1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/CallSite.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/GetElementPtrTypeIterator.h"
28 #include "llvm/IR/GlobalAlias.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/PatternMatch.h"
36 #include "llvm/IR/Statepoint.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/MathExtras.h"
39 #include <algorithm>
40 #include <array>
41 #include <cstring>
42 using namespace llvm;
43 using namespace llvm::PatternMatch;
44 
45 const unsigned MaxDepth = 6;
46 
47 /// Enable an experimental feature to leverage information about dominating
48 /// conditions to compute known bits.  The individual options below control how
49 /// hard we search.  The defaults are chosen to be fairly aggressive.  If you
50 /// run into compile time problems when testing, scale them back and report
51 /// your findings.
52 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions",
53                                          cl::Hidden, cl::init(false));
54 
55 // This is expensive, so we only do it for the top level query value.
56 // (TODO: evaluate cost vs profit, consider higher thresholds)
57 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth",
58                                                cl::Hidden, cl::init(1));
59 
60 /// How many dominating blocks should be scanned looking for dominating
61 /// conditions?
62 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks",
63                                                    cl::Hidden,
64                                                    cl::init(20));
65 
66 // Controls the number of uses of the value searched for possible
67 // dominating comparisons.
68 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
69                                               cl::Hidden, cl::init(20));
70 
71 // If true, don't consider only compares whose only use is a branch.
72 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use",
73                                                cl::Hidden, cl::init(false));
74 
75 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
76 /// 0). For vector types, returns the element type's bitwidth.
77 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
78   if (unsigned BitWidth = Ty->getScalarSizeInBits())
79     return BitWidth;
80 
81   return DL.getPointerTypeSizeInBits(Ty);
82 }
83 
84 namespace {
85 // Simplifying using an assume can only be done in a particular control-flow
86 // context (the context instruction provides that context). If an assume and
87 // the context instruction are not in the same block then the DT helps in
88 // figuring out if we can use it.
89 struct Query {
90   const DataLayout &DL;
91   AssumptionCache *AC;
92   const Instruction *CxtI;
93   const DominatorTree *DT;
94 
95   /// Set of assumptions that should be excluded from further queries.
96   /// This is because of the potential for mutual recursion to cause
97   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
98   /// classic case of this is assume(x = y), which will attempt to determine
99   /// bits in x from bits in y, which will attempt to determine bits in y from
100   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
101   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
102   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
103   /// on.
104   std::array<const Value*, MaxDepth> Excluded;
105   unsigned NumExcluded;
106 
107   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
108         const DominatorTree *DT)
109       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
110 
111   Query(const Query &Q, const Value *NewExcl)
112       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
113     Excluded = Q.Excluded;
114     Excluded[NumExcluded++] = NewExcl;
115     assert(NumExcluded <= Excluded.size());
116   }
117 
118   bool isExcluded(const Value *Value) const {
119     if (NumExcluded == 0)
120       return false;
121     auto End = Excluded.begin() + NumExcluded;
122     return std::find(Excluded.begin(), End, Value) != End;
123   }
124 };
125 } // end anonymous namespace
126 
127 // Given the provided Value and, potentially, a context instruction, return
128 // the preferred context instruction (if any).
129 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
130   // If we've been provided with a context instruction, then use that (provided
131   // it has been inserted).
132   if (CxtI && CxtI->getParent())
133     return CxtI;
134 
135   // If the value is really an already-inserted instruction, then use that.
136   CxtI = dyn_cast<Instruction>(V);
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   return nullptr;
141 }
142 
143 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
144                              unsigned Depth, const Query &Q);
145 
146 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
147                             const DataLayout &DL, unsigned Depth,
148                             AssumptionCache *AC, const Instruction *CxtI,
149                             const DominatorTree *DT) {
150   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
151                      Query(DL, AC, safeCxtI(V, CxtI), DT));
152 }
153 
154 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
155                                AssumptionCache *AC, const Instruction *CxtI,
156                                const DominatorTree *DT) {
157   assert(LHS->getType() == RHS->getType() &&
158          "LHS and RHS should have the same type");
159   assert(LHS->getType()->isIntOrIntVectorTy() &&
160          "LHS and RHS should be integers");
161   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
162   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
163   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
164   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
165   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
166   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
167 }
168 
169 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
170                            unsigned Depth, const Query &Q);
171 
172 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
173                           const DataLayout &DL, unsigned Depth,
174                           AssumptionCache *AC, const Instruction *CxtI,
175                           const DominatorTree *DT) {
176   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
177                    Query(DL, AC, safeCxtI(V, CxtI), DT));
178 }
179 
180 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
181                                    const Query &Q);
182 
183 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
184                                   unsigned Depth, AssumptionCache *AC,
185                                   const Instruction *CxtI,
186                                   const DominatorTree *DT) {
187   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
188                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
189 }
190 
191 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
192 
193 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
194                           AssumptionCache *AC, const Instruction *CxtI,
195                           const DominatorTree *DT) {
196   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
197 }
198 
199 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
200                               AssumptionCache *AC, const Instruction *CxtI,
201                               const DominatorTree *DT) {
202   bool NonNegative, Negative;
203   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
204   return NonNegative;
205 }
206 
207 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
208 
209 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
210                           AssumptionCache *AC, const Instruction *CxtI,
211                           const DominatorTree *DT) {
212   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
213                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
214                                          DT));
215 }
216 
217 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
218                               const Query &Q);
219 
220 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
221                              unsigned Depth, AssumptionCache *AC,
222                              const Instruction *CxtI, const DominatorTree *DT) {
223   return ::MaskedValueIsZero(V, Mask, Depth,
224                              Query(DL, AC, safeCxtI(V, CxtI), DT));
225 }
226 
227 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
228 
229 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
230                                   unsigned Depth, AssumptionCache *AC,
231                                   const Instruction *CxtI,
232                                   const DominatorTree *DT) {
233   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
234 }
235 
236 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
237                                    APInt &KnownZero, APInt &KnownOne,
238                                    APInt &KnownZero2, APInt &KnownOne2,
239                                    unsigned Depth, const Query &Q) {
240   if (!Add) {
241     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
242       // We know that the top bits of C-X are clear if X contains less bits
243       // than C (i.e. no wrap-around can happen).  For example, 20-X is
244       // positive if we can prove that X is >= 0 and < 16.
245       if (!CLHS->getValue().isNegative()) {
246         unsigned BitWidth = KnownZero.getBitWidth();
247         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
248         // NLZ can't be BitWidth with no sign bit
249         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
250         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
251 
252         // If all of the MaskV bits are known to be zero, then we know the
253         // output top bits are zero, because we now know that the output is
254         // from [0-C].
255         if ((KnownZero2 & MaskV) == MaskV) {
256           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
257           // Top bits known zero.
258           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
259         }
260       }
261     }
262   }
263 
264   unsigned BitWidth = KnownZero.getBitWidth();
265 
266   // If an initial sequence of bits in the result is not needed, the
267   // corresponding bits in the operands are not needed.
268   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
269   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
270   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
271 
272   // Carry in a 1 for a subtract, rather than a 0.
273   APInt CarryIn(BitWidth, 0);
274   if (!Add) {
275     // Sum = LHS + ~RHS + 1
276     std::swap(KnownZero2, KnownOne2);
277     CarryIn.setBit(0);
278   }
279 
280   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
281   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
282 
283   // Compute known bits of the carry.
284   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
285   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
286 
287   // Compute set of known bits (where all three relevant bits are known).
288   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
289   APInt RHSKnown = KnownZero2 | KnownOne2;
290   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
291   APInt Known = LHSKnown & RHSKnown & CarryKnown;
292 
293   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
294          "known bits of sum differ");
295 
296   // Compute known bits of the result.
297   KnownZero = ~PossibleSumOne & Known;
298   KnownOne = PossibleSumOne & Known;
299 
300   // Are we still trying to solve for the sign bit?
301   if (!Known.isNegative()) {
302     if (NSW) {
303       // Adding two non-negative numbers, or subtracting a negative number from
304       // a non-negative one, can't wrap into negative.
305       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
306         KnownZero |= APInt::getSignBit(BitWidth);
307       // Adding two negative numbers, or subtracting a non-negative number from
308       // a negative one, can't wrap into non-negative.
309       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
310         KnownOne |= APInt::getSignBit(BitWidth);
311     }
312   }
313 }
314 
315 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
316                                 APInt &KnownZero, APInt &KnownOne,
317                                 APInt &KnownZero2, APInt &KnownOne2,
318                                 unsigned Depth, const Query &Q) {
319   unsigned BitWidth = KnownZero.getBitWidth();
320   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
321   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
322 
323   bool isKnownNegative = false;
324   bool isKnownNonNegative = false;
325   // If the multiplication is known not to overflow, compute the sign bit.
326   if (NSW) {
327     if (Op0 == Op1) {
328       // The product of a number with itself is non-negative.
329       isKnownNonNegative = true;
330     } else {
331       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
332       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
333       bool isKnownNegativeOp1 = KnownOne.isNegative();
334       bool isKnownNegativeOp0 = KnownOne2.isNegative();
335       // The product of two numbers with the same sign is non-negative.
336       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
337         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
338       // The product of a negative number and a non-negative number is either
339       // negative or zero.
340       if (!isKnownNonNegative)
341         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
342                            isKnownNonZero(Op0, Depth, Q)) ||
343                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
344                            isKnownNonZero(Op1, Depth, Q));
345     }
346   }
347 
348   // If low bits are zero in either operand, output low known-0 bits.
349   // Also compute a conservative estimate for high known-0 bits.
350   // More trickiness is possible, but this is sufficient for the
351   // interesting case of alignment computation.
352   KnownOne.clearAllBits();
353   unsigned TrailZ = KnownZero.countTrailingOnes() +
354                     KnownZero2.countTrailingOnes();
355   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
356                              KnownZero2.countLeadingOnes(),
357                              BitWidth) - BitWidth;
358 
359   TrailZ = std::min(TrailZ, BitWidth);
360   LeadZ = std::min(LeadZ, BitWidth);
361   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
362               APInt::getHighBitsSet(BitWidth, LeadZ);
363 
364   // Only make use of no-wrap flags if we failed to compute the sign bit
365   // directly.  This matters if the multiplication always overflows, in
366   // which case we prefer to follow the result of the direct computation,
367   // though as the program is invoking undefined behaviour we can choose
368   // whatever we like here.
369   if (isKnownNonNegative && !KnownOne.isNegative())
370     KnownZero.setBit(BitWidth - 1);
371   else if (isKnownNegative && !KnownZero.isNegative())
372     KnownOne.setBit(BitWidth - 1);
373 }
374 
375 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
376                                              APInt &KnownZero,
377                                              APInt &KnownOne) {
378   unsigned BitWidth = KnownZero.getBitWidth();
379   unsigned NumRanges = Ranges.getNumOperands() / 2;
380   assert(NumRanges >= 1);
381 
382   KnownZero.setAllBits();
383   KnownOne.setAllBits();
384 
385   for (unsigned i = 0; i < NumRanges; ++i) {
386     ConstantInt *Lower =
387         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
388     ConstantInt *Upper =
389         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
390     ConstantRange Range(Lower->getValue(), Upper->getValue());
391 
392     // The first CommonPrefixBits of all values in Range are equal.
393     unsigned CommonPrefixBits =
394         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
395 
396     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
397     KnownOne &= Range.getUnsignedMax() & Mask;
398     KnownZero &= ~Range.getUnsignedMax() & Mask;
399   }
400 }
401 
402 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
403   SmallVector<const Value *, 16> WorkSet(1, I);
404   SmallPtrSet<const Value *, 32> Visited;
405   SmallPtrSet<const Value *, 16> EphValues;
406 
407   // The instruction defining an assumption's condition itself is always
408   // considered ephemeral to that assumption (even if it has other
409   // non-ephemeral users). See r246696's test case for an example.
410   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
411     return true;
412 
413   while (!WorkSet.empty()) {
414     const Value *V = WorkSet.pop_back_val();
415     if (!Visited.insert(V).second)
416       continue;
417 
418     // If all uses of this value are ephemeral, then so is this value.
419     if (std::all_of(V->user_begin(), V->user_end(),
420                     [&](const User *U) { return EphValues.count(U); })) {
421       if (V == E)
422         return true;
423 
424       EphValues.insert(V);
425       if (const User *U = dyn_cast<User>(V))
426         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
427              J != JE; ++J) {
428           if (isSafeToSpeculativelyExecute(*J))
429             WorkSet.push_back(*J);
430         }
431     }
432   }
433 
434   return false;
435 }
436 
437 // Is this an intrinsic that cannot be speculated but also cannot trap?
438 static bool isAssumeLikeIntrinsic(const Instruction *I) {
439   if (const CallInst *CI = dyn_cast<CallInst>(I))
440     if (Function *F = CI->getCalledFunction())
441       switch (F->getIntrinsicID()) {
442       default: break;
443       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
444       case Intrinsic::assume:
445       case Intrinsic::dbg_declare:
446       case Intrinsic::dbg_value:
447       case Intrinsic::invariant_start:
448       case Intrinsic::invariant_end:
449       case Intrinsic::lifetime_start:
450       case Intrinsic::lifetime_end:
451       case Intrinsic::objectsize:
452       case Intrinsic::ptr_annotation:
453       case Intrinsic::var_annotation:
454         return true;
455       }
456 
457   return false;
458 }
459 
460 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
461                                     const DominatorTree *DT) {
462   Instruction *Inv = cast<Instruction>(V);
463 
464   // There are two restrictions on the use of an assume:
465   //  1. The assume must dominate the context (or the control flow must
466   //     reach the assume whenever it reaches the context).
467   //  2. The context must not be in the assume's set of ephemeral values
468   //     (otherwise we will use the assume to prove that the condition
469   //     feeding the assume is trivially true, thus causing the removal of
470   //     the assume).
471 
472   if (DT) {
473     if (DT->dominates(Inv, CxtI)) {
474       return true;
475     } else if (Inv->getParent() == CxtI->getParent()) {
476       // The context comes first, but they're both in the same block. Make sure
477       // there is nothing in between that might interrupt the control flow.
478       for (BasicBlock::const_iterator I =
479              std::next(BasicBlock::const_iterator(CxtI)),
480                                       IE(Inv); I != IE; ++I)
481         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
482           return false;
483 
484       return !isEphemeralValueOf(Inv, CxtI);
485     }
486 
487     return false;
488   }
489 
490   // When we don't have a DT, we do a limited search...
491   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
492     return true;
493   } else if (Inv->getParent() == CxtI->getParent()) {
494     // Search forward from the assume until we reach the context (or the end
495     // of the block); the common case is that the assume will come first.
496     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
497          IE = Inv->getParent()->end(); I != IE; ++I)
498       if (&*I == CxtI)
499         return true;
500 
501     // The context must come first...
502     for (BasicBlock::const_iterator I =
503            std::next(BasicBlock::const_iterator(CxtI)),
504                                     IE(Inv); I != IE; ++I)
505       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
506         return false;
507 
508     return !isEphemeralValueOf(Inv, CxtI);
509   }
510 
511   return false;
512 }
513 
514 bool llvm::isValidAssumeForContext(const Instruction *I,
515                                    const Instruction *CxtI,
516                                    const DominatorTree *DT) {
517   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
518 }
519 
520 template<typename LHS, typename RHS>
521 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>,
522                         CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>>
523 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
524   return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L));
525 }
526 
527 template<typename LHS, typename RHS>
528 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>,
529                         BinaryOp_match<RHS, LHS, Instruction::And>>
530 m_c_And(const LHS &L, const RHS &R) {
531   return m_CombineOr(m_And(L, R), m_And(R, L));
532 }
533 
534 template<typename LHS, typename RHS>
535 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>,
536                         BinaryOp_match<RHS, LHS, Instruction::Or>>
537 m_c_Or(const LHS &L, const RHS &R) {
538   return m_CombineOr(m_Or(L, R), m_Or(R, L));
539 }
540 
541 template<typename LHS, typename RHS>
542 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>,
543                         BinaryOp_match<RHS, LHS, Instruction::Xor>>
544 m_c_Xor(const LHS &L, const RHS &R) {
545   return m_CombineOr(m_Xor(L, R), m_Xor(R, L));
546 }
547 
548 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is
549 /// true (at the context instruction.)  This is mostly a utility function for
550 /// the prototype dominating conditions reasoning below.
551 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp,
552                                               APInt &KnownZero,
553                                               APInt &KnownOne,
554                                               unsigned Depth, const Query &Q) {
555   Value *LHS = Cmp->getOperand(0);
556   Value *RHS = Cmp->getOperand(1);
557   // TODO: We could potentially be more aggressive here.  This would be worth
558   // evaluating.  If we can, explore commoning this code with the assume
559   // handling logic.
