverflows; 3448 } 3449 3450 bool LHSKnownNonNegative, LHSKnownNegative; 3451 bool RHSKnownNonNegative, RHSKnownNegative; 3452 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3453 AC, CxtI, DT); 3454 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3455 AC, CxtI, DT); 3456 3457 if ((LHSKnownNonNegative && RHSKnownNegative) || 3458 (LHSKnownNegative && RHSKnownNonNegative)) { 3459 // The sign bits are opposite: this CANNOT overflow. 3460 return OverflowResult::NeverOverflows; 3461 } 3462 3463 // The remaining code needs Add to be available. Early returns if not so. 3464 if (!Add) 3465 return OverflowResult::MayOverflow; 3466 3467 // If the sign of Add is the same as at least one of the operands, this add 3468 // CANNOT overflow. This is particularly useful when the sum is 3469 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3470 // operands. 3471 bool LHSOrRHSKnownNonNegative = 3472 (LHSKnownNonNegative || RHSKnownNonNegative); 3473 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3474 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3475 bool AddKnownNonNegative, AddKnownNegative; 3476 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3477 /*Depth=*/0, AC, CxtI, DT); 3478 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3479 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3480 return OverflowResult::NeverOverflows; 3481 } 3482 } 3483 3484 return OverflowResult::MayOverflow; 3485 } 3486 3487 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3488 const DominatorTree &DT) { 3489 #ifndef NDEBUG 3490 auto IID = II->getIntrinsicID(); 3491 assert((IID == Intrinsic::sadd_with_overflow || 3492 IID == Intrinsic::uadd_with_overflow || 3493 IID == Intrinsic::ssub_with_overflow || 3494 IID == Intrinsic::usub_with_overflow || 3495 IID == Intrinsic::smul_with_overflow || 3496 IID == Intrinsic::umul_with_overflow) && 3497 "Not an overflow intrinsic!"); 3498 #endif 3499 3500 SmallVector<const BranchInst *, 2> GuardingBranches; 3501 SmallVector<const ExtractValueInst *, 2> Results; 3502 3503 for (const User *U : II->users()) { 3504 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3505 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3506 3507 if (EVI->getIndices()[0] == 0) 3508 Results.push_back(EVI); 3509 else { 3510 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3511 3512 for (const auto *U : EVI->users()) 3513 if (const auto *B = dyn_cast<BranchInst>(U)) { 3514 assert(B->isConditional() && "How else is it using an i1?"); 3515 GuardingBranches.push_back(B); 3516 } 3517 } 3518 } else { 3519 // We are using the aggregate directly in a way we don't want to analyze 3520 // here (storing it to a global, say). 3521 return false; 3522 } 3523 } 3524 3525 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3526 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3527 if (!NoWrapEdge.isSingleEdge()) 3528 return false; 3529 3530 // Check if all users of the add are provably no-wrap. 3531 for (const auto *Result : Results) { 3532 // If the extractvalue itself is not executed on overflow, the we don't 3533 // need to check each use separately, since domination is transitive. 3534 if (DT.dominates(NoWrapEdge, Result->getParent())) 3535 continue; 3536 3537 for (auto &RU : Result->uses()) 3538 if (!DT.dominates(NoWrapEdge, RU)) 3539 return false; 3540 } 3541 3542 return true; 3543 }; 3544 3545 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3546 } 3547 3548 3549 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3550 const DataLayout &DL, 3551 AssumptionCache *AC, 3552 const Instruction *CxtI, 3553 const DominatorTree *DT) { 3554 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3555 Add, DL, AC, CxtI, DT); 3556 } 3557 3558 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3559 const Value *RHS, 3560 const DataLayout &DL, 3561 AssumptionCache *AC, 3562 const Instruction *CxtI, 3563 const DominatorTree *DT) { 3564 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3565 } 3566 3567 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3568 // A memory operation returns normally if it isn't volatile. A volatile 3569 // operation is allowed to trap. 3570 // 3571 // An atomic operation isn't guaranteed to return in a reasonable amount of 3572 // time because it's possible for another thread to interfere with it for an 3573 // arbitrary length of time, but programs aren't allowed to rely on that. 3574 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3575 return !LI->isVolatile(); 3576 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3577 return !SI->isVolatile(); 3578 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3579 return !CXI->isVolatile(); 3580 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3581 return !RMWI->isVolatile(); 3582 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3583 return !MII->isVolatile(); 3584 3585 // If there is no successor, then execution can't transfer to it. 3586 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3587 return !CRI->unwindsToCaller(); 3588 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3589 return !CatchSwitch->unwindsToCaller(); 3590 if (isa<ResumeInst>(I)) 3591 return false; 3592 if (isa<ReturnInst>(I)) 3593 return false; 3594 3595 // Calls can throw, or contain an infinite loop, or kill the process. 