1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/LoopInfo.h" 22 #include "llvm/IR/CallSite.h" 23 #include "llvm/IR/ConstantRange.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Dominators.h" 27 #include "llvm/IR/GetElementPtrTypeIterator.h" 28 #include "llvm/IR/GlobalAlias.h" 29 #include "llvm/IR/GlobalVariable.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/LLVMContext.h" 33 #include "llvm/IR/Metadata.h" 34 #include "llvm/IR/Operator.h" 35 #include "llvm/IR/PatternMatch.h" 36 #include "llvm/IR/Statepoint.h" 37 #include "llvm/Support/Debug.h" 38 #include "llvm/Support/MathExtras.h" 39 #include <algorithm> 40 #include <array> 41 #include <cstring> 42 using namespace llvm; 43 using namespace llvm::PatternMatch; 44 45 const unsigned MaxDepth = 6; 46 47 /// Enable an experimental feature to leverage information about dominating 48 /// conditions to compute known bits. The individual options below control how 49 /// hard we search. The defaults are chosen to be fairly aggressive. If you 50 /// run into compile time problems when testing, scale them back and report 51 /// your findings. 52 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 53 cl::Hidden, cl::init(false)); 54 55 // This is expensive, so we only do it for the top level query value. 56 // (TODO: evaluate cost vs profit, consider higher thresholds) 57 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 58 cl::Hidden, cl::init(1)); 59 60 /// How many dominating blocks should be scanned looking for dominating 61 /// conditions? 62 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 63 cl::Hidden, 64 cl::init(20)); 65 66 // Controls the number of uses of the value searched for possible 67 // dominating comparisons. 68 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 69 cl::Hidden, cl::init(20)); 70 71 // If true, don't consider only compares whose only use is a branch. 72 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 73 cl::Hidden, cl::init(false)); 74 75 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 76 /// 0). For vector types, returns the element type's bitwidth. 77 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 78 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 79 return BitWidth; 80 81 return DL.getPointerTypeSizeInBits(Ty); 82 } 83 84 namespace { 85 // Simplifying using an assume can only be done in a particular control-flow 86 // context (the context instruction provides that context). If an assume and 87 // the context instruction are not in the same block then the DT helps in 88 // figuring out if we can use it. 89 struct Query { 90 const DataLayout &DL; 91 AssumptionCache *AC; 92 const Instruction *CxtI; 93 const DominatorTree *DT; 94 95 /// Set of assumptions that should be excluded from further queries. 96 /// This is because of the potential for mutual recursion to cause 97 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 98 /// classic case of this is assume(x = y), which will attempt to determine 99 /// bits in x from bits in y, which will attempt to determine bits in y from 100 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 101 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 102 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 103 /// on. 104 std::array<const Value*, MaxDepth> Excluded; 105 unsigned NumExcluded; 106 107 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 108 const DominatorTree *DT) 109 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 110 111 Query(const Query &Q, const Value *NewExcl) 112 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 113 Excluded = Q.Excluded; 114 Excluded[NumExcluded++] = NewExcl; 115 assert(NumExcluded <= Excluded.size()); 116 } 117 118 bool isExcluded(const Value *Value) const { 119 if (NumExcluded == 0) 120 return false; 121 auto End = Excluded.begin() + NumExcluded; 122 return std::find(Excluded.begin(), End, Value) != End; 123 } 124 }; 125 } // end anonymous namespace 126 127 // Given the provided Value and, potentially, a context instruction, return 128 // the preferred context instruction (if any). 129 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 130 // If we've been provided with a context instruction, then use that (provided 131 // it has been inserted). 132 if (CxtI && CxtI->getParent()) 133 return CxtI; 134 135 // If the value is really an already-inserted instruction, then use that. 136 CxtI = dyn_cast<Instruction>(V); 137 if (CxtI && CxtI->getParent()) 138 return CxtI; 139 140 return nullptr; 141 } 142 143 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 144 unsigned Depth, const Query &Q); 145 146 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 147 const DataLayout &DL, unsigned Depth, 148 AssumptionCache *AC, const Instruction *CxtI, 149 const DominatorTree *DT) { 150 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 151 Query(DL, AC, safeCxtI(V, CxtI), DT)); 152 } 153 154 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 155 AssumptionCache *AC, const Instruction *CxtI, 156 const DominatorTree *DT) { 157 assert(LHS->getType() == RHS->getType() && 158 "LHS and RHS should have the same type"); 159 assert(LHS->getType()->isIntOrIntVectorTy() && 160 "LHS and RHS should be integers"); 161 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 162 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 163 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 164 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 165 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 166 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 167 } 168 169 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 170 unsigned Depth, const Query &Q); 171 172 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 173 const DataLayout &DL, unsigned Depth, 174 AssumptionCache *AC, const Instruction *CxtI, 175 const DominatorTree *DT) { 176 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 177 Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 181 const Query &Q); 182 183 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 184 unsigned Depth, AssumptionCache *AC, 185 const Instruction *CxtI, 186 const DominatorTree *DT) { 187 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 188 Query(DL, AC, safeCxtI(V, CxtI), DT)); 189 } 190 191 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q); 192 193 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 197 } 198 199 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 200 AssumptionCache *AC, const Instruction *CxtI, 201 const DominatorTree *DT) { 202 bool NonNegative, Negative; 203 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 204 return NonNegative; 205 } 206 207 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q); 208 209 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 210 AssumptionCache *AC, const Instruction *CxtI, 211 const DominatorTree *DT) { 212 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 213 safeCxtI(V1, safeCxtI(V2, CxtI)), 214 DT)); 215 } 216 217 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 218 const Query &Q); 219 220 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 221 unsigned Depth, AssumptionCache *AC, 222 const Instruction *CxtI, const DominatorTree *DT) { 223 return ::MaskedValueIsZero(V, Mask, Depth, 224 Query(DL, AC, safeCxtI(V, CxtI), DT)); 225 } 226 227 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q); 228 229 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 230 unsigned Depth, AssumptionCache *AC, 231 const Instruction *CxtI, 232 const DominatorTree *DT) { 233 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 234 } 235 236 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 237 APInt &KnownZero, APInt &KnownOne, 238 APInt &KnownZero2, APInt &KnownOne2, 239 unsigned Depth, const Query &Q) { 240 if (!Add) { 241 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 242 // We know that the top bits of C-X are clear if X contains less bits 243 // than C (i.e. no wrap-around can happen). For example, 20-X is 244 // positive if we can prove that X is >= 0 and < 16. 245 if (!CLHS->getValue().isNegative()) { 246 unsigned BitWidth = KnownZero.getBitWidth(); 247 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 248 // NLZ can't be BitWidth with no sign bit 249 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 250 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 251 252 // If all of the MaskV bits are known to be zero, then we know the 253 // output top bits are zero, because we now know that the output is 254 // from [0-C]. 255 if ((KnownZero2 & MaskV) == MaskV) { 256 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 257 // Top bits known zero. 258 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 259 } 260 } 261 } 262 } 263 264 unsigned BitWidth = KnownZero.getBitWidth(); 265 266 // If an initial sequence of bits in the result is not needed, the 267 // corresponding bits in the operands are not needed. 268 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 269 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 270 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 271 272 // Carry in a 1 for a subtract, rather than a 0. 273 APInt CarryIn(BitWidth, 0); 274 if (!Add) { 275 // Sum = LHS + ~RHS + 1 276 std::swap(KnownZero2, KnownOne2); 277 CarryIn.setBit(0); 278 } 279 280 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 281 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 282 283 // Compute known bits of the carry. 284 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 285 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 286 287 // Compute set of known bits (where all three relevant bits are known). 288 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 289 APInt RHSKnown = KnownZero2 | KnownOne2; 290 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 291 APInt Known = LHSKnown & RHSKnown & CarryKnown; 292 293 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 294 "known bits of sum differ"); 295 296 // Compute known bits of the result. 297 KnownZero = ~PossibleSumOne & Known; 298 KnownOne = PossibleSumOne & Known; 299 300 // Are we still trying to solve for the sign bit? 301 if (!Known.isNegative()) { 302 if (NSW) { 303 // Adding two non-negative numbers, or subtracting a negative number from 304 // a non-negative one, can't wrap into negative. 305 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 306 KnownZero |= APInt::getSignBit(BitWidth); 307 // Adding two negative numbers, or subtracting a non-negative number from 308 // a negative one, can't wrap into non-negative. 309 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 310 KnownOne |= APInt::getSignBit(BitWidth); 311 } 312 } 313 } 314 315 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 316 APInt &KnownZero, APInt &KnownOne, 317 APInt &KnownZero2, APInt &KnownOne2, 318 unsigned Depth, const Query &Q) { 319 unsigned BitWidth = KnownZero.getBitWidth(); 320 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 321 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 322 323 bool isKnownNegative = false; 324 bool isKnownNonNegative = false; 325 // If the multiplication is known not to overflow, compute the sign bit. 326 if (NSW) { 327 if (Op0 == Op1) { 328 // The product of a number with itself is non-negative. 329 isKnownNonNegative = true; 330 } else { 331 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 332 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 333 bool isKnownNegativeOp1 = KnownOne.isNegative(); 334 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 335 // The product of two numbers with the same sign is non-negative. 336 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 337 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 338 // The product of a negative number and a non-negative number is either 339 // negative or zero. 340 if (!isKnownNonNegative) 341 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 342 isKnownNonZero(Op0, Depth, Q)) || 343 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 344 isKnownNonZero(Op1, Depth, Q)); 345 } 346 } 347 348 // If low bits are zero in either operand, output low known-0 bits. 349 // Also compute a conservative estimate for high known-0 bits. 350 // More trickiness is possible, but this is sufficient for the 351 // interesting case of alignment computation. 