560   if (LHS != V && RHS != V)
561     return;
562 
563   const unsigned BitWidth = KnownZero.getBitWidth();
564 
565   switch (Cmp->getPredicate()) {
566   default:
567     // We know nothing from this condition
568     break;
569   // TODO: implement unsigned bound from below (known one bits)
570   // TODO: common condition check implementations with assumes
571   // TODO: implement other patterns from assume (e.g. V & B == A)
572   case ICmpInst::ICMP_SGT:
573     if (LHS == V) {
574       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
575       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
576       if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) {
577         // We know that the sign bit is zero.
578         KnownZero |= APInt::getSignBit(BitWidth);
579       }
580     }
581     break;
582   case ICmpInst::ICMP_EQ:
583     {
584       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
585       if (LHS == V)
586         computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
587       else if (RHS == V)
588         computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
589       else
590         llvm_unreachable("missing use?");
591       KnownZero |= KnownZeroTemp;
592       KnownOne |= KnownOneTemp;
593     }
594     break;
595   case ICmpInst::ICMP_ULE:
596     if (LHS == V) {
597       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
598       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
599       // The known zero bits carry over
600       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
601       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
602     }
603     break;
604   case ICmpInst::ICMP_ULT:
605     if (LHS == V) {
606       APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0);
607       computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q);
608       // Whatever high bits in rhs are zero are known to be zero (if rhs is a
609       // power of 2, then one more).
610       unsigned SignBits = KnownZeroTemp.countLeadingOnes();
611       if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp)))
612         SignBits++;
613       KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits);
614     }
615     break;
616   };
617 }
618 
619 /// Compute known bits in 'V' from conditions which are known to be true along
620 /// all paths leading to the context instruction.  In particular, look for
621 /// cases where one branch of an interesting condition dominates the context
622 /// instruction.  This does not do general dataflow.
623 /// NOTE: This code is EXPERIMENTAL and currently off by default.
624 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero,
625                                                     APInt &KnownOne,
626                                                     unsigned Depth,
627                                                     const Query &Q) {
628   // Need both the dominator tree and the query location to do anything useful
629   if (!Q.DT || !Q.CxtI)
630     return;
631   Instruction *Cxt = const_cast<Instruction *>(Q.CxtI);
632   // The context instruction might be in a statically unreachable block.  If
633   // so, asking dominator queries may yield suprising results.  (e.g. the block
634   // may not have a dom tree node)
635   if (!Q.DT->isReachableFromEntry(Cxt->getParent()))
636     return;
637 
638   // Avoid useless work
639   if (auto VI = dyn_cast<Instruction>(V))
640     if (VI->getParent() == Cxt->getParent())
641       return;
642 
643   // Note: We currently implement two options.  It's not clear which of these
644   // will survive long term, we need data for that.
645   // Option 1 - Try walking the dominator tree looking for conditions which
646   // might apply.  This works well for local conditions (loop guards, etc..),
647   // but not as well for things far from the context instruction (presuming a
648   // low max blocks explored).  If we can set an high enough limit, this would
649   // be all we need.
650   // Option 2 - We restrict out search to those conditions which are uses of
651   // the value we're interested in.  This is independent of dom structure,
652   // but is slightly less powerful without looking through lots of use chains.
653   // It does handle conditions far from the context instruction (e.g. early
654   // function exits on entry) really well though.
655 
656   // Option 1 - Search the dom tree
657   unsigned NumBlocksExplored = 0;
658   BasicBlock *Current = Cxt->getParent();
659   while (true) {
660     // Stop searching if we've gone too far up the chain
661     if (NumBlocksExplored >= DomConditionsMaxDomBlocks)
662       break;
663     NumBlocksExplored++;
664 
665     if (!Q.DT->getNode(Current)->getIDom())
666       break;
667     Current = Q.DT->getNode(Current)->getIDom()->getBlock();
668     if (!Current)
669       // found function entry
670       break;
671 
672     BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator());
673     if (!BI || BI->isUnconditional())
674       continue;
675     ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition());
676     if (!Cmp)
677       continue;
678 
679     // We're looking for conditions that are guaranteed to hold at the context
680     // instruction.  Finding a condition where one path dominates the context
681     // isn't enough because both the true and false cases could merge before
682     // the context instruction we're actually interested in.  Instead, we need
683     // to ensure that the taken *edge* dominates the context instruction.  We
684     // know that the edge must be reachable since we started from a reachable
685     // block.
686     BasicBlock *BB0 = BI->getSuccessor(0);
687     BasicBlockEdge Edge(BI->getParent(), BB0);
688     if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
689       continue;
690 
691     computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
692   }
693 
694   // Option 2 - Search the other uses of V
695   unsigned NumUsesExplored = 0;
696   for (auto U : V->users()) {
697     // Avoid massive lists
698     if (NumUsesExplored >= DomConditionsMaxUses)
699       break;
700     NumUsesExplored++;
701     // Consider only compare instructions uniquely controlling a branch
702     ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
703     if (!Cmp)
704       continue;
705 
706     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
707       continue;
708 
709     for (auto *CmpU : Cmp->users()) {
710       BranchInst *BI = dyn_cast<BranchInst>(CmpU);
711       if (!BI || BI->isUnconditional())
712         continue;
713       // We're looking for conditions that are guaranteed to hold at the
714       // context instruction.  Finding a condition where one path dominates
715       // the context isn't enough because both the true and false cases could
716       // merge before the context instruction we're actually interested in.
717       // Instead, we need to ensure that the taken *edge* dominates the context
718       // instruction.
719       BasicBlock *BB0 = BI->getSuccessor(0);
720       BasicBlockEdge Edge(BI->getParent(), BB0);
721       if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent()))
722         continue;
723 
724       computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q);
725     }
726   }
727 }
728 
729 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
730                                        APInt &KnownOne, unsigned Depth,
731                                        const Query &Q) {
732   // Use of assumptions is context-sensitive. If we don't have a context, we
733   // cannot use them!
734   if (!Q.AC || !Q.CxtI)
735     return;
736 
737   unsigned BitWidth = KnownZero.getBitWidth();
738 
739   for (auto &AssumeVH : Q.AC->assumptions()) {
740     if (!AssumeVH)
741       continue;
742     CallInst *I = cast<CallInst>(AssumeVH);
743     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
744            "Got assumption for the wrong function!");
745     if (Q.isExcluded(I))
746       continue;
747 
748     // Warning: This loop can end up being somewhat performance sensetive.
749     // We're running this loop for once for each value queried resulting in a
750     // runtime of ~O(#assumes * #values).
751 
752     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
753            "must be an assume intrinsic");
754 
755     Value *Arg = I->getArgOperand(0);
756 
757     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       assert(BitWidth == 1 && "assume operand is not i1?");
759       KnownZero.clearAllBits();
760       KnownOne.setAllBits();
761       return;
762     }
763 
764     // The remaining tests are all recursive, so bail out if we hit the limit.
765     if (Depth == MaxDepth)
766       continue;
767 
768     Value *A, *B;
769     auto m_V = m_CombineOr(m_Specific(V),
770                            m_CombineOr(m_PtrToInt(m_Specific(V)),
771                            m_BitCast(m_Specific(V))));
772 
773     CmpInst::Predicate Pred;
774     ConstantInt *C;
775     // assume(v = a)
776     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
777         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
778       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
779       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
780       KnownZero |= RHSKnownZero;
781       KnownOne  |= RHSKnownOne;
782     // assume(v & b = a)
783     } else if (match(Arg,
784                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
785                Pred == ICmpInst::ICMP_EQ &&
786                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
788       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
789       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
790       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
791 
792       // For those bits in the mask that are known to be one, we can propagate
793       // known bits from the RHS to V.
794       KnownZero |= RHSKnownZero & MaskKnownOne;
795       KnownOne  |= RHSKnownOne  & MaskKnownOne;
796     // assume(~(v & b) = a)
797     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
798                                    m_Value(A))) &&
799                Pred == ICmpInst::ICMP_EQ &&
800                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
802       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
803       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
804       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
805 
806       // For those bits in the mask that are known to be one, we can propagate
807       // inverted known bits from the RHS to V.
808       KnownZero |= RHSKnownOne  & MaskKnownOne;
809       KnownOne  |= RHSKnownZero & MaskKnownOne;
810     // assume(v | b = a)
811     } else if (match(Arg,
812                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
813                Pred == ICmpInst::ICMP_EQ &&
814                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
815       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
816       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
817       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
818       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
819 
820       // For those bits in B that are known to be zero, we can propagate known
821       // bits from the RHS to V.
822       KnownZero |= RHSKnownZero & BKnownZero;
823       KnownOne  |= RHSKnownOne  & BKnownZero;
824     // assume(~(v | b) = a)
825     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
826                                    m_Value(A))) &&
827                Pred == ICmpInst::ICMP_EQ &&
828                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
829       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
830       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
831       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
832       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
833 
834       // For those bits in B that are known to be zero, we can propagate
835       // inverted known bits from the RHS to V.
836       KnownZero |= RHSKnownOne  & BKnownZero;
837       KnownOne  |= RHSKnownZero & BKnownZero;
838     // assume(v ^ b = a)
839     } else if (match(Arg,
840                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
841                Pred == ICmpInst::ICMP_EQ &&
842                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
843       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
844       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
845       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
846       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
847 
848       // For those bits in B that are known to be zero, we can propagate known
849       // bits from the RHS to V. For those bits in B that are known to be one,
850       // we can propagate inverted known bits from the RHS to V.
851       KnownZero |= RHSKnownZero & BKnownZero;
852       KnownOne  |= RHSKnownOne  & BKnownZero;
853       KnownZero |= RHSKnownOne  & BKnownOne;
854       KnownOne  |= RHSKnownZero & BKnownOne;
855     // assume(~(v ^ b) = a)
856     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
857                                    m_Value(A))) &&
858                Pred == ICmpInst::ICMP_EQ &&
859                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
860       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
861       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
862       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
863       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
864 
865       // For those bits in B that are known to be zero, we can propagate
866       // inverted known bits from the RHS to V. For those bits in B that are
867       // known to be one, we can propagate known bits from the RHS to V.
868       KnownZero |= RHSKnownOne  & BKnownZero;
869       KnownOne  |= RHSKnownZero & BKnownZero;
870       KnownZero |= RHSKnownZero & BKnownOne;
871       KnownOne  |= RHSKnownOne  & BKnownOne;
872     // assume(v << c = a)
873     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
874                                    m_Value(A))) &&
875                Pred == ICmpInst::ICMP_EQ &&
876                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
877       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
878       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
879       // For those bits in RHS that are known, we can propagate them to known
880       // bits in V shifted to the right by C.
881       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
882       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
883     // assume(~(v << c) = a)
884     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
885                                    m_Value(A))) &&
886                Pred == ICmpInst::ICMP_EQ &&
887                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
888       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
889       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
890       // For those bits in RHS that are known, we can propagate them inverted
891       // to known bits in V shifted to the right by C.
892       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
893       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
894     // assume(v >> c = a)
895     } else if (match(Arg,
896                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
897                                                 m_AShr(m_V, m_ConstantInt(C))),
898                               m_Value(A))) &&
899                Pred == ICmpInst::ICMP_EQ &&
900                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
901       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
902       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
903       // For those bits in RHS that are known, we can propagate them to known
904       // bits in V shifted to the right by C.
905       KnownZero |= RHSKnownZero << C->getZExtValue();
906       KnownOne  |= RHSKnownOne  << C->getZExtValue();
907     // assume(~(v >> c) = a)
908     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
909                                              m_LShr(m_V, m_ConstantInt(C)),
910                                              m_AShr(m_V, m_ConstantInt(C)))),
911                                    m_Value(A))) &&
912                Pred == ICmpInst::ICMP_EQ &&
913                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
914       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
915       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
916       // For those bits in RHS that are known, we can propagate them inverted
917       // to known bits in V shifted to the right by C.
918       KnownZero |= RHSKnownOne  << C->getZExtValue();
919       KnownOne  |= RHSKnownZero << C->getZExtValue();
920     // assume(v >=_s c) where c is non-negative
921     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
922                Pred == ICmpInst::ICMP_SGE &&
923                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
924       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
925       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
926 
927       if (RHSKnownZero.isNegative()) {
928         // We know that the sign bit is zero.
929         KnownZero |= APInt::getSignBit(BitWidth);
930       }
931     // assume(v >_s c) where c is at least -1.
932     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
933                Pred == ICmpInst::ICMP_SGT &&
934                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
935       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
936       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
937 
938       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
939         // We know that the sign bit is zero.
940         KnownZero |= APInt::getSignBit(BitWidth);
941       }
942     // assume(v <=_s c) where c is negative
943     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
944                Pred == ICmpInst::ICMP_SLE &&
945                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
946       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
947       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
948 
949       if (RHSKnownOne.isNegative()) {
950         // We know that the sign bit is one.
951         KnownOne |= APInt::getSignBit(BitWidth);
952       }
953     // assume(v <_s c) where c is non-positive
954     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
955                Pred == ICmpInst::ICMP_SLT &&
956                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
957       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
958       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
959 
960       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
961         // We know that the sign bit is one.
962         KnownOne |= APInt::getSignBit(BitWidth);
963       }
964     // assume(v <=_u c)
965     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
966                Pred == ICmpInst::ICMP_ULE &&
967                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
968       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
969       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
970 
971       // Whatever high bits in c are zero are known to be zero.
972       KnownZero |=
973         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
974     // assume(v <_u c)
975     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
976                Pred == ICmpInst::ICMP_ULT &&
977                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
978       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
979       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
980 
981       // Whatever high bits in c are zero are known to be zero (if c is a power
982       // of 2, then one more).
983       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
984         KnownZero |=
985           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
986       else
987         KnownZero |=
988           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
989     }
990   }
991 }
992 
993 // Compute known bits from a shift operator, including those with a
994 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
995 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
996 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
997 // functors that, given the known-zero or known-one bits respectively, and a
998 // shift amount, compute the implied known-zero or known-one bits of the shift
999 // operator's result respectively for that shift amount. The results from calling
1000 // KZF and KOF are conservatively combined for all permitted shift amounts.
1001 template <typename KZFunctor, typename KOFunctor>
1002 static void computeKnownBitsFromShiftOperator(Operator *I,
1003               APInt &KnownZero, APInt &KnownOne,
1004               APInt &KnownZero2, APInt &KnownOne2,
1005               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
1006   unsigned BitWidth = KnownZero.getBitWidth();
1007 
1008   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1009     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
1010 
1011     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1012     KnownZero = KZF(KnownZero, ShiftAmt);
1013     KnownOne  = KOF(KnownOne, ShiftAmt);
1014     return;
1015   }
1016 
1017   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1018 
1019   // Note: We cannot use KnownZero.getLimitedValue() here, because if
1020   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1021   // limit value (which implies all bits are known).
1022   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
1023   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
1024 
1025   // It would be more-clearly correct to use the two temporaries for this
1026   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1027   KnownZero.clearAllBits(), KnownOne.clearAllBits();
1028 
1029   // If we know the shifter operand is nonzero, we can sometimes infer more
1030   // known bits. However this is expensive to compute, so be lazy about it and
1031   // only compute it when absolutely necessary.
1032   Optional<bool> ShifterOperandIsNonZero;
1033 
1034   // Early exit if we can't constrain any well-defined shift amount.
1035   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
1036     ShifterOperandIsNonZero =
1037         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1038     if (!*ShifterOperandIsNonZero)
1039       return;
1040   }
1041 
1042   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1043 
1044   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
1045   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1046     // Combine the shifted known input bits only for those shift amounts
1047     // compatible with its known constraints.
1048     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1049       continue;
1050     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1051       continue;
1052     // If we know the shifter is nonzero, we may be able to infer more known
1053     // bits. This check is sunk down as far as possible to avoid the expensive
1054     // call to isKnownNonZero if the cheaper checks above fail.
1055     if (ShiftAmt == 0) {
1056       if (!ShifterOperandIsNonZero.hasValue())
1057         ShifterOperandIsNonZero =
1058             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
1059       if (*ShifterOperandIsNonZero)
1060         continue;
1061     }
1062 
1063     KnownZero &= KZF(KnownZero2, ShiftAmt);
1064     KnownOne  &= KOF(KnownOne2, ShiftAmt);
1065   }
1066 
1067   // If there are no compatible shift amounts, then we've proven that the shift
1068   // amount must be >= the BitWidth, and the result is undefined. We could
1069   // return anything we'd like, but we need to make sure the sets of known bits
1070   // stay disjoint (it should be better for some other code to actually
1071   // propagate the undef than to pick a value here using known bits).