3596 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3597 // Calls which don't write to arbitrary memory are safe. 3598 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3599 // but it's consistent with other passes. See http://llvm.org/PR965 . 3600 // FIXME: This isn't aggressive enough; a call which only writes to a 3601 // global is guaranteed to return. 3602 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3603 match(I, m_Intrinsic<Intrinsic::assume>()); 3604 } 3605 3606 // Other instructions return normally. 3607 return true; 3608 } 3609 3610 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3611 const Loop *L) { 3612 // The loop header is guaranteed to be executed for every iteration. 3613 // 3614 // FIXME: Relax this constraint to cover all basic blocks that are 3615 // guaranteed to be executed at every iteration. 3616 if (I->getParent() != L->getHeader()) return false; 3617 3618 for (const Instruction &LI : *L->getHeader()) { 3619 if (&LI == I) return true; 3620 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3621 } 3622 llvm_unreachable("Instruction not contained in its own parent basic block."); 3623 } 3624 3625 bool llvm::propagatesFullPoison(const Instruction *I) { 3626 switch (I->getOpcode()) { 3627 case Instruction::Add: 3628 case Instruction::Sub: 3629 case Instruction::Xor: 3630 case Instruction::Trunc: 3631 case Instruction::BitCast: 3632 case Instruction::AddrSpaceCast: 3633 // These operations all propagate poison unconditionally. Note that poison 3634 // is not any particular value, so xor or subtraction of poison with 3635 // itself still yields poison, not zero. 3636 return true; 3637 3638 case Instruction::AShr: 3639 case Instruction::SExt: 3640 // For these operations, one bit of the input is replicated across 3641 // multiple output bits. A replicated poison bit is still poison. 3642 return true; 3643 3644 case Instruction::Shl: { 3645 // Left shift *by* a poison value is poison. The number of 3646 // positions to shift is unsigned, so no negative values are 3647 // possible there. Left shift by zero places preserves poison. So 3648 // it only remains to consider left shift of poison by a positive 3649 // number of places. 3650 // 3651 // A left shift by a positive number of places leaves the lowest order bit 3652 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3653 // make the poison operand violate that flag, yielding a fresh full-poison 3654 // value. 3655 auto *OBO = cast<OverflowingBinaryOperator>(I); 3656 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3657 } 3658 3659 case Instruction::Mul: { 3660 // A multiplication by zero yields a non-poison zero result, so we need to 3661 // rule out zero as an operand. Conservatively, multiplication by a 3662 // non-zero constant is not multiplication by zero. 3663 // 3664 // Multiplication by a non-zero constant can leave some bits 3665 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3666 // order bit unpoisoned. So we need to consider that. 3667 // 3668 // Multiplication by 1 preserves poison. If the multiplication has a 3669 // no-wrap flag, then we can make the poison operand violate that flag 3670 // when multiplied by any integer other than 0 and 1. 3671 auto *OBO = cast<OverflowingBinaryOperator>(I); 3672 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3673 for (Value *V : OBO->operands()) { 3674 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3675 // A ConstantInt cannot yield poison, so we can assume that it is 3676 // the other operand that is poison. 