1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/Loads.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/Analysis/MemoryBuiltins.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Dominators.h" 31 #include "llvm/IR/GetElementPtrTypeIterator.h" 32 #include "llvm/IR/GlobalAlias.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/IntrinsicInst.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Operator.h" 39 #include "llvm/IR/PatternMatch.h" 40 #include "llvm/IR/Statepoint.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/KnownBits.h" 43 #include "llvm/Support/MathExtras.h" 44 #include <algorithm> 45 #include <array> 46 #include <cstring> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 const unsigned MaxDepth = 6; 51 52 // Controls the number of uses of the value searched for possible 53 // dominating comparisons. 54 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 55 cl::Hidden, cl::init(20)); 56 57 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 58 /// returns the element type's bitwidth. 59 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 60 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 61 return BitWidth; 62 63 return DL.getPointerTypeSizeInBits(Ty); 64 } 65 66 namespace { 67 // Simplifying using an assume can only be done in a particular control-flow 68 // context (the context instruction provides that context). If an assume and 69 // the context instruction are not in the same block then the DT helps in 70 // figuring out if we can use it. 71 struct Query { 72 const DataLayout &DL; 73 AssumptionCache *AC; 74 const Instruction *CxtI; 75 const DominatorTree *DT; 76 // Unlike the other analyses, this may be a nullptr because not all clients 77 // provide it currently. 78 OptimizationRemarkEmitter *ORE; 79 80 /// Set of assumptions that should be excluded from further queries. 81 /// This is because of the potential for mutual recursion to cause 82 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 83 /// classic case of this is assume(x = y), which will attempt to determine 84 /// bits in x from bits in y, which will attempt to determine bits in y from 85 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 86 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 87 /// (all of which can call computeKnownBits), and so on. 88 std::array<const Value *, MaxDepth> Excluded; 89 unsigned NumExcluded; 90 91 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 92 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 93 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 94 95 Query(const Query &Q, const Value *NewExcl) 96 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 97 NumExcluded(Q.NumExcluded) { 98 Excluded = Q.Excluded; 99 Excluded[NumExcluded++] = NewExcl; 100 assert(NumExcluded <= Excluded.size()); 101 } 102 103 bool isExcluded(const Value *Value) const { 104 if (NumExcluded == 0) 105 return false; 106 auto End = Excluded.begin() + NumExcluded; 107 return std::find(Excluded.begin(), End, Value) != End; 108 } 109 }; 110 } // end anonymous namespace 111 112 // Given the provided Value and, potentially, a context instruction, return 113 // the preferred context instruction (if any). 114 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 115 // If we've been provided with a context instruction, then use that (provided 116 // it has been inserted). 117 if (CxtI && CxtI->getParent()) 118 return CxtI; 119 120 // If the value is really an already-inserted instruction, then use that. 121 CxtI = dyn_cast<Instruction>(V); 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 return nullptr; 126 } 127 128 static void computeKnownBits(const Value *V, KnownBits &Known, 129 unsigned Depth, const Query &Q); 130 131 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT, 135 OptimizationRemarkEmitter *ORE) { 136 ::computeKnownBits(V, Known, Depth, 137 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 138 } 139 140 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 141 const Query &Q); 142 143 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 144 unsigned Depth, AssumptionCache *AC, 145 const Instruction *CxtI, 146 const DominatorTree *DT, 147 OptimizationRemarkEmitter *ORE) { 148 return ::computeKnownBits(V, Depth, 149 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 150 } 151 152 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 153 const DataLayout &DL, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 assert(LHS->getType() == RHS->getType() && 157 "LHS and RHS should have the same type"); 158 assert(LHS->getType()->isIntOrIntVectorTy() && 159 "LHS and RHS should be integers"); 160 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 161 KnownBits LHSKnown(IT->getBitWidth()); 162 KnownBits RHSKnown(IT->getBitWidth()); 163 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 164 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 165 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 166 } 167 168 169 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 170 for (const User *U : CxtI->users()) { 171 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 172 if (IC->isEquality()) 173 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 174 if (C->isNullValue()) 175 continue; 176 return false; 177 } 178 return true; 179 } 180 181 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 182 const Query &Q); 183 184 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 185 bool OrZero, 186 unsigned Depth, AssumptionCache *AC, 187 const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 190 Query(DL, AC, safeCxtI(V, CxtI), DT)); 191 } 192 193 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 194 195 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 196 AssumptionCache *AC, const Instruction *CxtI, 197 const DominatorTree *DT) { 198 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 199 } 200 201 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 202 unsigned Depth, 203 AssumptionCache *AC, const Instruction *CxtI, 204 const DominatorTree *DT) { 205 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 206 return Known.isNonNegative(); 207 } 208 209 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 210 AssumptionCache *AC, const Instruction *CxtI, 211 const DominatorTree *DT) { 212 if (auto *CI = dyn_cast<ConstantInt>(V)) 213 return CI->getValue().isStrictlyPositive(); 214 215 // TODO: We'd doing two recursive queries here. We should factor this such 216 // that only a single query is needed. 217 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 218 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 219 } 220 221 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT) { 224 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 225 return Known.isNegative(); 226 } 227 228 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 229 230 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 231 const DataLayout &DL, 232 AssumptionCache *AC, const Instruction *CxtI, 233 const DominatorTree *DT) { 234 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 235 safeCxtI(V1, safeCxtI(V2, CxtI)), 236 DT)); 237 } 238 239 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 240 const Query &Q); 241 242 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 243 const DataLayout &DL, 244 unsigned Depth, AssumptionCache *AC, 245 const Instruction *CxtI, const DominatorTree *DT) { 246 return ::MaskedValueIsZero(V, Mask, Depth, 247 Query(DL, AC, safeCxtI(V, CxtI), DT)); 248 } 249 250 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 251 const Query &Q); 252 253 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 254 unsigned Depth, AssumptionCache *AC, 255 const Instruction *CxtI, 256 const DominatorTree *DT) { 257 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 258 } 259 260 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 261 bool NSW, 262 KnownBits &KnownOut, KnownBits &Known2, 263 unsigned Depth, const Query &Q) { 264 unsigned BitWidth = KnownOut.getBitWidth(); 265 266 // If an initial sequence of bits in the result is not needed, the 267 // corresponding bits in the operands are not needed. 268 KnownBits LHSKnown(BitWidth); 269 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 270 computeKnownBits(Op1, Known2, Depth + 1, Q); 271 272 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 273 } 274 275 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 276 KnownBits &Known, KnownBits &Known2, 277 unsigned Depth, const Query &Q) { 278 unsigned BitWidth = Known.getBitWidth(); 279 computeKnownBits(Op1, Known, Depth + 1, Q); 280 computeKnownBits(Op0, Known2, Depth + 1, Q); 281 282 bool isKnownNegative = false; 283 bool isKnownNonNegative = false; 284 // If the multiplication is known not to overflow, compute the sign bit. 285 if (NSW) { 286 if (Op0 == Op1) { 287 // The product of a number with itself is non-negative. 288 isKnownNonNegative = true; 289 } else { 290 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 291 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 292 bool isKnownNegativeOp1 = Known.isNegative(); 293 bool isKnownNegativeOp0 = Known2.isNegative(); 294 // The product of two numbers with the same sign is non-negative. 295 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 296 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 297 // The product of a negative number and a non-negative number is either 298 // negative or zero. 299 if (!isKnownNonNegative) 300 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 301 isKnownNonZero(Op0, Depth, Q)) || 302 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 303 isKnownNonZero(Op1, Depth, Q)); 304 } 305 } 306 307 // If low bits are zero in either operand, output low known-0 bits. 308 // Also compute a conservative estimate for high known-0 bits. 309 // More trickiness is possible, but this is sufficient for the 310 // interesting case of alignment computation. 311 unsigned TrailZ = Known.countMinTrailingZeros() + 312 Known2.countMinTrailingZeros(); 313 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 314 Known2.countMinLeadingZeros(), 315 BitWidth) - BitWidth; 316 317 TrailZ = std::min(TrailZ, BitWidth); 318 LeadZ = std::min(LeadZ, BitWidth); 319 Known.resetAll(); 320 Known.Zero.setLowBits(TrailZ); 321 Known.Zero.setHighBits(LeadZ); 322 323 // Only make use of no-wrap flags if we failed to compute the sign bit 324 // directly. This matters if the multiplication always overflows, in 325 // which case we prefer to follow the result of the direct computation, 326 // though as the program is invoking undefined behaviour we can choose 327 // whatever we like here. 328 if (isKnownNonNegative && !Known.isNegative()) 329 Known.makeNonNegative(); 330 else if (isKnownNegative && !Known.isNonNegative()) 331 Known.makeNegative(); 332 } 333 334 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 335 KnownBits &Known) { 336 unsigned BitWidth = Known.getBitWidth(); 337 unsigned NumRanges = Ranges.getNumOperands() / 2; 338 assert(NumRanges >= 1); 339 340 Known.Zero.setAllBits(); 341 Known.One.setAllBits(); 342 343 for (unsigned i = 0; i < NumRanges; ++i) { 344 ConstantInt *Lower = 345 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 346 ConstantInt *Upper = 347 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 348 ConstantRange Range(Lower->getValue(), Upper->getValue()); 349 350 // The first CommonPrefixBits of all values in Range are equal. 351 unsigned CommonPrefixBits = 352 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 353 354 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 355 Known.One &= Range.getUnsignedMax() & Mask; 356 Known.Zero &= ~Range.getUnsignedMax() & Mask; 357 } 358 } 359 360 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 361 SmallVector<const Value *, 16> WorkSet(1, I); 362 SmallPtrSet<const Value *, 32> Visited; 363 SmallPtrSet<const Value *, 16> EphValues; 364 365 // The instruction defining an assumption's condition itself is always 366 // considered ephemeral to that assumption (even if it has other 367 // non-ephemeral users). See r246696's test case for an example. 368 if (is_contained(I->operands(), E)) 369 return true; 370 371 while (!WorkSet.empty()) { 372 const Value *V = WorkSet.pop_back_val(); 373 if (!Visited.insert(V).second) 374 continue; 375 376 // If all uses of this value are ephemeral, then so is this value. 377 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 378 if (V == E) 379 return true; 380 381 EphValues.insert(V); 382 if (const User *U = dyn_cast<User>(V)) 383 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 384 J != JE; ++J) { 385 if (isSafeToSpeculativelyExecute(*J)) 386 WorkSet.push_back(*J); 387 } 388 } 389 } 390 391 return false; 392 } 393 394 // Is this an intrinsic that cannot be speculated but also cannot trap? 395 static bool isAssumeLikeIntrinsic(const Instruction *I) { 396 if (const CallInst *CI = dyn_cast<CallInst>(I)) 397 if (Function *F = CI->getCalledFunction()) 398 switch (F->getIntrinsicID()) { 399 default: break; 400 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 401 case Intrinsic::assume: 402 case Intrinsic::dbg_declare: 403 case Intrinsic::dbg_value: 404 case Intrinsic::invariant_start: 405 case Intrinsic::invariant_end: 406 case Intrinsic::lifetime_start: 407 case Intrinsic::lifetime_end: 408 case Intrinsic::objectsize: 409 case Intrinsic::ptr_annotation: 410 case Intrinsic::var_annotation: 411 return true; 412 } 413 414 return false; 415 } 416 417 bool llvm::isValidAssumeForContext(const Instruction *Inv, 418 const Instruction *CxtI, 419 const DominatorTree *DT) { 420 421 // There are two restrictions on the use of an assume: 422 // 1. The assume must dominate the context (or the control flow must 423 // reach the assume whenever it reaches the context). 424 // 2. The context must not be in the assume's set of ephemeral values 425 // (otherwise we will use the assume to prove that the condition 426 // feeding the assume is trivially true, thus causing the removal of 427 // the assume). 428 429 if (DT) { 430 if (DT->dominates(Inv, CxtI)) 431 return true; 432 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 433 // We don't have a DT, but this trivially dominates. 434 return true; 435 } 436 437 // With or without a DT, the only remaining case we will check is if the 438 // instructions are in the same BB. Give up if that is not the case. 439 if (Inv->getParent() != CxtI->getParent()) 440 return false; 441 442 // If we have a dom tree, then we now know that the assume doens't dominate 443 // the other instruction. If we don't have a dom tree then we can check if 444 // the assume is first in the BB. 445 if (!DT) { 446 // Search forward from the assume until we reach the context (or the end 447 // of the block); the common case is that the assume will come first. 448 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 449 IE = Inv->getParent()->end(); I != IE; ++I) 450 if (&*I == CxtI) 451 return true; 452 } 453 454 // The context comes first, but they're both in the same block. Make sure 455 // there is nothing in between that might interrupt the control flow. 456 for (BasicBlock::const_iterator I = 457 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 458 I != IE; ++I) 459 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 460 return false; 461 462 return !isEphemeralValueOf(Inv, CxtI); 463 } 464 465 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 466 unsigned Depth, const Query &Q) { 467 // Use of assumptions is context-sensitive. If we don't have a context, we 468 // cannot use them! 469 if (!Q.AC || !Q.CxtI) 470 return; 471 472 unsigned BitWidth = Known.getBitWidth(); 473 474 // Note that the patterns below need to be kept in sync with the code 475 // in AssumptionCache::updateAffectedValues. 476 477 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 478 if (!AssumeVH) 479 continue; 480 CallInst *I = cast<CallInst>(AssumeVH); 481 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 482 "Got assumption for the wrong function!"); 483 if (Q.isExcluded(I)) 484 continue; 485 486 // Warning: This loop can end up being somewhat performance sensetive. 487 // We're running this loop for once for each value queried resulting in a 488 // runtime of ~O(#assumes * #values). 489 490 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 491 "must be an assume intrinsic"); 492 493 Value *Arg = I->getArgOperand(0); 494 495 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 496 assert(BitWidth == 1 && "assume operand is not i1?"); 497 Known.setAllOnes(); 498 return; 499 } 500 if (match(Arg, m_Not(m_Specific(V))) && 501 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 502 assert(BitWidth == 1 && "assume operand is not i1?"); 503 Known.setAllZero(); 504 return; 505 } 506 507 // The remaining tests are all recursive, so bail out if we hit the limit. 508 if (Depth == MaxDepth) 509 continue; 510 511 Value *A, *B; 512 auto m_V = m_CombineOr(m_Specific(V), 513 m_CombineOr(m_PtrToInt(m_Specific(V)), 514 m_BitCast(m_Specific(V)))); 515 516 CmpInst::Predicate Pred; 517 ConstantInt *C; 518 // assume(v = a) 519 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 520 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 521 KnownBits RHSKnown(BitWidth); 522 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 523 Known.Zero |= RHSKnown.Zero; 524 Known.One |= RHSKnown.One; 525 // assume(v & b = a) 526 } else if (match(Arg, 527 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 528 Pred == ICmpInst::ICMP_EQ && 529 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 530 KnownBits RHSKnown(BitWidth); 531 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 532 KnownBits MaskKnown(BitWidth); 533 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 534 535 // For those bits in the mask that are known to be one, we can propagate 536 // known bits from the RHS to V. 537 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 538 Known.One |= RHSKnown.One & MaskKnown.One; 539 // assume(~(v & b) = a) 540 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 541 m_Value(A))) && 542 Pred == ICmpInst::ICMP_EQ && 543 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 544 KnownBits RHSKnown(BitWidth); 545 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 546 KnownBits MaskKnown(BitWidth); 547 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 548 549 // For those bits in the mask that are known to be one, we can propagate 550 // inverted known bits from the RHS to V. 551 Known.Zero |= RHSKnown.One & MaskKnown.One; 552 Known.One |= RHSKnown.Zero & MaskKnown.One; 553 // assume(v | b = a) 554 } else if (match(Arg, 555 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 556 Pred == ICmpInst::ICMP_EQ && 557 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 558 KnownBits RHSKnown(BitWidth); 559 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 560 KnownBits BKnown(BitWidth); 561 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 562 563 // For those bits in B that are known to be zero, we can propagate known 564 // bits from the RHS to V. 565 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 566 Known.One |= RHSKnown.One & BKnown.Zero; 567 // assume(~(v | b) = a) 568 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 569 m_Value(A))) && 570 Pred == ICmpInst::ICMP_EQ && 571 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 572 KnownBits RHSKnown(BitWidth); 573 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 574 KnownBits BKnown(BitWidth); 575 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 576 577 // For those bits in B that are known to be zero, we can propagate 578 // inverted known bits from the RHS to V. 579 Known.Zero |= RHSKnown.One & BKnown.Zero; 580 Known.One |= RHSKnown.Zero & BKnown.Zero; 581 // assume(v ^ b = a) 582 } else if (match(Arg, 583 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 584 Pred == ICmpInst::ICMP_EQ && 585 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 586 KnownBits RHSKnown(BitWidth); 587 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 588 KnownBits BKnown(BitWidth); 589 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 590 591 // For those bits in B that are known to be zero, we can propagate known 592 // bits from the RHS to V. For those bits in B that are known to be one, 593 // we can propagate inverted known bits from the RHS to V. 594 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 595 Known.One |= RHSKnown.One & BKnown.Zero; 596 Known.Zero |= RHSKnown.One & BKnown.One; 597 Known.One |= RHSKnown.Zero & BKnown.One; 598 // assume(~(v ^ b) = a) 599 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 600 m_Value(A))) && 601 Pred == ICmpInst::ICMP_EQ && 602 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 603 KnownBits RHSKnown(BitWidth); 604 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 605 KnownBits BKnown(BitWidth); 606 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 607 608 // For those bits in B that are known to be zero, we can propagate 609 // inverted known bits from the RHS to V. For those bits in B that are 610 // known to be one, we can propagate known bits from the RHS to V. 611 Known.Zero |= RHSKnown.One & BKnown.Zero; 612 Known.One |= RHSKnown.Zero & BKnown.Zero; 613 Known.Zero |= RHSKnown.Zero & BKnown.One; 614 Known.One |= RHSKnown.One & BKnown.One; 615 // assume(v << c = a) 616 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 617 m_Value(A))) && 618 Pred == ICmpInst::ICMP_EQ && 619 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 620 KnownBits RHSKnown(BitWidth); 621 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 622 // For those bits in RHS that are known, we can propagate them to known 623 // bits in V shifted to the right by C. 624 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 625 Known.Zero |= RHSKnown.Zero; 626 RHSKnown.One.lshrInPlace(C->getZExtValue()); 627 Known.One |= RHSKnown.One; 628 // assume(~(v << c) = a) 629 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 630 m_Value(A))) && 631 Pred == ICmpInst::ICMP_EQ && 632 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 633 KnownBits RHSKnown(BitWidth); 634 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 635 // For those bits in RHS that are known, we can propagate them inverted 636 // to known bits in V shifted to the right by C. 637 RHSKnown.One.lshrInPlace(C->getZExtValue()); 638 Known.Zero |= RHSKnown.One; 639 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 640 Known.One |= RHSKnown.Zero; 641 // assume(v >> c = a) 642 } else if (match(Arg, 643 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 644 m_Value(A))) && 645 Pred == ICmpInst::ICMP_EQ && 646 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 647 KnownBits RHSKnown(BitWidth); 648 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 649 // For those bits in RHS that are known, we can propagate them to known 650 // bits in V shifted to the right by C. 651 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 652 Known.One |= RHSKnown.One << C->getZExtValue(); 653 // assume(~(v >> c) = a) 654 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 655 m_Value(A))) && 656 Pred == ICmpInst::ICMP_EQ && 657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 658 KnownBits RHSKnown(BitWidth); 659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 660 // For those bits in RHS that are known, we can propagate them inverted 661 // to known bits in V shifted to the right by C. 662 Known.Zero |= RHSKnown.One << C->getZExtValue(); 663 Known.One |= RHSKnown.Zero << C->getZExtValue(); 664 // assume(v >=_s c) where c is non-negative 665 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 666 Pred == ICmpInst::ICMP_SGE && 667 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 668 KnownBits RHSKnown(BitWidth); 669 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 670 671 if (RHSKnown.isNonNegative()) { 672 // We know that the sign bit is zero. 673 Known.makeNonNegative(); 674 } 675 // assume(v >_s c) where c is at least -1. 676 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 677 Pred == ICmpInst::ICMP_SGT && 678 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 679 KnownBits RHSKnown(BitWidth); 680 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 681 682 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 683 // We know that the sign bit is zero. 684 Known.makeNonNegative(); 685 } 686 // assume(v <=_s c) where c is negative 687 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 688 Pred == ICmpInst::ICMP_SLE && 689 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 690 KnownBits RHSKnown(BitWidth); 691 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 692 693 if (RHSKnown.isNegative()) { 694 // We know that the sign bit is one. 695 Known.makeNegative(); 696 } 697 // assume(v <_s c) where c is non-positive 698 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 699 Pred == ICmpInst::ICMP_SLT && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 KnownBits RHSKnown(BitWidth); 702 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 703 704 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 705 // We know that the sign bit is one. 706 Known.makeNegative(); 707 } 708 // assume(v <=_u c) 709 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 710 Pred == ICmpInst::ICMP_ULE && 711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 712 KnownBits RHSKnown(BitWidth); 713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 714 715 // Whatever high bits in c are zero are known to be zero. 716 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 717 // assume(v <_u c) 718 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 719 Pred == ICmpInst::ICMP_ULT && 720 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 721 KnownBits RHSKnown(BitWidth); 722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 723 724 // Whatever high bits in c are zero are known to be zero (if c is a power 725 // of 2, then one more). 726 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 727 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 728 else 729 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 730 } 731 } 732 733 // If assumptions conflict with each other or previous known bits, then we 734 // have a logical fallacy. It's possible that the assumption is not reachable, 735 // so this isn't a real bug. On the other hand, the program may have undefined 736 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 737 // clear out the known bits, try to warn the user, and hope for the best. 738 if (Known.Zero.intersects(Known.One)) { 739 Known.resetAll(); 740 741 if (Q.ORE) { 742 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 743 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 744 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 745 "have undefined behavior, or compiler may have " 746 "internal error."); 747 } 748 } 749 } 750 751 // Compute known bits from a shift operator, including those with a 752 // non-constant shift amount. Known is the outputs of this function. Known2 is a 753 // pre-allocated temporary with the/ same bit width as Known. KZF and KOF are 754 // operator-specific functors that, given the known-zero or known-one bits 755 // respectively, and a shift amount, compute the implied known-zero or known-one 756 // bits of the shift operator's result respectively for that shift amount. The 757 // results from calling KZF and KOF are conservatively combined for all 758 // permitted shift amounts. 759 static void computeKnownBitsFromShiftOperator( 760 const Operator *I, KnownBits &Known, KnownBits &Known2, 761 unsigned Depth, const Query &Q, 762 function_ref<APInt(const APInt &, unsigned)> KZF, 763 function_ref<APInt(const APInt &, unsigned)> KOF) { 764 unsigned BitWidth = Known.getBitWidth(); 765 766 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 767 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 768 769 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 770 Known.Zero = KZF(Known.Zero, ShiftAmt); 771 Known.One = KOF(Known.One, ShiftAmt); 772 // If there is conflict between Known.Zero and Known.One, this must be an 773 // overflowing left shift, so the shift result is undefined. Clear Known 774 // bits so that other code could propagate this undef. 775 if ((Known.Zero & Known.One) != 0) 776 Known.resetAll(); 777 778 return; 779 } 780 781 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 782 783 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 784 // value could be undef, so we don't know anything about it. 785 if ((~Known.Zero).uge(BitWidth)) { 786 Known.resetAll(); 787 return; 788 } 789 790 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 791 // BitWidth > 64 and any upper bits are known, we'll end up returning the 792 // limit value (which implies all bits are known). 793 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 794 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 795 796 // It would be more-clearly correct to use the two temporaries for this 797 // calculation. Reusing the APInts here to prevent unnecessary allocations. 798 Known.resetAll(); 799 800 // If we know the shifter operand is nonzero, we can sometimes infer more 801 // known bits. However this is expensive to compute, so be lazy about it and 802 // only compute it when absolutely necessary. 803 Optional<bool> ShifterOperandIsNonZero; 804 805 // Early exit if we can't constrain any well-defined shift amount. 806 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 807 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 808 ShifterOperandIsNonZero = 809 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 810 if (!*ShifterOperandIsNonZero) 811 return; 812 } 813 814 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 815 816 Known.Zero.setAllBits(); 817 Known.One.setAllBits(); 818 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 819 // Combine the shifted known input bits only for those shift amounts 820 // compatible with its known constraints. 821 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 822 continue; 823 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 824 continue; 825 // If we know the shifter is nonzero, we may be able to infer more known 826 // bits. This check is sunk down as far as possible to avoid the expensive 827 // call to isKnownNonZero if the cheaper checks above fail. 828 if (ShiftAmt == 0) { 829 if (!ShifterOperandIsNonZero.hasValue()) 830 ShifterOperandIsNonZero = 831 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 832 if (*ShifterOperandIsNonZero) 833 continue; 834 } 835 836 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 837 Known.One &= KOF(Known2.One, ShiftAmt); 838 } 839 840 // If there are no compatible shift amounts, then we've proven that the shift 841 // amount must be >= the BitWidth, and the result is undefined. We could 842 // return anything we'd like, but we need to make sure the sets of known bits 843 // stay disjoint (it should be better for some other code to actually 844 // propagate the undef than to pick a value here using known bits). 845 if (Known.Zero.intersects(Known.One)) 846 Known.resetAll(); 847 } 848 849 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 850 unsigned Depth, const Query &Q) { 851 unsigned BitWidth = Known.getBitWidth(); 852 853 KnownBits Known2(Known); 854 switch (I->getOpcode()) { 855 default: break; 856 case Instruction::Load: 857 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 858 computeKnownBitsFromRangeMetadata(*MD, Known); 859 break; 860 case Instruction::And: { 861 // If either the LHS or the RHS are Zero, the result is zero. 862 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 863 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 864 865 // Output known-1 bits are only known if set in both the LHS & RHS. 866 Known.One &= Known2.One; 867 // Output known-0 are known to be clear if zero in either the LHS | RHS. 868 Known.Zero |= Known2.Zero; 869 870 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 871 // here we handle the more general case of adding any odd number by 872 // matching the form add(x, add(x, y)) where y is odd. 873 // TODO: This could be generalized to clearing any bit set in y where the 874 // following bit is known to be unset in y. 875 Value *Y = nullptr; 876 if (!Known.Zero[0] && !Known.One[0] && 877 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 878 m_Value(Y))) || 879 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 880 m_Value(Y))))) { 881 Known2.resetAll(); 882 computeKnownBits(Y, Known2, Depth + 1, Q); 883 if (Known2.countMinTrailingOnes() > 0) 884 Known.Zero.setBit(0); 885 } 886 break; 887 } 888 case Instruction::Or: { 889 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 890 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 891 892 // Output known-0 bits are only known if clear in both the LHS & RHS. 893 Known.Zero &= Known2.Zero; 894 // Output known-1 are known to be set if set in either the LHS | RHS. 895 Known.One |= Known2.One; 896 break; 897 } 898 case Instruction::Xor: { 899 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 900 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 901 902 // Output known-0 bits are known if clear or set in both the LHS & RHS. 903 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 904 // Output known-1 are known to be set if set in only one of the LHS, RHS. 905 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 906 Known.Zero = std::move(KnownZeroOut); 907 break; 908 } 909 case Instruction::Mul: { 910 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 911 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 912 Known2, Depth, Q); 913 break; 914 } 915 case Instruction::UDiv: { 916 // For the purposes of computing leading zeros we can conservatively 917 // treat a udiv as a logical right shift by the power of 2 known to 918 // be less than the denominator. 919 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 920 unsigned LeadZ = Known2.countMinLeadingZeros(); 921 922 Known2.resetAll(); 923 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 924 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 925 if (RHSMaxLeadingZeros != BitWidth) 926 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 927 928 Known.Zero.setHighBits(LeadZ); 929 break; 930 } 931 case Instruction::Select: { 932 const Value *LHS, *RHS; 933 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 934 if (SelectPatternResult::isMinOrMax(SPF)) { 935 computeKnownBits(RHS, Known, Depth + 1, Q); 936 computeKnownBits(LHS, Known2, Depth + 1, Q); 937 } else { 938 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 939 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 940 } 941 942 unsigned MaxHighOnes = 0; 943 unsigned MaxHighZeros = 0; 944 if (SPF == SPF_SMAX) { 945 // If both sides are negative, the result is negative. 946 if (Known.isNegative() && Known2.isNegative()) 947 // We can derive a lower bound on the result by taking the max of the 948 // leading one bits. 949 MaxHighOnes = 950 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 951 // If either side is non-negative, the result is non-negative. 952 else if (Known.isNonNegative() || Known2.isNonNegative()) 953 MaxHighZeros = 1; 954 } else if (SPF == SPF_SMIN) { 955 // If both sides are non-negative, the result is non-negative. 956 if (Known.isNonNegative() && Known2.isNonNegative()) 957 // We can derive an upper bound on the result by taking the max of the 958 // leading zero bits. 959 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 960 Known2.countMinLeadingZeros()); 961 // If either side is negative, the result is negative. 962 else if (Known.isNegative() || Known2.isNegative()) 963 MaxHighOnes = 1; 964 } else if (SPF == SPF_UMAX) { 965 // We can derive a lower bound on the result by taking the max of the 966 // leading one bits. 967 MaxHighOnes = 968 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 969 } else if (SPF == SPF_UMIN) { 970 // We can derive an upper bound on the result by taking the max of the 971 // leading zero bits. 972 MaxHighZeros = 973 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 974 } 975 976 // Only known if known in both the LHS and RHS. 977 Known.One &= Known2.One; 978 Known.Zero &= Known2.Zero; 979 if (MaxHighOnes > 0) 980 Known.One.setHighBits(MaxHighOnes); 981 if (MaxHighZeros > 0) 982 Known.Zero.setHighBits(MaxHighZeros); 983 break; 984 } 985 case Instruction::FPTrunc: 986 case Instruction::FPExt: 987 case Instruction::FPToUI: 988 case Instruction::FPToSI: 989 case Instruction::SIToFP: 990 case Instruction::UIToFP: 991 break; // Can't work with floating point. 992 case Instruction::PtrToInt: 993 case Instruction::IntToPtr: 994 // Fall through and handle them the same as zext/trunc. 995 LLVM_FALLTHROUGH; 996 case Instruction::ZExt: 997 case Instruction::Trunc: { 998 Type *SrcTy = I->getOperand(0)->getType(); 999 1000 unsigned SrcBitWidth; 1001 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1002 // which fall through here. 1003 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1004 1005 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1006 Known = Known.zextOrTrunc(SrcBitWidth); 1007 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1008 Known = Known.zextOrTrunc(BitWidth); 1009 // Any top bits are known to be zero. 1010 if (BitWidth > SrcBitWidth) 1011 Known.Zero.setBitsFrom(SrcBitWidth); 1012 break; 1013 } 1014 case Instruction::BitCast: { 1015 Type *SrcTy = I->getOperand(0)->getType(); 1016 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1017 // TODO: For now, not handling conversions like: 1018 // (bitcast i64 %x to <2 x i32>) 1019 !I->getType()->isVectorTy()) { 1020 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1021 break; 1022 } 1023 break; 1024 } 1025 case Instruction::SExt: { 1026 // Compute the bits in the result that are not present in the input. 1027 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1028 1029 Known = Known.trunc(SrcBitWidth); 1030 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1031 // If the sign bit of the input is known set or clear, then we know the 1032 // top bits of the result. 1033 Known = Known.sext(BitWidth); 1034 break; 1035 } 1036 case Instruction::Shl: { 1037 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1038 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1039 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1040 APInt KZResult = KnownZero << ShiftAmt; 1041 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1042 // If this shift has "nsw" keyword, then the result is either a poison 1043 // value or has the same sign bit as the first operand. 1044 if (NSW && KnownZero.isSignBitSet()) 1045 KZResult.setSignBit(); 1046 return KZResult; 1047 }; 1048 1049 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1050 APInt KOResult = KnownOne << ShiftAmt; 1051 if (NSW && KnownOne.isSignBitSet()) 1052 KOResult.setSignBit(); 1053 return KOResult; 1054 }; 1055 1056 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1057 break; 1058 } 1059 case Instruction::LShr: { 1060 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1061 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1062 APInt KZResult = KnownZero.lshr(ShiftAmt); 1063 // High bits known zero. 1064 KZResult.setHighBits(ShiftAmt); 1065 return KZResult; 1066 }; 1067 1068 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1069 return KnownOne.lshr(ShiftAmt); 1070 }; 1071 1072 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1073 break; 1074 } 1075 case Instruction::AShr: { 1076 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1077 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1078 return KnownZero.ashr(ShiftAmt); 1079 }; 1080 1081 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1082 return KnownOne.ashr(ShiftAmt); 1083 }; 1084 1085 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1086 break; 1087 } 1088 case Instruction::Sub: { 1089 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1090 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1091 Known, Known2, Depth, Q); 1092 break; 1093 } 1094 case Instruction::Add: { 1095 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1096 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1097 Known, Known2, Depth, Q); 1098 break; 1099 } 1100 case Instruction::SRem: 1101 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1102 APInt RA = Rem->getValue().abs(); 1103 if (RA.isPowerOf2()) { 1104 APInt LowBits = RA - 1; 1105 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1106 1107 // The low bits of the first operand are unchanged by the srem. 1108 Known.Zero = Known2.Zero & LowBits; 1109 Known.One = Known2.One & LowBits; 1110 1111 // If the first operand is non-negative or has all low bits zero, then 1112 // the upper bits are all zero. 1113 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1114 Known.Zero |= ~LowBits; 1115 1116 // If the first operand is negative and not all low bits are zero, then 1117 // the upper bits are all one. 1118 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1119 Known.One |= ~LowBits; 1120 1121 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1122 break; 1123 } 1124 } 1125 1126 // The sign bit is the LHS's sign bit, except when the result of the 1127 // remainder is zero. 1128 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1129 // If it's known zero, our sign bit is also zero. 1130 if (Known2.isNonNegative()) 1131 Known.makeNonNegative(); 1132 1133 break; 1134 case Instruction::URem: { 1135 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1136 const APInt &RA = Rem->getValue(); 1137 if (RA.isPowerOf2()) { 1138 APInt LowBits = (RA - 1); 1139 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1140 Known.Zero |= ~LowBits; 1141 Known.One &= LowBits; 1142 break; 1143 } 1144 } 1145 1146 // Since the result is less than or equal to either operand, any leading 1147 // zero bits in either operand must also exist in the result. 