352 KnownOne.clearAllBits(); 353 unsigned TrailZ = KnownZero.countTrailingOnes() + 354 KnownZero2.countTrailingOnes(); 355 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 356 KnownZero2.countLeadingOnes(), 357 BitWidth) - BitWidth; 358 359 TrailZ = std::min(TrailZ, BitWidth); 360 LeadZ = std::min(LeadZ, BitWidth); 361 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 362 APInt::getHighBitsSet(BitWidth, LeadZ); 363 364 // Only make use of no-wrap flags if we failed to compute the sign bit 365 // directly. This matters if the multiplication always overflows, in 366 // which case we prefer to follow the result of the direct computation, 367 // though as the program is invoking undefined behaviour we can choose 368 // whatever we like here. 369 if (isKnownNonNegative && !KnownOne.isNegative()) 370 KnownZero.setBit(BitWidth - 1); 371 else if (isKnownNegative && !KnownZero.isNegative()) 372 KnownOne.setBit(BitWidth - 1); 373 } 374 375 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 376 APInt &KnownZero, 377 APInt &KnownOne) { 378 unsigned BitWidth = KnownZero.getBitWidth(); 379 unsigned NumRanges = Ranges.getNumOperands() / 2; 380 assert(NumRanges >= 1); 381 382 KnownZero.setAllBits(); 383 KnownOne.setAllBits(); 384 385 for (unsigned i = 0; i < NumRanges; ++i) { 386 ConstantInt *Lower = 387 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 388 ConstantInt *Upper = 389 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 390 ConstantRange Range(Lower->getValue(), Upper->getValue()); 391 392 // The first CommonPrefixBits of all values in Range are equal. 393 unsigned CommonPrefixBits = 394 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 395 396 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 397 KnownOne &= Range.getUnsignedMax() & Mask; 398 KnownZero &= ~Range.getUnsignedMax() & Mask; 399 } 400 } 401 402 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 403 SmallVector<const Value *, 16> WorkSet(1, I); 404 SmallPtrSet<const Value *, 32> Visited; 405 SmallPtrSet<const Value *, 16> EphValues; 406 407 // The instruction defining an assumption's condition itself is always 408 // considered ephemeral to that assumption (even if it has other 409 // non-ephemeral users). See r246696's test case for an example. 410 if (std::find(I->op_begin(), I->op_end(), E) != I->op_end()) 411 return true; 412 413 while (!WorkSet.empty()) { 414 const Value *V = WorkSet.pop_back_val(); 415 if (!Visited.insert(V).second) 416 continue; 417 418 // If all uses of this value are ephemeral, then so is this value. 419 if (std::all_of(V->user_begin(), V->user_end(), 420 [&](const User *U) { return EphValues.count(U); })) { 421 if (V == E) 422 return true; 423 424 EphValues.insert(V); 425 if (const User *U = dyn_cast<User>(V)) 426 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 427 J != JE; ++J) { 428 if (isSafeToSpeculativelyExecute(*J)) 429 WorkSet.push_back(*J); 430 } 431 } 432 } 433 434 return false; 435 } 436 437 // Is this an intrinsic that cannot be speculated but also cannot trap? 438 static bool isAssumeLikeIntrinsic(const Instruction *I) { 439 if (const CallInst *CI = dyn_cast<CallInst>(I)) 440 if (Function *F = CI->getCalledFunction()) 441 switch (F->getIntrinsicID()) { 442 default: break; 443 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 444 case Intrinsic::assume: 445 case Intrinsic::dbg_declare: 446 case Intrinsic::dbg_value: 447 case Intrinsic::invariant_start: 448 case Intrinsic::invariant_end: 449 case Intrinsic::lifetime_start: 450 case Intrinsic::lifetime_end: 451 case Intrinsic::objectsize: 452 case Intrinsic::ptr_annotation: 453 case Intrinsic::var_annotation: 454 return true; 455 } 456 457 return false; 458 } 459 460 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI, 461 const DominatorTree *DT) { 462 Instruction *Inv = cast<Instruction>(V); 463 464 // There are two restrictions on the use of an assume: 465 // 1. The assume must dominate the context (or the control flow must 466 // reach the assume whenever it reaches the context). 467 // 2. The context must not be in the assume's set of ephemeral values 468 // (otherwise we will use the assume to prove that the condition 469 // feeding the assume is trivially true, thus causing the removal of 470 // the assume). 471 472 if (DT) { 473 if (DT->dominates(Inv, CxtI)) { 474 return true; 475 } else if (Inv->getParent() == CxtI->getParent()) { 476 // The context comes first, but they're both in the same block. Make sure 477 // there is nothing in between that might interrupt the control flow. 478 for (BasicBlock::const_iterator I = 479 std::next(BasicBlock::const_iterator(CxtI)), 480 IE(Inv); I != IE; ++I) 481 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 482 return false; 483 484 return !isEphemeralValueOf(Inv, CxtI); 485 } 486 487 return false; 488 } 489 490 // When we don't have a DT, we do a limited search... 491 if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 492 return true; 493 } else if (Inv->getParent() == CxtI->getParent()) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 501 // The context must come first... 502 for (BasicBlock::const_iterator I = 503 std::next(BasicBlock::const_iterator(CxtI)), 504 IE(Inv); I != IE; ++I) 505 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 506 return false; 507 508 return !isEphemeralValueOf(Inv, CxtI); 509 } 510 511 return false; 512 } 513 514 bool llvm::isValidAssumeForContext(const Instruction *I, 515 const Instruction *CxtI, 516 const DominatorTree *DT) { 517 return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT); 518 } 519 520 template<typename LHS, typename RHS> 521 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 522 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 523 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 524 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 525 } 526 527 template<typename LHS, typename RHS> 528 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 529 BinaryOp_match<RHS, LHS, Instruction::And>> 530 m_c_And(const LHS &L, const RHS &R) { 531 return m_CombineOr(m_And(L, R), m_And(R, L)); 532 } 533 534 template<typename LHS, typename RHS> 535 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 536 BinaryOp_match<RHS, LHS, Instruction::Or>> 537 m_c_Or(const LHS &L, const RHS &R) { 538 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 539 } 540 541 template<typename LHS, typename RHS> 542 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 543 BinaryOp_match<RHS, LHS, Instruction::Xor>> 544 m_c_Xor(const LHS &L, const RHS &R) { 545 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 546 } 547 548 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 549 /// true (at the context instruction.) This is mostly a utility function for 550 /// the prototype dominating conditions reasoning below. 551 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 552 APInt &KnownZero, 553 APInt &KnownOne, 554 unsigned Depth, const Query &Q) { 555 Value *LHS = Cmp->getOperand(0); 556 Value *RHS = Cmp->getOperand(1); 557 // TODO: We could potentially be more aggressive here. This would be worth 558 // evaluating. If we can, explore commoning this code with the assume 559 // handling logic. 560 if (LHS != V && RHS != V) 561 return; 562 563 const unsigned BitWidth = KnownZero.getBitWidth(); 564 565 switch (Cmp->getPredicate()) { 566 default: 567 // We know nothing from this condition 568 break; 569 // TODO: implement unsigned bound from below (known one bits) 570 // TODO: common condition check implementations with assumes 571 // TODO: implement other patterns from assume (e.g. V & B == A) 572 case ICmpInst::ICMP_SGT: 573 if (LHS == V) { 574 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 575 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 576 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 577 // We know that the sign bit is zero. 578 KnownZero |= APInt::getSignBit(BitWidth); 579 } 580 } 581 break; 582 case ICmpInst::ICMP_EQ: 583 { 584 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 585 if (LHS == V) 586 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 587 else if (RHS == V) 588 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 589 else 590 llvm_unreachable("missing use?"); 591 KnownZero |= KnownZeroTemp; 592 KnownOne |= KnownOneTemp; 593 } 594 break; 595 case ICmpInst::ICMP_ULE: 596 if (LHS == V) { 597 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 598 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 599 // The known zero bits carry over 600 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 601 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 602 } 603 break; 604 case ICmpInst::ICMP_ULT: 605 if (LHS == V) { 606 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 607 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, Depth + 1, Q); 608 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 609 // power of 2, then one more). 610 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 611 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp))) 612 SignBits++; 613 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 614 } 615 break; 616 }; 617 } 618 619 /// Compute known bits in 'V' from conditions which are known to be true along 620 /// all paths leading to the context instruction. In particular, look for 621 /// cases where one branch of an interesting condition dominates the context 622 /// instruction. This does not do general dataflow. 623 /// NOTE: This code is EXPERIMENTAL and currently off by default. 624 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 625 APInt &KnownOne, 626 unsigned Depth, 627 const Query &Q) { 628 // Need both the dominator tree and the query location to do anything useful 629 if (!Q.DT || !Q.CxtI) 630 return; 631 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 632 // The context instruction might be in a statically unreachable block. If 633 // so, asking dominator queries may yield suprising results. (e.g. the block 634 // may not have a dom tree node) 635 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 636 return; 637 638 // Avoid useless work 639 if (auto VI = dyn_cast<Instruction>(V)) 640 if (VI->getParent() == Cxt->getParent()) 641 return; 642 643 // Note: We currently implement two options. It's not clear which of these 644 // will survive long term, we need data for that. 645 // Option 1 - Try walking the dominator tree looking for conditions which 646 // might apply. This works well for local conditions (loop guards, etc..), 647 // but not as well for things far from the context instruction (presuming a 648 // low max blocks explored). If we can set an high enough limit, this would 649 // be all we need. 650 // Option 2 - We restrict out search to those conditions which are uses of 651 // the value we're interested in. This is independent of dom structure, 652 // but is slightly less powerful without looking through lots of use chains. 653 // It does handle conditions far from the context instruction (e.g. early 654 // function exits on entry) really well though. 655 656 // Option 1 - Search the dom tree 657 unsigned NumBlocksExplored = 0; 658 BasicBlock *Current = Cxt->getParent(); 659 while (true) { 660 // Stop searching if we've gone too far up the chain 661 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 662 break; 663 NumBlocksExplored++; 664 665 if (!Q.DT->getNode(Current)->getIDom()) 666 break; 667 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 668 if (!Current) 669 // found function entry 670 break; 671 672 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 673 if (!BI || BI->isUnconditional()) 674 continue; 675 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 676 if (!Cmp) 677 continue; 678 679 // We're looking for conditions that are guaranteed to hold at the context 680 // instruction. Finding a condition where one path dominates the context 681 // isn't enough because both the true and false cases could merge before 682 // the context instruction we're actually interested in. Instead, we need 683 // to ensure that the taken *edge* dominates the context instruction. We 684 // know that the edge must be reachable since we started from a reachable 685 // block. 686 BasicBlock *BB0 = BI->getSuccessor(0); 687 BasicBlockEdge Edge(BI->getParent(), BB0); 688 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 689 continue; 690 691 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 692 } 693 694 // Option 2 - Search the other uses of V 695 unsigned NumUsesExplored = 0; 696 for (auto U : V->users()) { 697 // Avoid massive lists 698 if (NumUsesExplored >= DomConditionsMaxUses) 699 break; 700 NumUsesExplored++; 701 // Consider only compare instructions uniquely controlling a branch 702 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 703 if (!Cmp) 704 continue; 705 706 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 707 continue; 708 709 for (auto *CmpU : Cmp->users()) { 710 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 711 if (!BI || BI->isUnconditional()) 712 continue; 713 // We're looking for conditions that are guaranteed to hold at the 714 // context instruction. Finding a condition where one path dominates 715 // the context isn't enough because both the true and false cases could 716 // merge before the context instruction we're actually interested in. 717 // Instead, we need to ensure that the taken *edge* dominates the context 718 // instruction. 