1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
134                                const DataLayout &DL,
135                                AssumptionCache *AC, const Instruction *CxtI,
136                                const DominatorTree *DT) {
137   assert(LHS->getType() == RHS->getType() &&
138          "LHS and RHS should have the same type");
139   assert(LHS->getType()->isIntOrIntVectorTy() &&
140          "LHS and RHS should be integers");
141   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
142   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
143   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
144   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
145   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
146   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
147 }
148 
149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
150                            unsigned Depth, const Query &Q);
151 
152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
153                           const DataLayout &DL, unsigned Depth,
154                           AssumptionCache *AC, const Instruction *CxtI,
155                           const DominatorTree *DT) {
156   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
157                    Query(DL, AC, safeCxtI(V, CxtI), DT));
158 }
159 
160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
161                                    const Query &Q);
162 
163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
164                                   bool OrZero,
165                                   unsigned Depth, AssumptionCache *AC,
166                                   const Instruction *CxtI,
167                                   const DominatorTree *DT) {
168   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
169                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
173 
174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
175                           AssumptionCache *AC, const Instruction *CxtI,
176                           const DominatorTree *DT) {
177   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
178 }
179 
180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
181                               unsigned Depth,
182                               AssumptionCache *AC, const Instruction *CxtI,
183                               const DominatorTree *DT) {
184   bool NonNegative, Negative;
185   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
186   return NonNegative;
187 }
188 
189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
190                            AssumptionCache *AC, const Instruction *CxtI,
191                            const DominatorTree *DT) {
192   if (auto *CI = dyn_cast<ConstantInt>(V))
193     return CI->getValue().isStrictlyPositive();
194 
195   // TODO: We'd doing two recursive queries here.  We should factor this such
196   // that only a single query is needed.
197   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
198     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
199 }
200 
201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   bool NonNegative, Negative;
205   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
206   return Negative;
207 }
208 
209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
210 
211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
212                            const DataLayout &DL,
213                            AssumptionCache *AC, const Instruction *CxtI,
214                            const DominatorTree *DT) {
215   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
216                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
217                                          DT));
218 }
219 
220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
221                               const Query &Q);
222 
223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
224                              const DataLayout &DL,
225                              unsigned Depth, AssumptionCache *AC,
226                              const Instruction *CxtI, const DominatorTree *DT) {
227   return ::MaskedValueIsZero(V, Mask, Depth,
228                              Query(DL, AC, safeCxtI(V, CxtI), DT));
229 }
230 
231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
232                                    const Query &Q);
233 
234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
235                                   unsigned Depth, AssumptionCache *AC,
236                                   const Instruction *CxtI,
237                                   const DominatorTree *DT) {
238   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
239 }
240 
241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
242                                    bool NSW,
243                                    APInt &KnownZero, APInt &KnownOne,
244                                    APInt &KnownZero2, APInt &KnownOne2,
245                                    unsigned Depth, const Query &Q) {
246   if (!Add) {
247     if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
248       // We know that the top bits of C-X are clear if X contains less bits
249       // than C (i.e. no wrap-around can happen).  For example, 20-X is
250       // positive if we can prove that X is >= 0 and < 16.
251       if (!CLHS->getValue().isNegative()) {
252         unsigned BitWidth = KnownZero.getBitWidth();
253         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
254         // NLZ can't be BitWidth with no sign bit
255         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
256         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
257 
258         // If all of the MaskV bits are known to be zero, then we know the
259         // output top bits are zero, because we now know that the output is
260         // from [0-C].
261         if ((KnownZero2 & MaskV) == MaskV) {
262           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
263           // Top bits known zero.
264           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
265         }
266       }
267     }
268   }
269 
270   unsigned BitWidth = KnownZero.getBitWidth();
271 
272   // If an initial sequence of bits in the result is not needed, the
273   // corresponding bits in the operands are not needed.
274   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
275   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
276   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
277 
278   // Carry in a 1 for a subtract, rather than a 0.
279   APInt CarryIn(BitWidth, 0);
280   if (!Add) {
281     // Sum = LHS + ~RHS + 1
282     std::swap(KnownZero2, KnownOne2);
283     CarryIn.setBit(0);
284   }
285 
286   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
287   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
288 
289   // Compute known bits of the carry.
290   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
291   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
292 
293   // Compute set of known bits (where all three relevant bits are known).
294   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
295   APInt RHSKnown = KnownZero2 | KnownOne2;
296   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
297   APInt Known = LHSKnown & RHSKnown & CarryKnown;
298 
299   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
300          "known bits of sum differ");
301 
302   // Compute known bits of the result.
303   KnownZero = ~PossibleSumOne & Known;
304   KnownOne = PossibleSumOne & Known;
305 
306   // Are we still trying to solve for the sign bit?
307   if (!Known.isNegative()) {
308     if (NSW) {
309       // Adding two non-negative numbers, or subtracting a negative number from
310       // a non-negative one, can't wrap into negative.
311       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
312         KnownZero |= APInt::getSignBit(BitWidth);
313       // Adding two negative numbers, or subtracting a non-negative number from
314       // a negative one, can't wrap into non-negative.
315       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
316         KnownOne |= APInt::getSignBit(BitWidth);
317     }
318   }
319 }
320 
321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
322                                 APInt &KnownZero, APInt &KnownOne,
323                                 APInt &KnownZero2, APInt &KnownOne2,
324                                 unsigned Depth, const Query &Q) {
325   unsigned BitWidth = KnownZero.getBitWidth();
326   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
327   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
328 
329   bool isKnownNegative = false;
330   bool isKnownNonNegative = false;
331   // If the multiplication is known not to overflow, compute the sign bit.
332   if (NSW) {
333     if (Op0 == Op1) {
334       // The product of a number with itself is non-negative.
335       isKnownNonNegative = true;
336     } else {
337       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
338       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
339       bool isKnownNegativeOp1 = KnownOne.isNegative();
340       bool isKnownNegativeOp0 = KnownOne2.isNegative();
341       // The product of two numbers with the same sign is non-negative.
342       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
343         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
344       // The product of a negative number and a non-negative number is either
345       // negative or zero.
346       if (!isKnownNonNegative)
347         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
348                            isKnownNonZero(Op0, Depth, Q)) ||
349                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
350                            isKnownNonZero(Op1, Depth, Q));
351     }
352   }
353 
354   // If low bits are zero in either operand, output low known-0 bits.
355   // Also compute a conservative estimate for high known-0 bits.
356   // More trickiness is possible, but this is sufficient for the
357   // interesting case of alignment computation.
358   KnownOne.clearAllBits();
359   unsigned TrailZ = KnownZero.countTrailingOnes() +
360                     KnownZero2.countTrailingOnes();
361   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
362                              KnownZero2.countLeadingOnes(),
363                              BitWidth) - BitWidth;
364 
365   TrailZ = std::min(TrailZ, BitWidth);
366   LeadZ = std::min(LeadZ, BitWidth);
367   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
368               APInt::getHighBitsSet(BitWidth, LeadZ);
369 
370   // Only make use of no-wrap flags if we failed to compute the sign bit
371   // directly.  This matters if the multiplication always overflows, in
372   // which case we prefer to follow the result of the direct computation,
373   // though as the program is invoking undefined behaviour we can choose
374   // whatever we like here.
375   if (isKnownNonNegative && !KnownOne.isNegative())
376     KnownZero.setBit(BitWidth - 1);
377   else if (isKnownNegative && !KnownZero.isNegative())
378     KnownOne.setBit(BitWidth - 1);
379 }
380 
381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
382                                              APInt &KnownZero,
383                                              APInt &KnownOne) {
384   unsigned BitWidth = KnownZero.getBitWidth();
385   unsigned NumRanges = Ranges.getNumOperands() / 2;
386   assert(NumRanges >= 1);
387 
388   KnownZero.setAllBits();
389   KnownOne.setAllBits();
390 
391   for (unsigned i = 0; i < NumRanges; ++i) {
392     ConstantInt *Lower =
393         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
394     ConstantInt *Upper =
395         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
396     ConstantRange Range(Lower->getValue(), Upper->getValue());
397 
398     // The first CommonPrefixBits of all values in Range are equal.
399     unsigned CommonPrefixBits =
400         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
401 
402     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
403     KnownOne &= Range.getUnsignedMax() & Mask;
404     KnownZero &= ~Range.getUnsignedMax() & Mask;
405   }
406 }
407 
408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
409   SmallVector<const Value *, 16> WorkSet(1, I);
410   SmallPtrSet<const Value *, 32> Visited;
411   SmallPtrSet<const Value *, 16> EphValues;
412 
413   // The instruction defining an assumption's condition itself is always
414   // considered ephemeral to that assumption (even if it has other
415   // non-ephemeral users). See r246696's test case for an example.
416   if (is_contained(I->operands(), E))
417     return true;
418 
419   while (!WorkSet.empty()) {
420     const Value *V = WorkSet.pop_back_val();
421     if (!Visited.insert(V).second)
422       continue;
423 
424     // If all uses of this value are ephemeral, then so is this value.
425     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
426       if (V == E)
427         return true;
428 
429       EphValues.insert(V);
430       if (const User *U = dyn_cast<User>(V))
431         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
432              J != JE; ++J) {
433           if (isSafeToSpeculativelyExecute(*J))
434             WorkSet.push_back(*J);
435         }
436     }
437   }
438 
439   return false;
440 }
441 
442 // Is this an intrinsic that cannot be speculated but also cannot trap?
443 static bool isAssumeLikeIntrinsic(const Instruction *I) {
444   if (const CallInst *CI = dyn_cast<CallInst>(I))
445     if (Function *F = CI->getCalledFunction())
446       switch (F->getIntrinsicID()) {
447       default: break;
448       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
449       case Intrinsic::assume:
450       case Intrinsic::dbg_declare:
451       case Intrinsic::dbg_value:
452       case Intrinsic::invariant_start:
453       case Intrinsic::invariant_end:
454       case Intrinsic::lifetime_start:
455       case Intrinsic::lifetime_end:
456       case Intrinsic::objectsize:
457       case Intrinsic::ptr_annotation:
458       case Intrinsic::var_annotation:
459         return true;
460       }
461 
462   return false;
463 }
464 
465 bool llvm::isValidAssumeForContext(const Instruction *Inv,
466                                    const Instruction *CxtI,
467                                    const DominatorTree *DT) {
468 
469   // There are two restrictions on the use of an assume:
470   //  1. The assume must dominate the context (or the control flow must
471   //     reach the assume whenever it reaches the context).
472   //  2. The context must not be in the assume's set of ephemeral values
473   //     (otherwise we will use the assume to prove that the condition
474   //     feeding the assume is trivially true, thus causing the removal of
475   //     the assume).
476 
477   if (DT) {
478     if (DT->dominates(Inv, CxtI))
479       return true;
480   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
481     // We don't have a DT, but this trivially dominates.
482     return true;
483   }
484 
485   // With or without a DT, the only remaining case we will check is if the
486   // instructions are in the same BB.  Give up if that is not the case.
487   if (Inv->getParent() != CxtI->getParent())
488     return false;
489 
490   // If we have a dom tree, then we now know that the assume doens't dominate
491   // the other instruction.  If we don't have a dom tree then we can check if
492   // the assume is first in the BB.
493   if (!DT) {
494     // Search forward from the assume until we reach the context (or the end
495     // of the block); the common case is that the assume will come first.
496     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
497          IE = Inv->getParent()->end(); I != IE; ++I)
498       if (&*I == CxtI)
499         return true;
500   }
501 
502   // The context comes first, but they're both in the same block. Make sure
503   // there is nothing in between that might interrupt the control flow.
504   for (BasicBlock::const_iterator I =
505          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
506        I != IE; ++I)
507     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
508       return false;
509 
510   return !isEphemeralValueOf(Inv, CxtI);
511 }
512 
513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
514                                        APInt &KnownOne, unsigned Depth,
515                                        const Query &Q) {
516   // Use of assumptions is context-sensitive. If we don't have a context, we
517   // cannot use them!
518   if (!Q.AC || !Q.CxtI)
519     return;
520 
521   unsigned BitWidth = KnownZero.getBitWidth();
522 
523   for (auto &AssumeVH : Q.AC->assumptions()) {
524     if (!AssumeVH)
525       continue;
526     CallInst *I = cast<CallInst>(AssumeVH);
527     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
528            "Got assumption for the wrong function!");
529     if (Q.isExcluded(I))
530       continue;
531 
532     // Warning: This loop can end up being somewhat performance sensetive.
533     // We're running this loop for once for each value queried resulting in a
534     // runtime of ~O(#assumes * #values).
535 
536     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
537            "must be an assume intrinsic");
538 
539     Value *Arg = I->getArgOperand(0);
540 
541     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
542       assert(BitWidth == 1 && "assume operand is not i1?");
543       KnownZero.clearAllBits();
544       KnownOne.setAllBits();
545       return;
546     }
547 
548     // The remaining tests are all recursive, so bail out if we hit the limit.
549     if (Depth == MaxDepth)
550       continue;
551 
552     Value *A, *B;
553     auto m_V = m_CombineOr(m_Specific(V),
554                            m_CombineOr(m_PtrToInt(m_Specific(V)),
555                            m_BitCast(m_Specific(V))));
556 
557     CmpInst::Predicate Pred;
558     ConstantInt *C;
559     // assume(v = a)
560     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
561         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
562       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
563       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
564       KnownZero |= RHSKnownZero;
565       KnownOne  |= RHSKnownOne;
566     // assume(v & b = a)
567     } else if (match(Arg,
568                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
569                Pred == ICmpInst::ICMP_EQ &&
570                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
571       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
572       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
573       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
574       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
575 
576       // For those bits in the mask that are known to be one, we can propagate
577       // known bits from the RHS to V.
578       KnownZero |= RHSKnownZero & MaskKnownOne;
579       KnownOne  |= RHSKnownOne  & MaskKnownOne;
580     // assume(~(v & b) = a)
581     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
582                                    m_Value(A))) &&
583                Pred == ICmpInst::ICMP_EQ &&
584                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
585       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
586       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
587       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
588       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
589 
590       // For those bits in the mask that are known to be one, we can propagate
591       // inverted known bits from the RHS to V.
592       KnownZero |= RHSKnownOne  & MaskKnownOne;
593       KnownOne  |= RHSKnownZero & MaskKnownOne;
594     // assume(v | b = a)
595     } else if (match(Arg,
596                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
597                Pred == ICmpInst::ICMP_EQ &&
598                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
599       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
600       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
601       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
602       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
603 
604       // For those bits in B that are known to be zero, we can propagate known
605       // bits from the RHS to V.
606       KnownZero |= RHSKnownZero & BKnownZero;
607       KnownOne  |= RHSKnownOne  & BKnownZero;
608     // assume(~(v | b) = a)
609     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
610                                    m_Value(A))) &&
611                Pred == ICmpInst::ICMP_EQ &&
612                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
613       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
614       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
615       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
616       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
617 
618       // For those bits in B that are known to be zero, we can propagate
619       // inverted known bits from the RHS to V.
620       KnownZero |= RHSKnownOne  & BKnownZero;
621       KnownOne  |= RHSKnownZero & BKnownZero;
622     // assume(v ^ b = a)
623     } else if (match(Arg,
624                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
625                Pred == ICmpInst::ICMP_EQ &&
626                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
627       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
628       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
629       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
630       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
631 
632       // For those bits in B that are known to be zero, we can propagate known
633       // bits from the RHS to V. For those bits in B that are known to be one,
634       // we can propagate inverted known bits from the RHS to V.
635       KnownZero |= RHSKnownZero & BKnownZero;
636       KnownOne  |= RHSKnownOne  & BKnownZero;
637       KnownZero |= RHSKnownOne  & BKnownOne;
638       KnownOne  |= RHSKnownZero & BKnownOne;
639     // assume(~(v ^ b) = a)
640     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
641                                    m_Value(A))) &&
642                Pred == ICmpInst::ICMP_EQ &&
643                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
644       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
645       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
646       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
647       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
648 
649       // For those bits in B that are known to be zero, we can propagate
650       // inverted known bits from the RHS to V. For those bits in B that are
651       // known to be one, we can propagate known bits from the RHS to V.