1148 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1149 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1150 1151 unsigned Leaders = 1152 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1153 Known.resetAll(); 1154 Known.Zero.setHighBits(Leaders); 1155 break; 1156 } 1157 1158 case Instruction::Alloca: { 1159 const AllocaInst *AI = cast<AllocaInst>(I); 1160 unsigned Align = AI->getAlignment(); 1161 if (Align == 0) 1162 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1163 1164 if (Align > 0) 1165 Known.Zero.setLowBits(countTrailingZeros(Align)); 1166 break; 1167 } 1168 case Instruction::GetElementPtr: { 1169 // Analyze all of the subscripts of this getelementptr instruction 1170 // to determine if we can prove known low zero bits. 1171 KnownBits LocalKnown(BitWidth); 1172 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1173 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1174 1175 gep_type_iterator GTI = gep_type_begin(I); 1176 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1177 Value *Index = I->getOperand(i); 1178 if (StructType *STy = GTI.getStructTypeOrNull()) { 1179 // Handle struct member offset arithmetic. 1180 1181 // Handle case when index is vector zeroinitializer 1182 Constant *CIndex = cast<Constant>(Index); 1183 if (CIndex->isZeroValue()) 1184 continue; 1185 1186 if (CIndex->getType()->isVectorTy()) 1187 Index = CIndex->getSplatValue(); 1188 1189 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1190 const StructLayout *SL = Q.DL.getStructLayout(STy); 1191 uint64_t Offset = SL->getElementOffset(Idx); 1192 TrailZ = std::min<unsigned>(TrailZ, 1193 countTrailingZeros(Offset)); 1194 } else { 1195 // Handle array index arithmetic. 1196 Type *IndexedTy = GTI.getIndexedType(); 1197 if (!IndexedTy->isSized()) { 1198 TrailZ = 0; 1199 break; 1200 } 1201 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1202 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1203 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1204 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1205 TrailZ = std::min(TrailZ, 1206 unsigned(countTrailingZeros(TypeSize) + 1207 LocalKnown.countMinTrailingZeros())); 1208 } 1209 } 1210 1211 Known.Zero.setLowBits(TrailZ); 1212 break; 1213 } 1214 case Instruction::PHI: { 1215 const PHINode *P = cast<PHINode>(I); 1216 // Handle the case of a simple two-predecessor recurrence PHI. 1217 // There's a lot more that could theoretically be done here, but 1218 // this is sufficient to catch some interesting cases. 1219 if (P->getNumIncomingValues() == 2) { 1220 for (unsigned i = 0; i != 2; ++i) { 1221 Value *L = P->getIncomingValue(i); 1222 Value *R = P->getIncomingValue(!i); 1223 Operator *LU = dyn_cast<Operator>(L); 1224 if (!LU) 1225 continue; 1226 unsigned Opcode = LU->getOpcode(); 1227 // Check for operations that have the property that if 1228 // both their operands have low zero bits, the result 1229 // will have low zero bits. 1230 if (Opcode == Instruction::Add || 1231 Opcode == Instruction::Sub || 1232 Opcode == Instruction::And || 1233 Opcode == Instruction::Or || 1234 Opcode == Instruction::Mul) { 1235 Value *LL = LU->getOperand(0); 1236 Value *LR = LU->getOperand(1); 1237 // Find a recurrence. 1238 if (LL == I) 1239 L = LR; 1240 else if (LR == I) 1241 L = LL; 1242 else 1243 break; 1244 // Ok, we have a PHI of the form L op= R. Check for low 1245 // zero bits. 1246 computeKnownBits(R, Known2, Depth + 1, Q); 1247 1248 // We need to take the minimum number of known bits 1249 KnownBits Known3(Known); 1250 computeKnownBits(L, Known3, Depth + 1, Q); 1251 1252 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1253 Known3.countMinTrailingZeros())); 1254 1255 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1256 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1257 // If initial value of recurrence is nonnegative, and we are adding 1258 // a nonnegative number with nsw, the result can only be nonnegative 1259 // or poison value regardless of the number of times we execute the 1260 // add in phi recurrence. If initial value is negative and we are 1261 // adding a negative number with nsw, the result can only be 1262 // negative or poison value. Similar arguments apply to sub and mul. 1263 // 1264 // (add non-negative, non-negative) --> non-negative 1265 // (add negative, negative) --> negative 1266 if (Opcode == Instruction::Add) { 1267 if (Known2.isNonNegative() && Known3.isNonNegative()) 1268 Known.makeNonNegative(); 1269 else if (Known2.isNegative() && Known3.isNegative()) 1270 Known.makeNegative(); 1271 } 1272 1273 // (sub nsw non-negative, negative) --> non-negative 1274 // (sub nsw negative, non-negative) --> negative 1275 else if (Opcode == Instruction::Sub && LL == I) { 1276 if (Known2.isNonNegative() && Known3.isNegative()) 1277 Known.makeNonNegative(); 1278 else if (Known2.isNegative() && Known3.isNonNegative()) 1279 Known.makeNegative(); 1280 } 1281 1282 // (mul nsw non-negative, non-negative) --> non-negative 1283 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1284 Known3.isNonNegative()) 1285 Known.makeNonNegative(); 1286 } 1287 1288 break; 1289 } 1290 } 1291 } 1292 1293 // Unreachable blocks may have zero-operand PHI nodes. 1294 if (P->getNumIncomingValues() == 0) 1295 break; 1296 1297 // Otherwise take the unions of the known bit sets of the operands, 1298 // taking conservative care to avoid excessive recursion. 1299 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1300 // Skip if every incoming value references to ourself. 1301 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1302 break; 1303 1304 Known.Zero.setAllBits(); 1305 Known.One.setAllBits(); 1306 for (Value *IncValue : P->incoming_values()) { 1307 // Skip direct self references. 1308 if (IncValue == P) continue; 1309 1310 Known2 = KnownBits(BitWidth); 1311 // Recurse, but cap the recursion to one level, because we don't 1312 // want to waste time spinning around in loops. 1313 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1314 Known.Zero &= Known2.Zero; 1315 Known.One &= Known2.One; 1316 // If all bits have been ruled out, there's no need to check 1317 // more operands. 1318 if (!Known.Zero && !Known.One) 1319 break; 1320 } 1321 } 1322 break; 1323 } 1324 case Instruction::Call: 1325 case Instruction::Invoke: 1326 // If range metadata is attached to this call, set known bits from that, 1327 // and then intersect with known bits based on other properties of the 1328 // function. 1329 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1330 computeKnownBitsFromRangeMetadata(*MD, Known); 1331 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1332 computeKnownBits(RV, Known2, Depth + 1, Q); 1333 Known.Zero |= Known2.Zero; 1334 Known.One |= Known2.One; 1335 } 1336 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1337 switch (II->getIntrinsicID()) { 1338 default: break; 1339 case Intrinsic::bitreverse: 1340 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1341 Known.Zero |= Known2.Zero.reverseBits(); 1342 Known.One |= Known2.One.reverseBits(); 1343 break; 1344 case Intrinsic::bswap: 1345 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1346 Known.Zero |= Known2.Zero.byteSwap(); 1347 Known.One |= Known2.One.byteSwap(); 1348 break; 1349 case Intrinsic::ctlz: { 1350 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1351 // If we have a known 1, its position is our upper bound. 1352 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1353 // If this call is undefined for 0, the result will be less than 2^n. 1354 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1355 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1356 unsigned LowBits = Log2_32(PossibleLZ)+1; 1357 Known.Zero.setBitsFrom(LowBits); 1358 break; 1359 } 1360 case Intrinsic::cttz: { 1361 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1362 // If we have a known 1, its position is our upper bound. 1363 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1364 // If this call is undefined for 0, the result will be less than 2^n. 1365 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1366 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1367 unsigned LowBits = Log2_32(PossibleTZ)+1; 1368 Known.Zero.setBitsFrom(LowBits); 1369 break; 1370 } 1371 case Intrinsic::ctpop: { 1372 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1373 // We can bound the space the count needs. Also, bits known to be zero 1374 // can't contribute to the population. 1375 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1376 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1377 Known.Zero.setBitsFrom(LowBits); 1378 // TODO: we could bound KnownOne using the lower bound on the number 1379 // of bits which might be set provided by popcnt KnownOne2. 1380 break; 1381 } 1382 case Intrinsic::x86_sse42_crc32_64_64: 1383 Known.Zero.setBitsFrom(32); 1384 break; 1385 } 1386 } 1387 break; 1388 case Instruction::ExtractElement: 1389 // Look through extract element. At the moment we keep this simple and skip 1390 // tracking the specific element. But at least we might find information 1391 // valid for all elements of the vector (for example if vector is sign 1392 // extended, shifted, etc). 1393 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1394 break; 1395 case Instruction::ExtractValue: 1396 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1397 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1398 if (EVI->getNumIndices() != 1) break; 1399 if (EVI->getIndices()[0] == 0) { 1400 switch (II->getIntrinsicID()) { 1401 default: break; 1402 case Intrinsic::uadd_with_overflow: 1403 case Intrinsic::sadd_with_overflow: 1404 computeKnownBitsAddSub(true, II->getArgOperand(0), 1405 II->getArgOperand(1), false, Known, Known2, 1406 Depth, Q); 1407 break; 1408 case Intrinsic::usub_with_overflow: 1409 case Intrinsic::ssub_with_overflow: 1410 computeKnownBitsAddSub(false, II->getArgOperand(0), 1411 II->getArgOperand(1), false, Known, Known2, 1412 Depth, Q); 1413 break; 1414 case Intrinsic::umul_with_overflow: 1415 case Intrinsic::smul_with_overflow: 1416 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1417 Known, Known2, Depth, Q); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 } 1424 1425 /// Determine which bits of V are known to be either zero or one and return 1426 /// them. 1427 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1428 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1429 computeKnownBits(V, Known, Depth, Q); 1430 return Known; 1431 } 1432 1433 /// Determine which bits of V are known to be either zero or one and return 1434 /// them in the Known bit set. 1435 /// 1436 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1437 /// we cannot optimize based on the assumption that it is zero without changing 1438 /// it to be an explicit zero. If we don't change it to zero, other code could 1439 /// optimized based on the contradictory assumption that it is non-zero. 1440 /// Because instcombine aggressively folds operations with undef args anyway, 1441 /// this won't lose us code quality. 1442 /// 1443 /// This function is defined on values with integer type, values with pointer 1444 /// type, and vectors of integers. In the case 1445 /// where V is a vector, known zero, and known one values are the 1446 /// same width as the vector element, and the bit is set only if it is true 1447 /// for all of the elements in the vector. 1448 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1449 const Query &Q) { 1450 assert(V && "No Value?"); 1451 assert(Depth <= MaxDepth && "Limit Search Depth"); 1452 unsigned BitWidth = Known.getBitWidth(); 1453 1454 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1455 V->getType()->isPtrOrPtrVectorTy()) && 1456 "Not integer or pointer type!"); 1457 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1458 "V and Known should have same BitWidth"); 1459 (void)BitWidth; 1460 1461 const APInt *C; 1462 if (match(V, m_APInt(C))) { 1463 // We know all of the bits for a scalar constant or a splat vector constant! 1464 Known.One = *C; 1465 Known.Zero = ~Known.One; 1466 return; 1467 } 1468 // Null and aggregate-zero are all-zeros. 1469 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1470 Known.setAllZero(); 1471 return; 1472 } 1473 // Handle a constant vector by taking the intersection of the known bits of 1474 // each element. 1475 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1476 // We know that CDS must be a vector of integers. Take the intersection of 1477 // each element. 1478 Known.Zero.setAllBits(); Known.One.setAllBits(); 1479 APInt Elt(BitWidth, 0); 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 Elt = CDS->getElementAsInteger(i); 1482 Known.Zero &= ~Elt; 1483 Known.One &= Elt; 1484 } 1485 return; 1486 } 1487 1488 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1489 // We know that CV must be a vector of integers. Take the intersection of 1490 // each element. 1491 Known.Zero.setAllBits(); Known.One.setAllBits(); 1492 APInt Elt(BitWidth, 0); 1493 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1494 Constant *Element = CV->getAggregateElement(i); 1495 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1496 if (!ElementCI) { 1497 Known.resetAll(); 1498 return; 1499 } 1500 Elt = ElementCI->getValue(); 1501 Known.Zero &= ~Elt; 1502 Known.One &= Elt; 1503 } 1504 return; 1505 } 1506 1507 // Start out not knowing anything. 1508 Known.resetAll(); 1509 1510 // We can't imply anything about undefs. 1511 if (isa<UndefValue>(V)) 1512 return; 1513 1514 // There's no point in looking through other users of ConstantData for 1515 // assumptions. Confirm that we've handled them all. 1516 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1517 1518 // Limit search depth. 1519 // All recursive calls that increase depth must come after this. 1520 if (Depth == MaxDepth) 1521 return; 1522 1523 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1524 // the bits of its aliasee. 1525 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1526 if (!GA->isInterposable()) 1527 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1528 return; 1529 } 1530 1531 if (const Operator *I = dyn_cast<Operator>(V)) 1532 computeKnownBitsFromOperator(I, Known, Depth, Q); 1533 1534 // Aligned pointers have trailing zeros - refine Known.Zero set 1535 if (V->getType()->isPointerTy()) { 1536 unsigned Align = V->getPointerAlignment(Q.DL); 1537 if (Align) 1538 Known.Zero.setLowBits(countTrailingZeros(Align)); 1539 } 1540 1541 // computeKnownBitsFromAssume strictly refines Known. 1542 // Therefore, we run them after computeKnownBitsFromOperator. 1543 1544 // Check whether a nearby assume intrinsic can determine some known bits. 1545 computeKnownBitsFromAssume(V, Known, Depth, Q); 1546 1547 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1548 } 1549 1550 /// Return true if the given value is known to have exactly one 1551 /// bit set when defined. For vectors return true if every element is known to 1552 /// be a power of two when defined. Supports values with integer or pointer 1553 /// types and vectors of integers. 1554 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1555 const Query &Q) { 1556 if (const Constant *C = dyn_cast<Constant>(V)) { 1557 if (C->isNullValue()) 1558 return OrZero; 1559 1560 const APInt *ConstIntOrConstSplatInt; 1561 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1562 return ConstIntOrConstSplatInt->isPowerOf2(); 1563 } 1564 1565 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1566 // it is shifted off the end then the result is undefined. 1567 if (match(V, m_Shl(m_One(), m_Value()))) 1568 return true; 1569 1570 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1571 // the bottom. If it is shifted off the bottom then the result is undefined. 1572 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1573 return true; 1574 1575 // The remaining tests are all recursive, so bail out if we hit the limit. 1576 if (Depth++ == MaxDepth) 1577 return false; 1578 1579 Value *X = nullptr, *Y = nullptr; 1580 // A shift left or a logical shift right of a power of two is a power of two 1581 // or zero. 1582 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1583 match(V, m_LShr(m_Value(X), m_Value())))) 1584 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1585 1586 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1587 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1588 1589 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1590 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1591 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1592 1593 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1594 // A power of two and'd with anything is a power of two or zero. 1595 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1596 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1597 return true; 1598 // X & (-X) is always a power of two or zero. 1599 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1600 return true; 1601 return false; 1602 } 1603 1604 // Adding a power-of-two or zero to the same power-of-two or zero yields 1605 // either the original power-of-two, a larger power-of-two or zero. 1606 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1607 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1608 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1609 if (match(X, m_And(m_Specific(Y), m_Value())) || 1610 match(X, m_And(m_Value(), m_Specific(Y)))) 1611 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1612 return true; 1613 if (match(Y, m_And(m_Specific(X), m_Value())) || 1614 match(Y, m_And(m_Value(), m_Specific(X)))) 1615 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1616 return true; 1617 1618 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1619 KnownBits LHSBits(BitWidth); 1620 computeKnownBits(X, LHSBits, Depth, Q); 1621 1622 KnownBits RHSBits(BitWidth); 1623 computeKnownBits(Y, RHSBits, Depth, Q); 1624 // If i8 V is a power of two or zero: 1625 // ZeroBits: 1 1 1 0 1 1 1 1 1626 // ~ZeroBits: 0 0 0 1 0 0 0 0 1627 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1628 // If OrZero isn't set, we cannot give back a zero result. 1629 // Make sure either the LHS or RHS has a bit set. 1630 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1631 return true; 1632 } 1633 } 1634 1635 // An exact divide or right shift can only shift off zero bits, so the result 1636 // is a power of two only if the first operand is a power of two and not 1637 // copying a sign bit (sdiv int_min, 2). 1638 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1639 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1640 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1641 Depth, Q); 1642 } 1643 1644 return false; 1645 } 1646 1647 /// \brief Test whether a GEP's result is known to be non-null. 1648 /// 1649 /// Uses properties inherent in a GEP to try to determine whether it is known 1650 /// to be non-null. 1651 /// 1652 /// Currently this routine does not support vector GEPs. 1653 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1654 const Query &Q) { 1655 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1656 return false; 1657 1658 // FIXME: Support vector-GEPs. 1659 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1660 1661 // If the base pointer is non-null, we cannot walk to a null address with an 1662 // inbounds GEP in address space zero. 1663 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1664 return true; 1665 1666 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1667 // If so, then the GEP cannot produce a null pointer, as doing so would 1668 // inherently violate the inbounds contract within address space zero. 1669 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1670 GTI != GTE; ++GTI) { 1671 // Struct types are easy -- they must always be indexed by a constant. 