1072   if ((KnownZero & KnownOne) != 0)
1073     KnownZero.clearAllBits(), KnownOne.clearAllBits();
1074 }
1075 
1076 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
1077                                          APInt &KnownOne, unsigned Depth,
1078                                          const Query &Q) {
1079   unsigned BitWidth = KnownZero.getBitWidth();
1080 
1081   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
1082   switch (I->getOpcode()) {
1083   default: break;
1084   case Instruction::Load:
1085     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
1086       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1087     break;
1088   case Instruction::And: {
1089     // If either the LHS or the RHS are Zero, the result is zero.
1090     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1091     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1092 
1093     // Output known-1 bits are only known if set in both the LHS & RHS.
1094     KnownOne &= KnownOne2;
1095     // Output known-0 are known to be clear if zero in either the LHS | RHS.
1096     KnownZero |= KnownZero2;
1097 
1098     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1099     // here we handle the more general case of adding any odd number by
1100     // matching the form add(x, add(x, y)) where y is odd.
1101     // TODO: This could be generalized to clearing any bit set in y where the
1102     // following bit is known to be unset in y.
1103     Value *Y = nullptr;
1104     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
1105                                       m_Value(Y))) ||
1106         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
1107                                       m_Value(Y)))) {
1108       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
1109       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
1110       if (KnownOne3.countTrailingOnes() > 0)
1111         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
1112     }
1113     break;
1114   }
1115   case Instruction::Or: {
1116     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1117     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1118 
1119     // Output known-0 bits are only known if clear in both the LHS & RHS.
1120     KnownZero &= KnownZero2;
1121     // Output known-1 are known to be set if set in either the LHS | RHS.
1122     KnownOne |= KnownOne2;
1123     break;
1124   }
1125   case Instruction::Xor: {
1126     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
1127     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1128 
1129     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1130     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1131     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1132     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1133     KnownZero = KnownZeroOut;
1134     break;
1135   }
1136   case Instruction::Mul: {
1137     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1138     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
1139                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
1140     break;
1141   }
1142   case Instruction::UDiv: {
1143     // For the purposes of computing leading zeros we can conservatively
1144     // treat a udiv as a logical right shift by the power of 2 known to
1145     // be less than the denominator.
1146     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1147     unsigned LeadZ = KnownZero2.countLeadingOnes();
1148 
1149     KnownOne2.clearAllBits();
1150     KnownZero2.clearAllBits();
1151     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1152     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
1153     if (RHSUnknownLeadingOnes != BitWidth)
1154       LeadZ = std::min(BitWidth,
1155                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
1156 
1157     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
1158     break;
1159   }
1160   case Instruction::Select:
1161     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
1162     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1163 
1164     // Only known if known in both the LHS and RHS.
1165     KnownOne &= KnownOne2;
1166     KnownZero &= KnownZero2;
1167     break;
1168   case Instruction::FPTrunc:
1169   case Instruction::FPExt:
1170   case Instruction::FPToUI:
1171   case Instruction::FPToSI:
1172   case Instruction::SIToFP:
1173   case Instruction::UIToFP:
1174     break; // Can't work with floating point.
1175   case Instruction::PtrToInt:
1176   case Instruction::IntToPtr:
1177   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
1178     // FALL THROUGH and handle them the same as zext/trunc.
1179   case Instruction::ZExt:
1180   case Instruction::Trunc: {
1181     Type *SrcTy = I->getOperand(0)->getType();
1182 
1183     unsigned SrcBitWidth;
1184     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1185     // which fall through here.
1186     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1187 
1188     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1189     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1190     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1191     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1192     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1193     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1194     // Any top bits are known to be zero.
1195     if (BitWidth > SrcBitWidth)
1196       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1197     break;
1198   }
1199   case Instruction::BitCast: {
1200     Type *SrcTy = I->getOperand(0)->getType();
1201     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() ||
1202          SrcTy->isFloatingPointTy()) &&
1203         // TODO: For now, not handling conversions like:
1204         // (bitcast i64 %x to <2 x i32>)
1205         !I->getType()->isVectorTy()) {
1206       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1207       break;
1208     }
1209     break;
1210   }
1211   case Instruction::SExt: {
1212     // Compute the bits in the result that are not present in the input.
1213     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1214 
1215     KnownZero = KnownZero.trunc(SrcBitWidth);
1216     KnownOne = KnownOne.trunc(SrcBitWidth);
1217     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1218     KnownZero = KnownZero.zext(BitWidth);
1219     KnownOne = KnownOne.zext(BitWidth);
1220 
1221     // If the sign bit of the input is known set or clear, then we know the
1222     // top bits of the result.
1223     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1224       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1225     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1226       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1227     break;
1228   }
1229   case Instruction::Shl: {
1230     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1231     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1232       return (KnownZero << ShiftAmt) |
1233              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1234     };
1235 
1236     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1237       return KnownOne << ShiftAmt;
1238     };
1239 
1240     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1241                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1242                                       KOF);
1243     break;
1244   }
1245   case Instruction::LShr: {
1246     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1247     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1248       return APIntOps::lshr(KnownZero, ShiftAmt) |
1249              // High bits known zero.
1250              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1251     };
1252 
1253     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1254       return APIntOps::lshr(KnownOne, ShiftAmt);
1255     };
1256 
1257     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1258                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1259                                       KOF);
1260     break;
1261   }
1262   case Instruction::AShr: {
1263     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1264     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1265       return APIntOps::ashr(KnownZero, ShiftAmt);
1266     };
1267 
1268     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1269       return APIntOps::ashr(KnownOne, ShiftAmt);
1270     };
1271 
1272     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1273                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1274                                       KOF);
1275     break;
1276   }
1277   case Instruction::Sub: {
1278     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1279     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1280                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1281                            Q);
1282     break;
1283   }
1284   case Instruction::Add: {
1285     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1286     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1287                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1288                            Q);
1289     break;
1290   }
1291   case Instruction::SRem:
1292     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1293       APInt RA = Rem->getValue().abs();
1294       if (RA.isPowerOf2()) {
1295         APInt LowBits = RA - 1;
1296         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1297                          Q);
1298 
1299         // The low bits of the first operand are unchanged by the srem.
1300         KnownZero = KnownZero2 & LowBits;
1301         KnownOne = KnownOne2 & LowBits;
1302 
1303         // If the first operand is non-negative or has all low bits zero, then
1304         // the upper bits are all zero.
1305         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1306           KnownZero |= ~LowBits;
1307 
1308         // If the first operand is negative and not all low bits are zero, then
1309         // the upper bits are all one.
1310         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1311           KnownOne |= ~LowBits;
1312 
1313         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1314       }
1315     }
1316 
1317     // The sign bit is the LHS's sign bit, except when the result of the
1318     // remainder is zero.
1319     if (KnownZero.isNonNegative()) {
1320       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1321       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1322                        Q);
1323       // If it's known zero, our sign bit is also zero.
1324       if (LHSKnownZero.isNegative())
1325         KnownZero.setBit(BitWidth - 1);
1326     }
1327 
1328     break;
1329   case Instruction::URem: {
1330     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1331       APInt RA = Rem->getValue();
1332       if (RA.isPowerOf2()) {
1333         APInt LowBits = (RA - 1);
1334         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1335         KnownZero |= ~LowBits;
1336         KnownOne &= LowBits;
1337         break;
1338       }
1339     }
1340 
1341     // Since the result is less than or equal to either operand, any leading
1342     // zero bits in either operand must also exist in the result.
1343     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1344     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1345 
1346     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1347                                 KnownZero2.countLeadingOnes());
1348     KnownOne.clearAllBits();
1349     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1350     break;
1351   }
1352 
1353   case Instruction::Alloca: {
1354     AllocaInst *AI = cast<AllocaInst>(I);
1355     unsigned Align = AI->getAlignment();
1356     if (Align == 0)
1357       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1358 
1359     if (Align > 0)
1360       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1361     break;
1362   }
1363   case Instruction::GetElementPtr: {
1364     // Analyze all of the subscripts of this getelementptr instruction
1365     // to determine if we can prove known low zero bits.
1366     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1367     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1368                      Q);
1369     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1370 
1371     gep_type_iterator GTI = gep_type_begin(I);
1372     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1373       Value *Index = I->getOperand(i);
1374       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1375         // Handle struct member offset arithmetic.
1376 
1377         // Handle case when index is vector zeroinitializer
1378         Constant *CIndex = cast<Constant>(Index);
1379         if (CIndex->isZeroValue())
1380           continue;
1381 
1382         if (CIndex->getType()->isVectorTy())
1383           Index = CIndex->getSplatValue();
1384 
1385         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1386         const StructLayout *SL = Q.DL.getStructLayout(STy);
1387         uint64_t Offset = SL->getElementOffset(Idx);
1388         TrailZ = std::min<unsigned>(TrailZ,
1389                                     countTrailingZeros(Offset));
1390       } else {
1391         // Handle array index arithmetic.
1392         Type *IndexedTy = GTI.getIndexedType();
1393         if (!IndexedTy->isSized()) {
1394           TrailZ = 0;
1395           break;
1396         }
1397         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1398         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1399         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1400         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1401         TrailZ = std::min(TrailZ,
1402                           unsigned(countTrailingZeros(TypeSize) +
1403                                    LocalKnownZero.countTrailingOnes()));
1404       }
1405     }
1406 
1407     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1408     break;
1409   }
1410   case Instruction::PHI: {
1411     PHINode *P = cast<PHINode>(I);
1412     // Handle the case of a simple two-predecessor recurrence PHI.
1413     // There's a lot more that could theoretically be done here, but
1414     // this is sufficient to catch some interesting cases.
1415     if (P->getNumIncomingValues() == 2) {
1416       for (unsigned i = 0; i != 2; ++i) {
1417         Value *L = P->getIncomingValue(i);
1418         Value *R = P->getIncomingValue(!i);
1419         Operator *LU = dyn_cast<Operator>(L);
1420         if (!LU)
1421           continue;
1422         unsigned Opcode = LU->getOpcode();
1423         // Check for operations that have the property that if
1424         // both their operands have low zero bits, the result
1425         // will have low zero bits.
1426         if (Opcode == Instruction::Add ||
1427             Opcode == Instruction::Sub ||
1428             Opcode == Instruction::And ||
1429             Opcode == Instruction::Or ||
1430             Opcode == Instruction::Mul) {
1431           Value *LL = LU->getOperand(0);
1432           Value *LR = LU->getOperand(1);
1433           // Find a recurrence.
1434           if (LL == I)
1435             L = LR;
1436           else if (LR == I)
1437             L = LL;
1438           else
1439             break;
1440           // Ok, we have a PHI of the form L op= R. Check for low
1441           // zero bits.
1442           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1443 
1444           // We need to take the minimum number of known bits
1445           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1446           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1447 
1448           KnownZero = APInt::getLowBitsSet(BitWidth,
1449                                            std::min(KnownZero2.countTrailingOnes(),
1450                                                     KnownZero3.countTrailingOnes()));
1451           break;
1452         }
1453       }
1454     }
1455 
1456     // Unreachable blocks may have zero-operand PHI nodes.
1457     if (P->getNumIncomingValues() == 0)
1458       break;
1459 
1460     // Otherwise take the unions of the known bit sets of the operands,
1461     // taking conservative care to avoid excessive recursion.
1462     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1463       // Skip if every incoming value references to ourself.
1464       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1465         break;
1466 
1467       KnownZero = APInt::getAllOnesValue(BitWidth);
1468       KnownOne = APInt::getAllOnesValue(BitWidth);
1469       for (Value *IncValue : P->incoming_values()) {
1470         // Skip direct self references.
1471         if (IncValue == P) continue;
1472 
1473         KnownZero2 = APInt(BitWidth, 0);
1474         KnownOne2 = APInt(BitWidth, 0);
1475         // Recurse, but cap the recursion to one level, because we don't
1476         // want to waste time spinning around in loops.
1477         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1478         KnownZero &= KnownZero2;
1479         KnownOne &= KnownOne2;
1480         // If all bits have been ruled out, there's no need to check
1481         // more operands.
1482         if (!KnownZero && !KnownOne)
1483           break;
1484       }
1485     }
1486     break;
1487   }
1488   case Instruction::Call:
1489   case Instruction::Invoke:
1490     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1491       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1492     // If a range metadata is attached to this IntrinsicInst, intersect the
1493     // explicit range specified by the metadata and the implicit range of
1494     // the intrinsic.
1495     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1496       switch (II->getIntrinsicID()) {
1497       default: break;
1498       case Intrinsic::bswap:
1499         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1500         KnownZero |= KnownZero2.byteSwap();
1501         KnownOne |= KnownOne2.byteSwap();
1502         break;
1503       case Intrinsic::ctlz:
1504       case Intrinsic::cttz: {
1505         unsigned LowBits = Log2_32(BitWidth)+1;
1506         // If this call is undefined for 0, the result will be less than 2^n.
1507         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1508           LowBits -= 1;
1509         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1510         break;
1511       }
1512       case Intrinsic::ctpop: {
1513         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1514         // We can bound the space the count needs.  Also, bits known to be zero
1515         // can't contribute to the population.
1516         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1517         unsigned LeadingZeros =
1518           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1519         assert(LeadingZeros <= BitWidth);
1520         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1521         KnownOne &= ~KnownZero;
1522         // TODO: we could bound KnownOne using the lower bound on the number
1523         // of bits which might be set provided by popcnt KnownOne2.
1524         break;
1525       }
1526       case Intrinsic::fabs: {
1527         Type *Ty = II->getType();
1528         APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits());
1529         KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit);
1530         break;
1531       }
1532       case Intrinsic::x86_sse42_crc32_64_64:
1533         KnownZero |= APInt::getHighBitsSet(64, 32);
1534         break;
1535       }
1536     }
1537     break;
1538   case Instruction::ExtractValue:
1539     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1540       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1541       if (EVI->getNumIndices() != 1) break;
1542       if (EVI->getIndices()[0] == 0) {
1543         switch (II->getIntrinsicID()) {
1544         default: break;
1545         case Intrinsic::uadd_with_overflow:
1546         case Intrinsic::sadd_with_overflow:
1547           computeKnownBitsAddSub(true, II->getArgOperand(0),
1548                                  II->getArgOperand(1), false, KnownZero,
1549                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1550           break;
1551         case Intrinsic::usub_with_overflow:
1552         case Intrinsic::ssub_with_overflow:
1553           computeKnownBitsAddSub(false, II->getArgOperand(0),
1554                                  II->getArgOperand(1), false, KnownZero,
1555                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1556           break;
1557         case Intrinsic::umul_with_overflow:
1558         case Intrinsic::smul_with_overflow:
1559           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1560                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1561                               Q);
1562           break;
1563         }
1564       }
1565     }
1566   }
1567 }
1568 
1569 static unsigned getAlignment(const Value *V, const DataLayout &DL) {
1570   unsigned Align = 0;
1571   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1572     Align = GO->getAlignment();
1573     if (Align == 0) {
1574       if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
1575         Type *ObjectType = GVar->getValueType();
1576         if (ObjectType->isSized()) {
1577           // If the object is defined in the current Module, we'll be giving
1578           // it the preferred alignment. Otherwise, we have to assume that it
1579           // may only have the minimum ABI alignment.
1580           if (GVar->isStrongDefinitionForLinker())
1581             Align = DL.getPreferredAlignment(GVar);
1582           else
1583             Align = DL.getABITypeAlignment(ObjectType);
1584         }
1585       }
1586     }
1587   } else if (const Argument *A = dyn_cast<Argument>(V)) {
1588     Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0;
1589 
1590     if (!Align && A->hasStructRetAttr()) {
1591       // An sret parameter has at least the ABI alignment of the return type.
1592       Type *EltTy = cast<PointerType>(A->getType())->getElementType();
1593       if (EltTy->isSized())
1594         Align = DL.getABITypeAlignment(EltTy);
1595     }
1596   } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
1597     Align = AI->getAlignment();
1598   else if (auto CS = ImmutableCallSite(V))
1599     Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex);
1600   else if (const LoadInst *LI = dyn_cast<LoadInst>(V))
1601     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
1602       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
1603       Align = CI->getLimitedValue();
1604     }
1605 
1606   return Align;
1607 }
1608 
1609 /// Determine which bits of V are known to be either zero or one and return
1610 /// them in the KnownZero/KnownOne bit sets.
1611 ///
1612 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1613 /// we cannot optimize based on the assumption that it is zero without changing
1614 /// it to be an explicit zero.  If we don't change it to zero, other code could
1615 /// optimized based on the contradictory assumption that it is non-zero.
1616 /// Because instcombine aggressively folds operations with undef args anyway,
1617 /// this won't lose us code quality.