719 BasicBlock *BB0 = BI->getSuccessor(0); 720 BasicBlockEdge Edge(BI->getParent(), BB0); 721 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 722 continue; 723 724 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, Depth, Q); 725 } 726 } 727 } 728 729 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 730 APInt &KnownOne, unsigned Depth, 731 const Query &Q) { 732 // Use of assumptions is context-sensitive. If we don't have a context, we 733 // cannot use them! 734 if (!Q.AC || !Q.CxtI) 735 return; 736 737 unsigned BitWidth = KnownZero.getBitWidth(); 738 739 for (auto &AssumeVH : Q.AC->assumptions()) { 740 if (!AssumeVH) 741 continue; 742 CallInst *I = cast<CallInst>(AssumeVH); 743 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 744 "Got assumption for the wrong function!"); 745 if (Q.isExcluded(I)) 746 continue; 747 748 // Warning: This loop can end up being somewhat performance sensetive. 749 // We're running this loop for once for each value queried resulting in a 750 // runtime of ~O(#assumes * #values). 751 752 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 753 "must be an assume intrinsic"); 754 755 Value *Arg = I->getArgOperand(0); 756 757 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 assert(BitWidth == 1 && "assume operand is not i1?"); 759 KnownZero.clearAllBits(); 760 KnownOne.setAllBits(); 761 return; 762 } 763 764 // The remaining tests are all recursive, so bail out if we hit the limit. 765 if (Depth == MaxDepth) 766 continue; 767 768 Value *A, *B; 769 auto m_V = m_CombineOr(m_Specific(V), 770 m_CombineOr(m_PtrToInt(m_Specific(V)), 771 m_BitCast(m_Specific(V)))); 772 773 CmpInst::Predicate Pred; 774 ConstantInt *C; 775 // assume(v = a) 776 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 777 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 778 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 779 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 780 KnownZero |= RHSKnownZero; 781 KnownOne |= RHSKnownOne; 782 // assume(v & b = a) 783 } else if (match(Arg, 784 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 785 Pred == ICmpInst::ICMP_EQ && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 788 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 789 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 790 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 791 792 // For those bits in the mask that are known to be one, we can propagate 793 // known bits from the RHS to V. 794 KnownZero |= RHSKnownZero & MaskKnownOne; 795 KnownOne |= RHSKnownOne & MaskKnownOne; 796 // assume(~(v & b) = a) 797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 798 m_Value(A))) && 799 Pred == ICmpInst::ICMP_EQ && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 802 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 803 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 804 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 805 806 // For those bits in the mask that are known to be one, we can propagate 807 // inverted known bits from the RHS to V. 808 KnownZero |= RHSKnownOne & MaskKnownOne; 809 KnownOne |= RHSKnownZero & MaskKnownOne; 810 // assume(v | b = a) 811 } else if (match(Arg, 812 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 813 Pred == ICmpInst::ICMP_EQ && 814 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 815 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 816 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 817 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 818 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 819 820 // For those bits in B that are known to be zero, we can propagate known 821 // bits from the RHS to V. 822 KnownZero |= RHSKnownZero & BKnownZero; 823 KnownOne |= RHSKnownOne & BKnownZero; 824 // assume(~(v | b) = a) 825 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 826 m_Value(A))) && 827 Pred == ICmpInst::ICMP_EQ && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 830 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 831 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 832 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. 836 KnownZero |= RHSKnownOne & BKnownZero; 837 KnownOne |= RHSKnownZero & BKnownZero; 838 // assume(v ^ b = a) 839 } else if (match(Arg, 840 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 841 Pred == ICmpInst::ICMP_EQ && 842 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 843 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 844 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 845 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 846 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 847 848 // For those bits in B that are known to be zero, we can propagate known 849 // bits from the RHS to V. For those bits in B that are known to be one, 850 // we can propagate inverted known bits from the RHS to V. 851 KnownZero |= RHSKnownZero & BKnownZero; 852 KnownOne |= RHSKnownOne & BKnownZero; 853 KnownZero |= RHSKnownOne & BKnownOne; 854 KnownOne |= RHSKnownZero & BKnownOne; 855 // assume(~(v ^ b) = a) 856 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 857 m_Value(A))) && 858 Pred == ICmpInst::ICMP_EQ && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 861 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 862 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 863 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 864 865 // For those bits in B that are known to be zero, we can propagate 866 // inverted known bits from the RHS to V. For those bits in B that are 867 // known to be one, we can propagate known bits from the RHS to V. 868 KnownZero |= RHSKnownOne & BKnownZero; 869 KnownOne |= RHSKnownZero & BKnownZero; 870 KnownZero |= RHSKnownZero & BKnownOne; 871 KnownOne |= RHSKnownOne & BKnownOne; 872 // assume(v << c = a) 873 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 874 m_Value(A))) && 875 Pred == ICmpInst::ICMP_EQ && 876 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 877 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 878 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 879 // For those bits in RHS that are known, we can propagate them to known 880 // bits in V shifted to the right by C. 881 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 882 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 883 // assume(~(v << c) = a) 884 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 885 m_Value(A))) && 886 Pred == ICmpInst::ICMP_EQ && 887 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 888 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 889 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 890 // For those bits in RHS that are known, we can propagate them inverted 891 // to known bits in V shifted to the right by C. 892 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 893 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 894 // assume(v >> c = a) 895 } else if (match(Arg, 896 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 897 m_AShr(m_V, m_ConstantInt(C))), 898 m_Value(A))) && 899 Pred == ICmpInst::ICMP_EQ && 900 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 901 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 902 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 903 // For those bits in RHS that are known, we can propagate them to known 904 // bits in V shifted to the right by C. 905 KnownZero |= RHSKnownZero << C->getZExtValue(); 906 KnownOne |= RHSKnownOne << C->getZExtValue(); 907 // assume(~(v >> c) = a) 908 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 909 m_LShr(m_V, m_ConstantInt(C)), 910 m_AShr(m_V, m_ConstantInt(C)))), 911 m_Value(A))) && 912 Pred == ICmpInst::ICMP_EQ && 913 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 914 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 915 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 916 // For those bits in RHS that are known, we can propagate them inverted 917 // to known bits in V shifted to the right by C. 918 KnownZero |= RHSKnownOne << C->getZExtValue(); 919 KnownOne |= RHSKnownZero << C->getZExtValue(); 920 // assume(v >=_s c) where c is non-negative 921 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 922 Pred == ICmpInst::ICMP_SGE && 923 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 924 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 925 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 926 927 if (RHSKnownZero.isNegative()) { 928 // We know that the sign bit is zero. 929 KnownZero |= APInt::getSignBit(BitWidth); 930 } 931 // assume(v >_s c) where c is at least -1. 932 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 933 Pred == ICmpInst::ICMP_SGT && 934 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 935 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 936 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 937 938 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 939 // We know that the sign bit is zero. 940 KnownZero |= APInt::getSignBit(BitWidth); 941 } 942 // assume(v <=_s c) where c is negative 943 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 944 Pred == ICmpInst::ICMP_SLE && 945 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 946 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 947 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 948 949 if (RHSKnownOne.isNegative()) { 950 // We know that the sign bit is one. 951 KnownOne |= APInt::getSignBit(BitWidth); 952 } 953 // assume(v <_s c) where c is non-positive 954 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 955 Pred == ICmpInst::ICMP_SLT && 956 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 957 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 958 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 959 960 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 961 // We know that the sign bit is one. 962 KnownOne |= APInt::getSignBit(BitWidth); 963 } 964 // assume(v <=_u c) 965 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 966 Pred == ICmpInst::ICMP_ULE && 967 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 968 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 969 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 970 971 // Whatever high bits in c are zero are known to be zero. 972 KnownZero |= 973 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 974 // assume(v <_u c) 975 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 976 Pred == ICmpInst::ICMP_ULT && 977 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 978 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 979 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 980 981 // Whatever high bits in c are zero are known to be zero (if c is a power 982 // of 2, then one more). 983 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 984 KnownZero |= 985 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 986 else 987 KnownZero |= 988 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 989 } 990 } 991 } 992 993 // Compute known bits from a shift operator, including those with a 994 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 995 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 996 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 997 // functors that, given the known-zero or known-one bits respectively, and a 998 // shift amount, compute the implied known-zero or known-one bits of the shift 999 // operator's result respectively for that shift amount. The results from calling 1000 // KZF and KOF are conservatively combined for all permitted shift amounts. 1001 template <typename KZFunctor, typename KOFunctor> 1002 static void computeKnownBitsFromShiftOperator(Operator *I, 1003 APInt &KnownZero, APInt &KnownOne, 1004 APInt &KnownZero2, APInt &KnownOne2, 1005 unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) { 1006 unsigned BitWidth = KnownZero.getBitWidth(); 1007 1008 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1009 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1010 1011 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1012 KnownZero = KZF(KnownZero, ShiftAmt); 1013 KnownOne = KOF(KnownOne, ShiftAmt); 1014 return; 1015 } 1016 1017 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1018 1019 // Note: We cannot use KnownZero.getLimitedValue() here, because if 1020 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1021 // limit value (which implies all bits are known). 