1672 if (StructType *STy = GTI.getStructTypeOrNull()) { 1673 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1674 unsigned ElementIdx = OpC->getZExtValue(); 1675 const StructLayout *SL = Q.DL.getStructLayout(STy); 1676 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1677 if (ElementOffset > 0) 1678 return true; 1679 continue; 1680 } 1681 1682 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1683 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1684 continue; 1685 1686 // Fast path the constant operand case both for efficiency and so we don't 1687 // increment Depth when just zipping down an all-constant GEP. 1688 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1689 if (!OpC->isZero()) 1690 return true; 1691 continue; 1692 } 1693 1694 // We post-increment Depth here because while isKnownNonZero increments it 1695 // as well, when we pop back up that increment won't persist. We don't want 1696 // to recurse 10k times just because we have 10k GEP operands. We don't 1697 // bail completely out because we want to handle constant GEPs regardless 1698 // of depth. 1699 if (Depth++ >= MaxDepth) 1700 continue; 1701 1702 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1703 return true; 1704 } 1705 1706 return false; 1707 } 1708 1709 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1710 /// ensure that the value it's attached to is never Value? 'RangeType' is 1711 /// is the type of the value described by the range. 1712 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1713 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1714 assert(NumRanges >= 1); 1715 for (unsigned i = 0; i < NumRanges; ++i) { 1716 ConstantInt *Lower = 1717 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1718 ConstantInt *Upper = 1719 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1720 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1721 if (Range.contains(Value)) 1722 return false; 1723 } 1724 return true; 1725 } 1726 1727 /// Return true if the given value is known to be non-zero when defined. For 1728 /// vectors, return true if every element is known to be non-zero when 1729 /// defined. For pointers, if the context instruction and dominator tree are 1730 /// specified, perform context-sensitive analysis and return true if the 1731 /// pointer couldn't possibly be null at the specified instruction. 1732 /// Supports values with integer or pointer type and vectors of integers. 1733 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1734 if (auto *C = dyn_cast<Constant>(V)) { 1735 if (C->isNullValue()) 1736 return false; 1737 if (isa<ConstantInt>(C)) 1738 // Must be non-zero due to null test above. 1739 return true; 1740 1741 // For constant vectors, check that all elements are undefined or known 1742 // non-zero to determine that the whole vector is known non-zero. 1743 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1744 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1745 Constant *Elt = C->getAggregateElement(i); 1746 if (!Elt || Elt->isNullValue()) 1747 return false; 1748 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1749 return false; 1750 } 1751 return true; 1752 } 1753 1754 return false; 1755 } 1756 1757 if (auto *I = dyn_cast<Instruction>(V)) { 1758 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1759 // If the possible ranges don't contain zero, then the value is 1760 // definitely non-zero. 1761 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1762 const APInt ZeroValue(Ty->getBitWidth(), 0); 1763 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1764 return true; 1765 } 1766 } 1767 } 1768 1769 // The remaining tests are all recursive, so bail out if we hit the limit. 1770 if (Depth++ >= MaxDepth) 1771 return false; 1772 1773 // Check for pointer simplifications. 1774 if (V->getType()->isPointerTy()) { 1775 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1776 return true; 1777 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1778 if (isGEPKnownNonNull(GEP, Depth, Q)) 1779 return true; 1780 } 1781 1782 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1783 1784 // X | Y != 0 if X != 0 or Y != 0. 1785 Value *X = nullptr, *Y = nullptr; 1786 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1787 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1788 1789 // ext X != 0 if X != 0. 1790 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1791 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1792 1793 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1794 // if the lowest bit is shifted off the end. 1795 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1796 // shl nuw can't remove any non-zero bits. 1797 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1798 if (BO->hasNoUnsignedWrap()) 1799 return isKnownNonZero(X, Depth, Q); 1800 1801 KnownBits Known(BitWidth); 1802 computeKnownBits(X, Known, Depth, Q); 1803 if (Known.One[0]) 1804 return true; 1805 } 1806 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1807 // defined if the sign bit is shifted off the end. 1808 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1809 // shr exact can only shift out zero bits. 1810 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1811 if (BO->isExact()) 1812 return isKnownNonZero(X, Depth, Q); 1813 1814 KnownBits Known = computeKnownBits(X, Depth, Q); 1815 if (Known.isNegative()) 1816 return true; 1817 1818 // If the shifter operand is a constant, and all of the bits shifted 1819 // out are known to be zero, and X is known non-zero then at least one 1820 // non-zero bit must remain. 1821 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1822 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1823 // Is there a known one in the portion not shifted out? 1824 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1825 return true; 1826 // Are all the bits to be shifted out known zero? 1827 if (Known.countMinTrailingZeros() >= ShiftVal) 1828 return isKnownNonZero(X, Depth, Q); 1829 } 1830 } 1831 // div exact can only produce a zero if the dividend is zero. 1832 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1833 return isKnownNonZero(X, Depth, Q); 1834 } 1835 // X + Y. 1836 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1837 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1838 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1839 1840 // If X and Y are both non-negative (as signed values) then their sum is not 1841 // zero unless both X and Y are zero. 1842 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1843 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1844 return true; 1845 1846 // If X and Y are both negative (as signed values) then their sum is not 1847 // zero unless both X and Y equal INT_MIN. 1848 if (XKnown.isNegative() && YKnown.isNegative()) { 1849 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1850 // The sign bit of X is set. If some other bit is set then X is not equal 1851 // to INT_MIN. 1852 if (XKnown.One.intersects(Mask)) 1853 return true; 1854 // The sign bit of Y is set. If some other bit is set then Y is not equal 1855 // to INT_MIN. 1856 if (YKnown.One.intersects(Mask)) 1857 return true; 1858 } 1859 1860 // The sum of a non-negative number and a power of two is not zero. 1861 if (XKnown.isNonNegative() && 1862 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1863 return true; 1864 if (YKnown.isNonNegative() && 1865 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1866 return true; 1867 } 1868 // X * Y. 1869 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1870 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1871 // If X and Y are non-zero then so is X * Y as long as the multiplication 1872 // does not overflow. 1873 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1874 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1875 return true; 1876 } 1877 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1878 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1879 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1880 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1881 return true; 1882 } 1883 // PHI 1884 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1885 // Try and detect a recurrence that monotonically increases from a 1886 // starting value, as these are common as induction variables. 1887 if (PN->getNumIncomingValues() == 2) { 1888 Value *Start = PN->getIncomingValue(0); 1889 Value *Induction = PN->getIncomingValue(1); 1890 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1891 std::swap(Start, Induction); 1892 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1893 if (!C->isZero() && !C->isNegative()) { 1894 ConstantInt *X; 1895 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1896 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1897 !X->isNegative()) 1898 return true; 1899 } 1900 } 1901 } 1902 // Check if all incoming values are non-zero constant. 1903 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1904 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 1905 }); 1906 if (AllNonZeroConstants) 1907 return true; 1908 } 1909 1910 KnownBits Known(BitWidth); 1911 computeKnownBits(V, Known, Depth, Q); 1912 return Known.One != 0; 1913 } 1914 1915 /// Return true if V2 == V1 + X, where X is known non-zero. 1916 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1917 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1918 if (!BO || BO->getOpcode() != Instruction::Add) 1919 return false; 1920 Value *Op = nullptr; 1921 if (V2 == BO->getOperand(0)) 1922 Op = BO->getOperand(1); 1923 else if (V2 == BO->getOperand(1)) 1924 Op = BO->getOperand(0); 1925 else 1926 return false; 1927 return isKnownNonZero(Op, 0, Q); 1928 } 1929 1930 /// Return true if it is known that V1 != V2. 1931 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1932 if (V1 == V2) 1933 return false; 1934 if (V1->getType() != V2->getType()) 1935 // We can't look through casts yet. 1936 return false; 1937 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1938 return true; 1939 1940 if (V1->getType()->isIntOrIntVectorTy()) { 1941 // Are any known bits in V1 contradictory to known bits in V2? If V1 1942 // has a known zero where V2 has a known one, they must not be equal. 1943 KnownBits Known1 = computeKnownBits(V1, 0, Q); 1944 KnownBits Known2 = computeKnownBits(V2, 0, Q); 1945 1946 if (Known1.Zero.intersects(Known2.One) || 1947 Known2.Zero.intersects(Known1.One)) 1948 return true; 1949 } 1950 return false; 1951 } 1952 1953 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1954 /// simplify operations downstream. Mask is known to be zero for bits that V 1955 /// cannot have. 1956 /// 1957 /// This function is defined on values with integer type, values with pointer 1958 /// type, and vectors of integers. In the case 1959 /// where V is a vector, the mask, known zero, and known one values are the 1960 /// same width as the vector element, and the bit is set only if it is true 1961 /// for all of the elements in the vector. 1962 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1963 const Query &Q) { 1964 KnownBits Known(Mask.getBitWidth()); 1965 computeKnownBits(V, Known, Depth, Q); 1966 return Mask.isSubsetOf(Known.Zero); 1967 } 1968 1969 /// For vector constants, loop over the elements and find the constant with the 1970 /// minimum number of sign bits. Return 0 if the value is not a vector constant 1971 /// or if any element was not analyzed; otherwise, return the count for the 1972 /// element with the minimum number of sign bits. 1973 static unsigned computeNumSignBitsVectorConstant(const Value *V, 1974 unsigned TyBits) { 1975 const auto *CV = dyn_cast<Constant>(V); 1976 if (!CV || !CV->getType()->isVectorTy()) 1977 return 0; 1978 1979 unsigned MinSignBits = TyBits; 1980 unsigned NumElts = CV->getType()->getVectorNumElements(); 1981 for (unsigned i = 0; i != NumElts; ++i) { 1982 // If we find a non-ConstantInt, bail out. 1983 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 1984 if (!Elt) 1985 return 0; 1986 1987 // If the sign bit is 1, flip the bits, so we always count leading zeros. 1988 APInt EltVal = Elt->getValue(); 1989 if (EltVal.isNegative()) 1990 EltVal = ~EltVal; 1991 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 1992 } 1993 1994 return MinSignBits; 1995 } 1996 1997 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 1998 const Query &Q); 1999 2000 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2001 const Query &Q) { 2002 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2003 assert(Result > 0 && "At least one sign bit needs to be present!"); 2004 return Result; 2005 } 2006 2007 /// Return the number of times the sign bit of the register is replicated into 2008 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2009 /// (itself), but other cases can give us information. For example, immediately 2010 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2011 /// other, so we return 3. For vectors, return the number of sign bits for the 2012 /// vector element with the mininum number of known sign bits. 2013 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2014 const Query &Q) { 2015 2016 // We return the minimum number of sign bits that are guaranteed to be present 2017 // in V, so for undef we have to conservatively return 1. We don't have the 2018 // same behavior for poison though -- that's a FIXME today. 2019 2020 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2021 unsigned Tmp, Tmp2; 2022 unsigned FirstAnswer = 1; 2023 2024 // Note that ConstantInt is handled by the general computeKnownBits case 2025 // below. 2026 2027 if (Depth == MaxDepth) 2028 return 1; // Limit search depth. 2029 2030 const Operator *U = dyn_cast<Operator>(V); 2031 switch (Operator::getOpcode(V)) { 2032 default: break; 2033 case Instruction::SExt: 2034 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2035 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2036 2037 case Instruction::SDiv: { 2038 const APInt *Denominator; 2039 // sdiv X, C -> adds log(C) sign bits. 2040 if (match(U->getOperand(1), m_APInt(Denominator))) { 2041 2042 // Ignore non-positive denominator. 2043 if (!Denominator->isStrictlyPositive()) 2044 break; 2045 2046 // Calculate the incoming numerator bits. 2047 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2048 2049 // Add floor(log(C)) bits to the numerator bits. 2050 return std::min(TyBits, NumBits + Denominator->logBase2()); 2051 } 2052 break; 2053 } 2054 2055 case Instruction::SRem: { 2056 const APInt *Denominator; 2057 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2058 // positive constant. This let us put a lower bound on the number of sign 2059 // bits. 2060 if (match(U->getOperand(1), m_APInt(Denominator))) { 2061 2062 // Ignore non-positive denominator. 2063 if (!Denominator->isStrictlyPositive()) 2064 break; 2065 2066 // Calculate the incoming numerator bits. SRem by a positive constant 2067 // can't lower the number of sign bits. 2068 unsigned NumrBits = 2069 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2070 2071 // Calculate the leading sign bit constraints by examining the 2072 // denominator. Given that the denominator is positive, there are two 2073 // cases: 2074 // 2075 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2076 // (1 << ceilLogBase2(C)). 2077 // 2078 // 2. the numerator is negative. Then the result range is (-C,0] and 2079 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2080 // 2081 // Thus a lower bound on the number of sign bits is `TyBits - 2082 // ceilLogBase2(C)`. 2083 2084 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2085 return std::max(NumrBits, ResBits); 2086 } 2087 break; 2088 } 2089 2090 case Instruction::AShr: { 2091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2092 // ashr X, C -> adds C sign bits. Vectors too. 2093 const APInt *ShAmt; 2094 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2095 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2096 if (ShAmtLimited >= TyBits) 2097 break; // Bad shift. 2098 Tmp += ShAmtLimited; 2099 if (Tmp > TyBits) Tmp = TyBits; 2100 } 2101 return Tmp; 2102 } 2103 case Instruction::Shl: { 2104 const APInt *ShAmt; 2105 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2106 // shl destroys sign bits. 2107 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2108 Tmp2 = ShAmt->getZExtValue(); 2109 if (Tmp2 >= TyBits || // Bad shift. 2110 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2111 return Tmp - Tmp2; 2112 } 2113 break; 2114 } 2115 case Instruction::And: 2116 case Instruction::Or: 2117 case Instruction::Xor: // NOT is handled here. 2118 // Logical binary ops preserve the number of sign bits at the worst. 2119 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2120 if (Tmp != 1) { 2121 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2122 FirstAnswer = std::min(Tmp, Tmp2); 2123 // We computed what we know about the sign bits as our first 2124 // answer. Now proceed to the generic code that uses 2125 // computeKnownBits, and pick whichever answer is better. 2126 } 2127 break; 2128 2129 case Instruction::Select: 2130 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2131 if (Tmp == 1) return 1; // Early out. 2132 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2133 return std::min(Tmp, Tmp2); 2134 2135 case Instruction::Add: 2136 // Add can have at most one carry bit. Thus we know that the output 2137 // is, at worst, one more bit than the inputs. 2138 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2139 if (Tmp == 1) return 1; // Early out. 2140 2141 // Special case decrementing a value (ADD X, -1): 2142 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2143 if (CRHS->isAllOnesValue()) { 2144 KnownBits Known(TyBits); 2145 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2146 2147 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2148 // sign bits set. 2149 if ((Known.Zero | 1).isAllOnesValue()) 2150 return TyBits; 2151 2152 // If we are subtracting one from a positive number, there is no carry 2153 // out of the result. 2154 if (Known.isNonNegative()) 2155 return Tmp; 2156 } 2157 2158 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2159 if (Tmp2 == 1) return 1; 2160 return std::min(Tmp, Tmp2)-1; 2161 2162 case Instruction::Sub: 2163 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2164 if (Tmp2 == 1) return 1; 2165 2166 // Handle NEG. 2167 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2168 if (CLHS->isNullValue()) { 2169 KnownBits Known(TyBits); 2170 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2171 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2172 // sign bits set. 2173 if ((Known.Zero | 1).isAllOnesValue()) 2174 return TyBits; 2175 2176 // If the input is known to be positive (the sign bit is known clear), 2177 // the output of the NEG has the same number of sign bits as the input. 2178 if (Known.isNonNegative()) 2179 return Tmp2; 2180 2181 // Otherwise, we treat this like a SUB. 2182 } 2183 2184 // Sub can have at most one carry bit. Thus we know that the output 2185 // is, at worst, one more bit than the inputs. 2186 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2187 if (Tmp == 1) return 1; // Early out. 2188 return std::min(Tmp, Tmp2)-1; 2189 2190 case Instruction::PHI: { 2191 const PHINode *PN = cast<PHINode>(U); 2192 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2193 // Don't analyze large in-degree PHIs. 2194 if (NumIncomingValues > 4) break; 2195 // Unreachable blocks may have zero-operand PHI nodes. 2196 if (NumIncomingValues == 0) break; 2197 2198 // Take the minimum of all incoming values. This can't infinitely loop 2199 // because of our depth threshold. 2200 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2201 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2202 if (Tmp == 1) return Tmp; 2203 Tmp = std::min( 2204 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2205 } 2206 return Tmp; 2207 } 2208 2209 case Instruction::Trunc: 2210 // FIXME: it's tricky to do anything useful for this, but it is an important 2211 // case for targets like X86. 2212 break; 2213 2214 case Instruction::ExtractElement: 2215 // Look through extract element. At the moment we keep this simple and skip 2216 // tracking the specific element. But at least we might find information 2217 // valid for all elements of the vector (for example if vector is sign 2218 // extended, shifted, etc). 2219 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2220 } 2221 2222 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2223 // use this information. 2224 2225 // If we can examine all elements of a vector constant successfully, we're 2226 // done (we can't do any better than that). If not, keep trying. 2227 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2228 return VecSignBits; 2229 2230 KnownBits Known(TyBits); 2231 computeKnownBits(V, Known, Depth, Q); 2232 2233 // If we know that the sign bit is either zero or one, determine the number of 2234 // identical bits in the top of the input value. 