3677 return !CI->isZero(); 3678 } 3679 } 3680 } 3681 return false; 3682 } 3683 3684 case Instruction::ICmp: 3685 // Comparing poison with any value yields poison. This is why, for 3686 // instance, x s< (x +nsw 1) can be folded to true. 3687 return true; 3688 3689 case Instruction::GetElementPtr: 3690 // A GEP implicitly represents a sequence of additions, subtractions, 3691 // truncations, sign extensions and multiplications. The multiplications 3692 // are by the non-zero sizes of some set of types, so we do not have to be 3693 // concerned with multiplication by zero. If the GEP is in-bounds, then 3694 // these operations are implicitly no-signed-wrap so poison is propagated 3695 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3696 return cast<GEPOperator>(I)->isInBounds(); 3697 3698 default: 3699 return false; 3700 } 3701 } 3702 3703 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3704 switch (I->getOpcode()) { 3705 case Instruction::Store: 3706 return cast<StoreInst>(I)->getPointerOperand(); 3707 3708 case Instruction::Load: 3709 return cast<LoadInst>(I)->getPointerOperand(); 3710 3711 case Instruction::AtomicCmpXchg: 3712 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3713 3714 case Instruction::AtomicRMW: 3715 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3716 3717 case Instruction::UDiv: 3718 case Instruction::SDiv: 3719 case Instruction::URem: 3720 case Instruction::SRem: 3721 return I->getOperand(1); 3722 3723 default: 3724 return nullptr; 3725 } 3726 } 3727 3728 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3729 // We currently only look for uses of poison values within the same basic 3730 // block, as that makes it easier to guarantee that the uses will be 3731 // executed given that PoisonI is executed. 3732 // 3733 // FIXME: Expand this to consider uses beyond the same basic block. To do 3734 // this, look out for the distinction between post-dominance and strong 3735 // post-dominance. 3736 const BasicBlock *BB = PoisonI->getParent(); 3737 3738 // Set of instructions that we have proved will yield poison if PoisonI 3739 // does. 3740 SmallSet<const Value *, 16> YieldsPoison; 3741 SmallSet<const BasicBlock *, 4> Visited; 3742 YieldsPoison.insert(PoisonI); 3743 Visited.insert(PoisonI->getParent()); 3744 3745 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3746 3747 unsigned Iter = 0; 3748 while (Iter++ < MaxDepth) { 3749 for (auto &I : make_range(Begin, End)) { 3750 if (&I != PoisonI) { 3751 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3752 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3753 return true; 3754 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3755 return false; 3756 } 3757 3758 // Mark poison that propagates from I through uses of I. 3759 if (YieldsPoison.count(&I)) { 3760 for (const User *User : I.users()) { 3761 const Instruction *UserI = cast<Instruction>(User); 3762 if (propagatesFullPoison(UserI)) 3763 YieldsPoison.insert(User); 3764 } 3765 } 3766 } 3767 3768 if (auto *NextBB = BB->getSingleSuccessor()) { 3769 if (Visited.insert(NextBB).second) { 3770 BB = NextBB; 3771 Begin = BB->getFirstNonPHI()->getIterator(); 3772 End = BB->end(); 3773 continue; 3774 } 3775 } 3776 3777 break; 3778 }; 3779 return false; 3780 } 3781 3782 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3783 if (FMF.noNaNs()) 3784 return true; 3785 3786 if (auto *C = dyn_cast<ConstantFP>(V)) 3787 return !C->isNaN(); 3788 return false; 3789 } 3790 3791 static bool isKnownNonZero(const Value *V) { 3792 if (auto *C = dyn_cast<ConstantFP>(V)) 3793 return !C->isZero(); 3794 return false; 3795 } 3796 3797 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3798 FastMathFlags FMF, 3799 Value *CmpLHS, Value *CmpRHS, 3800 Value *TrueVal, Value *FalseVal, 3801 Value *&LHS, Value *&RHS) { 3802 LHS = CmpLHS; 3803 RHS = CmpRHS; 3804 3805 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3806 // return inconsistent results between implementations. 3807 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3808 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3809 // Therefore we behave conservatively and only proceed if at least one of the 3810 // operands is known to not be zero, or if we don't care about signed zeroes. 3811 switch (Pred) { 3812 default: break; 3813 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3814 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3815 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3816 !isKnownNonZero(CmpRHS)) 3817 return {SPF_UNKNOWN, SPNB_NA, false}; 3818 } 3819 3820 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3821 bool Ordered = false; 3822 3823 // When given one NaN and one non-NaN input: 3824 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3825 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3826 // ordered comparison fails), which could be NaN or non-NaN. 3827 // so here we discover exactly what NaN behavior is required/accepted. 