1022 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 1023 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 1024 1025 // It would be more-clearly correct to use the two temporaries for this 1026 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1027 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1028 1029 // If we know the shifter operand is nonzero, we can sometimes infer more 1030 // known bits. However this is expensive to compute, so be lazy about it and 1031 // only compute it when absolutely necessary. 1032 Optional<bool> ShifterOperandIsNonZero; 1033 1034 // Early exit if we can't constrain any well-defined shift amount. 1035 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 1036 ShifterOperandIsNonZero = 1037 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1038 if (!*ShifterOperandIsNonZero) 1039 return; 1040 } 1041 1042 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1043 1044 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 1045 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1046 // Combine the shifted known input bits only for those shift amounts 1047 // compatible with its known constraints. 1048 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1049 continue; 1050 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1051 continue; 1052 // If we know the shifter is nonzero, we may be able to infer more known 1053 // bits. This check is sunk down as far as possible to avoid the expensive 1054 // call to isKnownNonZero if the cheaper checks above fail. 1055 if (ShiftAmt == 0) { 1056 if (!ShifterOperandIsNonZero.hasValue()) 1057 ShifterOperandIsNonZero = 1058 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1059 if (*ShifterOperandIsNonZero) 1060 continue; 1061 } 1062 1063 KnownZero &= KZF(KnownZero2, ShiftAmt); 1064 KnownOne &= KOF(KnownOne2, ShiftAmt); 1065 } 1066 1067 // If there are no compatible shift amounts, then we've proven that the shift 1068 // amount must be >= the BitWidth, and the result is undefined. We could 1069 // return anything we'd like, but we need to make sure the sets of known bits 1070 // stay disjoint (it should be better for some other code to actually 1071 // propagate the undef than to pick a value here using known bits). 1072 if ((KnownZero & KnownOne) != 0) 1073 KnownZero.clearAllBits(), KnownOne.clearAllBits(); 1074 } 1075 1076 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 1077 APInt &KnownOne, unsigned Depth, 1078 const Query &Q) { 1079 unsigned BitWidth = KnownZero.getBitWidth(); 1080 1081 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1082 switch (I->getOpcode()) { 1083 default: break; 1084 case Instruction::Load: 1085 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1086 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1087 break; 1088 case Instruction::And: { 1089 // If either the LHS or the RHS are Zero, the result is zero. 1090 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1091 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1092 1093 // Output known-1 bits are only known if set in both the LHS & RHS. 1094 KnownOne &= KnownOne2; 1095 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1096 KnownZero |= KnownZero2; 1097 1098 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1099 // here we handle the more general case of adding any odd number by 1100 // matching the form add(x, add(x, y)) where y is odd. 1101 // TODO: This could be generalized to clearing any bit set in y where the 1102 // following bit is known to be unset in y. 1103 Value *Y = nullptr; 1104 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 1105 m_Value(Y))) || 1106 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 1107 m_Value(Y)))) { 1108 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 1109 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 1110 if (KnownOne3.countTrailingOnes() > 0) 1111 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 1112 } 1113 break; 1114 } 1115 case Instruction::Or: { 1116 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1117 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1118 1119 // Output known-0 bits are only known if clear in both the LHS & RHS. 1120 KnownZero &= KnownZero2; 1121 // Output known-1 are known to be set if set in either the LHS | RHS. 1122 KnownOne |= KnownOne2; 1123 break; 1124 } 1125 case Instruction::Xor: { 1126 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 1127 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1128 1129 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1130 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1131 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1132 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1133 KnownZero = KnownZeroOut; 1134 break; 1135 } 1136 case Instruction::Mul: { 1137 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1138 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1139 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1140 break; 1141 } 1142 case Instruction::UDiv: { 1143 // For the purposes of computing leading zeros we can conservatively 1144 // treat a udiv as a logical right shift by the power of 2 known to 1145 // be less than the denominator. 1146 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1147 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1148 1149 KnownOne2.clearAllBits(); 1150 KnownZero2.clearAllBits(); 1151 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1152 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1153 if (RHSUnknownLeadingOnes != BitWidth) 1154 LeadZ = std::min(BitWidth, 1155 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1156 1157 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1158 break; 1159 } 1160 case Instruction::Select: 1161 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 1162 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1163 1164 // Only known if known in both the LHS and RHS. 1165 KnownOne &= KnownOne2; 1166 KnownZero &= KnownZero2; 1167 break; 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1178 // FALL THROUGH and handle them the same as zext/trunc. 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1187 1188 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1189 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1190 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1191 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1192 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1193 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1194 // Any top bits are known to be zero. 1195 if (BitWidth > SrcBitWidth) 1196 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1197 break; 1198 } 1199 case Instruction::BitCast: { 1200 Type *SrcTy = I->getOperand(0)->getType(); 1201 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1202 SrcTy->isFloatingPointTy()) && 1203 // TODO: For now, not handling conversions like: 1204 // (bitcast i64 %x to <2 x i32>) 1205 !I->getType()->isVectorTy()) { 1206 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1207 break; 1208 } 1209 break; 1210 } 1211 case Instruction::SExt: { 1212 // Compute the bits in the result that are not present in the input. 1213 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1214 1215 KnownZero = KnownZero.trunc(SrcBitWidth); 1216 KnownOne = KnownOne.trunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1218 KnownZero = KnownZero.zext(BitWidth); 1219 KnownOne = KnownOne.zext(BitWidth); 1220 1221 // If the sign bit of the input is known set or clear, then we know the 1222 // top bits of the result. 1223 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1224 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1225 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1226 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1227 break; 1228 } 1229 case Instruction::Shl: { 1230 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1231 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1232 return (KnownZero << ShiftAmt) | 1233 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1234 }; 1235 1236 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1237 return KnownOne << ShiftAmt; 1238 }; 1239 1240 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1241 KnownZero2, KnownOne2, Depth, Q, KZF, 1242 KOF); 1243 break; 1244 } 1245 case Instruction::LShr: { 1246 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1247 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1248 return APIntOps::lshr(KnownZero, ShiftAmt) | 1249 // High bits known zero. 1250 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1251 }; 1252 1253 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1254 return APIntOps::lshr(KnownOne, ShiftAmt); 1255 }; 1256 1257 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1258 KnownZero2, KnownOne2, Depth, Q, KZF, 1259 KOF); 1260 break; 1261 } 1262 case Instruction::AShr: { 1263 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1264 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1265 return APIntOps::ashr(KnownZero, ShiftAmt); 1266 }; 1267 1268 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1269 return APIntOps::ashr(KnownOne, ShiftAmt); 1270 }; 1271 1272 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1273 KnownZero2, KnownOne2, Depth, Q, KZF, 1274 KOF); 1275 break; 1276 } 1277 case Instruction::Sub: { 1278 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1279 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1280 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1281 Q); 1282 break; 1283 } 1284 case Instruction::Add: { 1285 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1286 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1287 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1288 Q); 1289 break; 1290 } 1291 case Instruction::SRem: 1292 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1293 APInt RA = Rem->getValue().abs(); 1294 if (RA.isPowerOf2()) { 1295 APInt LowBits = RA - 1; 1296 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1297 Q); 1298 1299 // The low bits of the first operand are unchanged by the srem. 1300 KnownZero = KnownZero2 & LowBits; 1301 KnownOne = KnownOne2 & LowBits; 1302 1303 // If the first operand is non-negative or has all low bits zero, then 1304 // the upper bits are all zero. 1305 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1306 KnownZero |= ~LowBits; 1307 1308 // If the first operand is negative and not all low bits are zero, then 1309 // the upper bits are all one. 1310 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1311 KnownOne |= ~LowBits; 1312 1313 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1314 } 1315 } 1316 1317 // The sign bit is the LHS's sign bit, except when the result of the 1318 // remainder is zero. 1319 if (KnownZero.isNonNegative()) { 1320 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1321 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1322 Q); 1323 // If it's known zero, our sign bit is also zero. 1324 if (LHSKnownZero.isNegative()) 1325 KnownZero.setBit(BitWidth - 1); 1326 } 1327 1328 break; 1329 case Instruction::URem: { 1330 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1331 APInt RA = Rem->getValue(); 1332 if (RA.isPowerOf2()) { 1333 APInt LowBits = (RA - 1); 1334 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1335 KnownZero |= ~LowBits; 1336 KnownOne &= LowBits; 1337 break; 1338 } 1339 } 1340 1341 // Since the result is less than or equal to either operand, any leading 1342 // zero bits in either operand must also exist in the result. 1343 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1344 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1345 1346 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1347 KnownZero2.countLeadingOnes()); 1348 KnownOne.clearAllBits(); 1349 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1350 break; 1351 } 1352 1353 case Instruction::Alloca: { 1354 AllocaInst *AI = cast<AllocaInst>(I); 1355 unsigned Align = AI->getAlignment(); 1356 if (Align == 0) 1357 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1358 1359 if (Align > 0) 1360 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1361 break; 1362 } 1363 case Instruction::GetElementPtr: { 1364 // Analyze all of the subscripts of this getelementptr instruction 1365 // to determine if we can prove known low zero bits. 1366 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1367 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1368 Q); 1369 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1370 1371 gep_type_iterator GTI = gep_type_begin(I); 1372 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1373 Value *Index = I->getOperand(i); 1374 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1375 // Handle struct member offset arithmetic. 