2235 return std::max(FirstAnswer, Known.countMinSignBits()); 2236 } 2237 2238 /// This function computes the integer multiple of Base that equals V. 2239 /// If successful, it returns true and returns the multiple in 2240 /// Multiple. If unsuccessful, it returns false. It looks 2241 /// through SExt instructions only if LookThroughSExt is true. 2242 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2243 bool LookThroughSExt, unsigned Depth) { 2244 const unsigned MaxDepth = 6; 2245 2246 assert(V && "No Value?"); 2247 assert(Depth <= MaxDepth && "Limit Search Depth"); 2248 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2249 2250 Type *T = V->getType(); 2251 2252 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2253 2254 if (Base == 0) 2255 return false; 2256 2257 if (Base == 1) { 2258 Multiple = V; 2259 return true; 2260 } 2261 2262 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2263 Constant *BaseVal = ConstantInt::get(T, Base); 2264 if (CO && CO == BaseVal) { 2265 // Multiple is 1. 2266 Multiple = ConstantInt::get(T, 1); 2267 return true; 2268 } 2269 2270 if (CI && CI->getZExtValue() % Base == 0) { 2271 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2272 return true; 2273 } 2274 2275 if (Depth == MaxDepth) return false; // Limit search depth. 2276 2277 Operator *I = dyn_cast<Operator>(V); 2278 if (!I) return false; 2279 2280 switch (I->getOpcode()) { 2281 default: break; 2282 case Instruction::SExt: 2283 if (!LookThroughSExt) return false; 2284 // otherwise fall through to ZExt 2285 LLVM_FALLTHROUGH; 2286 case Instruction::ZExt: 2287 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2288 LookThroughSExt, Depth+1); 2289 case Instruction::Shl: 2290 case Instruction::Mul: { 2291 Value *Op0 = I->getOperand(0); 2292 Value *Op1 = I->getOperand(1); 2293 2294 if (I->getOpcode() == Instruction::Shl) { 2295 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2296 if (!Op1CI) return false; 2297 // Turn Op0 << Op1 into Op0 * 2^Op1 2298 APInt Op1Int = Op1CI->getValue(); 2299 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2300 APInt API(Op1Int.getBitWidth(), 0); 2301 API.setBit(BitToSet); 2302 Op1 = ConstantInt::get(V->getContext(), API); 2303 } 2304 2305 Value *Mul0 = nullptr; 2306 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2307 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2308 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2309 if (Op1C->getType()->getPrimitiveSizeInBits() < 2310 MulC->getType()->getPrimitiveSizeInBits()) 2311 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2312 if (Op1C->getType()->getPrimitiveSizeInBits() > 2313 MulC->getType()->getPrimitiveSizeInBits()) 2314 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2315 2316 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2317 Multiple = ConstantExpr::getMul(MulC, Op1C); 2318 return true; 2319 } 2320 2321 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2322 if (Mul0CI->getValue() == 1) { 2323 // V == Base * Op1, so return Op1 2324 Multiple = Op1; 2325 return true; 2326 } 2327 } 2328 2329 Value *Mul1 = nullptr; 2330 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2331 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2332 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2333 if (Op0C->getType()->getPrimitiveSizeInBits() < 2334 MulC->getType()->getPrimitiveSizeInBits()) 2335 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2336 if (Op0C->getType()->getPrimitiveSizeInBits() > 2337 MulC->getType()->getPrimitiveSizeInBits()) 2338 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2339 2340 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2341 Multiple = ConstantExpr::getMul(MulC, Op0C); 2342 return true; 2343 } 2344 2345 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2346 if (Mul1CI->getValue() == 1) { 2347 // V == Base * Op0, so return Op0 2348 Multiple = Op0; 2349 return true; 2350 } 2351 } 2352 } 2353 } 2354 2355 // We could not determine if V is a multiple of Base. 2356 return false; 2357 } 2358 2359 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2360 const TargetLibraryInfo *TLI) { 2361 const Function *F = ICS.getCalledFunction(); 2362 if (!F) 2363 return Intrinsic::not_intrinsic; 2364 2365 if (F->isIntrinsic()) 2366 return F->getIntrinsicID(); 2367 2368 if (!TLI) 2369 return Intrinsic::not_intrinsic; 2370 2371 LibFunc Func; 2372 // We're going to make assumptions on the semantics of the functions, check 2373 // that the target knows that it's available in this environment and it does 2374 // not have local linkage. 2375 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2376 return Intrinsic::not_intrinsic; 2377 2378 if (!ICS.onlyReadsMemory()) 2379 return Intrinsic::not_intrinsic; 2380 2381 // Otherwise check if we have a call to a function that can be turned into a 2382 // vector intrinsic. 2383 switch (Func) { 2384 default: 2385 break; 2386 case LibFunc_sin: 2387 case LibFunc_sinf: 2388 case LibFunc_sinl: 2389 return Intrinsic::sin; 2390 case LibFunc_cos: 2391 case LibFunc_cosf: 2392 case LibFunc_cosl: 2393 return Intrinsic::cos; 2394 case LibFunc_exp: 2395 case LibFunc_expf: 2396 case LibFunc_expl: 2397 return Intrinsic::exp; 2398 case LibFunc_exp2: 2399 case LibFunc_exp2f: 2400 case LibFunc_exp2l: 2401 return Intrinsic::exp2; 2402 case LibFunc_log: 2403 case LibFunc_logf: 2404 case LibFunc_logl: 2405 return Intrinsic::log; 2406 case LibFunc_log10: 2407 case LibFunc_log10f: 2408 case LibFunc_log10l: 2409 return Intrinsic::log10; 2410 case LibFunc_log2: 2411 case LibFunc_log2f: 2412 case LibFunc_log2l: 2413 return Intrinsic::log2; 2414 case LibFunc_fabs: 2415 case LibFunc_fabsf: 2416 case LibFunc_fabsl: 2417 return Intrinsic::fabs; 2418 case LibFunc_fmin: 2419 case LibFunc_fminf: 2420 case LibFunc_fminl: 2421 return Intrinsic::minnum; 2422 case LibFunc_fmax: 2423 case LibFunc_fmaxf: 2424 case LibFunc_fmaxl: 2425 return Intrinsic::maxnum; 2426 case LibFunc_copysign: 2427 case LibFunc_copysignf: 2428 case LibFunc_copysignl: 2429 return Intrinsic::copysign; 2430 case LibFunc_floor: 2431 case LibFunc_floorf: 2432 case LibFunc_floorl: 2433 return Intrinsic::floor; 2434 case LibFunc_ceil: 2435 case LibFunc_ceilf: 2436 case LibFunc_ceill: 2437 return Intrinsic::ceil; 2438 case LibFunc_trunc: 2439 case LibFunc_truncf: 2440 case LibFunc_truncl: 2441 return Intrinsic::trunc; 2442 case LibFunc_rint: 2443 case LibFunc_rintf: 2444 case LibFunc_rintl: 2445 return Intrinsic::rint; 2446 case LibFunc_nearbyint: 2447 case LibFunc_nearbyintf: 2448 case LibFunc_nearbyintl: 2449 return Intrinsic::nearbyint; 2450 case LibFunc_round: 2451 case LibFunc_roundf: 2452 case LibFunc_roundl: 2453 return Intrinsic::round; 2454 case LibFunc_pow: 2455 case LibFunc_powf: 2456 case LibFunc_powl: 2457 return Intrinsic::pow; 2458 case LibFunc_sqrt: 2459 case LibFunc_sqrtf: 2460 case LibFunc_sqrtl: 2461 if (ICS->hasNoNaNs()) 2462 return Intrinsic::sqrt; 2463 return Intrinsic::not_intrinsic; 2464 } 2465 2466 return Intrinsic::not_intrinsic; 2467 } 2468 2469 /// Return true if we can prove that the specified FP value is never equal to 2470 /// -0.0. 2471 /// 2472 /// NOTE: this function will need to be revisited when we support non-default 2473 /// rounding modes! 2474 /// 2475 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2476 unsigned Depth) { 2477 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2478 return !CFP->getValueAPF().isNegZero(); 2479 2480 if (Depth == MaxDepth) 2481 return false; // Limit search depth. 2482 2483 const Operator *I = dyn_cast<Operator>(V); 2484 if (!I) return false; 2485 2486 // Check if the nsz fast-math flag is set 2487 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2488 if (FPO->hasNoSignedZeros()) 2489 return true; 2490 2491 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2492 if (I->getOpcode() == Instruction::FAdd) 2493 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2494 if (CFP->isNullValue()) 2495 return true; 2496 2497 // sitofp and uitofp turn into +0.0 for zero. 2498 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2499 return true; 2500 2501 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2502 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2503 switch (IID) { 2504 default: 2505 break; 2506 // sqrt(-0.0) = -0.0, no other negative results are possible. 2507 case Intrinsic::sqrt: 2508 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2509 // fabs(x) != -0.0 2510 case Intrinsic::fabs: 2511 return true; 2512 } 2513 } 2514 2515 return false; 2516 } 2517 2518 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2519 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2520 /// bit despite comparing equal. 2521 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2522 const TargetLibraryInfo *TLI, 2523 bool SignBitOnly, 2524 unsigned Depth) { 2525 // TODO: This function does not do the right thing when SignBitOnly is true 2526 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2527 // which flips the sign bits of NaNs. See 2528 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2529 2530 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2531 return !CFP->getValueAPF().isNegative() || 2532 (!SignBitOnly && CFP->getValueAPF().isZero()); 2533 } 2534 2535 if (Depth == MaxDepth) 2536 return false; // Limit search depth. 2537 2538 const Operator *I = dyn_cast<Operator>(V); 2539 if (!I) 2540 return false; 2541 2542 switch (I->getOpcode()) { 2543 default: 2544 break; 2545 // Unsigned integers are always nonnegative. 2546 case Instruction::UIToFP: 2547 return true; 2548 case Instruction::FMul: 2549 // x*x is always non-negative or a NaN. 2550 if (I->getOperand(0) == I->getOperand(1) && 2551 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2552 return true; 2553 2554 LLVM_FALLTHROUGH; 2555 case Instruction::FAdd: 2556 case Instruction::FDiv: 2557 case Instruction::FRem: 2558 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2559 Depth + 1) && 2560 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2561 Depth + 1); 2562 case Instruction::Select: 2563 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2564 Depth + 1) && 2565 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2566 Depth + 1); 2567 case Instruction::FPExt: 2568 case Instruction::FPTrunc: 2569 // Widening/narrowing never change sign. 2570 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2571 Depth + 1); 2572 case Instruction::Call: 2573 const auto *CI = cast<CallInst>(I); 2574 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2575 switch (IID) { 2576 default: 2577 break; 2578 case Intrinsic::maxnum: 2579 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2580 Depth + 1) || 2581 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2582 Depth + 1); 2583 case Intrinsic::minnum: 2584 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2585 Depth + 1) && 2586 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2587 Depth + 1); 2588 case Intrinsic::exp: 2589 case Intrinsic::exp2: 2590 case Intrinsic::fabs: 2591 return true; 2592 2593 case Intrinsic::sqrt: 2594 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2595 if (!SignBitOnly) 2596 return true; 2597 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2598 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2599 2600 case Intrinsic::powi: 2601 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2602 // powi(x,n) is non-negative if n is even. 2603 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2604 return true; 2605 } 2606 // TODO: This is not correct. Given that exp is an integer, here are the 2607 // ways that pow can return a negative value: 2608 // 2609 // pow(x, exp) --> negative if exp is odd and x is negative. 2610 // pow(-0, exp) --> -inf if exp is negative odd. 2611 // pow(-0, exp) --> -0 if exp is positive odd. 2612 // pow(-inf, exp) --> -0 if exp is negative odd. 2613 // pow(-inf, exp) --> -inf if exp is positive odd. 2614 // 2615 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2616 // but we must return false if x == -0. Unfortunately we do not currently 2617 // have a way of expressing this constraint. See details in 2618 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2619 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2620 Depth + 1); 2621 2622 case Intrinsic::fma: 2623 case Intrinsic::fmuladd: 2624 // x*x+y is non-negative if y is non-negative. 2625 return I->getOperand(0) == I->getOperand(1) && 2626 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2627 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2628 Depth + 1); 2629 } 2630 break; 2631 } 2632 return false; 2633 } 2634 2635 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2636 const TargetLibraryInfo *TLI) { 2637 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2638 } 2639 2640 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2641 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2642 } 2643 2644 /// If the specified value can be set by repeating the same byte in memory, 2645 /// return the i8 value that it is represented with. This is 2646 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2647 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2648 /// byte store (e.g. i16 0x1234), return null. 2649 Value *llvm::isBytewiseValue(Value *V) { 2650 // All byte-wide stores are splatable, even of arbitrary variables. 2651 if (V->getType()->isIntegerTy(8)) return V; 2652 2653 // Handle 'null' ConstantArrayZero etc. 2654 if (Constant *C = dyn_cast<Constant>(V)) 2655 if (C->isNullValue()) 2656 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2657 2658 // Constant float and double values can be handled as integer values if the 2659 // corresponding integer value is "byteable". An important case is 0.0. 2660 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2661 if (CFP->getType()->isFloatTy()) 2662 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2663 if (CFP->getType()->isDoubleTy()) 2664 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2665 // Don't handle long double formats, which have strange constraints. 2666 } 2667 2668 // We can handle constant integers that are multiple of 8 bits. 2669 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2670 if (CI->getBitWidth() % 8 == 0) { 2671 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2672 2673 if (!CI->getValue().isSplat(8)) 2674 return nullptr; 2675 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2676 } 2677 } 2678 2679 // A ConstantDataArray/Vector is splatable if all its members are equal and 2680 // also splatable. 2681 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2682 Value *Elt = CA->getElementAsConstant(0); 2683 Value *Val = isBytewiseValue(Elt); 2684 if (!Val) 2685 return nullptr; 2686 2687 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2688 if (CA->getElementAsConstant(I) != Elt) 2689 return nullptr; 2690 2691 return Val; 2692 } 2693 2694 // Conceptually, we could handle things like: 2695 // %a = zext i8 %X to i16 2696 // %b = shl i16 %a, 8 2697 // %c = or i16 %a, %b 2698 // but until there is an example that actually needs this, it doesn't seem 2699 // worth worrying about. 2700 return nullptr; 2701 } 2702 2703 2704 // This is the recursive version of BuildSubAggregate. It takes a few different 2705 // arguments. Idxs is the index within the nested struct From that we are 2706 // looking at now (which is of type IndexedType). IdxSkip is the number of 2707 // indices from Idxs that should be left out when inserting into the resulting 2708 // struct. To is the result struct built so far, new insertvalue instructions 2709 // build on that. 2710 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2711 SmallVectorImpl<unsigned> &Idxs, 2712 unsigned IdxSkip, 2713 Instruction *InsertBefore) { 2714 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2715 if (STy) { 2716 // Save the original To argument so we can modify it 2717 Value *OrigTo = To; 2718 // General case, the type indexed by Idxs is a struct 2719 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2720 // Process each struct element recursively 2721 Idxs.push_back(i); 2722 Value *PrevTo = To; 2723 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2724 InsertBefore); 2725 Idxs.pop_back(); 2726 if (!To) { 2727 // Couldn't find any inserted value for this index? Cleanup 2728 while (PrevTo != OrigTo) { 2729 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2730 PrevTo = Del->getAggregateOperand(); 2731 Del->eraseFromParent(); 2732 } 2733 // Stop processing elements 2734 break; 2735 } 2736 } 2737 // If we successfully found a value for each of our subaggregates 2738 if (To) 2739 return To; 2740 } 2741 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2742 // the struct's elements had a value that was inserted directly. In the latter 2743 // case, perhaps we can't determine each of the subelements individually, but 2744 // we might be able to find the complete struct somewhere. 2745 2746 // Find the value that is at that particular spot 2747 Value *V = FindInsertedValue(From, Idxs); 2748 2749 if (!V) 2750 return nullptr; 2751 2752 // Insert the value in the new (sub) aggregrate 2753 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2754 "tmp", InsertBefore); 2755 } 2756 2757 // This helper takes a nested struct and extracts a part of it (which is again a 2758 // struct) into a new value. For example, given the struct: 2759 // { a, { b, { c, d }, e } } 2760 // and the indices "1, 1" this returns 2761 // { c, d }. 2762 // 2763 // It does this by inserting an insertvalue for each element in the resulting 2764 // struct, as opposed to just inserting a single struct. This will only work if 2765 // each of the elements of the substruct are known (ie, inserted into From by an 2766 // insertvalue instruction somewhere). 2767 // 2768 // All inserted insertvalue instructions are inserted before InsertBefore 2769 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2770 Instruction *InsertBefore) { 2771 assert(InsertBefore && "Must have someplace to insert!"); 2772 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2773 idx_range); 2774 Value *To = UndefValue::get(IndexedType); 2775 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2776 unsigned IdxSkip = Idxs.size(); 2777 2778 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2779 } 2780 2781 /// Given an aggregrate and an sequence of indices, see if 2782 /// the scalar value indexed is already around as a register, for example if it 2783 /// were inserted directly into the aggregrate. 2784 /// 2785 /// If InsertBefore is not null, this function will duplicate (modified) 2786 /// insertvalues when a part of a nested struct is extracted. 2787 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2788 Instruction *InsertBefore) { 2789 // Nothing to index? Just return V then (this is useful at the end of our 2790 // recursion). 2791 if (idx_range.empty()) 2792 return V; 2793 // We have indices, so V should have an indexable type. 2794 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2795 "Not looking at a struct or array?"); 2796 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2797 "Invalid indices for type?"); 2798 2799 if (Constant *C = dyn_cast<Constant>(V)) { 2800 C = C->getAggregateElement(idx_range[0]); 2801 if (!C) return nullptr; 2802 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2803 } 2804 2805 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2806 // Loop the indices for the insertvalue instruction in parallel with the 2807 // requested indices 2808 const unsigned *req_idx = idx_range.begin(); 2809 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2810 i != e; ++i, ++req_idx) { 2811 if (req_idx == idx_range.end()) { 2812 // We can't handle this without inserting insertvalues 2813 if (!InsertBefore) 2814 return nullptr; 2815 2816 // The requested index identifies a part of a nested aggregate. Handle 2817 // this specially. For example, 2818 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2819 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2820 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2821 // This can be changed into 2822 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2823 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2824 // which allows the unused 0,0 element from the nested struct to be 2825 // removed. 2826 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2827 InsertBefore); 2828 } 2829 2830 // This insert value inserts something else than what we are looking for. 2831 // See if the (aggregate) value inserted into has the value we are 2832 // looking for, then. 2833 if (*req_idx != *i) 2834 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2835 InsertBefore); 2836 } 2837 // If we end up here, the indices of the insertvalue match with those 2838 // requested (though possibly only partially). Now we recursively look at 2839 // the inserted value, passing any remaining indices. 