3828 if (CmpInst::isFPPredicate(Pred)) { 3829 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3830 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3831 3832 if (LHSSafe && RHSSafe) { 3833 // Both operands are known non-NaN. 3834 NaNBehavior = SPNB_RETURNS_ANY; 3835 } else if (CmpInst::isOrdered(Pred)) { 3836 // An ordered comparison will return false when given a NaN, so it 3837 // returns the RHS. 3838 Ordered = true; 3839 if (LHSSafe) 3840 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3841 NaNBehavior = SPNB_RETURNS_NAN; 3842 else if (RHSSafe) 3843 NaNBehavior = SPNB_RETURNS_OTHER; 3844 else 3845 // Completely unsafe. 3846 return {SPF_UNKNOWN, SPNB_NA, false}; 3847 } else { 3848 Ordered = false; 3849 // An unordered comparison will return true when given a NaN, so it 3850 // returns the LHS. 3851 if (LHSSafe) 3852 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3853 NaNBehavior = SPNB_RETURNS_OTHER; 3854 else if (RHSSafe) 3855 NaNBehavior = SPNB_RETURNS_NAN; 3856 else 3857 // Completely unsafe. 3858 return {SPF_UNKNOWN, SPNB_NA, false}; 3859 } 3860 } 3861 3862 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3863 std::swap(CmpLHS, CmpRHS); 3864 Pred = CmpInst::getSwappedPredicate(Pred); 3865 if (NaNBehavior == SPNB_RETURNS_NAN) 3866 NaNBehavior = SPNB_RETURNS_OTHER; 3867 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3868 NaNBehavior = SPNB_RETURNS_NAN; 3869 Ordered = !Ordered; 3870 } 3871 3872 // ([if]cmp X, Y) ? X : Y 3873 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3874 switch (Pred) { 3875 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3876 case ICmpInst::ICMP_UGT: 3877 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3878 case ICmpInst::ICMP_SGT: 3879 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3880 case ICmpInst::ICMP_ULT: 3881 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3882 case ICmpInst::ICMP_SLT: 3883 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3884 case FCmpInst::FCMP_UGT: 3885 case FCmpInst::FCMP_UGE: 3886 case FCmpInst::FCMP_OGT: 3887 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3888 case FCmpInst::FCMP_ULT: 3889 case FCmpInst::FCMP_ULE: 3890 case FCmpInst::FCMP_OLT: 3891 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3892 } 3893 } 3894 3895 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3896 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3897 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3898 3899 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3900 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3901 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3902 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3903 } 3904 3905 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3906 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3907 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3908 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3909 } 3910 } 3911 3912 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3913 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3914 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3915 ~C1->getValue() == C2->getValue() && 3916 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3917 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3918 LHS = TrueVal; 3919 RHS = FalseVal; 3920 return {SPF_SMIN, SPNB_NA, false}; 3921 } 3922 } 3923 } 3924 3925 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3926 3927 return {SPF_UNKNOWN, SPNB_NA, false}; 3928 } 3929 3930 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3931 Instruction::CastOps *CastOp) { 3932 CastInst *CI = dyn_cast<CastInst>(V1); 3933 Constant *C = dyn_cast<Constant>(V2); 3934 if (!CI) 3935 return nullptr; 3936 *CastOp = CI->getOpcode(); 3937 3938 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3939 // If V1 and V2 are both the same cast from the same type, we can look 3940 // through V1. 3941 if (CI2->getOpcode() == CI->getOpcode() && 3942 CI2->getSrcTy() == CI->getSrcTy()) 3943 return CI2->getOperand(0); 3944 return nullptr; 3945 } else if (!C) { 3946 return nullptr; 3947 } 3948 3949 Constant *CastedTo = nullptr; 3950 3951 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3952 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3953 3954 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3955 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3956 3957 if (isa<TruncInst>(CI)) 3958 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3959 3960 if (isa<FPTruncInst>(CI)) 3961 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3962 3963 if (isa<FPExtInst>(CI)) 3964 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3965 3966 if (isa<FPToUIInst>(CI)) 3967 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3968 3969 if (isa<FPToSIInst>(CI)) 3970 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3971 3972 if (isa<UIToFPInst>(CI)) 3973 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3974 3975 if (isa<SIToFPInst>(CI)) 3976 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3977 3978 if (!CastedTo) 3979 return nullptr; 3980 3981 Constant *CastedBack = 3982 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3983 // Make sure the cast doesn't lose any information. 