652       KnownZero |= RHSKnownOne  & BKnownZero;
653       KnownOne  |= RHSKnownZero & BKnownZero;
654       KnownZero |= RHSKnownZero & BKnownOne;
655       KnownOne  |= RHSKnownOne  & BKnownOne;
656     // assume(v << c = a)
657     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
658                                    m_Value(A))) &&
659                Pred == ICmpInst::ICMP_EQ &&
660                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
661       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
662       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
663       // For those bits in RHS that are known, we can propagate them to known
664       // bits in V shifted to the right by C.
665       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
666       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
667     // assume(~(v << c) = a)
668     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
669                                    m_Value(A))) &&
670                Pred == ICmpInst::ICMP_EQ &&
671                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
672       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
673       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
674       // For those bits in RHS that are known, we can propagate them inverted
675       // to known bits in V shifted to the right by C.
676       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
677       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
678     // assume(v >> c = a)
679     } else if (match(Arg,
680                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
681                                                 m_AShr(m_V, m_ConstantInt(C))),
682                               m_Value(A))) &&
683                Pred == ICmpInst::ICMP_EQ &&
684                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
685       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
686       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
687       // For those bits in RHS that are known, we can propagate them to known
688       // bits in V shifted to the right by C.
689       KnownZero |= RHSKnownZero << C->getZExtValue();
690       KnownOne  |= RHSKnownOne  << C->getZExtValue();
691     // assume(~(v >> c) = a)
692     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
693                                              m_LShr(m_V, m_ConstantInt(C)),
694                                              m_AShr(m_V, m_ConstantInt(C)))),
695                                    m_Value(A))) &&
696                Pred == ICmpInst::ICMP_EQ &&
697                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
698       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
699       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
700       // For those bits in RHS that are known, we can propagate them inverted
701       // to known bits in V shifted to the right by C.
702       KnownZero |= RHSKnownOne  << C->getZExtValue();
703       KnownOne  |= RHSKnownZero << C->getZExtValue();
704     // assume(v >=_s c) where c is non-negative
705     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
706                Pred == ICmpInst::ICMP_SGE &&
707                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
708       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
709       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
710 
711       if (RHSKnownZero.isNegative()) {
712         // We know that the sign bit is zero.
713         KnownZero |= APInt::getSignBit(BitWidth);
714       }
715     // assume(v >_s c) where c is at least -1.
716     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
717                Pred == ICmpInst::ICMP_SGT &&
718                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
720       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
721 
722       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
723         // We know that the sign bit is zero.
724         KnownZero |= APInt::getSignBit(BitWidth);
725       }
726     // assume(v <=_s c) where c is negative
727     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
728                Pred == ICmpInst::ICMP_SLE &&
729                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
730       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
731       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
732 
733       if (RHSKnownOne.isNegative()) {
734         // We know that the sign bit is one.
735         KnownOne |= APInt::getSignBit(BitWidth);
736       }
737     // assume(v <_s c) where c is non-positive
738     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
739                Pred == ICmpInst::ICMP_SLT &&
740                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
741       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
742       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
743 
744       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
745         // We know that the sign bit is one.
746         KnownOne |= APInt::getSignBit(BitWidth);
747       }
748     // assume(v <=_u c)
749     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
750                Pred == ICmpInst::ICMP_ULE &&
751                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
752       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
753       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
754 
755       // Whatever high bits in c are zero are known to be zero.
756       KnownZero |=
757         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
758     // assume(v <_u c)
759     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
760                Pred == ICmpInst::ICMP_ULT &&
761                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
763       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
764 
765       // Whatever high bits in c are zero are known to be zero (if c is a power
766       // of 2, then one more).
767       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
768         KnownZero |=
769           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
770       else
771         KnownZero |=
772           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
773     }
774   }
775 }
776 
777 // Compute known bits from a shift operator, including those with a
778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
781 // functors that, given the known-zero or known-one bits respectively, and a
782 // shift amount, compute the implied known-zero or known-one bits of the shift
783 // operator's result respectively for that shift amount. The results from calling
784 // KZF and KOF are conservatively combined for all permitted shift amounts.
785 template <typename KZFunctor, typename KOFunctor>
786 static void computeKnownBitsFromShiftOperator(const Operator *I,
787               APInt &KnownZero, APInt &KnownOne,
788               APInt &KnownZero2, APInt &KnownOne2,
789               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
790   unsigned BitWidth = KnownZero.getBitWidth();
791 
792   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
793     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
794 
795     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
796     KnownZero = KZF(KnownZero, ShiftAmt);
797     KnownOne  = KOF(KnownOne, ShiftAmt);
798     return;
799   }
800 
801   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
802 
803   // Note: We cannot use KnownZero.getLimitedValue() here, because if
804   // BitWidth > 64 and any upper bits are known, we'll end up returning the
805   // limit value (which implies all bits are known).
806   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
807   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
808 
809   // It would be more-clearly correct to use the two temporaries for this
810   // calculation. Reusing the APInts here to prevent unnecessary allocations.
811   KnownZero.clearAllBits();
812   KnownOne.clearAllBits();
813 
814   // If we know the shifter operand is nonzero, we can sometimes infer more
815   // known bits. However this is expensive to compute, so be lazy about it and
816   // only compute it when absolutely necessary.
817   Optional<bool> ShifterOperandIsNonZero;
818 
819   // Early exit if we can't constrain any well-defined shift amount.
820   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
821     ShifterOperandIsNonZero =
822         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
823     if (!*ShifterOperandIsNonZero)
824       return;
825   }
826 
827   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
828 
829   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
830   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
831     // Combine the shifted known input bits only for those shift amounts
832     // compatible with its known constraints.
833     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
834       continue;
835     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
836       continue;
837     // If we know the shifter is nonzero, we may be able to infer more known
838     // bits. This check is sunk down as far as possible to avoid the expensive
839     // call to isKnownNonZero if the cheaper checks above fail.
840     if (ShiftAmt == 0) {
841       if (!ShifterOperandIsNonZero.hasValue())
842         ShifterOperandIsNonZero =
843             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
844       if (*ShifterOperandIsNonZero)
845         continue;
846     }
847 
848     KnownZero &= KZF(KnownZero2, ShiftAmt);
849     KnownOne  &= KOF(KnownOne2, ShiftAmt);
850   }
851 
852   // If there are no compatible shift amounts, then we've proven that the shift
853   // amount must be >= the BitWidth, and the result is undefined. We could
854   // return anything we'd like, but we need to make sure the sets of known bits
855   // stay disjoint (it should be better for some other code to actually
856   // propagate the undef than to pick a value here using known bits).
857   if ((KnownZero & KnownOne) != 0) {
858     KnownZero.clearAllBits();
859     KnownOne.clearAllBits();
860   }
861 }
862 
863 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
864                                          APInt &KnownOne, unsigned Depth,
865                                          const Query &Q) {
866   unsigned BitWidth = KnownZero.getBitWidth();
867 
868   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
869   switch (I->getOpcode()) {
870   default: break;
871   case Instruction::Load:
872     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
873       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
874     break;
875   case Instruction::And: {
876     // If either the LHS or the RHS are Zero, the result is zero.
877     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
878     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
879 
880     // Output known-1 bits are only known if set in both the LHS & RHS.
881     KnownOne &= KnownOne2;
882     // Output known-0 are known to be clear if zero in either the LHS | RHS.
883     KnownZero |= KnownZero2;
884 
885     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
886     // here we handle the more general case of adding any odd number by
887     // matching the form add(x, add(x, y)) where y is odd.
888     // TODO: This could be generalized to clearing any bit set in y where the
889     // following bit is known to be unset in y.
890     Value *Y = nullptr;
891     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
892                                       m_Value(Y))) ||
893         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
894                                       m_Value(Y)))) {
895       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
896       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
897       if (KnownOne3.countTrailingOnes() > 0)
898         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
899     }
900     break;
901   }
902   case Instruction::Or: {
903     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
904     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
905 
906     // Output known-0 bits are only known if clear in both the LHS & RHS.
907     KnownZero &= KnownZero2;
908     // Output known-1 are known to be set if set in either the LHS | RHS.
909     KnownOne |= KnownOne2;
910     break;
911   }
912   case Instruction::Xor: {
913     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
914     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
915 
916     // Output known-0 bits are known if clear or set in both the LHS & RHS.
917     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
918     // Output known-1 are known to be set if set in only one of the LHS, RHS.
919     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
920     KnownZero = KnownZeroOut;
921     break;
922   }
923   case Instruction::Mul: {
924     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
925     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
926                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
927     break;
928   }
929   case Instruction::UDiv: {
930     // For the purposes of computing leading zeros we can conservatively
931     // treat a udiv as a logical right shift by the power of 2 known to
932     // be less than the denominator.
933     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
934     unsigned LeadZ = KnownZero2.countLeadingOnes();
935 
936     KnownOne2.clearAllBits();
937     KnownZero2.clearAllBits();
938     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
939     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
940     if (RHSUnknownLeadingOnes != BitWidth)
941       LeadZ = std::min(BitWidth,
942                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
943 
944     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
945     break;
946   }
947   case Instruction::Select: {
948     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
949     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
950 
951     const Value *LHS;
952     const Value *RHS;
953     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
954     if (SelectPatternResult::isMinOrMax(SPF)) {
955       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
956       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
957     } else {
958       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
959       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
960     }
961 
962     unsigned MaxHighOnes = 0;
963     unsigned MaxHighZeros = 0;
964     if (SPF == SPF_SMAX) {
965       // If both sides are negative, the result is negative.
966       if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1])
967         // We can derive a lower bound on the result by taking the max of the
968         // leading one bits.
969         MaxHighOnes =
970             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
971       // If either side is non-negative, the result is non-negative.
972       else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1])
973         MaxHighZeros = 1;
974     } else if (SPF == SPF_SMIN) {
975       // If both sides are non-negative, the result is non-negative.
976       if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1])
977         // We can derive an upper bound on the result by taking the max of the
978         // leading zero bits.
979         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
980                                 KnownZero2.countLeadingOnes());
981       // If either side is negative, the result is negative.
982       else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1])
983         MaxHighOnes = 1;
984     } else if (SPF == SPF_UMAX) {
985       // We can derive a lower bound on the result by taking the max of the
986       // leading one bits.
987       MaxHighOnes =
988           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
989     } else if (SPF == SPF_UMIN) {
990       // We can derive an upper bound on the result by taking the max of the
991       // leading zero bits.
992       MaxHighZeros =
993           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
994     }
995 
996     // Only known if known in both the LHS and RHS.
997     KnownOne &= KnownOne2;
998     KnownZero &= KnownZero2;
999     if (MaxHighOnes > 0)
1000       KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes);
1001     if (MaxHighZeros > 0)
1002       KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros);
1003     break;
1004   }
1005   case Instruction::FPTrunc:
1006   case Instruction::FPExt:
1007   case Instruction::FPToUI:
1008   case Instruction::FPToSI:
1009   case Instruction::SIToFP:
1010   case Instruction::UIToFP:
1011     break; // Can't work with floating point.
1012   case Instruction::PtrToInt:
1013   case Instruction::IntToPtr:
1014   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1015     // FALL THROUGH and handle them the same as zext/trunc.
1016   case Instruction::ZExt:
1017   case Instruction::Trunc: {
1018     Type *SrcTy = I->getOperand(0)->getType();
1019 
1020     unsigned SrcBitWidth;
1021     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1022     // which fall through here.
1023     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1024 
1025     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1026     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1027     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1028     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1029     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1030     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1031     // Any top bits are known to be zero.
1032     if (BitWidth > SrcBitWidth)
1033       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1034     break;
1035   }
1036   case Instruction::BitCast: {
1037     Type *SrcTy = I->getOperand(0)->getType();
1038     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1039         // TODO: For now, not handling conversions like:
1040         // (bitcast i64 %x to <2 x i32>)
1041         !I->getType()->isVectorTy()) {
1042       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1043       break;
1044     }
1045     break;
1046   }
1047   case Instruction::SExt: {
1048     // Compute the bits in the result that are not present in the input.
1049     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1050 
1051     KnownZero = KnownZero.trunc(SrcBitWidth);
1052     KnownOne = KnownOne.trunc(SrcBitWidth);
1053     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1054     KnownZero = KnownZero.zext(BitWidth);
1055     KnownOne = KnownOne.zext(BitWidth);
1056 
1057     // If the sign bit of the input is known set or clear, then we know the
1058     // top bits of the result.
1059     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1060       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1061     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1062       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1063     break;
1064   }
1065   case Instruction::Shl: {
1066     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1067     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1068       return (KnownZero << ShiftAmt) |
1069              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1070     };
1071 
1072     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1073       return KnownOne << ShiftAmt;
1074     };
1075 
1076     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1077                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1078                                       KOF);
1079     break;
1080   }
1081   case Instruction::LShr: {
1082     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1083     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1084       return APIntOps::lshr(KnownZero, ShiftAmt) |
1085              // High bits known zero.
1086              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1087     };
1088 
1089     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1090       return APIntOps::lshr(KnownOne, ShiftAmt);
1091     };
1092 
1093     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1094                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1095                                       KOF);
1096     break;
1097   }
1098   case Instruction::AShr: {
1099     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1100     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1101       return APIntOps::ashr(KnownZero, ShiftAmt);
1102     };
1103 
1104     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1105       return APIntOps::ashr(KnownOne, ShiftAmt);
1106     };
1107 
1108     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1109                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1110                                       KOF);
1111     break;
1112   }
1113   case Instruction::Sub: {
1114     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1115     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1116                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1117                            Q);
1118     break;
1119   }
1120   case Instruction::Add: {
1121     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1122     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1123                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1124                            Q);
1125     break;
1126   }
1127   case Instruction::SRem:
1128     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1129       APInt RA = Rem->getValue().abs();
1130       if (RA.isPowerOf2()) {
1131         APInt LowBits = RA - 1;
1132         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1133                          Q);
1134 
1135         // The low bits of the first operand are unchanged by the srem.
1136         KnownZero = KnownZero2 & LowBits;
1137         KnownOne = KnownOne2 & LowBits;
1138 
1139         // If the first operand is non-negative or has all low bits zero, then
1140         // the upper bits are all zero.
1141         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1142           KnownZero |= ~LowBits;
1143 
1144         // If the first operand is negative and not all low bits are zero, then
1145         // the upper bits are all one.
1146         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1147           KnownOne |= ~LowBits;
1148 
1149         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1150       }
1151     }
1152 
1153     // The sign bit is the LHS's sign bit, except when the result of the
1154     // remainder is zero.
1155     if (KnownZero.isNonNegative()) {
1156       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1157       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1158                        Q);
1159       // If it's known zero, our sign bit is also zero.
1160       if (LHSKnownZero.isNegative())
1161         KnownZero.setBit(BitWidth - 1);
1162     }
1163 
1164     break;
1165   case Instruction::URem: {
1166     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1167       const APInt &RA = Rem->getValue();
1168       if (RA.isPowerOf2()) {
1169         APInt LowBits = (RA - 1);
1170         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1171         KnownZero |= ~LowBits;
1172         KnownOne &= LowBits;
1173         break;
1174       }
1175     }
1176 
1177     // Since the result is less than or equal to either operand, any leading
1178     // zero bits in either operand must also exist in the result.
1179     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1180     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1181 
1182     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1183                                 KnownZero2.countLeadingOnes());
1184     KnownOne.clearAllBits();
1185     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1186     break;
1187   }
1188 
1189   case Instruction::Alloca: {
1190     const AllocaInst *AI = cast<AllocaInst>(I);
1191     unsigned Align = AI->getAlignment();
1192     if (Align == 0)
1193       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1194 
1195     if (Align > 0)
1196       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1197     break;
1198   }
1199   case Instruction::GetElementPtr: {
1200     // Analyze all of the subscripts of this getelementptr instruction
1201     // to determine if we can prove known low zero bits.