1618 ///
1619 /// This function is defined on values with integer type, values with pointer
1620 /// type, and vectors of integers.  In the case
1621 /// where V is a vector, known zero, and known one values are the
1622 /// same width as the vector element, and the bit is set only if it is true
1623 /// for all of the elements in the vector.
1624 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1625                       unsigned Depth, const Query &Q) {
1626   assert(V && "No Value?");
1627   assert(Depth <= MaxDepth && "Limit Search Depth");
1628   unsigned BitWidth = KnownZero.getBitWidth();
1629 
1630   assert((V->getType()->isIntOrIntVectorTy() ||
1631           V->getType()->isFPOrFPVectorTy() ||
1632           V->getType()->getScalarType()->isPointerTy()) &&
1633          "Not integer, floating point, or pointer type!");
1634   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1635          (!V->getType()->isIntOrIntVectorTy() ||
1636           V->getType()->getScalarSizeInBits() == BitWidth) &&
1637          KnownZero.getBitWidth() == BitWidth &&
1638          KnownOne.getBitWidth() == BitWidth &&
1639          "V, KnownOne and KnownZero should have same BitWidth");
1640 
1641   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1642     // We know all of the bits for a constant!
1643     KnownOne = CI->getValue();
1644     KnownZero = ~KnownOne;
1645     return;
1646   }
1647   // Null and aggregate-zero are all-zeros.
1648   if (isa<ConstantPointerNull>(V) ||
1649       isa<ConstantAggregateZero>(V)) {
1650     KnownOne.clearAllBits();
1651     KnownZero = APInt::getAllOnesValue(BitWidth);
1652     return;
1653   }
1654   // Handle a constant vector by taking the intersection of the known bits of
1655   // each element.  There is no real need to handle ConstantVector here, because
1656   // we don't handle undef in any particularly useful way.
1657   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1658     // We know that CDS must be a vector of integers. Take the intersection of
1659     // each element.
1660     KnownZero.setAllBits(); KnownOne.setAllBits();
1661     APInt Elt(KnownZero.getBitWidth(), 0);
1662     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1663       Elt = CDS->getElementAsInteger(i);
1664       KnownZero &= ~Elt;
1665       KnownOne &= Elt;
1666     }
1667     return;
1668   }
1669 
1670   // Start out not knowing anything.
1671   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1672 
1673   // Limit search depth.
1674   // All recursive calls that increase depth must come after this.
1675   if (Depth == MaxDepth)
1676     return;
1677 
1678   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1679   // the bits of its aliasee.
1680   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1681     if (!GA->mayBeOverridden())
1682       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1683     return;
1684   }
1685 
1686   if (Operator *I = dyn_cast<Operator>(V))
1687     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1688 
1689   // Aligned pointers have trailing zeros - refine KnownZero set
1690   if (V->getType()->isPointerTy()) {
1691     unsigned Align = getAlignment(V, Q.DL);
1692     if (Align)
1693       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1694   }
1695 
1696   // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition
1697   // strictly refines KnownZero and KnownOne. Therefore, we run them after
1698   // computeKnownBitsFromOperator.
1699 
1700   // Check whether a nearby assume intrinsic can determine some known bits.
1701   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1702 
1703   // Check whether there's a dominating condition which implies something about
1704   // this value at the given context.
1705   if (EnableDomConditions && Depth <= DomConditionsMaxDepth)
1706     computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q);
1707 
1708   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1709 }
1710 
1711 /// Determine whether the sign bit is known to be zero or one.
1712 /// Convenience wrapper around computeKnownBits.
1713 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1714                     unsigned Depth, const Query &Q) {
1715   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1716   if (!BitWidth) {
1717     KnownZero = false;
1718     KnownOne = false;
1719     return;
1720   }
1721   APInt ZeroBits(BitWidth, 0);
1722   APInt OneBits(BitWidth, 0);
1723   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1724   KnownOne = OneBits[BitWidth - 1];
1725   KnownZero = ZeroBits[BitWidth - 1];
1726 }
1727 
1728 /// Return true if the given value is known to have exactly one
1729 /// bit set when defined. For vectors return true if every element is known to
1730 /// be a power of two when defined. Supports values with integer or pointer
1731 /// types and vectors of integers.
1732 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1733                             const Query &Q) {
1734   if (Constant *C = dyn_cast<Constant>(V)) {
1735     if (C->isNullValue())
1736       return OrZero;
1737     if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
1738       return CI->getValue().isPowerOf2();
1739     // TODO: Handle vector constants.
1740   }
1741 
1742   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1743   // it is shifted off the end then the result is undefined.
1744   if (match(V, m_Shl(m_One(), m_Value())))
1745     return true;
1746 
1747   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1748   // bottom.  If it is shifted off the bottom then the result is undefined.
1749   if (match(V, m_LShr(m_SignBit(), m_Value())))
1750     return true;
1751 
1752   // The remaining tests are all recursive, so bail out if we hit the limit.
1753   if (Depth++ == MaxDepth)
1754     return false;
1755 
1756   Value *X = nullptr, *Y = nullptr;
1757   // A shift left or a logical shift right of a power of two is a power of two
1758   // or zero.
1759   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1760                  match(V, m_LShr(m_Value(X), m_Value()))))
1761     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1762 
1763   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1764     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1765 
1766   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1767     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1768            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1769 
1770   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1771     // A power of two and'd with anything is a power of two or zero.
1772     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1773         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1774       return true;
1775     // X & (-X) is always a power of two or zero.
1776     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1777       return true;
1778     return false;
1779   }
1780 
1781   // Adding a power-of-two or zero to the same power-of-two or zero yields
1782   // either the original power-of-two, a larger power-of-two or zero.
1783   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1784     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1785     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1786       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1787           match(X, m_And(m_Value(), m_Specific(Y))))
1788         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1789           return true;
1790       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1791           match(Y, m_And(m_Value(), m_Specific(X))))
1792         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1793           return true;
1794 
1795       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1796       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1797       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1798 
1799       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1800       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1801       // If i8 V is a power of two or zero:
1802       //  ZeroBits: 1 1 1 0 1 1 1 1
1803       // ~ZeroBits: 0 0 0 1 0 0 0 0
1804       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1805         // If OrZero isn't set, we cannot give back a zero result.
1806         // Make sure either the LHS or RHS has a bit set.
1807         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1808           return true;
1809     }
1810   }
1811 
1812   // An exact divide or right shift can only shift off zero bits, so the result
1813   // is a power of two only if the first operand is a power of two and not
1814   // copying a sign bit (sdiv int_min, 2).
1815   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1816       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1817     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1818                                   Depth, Q);
1819   }
1820 
1821   return false;
1822 }
1823 
1824 /// \brief Test whether a GEP's result is known to be non-null.
1825 ///
1826 /// Uses properties inherent in a GEP to try to determine whether it is known
1827 /// to be non-null.
1828 ///
1829 /// Currently this routine does not support vector GEPs.
1830 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1831                               const Query &Q) {
1832   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1833     return false;
1834 
1835   // FIXME: Support vector-GEPs.
1836   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1837 
1838   // If the base pointer is non-null, we cannot walk to a null address with an
1839   // inbounds GEP in address space zero.
1840   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1841     return true;
1842 
1843   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1844   // If so, then the GEP cannot produce a null pointer, as doing so would
1845   // inherently violate the inbounds contract within address space zero.
1846   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1847        GTI != GTE; ++GTI) {
1848     // Struct types are easy -- they must always be indexed by a constant.
1849     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1850       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1851       unsigned ElementIdx = OpC->getZExtValue();
1852       const StructLayout *SL = Q.DL.getStructLayout(STy);
1853       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1854       if (ElementOffset > 0)
1855         return true;
1856       continue;
1857     }
1858 
1859     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1860     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1861       continue;
1862 
1863     // Fast path the constant operand case both for efficiency and so we don't
1864     // increment Depth when just zipping down an all-constant GEP.
1865     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1866       if (!OpC->isZero())
1867         return true;
1868       continue;
1869     }
1870 
1871     // We post-increment Depth here because while isKnownNonZero increments it
1872     // as well, when we pop back up that increment won't persist. We don't want
1873     // to recurse 10k times just because we have 10k GEP operands. We don't
1874     // bail completely out because we want to handle constant GEPs regardless
1875     // of depth.
1876     if (Depth++ >= MaxDepth)
1877       continue;
1878 
1879     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1880       return true;
1881   }
1882 
1883   return false;
1884 }
1885 
1886 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1887 /// ensure that the value it's attached to is never Value?  'RangeType' is
1888 /// is the type of the value described by the range.
1889 static bool rangeMetadataExcludesValue(MDNode* Ranges,
1890                                        const APInt& Value) {
1891   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1892   assert(NumRanges >= 1);
1893   for (unsigned i = 0; i < NumRanges; ++i) {
1894     ConstantInt *Lower =
1895         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1896     ConstantInt *Upper =
1897         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1898     ConstantRange Range(Lower->getValue(), Upper->getValue());
1899     if (Range.contains(Value))
1900       return false;
1901   }
1902   return true;
1903 }
1904 
1905 /// Return true if the given value is known to be non-zero when defined.
1906 /// For vectors return true if every element is known to be non-zero when
1907 /// defined. Supports values with integer or pointer type and vectors of
1908 /// integers.
1909 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1910   if (Constant *C = dyn_cast<Constant>(V)) {
1911     if (C->isNullValue())
1912       return false;
1913     if (isa<ConstantInt>(C))
1914       // Must be non-zero due to null test above.
1915       return true;
1916     // TODO: Handle vectors
1917     return false;
1918   }
1919 
1920   if (Instruction* I = dyn_cast<Instruction>(V)) {
1921     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1922       // If the possible ranges don't contain zero, then the value is
1923       // definitely non-zero.
1924       if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) {
1925         const APInt ZeroValue(Ty->getBitWidth(), 0);
1926         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1927           return true;
1928       }
1929     }
1930   }
1931 
1932   // The remaining tests are all recursive, so bail out if we hit the limit.
1933   if (Depth++ >= MaxDepth)
1934     return false;
1935 
1936   // Check for pointer simplifications.
1937   if (V->getType()->isPointerTy()) {
1938     if (isKnownNonNull(V))
1939       return true;
1940     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1941       if (isGEPKnownNonNull(GEP, Depth, Q))
1942         return true;
1943   }
1944 
1945   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1946 
1947   // X | Y != 0 if X != 0 or Y != 0.
1948   Value *X = nullptr, *Y = nullptr;
1949   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1950     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1951 
1952   // ext X != 0 if X != 0.
1953   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1954     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1955 
1956   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1957   // if the lowest bit is shifted off the end.
1958   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1959     // shl nuw can't remove any non-zero bits.
1960     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1961     if (BO->hasNoUnsignedWrap())
1962       return isKnownNonZero(X, Depth, Q);
1963 
1964     APInt KnownZero(BitWidth, 0);
1965     APInt KnownOne(BitWidth, 0);
1966     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1967     if (KnownOne[0])
1968       return true;
1969   }
1970   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1971   // defined if the sign bit is shifted off the end.
1972   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1973     // shr exact can only shift out zero bits.
1974     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1975     if (BO->isExact())
1976       return isKnownNonZero(X, Depth, Q);
1977 
1978     bool XKnownNonNegative, XKnownNegative;
1979     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1980     if (XKnownNegative)
1981       return true;
1982 
1983     // If the shifter operand is a constant, and all of the bits shifted
1984     // out are known to be zero, and X is known non-zero then at least one
1985     // non-zero bit must remain.
1986     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1987       APInt KnownZero(BitWidth, 0);
1988       APInt KnownOne(BitWidth, 0);
1989       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1990 
1991       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1992       // Is there a known one in the portion not shifted out?
1993       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1994         return true;
1995       // Are all the bits to be shifted out known zero?
1996       if (KnownZero.countTrailingOnes() >= ShiftVal)
1997         return isKnownNonZero(X, Depth, Q);
1998     }
1999   }
2000   // div exact can only produce a zero if the dividend is zero.
2001   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2002     return isKnownNonZero(X, Depth, Q);
2003   }
2004   // X + Y.
2005   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2006     bool XKnownNonNegative, XKnownNegative;
2007     bool YKnownNonNegative, YKnownNegative;
2008     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
2009     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
2010 
2011     // If X and Y are both non-negative (as signed values) then their sum is not
2012     // zero unless both X and Y are zero.
2013     if (XKnownNonNegative && YKnownNonNegative)
2014       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2015         return true;
2016 
2017     // If X and Y are both negative (as signed values) then their sum is not
2018     // zero unless both X and Y equal INT_MIN.
2019     if (BitWidth && XKnownNegative && YKnownNegative) {
2020       APInt KnownZero(BitWidth, 0);
2021       APInt KnownOne(BitWidth, 0);
2022       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2023       // The sign bit of X is set.  If some other bit is set then X is not equal
2024       // to INT_MIN.
2025       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
2026       if ((KnownOne & Mask) != 0)
2027         return true;
2028       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2029       // to INT_MIN.
2030       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
2031       if ((KnownOne & Mask) != 0)
2032         return true;
2033     }
2034 
2035     // The sum of a non-negative number and a power of two is not zero.
2036     if (XKnownNonNegative &&
2037         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2038       return true;
2039     if (YKnownNonNegative &&
2040         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2041       return true;
2042   }
2043   // X * Y.
2044   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2045     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2046     // If X and Y are non-zero then so is X * Y as long as the multiplication
2047     // does not overflow.
2048     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
2049         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2050       return true;
2051   }
2052   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2053   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2054     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2055         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2056       return true;
2057   }
2058   // PHI
2059   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2060     // Try and detect a recurrence that monotonically increases from a
2061     // starting value, as these are common as induction variables.
2062     if (PN->getNumIncomingValues() == 2) {
2063       Value *Start = PN->getIncomingValue(0);
2064       Value *Induction = PN->getIncomingValue(1);
2065       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2066         std::swap(Start, Induction);
2067       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2068         if (!C->isZero() && !C->isNegative()) {
2069           ConstantInt *X;
2070           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2071                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2072               !X->isNegative())
2073             return true;
2074         }
2075       }
2076     }
2077     // Check if all incoming values are non-zero constant.
2078     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
2079       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
2080     });
2081     if (AllNonZeroConstants)
2082       return true;
2083   }
2084 
2085   if (!BitWidth) return false;
2086   APInt KnownZero(BitWidth, 0);
2087   APInt KnownOne(BitWidth, 0);
2088   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2089   return KnownOne != 0;
2090 }
2091 
2092 /// Return true if V2 == V1 + X, where X is known non-zero.
2093 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
2094   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2095   if (!BO || BO->getOpcode() != Instruction::Add)
2096     return false;
2097   Value *Op = nullptr;
2098   if (V2 == BO->getOperand(0))
2099     Op = BO->getOperand(1);
2100   else if (V2 == BO->getOperand(1))
2101     Op = BO->getOperand(0);
2102   else
2103     return false;
2104   return isKnownNonZero(Op, 0, Q);
2105 }
2106 
2107 /// Return true if it is known that V1 != V2.
2108 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
2109   if (V1->getType()->isVectorTy() || V1 == V2)
2110     return false;
2111   if (V1->getType() != V2->getType())
2112     // We can't look through casts yet.
2113     return false;
2114   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2115     return true;
2116 
2117   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2118     // Are any known bits in V1 contradictory to known bits in V2? If V1
2119     // has a known zero where V2 has a known one, they must not be equal.
2120     auto BitWidth = Ty->getBitWidth();
2121     APInt KnownZero1(BitWidth, 0);
2122     APInt KnownOne1(BitWidth, 0);
2123     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2124     APInt KnownZero2(BitWidth, 0);
2125     APInt KnownOne2(BitWidth, 0);
2126     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2127 
2128     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2129     if (OppositeBits.getBoolValue())
2130       return true;
2131   }
2132   return false;
2133 }
2134 
2135 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2136 /// simplify operations downstream. Mask is known to be zero for bits that V
2137 /// cannot have.
2138 ///
2139 /// This function is defined on values with integer type, values with pointer
2140 /// type, and vectors of integers.  In the case
2141 /// where V is a vector, the mask, known zero, and known one values are the
2142 /// same width as the vector element, and the bit is set only if it is true
2143 /// for all of the elements in the vector.
2144 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
2145                        const Query &Q) {
2146   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2147   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2148   return (KnownZero & Mask) == Mask;
2149 }
2150 
2151 
2152 
2153 /// Return the number of times the sign bit of the register is replicated into
2154 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2155 /// (itself), but other cases can give us information. For example, immediately
2156 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2157 /// other, so we return 3.
2158 ///
2159 /// 'Op' must have a scalar integer type.