1376 1377 // Handle case when index is vector zeroinitializer 1378 Constant *CIndex = cast<Constant>(Index); 1379 if (CIndex->isZeroValue()) 1380 continue; 1381 1382 if (CIndex->getType()->isVectorTy()) 1383 Index = CIndex->getSplatValue(); 1384 1385 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1386 const StructLayout *SL = Q.DL.getStructLayout(STy); 1387 uint64_t Offset = SL->getElementOffset(Idx); 1388 TrailZ = std::min<unsigned>(TrailZ, 1389 countTrailingZeros(Offset)); 1390 } else { 1391 // Handle array index arithmetic. 1392 Type *IndexedTy = GTI.getIndexedType(); 1393 if (!IndexedTy->isSized()) { 1394 TrailZ = 0; 1395 break; 1396 } 1397 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1398 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1399 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1400 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1401 TrailZ = std::min(TrailZ, 1402 unsigned(countTrailingZeros(TypeSize) + 1403 LocalKnownZero.countTrailingOnes())); 1404 } 1405 } 1406 1407 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1408 break; 1409 } 1410 case Instruction::PHI: { 1411 PHINode *P = cast<PHINode>(I); 1412 // Handle the case of a simple two-predecessor recurrence PHI. 1413 // There's a lot more that could theoretically be done here, but 1414 // this is sufficient to catch some interesting cases. 1415 if (P->getNumIncomingValues() == 2) { 1416 for (unsigned i = 0; i != 2; ++i) { 1417 Value *L = P->getIncomingValue(i); 1418 Value *R = P->getIncomingValue(!i); 1419 Operator *LU = dyn_cast<Operator>(L); 1420 if (!LU) 1421 continue; 1422 unsigned Opcode = LU->getOpcode(); 1423 // Check for operations that have the property that if 1424 // both their operands have low zero bits, the result 1425 // will have low zero bits. 1426 if (Opcode == Instruction::Add || 1427 Opcode == Instruction::Sub || 1428 Opcode == Instruction::And || 1429 Opcode == Instruction::Or || 1430 Opcode == Instruction::Mul) { 1431 Value *LL = LU->getOperand(0); 1432 Value *LR = LU->getOperand(1); 1433 // Find a recurrence. 1434 if (LL == I) 1435 L = LR; 1436 else if (LR == I) 1437 L = LL; 1438 else 1439 break; 1440 // Ok, we have a PHI of the form L op= R. Check for low 1441 // zero bits. 1442 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1443 1444 // We need to take the minimum number of known bits 1445 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1446 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1447 1448 KnownZero = APInt::getLowBitsSet(BitWidth, 1449 std::min(KnownZero2.countTrailingOnes(), 1450 KnownZero3.countTrailingOnes())); 1451 break; 1452 } 1453 } 1454 } 1455 1456 // Unreachable blocks may have zero-operand PHI nodes. 1457 if (P->getNumIncomingValues() == 0) 1458 break; 1459 1460 // Otherwise take the unions of the known bit sets of the operands, 1461 // taking conservative care to avoid excessive recursion. 1462 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1463 // Skip if every incoming value references to ourself. 1464 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1465 break; 1466 1467 KnownZero = APInt::getAllOnesValue(BitWidth); 1468 KnownOne = APInt::getAllOnesValue(BitWidth); 1469 for (Value *IncValue : P->incoming_values()) { 1470 // Skip direct self references. 1471 if (IncValue == P) continue; 1472 1473 KnownZero2 = APInt(BitWidth, 0); 1474 KnownOne2 = APInt(BitWidth, 0); 1475 // Recurse, but cap the recursion to one level, because we don't 1476 // want to waste time spinning around in loops. 1477 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1478 KnownZero &= KnownZero2; 1479 KnownOne &= KnownOne2; 1480 // If all bits have been ruled out, there's no need to check 1481 // more operands. 1482 if (!KnownZero && !KnownOne) 1483 break; 1484 } 1485 } 1486 break; 1487 } 1488 case Instruction::Call: 1489 case Instruction::Invoke: 1490 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1491 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1492 // If a range metadata is attached to this IntrinsicInst, intersect the 1493 // explicit range specified by the metadata and the implicit range of 1494 // the intrinsic. 1495 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1496 switch (II->getIntrinsicID()) { 1497 default: break; 1498 case Intrinsic::bswap: 1499 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1500 KnownZero |= KnownZero2.byteSwap(); 1501 KnownOne |= KnownOne2.byteSwap(); 1502 break; 1503 case Intrinsic::ctlz: 1504 case Intrinsic::cttz: { 1505 unsigned LowBits = Log2_32(BitWidth)+1; 1506 // If this call is undefined for 0, the result will be less than 2^n. 1507 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1508 LowBits -= 1; 1509 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1510 break; 1511 } 1512 case Intrinsic::ctpop: { 1513 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1514 // We can bound the space the count needs. Also, bits known to be zero 1515 // can't contribute to the population. 1516 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1517 unsigned LeadingZeros = 1518 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1519 assert(LeadingZeros <= BitWidth); 1520 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1521 KnownOne &= ~KnownZero; 1522 // TODO: we could bound KnownOne using the lower bound on the number 1523 // of bits which might be set provided by popcnt KnownOne2. 1524 break; 1525 } 1526 case Intrinsic::fabs: { 1527 Type *Ty = II->getType(); 1528 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1529 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1530 break; 1531 } 1532 case Intrinsic::x86_sse42_crc32_64_64: 1533 KnownZero |= APInt::getHighBitsSet(64, 32); 1534 break; 1535 } 1536 } 1537 break; 1538 case Instruction::ExtractValue: 1539 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1540 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1541 if (EVI->getNumIndices() != 1) break; 1542 if (EVI->getIndices()[0] == 0) { 1543 switch (II->getIntrinsicID()) { 1544 default: break; 1545 case Intrinsic::uadd_with_overflow: 1546 case Intrinsic::sadd_with_overflow: 1547 computeKnownBitsAddSub(true, II->getArgOperand(0), 1548 II->getArgOperand(1), false, KnownZero, 1549 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1550 break; 1551 case Intrinsic::usub_with_overflow: 1552 case Intrinsic::ssub_with_overflow: 1553 computeKnownBitsAddSub(false, II->getArgOperand(0), 1554 II->getArgOperand(1), false, KnownZero, 1555 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1556 break; 1557 case Intrinsic::umul_with_overflow: 1558 case Intrinsic::smul_with_overflow: 1559 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1560 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1561 Q); 1562 break; 1563 } 1564 } 1565 } 1566 } 1567 } 1568 1569 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1570 unsigned Align = 0; 1571 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1572 Align = GO->getAlignment(); 1573 if (Align == 0) { 1574 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1575 Type *ObjectType = GVar->getValueType(); 1576 if (ObjectType->isSized()) { 1577 // If the object is defined in the current Module, we'll be giving 1578 // it the preferred alignment. Otherwise, we have to assume that it 1579 // may only have the minimum ABI alignment. 1580 if (GVar->isStrongDefinitionForLinker()) 1581 Align = DL.getPreferredAlignment(GVar); 1582 else 1583 Align = DL.getABITypeAlignment(ObjectType); 1584 } 1585 } 1586 } 1587 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1588 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1589 1590 if (!Align && A->hasStructRetAttr()) { 1591 // An sret parameter has at least the ABI alignment of the return type. 1592 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1593 if (EltTy->isSized()) 1594 Align = DL.getABITypeAlignment(EltTy); 1595 } 1596 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1597 Align = AI->getAlignment(); 1598 else if (auto CS = ImmutableCallSite(V)) 1599 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1600 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1601 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1602 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1603 Align = CI->getLimitedValue(); 1604 } 1605 1606 return Align; 1607 } 1608 1609 /// Determine which bits of V are known to be either zero or one and return 1610 /// them in the KnownZero/KnownOne bit sets. 1611 /// 1612 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1613 /// we cannot optimize based on the assumption that it is zero without changing 1614 /// it to be an explicit zero. If we don't change it to zero, other code could 1615 /// optimized based on the contradictory assumption that it is non-zero. 1616 /// Because instcombine aggressively folds operations with undef args anyway, 1617 /// this won't lose us code quality. 1618 /// 1619 /// This function is defined on values with integer type, values with pointer 1620 /// type, and vectors of integers. In the case 1621 /// where V is a vector, known zero, and known one values are the 1622 /// same width as the vector element, and the bit is set only if it is true 1623 /// for all of the elements in the vector. 1624 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1625 unsigned Depth, const Query &Q) { 1626 assert(V && "No Value?"); 1627 assert(Depth <= MaxDepth && "Limit Search Depth"); 1628 unsigned BitWidth = KnownZero.getBitWidth(); 1629 1630 assert((V->getType()->isIntOrIntVectorTy() || 1631 V->getType()->isFPOrFPVectorTy() || 1632 V->getType()->getScalarType()->isPointerTy()) && 1633 "Not integer, floating point, or pointer type!"); 1634 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1635 (!V->getType()->isIntOrIntVectorTy() || 1636 V->getType()->getScalarSizeInBits() == BitWidth) && 1637 KnownZero.getBitWidth() == BitWidth && 1638 KnownOne.getBitWidth() == BitWidth && 1639 "V, KnownOne and KnownZero should have same BitWidth"); 1640 1641 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1642 // We know all of the bits for a constant! 1643 KnownOne = CI->getValue(); 1644 KnownZero = ~KnownOne; 1645 return; 1646 } 1647 // Null and aggregate-zero are all-zeros. 1648 if (isa<ConstantPointerNull>(V) || 1649 isa<ConstantAggregateZero>(V)) { 1650 KnownOne.clearAllBits(); 1651 KnownZero = APInt::getAllOnesValue(BitWidth); 1652 return; 1653 } 1654 // Handle a constant vector by taking the intersection of the known bits of 1655 // each element. There is no real need to handle ConstantVector here, because 1656 // we don't handle undef in any particularly useful way. 1657 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1658 // We know that CDS must be a vector of integers. Take the intersection of 1659 // each element. 1660 KnownZero.setAllBits(); KnownOne.setAllBits(); 1661 APInt Elt(KnownZero.getBitWidth(), 0); 1662 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1663 Elt = CDS->getElementAsInteger(i); 1664 KnownZero &= ~Elt; 1665 KnownOne &= Elt; 1666 } 1667 return; 1668 } 1669 1670 // Start out not knowing anything. 1671 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1672 1673 // Limit search depth. 1674 // All recursive calls that increase depth must come after this. 1675 if (Depth == MaxDepth) 1676 return; 1677 1678 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1679 // the bits of its aliasee. 1680 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1681 if (!GA->mayBeOverridden()) 1682 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1683 return; 1684 } 1685 1686 if (Operator *I = dyn_cast<Operator>(V)) 1687 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1688 1689 // Aligned pointers have trailing zeros - refine KnownZero set 1690 if (V->getType()->isPointerTy()) { 1691 unsigned Align = getAlignment(V, Q.DL); 1692 if (Align) 1693 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1694 } 1695 1696 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1697 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1698 // computeKnownBitsFromOperator. 1699 1700 // Check whether a nearby assume intrinsic can determine some known bits. 1701 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1702 1703 // Check whether there's a dominating condition which implies something about 1704 // this value at the given context. 1705 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1706 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, Depth, Q); 1707 1708 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1709 } 1710 1711 /// Determine whether the sign bit is known to be zero or one. 1712 /// Convenience wrapper around computeKnownBits. 