3984 if (CastedBack != C) 3985 return nullptr; 3986 3987 return CastedTo; 3988 } 3989 3990 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 3991 Instruction::CastOps *CastOp) { 3992 SelectInst *SI = dyn_cast<SelectInst>(V); 3993 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3994 3995 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3996 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3997 3998 CmpInst::Predicate Pred = CmpI->getPredicate(); 3999 Value *CmpLHS = CmpI->getOperand(0); 4000 Value *CmpRHS = CmpI->getOperand(1); 4001 Value *TrueVal = SI->getTrueValue(); 4002 Value *FalseVal = SI->getFalseValue(); 4003 FastMathFlags FMF; 4004 if (isa<FPMathOperator>(CmpI)) 4005 FMF = CmpI->getFastMathFlags(); 4006 4007 // Bail out early. 4008 if (CmpI->isEquality()) 4009 return {SPF_UNKNOWN, SPNB_NA, false}; 4010 4011 // Deal with type mismatches. 4012 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4013 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4014 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4015 cast<CastInst>(TrueVal)->getOperand(0), C, 4016 LHS, RHS); 4017 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4018 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4019 C, cast<CastInst>(FalseVal)->getOperand(0), 4020 LHS, RHS); 4021 } 4022 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4023 LHS, RHS); 4024 } 4025 4026 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 4027 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4028 assert(NumRanges >= 1 && "Must have at least one range!"); 4029 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4030 4031 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4032 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4033 4034 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4035 4036 for (unsigned i = 1; i < NumRanges; ++i) { 4037 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4038 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4039 4040 // Note: unionWith will potentially create a range that contains values not 4041 // contained in any of the original N ranges. 4042 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4043 } 4044 4045 return CR; 4046 } 4047 4048 /// Return true if "icmp Pred LHS RHS" is always true. 4049 static bool isTruePredicate(CmpInst::Predicate Pred, 4050 const Value *LHS, const Value *RHS, 4051 const DataLayout &DL, unsigned Depth, 4052 AssumptionCache *AC, const Instruction *CxtI, 4053 const DominatorTree *DT) { 4054 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4055 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4056 return true; 4057 4058 switch (Pred) { 4059 default: 4060 return false; 4061 4062 case CmpInst::ICMP_SLE: { 4063 const APInt *C; 4064 4065 // LHS s<= LHS +_{nsw} C if C >= 0 4066 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4067 return !C->isNegative(); 4068 return false; 4069 } 4070 4071 case CmpInst::ICMP_ULE: { 4072 const APInt *C; 4073 4074 // LHS u<= LHS +_{nuw} C for any C 4075 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4076 return true; 4077 4078 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4079 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4080 const Value *&X, 4081 const APInt *&CA, const APInt *&CB) { 4082 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4083 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4084 return true; 4085 4086 // If X & C == 0 then (X | C) == X +_{nuw} C 4087 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4088 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4089 unsigned BitWidth = CA->getBitWidth(); 4090 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4091 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4092 4093 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4094 return true; 4095 } 4096 4097 return false; 4098 }; 4099 4100 const Value *X; 4101 const APInt *CLHS, *CRHS; 4102 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4103 return CLHS->ule(*CRHS); 4104 4105 return false; 4106 } 4107 } 4108 } 4109 4110 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4111 /// ALHS ARHS" is true. Otherwise, return None. 4112 static Optional<bool> 4113 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4114 const Value *ARHS, const Value *BLHS, 4115 const Value *BRHS, const DataLayout &DL, 4116 unsigned