1202     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1203     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1204                      Q);
1205     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1206 
1207     gep_type_iterator GTI = gep_type_begin(I);
1208     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1209       Value *Index = I->getOperand(i);
1210       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1211         // Handle struct member offset arithmetic.
1212 
1213         // Handle case when index is vector zeroinitializer
1214         Constant *CIndex = cast<Constant>(Index);
1215         if (CIndex->isZeroValue())
1216           continue;
1217 
1218         if (CIndex->getType()->isVectorTy())
1219           Index = CIndex->getSplatValue();
1220 
1221         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1222         const StructLayout *SL = Q.DL.getStructLayout(STy);
1223         uint64_t Offset = SL->getElementOffset(Idx);
1224         TrailZ = std::min<unsigned>(TrailZ,
1225                                     countTrailingZeros(Offset));
1226       } else {
1227         // Handle array index arithmetic.
1228         Type *IndexedTy = GTI.getIndexedType();
1229         if (!IndexedTy->isSized()) {
1230           TrailZ = 0;
1231           break;
1232         }
1233         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1234         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1235         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1236         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1237         TrailZ = std::min(TrailZ,
1238                           unsigned(countTrailingZeros(TypeSize) +
1239                                    LocalKnownZero.countTrailingOnes()));
1240       }
1241     }
1242 
1243     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1244     break;
1245   }
1246   case Instruction::PHI: {
1247     const PHINode *P = cast<PHINode>(I);
1248     // Handle the case of a simple two-predecessor recurrence PHI.
1249     // There's a lot more that could theoretically be done here, but
1250     // this is sufficient to catch some interesting cases.
1251     if (P->getNumIncomingValues() == 2) {
1252       for (unsigned i = 0; i != 2; ++i) {
1253         Value *L = P->getIncomingValue(i);
1254         Value *R = P->getIncomingValue(!i);
1255         Operator *LU = dyn_cast<Operator>(L);
1256         if (!LU)
1257           continue;
1258         unsigned Opcode = LU->getOpcode();
1259         // Check for operations that have the property that if
1260         // both their operands have low zero bits, the result
1261         // will have low zero bits. Also check for operations
1262         // that are known to produce non-negative or negative
1263         // recurrence values.
1264         if (Opcode == Instruction::Add ||
1265             Opcode == Instruction::Sub ||
1266             Opcode == Instruction::And ||
1267             Opcode == Instruction::Or ||
1268             Opcode == Instruction::Mul) {
1269           Value *LL = LU->getOperand(0);
1270           Value *LR = LU->getOperand(1);
1271           // Find a recurrence.
1272           if (LL == I)
1273             L = LR;
1274           else if (LR == I)
1275             L = LL;
1276           else
1277             break;
1278           // Ok, we have a PHI of the form L op= R. Check for low
1279           // zero bits.
1280           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1281 
1282           // We need to take the minimum number of known bits
1283           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1284           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1285 
1286           KnownZero = APInt::getLowBitsSet(BitWidth,
1287                                            std::min(KnownZero2.countTrailingOnes(),
1288                                                     KnownZero3.countTrailingOnes()));
1289 
1290           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1291           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1292             // If initial value of recurrence is nonnegative, and we are adding
1293             // a nonnegative number with nsw, the result can only be nonnegative
1294             // or poison value regardless of the number of times we execute the
1295             // add in phi recurrence. If initial value is negative and we are
1296             // adding a negative number with nsw, the result can only be
1297             // negative or poison value. Similar arguments apply to sub and mul.
1298             //
1299             // (add non-negative, non-negative) --> non-negative
1300             // (add negative, negative) --> negative
1301             if (Opcode == Instruction::Add) {
1302               if (KnownZero2.isNegative() && KnownZero3.isNegative())
1303                 KnownZero.setBit(BitWidth - 1);
1304               else if (KnownOne2.isNegative() && KnownOne3.isNegative())
1305                 KnownOne.setBit(BitWidth - 1);
1306             }
1307 
1308             // (sub nsw non-negative, negative) --> non-negative
1309             // (sub nsw negative, non-negative) --> negative
1310             else if (Opcode == Instruction::Sub && LL == I) {
1311               if (KnownZero2.isNegative() && KnownOne3.isNegative())
1312                 KnownZero.setBit(BitWidth - 1);
1313               else if (KnownOne2.isNegative() && KnownZero3.isNegative())
1314                 KnownOne.setBit(BitWidth - 1);
1315             }
1316 
1317             // (mul nsw non-negative, non-negative) --> non-negative
1318             else if (Opcode == Instruction::Mul && KnownZero2.isNegative() &&
1319                      KnownZero3.isNegative())
1320               KnownZero.setBit(BitWidth - 1);
1321           }
1322 
1323           break;
1324         }
1325       }
1326     }
1327 
1328     // Unreachable blocks may have zero-operand PHI nodes.
1329     if (P->getNumIncomingValues() == 0)
1330       break;
1331 
1332     // Otherwise take the unions of the known bit sets of the operands,
1333     // taking conservative care to avoid excessive recursion.
1334     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1335       // Skip if every incoming value references to ourself.
1336       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1337         break;
1338 
1339       KnownZero = APInt::getAllOnesValue(BitWidth);
1340       KnownOne = APInt::getAllOnesValue(BitWidth);
1341       for (Value *IncValue : P->incoming_values()) {
1342         // Skip direct self references.
1343         if (IncValue == P) continue;
1344 
1345         KnownZero2 = APInt(BitWidth, 0);
1346         KnownOne2 = APInt(BitWidth, 0);
1347         // Recurse, but cap the recursion to one level, because we don't
1348         // want to waste time spinning around in loops.
1349         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1350         KnownZero &= KnownZero2;
1351         KnownOne &= KnownOne2;
1352         // If all bits have been ruled out, there's no need to check
1353         // more operands.
1354         if (!KnownZero && !KnownOne)
1355           break;
1356       }
1357     }
1358     break;
1359   }
1360   case Instruction::Call:
1361   case Instruction::Invoke:
1362     // If range metadata is attached to this call, set known bits from that,
1363     // and then intersect with known bits based on other properties of the
1364     // function.
1365     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1366       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1367     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1368       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1369       KnownZero |= KnownZero2;
1370       KnownOne |= KnownOne2;
1371     }
1372     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1373       switch (II->getIntrinsicID()) {
1374       default: break;
1375       case Intrinsic::bswap:
1376         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1377         KnownZero |= KnownZero2.byteSwap();
1378         KnownOne |= KnownOne2.byteSwap();
1379         break;
1380       case Intrinsic::ctlz:
1381       case Intrinsic::cttz: {
1382         unsigned LowBits = Log2_32(BitWidth)+1;
1383         // If this call is undefined for 0, the result will be less than 2^n.
1384         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1385           LowBits -= 1;
1386         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1387         break;
1388       }
1389       case Intrinsic::ctpop: {
1390         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1391         // We can bound the space the count needs.  Also, bits known to be zero
1392         // can't contribute to the population.
1393         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1394         unsigned LeadingZeros =
1395           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1396         assert(LeadingZeros <= BitWidth);
1397         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1398         KnownOne &= ~KnownZero;
1399         // TODO: we could bound KnownOne using the lower bound on the number
1400         // of bits which might be set provided by popcnt KnownOne2.
1401         break;
1402       }
1403       case Intrinsic::x86_sse42_crc32_64_64:
1404         KnownZero |= APInt::getHighBitsSet(64, 32);
1405         break;
1406       }
1407     }
1408     break;
1409   case Instruction::ExtractValue:
1410     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1411       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1412       if (EVI->getNumIndices() != 1) break;
1413       if (EVI->getIndices()[0] == 0) {
1414         switch (II->getIntrinsicID()) {
1415         default: break;
1416         case Intrinsic::uadd_with_overflow:
1417         case Intrinsic::sadd_with_overflow:
1418           computeKnownBitsAddSub(true, II->getArgOperand(0),
1419                                  II->getArgOperand(1), false, KnownZero,
1420                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1421           break;
1422         case Intrinsic::usub_with_overflow:
1423         case Intrinsic::ssub_with_overflow:
1424           computeKnownBitsAddSub(false, II->getArgOperand(0),
1425                                  II->getArgOperand(1), false, KnownZero,
1426                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1427           break;
1428         case Intrinsic::umul_with_overflow:
1429         case Intrinsic::smul_with_overflow:
1430           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1431                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1432                               Q);
1433           break;
1434         }
1435       }
1436     }
1437   }
1438 }
1439 
1440 /// Determine which bits of V are known to be either zero or one and return
1441 /// them in the KnownZero/KnownOne bit sets.
1442 ///
1443 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1444 /// we cannot optimize based on the assumption that it is zero without changing
1445 /// it to be an explicit zero.  If we don't change it to zero, other code could
1446 /// optimized based on the contradictory assumption that it is non-zero.
1447 /// Because instcombine aggressively folds operations with undef args anyway,
1448 /// this won't lose us code quality.
1449 ///
1450 /// This function is defined on values with integer type, values with pointer
1451 /// type, and vectors of integers.  In the case
1452 /// where V is a vector, known zero, and known one values are the
1453 /// same width as the vector element, and the bit is set only if it is true
1454 /// for all of the elements in the vector.
1455 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1456                       unsigned Depth, const Query &Q) {
1457   assert(V && "No Value?");
1458   assert(Depth <= MaxDepth && "Limit Search Depth");
1459   unsigned BitWidth = KnownZero.getBitWidth();
1460 
1461   assert((V->getType()->isIntOrIntVectorTy() ||
1462           V->getType()->getScalarType()->isPointerTy()) &&
1463          "Not integer or pointer type!");
1464   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1465          (!V->getType()->isIntOrIntVectorTy() ||
1466           V->getType()->getScalarSizeInBits() == BitWidth) &&
1467          KnownZero.getBitWidth() == BitWidth &&
1468          KnownOne.getBitWidth() == BitWidth &&
1469          "V, KnownOne and KnownZero should have same BitWidth");
1470 
1471   if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1472     // We know all of the bits for a constant!
1473     KnownOne = CI->getValue();
1474     KnownZero = ~KnownOne;
1475     return;
1476   }
1477   // Null and aggregate-zero are all-zeros.
1478   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1479     KnownOne.clearAllBits();
1480     KnownZero = APInt::getAllOnesValue(BitWidth);
1481     return;
1482   }
1483   // Handle a constant vector by taking the intersection of the known bits of
1484   // each element.
1485   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1486     // We know that CDS must be a vector of integers. Take the intersection of
1487     // each element.
1488     KnownZero.setAllBits(); KnownOne.setAllBits();
1489     APInt Elt(KnownZero.getBitWidth(), 0);
1490     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1491       Elt = CDS->getElementAsInteger(i);
1492       KnownZero &= ~Elt;
1493       KnownOne &= Elt;
1494     }
1495     return;
1496   }
1497 
1498   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1499     // We know that CV must be a vector of integers. Take the intersection of
1500     // each element.
1501     KnownZero.setAllBits(); KnownOne.setAllBits();
1502     APInt Elt(KnownZero.getBitWidth(), 0);
1503     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1504       Constant *Element = CV->getAggregateElement(i);
1505       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1506       if (!ElementCI) {
1507         KnownZero.clearAllBits();
1508         KnownOne.clearAllBits();
1509         return;
1510       }
1511       Elt = ElementCI->getValue();
1512       KnownZero &= ~Elt;
1513       KnownOne &= Elt;
1514     }
1515     return;
1516   }
1517 
1518   // Start out not knowing anything.
1519   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1520 
1521   // Limit search depth.
1522   // All recursive calls that increase depth must come after this.
1523   if (Depth == MaxDepth)
1524     return;
1525 
1526   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1527   // the bits of its aliasee.
1528   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1529     if (!GA->isInterposable())
1530       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1531     return;
1532   }
1533 
1534   if (const Operator *I = dyn_cast<Operator>(V))
1535     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1536 
1537   // Aligned pointers have trailing zeros - refine KnownZero set
1538   if (V->getType()->isPointerTy()) {
1539     unsigned Align = V->getPointerAlignment(Q.DL);
1540     if (Align)
1541       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1542   }
1543 
1544   // computeKnownBitsFromAssume strictly refines KnownZero and
1545   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1546 
1547   // Check whether a nearby assume intrinsic can determine some known bits.
1548   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1549 
1550   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1551 }
1552 
1553 /// Determine whether the sign bit is known to be zero or one.
1554 /// Convenience wrapper around computeKnownBits.
1555 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1556                     unsigned Depth, const Query &Q) {
1557   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1558   if (!BitWidth) {
1559     KnownZero = false;
1560     KnownOne = false;
1561     return;
1562   }
1563   APInt ZeroBits(BitWidth, 0);
1564   APInt OneBits(BitWidth, 0);
1565   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1566   KnownOne = OneBits[BitWidth - 1];
1567   KnownZero = ZeroBits[BitWidth - 1];
1568 }
1569 
1570 /// Return true if the given value is known to have exactly one
1571 /// bit set when defined. For vectors return true if every element is known to
1572 /// be a power of two when defined. Supports values with integer or pointer
1573 /// types and vectors of integers.
1574 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1575                             const Query &Q) {
1576   if (const Constant *C = dyn_cast<Constant>(V)) {
1577     if (C->isNullValue())
1578       return OrZero;
1579 
1580     const APInt *ConstIntOrConstSplatInt;
1581     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1582       return ConstIntOrConstSplatInt->isPowerOf2();
1583   }
1584 
1585   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1586   // it is shifted off the end then the result is undefined.
1587   if (match(V, m_Shl(m_One(), m_Value())))
1588     return true;
1589 
1590   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1591   // bottom.  If it is shifted off the bottom then the result is undefined.
1592   if (match(V, m_LShr(m_SignBit(), m_Value())))
1593     return true;
1594 
1595   // The remaining tests are all recursive, so bail out if we hit the limit.
1596   if (Depth++ == MaxDepth)
1597     return false;
1598 
1599   Value *X = nullptr, *Y = nullptr;
1600   // A shift left or a logical shift right of a power of two is a power of two
1601   // or zero.
1602   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1603                  match(V, m_LShr(m_Value(X), m_Value()))))
1604     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1605 
1606   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1607     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1608 
1609   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1610     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1611            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1612 
1613   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1614     // A power of two and'd with anything is a power of two or zero.
1615     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1616         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1617       return true;
1618     // X & (-X) is always a power of two or zero.
1619     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1620       return true;
1621     return false;
1622   }
1623 
1624   // Adding a power-of-two or zero to the same power-of-two or zero yields
1625   // either the original power-of-two, a larger power-of-two or zero.
1626   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1627     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1628     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1629       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1630           match(X, m_And(m_Value(), m_Specific(Y))))
1631         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1632           return true;
1633       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1634           match(Y, m_And(m_Value(), m_Specific(X))))
1635         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1636           return true;
1637 
1638       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1639       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1640       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1641 
1642       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1643       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1644       // If i8 V is a power of two or zero:
1645       //  ZeroBits: 1 1 1 0 1 1 1 1
1646       // ~ZeroBits: 0 0 0 1 0 0 0 0
1647       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1648         // If OrZero isn't set, we cannot give back a zero result.
1649         // Make sure either the LHS or RHS has a bit set.
1650         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1651           return true;
1652     }
1653   }
1654 
1655   // An exact divide or right shift can only shift off zero bits, so the result
1656   // is a power of two only if the first operand is a power of two and not
1657   // copying a sign bit (sdiv int_min, 2).
1658   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1659       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1660     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1661                                   Depth, Q);
1662   }
1663 
1664   return false;
1665 }
1666 
1667 /// \brief Test whether a GEP's result is known to be non-null.
1668 ///
1669 /// Uses properties inherent in a GEP to try to determine whether it is known
1670 /// to be non-null.
1671 ///
1672 /// Currently this routine does not support vector GEPs.
1673 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1674                               const Query &Q) {
1675   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1676     return false;
1677 
1678   // FIXME: Support vector-GEPs.
1679   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1680 
1681   // If the base pointer is non-null, we cannot walk to a null address with an
1682   // inbounds GEP in address space zero.