2160 ///
2161 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
2162   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2163   unsigned Tmp, Tmp2;
2164   unsigned FirstAnswer = 1;
2165 
2166   // Note that ConstantInt is handled by the general computeKnownBits case
2167   // below.
2168 
2169   if (Depth == 6)
2170     return 1;  // Limit search depth.
2171 
2172   Operator *U = dyn_cast<Operator>(V);
2173   switch (Operator::getOpcode(V)) {
2174   default: break;
2175   case Instruction::SExt:
2176     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2177     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2178 
2179   case Instruction::SDiv: {
2180     const APInt *Denominator;
2181     // sdiv X, C -> adds log(C) sign bits.
2182     if (match(U->getOperand(1), m_APInt(Denominator))) {
2183 
2184       // Ignore non-positive denominator.
2185       if (!Denominator->isStrictlyPositive())
2186         break;
2187 
2188       // Calculate the incoming numerator bits.
2189       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2190 
2191       // Add floor(log(C)) bits to the numerator bits.
2192       return std::min(TyBits, NumBits + Denominator->logBase2());
2193     }
2194     break;
2195   }
2196 
2197   case Instruction::SRem: {
2198     const APInt *Denominator;
2199     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2200     // positive constant.  This let us put a lower bound on the number of sign
2201     // bits.
2202     if (match(U->getOperand(1), m_APInt(Denominator))) {
2203 
2204       // Ignore non-positive denominator.
2205       if (!Denominator->isStrictlyPositive())
2206         break;
2207 
2208       // Calculate the incoming numerator bits. SRem by a positive constant
2209       // can't lower the number of sign bits.
2210       unsigned NumrBits =
2211           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2212 
2213       // Calculate the leading sign bit constraints by examining the
2214       // denominator.  Given that the denominator is positive, there are two
2215       // cases:
2216       //
2217       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2218       //     (1 << ceilLogBase2(C)).
2219       //
2220       //  2. the numerator is negative.  Then the result range is (-C,0] and
2221       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2222       //
2223       // Thus a lower bound on the number of sign bits is `TyBits -
2224       // ceilLogBase2(C)`.
2225 
2226       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2227       return std::max(NumrBits, ResBits);
2228     }
2229     break;
2230   }
2231 
2232   case Instruction::AShr: {
2233     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2234     // ashr X, C   -> adds C sign bits.  Vectors too.
2235     const APInt *ShAmt;
2236     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2237       Tmp += ShAmt->getZExtValue();
2238       if (Tmp > TyBits) Tmp = TyBits;
2239     }
2240     return Tmp;
2241   }
2242   case Instruction::Shl: {
2243     const APInt *ShAmt;
2244     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2245       // shl destroys sign bits.
2246       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2247       Tmp2 = ShAmt->getZExtValue();
2248       if (Tmp2 >= TyBits ||      // Bad shift.
2249           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2250       return Tmp - Tmp2;
2251     }
2252     break;
2253   }
2254   case Instruction::And:
2255   case Instruction::Or:
2256   case Instruction::Xor:    // NOT is handled here.
2257     // Logical binary ops preserve the number of sign bits at the worst.
2258     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2259     if (Tmp != 1) {
2260       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2261       FirstAnswer = std::min(Tmp, Tmp2);
2262       // We computed what we know about the sign bits as our first
2263       // answer. Now proceed to the generic code that uses
2264       // computeKnownBits, and pick whichever answer is better.
2265     }
2266     break;
2267 
2268   case Instruction::Select:
2269     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2270     if (Tmp == 1) return 1;  // Early out.
2271     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2272     return std::min(Tmp, Tmp2);
2273 
2274   case Instruction::Add:
2275     // Add can have at most one carry bit.  Thus we know that the output
2276     // is, at worst, one more bit than the inputs.
2277     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2278     if (Tmp == 1) return 1;  // Early out.
2279 
2280     // Special case decrementing a value (ADD X, -1):
2281     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2282       if (CRHS->isAllOnesValue()) {
2283         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2284         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2285 
2286         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2287         // sign bits set.
2288         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2289           return TyBits;
2290 
2291         // If we are subtracting one from a positive number, there is no carry
2292         // out of the result.
2293         if (KnownZero.isNegative())
2294           return Tmp;
2295       }
2296 
2297     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2298     if (Tmp2 == 1) return 1;
2299     return std::min(Tmp, Tmp2)-1;
2300 
2301   case Instruction::Sub:
2302     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2303     if (Tmp2 == 1) return 1;
2304 
2305     // Handle NEG.
2306     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2307       if (CLHS->isNullValue()) {
2308         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2309         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2310         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2311         // sign bits set.
2312         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2313           return TyBits;
2314 
2315         // If the input is known to be positive (the sign bit is known clear),
2316         // the output of the NEG has the same number of sign bits as the input.
2317         if (KnownZero.isNegative())
2318           return Tmp2;
2319 
2320         // Otherwise, we treat this like a SUB.
2321       }
2322 
2323     // Sub can have at most one carry bit.  Thus we know that the output
2324     // is, at worst, one more bit than the inputs.
2325     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2326     if (Tmp == 1) return 1;  // Early out.
2327     return std::min(Tmp, Tmp2)-1;
2328 
2329   case Instruction::PHI: {
2330     PHINode *PN = cast<PHINode>(U);
2331     unsigned NumIncomingValues = PN->getNumIncomingValues();
2332     // Don't analyze large in-degree PHIs.
2333     if (NumIncomingValues > 4) break;
2334     // Unreachable blocks may have zero-operand PHI nodes.
2335     if (NumIncomingValues == 0) break;
2336 
2337     // Take the minimum of all incoming values.  This can't infinitely loop
2338     // because of our depth threshold.
2339     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2340     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2341       if (Tmp == 1) return Tmp;
2342       Tmp = std::min(
2343           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2344     }
2345     return Tmp;
2346   }
2347 
2348   case Instruction::Trunc:
2349     // FIXME: it's tricky to do anything useful for this, but it is an important
2350     // case for targets like X86.
2351     break;
2352   }
2353 
2354   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2355   // use this information.
2356   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2357   APInt Mask;
2358   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2359 
2360   if (KnownZero.isNegative()) {        // sign bit is 0
2361     Mask = KnownZero;
2362   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2363     Mask = KnownOne;
2364   } else {
2365     // Nothing known.
2366     return FirstAnswer;
2367   }
2368 
2369   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2370   // the number of identical bits in the top of the input value.
2371   Mask = ~Mask;
2372   Mask <<= Mask.getBitWidth()-TyBits;
2373   // Return # leading zeros.  We use 'min' here in case Val was zero before
2374   // shifting.  We don't want to return '64' as for an i32 "0".
2375   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2376 }
2377 
2378 /// This function computes the integer multiple of Base that equals V.
2379 /// If successful, it returns true and returns the multiple in
2380 /// Multiple. If unsuccessful, it returns false. It looks
2381 /// through SExt instructions only if LookThroughSExt is true.
2382 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2383                            bool LookThroughSExt, unsigned Depth) {
2384   const unsigned MaxDepth = 6;
2385 
2386   assert(V && "No Value?");
2387   assert(Depth <= MaxDepth && "Limit Search Depth");
2388   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2389 
2390   Type *T = V->getType();
2391 
2392   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2393 
2394   if (Base == 0)
2395     return false;
2396 
2397   if (Base == 1) {
2398     Multiple = V;
2399     return true;
2400   }
2401 
2402   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2403   Constant *BaseVal = ConstantInt::get(T, Base);
2404   if (CO && CO == BaseVal) {
2405     // Multiple is 1.
2406     Multiple = ConstantInt::get(T, 1);
2407     return true;
2408   }
2409 
2410   if (CI && CI->getZExtValue() % Base == 0) {
2411     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2412     return true;
2413   }
2414 
2415   if (Depth == MaxDepth) return false;  // Limit search depth.
2416 
2417   Operator *I = dyn_cast<Operator>(V);
2418   if (!I) return false;
2419 
2420   switch (I->getOpcode()) {
2421   default: break;
2422   case Instruction::SExt:
2423     if (!LookThroughSExt) return false;
2424     // otherwise fall through to ZExt
2425   case Instruction::ZExt:
2426     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2427                            LookThroughSExt, Depth+1);
2428   case Instruction::Shl:
2429   case Instruction::Mul: {
2430     Value *Op0 = I->getOperand(0);
2431     Value *Op1 = I->getOperand(1);
2432 
2433     if (I->getOpcode() == Instruction::Shl) {
2434       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2435       if (!Op1CI) return false;
2436       // Turn Op0 << Op1 into Op0 * 2^Op1
2437       APInt Op1Int = Op1CI->getValue();
2438       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2439       APInt API(Op1Int.getBitWidth(), 0);
2440       API.setBit(BitToSet);
2441       Op1 = ConstantInt::get(V->getContext(), API);
2442     }
2443 
2444     Value *Mul0 = nullptr;
2445     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2446       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2447         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2448           if (Op1C->getType()->getPrimitiveSizeInBits() <
2449               MulC->getType()->getPrimitiveSizeInBits())
2450             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2451           if (Op1C->getType()->getPrimitiveSizeInBits() >
2452               MulC->getType()->getPrimitiveSizeInBits())
2453             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2454 
2455           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2456           Multiple = ConstantExpr::getMul(MulC, Op1C);
2457           return true;
2458         }
2459 
2460       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2461         if (Mul0CI->getValue() == 1) {
2462           // V == Base * Op1, so return Op1
2463           Multiple = Op1;
2464           return true;
2465         }
2466     }
2467 
2468     Value *Mul1 = nullptr;
2469     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2470       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2471         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2472           if (Op0C->getType()->getPrimitiveSizeInBits() <
2473               MulC->getType()->getPrimitiveSizeInBits())
2474             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2475           if (Op0C->getType()->getPrimitiveSizeInBits() >
2476               MulC->getType()->getPrimitiveSizeInBits())
2477             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2478 
2479           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2480           Multiple = ConstantExpr::getMul(MulC, Op0C);
2481           return true;
2482         }
2483 
2484       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2485         if (Mul1CI->getValue() == 1) {
2486           // V == Base * Op0, so return Op0
2487           Multiple = Op0;
2488           return true;
2489         }
2490     }
2491   }
2492   }
2493 
2494   // We could not determine if V is a multiple of Base.
2495   return false;
2496 }
2497 
2498 /// Return true if we can prove that the specified FP value is never equal to
2499 /// -0.0.
2500 ///
2501 /// NOTE: this function will need to be revisited when we support non-default
2502 /// rounding modes!
2503 ///
2504 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
2505   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2506     return !CFP->getValueAPF().isNegZero();
2507 
2508   // FIXME: Magic number! At the least, this should be given a name because it's
2509   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2510   // expose it as a parameter, so it can be used for testing / experimenting.
2511   if (Depth == 6)
2512     return false;  // Limit search depth.
2513 
2514   const Operator *I = dyn_cast<Operator>(V);
2515   if (!I) return false;
2516 
2517   // Check if the nsz fast-math flag is set
2518   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2519     if (FPO->hasNoSignedZeros())
2520       return true;
2521 
2522   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2523   if (I->getOpcode() == Instruction::FAdd)
2524     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2525       if (CFP->isNullValue())
2526         return true;
2527 
2528   // sitofp and uitofp turn into +0.0 for zero.
2529   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2530     return true;
2531 
2532   if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2533     // sqrt(-0.0) = -0.0, no other negative results are possible.
2534     if (II->getIntrinsicID() == Intrinsic::sqrt)
2535       return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
2536 
2537   if (const CallInst *CI = dyn_cast<CallInst>(I))
2538     if (const Function *F = CI->getCalledFunction()) {
2539       if (F->isDeclaration()) {
2540         // abs(x) != -0.0
2541         if (F->getName() == "abs") return true;
2542         // fabs[lf](x) != -0.0
2543         if (F->getName() == "fabs") return true;
2544         if (F->getName() == "fabsf") return true;
2545         if (F->getName() == "fabsl") return true;
2546         if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
2547             F->getName() == "sqrtl")
2548           return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
2549       }
2550     }
2551 
2552   return false;
2553 }
2554 
2555 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) {
2556   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2557     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2558 
2559   // FIXME: Magic number! At the least, this should be given a name because it's
2560   // used similarly in CannotBeNegativeZero(). A better fix may be to
2561   // expose it as a parameter, so it can be used for testing / experimenting.
2562   if (Depth == 6)
2563     return false;  // Limit search depth.
2564 
2565   const Operator *I = dyn_cast<Operator>(V);
2566   if (!I) return false;
2567 
2568   switch (I->getOpcode()) {
2569   default: break;
2570   // Unsigned integers are always nonnegative.
2571   case Instruction::UIToFP:
2572     return true;
2573   case Instruction::FMul:
2574     // x*x is always non-negative or a NaN.
2575     if (I->getOperand(0) == I->getOperand(1))
2576       return true;
2577     // Fall through
2578   case Instruction::FAdd:
2579   case Instruction::FDiv:
2580   case Instruction::FRem:
2581     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2582            CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2583   case Instruction::Select:
2584     return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) &&
2585            CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2586   case Instruction::FPExt:
2587   case Instruction::FPTrunc:
2588     // Widening/narrowing never change sign.
2589     return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2590   case Instruction::Call:
2591     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
2592       switch (II->getIntrinsicID()) {
2593       default: break;
2594       case Intrinsic::maxnum:
2595         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) ||
2596                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2597       case Intrinsic::minnum:
2598         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) &&
2599                CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1);
2600       case Intrinsic::exp:
2601       case Intrinsic::exp2:
2602       case Intrinsic::fabs:
2603       case Intrinsic::sqrt:
2604         return true;
2605       case Intrinsic::powi:
2606         if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2607           // powi(x,n) is non-negative if n is even.
2608           if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2609             return true;
2610         }
2611         return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1);
2612       case Intrinsic::fma:
2613       case Intrinsic::fmuladd:
2614         // x*x+y is non-negative if y is non-negative.
2615         return I->getOperand(0) == I->getOperand(1) &&
2616                CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1);
2617       }
2618     break;
2619   }
2620   return false;
2621 }
2622 
2623 /// If the specified value can be set by repeating the same byte in memory,
2624 /// return the i8 value that it is represented with.  This is
2625 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2626 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2627 /// byte store (e.g. i16 0x1234), return null.
2628 Value *llvm::isBytewiseValue(Value *V) {
2629   // All byte-wide stores are splatable, even of arbitrary variables.
2630   if (V->getType()->isIntegerTy(8)) return V;
2631 
2632   // Handle 'null' ConstantArrayZero etc.
2633   if (Constant *C = dyn_cast<Constant>(V))
2634     if (C->isNullValue())
2635       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2636 
2637   // Constant float and double values can be handled as integer values if the
2638   // corresponding integer value is "byteable".  An important case is 0.0.
2639   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2640     if (CFP->getType()->isFloatTy())
2641       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2642     if (CFP->getType()->isDoubleTy())
2643       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2644     // Don't handle long double formats, which have strange constraints.
2645   }
2646 
2647   // We can handle constant integers that are multiple of 8 bits.
2648   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2649     if (CI->getBitWidth() % 8 == 0) {
2650       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2651 
2652       if (!CI->getValue().isSplat(8))
2653         return nullptr;
2654       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2655     }
2656   }
2657 
2658   // A ConstantDataArray/Vector is splatable if all its members are equal and
2659   // also splatable.
2660   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2661     Value *Elt = CA->getElementAsConstant(0);
2662     Value *Val = isBytewiseValue(Elt);
2663     if (!Val)
2664       return nullptr;
2665 
2666     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2667       if (CA->getElementAsConstant(I) != Elt)
2668         return nullptr;
2669 
2670     return Val;
2671   }
2672 
2673   // Conceptually, we could handle things like:
2674   //   %a = zext i8 %X to i16
2675   //   %b = shl i16 %a, 8
2676   //   %c = or i16 %a, %b
2677   // but until there is an example that actually needs this, it doesn't seem
2678   // worth worrying about.
2679   return nullptr;
2680 }
2681 
2682 
2683 // This is the recursive version of BuildSubAggregate. It takes a few different
2684 // arguments. Idxs is the index within the nested struct From that we are
2685 // looking at now (which is of type IndexedType). IdxSkip is the number of
2686 // indices from Idxs that should be left out when inserting into the resulting
2687 // struct. To is the result struct built so far, new insertvalue instructions
2688 // build on that.