2840 return FindInsertedValue(I->getInsertedValueOperand(), 2841 makeArrayRef(req_idx, idx_range.end()), 2842 InsertBefore); 2843 } 2844 2845 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2846 // If we're extracting a value from an aggregate that was extracted from 2847 // something else, we can extract from that something else directly instead. 2848 // However, we will need to chain I's indices with the requested indices. 2849 2850 // Calculate the number of indices required 2851 unsigned size = I->getNumIndices() + idx_range.size(); 2852 // Allocate some space to put the new indices in 2853 SmallVector<unsigned, 5> Idxs; 2854 Idxs.reserve(size); 2855 // Add indices from the extract value instruction 2856 Idxs.append(I->idx_begin(), I->idx_end()); 2857 2858 // Add requested indices 2859 Idxs.append(idx_range.begin(), idx_range.end()); 2860 2861 assert(Idxs.size() == size 2862 && "Number of indices added not correct?"); 2863 2864 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2865 } 2866 // Otherwise, we don't know (such as, extracting from a function return value 2867 // or load instruction) 2868 return nullptr; 2869 } 2870 2871 /// Analyze the specified pointer to see if it can be expressed as a base 2872 /// pointer plus a constant offset. Return the base and offset to the caller. 2873 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2874 const DataLayout &DL) { 2875 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2876 APInt ByteOffset(BitWidth, 0); 2877 2878 // We walk up the defs but use a visited set to handle unreachable code. In 2879 // that case, we stop after accumulating the cycle once (not that it 2880 // matters). 2881 SmallPtrSet<Value *, 16> Visited; 2882 while (Visited.insert(Ptr).second) { 2883 if (Ptr->getType()->isVectorTy()) 2884 break; 2885 2886 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2887 // If one of the values we have visited is an addrspacecast, then 2888 // the pointer type of this GEP may be different from the type 2889 // of the Ptr parameter which was passed to this function. This 2890 // means when we construct GEPOffset, we need to use the size 2891 // of GEP's pointer type rather than the size of the original 2892 // pointer type. 2893 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2894 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2895 break; 2896 2897 ByteOffset += GEPOffset.getSExtValue(); 2898 2899 Ptr = GEP->getPointerOperand(); 2900 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2901 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2902 Ptr = cast<Operator>(Ptr)->getOperand(0); 2903 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2904 if (GA->isInterposable()) 2905 break; 2906 Ptr = GA->getAliasee(); 2907 } else { 2908 break; 2909 } 2910 } 2911 Offset = ByteOffset.getSExtValue(); 2912 return Ptr; 2913 } 2914 2915 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 2916 unsigned CharSize) { 2917 // Make sure the GEP has exactly three arguments. 2918 if (GEP->getNumOperands() != 3) 2919 return false; 2920 2921 // Make sure the index-ee is a pointer to array of \p CharSize integers. 2922 // CharSize. 2923 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2924 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 2925 return false; 2926 2927 // Check to make sure that the first operand of the GEP is an integer and 2928 // has value 0 so that we are sure we're indexing into the initializer. 2929 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2930 if (!FirstIdx || !FirstIdx->isZero()) 2931 return false; 2932 2933 return true; 2934 } 2935 2936 bool llvm::getConstantDataArrayInfo(const Value *V, 2937 ConstantDataArraySlice &Slice, 2938 unsigned ElementSize, uint64_t Offset) { 2939 assert(V); 2940 2941 // Look through bitcast instructions and geps. 2942 V = V->stripPointerCasts(); 2943 2944 // If the value is a GEP instruction or constant expression, treat it as an 2945 // offset. 2946 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2947 // The GEP operator should be based on a pointer to string constant, and is 2948 // indexing into the string constant. 2949 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 2950 return false; 2951 2952 // If the second index isn't a ConstantInt, then this is a variable index 2953 // into the array. If this occurs, we can't say anything meaningful about 2954 // the string. 2955 uint64_t StartIdx = 0; 2956 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2957 StartIdx = CI->getZExtValue(); 2958 else 2959 return false; 2960 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 2961 StartIdx + Offset); 2962 } 2963 2964 // The GEP instruction, constant or instruction, must reference a global 2965 // variable that is a constant and is initialized. The referenced constant 2966 // initializer is the array that we'll use for optimization. 2967 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2968 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2969 return false; 2970 2971 const ConstantDataArray *Array; 2972 ArrayType *ArrayTy; 2973 if (GV->getInitializer()->isNullValue()) { 2974 Type *GVTy = GV->getValueType(); 2975 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 2976 // A zeroinitializer for the array; there is no ConstantDataArray. 2977 Array = nullptr; 2978 } else { 2979 const DataLayout &DL = GV->getParent()->getDataLayout(); 2980 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 2981 uint64_t Length = SizeInBytes / (ElementSize / 8); 2982 if (Length <= Offset) 2983 return false; 2984 2985 Slice.Array = nullptr; 2986 Slice.Offset = 0; 2987 Slice.Length = Length - Offset; 2988 return true; 2989 } 2990 } else { 2991 // This must be a ConstantDataArray. 2992 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2993 if (!Array) 2994 return false; 2995 ArrayTy = Array->getType(); 2996 } 2997 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 2998 return false; 2999 3000 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3001 if (Offset > NumElts) 3002 return false; 3003 3004 Slice.Array = Array; 3005 Slice.Offset = Offset; 3006 Slice.Length = NumElts - Offset; 3007 return true; 3008 } 3009 3010 /// This function computes the length of a null-terminated C string pointed to 3011 /// by V. If successful, it returns true and returns the string in Str. 3012 /// If unsuccessful, it returns false. 3013 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3014 uint64_t Offset, bool TrimAtNul) { 3015 ConstantDataArraySlice Slice; 3016 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3017 return false; 3018 3019 if (Slice.Array == nullptr) { 3020 if (TrimAtNul) { 3021 Str = StringRef(); 3022 return true; 3023 } 3024 if (Slice.Length == 1) { 3025 Str = StringRef("", 1); 3026 return true; 3027 } 3028 // We cannot instantiate a StringRef as we do not have an appropriate string 3029 // of 0s at hand. 3030 return false; 3031 } 3032 3033 // Start out with the entire array in the StringRef. 3034 Str = Slice.Array->getAsString(); 3035 // Skip over 'offset' bytes. 3036 Str = Str.substr(Slice.Offset); 3037 3038 if (TrimAtNul) { 3039 // Trim off the \0 and anything after it. If the array is not nul 3040 // terminated, we just return the whole end of string. The client may know 3041 // some other way that the string is length-bound. 3042 Str = Str.substr(0, Str.find('\0')); 3043 } 3044 return true; 3045 } 3046 3047 // These next two are very similar to the above, but also look through PHI 3048 // nodes. 3049 // TODO: See if we can integrate these two together. 3050 3051 /// If we can compute the length of the string pointed to by 3052 /// the specified pointer, return 'len+1'. If we can't, return 0. 3053 static uint64_t GetStringLengthH(const Value *V, 3054 SmallPtrSetImpl<const PHINode*> &PHIs, 3055 unsigned CharSize) { 3056 // Look through noop bitcast instructions. 3057 V = V->stripPointerCasts(); 3058 3059 // If this is a PHI node, there are two cases: either we have already seen it 3060 // or we haven't. 3061 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3062 if (!PHIs.insert(PN).second) 3063 return ~0ULL; // already in the set. 3064 3065 // If it was new, see if all the input strings are the same length. 3066 uint64_t LenSoFar = ~0ULL; 3067 for (Value *IncValue : PN->incoming_values()) { 3068 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3069 if (Len == 0) return 0; // Unknown length -> unknown. 3070 3071 if (Len == ~0ULL) continue; 3072 3073 if (Len != LenSoFar && LenSoFar != ~0ULL) 3074 return 0; // Disagree -> unknown. 3075 LenSoFar = Len; 3076 } 3077 3078 // Success, all agree. 3079 return LenSoFar; 3080 } 3081 3082 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3083 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3084 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3085 if (Len1 == 0) return 0; 3086 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3087 if (Len2 == 0) return 0; 3088 if (Len1 == ~0ULL) return Len2; 3089 if (Len2 == ~0ULL) return Len1; 3090 if (Len1 != Len2) return 0; 3091 return Len1; 3092 } 3093 3094 // Otherwise, see if we can read the string. 3095 ConstantDataArraySlice Slice; 3096 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3097 return 0; 3098 3099 if (Slice.Array == nullptr) 3100 return 1; 3101 3102 // Search for nul characters 3103 unsigned NullIndex = 0; 3104 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3105 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3106 break; 3107 } 3108 3109 return NullIndex + 1; 3110 } 3111 3112 /// If we can compute the length of the string pointed to by 3113 /// the specified pointer, return 'len+1'. If we can't, return 0. 3114 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3115 if (!V->getType()->isPointerTy()) return 0; 3116 3117 SmallPtrSet<const PHINode*, 32> PHIs; 3118 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3119 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3120 // an empty string as a length. 3121 return Len == ~0ULL ? 1 : Len; 3122 } 3123 3124 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3125 /// previous iteration of the loop was referring to the same object as \p PN. 3126 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3127 const LoopInfo *LI) { 3128 // Find the loop-defined value. 3129 Loop *L = LI->getLoopFor(PN->getParent()); 3130 if (PN->getNumIncomingValues() != 2) 3131 return true; 3132 3133 // Find the value from previous iteration. 3134 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3135 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3136 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3137 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3138 return true; 3139 3140 // If a new pointer is loaded in the loop, the pointer references a different 3141 // object in every iteration. E.g.: 3142 // for (i) 3143 // int *p = a[i]; 3144 // ... 3145 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3146 if (!L->isLoopInvariant(Load->getPointerOperand())) 3147 return false; 3148 return true; 3149 } 3150 3151 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3152 unsigned MaxLookup) { 3153 if (!V->getType()->isPointerTy()) 3154 return V; 3155 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3157 V = GEP->getPointerOperand(); 3158 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3159 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3160 V = cast<Operator>(V)->getOperand(0); 3161 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3162 if (GA->isInterposable()) 3163 return V; 3164 V = GA->getAliasee(); 3165 } else if (isa<AllocaInst>(V)) { 3166 // An alloca can't be further simplified. 3167 return V; 3168 } else { 3169 if (auto CS = CallSite(V)) 3170 if (Value *RV = CS.getReturnedArgOperand()) { 3171 V = RV; 3172 continue; 3173 } 3174 3175 // See if InstructionSimplify knows any relevant tricks. 3176 if (Instruction *I = dyn_cast<Instruction>(V)) 3177 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3178 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3179 V = Simplified; 3180 continue; 3181 } 3182 3183 return V; 3184 } 3185 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3186 } 3187 return V; 3188 } 3189 3190 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3191 const DataLayout &DL, LoopInfo *LI, 3192 unsigned MaxLookup) { 3193 SmallPtrSet<Value *, 4> Visited; 3194 SmallVector<Value *, 4> Worklist; 3195 Worklist.push_back(V); 3196 do { 3197 Value *P = Worklist.pop_back_val(); 3198 P = GetUnderlyingObject(P, DL, MaxLookup); 3199 3200 if (!Visited.insert(P).second) 3201 continue; 3202 3203 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3204 Worklist.push_back(SI->getTrueValue()); 3205 Worklist.push_back(SI->getFalseValue()); 3206 continue; 3207 } 3208 3209 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3210 // If this PHI changes the underlying object in every iteration of the 3211 // loop, don't look through it. Consider: 3212 // int **A; 3213 // for (i) { 3214 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3215 // Curr = A[i]; 3216 // *Prev, *Curr; 3217 // 3218 // Prev is tracking Curr one iteration behind so they refer to different 3219 // underlying objects. 3220 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3221 isSameUnderlyingObjectInLoop(PN, LI)) 3222 for (Value *IncValue : PN->incoming_values()) 3223 Worklist.push_back(IncValue); 3224 continue; 3225 } 3226 3227 Objects.push_back(P); 3228 } while (!Worklist.empty()); 3229 } 3230 3231 /// This is the function that does the work of looking through basic 3232 /// ptrtoint+arithmetic+inttoptr sequences. 3233 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3234 do { 3235 if (const Operator *U = dyn_cast<Operator>(V)) { 3236 // If we find a ptrtoint, we can transfer control back to the 3237 // regular getUnderlyingObjectFromInt. 3238 if (U->getOpcode() == Instruction::PtrToInt) 3239 return U->getOperand(0); 3240 // If we find an add of a constant, a multiplied value, or a phi, it's 3241 // likely that the other operand will lead us to the base 3242 // object. We don't have to worry about the case where the 3243 // object address is somehow being computed by the multiply, 3244 // because our callers only care when the result is an 3245 // identifiable object. 3246 if (U->getOpcode() != Instruction::Add || 3247 (!isa<ConstantInt>(U->getOperand(1)) && 3248 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3249 !isa<PHINode>(U->getOperand(1)))) 3250 return V; 3251 V = U->getOperand(0); 3252 } else { 3253 return V; 3254 } 3255 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3256 } while (true); 3257 } 3258 3259 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3260 /// ptrtoint+arithmetic+inttoptr sequences. 3261 void llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3262 SmallVectorImpl<Value *> &Objects, 3263 const DataLayout &DL) { 3264 SmallPtrSet<const Value *, 16> Visited; 3265 SmallVector<const Value *, 4> Working(1, V); 3266 do { 3267 V = Working.pop_back_val(); 3268 3269 SmallVector<Value *, 4> Objs; 3270 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3271 3272 for (Value *V : Objs) { 3273 if (!Visited.insert(V).second) 3274 continue; 3275 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3276 const Value *O = 3277 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3278 if (O->getType()->isPointerTy()) { 3279 Working.push_back(O); 3280 continue; 3281 } 3282 } 3283 // If GetUnderlyingObjects fails to find an identifiable object, 3284 // getUnderlyingObjectsForCodeGen also fails for safety. 3285 if (!isIdentifiedObject(V)) { 3286 Objects.clear(); 3287 return; 3288 } 3289 Objects.push_back(const_cast<Value *>(V)); 3290 } 3291 } while (!Working.empty()); 3292 } 3293 3294 /// Return true if the only users of this pointer are lifetime markers. 3295 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3296 for (const User *U : V->users()) { 3297 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3298 if (!II) return false; 3299 3300 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3301 II->getIntrinsicID() != Intrinsic::lifetime_end) 3302 return false; 3303 } 3304 return true; 3305 } 3306 3307 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3308 const Instruction *CtxI, 3309 const DominatorTree *DT) { 3310 const Operator *Inst = dyn_cast<Operator>(V); 3311 if (!Inst) 3312 return false; 3313 3314 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3315 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3316 if (C->canTrap()) 3317 return false; 3318 3319 switch (Inst->getOpcode()) { 3320 default: 3321 return true; 3322 case Instruction::UDiv: 3323 case Instruction::URem: { 3324 // x / y is undefined if y == 0. 3325 const APInt *V; 3326 if (match(Inst->getOperand(1), m_APInt(V))) 3327 return *V != 0; 3328 return false; 3329 } 3330 case Instruction::SDiv: 3331 case Instruction::SRem: { 3332 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3333 const APInt *Numerator, *Denominator; 3334 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3335 return false; 3336 // We cannot hoist this division if the denominator is 0. 3337 if (*Denominator == 0) 3338 return false; 3339 // It's safe to hoist if the denominator is not 0 or -1. 3340 if (*Denominator != -1) 3341 return true; 3342 // At this point we know that the denominator is -1. It is safe to hoist as 3343 // long we know that the numerator is not INT_MIN. 3344 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3345 return !Numerator->isMinSignedValue(); 3346 // The numerator *might* be MinSignedValue. 3347 return false; 3348 } 3349 case Instruction::Load: { 3350 const LoadInst *LI = cast<LoadInst>(Inst); 3351 if (!LI->isUnordered() || 3352 // Speculative load may create a race that did not exist in the source. 3353 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3354 // Speculative load may load data from dirty regions. 3355 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3356 return false; 3357 const DataLayout &DL = LI->getModule()->getDataLayout(); 3358 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3359 LI->getAlignment(), DL, CtxI, DT); 3360 } 3361 case Instruction::Call: { 3362 auto *CI = cast<const CallInst>(Inst); 3363 const Function *Callee = CI->getCalledFunction(); 3364 3365 // The called function could have undefined behavior or side-effects, even 3366 // if marked readnone nounwind. 3367 return Callee && Callee->isSpeculatable(); 3368 } 3369 case Instruction::VAArg: 3370 case Instruction::Alloca: 3371 case Instruction::Invoke: 3372 case Instruction::PHI: 3373 case Instruction::Store: 3374 case Instruction::Ret: 3375 case Instruction::Br: 3376 case Instruction::IndirectBr: 3377 case Instruction::Switch: 3378 case Instruction::Unreachable: 3379 case Instruction::Fence: 3380 case Instruction::AtomicRMW: 3381 case Instruction::AtomicCmpXchg: 3382 case Instruction::LandingPad: 3383 case Instruction::Resume: 3384 case Instruction::CatchSwitch: 3385 case Instruction::CatchPad: 3386 case Instruction::CatchRet: 3387 case Instruction::CleanupPad: 3388 case Instruction::CleanupRet: 3389 return false; // Misc instructions which have effects 3390 } 3391 } 3392 3393 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3394 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3395 } 3396 3397 /// Return true if we know that the specified value is never null. 3398 bool llvm::isKnownNonNull(const Value *V) { 3399 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3400 3401 // Alloca never returns null, malloc might. 3402 if (isa<AllocaInst>(V)) return true; 3403 3404 // A byval, inalloca, or nonnull argument is never null. 3405 if (const Argument *A = dyn_cast<Argument>(V)) 3406 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3407 3408 // A global variable in address space 0 is non null unless extern weak 3409 // or an absolute symbol reference. Other address spaces may have null as a 3410 // valid address for a global, so we can't assume anything. 