1683   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1684     return true;
1685 
1686   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1687   // If so, then the GEP cannot produce a null pointer, as doing so would
1688   // inherently violate the inbounds contract within address space zero.
1689   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1690        GTI != GTE; ++GTI) {
1691     // Struct types are easy -- they must always be indexed by a constant.
1692     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1693       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1694       unsigned ElementIdx = OpC->getZExtValue();
1695       const StructLayout *SL = Q.DL.getStructLayout(STy);
1696       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1697       if (ElementOffset > 0)
1698         return true;
1699       continue;
1700     }
1701 
1702     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1703     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1704       continue;
1705 
1706     // Fast path the constant operand case both for efficiency and so we don't
1707     // increment Depth when just zipping down an all-constant GEP.
1708     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1709       if (!OpC->isZero())
1710         return true;
1711       continue;
1712     }
1713 
1714     // We post-increment Depth here because while isKnownNonZero increments it
1715     // as well, when we pop back up that increment won't persist. We don't want
1716     // to recurse 10k times just because we have 10k GEP operands. We don't
1717     // bail completely out because we want to handle constant GEPs regardless
1718     // of depth.
1719     if (Depth++ >= MaxDepth)
1720       continue;
1721 
1722     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1723       return true;
1724   }
1725 
1726   return false;
1727 }
1728 
1729 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1730 /// ensure that the value it's attached to is never Value?  'RangeType' is
1731 /// is the type of the value described by the range.
1732 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1733   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1734   assert(NumRanges >= 1);
1735   for (unsigned i = 0; i < NumRanges; ++i) {
1736     ConstantInt *Lower =
1737         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1738     ConstantInt *Upper =
1739         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1740     ConstantRange Range(Lower->getValue(), Upper->getValue());
1741     if (Range.contains(Value))
1742       return false;
1743   }
1744   return true;
1745 }
1746 
1747 /// Return true if the given value is known to be non-zero when defined.
1748 /// For vectors return true if every element is known to be non-zero when
1749 /// defined. Supports values with integer or pointer type and vectors of
1750 /// integers.
1751 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1752   if (auto *C = dyn_cast<Constant>(V)) {
1753     if (C->isNullValue())
1754       return false;
1755     if (isa<ConstantInt>(C))
1756       // Must be non-zero due to null test above.
1757       return true;
1758 
1759     // For constant vectors, check that all elements are undefined or known
1760     // non-zero to determine that the whole vector is known non-zero.
1761     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1762       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1763         Constant *Elt = C->getAggregateElement(i);
1764         if (!Elt || Elt->isNullValue())
1765           return false;
1766         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1767           return false;
1768       }
1769       return true;
1770     }
1771 
1772     return false;
1773   }
1774 
1775   if (auto *I = dyn_cast<Instruction>(V)) {
1776     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1777       // If the possible ranges don't contain zero, then the value is
1778       // definitely non-zero.
1779       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1780         const APInt ZeroValue(Ty->getBitWidth(), 0);
1781         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1782           return true;
1783       }
1784     }
1785   }
1786 
1787   // The remaining tests are all recursive, so bail out if we hit the limit.
1788   if (Depth++ >= MaxDepth)
1789     return false;
1790 
1791   // Check for pointer simplifications.
1792   if (V->getType()->isPointerTy()) {
1793     if (isKnownNonNull(V))
1794       return true;
1795     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1796       if (isGEPKnownNonNull(GEP, Depth, Q))
1797         return true;
1798   }
1799 
1800   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1801 
1802   // X | Y != 0 if X != 0 or Y != 0.
1803   Value *X = nullptr, *Y = nullptr;
1804   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1805     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1806 
1807   // ext X != 0 if X != 0.
1808   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1809     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1810 
1811   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1812   // if the lowest bit is shifted off the end.
1813   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1814     // shl nuw can't remove any non-zero bits.
1815     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1816     if (BO->hasNoUnsignedWrap())
1817       return isKnownNonZero(X, Depth, Q);
1818 
1819     APInt KnownZero(BitWidth, 0);
1820     APInt KnownOne(BitWidth, 0);
1821     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1822     if (KnownOne[0])
1823       return true;
1824   }
1825   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1826   // defined if the sign bit is shifted off the end.
1827   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1828     // shr exact can only shift out zero bits.
1829     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1830     if (BO->isExact())
1831       return isKnownNonZero(X, Depth, Q);
1832 
1833     bool XKnownNonNegative, XKnownNegative;
1834     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1835     if (XKnownNegative)
1836       return true;
1837 
1838     // If the shifter operand is a constant, and all of the bits shifted
1839     // out are known to be zero, and X is known non-zero then at least one
1840     // non-zero bit must remain.
1841     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1842       APInt KnownZero(BitWidth, 0);
1843       APInt KnownOne(BitWidth, 0);
1844       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1845 
1846       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1847       // Is there a known one in the portion not shifted out?
1848       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1849         return true;
1850       // Are all the bits to be shifted out known zero?
1851       if (KnownZero.countTrailingOnes() >= ShiftVal)
1852         return isKnownNonZero(X, Depth, Q);
1853     }
1854   }
1855   // div exact can only produce a zero if the dividend is zero.
1856   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1857     return isKnownNonZero(X, Depth, Q);
1858   }
1859   // X + Y.
1860   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1861     bool XKnownNonNegative, XKnownNegative;
1862     bool YKnownNonNegative, YKnownNegative;
1863     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1864     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1865 
1866     // If X and Y are both non-negative (as signed values) then their sum is not
1867     // zero unless both X and Y are zero.
1868     if (XKnownNonNegative && YKnownNonNegative)
1869       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1870         return true;
1871 
1872     // If X and Y are both negative (as signed values) then their sum is not
1873     // zero unless both X and Y equal INT_MIN.
1874     if (BitWidth && XKnownNegative && YKnownNegative) {
1875       APInt KnownZero(BitWidth, 0);
1876       APInt KnownOne(BitWidth, 0);
1877       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1878       // The sign bit of X is set.  If some other bit is set then X is not equal
1879       // to INT_MIN.
1880       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1881       if ((KnownOne & Mask) != 0)
1882         return true;
1883       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1884       // to INT_MIN.
1885       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1886       if ((KnownOne & Mask) != 0)
1887         return true;
1888     }
1889 
1890     // The sum of a non-negative number and a power of two is not zero.
1891     if (XKnownNonNegative &&
1892         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1893       return true;
1894     if (YKnownNonNegative &&
1895         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1896       return true;
1897   }
1898   // X * Y.
1899   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1900     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1901     // If X and Y are non-zero then so is X * Y as long as the multiplication
1902     // does not overflow.
1903     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1904         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1905       return true;
1906   }
1907   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1908   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1909     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1910         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1911       return true;
1912   }
1913   // PHI
1914   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1915     // Try and detect a recurrence that monotonically increases from a
1916     // starting value, as these are common as induction variables.
1917     if (PN->getNumIncomingValues() == 2) {
1918       Value *Start = PN->getIncomingValue(0);
1919       Value *Induction = PN->getIncomingValue(1);
1920       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1921         std::swap(Start, Induction);
1922       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1923         if (!C->isZero() && !C->isNegative()) {
1924           ConstantInt *X;
1925           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1926                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1927               !X->isNegative())
1928             return true;
1929         }
1930       }
1931     }
1932     // Check if all incoming values are non-zero constant.
1933     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1934       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1935     });
1936     if (AllNonZeroConstants)
1937       return true;
1938   }
1939 
1940   if (!BitWidth) return false;
1941   APInt KnownZero(BitWidth, 0);
1942   APInt KnownOne(BitWidth, 0);
1943   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1944   return KnownOne != 0;
1945 }
1946 
1947 /// Return true if V2 == V1 + X, where X is known non-zero.
1948 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
1949   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1950   if (!BO || BO->getOpcode() != Instruction::Add)
1951     return false;
1952   Value *Op = nullptr;
1953   if (V2 == BO->getOperand(0))
1954     Op = BO->getOperand(1);
1955   else if (V2 == BO->getOperand(1))
1956     Op = BO->getOperand(0);
1957   else
1958     return false;
1959   return isKnownNonZero(Op, 0, Q);
1960 }
1961 
1962 /// Return true if it is known that V1 != V2.
1963 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
1964   if (V1->getType()->isVectorTy() || V1 == V2)
1965     return false;
1966   if (V1->getType() != V2->getType())
1967     // We can't look through casts yet.
1968     return false;
1969   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1970     return true;
1971 
1972   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1973     // Are any known bits in V1 contradictory to known bits in V2? If V1
1974     // has a known zero where V2 has a known one, they must not be equal.
1975     auto BitWidth = Ty->getBitWidth();
1976     APInt KnownZero1(BitWidth, 0);
1977     APInt KnownOne1(BitWidth, 0);
1978     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1979     APInt KnownZero2(BitWidth, 0);
1980     APInt KnownOne2(BitWidth, 0);
1981     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1982 
1983     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1984     if (OppositeBits.getBoolValue())
1985       return true;
1986   }
1987   return false;
1988 }
1989 
1990 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1991 /// simplify operations downstream. Mask is known to be zero for bits that V
1992 /// cannot have.
1993 ///
1994 /// This function is defined on values with integer type, values with pointer
1995 /// type, and vectors of integers.  In the case
1996 /// where V is a vector, the mask, known zero, and known one values are the
1997 /// same width as the vector element, and the bit is set only if it is true
1998 /// for all of the elements in the vector.
1999 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2000                        const Query &Q) {
2001   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2002   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2003   return (KnownZero & Mask) == Mask;
2004 }
2005 
2006 /// For vector constants, loop over the elements and find the constant with the
2007 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2008 /// or if any element was not analyzed; otherwise, return the count for the
2009 /// element with the minimum number of sign bits.
2010 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2011                                                  unsigned TyBits) {
2012   const auto *CV = dyn_cast<Constant>(V);
2013   if (!CV || !CV->getType()->isVectorTy())
2014     return 0;
2015 
2016   unsigned MinSignBits = TyBits;
2017   unsigned NumElts = CV->getType()->getVectorNumElements();
2018   for (unsigned i = 0; i != NumElts; ++i) {
2019     // If we find a non-ConstantInt, bail out.
2020     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2021     if (!Elt)
2022       return 0;
2023 
2024     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2025     APInt EltVal = Elt->getValue();
2026     if (EltVal.isNegative())
2027       EltVal = ~EltVal;
2028     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2029   }
2030 
2031   return MinSignBits;
2032 }
2033 
2034 /// Return the number of times the sign bit of the register is replicated into
2035 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2036 /// (itself), but other cases can give us information. For example, immediately
2037 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2038 /// other, so we return 3. For vectors, return the number of sign bits for the
2039 /// vector element with the mininum number of known sign bits.
2040 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) {
2041   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2042   unsigned Tmp, Tmp2;
2043   unsigned FirstAnswer = 1;
2044 
2045   // Note that ConstantInt is handled by the general computeKnownBits case
2046   // below.
2047 
2048   if (Depth == 6)
2049     return 1;  // Limit search depth.
2050 
2051   const Operator *U = dyn_cast<Operator>(V);
2052   switch (Operator::getOpcode(V)) {
2053   default: break;
2054   case Instruction::SExt:
2055     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2056     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2057 
2058   case Instruction::SDiv: {
2059     const APInt *Denominator;
2060     // sdiv X, C -> adds log(C) sign bits.
2061     if (match(U->getOperand(1), m_APInt(Denominator))) {
2062 
2063       // Ignore non-positive denominator.
2064       if (!Denominator->isStrictlyPositive())
2065         break;
2066 
2067       // Calculate the incoming numerator bits.
2068       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2069 
2070       // Add floor(log(C)) bits to the numerator bits.
2071       return std::min(TyBits, NumBits + Denominator->logBase2());
2072     }
2073     break;
2074   }
2075 
2076   case Instruction::SRem: {
2077     const APInt *Denominator;
2078     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2079     // positive constant.  This let us put a lower bound on the number of sign
2080     // bits.
2081     if (match(U->getOperand(1), m_APInt(Denominator))) {
2082 
2083       // Ignore non-positive denominator.
2084       if (!Denominator->isStrictlyPositive())
2085         break;
2086 
2087       // Calculate the incoming numerator bits. SRem by a positive constant
2088       // can't lower the number of sign bits.
2089       unsigned NumrBits =
2090           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2091 
2092       // Calculate the leading sign bit constraints by examining the
2093       // denominator.  Given that the denominator is positive, there are two
2094       // cases:
2095       //
2096       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2097       //     (1 << ceilLogBase2(C)).
2098       //
2099       //  2. the numerator is negative.  Then the result range is (-C,0] and
2100       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2101       //
2102       // Thus a lower bound on the number of sign bits is `TyBits -
2103       // ceilLogBase2(C)`.
2104 
2105       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2106       return std::max(NumrBits, ResBits);
2107     }
2108     break;
2109   }
2110 
2111   case Instruction::AShr: {
2112     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2113     // ashr X, C   -> adds C sign bits.  Vectors too.
2114     const APInt *ShAmt;
2115     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2116       Tmp += ShAmt->getZExtValue();
2117       if (Tmp > TyBits) Tmp = TyBits;
2118     }
2119     return Tmp;
2120   }
2121   case Instruction::Shl: {
2122     const APInt *ShAmt;
2123     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2124       // shl destroys sign bits.
2125       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2126       Tmp2 = ShAmt->getZExtValue();
2127       if (Tmp2 >= TyBits ||      // Bad shift.
2128           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2129       return Tmp - Tmp2;
2130     }
2131     break;
2132   }
2133   case Instruction::And:
2134   case Instruction::Or:
2135   case Instruction::Xor:    // NOT is handled here.
2136     // Logical binary ops preserve the number of sign bits at the worst.
2137     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2138     if (Tmp != 1) {
2139       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2140       FirstAnswer = std::min(Tmp, Tmp2);
2141       // We computed what we know about the sign bits as our first
2142       // answer. Now proceed to the generic code that uses
2143       // computeKnownBits, and pick whichever answer is better.
2144     }
2145     break;
2146 
2147   case Instruction::Select:
2148     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2149     if (Tmp == 1) return 1;  // Early out.
2150     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2151     return std::min(Tmp, Tmp2);
2152 
2153   case Instruction::Add:
2154     // Add can have at most one carry bit.  Thus we know that the output
2155     // is, at worst, one more bit than the inputs.
2156     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2157     if (Tmp == 1) return 1;  // Early out.
2158 
2159     // Special case decrementing a value (ADD X, -1):
2160     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2161       if (CRHS->isAllOnesValue()) {
2162         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2163         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2164 
2165         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2166         // sign bits set.
2167         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2168           return TyBits;
2169 
2170         // If we are subtracting one from a positive number, there is no carry
2171         // out of the result.
2172         if (KnownZero.isNegative())
2173           return Tmp;
2174       }
2175 
2176     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2177     if (Tmp2 == 1) return 1;
2178     return std::min(Tmp, Tmp2)-1;
2179 
2180   case Instruction::Sub:
2181     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2182     if (Tmp2 == 1) return 1;
2183 
2184     // Handle NEG.
2185     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2186       if (CLHS->isNullValue()) {
2187         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2188         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2189         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2190         // sign bits set.
2191         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2192           return TyBits;
2193 
2194         // If the input is known to be positive (the sign bit is known clear),
2195         // the output of the NEG has the same number of sign bits as the input.
2196         if (KnownZero.isNegative())
2197           return Tmp2;
2198 
2199         // Otherwise, we treat this like a SUB.
2200       }
2201 
2202     // Sub can have at most one carry bit.  Thus we know that the output
2203     // is, at worst, one more bit than the inputs.
2204     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2205     if (Tmp == 1) return 1;  // Early out.
2206     return std::min(Tmp, Tmp2)-1;
2207 
2208   case Instruction::PHI: {
2209     const PHINode *PN = cast<PHINode>(U);
2210     unsigned NumIncomingValues = PN->getNumIncomingValues();
2211     // Don't analyze large in-degree PHIs.