1713 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1714 unsigned Depth, const Query &Q) { 1715 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1716 if (!BitWidth) { 1717 KnownZero = false; 1718 KnownOne = false; 1719 return; 1720 } 1721 APInt ZeroBits(BitWidth, 0); 1722 APInt OneBits(BitWidth, 0); 1723 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1724 KnownOne = OneBits[BitWidth - 1]; 1725 KnownZero = ZeroBits[BitWidth - 1]; 1726 } 1727 1728 /// Return true if the given value is known to have exactly one 1729 /// bit set when defined. For vectors return true if every element is known to 1730 /// be a power of two when defined. Supports values with integer or pointer 1731 /// types and vectors of integers. 1732 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1733 const Query &Q) { 1734 if (Constant *C = dyn_cast<Constant>(V)) { 1735 if (C->isNullValue()) 1736 return OrZero; 1737 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1738 return CI->getValue().isPowerOf2(); 1739 // TODO: Handle vector constants. 1740 } 1741 1742 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1743 // it is shifted off the end then the result is undefined. 1744 if (match(V, m_Shl(m_One(), m_Value()))) 1745 return true; 1746 1747 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1748 // bottom. If it is shifted off the bottom then the result is undefined. 1749 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1750 return true; 1751 1752 // The remaining tests are all recursive, so bail out if we hit the limit. 1753 if (Depth++ == MaxDepth) 1754 return false; 1755 1756 Value *X = nullptr, *Y = nullptr; 1757 // A shift left or a logical shift right of a power of two is a power of two 1758 // or zero. 1759 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1760 match(V, m_LShr(m_Value(X), m_Value())))) 1761 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1762 1763 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1764 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1765 1766 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1767 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1768 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1769 1770 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1771 // A power of two and'd with anything is a power of two or zero. 1772 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1773 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1774 return true; 1775 // X & (-X) is always a power of two or zero. 1776 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1777 return true; 1778 return false; 1779 } 1780 1781 // Adding a power-of-two or zero to the same power-of-two or zero yields 1782 // either the original power-of-two, a larger power-of-two or zero. 1783 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1784 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1785 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1786 if (match(X, m_And(m_Specific(Y), m_Value())) || 1787 match(X, m_And(m_Value(), m_Specific(Y)))) 1788 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1789 return true; 1790 if (match(Y, m_And(m_Specific(X), m_Value())) || 1791 match(Y, m_And(m_Value(), m_Specific(X)))) 1792 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1793 return true; 1794 1795 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1796 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1797 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1798 1799 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1800 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1801 // If i8 V is a power of two or zero: 1802 // ZeroBits: 1 1 1 0 1 1 1 1 1803 // ~ZeroBits: 0 0 0 1 0 0 0 0 1804 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1805 // If OrZero isn't set, we cannot give back a zero result. 1806 // Make sure either the LHS or RHS has a bit set. 1807 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1808 return true; 1809 } 1810 } 1811 1812 // An exact divide or right shift can only shift off zero bits, so the result 1813 // is a power of two only if the first operand is a power of two and not 1814 // copying a sign bit (sdiv int_min, 2). 1815 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1816 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1817 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1818 Depth, Q); 1819 } 1820 1821 return false; 1822 } 1823 1824 /// \brief Test whether a GEP's result is known to be non-null. 1825 /// 1826 /// Uses properties inherent in a GEP to try to determine whether it is known 1827 /// to be non-null. 1828 /// 1829 /// Currently this routine does not support vector GEPs. 1830 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth, 1831 const Query &Q) { 1832 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1833 return false; 1834 1835 // FIXME: Support vector-GEPs. 1836 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1837 1838 // If the base pointer is non-null, we cannot walk to a null address with an 1839 // inbounds GEP in address space zero. 1840 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1841 return true; 1842 1843 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1844 // If so, then the GEP cannot produce a null pointer, as doing so would 1845 // inherently violate the inbounds contract within address space zero. 1846 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1847 GTI != GTE; ++GTI) { 1848 // Struct types are easy -- they must always be indexed by a constant. 1849 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1850 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1851 unsigned ElementIdx = OpC->getZExtValue(); 1852 const StructLayout *SL = Q.DL.getStructLayout(STy); 1853 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1854 if (ElementOffset > 0) 1855 return true; 1856 continue; 1857 } 1858 1859 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1860 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1861 continue; 1862 1863 // Fast path the constant operand case both for efficiency and so we don't 1864 // increment Depth when just zipping down an all-constant GEP. 1865 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1866 if (!OpC->isZero()) 1867 return true; 1868 continue; 1869 } 1870 1871 // We post-increment Depth here because while isKnownNonZero increments it 1872 // as well, when we pop back up that increment won't persist. We don't want 1873 // to recurse 10k times just because we have 10k GEP operands. We don't 1874 // bail completely out because we want to handle constant GEPs regardless 1875 // of depth. 1876 if (Depth++ >= MaxDepth) 1877 continue; 1878 1879 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1880 return true; 1881 } 1882 1883 return false; 1884 } 1885 1886 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1887 /// ensure that the value it's attached to is never Value? 'RangeType' is 1888 /// is the type of the value described by the range. 1889 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1890 const APInt& Value) { 1891 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1892 assert(NumRanges >= 1); 1893 for (unsigned i = 0; i < NumRanges; ++i) { 1894 ConstantInt *Lower = 1895 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1896 ConstantInt *Upper = 1897 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1898 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1899 if (Range.contains(Value)) 1900 return false; 1901 } 1902 return true; 1903 } 1904 1905 /// Return true if the given value is known to be non-zero when defined. 1906 /// For vectors return true if every element is known to be non-zero when 1907 /// defined. Supports values with integer or pointer type and vectors of 1908 /// integers. 1909 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) { 1910 if (Constant *C = dyn_cast<Constant>(V)) { 1911 if (C->isNullValue()) 1912 return false; 1913 if (isa<ConstantInt>(C)) 1914 // Must be non-zero due to null test above. 1915 return true; 1916 // TODO: Handle vectors 1917 return false; 1918 } 1919 1920 if (Instruction* I = dyn_cast<Instruction>(V)) { 1921 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1922 // If the possible ranges don't contain zero, then the value is 1923 // definitely non-zero. 1924 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1925 const APInt ZeroValue(Ty->getBitWidth(), 0); 1926 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1927 return true; 1928 } 1929 } 1930 } 1931 1932 // The remaining tests are all recursive, so bail out if we hit the limit. 1933 if (Depth++ >= MaxDepth) 1934 return false; 1935 1936 // Check for pointer simplifications. 1937 if (V->getType()->isPointerTy()) { 1938 if (isKnownNonNull(V)) 1939 return true; 1940 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1941 if (isGEPKnownNonNull(GEP, Depth, Q)) 1942 return true; 1943 } 1944 1945 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1946 1947 // X | Y != 0 if X != 0 or Y != 0. 1948 Value *X = nullptr, *Y = nullptr; 1949 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1950 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1951 1952 // ext X != 0 if X != 0. 1953 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1954 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1955 1956 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1957 // if the lowest bit is shifted off the end. 1958 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1959 // shl nuw can't remove any non-zero bits. 1960 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1961 if (BO->hasNoUnsignedWrap()) 1962 return isKnownNonZero(X, Depth, Q); 1963 1964 APInt KnownZero(BitWidth, 0); 1965 APInt KnownOne(BitWidth, 0); 1966 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1967 if (KnownOne[0]) 1968 return true; 1969 } 1970 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1971 // defined if the sign bit is shifted off the end. 1972 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1973 // shr exact can only shift out zero bits. 1974 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1975 if (BO->isExact()) 1976 return isKnownNonZero(X, Depth, Q); 1977 1978 bool XKnownNonNegative, XKnownNegative; 1979 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1980 if (XKnownNegative) 1981 return true; 1982 1983 // If the shifter operand is a constant, and all of the bits shifted 1984 // out are known to be zero, and X is known non-zero then at least one 1985 // non-zero bit must remain. 1986 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1987 APInt KnownZero(BitWidth, 0); 1988 APInt KnownOne(BitWidth, 0); 1989 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1990 1991 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1992 // Is there a known one in the portion not shifted out? 1993 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1994 return true; 1995 // Are all the bits to be shifted out known zero? 1996 if (KnownZero.countTrailingOnes() >= ShiftVal) 1997 return isKnownNonZero(X, Depth, Q); 1998 } 1999 } 2000 // div exact can only produce a zero if the dividend is zero. 2001 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2002 return isKnownNonZero(X, Depth, Q); 2003 } 2004 // X + Y. 2005 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2006 bool XKnownNonNegative, XKnownNegative; 2007 bool YKnownNonNegative, YKnownNegative; 2008 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 2009 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 2010 2011 // If X and Y are both non-negative (as signed values) then their sum is not 2012 // zero unless both X and Y are zero. 2013 if (XKnownNonNegative && YKnownNonNegative) 2014 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2015 return true; 2016 2017 // If X and Y are both negative (as signed values) then their sum is not 2018 // zero unless both X and Y equal INT_MIN. 2019 if (BitWidth && XKnownNegative && YKnownNegative) { 2020 APInt KnownZero(BitWidth, 0); 2021 APInt KnownOne(BitWidth, 0); 2022 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2023 // The sign bit of X is set. If some other bit is set then X is not equal 2024 // to INT_MIN. 2025 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 2026 if ((KnownOne & Mask) != 0) 2027 return true; 2028 // The sign bit of Y is set. If some other bit is set then Y is not equal 2029 // to INT_MIN. 2030 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 2031 if ((KnownOne & Mask) != 0) 2032 return true; 2033 } 2034 2035 // The sum of a non-negative number and a power of two is not zero. 2036 if (XKnownNonNegative && 2037 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2038 return true; 2039 if (YKnownNonNegative && 2040 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2041 return true; 2042 } 2043 // X * Y. 2044 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2045 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2046 // If X and Y are non-zero then so is X * Y as long as the multiplication 2047 // does not overflow. 