2689 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2690                                 SmallVectorImpl<unsigned> &Idxs,
2691                                 unsigned IdxSkip,
2692                                 Instruction *InsertBefore) {
2693   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2694   if (STy) {
2695     // Save the original To argument so we can modify it
2696     Value *OrigTo = To;
2697     // General case, the type indexed by Idxs is a struct
2698     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2699       // Process each struct element recursively
2700       Idxs.push_back(i);
2701       Value *PrevTo = To;
2702       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2703                              InsertBefore);
2704       Idxs.pop_back();
2705       if (!To) {
2706         // Couldn't find any inserted value for this index? Cleanup
2707         while (PrevTo != OrigTo) {
2708           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2709           PrevTo = Del->getAggregateOperand();
2710           Del->eraseFromParent();
2711         }
2712         // Stop processing elements
2713         break;
2714       }
2715     }
2716     // If we successfully found a value for each of our subaggregates
2717     if (To)
2718       return To;
2719   }
2720   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2721   // the struct's elements had a value that was inserted directly. In the latter
2722   // case, perhaps we can't determine each of the subelements individually, but
2723   // we might be able to find the complete struct somewhere.
2724 
2725   // Find the value that is at that particular spot
2726   Value *V = FindInsertedValue(From, Idxs);
2727 
2728   if (!V)
2729     return nullptr;
2730 
2731   // Insert the value in the new (sub) aggregrate
2732   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2733                                        "tmp", InsertBefore);
2734 }
2735 
2736 // This helper takes a nested struct and extracts a part of it (which is again a
2737 // struct) into a new value. For example, given the struct:
2738 // { a, { b, { c, d }, e } }
2739 // and the indices "1, 1" this returns
2740 // { c, d }.
2741 //
2742 // It does this by inserting an insertvalue for each element in the resulting
2743 // struct, as opposed to just inserting a single struct. This will only work if
2744 // each of the elements of the substruct are known (ie, inserted into From by an
2745 // insertvalue instruction somewhere).
2746 //
2747 // All inserted insertvalue instructions are inserted before InsertBefore
2748 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2749                                 Instruction *InsertBefore) {
2750   assert(InsertBefore && "Must have someplace to insert!");
2751   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2752                                                              idx_range);
2753   Value *To = UndefValue::get(IndexedType);
2754   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2755   unsigned IdxSkip = Idxs.size();
2756 
2757   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2758 }
2759 
2760 /// Given an aggregrate and an sequence of indices, see if
2761 /// the scalar value indexed is already around as a register, for example if it
2762 /// were inserted directly into the aggregrate.
2763 ///
2764 /// If InsertBefore is not null, this function will duplicate (modified)
2765 /// insertvalues when a part of a nested struct is extracted.
2766 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2767                                Instruction *InsertBefore) {
2768   // Nothing to index? Just return V then (this is useful at the end of our
2769   // recursion).
2770   if (idx_range.empty())
2771     return V;
2772   // We have indices, so V should have an indexable type.
2773   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2774          "Not looking at a struct or array?");
2775   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2776          "Invalid indices for type?");
2777 
2778   if (Constant *C = dyn_cast<Constant>(V)) {
2779     C = C->getAggregateElement(idx_range[0]);
2780     if (!C) return nullptr;
2781     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2782   }
2783 
2784   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2785     // Loop the indices for the insertvalue instruction in parallel with the
2786     // requested indices
2787     const unsigned *req_idx = idx_range.begin();
2788     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2789          i != e; ++i, ++req_idx) {
2790       if (req_idx == idx_range.end()) {
2791         // We can't handle this without inserting insertvalues
2792         if (!InsertBefore)
2793           return nullptr;
2794 
2795         // The requested index identifies a part of a nested aggregate. Handle
2796         // this specially. For example,
2797         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2798         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2799         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2800         // This can be changed into
2801         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2802         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2803         // which allows the unused 0,0 element from the nested struct to be
2804         // removed.
2805         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2806                                  InsertBefore);
2807       }
2808 
2809       // This insert value inserts something else than what we are looking for.
2810       // See if the (aggregate) value inserted into has the value we are
2811       // looking for, then.
2812       if (*req_idx != *i)
2813         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2814                                  InsertBefore);
2815     }
2816     // If we end up here, the indices of the insertvalue match with those
2817     // requested (though possibly only partially). Now we recursively look at
2818     // the inserted value, passing any remaining indices.
2819     return FindInsertedValue(I->getInsertedValueOperand(),
2820                              makeArrayRef(req_idx, idx_range.end()),
2821                              InsertBefore);
2822   }
2823 
2824   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2825     // If we're extracting a value from an aggregate that was extracted from
2826     // something else, we can extract from that something else directly instead.
2827     // However, we will need to chain I's indices with the requested indices.
2828 
2829     // Calculate the number of indices required
2830     unsigned size = I->getNumIndices() + idx_range.size();
2831     // Allocate some space to put the new indices in
2832     SmallVector<unsigned, 5> Idxs;
2833     Idxs.reserve(size);
2834     // Add indices from the extract value instruction
2835     Idxs.append(I->idx_begin(), I->idx_end());
2836 
2837     // Add requested indices
2838     Idxs.append(idx_range.begin(), idx_range.end());
2839 
2840     assert(Idxs.size() == size
2841            && "Number of indices added not correct?");
2842 
2843     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2844   }
2845   // Otherwise, we don't know (such as, extracting from a function return value
2846   // or load instruction)
2847   return nullptr;
2848 }
2849 
2850 /// Analyze the specified pointer to see if it can be expressed as a base
2851 /// pointer plus a constant offset. Return the base and offset to the caller.
2852 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2853                                               const DataLayout &DL) {
2854   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2855   APInt ByteOffset(BitWidth, 0);
2856 
2857   // We walk up the defs but use a visited set to handle unreachable code. In
2858   // that case, we stop after accumulating the cycle once (not that it
2859   // matters).
2860   SmallPtrSet<Value *, 16> Visited;
2861   while (Visited.insert(Ptr).second) {
2862     if (Ptr->getType()->isVectorTy())
2863       break;
2864 
2865     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2866       APInt GEPOffset(BitWidth, 0);
2867       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2868         break;
2869 
2870       ByteOffset += GEPOffset;
2871 
2872       Ptr = GEP->getPointerOperand();
2873     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2874                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2875       Ptr = cast<Operator>(Ptr)->getOperand(0);
2876     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2877       if (GA->mayBeOverridden())
2878         break;
2879       Ptr = GA->getAliasee();
2880     } else {
2881       break;
2882     }
2883   }
2884   Offset = ByteOffset.getSExtValue();
2885   return Ptr;
2886 }
2887 
2888 
2889 /// This function computes the length of a null-terminated C string pointed to
2890 /// by V. If successful, it returns true and returns the string in Str.
2891 /// If unsuccessful, it returns false.
2892 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2893                                  uint64_t Offset, bool TrimAtNul) {
2894   assert(V);
2895 
2896   // Look through bitcast instructions and geps.
2897   V = V->stripPointerCasts();
2898 
2899   // If the value is a GEP instruction or constant expression, treat it as an
2900   // offset.
2901   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2902     // Make sure the GEP has exactly three arguments.
2903     if (GEP->getNumOperands() != 3)
2904       return false;
2905 
2906     // Make sure the index-ee is a pointer to array of i8.
2907     ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2908     if (!AT || !AT->getElementType()->isIntegerTy(8))
2909       return false;
2910 
2911     // Check to make sure that the first operand of the GEP is an integer and
2912     // has value 0 so that we are sure we're indexing into the initializer.
2913     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2914     if (!FirstIdx || !FirstIdx->isZero())
2915       return false;
2916 
2917     // If the second index isn't a ConstantInt, then this is a variable index
2918     // into the array.  If this occurs, we can't say anything meaningful about
2919     // the string.
2920     uint64_t StartIdx = 0;
2921     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2922       StartIdx = CI->getZExtValue();
2923     else
2924       return false;
2925     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2926                                  TrimAtNul);
2927   }
2928 
2929   // The GEP instruction, constant or instruction, must reference a global
2930   // variable that is a constant and is initialized. The referenced constant
2931   // initializer is the array that we'll use for optimization.
2932   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2933   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2934     return false;
2935 
2936   // Handle the all-zeros case
2937   if (GV->getInitializer()->isNullValue()) {
2938     // This is a degenerate case. The initializer is constant zero so the
2939     // length of the string must be zero.
2940     Str = "";
2941     return true;
2942   }
2943 
2944   // Must be a Constant Array
2945   const ConstantDataArray *Array =
2946     dyn_cast<ConstantDataArray>(GV->getInitializer());
2947   if (!Array || !Array->isString())
2948     return false;
2949 
2950   // Get the number of elements in the array
2951   uint64_t NumElts = Array->getType()->getArrayNumElements();
2952 
2953   // Start out with the entire array in the StringRef.
2954   Str = Array->getAsString();
2955 
2956   if (Offset > NumElts)
2957     return false;
2958 
2959   // Skip over 'offset' bytes.
2960   Str = Str.substr(Offset);
2961 
2962   if (TrimAtNul) {
2963     // Trim off the \0 and anything after it.  If the array is not nul
2964     // terminated, we just return the whole end of string.  The client may know
2965     // some other way that the string is length-bound.
2966     Str = Str.substr(0, Str.find('\0'));
2967   }
2968   return true;
2969 }
2970 
2971 // These next two are very similar to the above, but also look through PHI
2972 // nodes.
2973 // TODO: See if we can integrate these two together.
2974 
2975 /// If we can compute the length of the string pointed to by
2976 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2977 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2978   // Look through noop bitcast instructions.
2979   V = V->stripPointerCasts();
2980 
2981   // If this is a PHI node, there are two cases: either we have already seen it
2982   // or we haven't.
2983   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2984     if (!PHIs.insert(PN).second)
2985       return ~0ULL;  // already in the set.
2986 
2987     // If it was new, see if all the input strings are the same length.
2988     uint64_t LenSoFar = ~0ULL;
2989     for (Value *IncValue : PN->incoming_values()) {
2990       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2991       if (Len == 0) return 0; // Unknown length -> unknown.
2992 
2993       if (Len == ~0ULL) continue;
2994 
2995       if (Len != LenSoFar && LenSoFar != ~0ULL)
2996         return 0;    // Disagree -> unknown.
2997       LenSoFar = Len;
2998     }
2999 
3000     // Success, all agree.
3001     return LenSoFar;
3002   }
3003 
3004   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3005   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
3006     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3007     if (Len1 == 0) return 0;
3008     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3009     if (Len2 == 0) return 0;
3010     if (Len1 == ~0ULL) return Len2;
3011     if (Len2 == ~0ULL) return Len1;
3012     if (Len1 != Len2) return 0;
3013     return Len1;
3014   }
3015 
3016   // Otherwise, see if we can read the string.
3017   StringRef StrData;
3018   if (!getConstantStringInfo(V, StrData))
3019     return 0;
3020 
3021   return StrData.size()+1;
3022 }
3023 
3024 /// If we can compute the length of the string pointed to by
3025 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3026 uint64_t llvm::GetStringLength(Value *V) {
3027   if (!V->getType()->isPointerTy()) return 0;
3028 
3029   SmallPtrSet<PHINode*, 32> PHIs;
3030   uint64_t Len = GetStringLengthH(V, PHIs);
3031   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3032   // an empty string as a length.
3033   return Len == ~0ULL ? 1 : Len;
3034 }
3035 
3036 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3037 /// previous iteration of the loop was referring to the same object as \p PN.
3038 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
3039   // Find the loop-defined value.
3040   Loop *L = LI->getLoopFor(PN->getParent());
3041   if (PN->getNumIncomingValues() != 2)
3042     return true;
3043 
3044   // Find the value from previous iteration.
3045   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3046   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3047     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3048   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3049     return true;
3050 
3051   // If a new pointer is loaded in the loop, the pointer references a different
3052   // object in every iteration.  E.g.:
3053   //    for (i)
3054   //       int *p = a[i];
3055   //       ...
3056   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3057     if (!L->isLoopInvariant(Load->getPointerOperand()))
3058       return false;
3059   return true;
3060 }
3061 
3062 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3063                                  unsigned MaxLookup) {
3064   if (!V->getType()->isPointerTy())
3065     return V;
3066   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3067     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3068       V = GEP->getPointerOperand();
3069     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3070                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3071       V = cast<Operator>(V)->getOperand(0);
3072     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3073       if (GA->mayBeOverridden())
3074         return V;
3075       V = GA->getAliasee();
3076     } else {
3077       // See if InstructionSimplify knows any relevant tricks.
3078       if (Instruction *I = dyn_cast<Instruction>(V))
3079         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3080         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3081           V = Simplified;
3082           continue;
3083         }
3084 
3085       return V;
3086     }
3087     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3088   }
3089   return V;
3090 }
3091 
3092 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3093                                 const DataLayout &DL, LoopInfo *LI,
3094                                 unsigned MaxLookup) {
3095   SmallPtrSet<Value *, 4> Visited;
3096   SmallVector<Value *, 4> Worklist;
3097   Worklist.push_back(V);
3098   do {
3099     Value *P = Worklist.pop_back_val();
3100     P = GetUnderlyingObject(P, DL, MaxLookup);
3101 
3102     if (!Visited.insert(P).second)
3103       continue;
3104 
3105     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3106       Worklist.push_back(SI->getTrueValue());
3107       Worklist.push_back(SI->getFalseValue());
3108       continue;
3109     }
3110 
3111     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3112       // If this PHI changes the underlying object in every iteration of the
3113       // loop, don't look through it.  Consider:
3114       //   int **A;
3115       //   for (i) {
3116       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3117       //     Curr = A[i];
3118       //     *Prev, *Curr;
3119       //
3120       // Prev is tracking Curr one iteration behind so they refer to different
3121       // underlying objects.
3122       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3123           isSameUnderlyingObjectInLoop(PN, LI))
3124         for (Value *IncValue : PN->incoming_values())
3125           Worklist.push_back(IncValue);
3126       continue;
3127     }
3128 
3129     Objects.push_back(P);
3130   } while (!Worklist.empty());
3131 }
3132 
3133 /// Return true if the only users of this pointer are lifetime markers.
3134 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3135   for (const User *U : V->users()) {
3136     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3137     if (!II) return false;
3138 
3139     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3140         II->getIntrinsicID() != Intrinsic::lifetime_end)
3141       return false;
3142   }
3143   return true;
3144 }
3145 
3146 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset,
3147                                            Type *Ty, const DataLayout &DL,
3148                                            const Instruction *CtxI,
3149                                            const DominatorTree *DT,
3150                                            const TargetLibraryInfo *TLI) {
3151   assert(Offset.isNonNegative() && "offset can't be negative");
3152   assert(Ty->isSized() && "must be sized");
3153 
3154   APInt DerefBytes(Offset.getBitWidth(), 0);
3155   bool CheckForNonNull = false;
3156   if (const Argument *A = dyn_cast<Argument>(BV)) {
3157     DerefBytes = A->getDereferenceableBytes();
3158     if (!DerefBytes.getBoolValue()) {
3159       DerefBytes = A->getDereferenceableOrNullBytes();
3160       CheckForNonNull = true;
3161     }
3162   } else if (auto CS = ImmutableCallSite(BV)) {
3163     DerefBytes = CS.getDereferenceableBytes(0);
3164     if (!DerefBytes.getBoolValue()) {
3165       DerefBytes = CS.getDereferenceableOrNullBytes(0);
3166       CheckForNonNull = true;
3167     }
3168   } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) {
3169     if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
3170       ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3171       DerefBytes = CI->getLimitedValue();
3172     }
3173     if (!DerefBytes.getBoolValue()) {
3174       if (MDNode *MD =
3175               LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
3176         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
3177         DerefBytes = CI->getLimitedValue();
3178       }
3179       CheckForNonNull = true;
3180     }
3181   }
3182 
3183   if (DerefBytes.getBoolValue())
3184     if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty)))
3185       if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI))
3186         return true;
3187 
3188   return false;
3189 }
3190 
3191 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL,
3192                                            const Instruction *CtxI,
3193                                            const DominatorTree *DT,
3194                                            const TargetLibraryInfo *TLI) {
3195   Type *VTy = V->getType();
3196   Type *Ty = VTy->getPointerElementType();
3197   if (!Ty->isSized())
3198     return false;
3199 
3200   APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3201   return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI);
3202 }
3203 
3204 static bool isAligned(const Value *Base, APInt Offset, unsigned Align,
3205                       const DataLayout &DL) {
3206   APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL));
3207 
3208   if (!BaseAlign) {
3209     Type *Ty = Base->getType()->getPointerElementType();
3210     if (!Ty->isSized())
3211       return false;
3212     BaseAlign = DL.getABITypeAlignment(Ty);
3213   }
3214 
3215   APInt Alignment(Offset.getBitWidth(), Align);
3216 
3217   assert(Alignment.isPowerOf2() && "must be a power of 2!");
3218   return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1));
3219 }
3220 
3221 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) {
3222   Type *Ty = Base->getType();
3223   assert(Ty->isSized() && "must be sized");
3224   APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0);
3225   return isAligned(Base, Offset, Align, DL);
3226 }
3227 
3228 /// Test if V is always a pointer to allocated and suitably aligned memory for
3229 /// a simple load or store.