2212     if (NumIncomingValues > 4) break;
2213     // Unreachable blocks may have zero-operand PHI nodes.
2214     if (NumIncomingValues == 0) break;
2215 
2216     // Take the minimum of all incoming values.  This can't infinitely loop
2217     // because of our depth threshold.
2218     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2219     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2220       if (Tmp == 1) return Tmp;
2221       Tmp = std::min(
2222           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2223     }
2224     return Tmp;
2225   }
2226 
2227   case Instruction::Trunc:
2228     // FIXME: it's tricky to do anything useful for this, but it is an important
2229     // case for targets like X86.
2230     break;
2231   }
2232 
2233   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2234   // use this information.
2235 
2236   // If we can examine all elements of a vector constant successfully, we're
2237   // done (we can't do any better than that). If not, keep trying.
2238   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2239     return VecSignBits;
2240 
2241   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2242   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2243 
2244   // If we know that the sign bit is either zero or one, determine the number of
2245   // identical bits in the top of the input value.
2246   if (KnownZero.isNegative())
2247     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2248 
2249   if (KnownOne.isNegative())
2250     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2251 
2252   // computeKnownBits gave us no extra information about the top bits.
2253   return FirstAnswer;
2254 }
2255 
2256 /// This function computes the integer multiple of Base that equals V.
2257 /// If successful, it returns true and returns the multiple in
2258 /// Multiple. If unsuccessful, it returns false. It looks
2259 /// through SExt instructions only if LookThroughSExt is true.
2260 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2261                            bool LookThroughSExt, unsigned Depth) {
2262   const unsigned MaxDepth = 6;
2263 
2264   assert(V && "No Value?");
2265   assert(Depth <= MaxDepth && "Limit Search Depth");
2266   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2267 
2268   Type *T = V->getType();
2269 
2270   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2271 
2272   if (Base == 0)
2273     return false;
2274 
2275   if (Base == 1) {
2276     Multiple = V;
2277     return true;
2278   }
2279 
2280   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2281   Constant *BaseVal = ConstantInt::get(T, Base);
2282   if (CO && CO == BaseVal) {
2283     // Multiple is 1.
2284     Multiple = ConstantInt::get(T, 1);
2285     return true;
2286   }
2287 
2288   if (CI && CI->getZExtValue() % Base == 0) {
2289     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2290     return true;
2291   }
2292 
2293   if (Depth == MaxDepth) return false;  // Limit search depth.
2294 
2295   Operator *I = dyn_cast<Operator>(V);
2296   if (!I) return false;
2297 
2298   switch (I->getOpcode()) {
2299   default: break;
2300   case Instruction::SExt:
2301     if (!LookThroughSExt) return false;
2302     // otherwise fall through to ZExt
2303   case Instruction::ZExt:
2304     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2305                            LookThroughSExt, Depth+1);
2306   case Instruction::Shl:
2307   case Instruction::Mul: {
2308     Value *Op0 = I->getOperand(0);
2309     Value *Op1 = I->getOperand(1);
2310 
2311     if (I->getOpcode() == Instruction::Shl) {
2312       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2313       if (!Op1CI) return false;
2314       // Turn Op0 << Op1 into Op0 * 2^Op1
2315       APInt Op1Int = Op1CI->getValue();
2316       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2317       APInt API(Op1Int.getBitWidth(), 0);
2318       API.setBit(BitToSet);
2319       Op1 = ConstantInt::get(V->getContext(), API);
2320     }
2321 
2322     Value *Mul0 = nullptr;
2323     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2324       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2325         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2326           if (Op1C->getType()->getPrimitiveSizeInBits() <
2327               MulC->getType()->getPrimitiveSizeInBits())
2328             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2329           if (Op1C->getType()->getPrimitiveSizeInBits() >
2330               MulC->getType()->getPrimitiveSizeInBits())
2331             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2332 
2333           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2334           Multiple = ConstantExpr::getMul(MulC, Op1C);
2335           return true;
2336         }
2337 
2338       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2339         if (Mul0CI->getValue() == 1) {
2340           // V == Base * Op1, so return Op1
2341           Multiple = Op1;
2342           return true;
2343         }
2344     }
2345 
2346     Value *Mul1 = nullptr;
2347     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2348       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2349         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2350           if (Op0C->getType()->getPrimitiveSizeInBits() <
2351               MulC->getType()->getPrimitiveSizeInBits())
2352             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2353           if (Op0C->getType()->getPrimitiveSizeInBits() >
2354               MulC->getType()->getPrimitiveSizeInBits())
2355             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2356 
2357           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2358           Multiple = ConstantExpr::getMul(MulC, Op0C);
2359           return true;
2360         }
2361 
2362       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2363         if (Mul1CI->getValue() == 1) {
2364           // V == Base * Op0, so return Op0
2365           Multiple = Op0;
2366           return true;
2367         }
2368     }
2369   }
2370   }
2371 
2372   // We could not determine if V is a multiple of Base.
2373   return false;
2374 }
2375 
2376 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2377                                             const TargetLibraryInfo *TLI) {
2378   const Function *F = ICS.getCalledFunction();
2379   if (!F)
2380     return Intrinsic::not_intrinsic;
2381 
2382   if (F->isIntrinsic())
2383     return F->getIntrinsicID();
2384 
2385   if (!TLI)
2386     return Intrinsic::not_intrinsic;
2387 
2388   LibFunc::Func Func;
2389   // We're going to make assumptions on the semantics of the functions, check
2390   // that the target knows that it's available in this environment and it does
2391   // not have local linkage.
2392   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2393     return Intrinsic::not_intrinsic;
2394 
2395   if (!ICS.onlyReadsMemory())
2396     return Intrinsic::not_intrinsic;
2397 
2398   // Otherwise check if we have a call to a function that can be turned into a
2399   // vector intrinsic.
2400   switch (Func) {
2401   default:
2402     break;
2403   case LibFunc::sin:
2404   case LibFunc::sinf:
2405   case LibFunc::sinl:
2406     return Intrinsic::sin;
2407   case LibFunc::cos:
2408   case LibFunc::cosf:
2409   case LibFunc::cosl:
2410     return Intrinsic::cos;
2411   case LibFunc::exp:
2412   case LibFunc::expf:
2413   case LibFunc::expl:
2414     return Intrinsic::exp;
2415   case LibFunc::exp2:
2416   case LibFunc::exp2f:
2417   case LibFunc::exp2l:
2418     return Intrinsic::exp2;
2419   case LibFunc::log:
2420   case LibFunc::logf:
2421   case LibFunc::logl:
2422     return Intrinsic::log;
2423   case LibFunc::log10:
2424   case LibFunc::log10f:
2425   case LibFunc::log10l:
2426     return Intrinsic::log10;
2427   case LibFunc::log2:
2428   case LibFunc::log2f:
2429   case LibFunc::log2l:
2430     return Intrinsic::log2;
2431   case LibFunc::fabs:
2432   case LibFunc::fabsf:
2433   case LibFunc::fabsl:
2434     return Intrinsic::fabs;
2435   case LibFunc::fmin:
2436   case LibFunc::fminf:
2437   case LibFunc::fminl:
2438     return Intrinsic::minnum;
2439   case LibFunc::fmax:
2440   case LibFunc::fmaxf:
2441   case LibFunc::fmaxl:
2442     return Intrinsic::maxnum;
2443   case LibFunc::copysign:
2444   case LibFunc::copysignf:
2445   case LibFunc::copysignl:
2446     return Intrinsic::copysign;
2447   case LibFunc::floor:
2448   case LibFunc::floorf:
2449   case LibFunc::floorl:
2450     return Intrinsic::floor;
2451   case LibFunc::ceil:
2452   case LibFunc::ceilf:
2453   case LibFunc::ceill:
2454     return Intrinsic::ceil;
2455   case LibFunc::trunc:
2456   case LibFunc::truncf:
2457   case LibFunc::truncl:
2458     return Intrinsic::trunc;
2459   case LibFunc::rint:
2460   case LibFunc::rintf:
2461   case LibFunc::rintl:
2462     return Intrinsic::rint;
2463   case LibFunc::nearbyint:
2464   case LibFunc::nearbyintf:
2465   case LibFunc::nearbyintl:
2466     return Intrinsic::nearbyint;
2467   case LibFunc::round:
2468   case LibFunc::roundf:
2469   case LibFunc::roundl:
2470     return Intrinsic::round;
2471   case LibFunc::pow:
2472   case LibFunc::powf:
2473   case LibFunc::powl:
2474     return Intrinsic::pow;
2475   case LibFunc::sqrt:
2476   case LibFunc::sqrtf:
2477   case LibFunc::sqrtl:
2478     if (ICS->hasNoNaNs())
2479       return Intrinsic::sqrt;
2480     return Intrinsic::not_intrinsic;
2481   }
2482 
2483   return Intrinsic::not_intrinsic;
2484 }
2485 
2486 /// Return true if we can prove that the specified FP value is never equal to
2487 /// -0.0.
2488 ///
2489 /// NOTE: this function will need to be revisited when we support non-default
2490 /// rounding modes!
2491 ///
2492 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2493                                 unsigned Depth) {
2494   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2495     return !CFP->getValueAPF().isNegZero();
2496 
2497   // FIXME: Magic number! At the least, this should be given a name because it's
2498   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2499   // expose it as a parameter, so it can be used for testing / experimenting.
2500   if (Depth == 6)
2501     return false;  // Limit search depth.
2502 
2503   const Operator *I = dyn_cast<Operator>(V);
2504   if (!I) return false;
2505 
2506   // Check if the nsz fast-math flag is set
2507   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2508     if (FPO->hasNoSignedZeros())
2509       return true;
2510 
2511   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2512   if (I->getOpcode() == Instruction::FAdd)
2513     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2514       if (CFP->isNullValue())
2515         return true;
2516 
2517   // sitofp and uitofp turn into +0.0 for zero.
2518   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2519     return true;
2520 
2521   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2522     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2523     switch (IID) {
2524     default:
2525       break;
2526     // sqrt(-0.0) = -0.0, no other negative results are possible.
2527     case Intrinsic::sqrt:
2528       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2529     // fabs(x) != -0.0
2530     case Intrinsic::fabs:
2531       return true;
2532     }
2533   }
2534 
2535   return false;
2536 }
2537 
2538 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2539                                        const TargetLibraryInfo *TLI,
2540                                        unsigned Depth) {
2541   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2542     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2543 
2544   // FIXME: Magic number! At the least, this should be given a name because it's
2545   // used similarly in CannotBeNegativeZero(). A better fix may be to
2546   // expose it as a parameter, so it can be used for testing / experimenting.
2547   if (Depth == 6)
2548     return false;  // Limit search depth.
2549 
2550   const Operator *I = dyn_cast<Operator>(V);
2551   if (!I) return false;
2552 
2553   switch (I->getOpcode()) {
2554   default: break;
2555   // Unsigned integers are always nonnegative.
2556   case Instruction::UIToFP:
2557     return true;
2558   case Instruction::FMul:
2559     // x*x is always non-negative or a NaN.
2560     if (I->getOperand(0) == I->getOperand(1))
2561       return true;
2562     // Fall through
2563   case Instruction::FAdd:
2564   case Instruction::FDiv:
2565   case Instruction::FRem:
2566     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2567            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2568   case Instruction::Select:
2569     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2570            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2571   case Instruction::FPExt:
2572   case Instruction::FPTrunc:
2573     // Widening/narrowing never change sign.
2574     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2575   case Instruction::Call:
2576     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2577     switch (IID) {
2578     default:
2579       break;
2580     case Intrinsic::maxnum:
2581       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2582              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2583     case Intrinsic::minnum:
2584       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2585              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2586     case Intrinsic::exp:
2587     case Intrinsic::exp2:
2588     case Intrinsic::fabs:
2589     case Intrinsic::sqrt:
2590       return true;
2591     case Intrinsic::powi:
2592       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2593         // powi(x,n) is non-negative if n is even.
2594         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2595           return true;
2596       }
2597       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2598     case Intrinsic::fma:
2599     case Intrinsic::fmuladd:
2600       // x*x+y is non-negative if y is non-negative.
2601       return I->getOperand(0) == I->getOperand(1) &&
2602              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2603     }
2604     break;
2605   }
2606   return false;
2607 }
2608 
2609 /// If the specified value can be set by repeating the same byte in memory,
2610 /// return the i8 value that it is represented with.  This is
2611 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2612 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2613 /// byte store (e.g. i16 0x1234), return null.
2614 Value *llvm::isBytewiseValue(Value *V) {
2615   // All byte-wide stores are splatable, even of arbitrary variables.
2616   if (V->getType()->isIntegerTy(8)) return V;
2617 
2618   // Handle 'null' ConstantArrayZero etc.
2619   if (Constant *C = dyn_cast<Constant>(V))
2620     if (C->isNullValue())
2621       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2622 
2623   // Constant float and double values can be handled as integer values if the
2624   // corresponding integer value is "byteable".  An important case is 0.0.
2625   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2626     if (CFP->getType()->isFloatTy())
2627       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2628     if (CFP->getType()->isDoubleTy())
2629       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2630     // Don't handle long double formats, which have strange constraints.
2631   }
2632 
2633   // We can handle constant integers that are multiple of 8 bits.
2634   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2635     if (CI->getBitWidth() % 8 == 0) {
2636       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2637 
2638       if (!CI->getValue().isSplat(8))
2639         return nullptr;
2640       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2641     }
2642   }
2643 
2644   // A ConstantDataArray/Vector is splatable if all its members are equal and
2645   // also splatable.
2646   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2647     Value *Elt = CA->getElementAsConstant(0);
2648     Value *Val = isBytewiseValue(Elt);
2649     if (!Val)
2650       return nullptr;
2651 
2652     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2653       if (CA->getElementAsConstant(I) != Elt)
2654         return nullptr;
2655 
2656     return Val;
2657   }
2658 
2659   // Conceptually, we could handle things like:
2660   //   %a = zext i8 %X to i16
2661   //   %b = shl i16 %a, 8
2662   //   %c = or i16 %a, %b
2663   // but until there is an example that actually needs this, it doesn't seem
2664   // worth worrying about.
2665   return nullptr;
2666 }
2667 
2668 
2669 // This is the recursive version of BuildSubAggregate. It takes a few different
2670 // arguments. Idxs is the index within the nested struct From that we are
2671 // looking at now (which is of type IndexedType). IdxSkip is the number of
2672 // indices from Idxs that should be left out when inserting into the resulting
2673 // struct. To is the result struct built so far, new insertvalue instructions
2674 // build on that.
2675 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2676                                 SmallVectorImpl<unsigned> &Idxs,
2677                                 unsigned IdxSkip,
2678                                 Instruction *InsertBefore) {
2679   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2680   if (STy) {
2681     // Save the original To argument so we can modify it
2682     Value *OrigTo = To;
2683     // General case, the type indexed by Idxs is a struct
2684     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2685       // Process each struct element recursively
2686       Idxs.push_back(i);
2687       Value *PrevTo = To;
2688       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2689                              InsertBefore);
2690       Idxs.pop_back();
2691       if (!To) {
2692         // Couldn't find any inserted value for this index? Cleanup
2693         while (PrevTo != OrigTo) {
2694           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2695           PrevTo = Del->getAggregateOperand();
2696           Del->eraseFromParent();
2697         }
2698         // Stop processing elements
2699         break;
2700       }
2701     }
2702     // If we successfully found a value for each of our subaggregates
2703     if (To)
2704       return To;
2705   }
2706   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2707   // the struct's elements had a value that was inserted directly. In the latter
2708   // case, perhaps we can't determine each of the subelements individually, but
2709   // we might be able to find the complete struct somewhere.
2710 
2711   // Find the value that is at that particular spot
2712   Value *V = FindInsertedValue(From, Idxs);
2713 
2714   if (!V)
2715     return nullptr;
2716 
2717   // Insert the value in the new (sub) aggregrate
2718   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2719                                        "tmp", InsertBefore);
2720 }
2721 
2722 // This helper takes a nested struct and extracts a part of it (which is again a
2723 // struct) into a new value. For example, given the struct:
2724 // { a, { b, { c, d }, e } }
2725 // and the indices "1, 1" this returns
2726 // { c, d }.