Depth, AssumptionCache *AC, 4117 const Instruction *CxtI, const DominatorTree *DT) { 4118 switch (Pred) { 4119 default: 4120 return None; 4121 4122 case CmpInst::ICMP_SLT: 4123 case CmpInst::ICMP_SLE: 4124 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4125 DT) && 4126 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4127 return true; 4128 return None; 4129 4130 case CmpInst::ICMP_ULT: 4131 case CmpInst::ICMP_ULE: 4132 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4133 DT) && 4134 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4135 return true; 4136 return None; 4137 } 4138 } 4139 4140 /// Return true if the operands of the two compares match. IsSwappedOps is true 4141 /// when the operands match, but are swapped. 4142 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4143 const Value *BLHS, const Value *BRHS, 4144 bool &IsSwappedOps) { 4145 4146 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4147 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4148 return IsMatchingOps || IsSwappedOps; 4149 } 4150 4151 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4152 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4153 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4154 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4155 const Value *ALHS, 4156 const Value *ARHS, 4157 CmpInst::Predicate BPred, 4158 const Value *BLHS, 4159 const Value *BRHS, 4160 bool IsSwappedOps) { 4161 // Canonicalize the operands so they're matching. 4162 if (IsSwappedOps) { 4163 std::swap(BLHS, BRHS); 4164 BPred = ICmpInst::getSwappedPredicate(BPred); 4165 } 4166 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4167 return true; 4168 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4169 return false; 4170 4171 return None; 4172 } 4173 4174 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4175 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4176 /// C2" is false. Otherwise, return None if we can't infer anything. 4177 static Optional<bool> 4178 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4179 const ConstantInt *C1, 4180 CmpInst::Predicate BPred, 4181 const Value *BLHS, const ConstantInt *C2) { 4182 assert(ALHS == BLHS && "LHS operands must match."); 4183 ConstantRange DomCR = 4184 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4185 ConstantRange CR = 4186 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4187 ConstantRange Intersection = DomCR.intersectWith(CR); 4188 ConstantRange Difference = DomCR.difference(CR); 4189 if (Intersection.isEmptySet()) 4190 return false; 4191 if (Difference.isEmptySet()) 4192 return true; 4193 return None; 4194 } 4195 4196 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4197 const DataLayout &DL, bool InvertAPred, 4198 unsigned Depth, AssumptionCache *AC, 4199 const Instruction *CxtI, 4200 const DominatorTree *DT) { 4201 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4202 if (LHS->getType() != RHS->getType()) 4203 return None; 4204 4205 Type *OpTy = LHS->getType(); 4206 assert(OpTy->getScalarType()->isIntegerTy(1)); 4207 4208 // LHS ==> RHS by definition 4209 if (!InvertAPred && LHS == RHS) 4210 return true; 4211 4212 if (OpTy->isVectorTy()) 4213 // TODO: extending the code below to handle vectors 4214 return None; 4215 assert(OpTy->isIntegerTy(1) && "implied by above"); 4216 4217 ICmpInst::Predicate APred, BPred; 4218 Value *ALHS, *ARHS; 4219 Value *BLHS, *BRHS; 4220 4221 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4222 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4223 return None; 4224 4225 if (InvertAPred) 4226 APred = CmpInst::getInversePredicate(APred); 4227 4228 // Can we infer anything when the two compares have matching operands? 4229 bool IsSwappedOps; 4230 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4231 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4232 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4233 return Implication; 4234 // No amount of additional analysis will infer the second condition, so 4235 // early exit. 4236 return None; 4237 } 4238 4239 // Can we infer anything when the LHS operands match and the RHS operands are 4240 // constants (not necessarily matching)? 4241 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4242 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4243 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4244 cast<ConstantInt>(BRHS))) 4245 return Implication; 4246 // No amount of additional analysis will infer the second condition, so 4247 // early exit. 4248 return None; 4249 } 4250 4251 if (APred == BPred) 4252 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4253 CxtI, DT); 4254 4255 return None; 4256 } 4257