3230 static bool isDereferenceableAndAlignedPointer(
3231     const Value *V, unsigned Align, const DataLayout &DL,
3232     const Instruction *CtxI, const DominatorTree *DT,
3233     const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) {
3234   // Note that it is not safe to speculate into a malloc'd region because
3235   // malloc may return null.
3236 
3237   // These are obviously ok if aligned.
3238   if (isa<AllocaInst>(V))
3239     return isAligned(V, Align, DL);
3240 
3241   // It's not always safe to follow a bitcast, for example:
3242   //   bitcast i8* (alloca i8) to i32*
3243   // would result in a 4-byte load from a 1-byte alloca. However,
3244   // if we're casting from a pointer from a type of larger size
3245   // to a type of smaller size (or the same size), and the alignment
3246   // is at least as large as for the resulting pointer type, then
3247   // we can look through the bitcast.
3248   if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) {
3249     Type *STy = BC->getSrcTy()->getPointerElementType(),
3250          *DTy = BC->getDestTy()->getPointerElementType();
3251     if (STy->isSized() && DTy->isSized() &&
3252         (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) &&
3253         (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy)))
3254       return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL,
3255                                                 CtxI, DT, TLI, Visited);
3256   }
3257 
3258   // Global variables which can't collapse to null are ok.
3259   if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
3260     if (!GV->hasExternalWeakLinkage())
3261       return isAligned(V, Align, DL);
3262 
3263   // byval arguments are okay.
3264   if (const Argument *A = dyn_cast<Argument>(V))
3265     if (A->hasByValAttr())
3266       return isAligned(V, Align, DL);
3267 
3268   if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI))
3269     return isAligned(V, Align, DL);
3270 
3271   // For GEPs, determine if the indexing lands within the allocated object.
3272   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3273     Type *Ty = GEP->getResultElementType();
3274     const Value *Base = GEP->getPointerOperand();
3275 
3276     // Conservatively require that the base pointer be fully dereferenceable
3277     // and aligned.
3278     if (!Visited.insert(Base).second)
3279       return false;
3280     if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI,
3281                                             Visited))
3282       return false;
3283 
3284     APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0);
3285     if (!GEP->accumulateConstantOffset(DL, Offset))
3286       return false;
3287 
3288     // Check if the load is within the bounds of the underlying object
3289     // and offset is aligned.
3290     uint64_t LoadSize = DL.getTypeStoreSize(Ty);
3291     Type *BaseType = GEP->getSourceElementType();
3292     assert(isPowerOf2_32(Align) && "must be a power of 2!");
3293     return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) &&
3294            !(Offset & APInt(Offset.getBitWidth(), Align-1));
3295   }
3296 
3297   // For gc.relocate, look through relocations
3298   if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V))
3299     return isDereferenceableAndAlignedPointer(
3300         RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited);
3301 
3302   if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V))
3303     return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL,
3304                                               CtxI, DT, TLI, Visited);
3305 
3306   // If we don't know, assume the worst.
3307   return false;
3308 }
3309 
3310 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align,
3311                                               const DataLayout &DL,
3312                                               const Instruction *CtxI,
3313                                               const DominatorTree *DT,
3314                                               const TargetLibraryInfo *TLI) {
3315   // When dereferenceability information is provided by a dereferenceable
3316   // attribute, we know exactly how many bytes are dereferenceable. If we can
3317   // determine the exact offset to the attributed variable, we can use that
3318   // information here.
3319   Type *VTy = V->getType();
3320   Type *Ty = VTy->getPointerElementType();
3321 
3322   // Require ABI alignment for loads without alignment specification
3323   if (Align == 0)
3324     Align = DL.getABITypeAlignment(Ty);
3325 
3326   if (Ty->isSized()) {
3327     APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0);
3328     const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
3329 
3330     if (Offset.isNonNegative())
3331       if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) &&
3332           isAligned(BV, Offset, Align, DL))
3333         return true;
3334   }
3335 
3336   SmallPtrSet<const Value *, 32> Visited;
3337   return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI,
3338                                               Visited);
3339 }
3340 
3341 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL,
3342                                     const Instruction *CtxI,
3343                                     const DominatorTree *DT,
3344                                     const TargetLibraryInfo *TLI) {
3345   return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI);
3346 }
3347 
3348 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3349                                         const Instruction *CtxI,
3350                                         const DominatorTree *DT,
3351                                         const TargetLibraryInfo *TLI) {
3352   const Operator *Inst = dyn_cast<Operator>(V);
3353   if (!Inst)
3354     return false;
3355 
3356   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3357     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3358       if (C->canTrap())
3359         return false;
3360 
3361   switch (Inst->getOpcode()) {
3362   default:
3363     return true;
3364   case Instruction::UDiv:
3365   case Instruction::URem: {
3366     // x / y is undefined if y == 0.
3367     const APInt *V;
3368     if (match(Inst->getOperand(1), m_APInt(V)))
3369       return *V != 0;
3370     return false;
3371   }
3372   case Instruction::SDiv:
3373   case Instruction::SRem: {
3374     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3375     const APInt *Numerator, *Denominator;
3376     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3377       return false;
3378     // We cannot hoist this division if the denominator is 0.
3379     if (*Denominator == 0)
3380       return false;
3381     // It's safe to hoist if the denominator is not 0 or -1.
3382     if (*Denominator != -1)
3383       return true;
3384     // At this point we know that the denominator is -1.  It is safe to hoist as
3385     // long we know that the numerator is not INT_MIN.
3386     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3387       return !Numerator->isMinSignedValue();
3388     // The numerator *might* be MinSignedValue.
3389     return false;
3390   }
3391   case Instruction::Load: {
3392     const LoadInst *LI = cast<LoadInst>(Inst);
3393     if (!LI->isUnordered() ||
3394         // Speculative load may create a race that did not exist in the source.
3395         LI->getParent()->getParent()->hasFnAttribute(
3396             Attribute::SanitizeThread) ||
3397         // Speculative load may load data from dirty regions.
3398         LI->getParent()->getParent()->hasFnAttribute(
3399             Attribute::SanitizeAddress))
3400       return false;
3401     const DataLayout &DL = LI->getModule()->getDataLayout();
3402     return isDereferenceableAndAlignedPointer(
3403         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3404   }
3405   case Instruction::Call: {
3406     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3407       switch (II->getIntrinsicID()) {
3408       // These synthetic intrinsics have no side-effects and just mark
3409       // information about their operands.
3410       // FIXME: There are other no-op synthetic instructions that potentially
3411       // should be considered at least *safe* to speculate...
3412       case Intrinsic::dbg_declare:
3413       case Intrinsic::dbg_value:
3414         return true;
3415 
3416       case Intrinsic::bswap:
3417       case Intrinsic::ctlz:
3418       case Intrinsic::ctpop:
3419       case Intrinsic::cttz:
3420       case Intrinsic::objectsize:
3421       case Intrinsic::sadd_with_overflow:
3422       case Intrinsic::smul_with_overflow:
3423       case Intrinsic::ssub_with_overflow:
3424       case Intrinsic::uadd_with_overflow:
3425       case Intrinsic::umul_with_overflow:
3426       case Intrinsic::usub_with_overflow:
3427         return true;
3428       // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set
3429       // errno like libm sqrt would.
3430       case Intrinsic::sqrt:
3431       case Intrinsic::fma:
3432       case Intrinsic::fmuladd:
3433       case Intrinsic::fabs:
3434       case Intrinsic::minnum:
3435       case Intrinsic::maxnum:
3436         return true;
3437       // TODO: some fp intrinsics are marked as having the same error handling
3438       // as libm. They're safe to speculate when they won't error.
3439       // TODO: are convert_{from,to}_fp16 safe?
3440       // TODO: can we list target-specific intrinsics here?
3441       default: break;
3442       }
3443     }
3444     return false; // The called function could have undefined behavior or
3445                   // side-effects, even if marked readnone nounwind.
3446   }
3447   case Instruction::VAArg:
3448   case Instruction::Alloca:
3449   case Instruction::Invoke:
3450   case Instruction::PHI:
3451   case Instruction::Store:
3452   case Instruction::Ret:
3453   case Instruction::Br:
3454   case Instruction::IndirectBr:
3455   case Instruction::Switch:
3456   case Instruction::Unreachable:
3457   case Instruction::Fence:
3458   case Instruction::AtomicRMW:
3459   case Instruction::AtomicCmpXchg:
3460   case Instruction::LandingPad:
3461   case Instruction::Resume:
3462   case Instruction::CatchSwitch:
3463   case Instruction::CatchPad:
3464   case Instruction::CatchRet:
3465   case Instruction::CleanupPad:
3466   case Instruction::CleanupRet:
3467     return false; // Misc instructions which have effects
3468   }
3469 }
3470 
3471 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3472   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3473 }
3474 
3475 /// Return true if we know that the specified value is never null.
3476 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3477   assert(V->getType()->isPointerTy() && "V must be pointer type");
3478 
3479   // Alloca never returns null, malloc might.
3480   if (isa<AllocaInst>(V)) return true;
3481 
3482   // A byval, inalloca, or nonnull argument is never null.
3483   if (const Argument *A = dyn_cast<Argument>(V))
3484     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3485 
3486   // A global variable in address space 0 is non null unless extern weak.
3487   // Other address spaces may have null as a valid address for a global,
3488   // so we can't assume anything.
3489   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3490     return !GV->hasExternalWeakLinkage() &&
3491            GV->getType()->getAddressSpace() == 0;
3492 
3493   // A Load tagged w/nonnull metadata is never null.
3494   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3495     return LI->getMetadata(LLVMContext::MD_nonnull);
3496 
3497   if (auto CS = ImmutableCallSite(V))
3498     if (CS.isReturnNonNull())
3499       return true;
3500 
3501   return false;
3502 }
3503 
3504 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3505                                                   const Instruction *CtxI,
3506                                                   const DominatorTree *DT) {
3507   assert(V->getType()->isPointerTy() && "V must be pointer type");
3508 
3509   unsigned NumUsesExplored = 0;
3510   for (auto U : V->users()) {
3511     // Avoid massive lists
3512     if (NumUsesExplored >= DomConditionsMaxUses)
3513       break;
3514     NumUsesExplored++;
3515     // Consider only compare instructions uniquely controlling a branch
3516     const ICmpInst *Cmp = dyn_cast<ICmpInst>(U);
3517     if (!Cmp)
3518       continue;
3519 
3520     if (DomConditionsSingleCmpUse && !Cmp->hasOneUse())
3521       continue;
3522 
3523     for (auto *CmpU : Cmp->users()) {
3524       const BranchInst *BI = dyn_cast<BranchInst>(CmpU);
3525       if (!BI)
3526         continue;
3527 
3528       assert(BI->isConditional() && "uses a comparison!");
3529 
3530       BasicBlock *NonNullSuccessor = nullptr;
3531       CmpInst::Predicate Pred;
3532 
3533       if (match(const_cast<ICmpInst*>(Cmp),
3534                 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) {
3535         if (Pred == ICmpInst::ICMP_EQ)
3536           NonNullSuccessor = BI->getSuccessor(1);
3537         else if (Pred == ICmpInst::ICMP_NE)
3538           NonNullSuccessor = BI->getSuccessor(0);
3539       }
3540 
3541       if (NonNullSuccessor) {
3542         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3543         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3544           return true;
3545       }
3546     }
3547   }
3548 
3549   return false;
3550 }
3551 
3552 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3553                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3554   if (isKnownNonNull(V, TLI))
3555     return true;
3556 
3557   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3558 }
3559 
3560 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3561                                                    const DataLayout &DL,
3562                                                    AssumptionCache *AC,
3563                                                    const Instruction *CxtI,
3564                                                    const DominatorTree *DT) {
3565   // Multiplying n * m significant bits yields a result of n + m significant
3566   // bits. If the total number of significant bits does not exceed the
3567   // result bit width (minus 1), there is no overflow.
3568   // This means if we have enough leading zero bits in the operands
3569   // we can guarantee that the result does not overflow.
3570   // Ref: "Hacker's Delight" by Henry Warren
3571   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3572   APInt LHSKnownZero(BitWidth, 0);
3573   APInt LHSKnownOne(BitWidth, 0);
3574   APInt RHSKnownZero(BitWidth, 0);
3575   APInt RHSKnownOne(BitWidth, 0);
3576   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3577                    DT);
3578   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3579                    DT);
3580   // Note that underestimating the number of zero bits gives a more
3581   // conservative answer.
3582   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3583                       RHSKnownZero.countLeadingOnes();
3584   // First handle the easy case: if we have enough zero bits there's
3585   // definitely no overflow.
3586   if (ZeroBits >= BitWidth)
3587     return OverflowResult::NeverOverflows;
3588 
3589   // Get the largest possible values for each operand.
3590   APInt LHSMax = ~LHSKnownZero;
3591   APInt RHSMax = ~RHSKnownZero;
3592 
3593   // We know the multiply operation doesn't overflow if the maximum values for
3594   // each operand will not overflow after we multiply them together.
3595   bool MaxOverflow;
3596   LHSMax.umul_ov(RHSMax, MaxOverflow);
3597   if (!MaxOverflow)
3598     return OverflowResult::NeverOverflows;
3599 
3600   // We know it always overflows if multiplying the smallest possible values for
3601   // the operands also results in overflow.
3602   bool MinOverflow;
3603   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3604   if (MinOverflow)
3605     return OverflowResult::AlwaysOverflows;
3606 
3607   return OverflowResult::MayOverflow;
3608 }
3609 
3610 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3611                                                    const DataLayout &DL,
3612                                                    AssumptionCache *AC,
3613                                                    const Instruction *CxtI,
3614                                                    const DominatorTree *DT) {
3615   bool LHSKnownNonNegative, LHSKnownNegative;
3616   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3617                  AC, CxtI, DT);
3618   if (LHSKnownNonNegative || LHSKnownNegative) {
3619     bool RHSKnownNonNegative, RHSKnownNegative;
3620     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3621                    AC, CxtI, DT);
3622 
3623     if (LHSKnownNegative && RHSKnownNegative) {
3624       // The sign bit is set in both cases: this MUST overflow.
3625       // Create a simple add instruction, and insert it into the struct.
3626       return OverflowResult::AlwaysOverflows;
3627     }
3628 
3629     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3630       // The sign bit is clear in both cases: this CANNOT overflow.
3631       // Create a simple add instruction, and insert it into the struct.
3632       return OverflowResult::NeverOverflows;
3633     }
3634   }
3635 
3636   return OverflowResult::MayOverflow;
3637 }
3638 
3639 static OverflowResult computeOverflowForSignedAdd(
3640     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3641     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3642   if (Add && Add->hasNoSignedWrap()) {
3643     return OverflowResult::NeverOverflows;
3644   }
3645 
3646   bool LHSKnownNonNegative, LHSKnownNegative;
3647   bool RHSKnownNonNegative, RHSKnownNegative;
3648   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3649                  AC, CxtI, DT);
3650   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3651                  AC, CxtI, DT);
3652 
3653   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3654       (LHSKnownNegative && RHSKnownNonNegative)) {
3655     // The sign bits are opposite: this CANNOT overflow.
3656     return OverflowResult::NeverOverflows;
3657   }
3658 
3659   // The remaining code needs Add to be available. Early returns if not so.
3660   if (!Add)
3661     return OverflowResult::MayOverflow;
3662 
3663   // If the sign of Add is the same as at least one of the operands, this add
3664   // CANNOT overflow. This is particularly useful when the sum is
3665   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3666   // operands.
3667   bool LHSOrRHSKnownNonNegative =
3668       (LHSKnownNonNegative || RHSKnownNonNegative);
3669   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3670   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3671     bool AddKnownNonNegative, AddKnownNegative;
3672     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3673                    /*Depth=*/0, AC, CxtI, DT);
3674     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3675         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3676       return OverflowResult::NeverOverflows;
3677     }
3678   }
3679 
3680   return OverflowResult::MayOverflow;
3681 }
3682 
3683 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3684                                                  const DataLayout &DL,
3685                                                  AssumptionCache *AC,
3686                                                  const Instruction *CxtI,
3687                                                  const DominatorTree *DT) {
3688   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3689                                        Add, DL, AC, CxtI, DT);
3690 }
3691 
3692 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3693                                                  const DataLayout &DL,
3694                                                  AssumptionCache *AC,
3695                                                  const Instruction *CxtI,
3696                                                  const DominatorTree *DT) {
3697   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3698 }
3699 
3700 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3701   // FIXME: This conservative implementation can be relaxed. E.g. most
3702   // atomic operations are guaranteed to terminate on most platforms
3703   // and most functions terminate.