2048 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2049 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2050 return true; 2051 } 2052 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2053 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2054 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2055 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2056 return true; 2057 } 2058 // PHI 2059 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 2060 // Try and detect a recurrence that monotonically increases from a 2061 // starting value, as these are common as induction variables. 2062 if (PN->getNumIncomingValues() == 2) { 2063 Value *Start = PN->getIncomingValue(0); 2064 Value *Induction = PN->getIncomingValue(1); 2065 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2066 std::swap(Start, Induction); 2067 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2068 if (!C->isZero() && !C->isNegative()) { 2069 ConstantInt *X; 2070 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2071 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2072 !X->isNegative()) 2073 return true; 2074 } 2075 } 2076 } 2077 // Check if all incoming values are non-zero constant. 2078 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 2079 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 2080 }); 2081 if (AllNonZeroConstants) 2082 return true; 2083 } 2084 2085 if (!BitWidth) return false; 2086 APInt KnownZero(BitWidth, 0); 2087 APInt KnownOne(BitWidth, 0); 2088 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2089 return KnownOne != 0; 2090 } 2091 2092 /// Return true if V2 == V1 + X, where X is known non-zero. 2093 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) { 2094 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2095 if (!BO || BO->getOpcode() != Instruction::Add) 2096 return false; 2097 Value *Op = nullptr; 2098 if (V2 == BO->getOperand(0)) 2099 Op = BO->getOperand(1); 2100 else if (V2 == BO->getOperand(1)) 2101 Op = BO->getOperand(0); 2102 else 2103 return false; 2104 return isKnownNonZero(Op, 0, Q); 2105 } 2106 2107 /// Return true if it is known that V1 != V2. 2108 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) { 2109 if (V1->getType()->isVectorTy() || V1 == V2) 2110 return false; 2111 if (V1->getType() != V2->getType()) 2112 // We can't look through casts yet. 2113 return false; 2114 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2115 return true; 2116 2117 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2118 // Are any known bits in V1 contradictory to known bits in V2? If V1 2119 // has a known zero where V2 has a known one, they must not be equal. 2120 auto BitWidth = Ty->getBitWidth(); 2121 APInt KnownZero1(BitWidth, 0); 2122 APInt KnownOne1(BitWidth, 0); 2123 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2124 APInt KnownZero2(BitWidth, 0); 2125 APInt KnownOne2(BitWidth, 0); 2126 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2127 2128 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2129 if (OppositeBits.getBoolValue()) 2130 return true; 2131 } 2132 return false; 2133 } 2134 2135 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2136 /// simplify operations downstream. Mask is known to be zero for bits that V 2137 /// cannot have. 2138 /// 2139 /// This function is defined on values with integer type, values with pointer 2140 /// type, and vectors of integers. In the case 2141 /// where V is a vector, the mask, known zero, and known one values are the 2142 /// same width as the vector element, and the bit is set only if it is true 2143 /// for all of the elements in the vector. 2144 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth, 2145 const Query &Q) { 2146 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2147 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2148 return (KnownZero & Mask) == Mask; 2149 } 2150 2151 2152 2153 /// Return the number of times the sign bit of the register is replicated into 2154 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2155 /// (itself), but other cases can give us information. For example, immediately 2156 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2157 /// other, so we return 3. 2158 /// 2159 /// 'Op' must have a scalar integer type. 2160 /// 2161 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) { 2162 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2163 unsigned Tmp, Tmp2; 2164 unsigned FirstAnswer = 1; 2165 2166 // Note that ConstantInt is handled by the general computeKnownBits case 2167 // below. 2168 2169 if (Depth == 6) 2170 return 1; // Limit search depth. 2171 2172 Operator *U = dyn_cast<Operator>(V); 2173 switch (Operator::getOpcode(V)) { 2174 default: break; 2175 case Instruction::SExt: 2176 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2177 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2178 2179 case Instruction::SDiv: { 2180 const APInt *Denominator; 2181 // sdiv X, C -> adds log(C) sign bits. 2182 if (match(U->getOperand(1), m_APInt(Denominator))) { 2183 2184 // Ignore non-positive denominator. 2185 if (!Denominator->isStrictlyPositive()) 2186 break; 2187 2188 // Calculate the incoming numerator bits. 2189 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2190 2191 // Add floor(log(C)) bits to the numerator bits. 2192 return std::min(TyBits, NumBits + Denominator->logBase2()); 2193 } 2194 break; 2195 } 2196 2197 case Instruction::SRem: { 2198 const APInt *Denominator; 2199 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2200 // positive constant. This let us put a lower bound on the number of sign 2201 // bits. 2202 if (match(U->getOperand(1), m_APInt(Denominator))) { 2203 2204 // Ignore non-positive denominator. 2205 if (!Denominator->isStrictlyPositive()) 2206 break; 2207 2208 // Calculate the incoming numerator bits. SRem by a positive constant 2209 // can't lower the number of sign bits. 2210 unsigned NumrBits = 2211 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2212 2213 // Calculate the leading sign bit constraints by examining the 2214 // denominator. Given that the denominator is positive, there are two 2215 // cases: 2216 // 2217 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2218 // (1 << ceilLogBase2(C)). 2219 // 2220 // 2. the numerator is negative. Then the result range is (-C,0] and 2221 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2222 // 2223 // Thus a lower bound on the number of sign bits is `TyBits - 2224 // ceilLogBase2(C)`. 2225 2226 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2227 return std::max(NumrBits, ResBits); 2228 } 2229 break; 2230 } 2231 2232 case Instruction::AShr: { 2233 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2234 // ashr X, C -> adds C sign bits. Vectors too. 2235 const APInt *ShAmt; 2236 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2237 Tmp += ShAmt->getZExtValue(); 2238 if (Tmp > TyBits) Tmp = TyBits; 2239 } 2240 return Tmp; 2241 } 2242 case Instruction::Shl: { 2243 const APInt *ShAmt; 2244 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2245 // shl destroys sign bits. 2246 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2247 Tmp2 = ShAmt->getZExtValue(); 2248 if (Tmp2 >= TyBits || // Bad shift. 2249 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2250 return Tmp - Tmp2; 2251 } 2252 break; 2253 } 2254 case Instruction::And: 2255 case Instruction::Or: 2256 case Instruction::Xor: // NOT is handled here. 2257 // Logical binary ops preserve the number of sign bits at the worst. 2258 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2259 if (Tmp != 1) { 2260 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2261 FirstAnswer = std::min(Tmp, Tmp2); 2262 // We computed what we know about the sign bits as our first 2263 // answer. Now proceed to the generic code that uses 2264 // computeKnownBits, and pick whichever answer is better. 2265 } 2266 break; 2267 2268 case Instruction::Select: 2269 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2270 if (Tmp == 1) return 1; // Early out. 2271 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2272 return std::min(Tmp, Tmp2); 2273 2274 case Instruction::Add: 2275 // Add can have at most one carry bit. Thus we know that the output 2276 // is, at worst, one more bit than the inputs. 2277 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2278 if (Tmp == 1) return 1; // Early out. 2279 2280 // Special case decrementing a value (ADD X, -1): 2281 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2282 if (CRHS->isAllOnesValue()) { 2283 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2284 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2285 2286 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2287 // sign bits set. 2288 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2289 return TyBits; 2290 2291 // If we are subtracting one from a positive number, there is no carry 2292 // out of the result. 2293 if (KnownZero.isNegative()) 2294 return Tmp; 2295 } 2296 2297 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2298 if (Tmp2 == 1) return 1; 2299 return std::min(Tmp, Tmp2)-1; 2300 2301 case Instruction::Sub: 2302 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2303 if (Tmp2 == 1) return 1; 2304 2305 // Handle NEG. 2306 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2307 if (CLHS->isNullValue()) { 2308 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2309 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2310 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2311 // sign bits set. 2312 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2313 return TyBits; 2314 2315 // If the input is known to be positive (the sign bit is known clear), 2316 // the output of the NEG has the same number of sign bits as the input. 2317 if (KnownZero.isNegative()) 2318 return Tmp2; 2319 2320 // Otherwise, we treat this like a SUB. 2321 } 2322 2323 // Sub can have at most one carry bit. Thus we know that the output 2324 // is, at worst, one more bit than the inputs. 2325 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2326 if (Tmp == 1) return 1; // Early out. 2327 return std::min(Tmp, Tmp2)-1; 2328 2329 case Instruction::PHI: { 2330 PHINode *PN = cast<PHINode>(U); 2331 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2332 // Don't analyze large in-degree PHIs. 2333 if (NumIncomingValues > 4) break; 2334 // Unreachable blocks may have zero-operand PHI nodes. 2335 if (NumIncomingValues == 0) break; 2336 2337 // Take the minimum of all incoming values. This can't infinitely loop 2338 // because of our depth threshold. 2339 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2340 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2341 if (Tmp == 1) return Tmp; 2342 Tmp = std::min( 2343 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2344 } 2345 return Tmp; 2346 } 2347 2348 case Instruction::Trunc: 2349 // FIXME: it's tricky to do anything useful for this, but it is an important 2350 // case for targets like X86. 2351 break; 2352 } 2353 2354 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2355 // use this information. 2356 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2357 APInt Mask; 2358 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2359 2360 if (KnownZero.isNegative()) { // sign bit is 0 2361 Mask = KnownZero; 2362 } else if (KnownOne.isNegative()) { // sign bit is 1; 2363 Mask = KnownOne; 2364 } else { 2365 // Nothing known. 2366 return FirstAnswer; 2367 } 2368 2369 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2370 // the number of identical bits in the top of the input value. 2371 Mask = ~Mask; 2372 Mask <<= Mask.getBitWidth()-TyBits; 2373 // Return # leading zeros. We use 'min' here in case Val was zero before 2374 // shifting. We don't want to return '64' as for an i32 "0". 2375 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2376 } 2377 2378 /// This function computes the integer multiple of Base that equals V. 2379 /// If successful, it returns true and returns the multiple in 2380 /// Multiple. If unsuccessful, it returns false. It looks 2381 /// through SExt instructions only if LookThroughSExt is true. 2382 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2383 bool LookThroughSExt, unsigned Depth) { 2384 const unsigned MaxDepth = 6; 2385 2386 assert(V && "No Value?"); 2387 assert(Depth <= MaxDepth && "Limit Search Depth"); 2388 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2389 2390 Type *T = V->getType(); 2391 2392 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2393 2394 if (Base == 0) 2395 return false; 2396 2397 if (Base == 1) { 2398 Multiple = V; 2399 return true; 2400 } 2401 2402 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2403 Constant *BaseVal = ConstantInt::get(T, Base); 2404 if (CO && CO == BaseVal) { 2405 // Multiple is 1. 