3411 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3412 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3413 GV->getType()->getAddressSpace() == 0; 3414 3415 // A Load tagged with nonnull metadata is never null. 3416 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3417 return LI->getMetadata(LLVMContext::MD_nonnull); 3418 3419 if (auto CS = ImmutableCallSite(V)) 3420 if (CS.isReturnNonNull()) 3421 return true; 3422 3423 return false; 3424 } 3425 3426 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3427 const Instruction *CtxI, 3428 const DominatorTree *DT) { 3429 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3430 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3431 assert(CtxI && "Context instruction required for analysis"); 3432 assert(DT && "Dominator tree required for analysis"); 3433 3434 unsigned NumUsesExplored = 0; 3435 for (auto *U : V->users()) { 3436 // Avoid massive lists 3437 if (NumUsesExplored >= DomConditionsMaxUses) 3438 break; 3439 NumUsesExplored++; 3440 3441 // If the value is used as an argument to a call or invoke, then argument 3442 // attributes may provide an answer about null-ness. 3443 if (auto CS = ImmutableCallSite(U)) 3444 if (auto *CalledFunc = CS.getCalledFunction()) 3445 for (const Argument &Arg : CalledFunc->args()) 3446 if (CS.getArgOperand(Arg.getArgNo()) == V && 3447 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3448 return true; 3449 3450 // Consider only compare instructions uniquely controlling a branch 3451 CmpInst::Predicate Pred; 3452 if (!match(const_cast<User *>(U), 3453 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3454 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3455 continue; 3456 3457 for (auto *CmpU : U->users()) { 3458 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3459 assert(BI->isConditional() && "uses a comparison!"); 3460 3461 BasicBlock *NonNullSuccessor = 3462 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3463 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3464 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3465 return true; 3466 } else if (Pred == ICmpInst::ICMP_NE && 3467 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3468 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3469 return true; 3470 } 3471 } 3472 } 3473 3474 return false; 3475 } 3476 3477 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3478 const DominatorTree *DT) { 3479 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3480 return false; 3481 3482 if (isKnownNonNull(V)) 3483 return true; 3484 3485 if (!CtxI || !DT) 3486 return false; 3487 3488 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3489 } 3490 3491 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3492 const Value *RHS, 3493 const DataLayout &DL, 3494 AssumptionCache *AC, 3495 const Instruction *CxtI, 3496 const DominatorTree *DT) { 3497 // Multiplying n * m significant bits yields a result of n + m significant 3498 // bits. If the total number of significant bits does not exceed the 3499 // result bit width (minus 1), there is no overflow. 3500 // This means if we have enough leading zero bits in the operands 3501 // we can guarantee that the result does not overflow. 3502 // Ref: "Hacker's Delight" by Henry Warren 3503 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3504 KnownBits LHSKnown(BitWidth); 3505 KnownBits RHSKnown(BitWidth); 3506 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3507 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3508 // Note that underestimating the number of zero bits gives a more 3509 // conservative answer. 3510 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3511 RHSKnown.countMinLeadingZeros(); 3512 // First handle the easy case: if we have enough zero bits there's 3513 // definitely no overflow. 3514 if (ZeroBits >= BitWidth) 3515 return OverflowResult::NeverOverflows; 3516 3517 // Get the largest possible values for each operand. 3518 APInt LHSMax = ~LHSKnown.Zero; 3519 APInt RHSMax = ~RHSKnown.Zero; 3520 3521 // We know the multiply operation doesn't overflow if the maximum values for 3522 // each operand will not overflow after we multiply them together. 3523 bool MaxOverflow; 3524 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3525 if (!MaxOverflow) 3526 return OverflowResult::NeverOverflows; 3527 3528 // We know it always overflows if multiplying the smallest possible values for 3529 // the operands also results in overflow. 3530 bool MinOverflow; 3531 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3532 if (MinOverflow) 3533 return OverflowResult::AlwaysOverflows; 3534 3535 return OverflowResult::MayOverflow; 3536 } 3537 3538 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3539 const Value *RHS, 3540 const DataLayout &DL, 3541 AssumptionCache *AC, 3542 const Instruction *CxtI, 3543 const DominatorTree *DT) { 3544 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3545 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3546 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3547 3548 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3549 // The sign bit is set in both cases: this MUST overflow. 3550 // Create a simple add instruction, and insert it into the struct. 3551 return OverflowResult::AlwaysOverflows; 3552 } 3553 3554 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3555 // The sign bit is clear in both cases: this CANNOT overflow. 3556 // Create a simple add instruction, and insert it into the struct. 3557 return OverflowResult::NeverOverflows; 3558 } 3559 } 3560 3561 return OverflowResult::MayOverflow; 3562 } 3563 3564 /// \brief Return true if we can prove that adding the two values of the 3565 /// knownbits will not overflow. 3566 /// Otherwise return false. 3567 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3568 const KnownBits &RHSKnown) { 3569 // Addition of two 2's complement numbers having opposite signs will never 3570 // overflow. 3571 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3572 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3573 return true; 3574 3575 // If either of the values is known to be non-negative, adding them can only 3576 // overflow if the second is also non-negative, so we can assume that. 3577 // Two non-negative numbers will only overflow if there is a carry to the 3578 // sign bit, so we can check if even when the values are as big as possible 3579 // there is no overflow to the sign bit. 3580 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3581 APInt MaxLHS = ~LHSKnown.Zero; 3582 MaxLHS.clearSignBit(); 3583 APInt MaxRHS = ~RHSKnown.Zero; 3584 MaxRHS.clearSignBit(); 3585 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3586 return Result.isSignBitClear(); 3587 } 3588 3589 // If either of the values is known to be negative, adding them can only 3590 // overflow if the second is also negative, so we can assume that. 3591 // Two negative number will only overflow if there is no carry to the sign 3592 // bit, so we can check if even when the values are as small as possible 3593 // there is overflow to the sign bit. 3594 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3595 APInt MinLHS = LHSKnown.One; 3596 MinLHS.clearSignBit(); 3597 APInt MinRHS = RHSKnown.One; 3598 MinRHS.clearSignBit(); 3599 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3600 return Result.isSignBitSet(); 3601 } 3602 3603 // If we reached here it means that we know nothing about the sign bits. 3604 // In this case we can't know if there will be an overflow, since by 3605 // changing the sign bits any two values can be made to overflow. 3606 return false; 3607 } 3608 3609 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3610 const Value *RHS, 3611 const AddOperator *Add, 3612 const DataLayout &DL, 3613 AssumptionCache *AC, 3614 const Instruction *CxtI, 3615 const DominatorTree *DT) { 3616 if (Add && Add->hasNoSignedWrap()) { 3617 return OverflowResult::NeverOverflows; 3618 } 3619 3620 // If LHS and RHS each have at least two sign bits, the addition will look 3621 // like 3622 // 3623 // XX..... + 3624 // YY..... 3625 // 3626 // If the carry into the most significant position is 0, X and Y can't both 3627 // be 1 and therefore the carry out of the addition is also 0. 3628 // 3629 // If the carry into the most significant position is 1, X and Y can't both 3630 // be 0 and therefore the carry out of the addition is also 1. 3631 // 3632 // Since the carry into the most significant position is always equal to 3633 // the carry out of the addition, there is no signed overflow. 3634 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3635 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3636 return OverflowResult::NeverOverflows; 3637 3638 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3639 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3640 3641 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3642 return OverflowResult::NeverOverflows; 3643 3644 // The remaining code needs Add to be available. Early returns if not so. 3645 if (!Add) 3646 return OverflowResult::MayOverflow; 3647 3648 // If the sign of Add is the same as at least one of the operands, this add 3649 // CANNOT overflow. This is particularly useful when the sum is 3650 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3651 // operands. 3652 bool LHSOrRHSKnownNonNegative = 3653 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3654 bool LHSOrRHSKnownNegative = 3655 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3656 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3657 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3658 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3659 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3660 return OverflowResult::NeverOverflows; 3661 } 3662 } 3663 3664 return OverflowResult::MayOverflow; 3665 } 3666 3667 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3668 const DominatorTree &DT) { 3669 #ifndef NDEBUG 3670 auto IID = II->getIntrinsicID(); 3671 assert((IID == Intrinsic::sadd_with_overflow || 3672 IID == Intrinsic::uadd_with_overflow || 3673 IID == Intrinsic::ssub_with_overflow || 3674 IID == Intrinsic::usub_with_overflow || 3675 IID == Intrinsic::smul_with_overflow || 3676 IID == Intrinsic::umul_with_overflow) && 3677 "Not an overflow intrinsic!"); 3678 #endif 3679 3680 SmallVector<const BranchInst *, 2> GuardingBranches; 3681 SmallVector<const ExtractValueInst *, 2> Results; 3682 3683 for (const User *U : II->users()) { 3684 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3685 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3686 3687 if (EVI->getIndices()[0] == 0) 3688 Results.push_back(EVI); 3689 else { 3690 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3691 3692 for (const auto *U : EVI->users()) 3693 if (const auto *B = dyn_cast<BranchInst>(U)) { 3694 assert(B->isConditional() && "How else is it using an i1?"); 3695 GuardingBranches.push_back(B); 3696 } 3697 } 3698 } else { 3699 // We are using the aggregate directly in a way we don't want to analyze 3700 // here (storing it to a global, say). 3701 return false; 3702 } 3703 } 3704 3705 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3706 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3707 if (!NoWrapEdge.isSingleEdge()) 3708 return false; 3709 3710 // Check if all users of the add are provably no-wrap. 3711 for (const auto *Result : Results) { 3712 // If the extractvalue itself is not executed on overflow, the we don't 3713 // need to check each use separately, since domination is transitive. 3714 if (DT.dominates(NoWrapEdge, Result->getParent())) 3715 continue; 3716 3717 for (auto &RU : Result->uses()) 3718 if (!DT.dominates(NoWrapEdge, RU)) 3719 return false; 3720 } 3721 3722 return true; 3723 }; 3724 3725 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3726 } 3727 3728 3729 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3730 const DataLayout &DL, 3731 AssumptionCache *AC, 3732 const Instruction *CxtI, 3733 const DominatorTree *DT) { 3734 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3735 Add, DL, AC, CxtI, DT); 3736 } 3737 3738 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3739 const Value *RHS, 3740 const DataLayout &DL, 3741 AssumptionCache *AC, 3742 const Instruction *CxtI, 3743 const DominatorTree *DT) { 3744 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3745 } 3746 3747 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3748 // A memory operation returns normally if it isn't volatile. A volatile 3749 // operation is allowed to trap. 3750 // 3751 // An atomic operation isn't guaranteed to return in a reasonable amount of 3752 // time because it's possible for another thread to interfere with it for an 3753 // arbitrary length of time, but programs aren't allowed to rely on that. 3754 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3755 return !LI->isVolatile(); 3756 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3757 return !SI->isVolatile(); 3758 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3759 return !CXI->isVolatile(); 3760 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3761 return !RMWI->isVolatile(); 3762 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3763 return !MII->isVolatile(); 3764 3765 // If there is no successor, then execution can't transfer to it. 3766 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3767 return !CRI->unwindsToCaller(); 3768 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3769 return !CatchSwitch->unwindsToCaller(); 3770 if (isa<ResumeInst>(I)) 3771 return false; 3772 if (isa<ReturnInst>(I)) 3773 return false; 3774 if (isa<UnreachableInst>(I)) 3775 return false; 3776 3777 // Calls can throw, or contain an infinite loop, or kill the process. 3778 if (auto CS = ImmutableCallSite(I)) { 3779 // Call sites that throw have implicit non-local control flow. 3780 if (!CS.doesNotThrow()) 3781 return false; 3782 3783 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3784 // etc. and thus not return. However, LLVM already assumes that 3785 // 3786 // - Thread exiting actions are modeled as writes to memory invisible to 3787 // the program. 3788 // 3789 // - Loops that don't have side effects (side effects are volatile/atomic 3790 // stores and IO) always terminate (see http://llvm.org/PR965). 3791 // Furthermore IO itself is also modeled as writes to memory invisible to 3792 // the program. 3793 // 3794 // We rely on those assumptions here, and use the memory effects of the call 3795 // target as a proxy for checking that it always returns. 3796 3797 // FIXME: This isn't aggressive enough; a call which only writes to a global 3798 // is guaranteed to return. 3799 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3800 match(I, m_Intrinsic<Intrinsic::assume>()); 3801 } 3802 3803 // Other instructions return normally. 3804 return true; 3805 } 3806 3807 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3808 const Loop *L) { 3809 // The loop header is guaranteed to be executed for every iteration. 3810 // 3811 // FIXME: Relax this constraint to cover all basic blocks that are 3812 // guaranteed to be executed at every iteration. 3813 if (I->getParent() != L->getHeader()) return false; 3814 3815 for (const Instruction &LI : *L->getHeader()) { 3816 if (&LI == I) return true; 3817 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3818 } 3819 llvm_unreachable("Instruction not contained in its own parent basic block."); 3820 } 3821 3822 bool llvm::propagatesFullPoison(const Instruction *I) { 3823 switch (I->getOpcode()) { 3824 case Instruction::Add: 3825 case Instruction::Sub: 3826 case Instruction::Xor: 3827 case Instruction::Trunc: 3828 case Instruction::BitCast: 3829 case Instruction::AddrSpaceCast: 3830 case Instruction::Mul: 3831 case Instruction::Shl: 3832 case Instruction::GetElementPtr: 3833 // These operations all propagate poison unconditionally. Note that poison 3834 // is not any particular value, so xor or subtraction of poison with 3835 // itself still yields poison, not zero. 3836 return true; 3837 3838 case Instruction::AShr: 3839 case Instruction::SExt: 3840 // For these operations, one bit of the input is replicated across 3841 // multiple output bits. A replicated poison bit is still poison. 3842 return true; 3843 3844 case Instruction::ICmp: 3845 // Comparing poison with any value yields poison. This is why, for 3846 // instance, x s< (x +nsw 1) can be folded to true. 3847 return true; 3848 3849 default: 3850 return false; 3851 } 3852 } 3853 3854 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3855 switch (I->getOpcode()) { 3856 case Instruction::Store: 3857 return cast<StoreInst>(I)->getPointerOperand(); 3858 3859 case Instruction::Load: 3860 return cast<LoadInst>(I)->getPointerOperand(); 3861 3862 case Instruction::AtomicCmpXchg: 3863 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3864 3865 case Instruction::AtomicRMW: 3866 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3867 3868 case Instruction::UDiv: 3869 case Instruction::SDiv: 3870 case Instruction::URem: 3871 case Instruction::SRem: 3872 return I->getOperand(1); 3873 3874 default: 3875 return nullptr; 3876 } 3877 } 3878 3879 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3880 // We currently only look for uses of poison values within the same basic 3881 // block, as that makes it easier to guarantee that the uses will be 3882 // executed given that PoisonI is executed. 3883 // 3884 // FIXME: Expand this to consider uses beyond the same basic block. To do 3885 // this, look out for the distinction between post-dominance and strong 3886 // post-dominance. 3887 const BasicBlock *BB = PoisonI->getParent(); 3888 3889 // Set of instructions that we have proved will yield poison if PoisonI 3890 // does. 3891 SmallSet<const Value *, 16> YieldsPoison; 3892 SmallSet<const BasicBlock *, 4> Visited; 3893 YieldsPoison.insert(PoisonI); 3894 Visited.insert(PoisonI->getParent()); 3895 3896 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3897 3898 unsigned Iter = 0; 3899 while (Iter++ < MaxDepth) { 3900 for (auto &I : make_range(Begin, End)) { 3901 if (&I != PoisonI) { 3902 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3903 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3904 return true; 3905 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3906 return false; 3907 } 3908 3909 // Mark poison that propagates from I through uses of I. 3910 if (YieldsPoison.count(&I)) { 3911 for (const User *User : I.users()) { 3912 const Instruction *UserI = cast<Instruction>(User); 3913 if (propagatesFullPoison(UserI)) 3914 YieldsPoison.insert(User); 3915 } 3916 } 3917 } 3918 3919 if (auto *NextBB = BB->getSingleSuccessor()) { 3920 if (Visited.insert(NextBB).second) { 3921 BB = NextBB; 3922 Begin = BB->getFirstNonPHI()->getIterator(); 3923 End = BB->end(); 3924 continue; 3925 } 3926 } 3927 3928 break; 3929 }; 3930 return false; 3931 } 3932 3933 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3934 if (FMF.noNaNs()) 3935 return true; 3936 3937 if (auto *C = dyn_cast<ConstantFP>(V)) 3938 return !C->isNaN(); 3939 return false; 3940 } 3941 3942 static bool isKnownNonZero(const Value *V) { 3943 if (auto *C = dyn_cast<ConstantFP>(V)) 3944 return !C->isZero(); 3945 return false; 3946 } 3947 3948 /// Match clamp pattern for float types without care about NaNs or signed zeros. 3949 /// Given non-min/max outer cmp/select from the clamp pattern this 3950 /// function recognizes if it can be substitued by a "canonical" min/max 3951 /// pattern. 3952 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 3953 Value *CmpLHS, Value *CmpRHS, 3954 Value *TrueVal, Value *FalseVal, 3955 Value *&LHS, Value *&RHS) { 3956 // Try to match 3957 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 3958 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 3959 // and return description of the outer Max/Min. 3960 3961 // First, check if select has inverse order: 3962 if (CmpRHS == FalseVal) { 3963 std::swap(TrueVal, FalseVal); 3964 Pred = CmpInst::getInversePredicate(Pred); 3965 } 3966 3967 // Assume success now. If there's no match, callers should not use these anyway. 3968 LHS = TrueVal; 3969 RHS = FalseVal; 3970 3971 const APFloat *FC1; 3972 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 3973 return {SPF_UNKNOWN, SPNB_NA, false}; 3974 3975 const APFloat *FC2; 3976 switch (Pred) { 3977 case CmpInst::FCMP_OLT: 3978 case CmpInst::FCMP_OLE: 3979 case CmpInst::FCMP_ULT: 3980 case CmpInst::FCMP_ULE: 3981 if (match(FalseVal, 3982 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 3983 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 3984 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 3985 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 3986 break; 3987 case CmpInst::FCMP_OGT: 3988 case CmpInst::FCMP_OGE: 3989 case CmpInst::FCMP_UGT: 3990 case CmpInst::FCMP_UGE: 3991 if (match(FalseVal, 3992 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 3993 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 3994 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 3995 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 3996 break; 3997 default: 3998 break; 3999 } 4000 4001 return {SPF_UNKNOWN, SPNB_NA, false}; 4002 } 4003 4004 /// Match non-obvious integer minimum and maximum sequences. 