2727 //
2728 // It does this by inserting an insertvalue for each element in the resulting
2729 // struct, as opposed to just inserting a single struct. This will only work if
2730 // each of the elements of the substruct are known (ie, inserted into From by an
2731 // insertvalue instruction somewhere).
2732 //
2733 // All inserted insertvalue instructions are inserted before InsertBefore
2734 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2735                                 Instruction *InsertBefore) {
2736   assert(InsertBefore && "Must have someplace to insert!");
2737   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2738                                                              idx_range);
2739   Value *To = UndefValue::get(IndexedType);
2740   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2741   unsigned IdxSkip = Idxs.size();
2742 
2743   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2744 }
2745 
2746 /// Given an aggregrate and an sequence of indices, see if
2747 /// the scalar value indexed is already around as a register, for example if it
2748 /// were inserted directly into the aggregrate.
2749 ///
2750 /// If InsertBefore is not null, this function will duplicate (modified)
2751 /// insertvalues when a part of a nested struct is extracted.
2752 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2753                                Instruction *InsertBefore) {
2754   // Nothing to index? Just return V then (this is useful at the end of our
2755   // recursion).
2756   if (idx_range.empty())
2757     return V;
2758   // We have indices, so V should have an indexable type.
2759   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2760          "Not looking at a struct or array?");
2761   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2762          "Invalid indices for type?");
2763 
2764   if (Constant *C = dyn_cast<Constant>(V)) {
2765     C = C->getAggregateElement(idx_range[0]);
2766     if (!C) return nullptr;
2767     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2768   }
2769 
2770   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2771     // Loop the indices for the insertvalue instruction in parallel with the
2772     // requested indices
2773     const unsigned *req_idx = idx_range.begin();
2774     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2775          i != e; ++i, ++req_idx) {
2776       if (req_idx == idx_range.end()) {
2777         // We can't handle this without inserting insertvalues
2778         if (!InsertBefore)
2779           return nullptr;
2780 
2781         // The requested index identifies a part of a nested aggregate. Handle
2782         // this specially. For example,
2783         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2784         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2785         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2786         // This can be changed into
2787         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2788         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2789         // which allows the unused 0,0 element from the nested struct to be
2790         // removed.
2791         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2792                                  InsertBefore);
2793       }
2794 
2795       // This insert value inserts something else than what we are looking for.
2796       // See if the (aggregate) value inserted into has the value we are
2797       // looking for, then.
2798       if (*req_idx != *i)
2799         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2800                                  InsertBefore);
2801     }
2802     // If we end up here, the indices of the insertvalue match with those
2803     // requested (though possibly only partially). Now we recursively look at
2804     // the inserted value, passing any remaining indices.
2805     return FindInsertedValue(I->getInsertedValueOperand(),
2806                              makeArrayRef(req_idx, idx_range.end()),
2807                              InsertBefore);
2808   }
2809 
2810   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2811     // If we're extracting a value from an aggregate that was extracted from
2812     // something else, we can extract from that something else directly instead.
2813     // However, we will need to chain I's indices with the requested indices.
2814 
2815     // Calculate the number of indices required
2816     unsigned size = I->getNumIndices() + idx_range.size();
2817     // Allocate some space to put the new indices in
2818     SmallVector<unsigned, 5> Idxs;
2819     Idxs.reserve(size);
2820     // Add indices from the extract value instruction
2821     Idxs.append(I->idx_begin(), I->idx_end());
2822 
2823     // Add requested indices
2824     Idxs.append(idx_range.begin(), idx_range.end());
2825 
2826     assert(Idxs.size() == size
2827            && "Number of indices added not correct?");
2828 
2829     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2830   }
2831   // Otherwise, we don't know (such as, extracting from a function return value
2832   // or load instruction)
2833   return nullptr;
2834 }
2835 
2836 /// Analyze the specified pointer to see if it can be expressed as a base
2837 /// pointer plus a constant offset. Return the base and offset to the caller.
2838 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2839                                               const DataLayout &DL) {
2840   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2841   APInt ByteOffset(BitWidth, 0);
2842 
2843   // We walk up the defs but use a visited set to handle unreachable code. In
2844   // that case, we stop after accumulating the cycle once (not that it
2845   // matters).
2846   SmallPtrSet<Value *, 16> Visited;
2847   while (Visited.insert(Ptr).second) {
2848     if (Ptr->getType()->isVectorTy())
2849       break;
2850 
2851     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2852       APInt GEPOffset(BitWidth, 0);
2853       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2854         break;
2855 
2856       ByteOffset += GEPOffset;
2857 
2858       Ptr = GEP->getPointerOperand();
2859     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2860                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2861       Ptr = cast<Operator>(Ptr)->getOperand(0);
2862     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2863       if (GA->isInterposable())
2864         break;
2865       Ptr = GA->getAliasee();
2866     } else {
2867       break;
2868     }
2869   }
2870   Offset = ByteOffset.getSExtValue();
2871   return Ptr;
2872 }
2873 
2874 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2875   // Make sure the GEP has exactly three arguments.
2876   if (GEP->getNumOperands() != 3)
2877     return false;
2878 
2879   // Make sure the index-ee is a pointer to array of i8.
2880   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2881   if (!AT || !AT->getElementType()->isIntegerTy(8))
2882     return false;
2883 
2884   // Check to make sure that the first operand of the GEP is an integer and
2885   // has value 0 so that we are sure we're indexing into the initializer.
2886   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2887   if (!FirstIdx || !FirstIdx->isZero())
2888     return false;
2889 
2890   return true;
2891 }
2892 
2893 /// This function computes the length of a null-terminated C string pointed to
2894 /// by V. If successful, it returns true and returns the string in Str.
2895 /// If unsuccessful, it returns false.
2896 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2897                                  uint64_t Offset, bool TrimAtNul) {
2898   assert(V);
2899 
2900   // Look through bitcast instructions and geps.
2901   V = V->stripPointerCasts();
2902 
2903   // If the value is a GEP instruction or constant expression, treat it as an
2904   // offset.
2905   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2906     // The GEP operator should be based on a pointer to string constant, and is
2907     // indexing into the string constant.
2908     if (!isGEPBasedOnPointerToString(GEP))
2909       return false;
2910 
2911     // If the second index isn't a ConstantInt, then this is a variable index
2912     // into the array.  If this occurs, we can't say anything meaningful about
2913     // the string.
2914     uint64_t StartIdx = 0;
2915     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2916       StartIdx = CI->getZExtValue();
2917     else
2918       return false;
2919     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2920                                  TrimAtNul);
2921   }
2922 
2923   // The GEP instruction, constant or instruction, must reference a global
2924   // variable that is a constant and is initialized. The referenced constant
2925   // initializer is the array that we'll use for optimization.
2926   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2927   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2928     return false;
2929 
2930   // Handle the all-zeros case.
2931   if (GV->getInitializer()->isNullValue()) {
2932     // This is a degenerate case. The initializer is constant zero so the
2933     // length of the string must be zero.
2934     Str = "";
2935     return true;
2936   }
2937 
2938   // This must be a ConstantDataArray.
2939   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2940   if (!Array || !Array->isString())
2941     return false;
2942 
2943   // Get the number of elements in the array.
2944   uint64_t NumElts = Array->getType()->getArrayNumElements();
2945 
2946   // Start out with the entire array in the StringRef.
2947   Str = Array->getAsString();
2948 
2949   if (Offset > NumElts)
2950     return false;
2951 
2952   // Skip over 'offset' bytes.
2953   Str = Str.substr(Offset);
2954 
2955   if (TrimAtNul) {
2956     // Trim off the \0 and anything after it.  If the array is not nul
2957     // terminated, we just return the whole end of string.  The client may know
2958     // some other way that the string is length-bound.
2959     Str = Str.substr(0, Str.find('\0'));
2960   }
2961   return true;
2962 }
2963 
2964 // These next two are very similar to the above, but also look through PHI
2965 // nodes.
2966 // TODO: See if we can integrate these two together.
2967 
2968 /// If we can compute the length of the string pointed to by
2969 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2970 static uint64_t GetStringLengthH(const Value *V,
2971                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
2972   // Look through noop bitcast instructions.
2973   V = V->stripPointerCasts();
2974 
2975   // If this is a PHI node, there are two cases: either we have already seen it
2976   // or we haven't.
2977   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2978     if (!PHIs.insert(PN).second)
2979       return ~0ULL;  // already in the set.
2980 
2981     // If it was new, see if all the input strings are the same length.
2982     uint64_t LenSoFar = ~0ULL;
2983     for (Value *IncValue : PN->incoming_values()) {
2984       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2985       if (Len == 0) return 0; // Unknown length -> unknown.
2986 
2987       if (Len == ~0ULL) continue;
2988 
2989       if (Len != LenSoFar && LenSoFar != ~0ULL)
2990         return 0;    // Disagree -> unknown.
2991       LenSoFar = Len;
2992     }
2993 
2994     // Success, all agree.
2995     return LenSoFar;
2996   }
2997 
2998   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2999   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3000     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3001     if (Len1 == 0) return 0;
3002     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3003     if (Len2 == 0) return 0;
3004     if (Len1 == ~0ULL) return Len2;
3005     if (Len2 == ~0ULL) return Len1;
3006     if (Len1 != Len2) return 0;
3007     return Len1;
3008   }
3009 
3010   // Otherwise, see if we can read the string.
3011   StringRef StrData;
3012   if (!getConstantStringInfo(V, StrData))
3013     return 0;
3014 
3015   return StrData.size()+1;
3016 }
3017 
3018 /// If we can compute the length of the string pointed to by
3019 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3020 uint64_t llvm::GetStringLength(const Value *V) {
3021   if (!V->getType()->isPointerTy()) return 0;
3022 
3023   SmallPtrSet<const PHINode*, 32> PHIs;
3024   uint64_t Len = GetStringLengthH(V, PHIs);
3025   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3026   // an empty string as a length.
3027   return Len == ~0ULL ? 1 : Len;
3028 }
3029 
3030 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3031 /// previous iteration of the loop was referring to the same object as \p PN.
3032 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3033                                          const LoopInfo *LI) {
3034   // Find the loop-defined value.
3035   Loop *L = LI->getLoopFor(PN->getParent());
3036   if (PN->getNumIncomingValues() != 2)
3037     return true;
3038 
3039   // Find the value from previous iteration.
3040   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3041   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3042     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3043   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3044     return true;
3045 
3046   // If a new pointer is loaded in the loop, the pointer references a different
3047   // object in every iteration.  E.g.:
3048   //    for (i)
3049   //       int *p = a[i];
3050   //       ...
3051   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3052     if (!L->isLoopInvariant(Load->getPointerOperand()))
3053       return false;
3054   return true;
3055 }
3056 
3057 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3058                                  unsigned MaxLookup) {
3059   if (!V->getType()->isPointerTy())
3060     return V;
3061   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3062     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3063       V = GEP->getPointerOperand();
3064     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3065                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3066       V = cast<Operator>(V)->getOperand(0);
3067     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3068       if (GA->isInterposable())
3069         return V;
3070       V = GA->getAliasee();
3071     } else {
3072       if (auto CS = CallSite(V))
3073         if (Value *RV = CS.getReturnedArgOperand()) {
3074           V = RV;
3075           continue;
3076         }
3077 
3078       // See if InstructionSimplify knows any relevant tricks.
3079       if (Instruction *I = dyn_cast<Instruction>(V))
3080         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3081         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3082           V = Simplified;
3083           continue;
3084         }
3085 
3086       return V;
3087     }
3088     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3089   }
3090   return V;
3091 }
3092 
3093 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3094                                 const DataLayout &DL, LoopInfo *LI,
3095                                 unsigned MaxLookup) {
3096   SmallPtrSet<Value *, 4> Visited;
3097   SmallVector<Value *, 4> Worklist;
3098   Worklist.push_back(V);
3099   do {
3100     Value *P = Worklist.pop_back_val();
3101     P = GetUnderlyingObject(P, DL, MaxLookup);
3102 
3103     if (!Visited.insert(P).second)
3104       continue;
3105 
3106     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3107       Worklist.push_back(SI->getTrueValue());
3108       Worklist.push_back(SI->getFalseValue());
3109       continue;
3110     }
3111 
3112     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3113       // If this PHI changes the underlying object in every iteration of the
3114       // loop, don't look through it.  Consider:
3115       //   int **A;
3116       //   for (i) {
3117       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3118       //     Curr = A[i];
3119       //     *Prev, *Curr;
3120       //
3121       // Prev is tracking Curr one iteration behind so they refer to different
3122       // underlying objects.
3123       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3124           isSameUnderlyingObjectInLoop(PN, LI))
3125         for (Value *IncValue : PN->incoming_values())
3126           Worklist.push_back(IncValue);
3127       continue;
3128     }
3129 
3130     Objects.push_back(P);
3131   } while (!Worklist.empty());
3132 }
3133 
3134 /// Return true if the only users of this pointer are lifetime markers.
3135 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3136   for (const User *U : V->users()) {
3137     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3138     if (!II) return false;
3139 
3140     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3141         II->getIntrinsicID() != Intrinsic::lifetime_end)
3142       return false;
3143   }
3144   return true;
3145 }
3146 
3147 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3148                                         const Instruction *CtxI,
3149                                         const DominatorTree *DT) {
3150   const Operator *Inst = dyn_cast<Operator>(V);
3151   if (!Inst)
3152     return false;
3153 
3154   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3155     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3156       if (C->canTrap())
3157         return false;
3158 
3159   switch (Inst->getOpcode()) {
3160   default:
3161     return true;
3162   case Instruction::UDiv:
3163   case Instruction::URem: {
3164     // x / y is undefined if y == 0.
3165     const APInt *V;
3166     if (match(Inst->getOperand(1), m_APInt(V)))
3167       return *V != 0;
3168     return false;
3169   }
3170   case Instruction::SDiv:
3171   case Instruction::SRem: {
3172     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3173     const APInt *Numerator, *Denominator;
3174     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3175       return false;
3176     // We cannot hoist this division if the denominator is 0.
3177     if (*Denominator == 0)
3178       return false;
3179     // It's safe to hoist if the denominator is not 0 or -1.
3180     if (*Denominator != -1)
3181       return true;
3182     // At this point we know that the denominator is -1.  It is safe to hoist as
3183     // long we know that the numerator is not INT_MIN.
3184     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3185       return !Numerator->isMinSignedValue();
3186     // The numerator *might* be MinSignedValue.
3187     return false;
3188   }
3189   case Instruction::Load: {
3190     const LoadInst *LI = cast<LoadInst>(Inst);
3191     if (!LI->isUnordered() ||
3192         // Speculative load may create a race that did not exist in the source.
3193         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3194         // Speculative load may load data from dirty regions.
3195         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3196       return false;
3197     const DataLayout &DL = LI->getModule()->getDataLayout();
3198     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3199                                               LI->getAlignment(), DL, CtxI, DT);
3200   }
3201   case Instruction::Call: {
3202     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3203       switch (II->getIntrinsicID()) {
3204       // These synthetic intrinsics have no side-effects and just mark
3205       // information about their operands.
3206       // FIXME: There are other no-op synthetic instructions that potentially
3207       // should be considered at least *safe* to speculate...
3208       case Intrinsic::dbg_declare:
3209       case Intrinsic::dbg_value:
3210         return true;
3211 
3212       case Intrinsic::bswap:
3213       case Intrinsic::ctlz:
3214       case Intrinsic::ctpop:
3215       case Intrinsic::cttz:
3216       case Intrinsic::objectsize:
3217       case Intrinsic::sadd_with_overflow:
3218       case Intrinsic::smul_with_overflow:
3219       case Intrinsic::ssub_with_overflow:
3220       case Intrinsic::uadd_with_overflow:
3221       case Intrinsic::umul_with_overflow:
3222       case Intrinsic::usub_with_overflow:
3223         return true;
3224       // These intrinsics are defined to have the same behavior as libm
3225       // functions except for setting errno.