3704 
3705   return !I->isAtomic() &&       // atomics may never succeed on some platforms
3706          !isa<CallInst>(I) &&    // could throw and might not terminate
3707          !isa<InvokeInst>(I) &&  // might not terminate and could throw to
3708                                  //   non-successor (see bug 24185 for details).
3709          !isa<ResumeInst>(I) &&  // has no successors
3710          !isa<ReturnInst>(I);    // has no successors
3711 }
3712 
3713 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3714                                                   const Loop *L) {
3715   // The loop header is guaranteed to be executed for every iteration.
3716   //
3717   // FIXME: Relax this constraint to cover all basic blocks that are
3718   // guaranteed to be executed at every iteration.
3719   if (I->getParent() != L->getHeader()) return false;
3720 
3721   for (const Instruction &LI : *L->getHeader()) {
3722     if (&LI == I) return true;
3723     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3724   }
3725   llvm_unreachable("Instruction not contained in its own parent basic block.");
3726 }
3727 
3728 bool llvm::propagatesFullPoison(const Instruction *I) {
3729   switch (I->getOpcode()) {
3730     case Instruction::Add:
3731     case Instruction::Sub:
3732     case Instruction::Xor:
3733     case Instruction::Trunc:
3734     case Instruction::BitCast:
3735     case Instruction::AddrSpaceCast:
3736       // These operations all propagate poison unconditionally. Note that poison
3737       // is not any particular value, so xor or subtraction of poison with
3738       // itself still yields poison, not zero.
3739       return true;
3740 
3741     case Instruction::AShr:
3742     case Instruction::SExt:
3743       // For these operations, one bit of the input is replicated across
3744       // multiple output bits. A replicated poison bit is still poison.
3745       return true;
3746 
3747     case Instruction::Shl: {
3748       // Left shift *by* a poison value is poison. The number of
3749       // positions to shift is unsigned, so no negative values are
3750       // possible there. Left shift by zero places preserves poison. So
3751       // it only remains to consider left shift of poison by a positive
3752       // number of places.
3753       //
3754       // A left shift by a positive number of places leaves the lowest order bit
3755       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3756       // make the poison operand violate that flag, yielding a fresh full-poison
3757       // value.
3758       auto *OBO = cast<OverflowingBinaryOperator>(I);
3759       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3760     }
3761 
3762     case Instruction::Mul: {
3763       // A multiplication by zero yields a non-poison zero result, so we need to
3764       // rule out zero as an operand. Conservatively, multiplication by a
3765       // non-zero constant is not multiplication by zero.
3766       //
3767       // Multiplication by a non-zero constant can leave some bits
3768       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3769       // order bit unpoisoned. So we need to consider that.
3770       //
3771       // Multiplication by 1 preserves poison. If the multiplication has a
3772       // no-wrap flag, then we can make the poison operand violate that flag
3773       // when multiplied by any integer other than 0 and 1.
3774       auto *OBO = cast<OverflowingBinaryOperator>(I);
3775       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3776         for (Value *V : OBO->operands()) {
3777           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3778             // A ConstantInt cannot yield poison, so we can assume that it is
3779             // the other operand that is poison.
3780             return !CI->isZero();
3781           }
3782         }
3783       }
3784       return false;
3785     }
3786 
3787     case Instruction::GetElementPtr:
3788       // A GEP implicitly represents a sequence of additions, subtractions,
3789       // truncations, sign extensions and multiplications. The multiplications
3790       // are by the non-zero sizes of some set of types, so we do not have to be
3791       // concerned with multiplication by zero. If the GEP is in-bounds, then
3792       // these operations are implicitly no-signed-wrap so poison is propagated
3793       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3794       return cast<GEPOperator>(I)->isInBounds();
3795 
3796     default:
3797       return false;
3798   }
3799 }
3800 
3801 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3802   switch (I->getOpcode()) {
3803     case Instruction::Store:
3804       return cast<StoreInst>(I)->getPointerOperand();
3805 
3806     case Instruction::Load:
3807       return cast<LoadInst>(I)->getPointerOperand();
3808 
3809     case Instruction::AtomicCmpXchg:
3810       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3811 
3812     case Instruction::AtomicRMW:
3813       return cast<AtomicRMWInst>(I)->getPointerOperand();
3814 
3815     case Instruction::UDiv:
3816     case Instruction::SDiv:
3817     case Instruction::URem:
3818     case Instruction::SRem:
3819       return I->getOperand(1);
3820 
3821     default:
3822       return nullptr;
3823   }
3824 }
3825 
3826 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3827   // We currently only look for uses of poison values within the same basic
3828   // block, as that makes it easier to guarantee that the uses will be
3829   // executed given that PoisonI is executed.
3830   //
3831   // FIXME: Expand this to consider uses beyond the same basic block. To do
3832   // this, look out for the distinction between post-dominance and strong
3833   // post-dominance.
3834   const BasicBlock *BB = PoisonI->getParent();
3835 
3836   // Set of instructions that we have proved will yield poison if PoisonI
3837   // does.
3838   SmallSet<const Value *, 16> YieldsPoison;
3839   YieldsPoison.insert(PoisonI);
3840 
3841   for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end();
3842        I != E; ++I) {
3843     if (&*I != PoisonI) {
3844       const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I);
3845       if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true;
3846       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
3847         return false;
3848     }
3849 
3850     // Mark poison that propagates from I through uses of I.
3851     if (YieldsPoison.count(&*I)) {
3852       for (const User *User : I->users()) {
3853         const Instruction *UserI = cast<Instruction>(User);
3854         if (UserI->getParent() == BB && propagatesFullPoison(UserI))
3855           YieldsPoison.insert(User);
3856       }
3857     }
3858   }
3859   return false;
3860 }
3861 
3862 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3863   if (FMF.noNaNs())
3864     return true;
3865 
3866   if (auto *C = dyn_cast<ConstantFP>(V))
3867     return !C->isNaN();
3868   return false;
3869 }
3870 
3871 static bool isKnownNonZero(Value *V) {
3872   if (auto *C = dyn_cast<ConstantFP>(V))
3873     return !C->isZero();
3874   return false;
3875 }
3876 
3877 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3878                                               FastMathFlags FMF,
3879                                               Value *CmpLHS, Value *CmpRHS,
3880                                               Value *TrueVal, Value *FalseVal,
3881                                               Value *&LHS, Value *&RHS) {
3882   LHS = CmpLHS;
3883   RHS = CmpRHS;
3884 
3885   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3886   // return inconsistent results between implementations.
3887   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3888   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3889   // Therefore we behave conservatively and only proceed if at least one of the
3890   // operands is known to not be zero, or if we don't care about signed zeroes.
3891   switch (Pred) {
3892   default: break;
3893   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3894   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3895     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3896         !isKnownNonZero(CmpRHS))
3897       return {SPF_UNKNOWN, SPNB_NA, false};
3898   }
3899 
3900   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3901   bool Ordered = false;
3902 
3903   // When given one NaN and one non-NaN input:
3904   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3905   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3906   //     ordered comparison fails), which could be NaN or non-NaN.
3907   // so here we discover exactly what NaN behavior is required/accepted.
3908   if (CmpInst::isFPPredicate(Pred)) {
3909     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3910     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3911 
3912     if (LHSSafe && RHSSafe) {
3913       // Both operands are known non-NaN.
3914       NaNBehavior = SPNB_RETURNS_ANY;
3915     } else if (CmpInst::isOrdered(Pred)) {
3916       // An ordered comparison will return false when given a NaN, so it
3917       // returns the RHS.
3918       Ordered = true;
3919       if (LHSSafe)
3920         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3921         NaNBehavior = SPNB_RETURNS_NAN;
3922       else if (RHSSafe)
3923         NaNBehavior = SPNB_RETURNS_OTHER;
3924       else
3925         // Completely unsafe.
3926         return {SPF_UNKNOWN, SPNB_NA, false};
3927     } else {
3928       Ordered = false;
3929       // An unordered comparison will return true when given a NaN, so it
3930       // returns the LHS.
3931       if (LHSSafe)
3932         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3933         NaNBehavior = SPNB_RETURNS_OTHER;
3934       else if (RHSSafe)
3935         NaNBehavior = SPNB_RETURNS_NAN;
3936       else
3937         // Completely unsafe.
3938         return {SPF_UNKNOWN, SPNB_NA, false};
3939     }
3940   }
3941 
3942   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3943     std::swap(CmpLHS, CmpRHS);
3944     Pred = CmpInst::getSwappedPredicate(Pred);
3945     if (NaNBehavior == SPNB_RETURNS_NAN)
3946       NaNBehavior = SPNB_RETURNS_OTHER;
3947     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3948       NaNBehavior = SPNB_RETURNS_NAN;
3949     Ordered = !Ordered;
3950   }
3951 
3952   // ([if]cmp X, Y) ? X : Y
3953   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3954     switch (Pred) {
3955     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3956     case ICmpInst::ICMP_UGT:
3957     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3958     case ICmpInst::ICMP_SGT:
3959     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3960     case ICmpInst::ICMP_ULT:
3961     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3962     case ICmpInst::ICMP_SLT:
3963     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3964     case FCmpInst::FCMP_UGT:
3965     case FCmpInst::FCMP_UGE:
3966     case FCmpInst::FCMP_OGT:
3967     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3968     case FCmpInst::FCMP_ULT:
3969     case FCmpInst::FCMP_ULE:
3970     case FCmpInst::FCMP_OLT:
3971     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3972     }
3973   }
3974 
3975   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3976     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3977         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3978 
3979       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3980       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3981       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3982         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3983       }
3984 
3985       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3986       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3987       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3988         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3989       }
3990     }
3991 
3992     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3993     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3994       if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() &&
3995           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3996            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3997         LHS = TrueVal;
3998         RHS = FalseVal;
3999         return {SPF_SMIN, SPNB_NA, false};
4000       }
4001     }
4002   }
4003 
4004   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
4005 
4006   return {SPF_UNKNOWN, SPNB_NA, false};
4007 }
4008 
4009 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4010                               Instruction::CastOps *CastOp) {
4011   CastInst *CI = dyn_cast<CastInst>(V1);
4012   Constant *C = dyn_cast<Constant>(V2);
4013   CastInst *CI2 = dyn_cast<CastInst>(V2);
4014   if (!CI)
4015     return nullptr;
4016   *CastOp = CI->getOpcode();
4017 
4018   if (CI2) {
4019     // If V1 and V2 are both the same cast from the same type, we can look
4020     // through V1.
4021     if (CI2->getOpcode() == CI->getOpcode() &&
4022         CI2->getSrcTy() == CI->getSrcTy())
4023       return CI2->getOperand(0);
4024     return nullptr;
4025   } else if (!C) {
4026     return nullptr;
4027   }
4028 
4029   if (isa<SExtInst>(CI) && CmpI->isSigned()) {
4030     Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy());
4031     // This is only valid if the truncated value can be sign-extended
4032     // back to the original value.
4033     if (ConstantExpr::getSExt(T, C->getType()) == C)
4034       return T;
4035     return nullptr;
4036   }
4037   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
4038     return ConstantExpr::getTrunc(C, CI->getSrcTy());
4039 
4040   if (isa<TruncInst>(CI))
4041     return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
4042 
4043   if (isa<FPToUIInst>(CI))
4044     return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
4045 
4046   if (isa<FPToSIInst>(CI))
4047     return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
4048 
4049   if (isa<UIToFPInst>(CI))
4050     return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
4051 
4052   if (isa<SIToFPInst>(CI))
4053     return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
4054 
4055   if (isa<FPTruncInst>(CI))
4056     return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
4057 
4058   if (isa<FPExtInst>(CI))
4059     return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
4060 
4061   return nullptr;
4062 }
4063 
4064 SelectPatternResult llvm::matchSelectPattern(Value *V,
4065                                              Value *&LHS, Value *&RHS,
4066                                              Instruction::CastOps *CastOp) {
4067   SelectInst *SI = dyn_cast<SelectInst>(V);
4068   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4069 
4070   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4071   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4072 
4073   CmpInst::Predicate Pred = CmpI->getPredicate();
4074   Value *CmpLHS = CmpI->getOperand(0);
4075   Value *CmpRHS = CmpI->getOperand(1);
4076   Value *TrueVal = SI->getTrueValue();
4077   Value *FalseVal = SI->getFalseValue();
4078   FastMathFlags FMF;
4079   if (isa<FPMathOperator>(CmpI))
4080     FMF = CmpI->getFastMathFlags();
4081 
4082   // Bail out early.
4083   if (CmpI->isEquality())
4084     return {SPF_UNKNOWN, SPNB_NA, false};
4085 
4086   // Deal with type mismatches.
4087   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4088     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4089       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4090                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4091                                   LHS, RHS);
4092     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4093       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4094                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4095                                   LHS, RHS);
4096   }
4097   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4098                               LHS, RHS);
4099 }
4100 
4101 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
4102   const unsigned NumRanges = Ranges.getNumOperands() / 2;
4103   assert(NumRanges >= 1 && "Must have at least one range!");
4104   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
4105 
4106   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
4107   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
4108 
4109   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
4110 
4111   for (unsigned i = 1; i < NumRanges; ++i) {
4112     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
4113     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
4114 
4115     // Note: unionWith will potentially create a range that contains values not
4116     // contained in any of the original N ranges.
4117     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
4118   }
4119 
4120   return CR;
4121 }
4122 
4123 /// Return true if "icmp Pred LHS RHS" is always true.
4124 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
4125                             const DataLayout &DL, unsigned Depth,
4126                             AssumptionCache *AC, const Instruction *CxtI,
4127                             const DominatorTree *DT) {
4128   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4129   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4130     return true;
4131 
4132   switch (Pred) {
4133   default:
4134     return false;
4135 
4136   case CmpInst::ICMP_SLE: {
4137     const APInt *C;
4138 
4139     // LHS s<= LHS +_{nsw} C   if C >= 0
4140     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4141       return !C->isNegative();
4142     return false;
4143   }
4144 
4145   case CmpInst::ICMP_ULE: {
4146     const APInt *C;
4147 
4148     // LHS u<= LHS +_{nuw} C   for any C
4149     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4150       return true;
4151 
4152     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4153     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
4154                                        const APInt *&CA, const APInt *&CB) {
4155       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4156           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4157         return true;
4158 
4159       // If X & C == 0 then (X | C) == X +_{nuw} C
4160       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4161           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4162         unsigned BitWidth = CA->getBitWidth();
4163         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4164         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4165 
4166         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4167           return true;
4168       }
4169 
4170       return false;
4171     };
4172 
4173     Value *X;
4174     const APInt *CLHS, *CRHS;
4175     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4176       return CLHS->ule(*CRHS);
4177 
4178     return false;
4179   }
4180   }
4181 }
4182 
4183 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4184 /// ALHS ARHS" is true.
4185 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS,
4186                                   Value *ARHS, Value *BLHS, Value *BRHS,
4187                                   const DataLayout &DL, unsigned Depth,
4188                                   AssumptionCache *AC, const Instruction *CxtI,
4189                                   const DominatorTree *DT) {
4190   switch (Pred) {
4191   default:
4192     return false;
4193 
4194   case CmpInst::ICMP_SLT:
4195   case CmpInst::ICMP_SLE:
4196     return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4197                            DT) &&
4198            isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI,
4199                            DT);
4200 
4201   case CmpInst::ICMP_ULT:
4202   case CmpInst::ICMP_ULE:
4203     return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4204                            DT) &&
4205            isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI,
4206                            DT);
4207   }
4208 }
4209 
4210 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL,
4211                               unsigned Depth, AssumptionCache *AC,
4212                               const Instruction *CxtI,
4213                               const DominatorTree *DT) {
4214   assert(LHS->getType() == RHS->getType() && "mismatched type");
4215   Type *OpTy = LHS->getType();
4216   assert(OpTy->getScalarType()->isIntegerTy(1));
4217 
4218   // LHS ==> RHS by definition
4219   if (LHS == RHS) return true;
4220 
4221   if (OpTy->isVectorTy())
4222     // TODO: extending the code below to handle vectors
4223     return false;
4224   assert(OpTy->isIntegerTy(1) && "implied by above");
4225 
4226   ICmpInst::Predicate APred, BPred;
4227   Value *ALHS, *ARHS;
4228   Value *BLHS, *BRHS;
4229 
4230   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4231       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4232     return false;
4233 
4234   if (APred == BPred)
4235     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4236                                  CxtI, DT);
4237 
4238   return false;
4239 }
4240