4005 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4006 Value *CmpLHS, Value *CmpRHS, 4007 Value *TrueVal, Value *FalseVal, 4008 Value *&LHS, Value *&RHS) { 4009 // Assume success. If there's no match, callers should not use these anyway. 4010 LHS = TrueVal; 4011 RHS = FalseVal; 4012 4013 // Recognize variations of: 4014 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4015 const APInt *C1; 4016 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4017 const APInt *C2; 4018 4019 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4020 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4021 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4022 return {SPF_SMAX, SPNB_NA, false}; 4023 4024 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4025 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4026 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4027 return {SPF_SMIN, SPNB_NA, false}; 4028 4029 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4030 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4031 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4032 return {SPF_UMAX, SPNB_NA, false}; 4033 4034 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4035 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4036 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4037 return {SPF_UMIN, SPNB_NA, false}; 4038 } 4039 4040 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4041 return {SPF_UNKNOWN, SPNB_NA, false}; 4042 4043 // Z = X -nsw Y 4044 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4045 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4046 if (match(TrueVal, m_Zero()) && 4047 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4048 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4049 4050 // Z = X -nsw Y 4051 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4052 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4053 if (match(FalseVal, m_Zero()) && 4054 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4055 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4056 4057 if (!match(CmpRHS, m_APInt(C1))) 4058 return {SPF_UNKNOWN, SPNB_NA, false}; 4059 4060 // An unsigned min/max can be written with a signed compare. 4061 const APInt *C2; 4062 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4063 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4064 // Is the sign bit set? 4065 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4066 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4067 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 4068 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4069 4070 // Is the sign bit clear? 4071 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4072 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4073 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4074 C2->isMinSignedValue()) 4075 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4076 } 4077 4078 // Look through 'not' ops to find disguised signed min/max. 4079 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4080 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4081 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4082 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4083 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4084 4085 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4086 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4087 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4088 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4089 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4090 4091 return {SPF_UNKNOWN, SPNB_NA, false}; 4092 } 4093 4094 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4095 FastMathFlags FMF, 4096 Value *CmpLHS, Value *CmpRHS, 4097 Value *TrueVal, Value *FalseVal, 4098 Value *&LHS, Value *&RHS) { 4099 LHS = CmpLHS; 4100 RHS = CmpRHS; 4101 4102 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4103 // return inconsistent results between implementations. 4104 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4105 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4106 // Therefore we behave conservatively and only proceed if at least one of the 4107 // operands is known to not be zero, or if we don't care about signed zeroes. 4108 switch (Pred) { 4109 default: break; 4110 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4111 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4112 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4113 !isKnownNonZero(CmpRHS)) 4114 return {SPF_UNKNOWN, SPNB_NA, false}; 4115 } 4116 4117 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4118 bool Ordered = false; 4119 4120 // When given one NaN and one non-NaN input: 4121 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4122 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4123 // ordered comparison fails), which could be NaN or non-NaN. 4124 // so here we discover exactly what NaN behavior is required/accepted. 4125 if (CmpInst::isFPPredicate(Pred)) { 4126 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4127 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4128 4129 if (LHSSafe && RHSSafe) { 4130 // Both operands are known non-NaN. 4131 NaNBehavior = SPNB_RETURNS_ANY; 4132 } else if (CmpInst::isOrdered(Pred)) { 4133 // An ordered comparison will return false when given a NaN, so it 4134 // returns the RHS. 4135 Ordered = true; 4136 if (LHSSafe) 4137 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4138 NaNBehavior = SPNB_RETURNS_NAN; 4139 else if (RHSSafe) 4140 NaNBehavior = SPNB_RETURNS_OTHER; 4141 else 4142 // Completely unsafe. 4143 return {SPF_UNKNOWN, SPNB_NA, false}; 4144 } else { 4145 Ordered = false; 4146 // An unordered comparison will return true when given a NaN, so it 4147 // returns the LHS. 4148 if (LHSSafe) 4149 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4150 NaNBehavior = SPNB_RETURNS_OTHER; 4151 else if (RHSSafe) 4152 NaNBehavior = SPNB_RETURNS_NAN; 4153 else 4154 // Completely unsafe. 4155 return {SPF_UNKNOWN, SPNB_NA, false}; 4156 } 4157 } 4158 4159 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4160 std::swap(CmpLHS, CmpRHS); 4161 Pred = CmpInst::getSwappedPredicate(Pred); 4162 if (NaNBehavior == SPNB_RETURNS_NAN) 4163 NaNBehavior = SPNB_RETURNS_OTHER; 4164 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4165 NaNBehavior = SPNB_RETURNS_NAN; 4166 Ordered = !Ordered; 4167 } 4168 4169 // ([if]cmp X, Y) ? X : Y 4170 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4171 switch (Pred) { 4172 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4173 case ICmpInst::ICMP_UGT: 4174 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4175 case ICmpInst::ICMP_SGT: 4176 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4177 case ICmpInst::ICMP_ULT: 4178 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4179 case ICmpInst::ICMP_SLT: 4180 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4181 case FCmpInst::FCMP_UGT: 4182 case FCmpInst::FCMP_UGE: 4183 case FCmpInst::FCMP_OGT: 4184 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4185 case FCmpInst::FCMP_ULT: 4186 case FCmpInst::FCMP_ULE: 4187 case FCmpInst::FCMP_OLT: 4188 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4189 } 4190 } 4191 4192 const APInt *C1; 4193 if (match(CmpRHS, m_APInt(C1))) { 4194 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4195 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4196 4197 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4198 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4199 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4200 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4201 } 4202 4203 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4204 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4205 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4206 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4207 } 4208 } 4209 } 4210 4211 if (CmpInst::isIntPredicate(Pred)) 4212 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4213 4214 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4215 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4216 // semantics than minNum. Be conservative in such case. 4217 if (NaNBehavior != SPNB_RETURNS_ANY || 4218 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4219 !isKnownNonZero(CmpRHS))) 4220 return {SPF_UNKNOWN, SPNB_NA, false}; 4221 4222 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4223 } 4224 4225 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4226 Instruction::CastOps *CastOp) { 4227 auto *Cast1 = dyn_cast<CastInst>(V1); 4228 if (!Cast1) 4229 return nullptr; 4230 4231 *CastOp = Cast1->getOpcode(); 4232 Type *SrcTy = Cast1->getSrcTy(); 4233 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4234 // If V1 and V2 are both the same cast from the same type, look through V1. 4235 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4236 return Cast2->getOperand(0); 4237 return nullptr; 4238 } 4239 4240 auto *C = dyn_cast<Constant>(V2); 4241 if (!C) 4242 return nullptr; 4243 4244 Constant *CastedTo = nullptr; 4245 switch (*CastOp) { 4246 case Instruction::ZExt: 4247 if (CmpI->isUnsigned()) 4248 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4249 break; 4250 case Instruction::SExt: 4251 if (CmpI->isSigned()) 4252 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4253 break; 4254 case Instruction::Trunc: 4255 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4256 break; 4257 case Instruction::FPTrunc: 4258 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4259 break; 4260 case Instruction::FPExt: 4261 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4262 break; 4263 case Instruction::FPToUI: 4264 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4265 break; 4266 case Instruction::FPToSI: 4267 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4268 break; 4269 case Instruction::UIToFP: 4270 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4271 break; 4272 case Instruction::SIToFP: 4273 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4274 break; 4275 default: 4276 break; 4277 } 4278 4279 if (!CastedTo) 4280 return nullptr; 4281 4282 // Make sure the cast doesn't lose any information. 4283 Constant *CastedBack = 4284 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4285 if (CastedBack != C) 4286 return nullptr; 4287 4288 return CastedTo; 4289 } 4290 4291 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4292 Instruction::CastOps *CastOp) { 4293 SelectInst *SI = dyn_cast<SelectInst>(V); 4294 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4295 4296 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4297 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4298 4299 CmpInst::Predicate Pred = CmpI->getPredicate(); 4300 Value *CmpLHS = CmpI->getOperand(0); 4301 Value *CmpRHS = CmpI->getOperand(1); 4302 Value *TrueVal = SI->getTrueValue(); 4303 Value *FalseVal = SI->getFalseValue(); 4304 FastMathFlags FMF; 4305 if (isa<FPMathOperator>(CmpI)) 4306 FMF = CmpI->getFastMathFlags(); 4307 4308 // Bail out early. 4309 if (CmpI->isEquality()) 4310 return {SPF_UNKNOWN, SPNB_NA, false}; 4311 4312 // Deal with type mismatches. 4313 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4314 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4315 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4316 cast<CastInst>(TrueVal)->getOperand(0), C, 4317 LHS, RHS); 4318 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4319 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4320 C, cast<CastInst>(FalseVal)->getOperand(0), 4321 LHS, RHS); 4322 } 4323 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4324 LHS, RHS); 4325 } 4326 4327 /// Return true if "icmp Pred LHS RHS" is always true. 4328 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4329 const Value *RHS, const DataLayout &DL, 4330 unsigned Depth) { 4331 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4332 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4333 return true; 4334 4335 switch (Pred) { 4336 default: 4337 return false; 4338 4339 case CmpInst::ICMP_SLE: { 4340 const APInt *C; 4341 4342 // LHS s<= LHS +_{nsw} C if C >= 0 4343 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4344 return !C->isNegative(); 4345 return false; 4346 } 4347 4348 case CmpInst::ICMP_ULE: { 4349 const APInt *C; 4350 4351 // LHS u<= LHS +_{nuw} C for any C 4352 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4353 return true; 4354 4355 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4356 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4357 const Value *&X, 4358 const APInt *&CA, const APInt *&CB) { 4359 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4360 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4361 return true; 4362 4363 // If X & C == 0 then (X | C) == X +_{nuw} C 4364 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4365 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4366 KnownBits Known(CA->getBitWidth()); 4367 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4368 /*CxtI*/ nullptr, /*DT*/ nullptr); 4369 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4370 return true; 4371 } 4372 4373 return false; 4374 }; 4375 4376 const Value *X; 4377 const APInt *CLHS, *CRHS; 4378 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4379 return CLHS->ule(*CRHS); 4380 4381 return false; 4382 } 4383 } 4384 } 4385 4386 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4387 /// ALHS ARHS" is true. Otherwise, return None. 4388 static Optional<bool> 4389 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4390 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4391 const DataLayout &DL, unsigned Depth) { 4392 switch (Pred) { 4393 default: 4394 return None; 4395 4396 case CmpInst::ICMP_SLT: 4397 case CmpInst::ICMP_SLE: 4398 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4399 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4400 return true; 4401 return None; 4402 4403 case CmpInst::ICMP_ULT: 4404 case CmpInst::ICMP_ULE: 4405 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4406 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4407 return true; 4408 return None; 4409 } 4410 } 4411 4412 /// Return true if the operands of the two compares match. IsSwappedOps is true 4413 /// when the operands match, but are swapped. 4414 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4415 const Value *BLHS, const Value *BRHS, 4416 bool &IsSwappedOps) { 4417 4418 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4419 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4420 return IsMatchingOps || IsSwappedOps; 4421 } 4422 4423 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4424 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4425 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4426 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4427 const Value *ALHS, 4428 const Value *ARHS, 4429 CmpInst::Predicate BPred, 4430 const Value *BLHS, 4431 const Value *BRHS, 4432 bool IsSwappedOps) { 4433 // Canonicalize the operands so they're matching. 4434 if (IsSwappedOps) { 4435 std::swap(BLHS, BRHS); 4436 BPred = ICmpInst::getSwappedPredicate(BPred); 4437 } 4438 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4439 return true; 4440 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4441 return false; 4442 4443 return None; 4444 } 4445 4446 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4447 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4448 /// C2" is false. Otherwise, return None if we can't infer anything. 4449 static Optional<bool> 4450 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4451 const ConstantInt *C1, 4452 CmpInst::Predicate BPred, 4453 const Value *BLHS, const ConstantInt *C2) { 4454 assert(ALHS == BLHS && "LHS operands must match."); 4455 ConstantRange DomCR = 4456 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4457 ConstantRange CR = 4458 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4459 ConstantRange Intersection = DomCR.intersectWith(CR); 4460 ConstantRange Difference = DomCR.difference(CR); 4461 if (Intersection.isEmptySet()) 4462 return false; 4463 if (Difference.isEmptySet()) 4464 return true; 4465 return None; 4466 } 4467 4468 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4469 /// false. Otherwise, return None if we can't infer anything. 4470 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4471 const ICmpInst *RHS, 4472 const DataLayout &DL, bool LHSIsTrue, 4473 unsigned Depth) { 4474 Value *ALHS = LHS->getOperand(0); 4475 Value *ARHS = LHS->getOperand(1); 4476 // The rest of the logic assumes the LHS condition is true. If that's not the 4477 // case, invert the predicate to make it so. 4478 ICmpInst::Predicate APred = 4479 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4480 4481 Value *BLHS = RHS->getOperand(0); 4482 Value *BRHS = RHS->getOperand(1); 4483 ICmpInst::Predicate BPred = RHS->getPredicate(); 4484 4485 // Can we infer anything when the two compares have matching operands? 4486 bool IsSwappedOps; 4487 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4488 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4489 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4490 return Implication; 4491 // No amount of additional analysis will infer the second condition, so 4492 // early exit. 4493 return None; 4494 } 4495 4496 // Can we infer anything when the LHS operands match and the RHS operands are 4497 // constants (not necessarily matching)? 4498 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4499 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4500 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4501 cast<ConstantInt>(BRHS))) 4502 return Implication; 4503 // No amount of additional analysis will infer the second condition, so 4504 // early exit. 4505 return None; 4506 } 4507 4508 if (APred == BPred) 4509 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4510 return None; 4511 } 4512 4513 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4514 /// false. Otherwise, return None if we can't infer anything. We expect the 4515 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4516 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4517 const ICmpInst *RHS, 4518 const DataLayout &DL, bool LHSIsTrue, 4519 unsigned Depth) { 4520 // The LHS must be an 'or' or an 'and' instruction. 4521 assert((LHS->getOpcode() == Instruction::And || 4522 LHS->getOpcode() == Instruction::Or) && 4523 "Expected LHS to be 'and' or 'or'."); 4524 4525 assert(Depth <= MaxDepth && "Hit recursion limit"); 4526 4527 // If the result of an 'or' is false, then we know both legs of the 'or' are 4528 // false. Similarly, if the result of an 'and' is true, then we know both 4529 // legs of the 'and' are true. 4530 Value *ALHS, *ARHS; 4531 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4532 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4533 // FIXME: Make this non-recursion. 4534 if (Optional<bool> Implication = 4535 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4536 return Implication; 4537 if (Optional<bool> Implication = 4538 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4539 return Implication; 4540 return None; 4541 } 4542 return None; 4543 } 4544 4545 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4546 const DataLayout &DL, bool LHSIsTrue, 4547 unsigned Depth) { 4548 // Bail out when we hit the limit. 4549 if (Depth == MaxDepth) 4550 return None; 4551 4552 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4553 // example. 4554 if (LHS->getType() != RHS->getType()) 4555 return None; 4556 4557 Type *OpTy = LHS->getType(); 4558 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4559 4560 // LHS ==> RHS by definition 4561 if (LHS == RHS) 4562 return LHSIsTrue; 4563 4564 // FIXME: Extending the code below to handle vectors. 4565 if (OpTy->isVectorTy()) 4566 return None; 4567 4568 assert(OpTy->isIntegerTy(1) && "implied by above"); 4569 4570 // Both LHS and RHS are icmps. 4571 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4572 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4573 if (LHSCmp && RHSCmp) 4574 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4575 4576 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4577 // an icmp. FIXME: Add support for and/or on the RHS. 4578 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4579 if (LHSBO && RHSCmp) { 4580 if ((LHSBO->getOpcode() == Instruction::And || 4581 LHSBO->getOpcode() == Instruction::Or)) 4582 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4583 } 4584 return None; 4585 } 4586