3226       case Intrinsic::sqrt:
3227       case Intrinsic::fma:
3228       case Intrinsic::fmuladd:
3229         return true;
3230       // These intrinsics are defined to have the same behavior as libm
3231       // functions, and the corresponding libm functions never set errno.
3232       case Intrinsic::trunc:
3233       case Intrinsic::copysign:
3234       case Intrinsic::fabs:
3235       case Intrinsic::minnum:
3236       case Intrinsic::maxnum:
3237         return true;
3238       // These intrinsics are defined to have the same behavior as libm
3239       // functions, which never overflow when operating on the IEEE754 types
3240       // that we support, and never set errno otherwise.
3241       case Intrinsic::ceil:
3242       case Intrinsic::floor:
3243       case Intrinsic::nearbyint:
3244       case Intrinsic::rint:
3245       case Intrinsic::round:
3246         return true;
3247       // TODO: are convert_{from,to}_fp16 safe?
3248       // TODO: can we list target-specific intrinsics here?
3249       default: break;
3250       }
3251     }
3252     return false; // The called function could have undefined behavior or
3253                   // side-effects, even if marked readnone nounwind.
3254   }
3255   case Instruction::VAArg:
3256   case Instruction::Alloca:
3257   case Instruction::Invoke:
3258   case Instruction::PHI:
3259   case Instruction::Store:
3260   case Instruction::Ret:
3261   case Instruction::Br:
3262   case Instruction::IndirectBr:
3263   case Instruction::Switch:
3264   case Instruction::Unreachable:
3265   case Instruction::Fence:
3266   case Instruction::AtomicRMW:
3267   case Instruction::AtomicCmpXchg:
3268   case Instruction::LandingPad:
3269   case Instruction::Resume:
3270   case Instruction::CatchSwitch:
3271   case Instruction::CatchPad:
3272   case Instruction::CatchRet:
3273   case Instruction::CleanupPad:
3274   case Instruction::CleanupRet:
3275     return false; // Misc instructions which have effects
3276   }
3277 }
3278 
3279 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3280   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3281 }
3282 
3283 /// Return true if we know that the specified value is never null.
3284 bool llvm::isKnownNonNull(const Value *V) {
3285   assert(V->getType()->isPointerTy() && "V must be pointer type");
3286 
3287   // Alloca never returns null, malloc might.
3288   if (isa<AllocaInst>(V)) return true;
3289 
3290   // A byval, inalloca, or nonnull argument is never null.
3291   if (const Argument *A = dyn_cast<Argument>(V))
3292     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3293 
3294   // A global variable in address space 0 is non null unless extern weak.
3295   // Other address spaces may have null as a valid address for a global,
3296   // so we can't assume anything.
3297   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3298     return !GV->hasExternalWeakLinkage() &&
3299            GV->getType()->getAddressSpace() == 0;
3300 
3301   // A Load tagged with nonnull metadata is never null.
3302   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3303     return LI->getMetadata(LLVMContext::MD_nonnull);
3304 
3305   if (auto CS = ImmutableCallSite(V))
3306     if (CS.isReturnNonNull())
3307       return true;
3308 
3309   return false;
3310 }
3311 
3312 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3313                                                   const Instruction *CtxI,
3314                                                   const DominatorTree *DT) {
3315   assert(V->getType()->isPointerTy() && "V must be pointer type");
3316 
3317   unsigned NumUsesExplored = 0;
3318   for (auto *U : V->users()) {
3319     // Avoid massive lists
3320     if (NumUsesExplored >= DomConditionsMaxUses)
3321       break;
3322     NumUsesExplored++;
3323     // Consider only compare instructions uniquely controlling a branch
3324     CmpInst::Predicate Pred;
3325     if (!match(const_cast<User *>(U),
3326                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3327         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3328       continue;
3329 
3330     for (auto *CmpU : U->users()) {
3331       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3332         assert(BI->isConditional() && "uses a comparison!");
3333 
3334         BasicBlock *NonNullSuccessor =
3335             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3336         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3337         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3338           return true;
3339       } else if (Pred == ICmpInst::ICMP_NE &&
3340                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3341                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3342         return true;
3343       }
3344     }
3345   }
3346 
3347   return false;
3348 }
3349 
3350 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3351                             const DominatorTree *DT) {
3352   if (isKnownNonNull(V))
3353     return true;
3354 
3355   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3356 }
3357 
3358 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3359                                                    const Value *RHS,
3360                                                    const DataLayout &DL,
3361                                                    AssumptionCache *AC,
3362                                                    const Instruction *CxtI,
3363                                                    const DominatorTree *DT) {
3364   // Multiplying n * m significant bits yields a result of n + m significant
3365   // bits. If the total number of significant bits does not exceed the
3366   // result bit width (minus 1), there is no overflow.
3367   // This means if we have enough leading zero bits in the operands
3368   // we can guarantee that the result does not overflow.
3369   // Ref: "Hacker's Delight" by Henry Warren
3370   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3371   APInt LHSKnownZero(BitWidth, 0);
3372   APInt LHSKnownOne(BitWidth, 0);
3373   APInt RHSKnownZero(BitWidth, 0);
3374   APInt RHSKnownOne(BitWidth, 0);
3375   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3376                    DT);
3377   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3378                    DT);
3379   // Note that underestimating the number of zero bits gives a more
3380   // conservative answer.
3381   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3382                       RHSKnownZero.countLeadingOnes();
3383   // First handle the easy case: if we have enough zero bits there's
3384   // definitely no overflow.
3385   if (ZeroBits >= BitWidth)
3386     return OverflowResult::NeverOverflows;
3387 
3388   // Get the largest possible values for each operand.
3389   APInt LHSMax = ~LHSKnownZero;
3390   APInt RHSMax = ~RHSKnownZero;
3391 
3392   // We know the multiply operation doesn't overflow if the maximum values for
3393   // each operand will not overflow after we multiply them together.
3394   bool MaxOverflow;
3395   LHSMax.umul_ov(RHSMax, MaxOverflow);
3396   if (!MaxOverflow)
3397     return OverflowResult::NeverOverflows;
3398 
3399   // We know it always overflows if multiplying the smallest possible values for
3400   // the operands also results in overflow.
3401   bool MinOverflow;
3402   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3403   if (MinOverflow)
3404     return OverflowResult::AlwaysOverflows;
3405 
3406   return OverflowResult::MayOverflow;
3407 }
3408 
3409 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3410                                                    const Value *RHS,
3411                                                    const DataLayout &DL,
3412                                                    AssumptionCache *AC,
3413                                                    const Instruction *CxtI,
3414                                                    const DominatorTree *DT) {
3415   bool LHSKnownNonNegative, LHSKnownNegative;
3416   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3417                  AC, CxtI, DT);
3418   if (LHSKnownNonNegative || LHSKnownNegative) {
3419     bool RHSKnownNonNegative, RHSKnownNegative;
3420     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3421                    AC, CxtI, DT);
3422 
3423     if (LHSKnownNegative && RHSKnownNegative) {
3424       // The sign bit is set in both cases: this MUST overflow.
3425       // Create a simple add instruction, and insert it into the struct.
3426       return OverflowResult::AlwaysOverflows;
3427     }
3428 
3429     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3430       // The sign bit is clear in both cases: this CANNOT overflow.
3431       // Create a simple add instruction, and insert it into the struct.
3432       return OverflowResult::NeverOverflows;
3433     }
3434   }
3435 
3436   return OverflowResult::MayOverflow;
3437 }
3438 
3439 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3440                                                   const Value *RHS,
3441                                                   const AddOperator *Add,
3442                                                   const DataLayout &DL,
3443                                                   AssumptionCache *AC,
3444                                                   const Instruction *CxtI,
3445                                                   const DominatorTree *DT) {
3446   if (Add && Add->hasNoSignedWrap()) {
3447     return OverflowResult::NeverOverflows;
3448   }
3449 
3450   bool LHSKnownNonNegative, LHSKnownNegative;
3451   bool RHSKnownNonNegative, RHSKnownNegative;
3452   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3453                  AC, CxtI, DT);
3454   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3455                  AC, CxtI, DT);
3456 
3457   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3458       (LHSKnownNegative && RHSKnownNonNegative)) {
3459     // The sign bits are opposite: this CANNOT overflow.
3460     return OverflowResult::NeverOverflows;
3461   }
3462 
3463   // The remaining code needs Add to be available. Early returns if not so.
3464   if (!Add)
3465     return OverflowResult::MayOverflow;
3466 
3467   // If the sign of Add is the same as at least one of the operands, this add
3468   // CANNOT overflow. This is particularly useful when the sum is
3469   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3470   // operands.
3471   bool LHSOrRHSKnownNonNegative =
3472       (LHSKnownNonNegative || RHSKnownNonNegative);
3473   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3474   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3475     bool AddKnownNonNegative, AddKnownNegative;
3476     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3477                    /*Depth=*/0, AC, CxtI, DT);
3478     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3479         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3480       return OverflowResult::NeverOverflows;
3481     }
3482   }
3483 
3484   return OverflowResult::MayOverflow;
3485 }
3486 
3487 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3488                                      const DominatorTree &DT) {
3489 #ifndef NDEBUG
3490   auto IID = II->getIntrinsicID();
3491   assert((IID == Intrinsic::sadd_with_overflow ||
3492           IID == Intrinsic::uadd_with_overflow ||
3493           IID == Intrinsic::ssub_with_overflow ||
3494           IID == Intrinsic::usub_with_overflow ||
3495           IID == Intrinsic::smul_with_overflow ||
3496           IID == Intrinsic::umul_with_overflow) &&
3497          "Not an overflow intrinsic!");
3498 #endif
3499 
3500   SmallVector<const BranchInst *, 2> GuardingBranches;
3501   SmallVector<const ExtractValueInst *, 2> Results;
3502 
3503   for (const User *U : II->users()) {
3504     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3505       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3506 
3507       if (EVI->getIndices()[0] == 0)
3508         Results.push_back(EVI);
3509       else {
3510         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3511 
3512         for (const auto *U : EVI->users())
3513           if (const auto *B = dyn_cast<BranchInst>(U)) {
3514             assert(B->isConditional() && "How else is it using an i1?");
3515             GuardingBranches.push_back(B);
3516           }
3517       }
3518     } else {
3519       // We are using the aggregate directly in a way we don't want to analyze
3520       // here (storing it to a global, say).
3521       return false;
3522     }
3523   }
3524 
3525   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3526     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3527     if (!NoWrapEdge.isSingleEdge())
3528       return false;
3529 
3530     // Check if all users of the add are provably no-wrap.
3531     for (const auto *Result : Results) {
3532       // If the extractvalue itself is not executed on overflow, the we don't
3533       // need to check each use separately, since domination is transitive.
3534       if (DT.dominates(NoWrapEdge, Result->getParent()))
3535         continue;
3536 
3537       for (auto &RU : Result->uses())
3538         if (!DT.dominates(NoWrapEdge, RU))
3539           return false;
3540     }
3541 
3542     return true;
3543   };
3544 
3545   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3546 }
3547 
3548 
3549 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3550                                                  const DataLayout &DL,
3551                                                  AssumptionCache *AC,
3552                                                  const Instruction *CxtI,
3553                                                  const DominatorTree *DT) {
3554   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3555                                        Add, DL, AC, CxtI, DT);
3556 }
3557 
3558 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3559                                                  const Value *RHS,
3560                                                  const DataLayout &DL,
3561                                                  AssumptionCache *AC,
3562                                                  const Instruction *CxtI,
3563                                                  const DominatorTree *DT) {
3564   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3565 }
3566 
3567 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3568   // A memory operation returns normally if it isn't volatile. A volatile
3569   // operation is allowed to trap.
3570   //
3571   // An atomic operation isn't guaranteed to return in a reasonable amount of
3572   // time because it's possible for another thread to interfere with it for an
3573   // arbitrary length of time, but programs aren't allowed to rely on that.
3574   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3575     return !LI->isVolatile();
3576   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3577     return !SI->isVolatile();
3578   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3579     return !CXI->isVolatile();
3580   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3581     return !RMWI->isVolatile();
3582   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3583     return !MII->isVolatile();
3584 
3585   // If there is no successor, then execution can't transfer to it.
3586   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3587     return !CRI->unwindsToCaller();
3588   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3589     return !CatchSwitch->unwindsToCaller();
3590   if (isa<ResumeInst>(I))
3591     return false;
3592   if (isa<ReturnInst>(I))
3593     return false;
3594 
3595   // Calls can throw, or contain an infinite loop, or kill the process.
3596   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3597     // Calls which don't write to arbitrary memory are safe.
3598     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3599     // but it's consistent with other passes. See http://llvm.org/PR965 .
3600     // FIXME: This isn't aggressive enough; a call which only writes to a
3601     // global is guaranteed to return.
3602     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3603            match(I, m_Intrinsic<Intrinsic::assume>());
3604   }
3605 
3606   // Other instructions return normally.
3607   return true;
3608 }
3609 
3610 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3611                                                   const Loop *L) {
3612   // The loop header is guaranteed to be executed for every iteration.
3613   //
3614   // FIXME: Relax this constraint to cover all basic blocks that are
3615   // guaranteed to be executed at every iteration.
3616   if (I->getParent() != L->getHeader()) return false;
3617 
3618   for (const Instruction &LI : *L->getHeader()) {
3619     if (&LI == I) return true;
3620     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3621   }
3622   llvm_unreachable("Instruction not contained in its own parent basic block.");
3623 }
3624 
3625 bool llvm::propagatesFullPoison(const Instruction *I) {
3626   switch (I->getOpcode()) {
3627     case Instruction::Add:
3628     case Instruction::Sub:
3629     case Instruction::Xor:
3630     case Instruction::Trunc:
3631     case Instruction::BitCast:
3632     case Instruction::AddrSpaceCast:
3633       // These operations all propagate poison unconditionally. Note that poison
3634       // is not any particular value, so xor or subtraction of poison with
3635       // itself still yields poison, not zero.
3636       return true;
3637 
3638     case Instruction::AShr:
3639     case Instruction::SExt:
3640       // For these operations, one bit of the input is replicated across
3641       // multiple output bits. A replicated poison bit is still poison.
3642       return true;
3643 
3644     case Instruction::Shl: {
3645       // Left shift *by* a poison value is poison. The number of
3646       // positions to shift is unsigned, so no negative values are
3647       // possible there. Left shift by zero places preserves poison. So
3648       // it only remains to consider left shift of poison by a positive
3649       // number of places.
3650       //
3651       // A left shift by a positive number of places leaves the lowest order bit
3652       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3653       // make the poison operand violate that flag, yielding a fresh full-poison
3654       // value.
3655       auto *OBO = cast<OverflowingBinaryOperator>(I);
3656       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3657     }
3658 
3659     case Instruction::Mul: {
3660       // A multiplication by zero yields a non-poison zero result, so we need to
3661       // rule out zero as an operand. Conservatively, multiplication by a
3662       // non-zero constant is not multiplication by zero.
3663       //
3664       // Multiplication by a non-zero constant can leave some bits
3665       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3666       // order bit unpoisoned. So we need to consider that.
3667       //
3668       // Multiplication by 1 preserves poison. If the multiplication has a
3669       // no-wrap flag, then we can make the poison operand violate that flag
3670       // when multiplied by any integer other than 0 and 1.
3671       auto *OBO = cast<OverflowingBinaryOperator>(I);
3672       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3673         for (Value *V : OBO->operands()) {
3674           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3675             // A ConstantInt cannot yield poison, so we can assume that it is
3676             // the other operand that is poison.
3677             return !CI->isZero();
3678           }
3679         }
3680       }
3681       return false;
3682     }
3683 
3684     case Instruction::ICmp:
3685       // Comparing poison with any value yields poison.  This is why, for
3686       // instance, x s< (x +nsw 1) can be folded to true.
3687       return true;
3688 
3689     case Instruction::GetElementPtr:
3690       // A GEP implicitly represents a sequence of additions, subtractions,
3691       // truncations, sign extensions and multiplications. The multiplications
3692       // are by the non-zero sizes of some set of types, so we do not have to be
3693       // concerned with multiplication by zero. If the GEP is in-bounds, then
3694       // these operations are implicitly no-signed-wrap so poison is propagated
3695       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3696       return cast<GEPOperator>(I)->isInBounds();
3697 
3698     default:
3699       return false;
3700   }
3701 }
3702 
3703 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3704   switch (I->getOpcode()) {
3705     case Instruction::Store:
3706       return cast<StoreInst>(I)->getPointerOperand();
3707 
3708     case Instruction::Load:
3709       return cast<LoadInst>(I)->getPointerOperand();
3710 
3711     case Instruction::AtomicCmpXchg:
3712       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3713 
3714     case Instruction::AtomicRMW:
3715       return cast<AtomicRMWInst>(I)->getPointerOperand();
3716 
3717     case Instruction::UDiv:
3718     case Instruction::SDiv:
3719     case Instruction::URem:
3720     case Instruction::SRem:
3721       return I->getOperand(1);
3722 
3723     default:
3724       return nullptr;
3725   }
3726 }
3727 
3728 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3729   // We currently only look for uses of poison values within the same basic
3730   // block, as that makes it easier to guarantee that the uses will be
3731   // executed given that PoisonI is executed.
3732   //
3733   // FIXME: Expand this to consider uses beyond the same basic block. To do
3734   // this, look out for the distinction between post-dominance and strong
3735   // post-dominance.
3736   const BasicBlock *BB = PoisonI->getParent();
3737 
3738   // Set of instructions that we have proved will yield poison if PoisonI
3739   // does.
3740   SmallSet<const Value *, 16> YieldsPoison;
3741   SmallSet<const BasicBlock *, 4> Visited;
3742   YieldsPoison.insert(PoisonI);
3743   Visited.insert(PoisonI->getParent());
3744 
3745   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3746 
3747   unsigned Iter = 0;
3748   while (Iter++ < MaxDepth) {
3749     for (auto &I : make_range(Begin, End)) {
3750       if (&I != PoisonI) {
3751         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3752         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3753           return true;
3754         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3755           return false;
3756       }
3757 
3758       // Mark poison that propagates from I through uses of I.
3759       if (YieldsPoison.count(&I)) {
3760         for (const User *User : I.users()) {
3761           const Instruction *UserI = cast<Instruction>(User);
3762           if (propagatesFullPoison(UserI))
3763             YieldsPoison.insert(User);
3764         }
3765       }
3766     }
3767 
3768     if (auto *NextBB = BB->getSingleSuccessor()) {
3769       if (Visited.insert(NextBB).second) {
3770         BB = NextBB;
3771         Begin = BB->getFirstNonPHI()->getIterator();
3772         End = BB->end();
3773         continue;
3774       }
3775     }
3776 
3777     break;
3778   };
3779   return false;
3780 }
3781 
3782 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3783   if (FMF.noNaNs())
3784     return true;
3785 
3786   if (auto *C = dyn_cast<ConstantFP>(V))
3787     return !C->isNaN();
3788   return false;
3789 }
3790 
3791 static bool isKnownNonZero(const Value *V) {
3792   if (auto *C = dyn_cast<ConstantFP>(V))
3793     return !C->isZero();
3794   return false;
3795 }
3796 
3797 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3798                                               FastMathFlags FMF,
3799                                               Value *CmpLHS, Value *CmpRHS,
3800                                               Value *TrueVal, Value *FalseVal,
3801                                               Value *&LHS, Value *&RHS) {
3802   LHS = CmpLHS;
3803   RHS = CmpRHS;
3804 
3805   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3806   // return inconsistent results between implementations.
3807   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3808   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3809   // Therefore we behave conservatively and only proceed if at least one of the
3810   // operands is known to not be zero, or if we don't care about signed zeroes.
3811   switch (Pred) {
3812   default: break;
3813   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3814   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3815     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3816         !isKnownNonZero(CmpRHS))
3817       return {SPF_UNKNOWN, SPNB_NA, false};
3818   }
3819 
3820   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3821   bool Ordered = false;
3822 
3823   // When given one NaN and one non-NaN input:
3824   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3825   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3826   //     ordered comparison fails), which could be NaN or non-NaN.
3827   // so here we discover exactly what NaN behavior is required/accepted.
3828   if (CmpInst::isFPPredicate(Pred)) {
3829     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3830     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3831 
3832     if (LHSSafe && RHSSafe) {
3833       // Both operands are known non-NaN.
3834       NaNBehavior = SPNB_RETURNS_ANY;
3835     } else if (CmpInst::isOrdered(Pred)) {
3836       // An ordered comparison will return false when given a NaN, so it
3837       // returns the RHS.
3838       Ordered = true;
3839       if (LHSSafe)
3840         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3841         NaNBehavior = SPNB_RETURNS_NAN;
3842       else if (RHSSafe)
3843         NaNBehavior = SPNB_RETURNS_OTHER;
3844       else
3845         // Completely unsafe.
3846         return {SPF_UNKNOWN, SPNB_NA, false};
3847     } else {
3848       Ordered = false;
3849       // An unordered comparison will return true when given a NaN, so it
3850       // returns the LHS.
3851       if (LHSSafe)
3852         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3853         NaNBehavior = SPNB_RETURNS_OTHER;
3854       else if (RHSSafe)
3855         NaNBehavior = SPNB_RETURNS_NAN;
3856       else
3857         // Completely unsafe.
3858         return {SPF_UNKNOWN, SPNB_NA, false};
3859     }
3860   }
3861 
3862   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3863     std::swap(CmpLHS, CmpRHS);
3864     Pred = CmpInst::getSwappedPredicate(Pred);
3865     if (NaNBehavior == SPNB_RETURNS_NAN)
3866       NaNBehavior = SPNB_RETURNS_OTHER;
3867     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3868       NaNBehavior = SPNB_RETURNS_NAN;
3869     Ordered = !Ordered;
3870   }
3871 
3872   // ([if]cmp X, Y) ? X : Y
3873   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3874     switch (Pred) {
3875     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3876     case ICmpInst::ICMP_UGT:
3877     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3878     case ICmpInst::ICMP_SGT:
3879     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3880     case ICmpInst::ICMP_ULT:
3881     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3882     case ICmpInst::ICMP_SLT:
3883     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3884     case FCmpInst::FCMP_UGT:
3885     case FCmpInst::FCMP_UGE:
3886     case FCmpInst::FCMP_OGT:
3887     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3888     case FCmpInst::FCMP_ULT:
3889     case FCmpInst::FCMP_ULE:
3890     case FCmpInst::FCMP_OLT:
3891     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3892     }
3893   }
3894 
3895   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3896     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3897         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3898 
3899       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3900       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3901       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3902         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3903       }
3904 
3905       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3906       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3907       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3908         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3909       }
3910     }
3911 
3912     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3913     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3914       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3915           ~C1->getValue() == C2->getValue() &&
3916           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3917            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3918         LHS = TrueVal;
3919         RHS = FalseVal;
3920         return {SPF_SMIN, SPNB_NA, false};
3921       }
3922     }
3923   }
3924 
3925   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3926 
3927   return {SPF_UNKNOWN, SPNB_NA, false};
3928 }
3929 
3930 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3931                               Instruction::CastOps *CastOp) {
3932   CastInst *CI = dyn_cast<CastInst>(V1);
3933   Constant *C = dyn_cast<Constant>(V2);
3934   if (!CI)
3935     return nullptr;
3936   *CastOp = CI->getOpcode();
3937 
3938   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3939     // If V1 and V2 are both the same cast from the same type, we can look
3940     // through V1.
3941     if (CI2->getOpcode() == CI->getOpcode() &&
3942         CI2->getSrcTy() == CI->getSrcTy())
3943       return CI2->getOperand(0);
3944     return nullptr;
3945   } else if (!C) {
3946     return nullptr;
3947   }
3948 
3949   Constant *CastedTo = nullptr;
3950 
3951   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3952     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3953 
3954   if (isa<SExtInst>(CI) && CmpI->isSigned())
3955     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3956 
3957   if (isa<TruncInst>(CI))
3958     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3959 
3960   if (isa<FPTruncInst>(CI))
3961     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3962 
3963   if (isa<FPExtInst>(CI))
3964     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3965 
3966   if (isa<FPToUIInst>(CI))
3967     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3968 
3969   if (isa<FPToSIInst>(CI))
3970     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3971 
3972   if (isa<UIToFPInst>(CI))
3973     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3974 
3975   if (isa<SIToFPInst>(CI))
3976     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3977 
3978   if (!CastedTo)
3979     return nullptr;
3980 
3981   Constant *CastedBack =
3982       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3983   // Make sure the cast doesn't lose any information.
3984   if (CastedBack != C)
3985     return nullptr;
3986 
3987   return CastedTo;
3988 }
3989 
3990 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3991                                              Instruction::CastOps *CastOp) {
3992   SelectInst *SI = dyn_cast<SelectInst>(V);
3993   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3994 
3995   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3996   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3997 
3998   CmpInst::Predicate Pred = CmpI->getPredicate();
3999   Value *CmpLHS = CmpI->getOperand(0);
4000   Value *CmpRHS = CmpI->getOperand(1);
4001   Value *TrueVal = SI->getTrueValue();
4002   Value *FalseVal = SI->getFalseValue();
4003   FastMathFlags FMF;
4004   if (isa<FPMathOperator>(CmpI))
4005     FMF = CmpI->getFastMathFlags();
4006 
4007   // Bail out early.
4008   if (CmpI->isEquality())
4009     return {SPF_UNKNOWN, SPNB_NA, false};
4010 
4011   // Deal with type mismatches.
4012   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4013     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4014       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4015                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4016                                   LHS, RHS);
4017     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4018       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4019                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4020                                   LHS, RHS);
4021   }
4022   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4023                               LHS, RHS);
4024 }
4025 
4026 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
4027   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4028   assert(NumRanges >= 1 && "Must have at least one range!");
4029   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4030 
4031   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4032   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4033 
4034   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4035 
4036   for (unsigned i = 1; i < NumRanges; ++i) {
4037     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4038     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4039 
4040     // Note: unionWith will potentially create a range that contains values not
4041     // contained in any of the original N ranges.
4042     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4043   }
4044 
4045   return CR;
4046 }
4047 
4048 /// Return true if "icmp Pred LHS RHS" is always true.
4049 static bool isTruePredicate(CmpInst::Predicate Pred,
4050                             const Value *LHS, const Value *RHS,
4051                             const DataLayout &DL, unsigned Depth,
4052                             AssumptionCache *AC, const Instruction *CxtI,
4053                             const DominatorTree *DT) {
4054   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4055   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4056     return true;
4057 
4058   switch (Pred) {
4059   default:
4060     return false;
4061 
4062   case CmpInst::ICMP_SLE: {
4063     const APInt *C;
4064 
4065     // LHS s<= LHS +_{nsw} C   if C >= 0
4066     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4067       return !C->isNegative();
4068     return false;
4069   }
4070 
4071   case CmpInst::ICMP_ULE: {
4072     const APInt *C;
4073 
4074     // LHS u<= LHS +_{nuw} C   for any C
4075     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4076       return true;
4077 
4078     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4079     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4080                                        const Value *&X,
4081                                        const APInt *&CA, const APInt *&CB) {
4082       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4083           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4084         return true;
4085 
4086       // If X & C == 0 then (X | C) == X +_{nuw} C
4087       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4088           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4089         unsigned BitWidth = CA->getBitWidth();
4090         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4091         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4092 
4093         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4094           return true;
4095       }
4096 
4097       return false;
4098     };
4099 
4100     const Value *X;
4101     const APInt *CLHS, *CRHS;
4102     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4103       return CLHS->ule(*CRHS);
4104 
4105     return false;
4106   }
4107   }
4108 }
4109 
4110 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4111 /// ALHS ARHS" is true.  Otherwise, return None.
4112 static Optional<bool>
4113 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4114                       const Value *ARHS, const Value *BLHS,
4115                       const Value *BRHS, const DataLayout &DL,
4116                       unsigned Depth, AssumptionCache *AC,
4117                       const Instruction *CxtI, const DominatorTree *DT) {
4118   switch (Pred) {
4119   default:
4120     return None;
4121 
4122   case CmpInst::ICMP_SLT:
4123   case CmpInst::ICMP_SLE:
4124     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4125                         DT) &&
4126         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4127       return true;
4128     return None;
4129 
4130   case CmpInst::ICMP_ULT:
4131   case CmpInst::ICMP_ULE:
4132     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4133                         DT) &&
4134         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4135       return true;
4136     return None;
4137   }
4138 }
4139 
4140 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4141 /// when the operands match, but are swapped.
4142 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4143                           const Value *BLHS, const Value *BRHS,
4144                           bool &IsSwappedOps) {
4145 
4146   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4147   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4148   return IsMatchingOps || IsSwappedOps;
4149 }
4150 
4151 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4152 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4153 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4154 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4155                                                     const Value *ALHS,
4156                                                     const Value *ARHS,
4157                                                     CmpInst::Predicate BPred,
4158                                                     const Value *BLHS,
4159                                                     const Value *BRHS,
4160                                                     bool IsSwappedOps) {
4161   // Canonicalize the operands so they're matching.
4162   if (IsSwappedOps) {
4163     std::swap(BLHS, BRHS);
4164     BPred = ICmpInst::getSwappedPredicate(BPred);
4165   }
4166   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4167     return true;
4168   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4169     return false;
4170 
4171   return None;
4172 }
4173 
4174 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4175 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4176 /// C2" is false.  Otherwise, return None if we can't infer anything.
4177 static Optional<bool>
4178 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4179                                  const ConstantInt *C1,
4180                                  CmpInst::Predicate BPred,
4181                                  const Value *BLHS, const ConstantInt *C2) {
4182   assert(ALHS == BLHS && "LHS operands must match.");
4183   ConstantRange DomCR =
4184       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4185   ConstantRange CR =
4186       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4187   ConstantRange Intersection = DomCR.intersectWith(CR);
4188   ConstantRange Difference = DomCR.difference(CR);
4189   if (Intersection.isEmptySet())
4190     return false;
4191   if (Difference.isEmptySet())
4192     return true;
4193   return None;
4194 }
4195 
4196 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4197                                         const DataLayout &DL, bool InvertAPred,
4198                                         unsigned Depth, AssumptionCache *AC,
4199                                         const Instruction *CxtI,
4200                                         const DominatorTree *DT) {
4201   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4202   if (LHS->getType() != RHS->getType())
4203     return None;
4204 
4205   Type *OpTy = LHS->getType();
4206   assert(OpTy->getScalarType()->isIntegerTy(1));
4207 
4208   // LHS ==> RHS by definition
4209   if (!InvertAPred && LHS == RHS)
4210     return true;
4211 
4212   if (OpTy->isVectorTy())
4213     // TODO: extending the code below to handle vectors
4214     return None;
4215   assert(OpTy->isIntegerTy(1) && "implied by above");
4216 
4217   ICmpInst::Predicate APred, BPred;
4218   Value *ALHS, *ARHS;
4219   Value *BLHS, *BRHS;
4220 
4221   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4222       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4223     return None;
4224 
4225   if (InvertAPred)
4226     APred = CmpInst::getInversePredicate(APred);
4227 
4228   // Can we infer anything when the two compares have matching operands?
4229   bool IsSwappedOps;
4230   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4231     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4232             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4233       return Implication;
4234     // No amount of additional analysis will infer the second condition, so
4235     // early exit.
4236     return None;
4237   }
4238 
4239   // Can we infer anything when the LHS operands match and the RHS operands are
4240   // constants (not necessarily matching)?
4241   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4242     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4243             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4244             cast<ConstantInt>(BRHS)))
4245       return Implication;
4246     // No amount of additional analysis will infer the second condition, so
4247     // early exit.
4248     return None;
4249   }
4250 
4251   if (APred == BPred)
4252     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4253                                  CxtI, DT);
4254 
4255   return None;
4256 }
4257