2406 Multiple = ConstantInt::get(T, 1); 2407 return true; 2408 } 2409 2410 if (CI && CI->getZExtValue() % Base == 0) { 2411 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2412 return true; 2413 } 2414 2415 if (Depth == MaxDepth) return false; // Limit search depth. 2416 2417 Operator *I = dyn_cast<Operator>(V); 2418 if (!I) return false; 2419 2420 switch (I->getOpcode()) { 2421 default: break; 2422 case Instruction::SExt: 2423 if (!LookThroughSExt) return false; 2424 // otherwise fall through to ZExt 2425 case Instruction::ZExt: 2426 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2427 LookThroughSExt, Depth+1); 2428 case Instruction::Shl: 2429 case Instruction::Mul: { 2430 Value *Op0 = I->getOperand(0); 2431 Value *Op1 = I->getOperand(1); 2432 2433 if (I->getOpcode() == Instruction::Shl) { 2434 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2435 if (!Op1CI) return false; 2436 // Turn Op0 << Op1 into Op0 * 2^Op1 2437 APInt Op1Int = Op1CI->getValue(); 2438 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2439 APInt API(Op1Int.getBitWidth(), 0); 2440 API.setBit(BitToSet); 2441 Op1 = ConstantInt::get(V->getContext(), API); 2442 } 2443 2444 Value *Mul0 = nullptr; 2445 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2446 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2447 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2448 if (Op1C->getType()->getPrimitiveSizeInBits() < 2449 MulC->getType()->getPrimitiveSizeInBits()) 2450 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2451 if (Op1C->getType()->getPrimitiveSizeInBits() > 2452 MulC->getType()->getPrimitiveSizeInBits()) 2453 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2454 2455 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2456 Multiple = ConstantExpr::getMul(MulC, Op1C); 2457 return true; 2458 } 2459 2460 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2461 if (Mul0CI->getValue() == 1) { 2462 // V == Base * Op1, so return Op1 2463 Multiple = Op1; 2464 return true; 2465 } 2466 } 2467 2468 Value *Mul1 = nullptr; 2469 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2470 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2471 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2472 if (Op0C->getType()->getPrimitiveSizeInBits() < 2473 MulC->getType()->getPrimitiveSizeInBits()) 2474 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2475 if (Op0C->getType()->getPrimitiveSizeInBits() > 2476 MulC->getType()->getPrimitiveSizeInBits()) 2477 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2478 2479 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2480 Multiple = ConstantExpr::getMul(MulC, Op0C); 2481 return true; 2482 } 2483 2484 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2485 if (Mul1CI->getValue() == 1) { 2486 // V == Base * Op0, so return Op0 2487 Multiple = Op0; 2488 return true; 2489 } 2490 } 2491 } 2492 } 2493 2494 // We could not determine if V is a multiple of Base. 2495 return false; 2496 } 2497 2498 /// Return true if we can prove that the specified FP value is never equal to 2499 /// -0.0. 2500 /// 2501 /// NOTE: this function will need to be revisited when we support non-default 2502 /// rounding modes! 2503 /// 2504 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2505 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2506 return !CFP->getValueAPF().isNegZero(); 2507 2508 // FIXME: Magic number! At the least, this should be given a name because it's 2509 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2510 // expose it as a parameter, so it can be used for testing / experimenting. 2511 if (Depth == 6) 2512 return false; // Limit search depth. 2513 2514 const Operator *I = dyn_cast<Operator>(V); 2515 if (!I) return false; 2516 2517 // Check if the nsz fast-math flag is set 2518 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2519 if (FPO->hasNoSignedZeros()) 2520 return true; 2521 2522 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2523 if (I->getOpcode() == Instruction::FAdd) 2524 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2525 if (CFP->isNullValue()) 2526 return true; 2527 2528 // sitofp and uitofp turn into +0.0 for zero. 2529 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2530 return true; 2531 2532 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2533 // sqrt(-0.0) = -0.0, no other negative results are possible. 2534 if (II->getIntrinsicID() == Intrinsic::sqrt) 2535 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2536 2537 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2538 if (const Function *F = CI->getCalledFunction()) { 2539 if (F->isDeclaration()) { 2540 // abs(x) != -0.0 2541 if (F->getName() == "abs") return true; 2542 // fabs[lf](x) != -0.0 2543 if (F->getName() == "fabs") return true; 2544 if (F->getName() == "fabsf") return true; 2545 if (F->getName() == "fabsl") return true; 2546 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2547 F->getName() == "sqrtl") 2548 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2549 } 2550 } 2551 2552 return false; 2553 } 2554 2555 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2556 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2557 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2558 2559 // FIXME: Magic number! At the least, this should be given a name because it's 2560 // used similarly in CannotBeNegativeZero(). A better fix may be to 2561 // expose it as a parameter, so it can be used for testing / experimenting. 2562 if (Depth == 6) 2563 return false; // Limit search depth. 2564 2565 const Operator *I = dyn_cast<Operator>(V); 2566 if (!I) return false; 2567 2568 switch (I->getOpcode()) { 2569 default: break; 2570 // Unsigned integers are always nonnegative. 2571 case Instruction::UIToFP: 2572 return true; 2573 case Instruction::FMul: 2574 // x*x is always non-negative or a NaN. 2575 if (I->getOperand(0) == I->getOperand(1)) 2576 return true; 2577 // Fall through 2578 case Instruction::FAdd: 2579 case Instruction::FDiv: 2580 case Instruction::FRem: 2581 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2582 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2583 case Instruction::Select: 2584 return CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1) && 2585 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2586 case Instruction::FPExt: 2587 case Instruction::FPTrunc: 2588 // Widening/narrowing never change sign. 2589 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2590 case Instruction::Call: 2591 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2592 switch (II->getIntrinsicID()) { 2593 default: break; 2594 case Intrinsic::maxnum: 2595 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) || 2596 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2597 case Intrinsic::minnum: 2598 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2599 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2600 case Intrinsic::exp: 2601 case Intrinsic::exp2: 2602 case Intrinsic::fabs: 2603 case Intrinsic::sqrt: 2604 return true; 2605 case Intrinsic::powi: 2606 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2607 // powi(x,n) is non-negative if n is even. 2608 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2609 return true; 2610 } 2611 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2612 case Intrinsic::fma: 2613 case Intrinsic::fmuladd: 2614 // x*x+y is non-negative if y is non-negative. 2615 return I->getOperand(0) == I->getOperand(1) && 2616 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2617 } 2618 break; 2619 } 2620 return false; 2621 } 2622 2623 /// If the specified value can be set by repeating the same byte in memory, 2624 /// return the i8 value that it is represented with. This is 2625 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2626 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2627 /// byte store (e.g. i16 0x1234), return null. 2628 Value *llvm::isBytewiseValue(Value *V) { 2629 // All byte-wide stores are splatable, even of arbitrary variables. 2630 if (V->getType()->isIntegerTy(8)) return V; 2631 2632 // Handle 'null' ConstantArrayZero etc. 2633 if (Constant *C = dyn_cast<Constant>(V)) 2634 if (C->isNullValue()) 2635 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2636 2637 // Constant float and double values can be handled as integer values if the 2638 // corresponding integer value is "byteable". An important case is 0.0. 2639 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2640 if (CFP->getType()->isFloatTy()) 2641 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2642 if (CFP->getType()->isDoubleTy()) 2643 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2644 // Don't handle long double formats, which have strange constraints. 2645 } 2646 2647 // We can handle constant integers that are multiple of 8 bits. 2648 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2649 if (CI->getBitWidth() % 8 == 0) { 2650 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2651 2652 if (!CI->getValue().isSplat(8)) 2653 return nullptr; 2654 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2655 } 2656 } 2657 2658 // A ConstantDataArray/Vector is splatable if all its members are equal and 2659 // also splatable. 2660 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2661 Value *Elt = CA->getElementAsConstant(0); 2662 Value *Val = isBytewiseValue(Elt); 2663 if (!Val) 2664 return nullptr; 2665 2666 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2667 if (CA->getElementAsConstant(I) != Elt) 2668 return nullptr; 2669 2670 return Val; 2671 } 2672 2673 // Conceptually, we could handle things like: 2674 // %a = zext i8 %X to i16 2675 // %b = shl i16 %a, 8 2676 // %c = or i16 %a, %b 2677 // but until there is an example that actually needs this, it doesn't seem 2678 // worth worrying about. 2679 return nullptr; 2680 } 2681 2682 2683 // This is the recursive version of BuildSubAggregate. It takes a few different 2684 // arguments. Idxs is the index within the nested struct From that we are 2685 // looking at now (which is of type IndexedType). IdxSkip is the number of 2686 // indices from Idxs that should be left out when inserting into the resulting 2687 // struct. To is the result struct built so far, new insertvalue instructions 2688 // build on that. 2689 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2690 SmallVectorImpl<unsigned> &Idxs, 2691 unsigned IdxSkip, 2692 Instruction *InsertBefore) { 2693 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2694 if (STy) { 2695 // Save the original To argument so we can modify it 2696 Value *OrigTo = To; 2697 // General case, the type indexed by Idxs is a struct 2698 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2699 // Process each struct element recursively 2700 Idxs.push_back(i); 2701 Value *PrevTo = To; 2702 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2703 InsertBefore); 2704 Idxs.pop_back(); 2705 if (!To) { 2706 // Couldn't find any inserted value for this index? Cleanup 2707 while (PrevTo != OrigTo) { 2708 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2709 PrevTo = Del->getAggregateOperand(); 2710 Del->eraseFromParent(); 2711 } 2712 // Stop processing elements 2713 break; 2714 } 2715 } 2716 // If we successfully found a value for each of our subaggregates 2717 if (To) 2718 return To; 2719 } 2720 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2721 // the struct's elements had a value that was inserted directly. In the latter 2722 // case, perhaps we can't determine each of the subelements individually, but 2723 // we might be able to find the complete struct somewhere. 2724 2725 // Find the value that is at that particular spot 2726 Value *V = FindInsertedValue(From, Idxs); 2727 2728 if (!V) 2729 return nullptr; 2730 2731 // Insert the value in the new (sub) aggregrate 2732 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2733 "tmp", InsertBefore); 2734 } 2735 2736 // This helper takes a nested struct and extracts a part of it (which is again a 2737 // struct) into a new value. For example, given the struct: 2738 // { a, { b, { c, d }, e } } 2739 // and the indices "1, 1" this returns 2740 // { c, d }. 2741 // 2742 // It does this by inserting an insertvalue for each element in the resulting 2743 // struct, as opposed to just inserting a single struct. This will only work if 2744 // each of the elements of the substruct are known (ie, inserted into From by an 2745 // insertvalue instruction somewhere). 2746 // 2747 // All inserted insertvalue instructions are inserted before InsertBefore 2748 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2749 Instruction *InsertBefore) { 2750 assert(InsertBefore && "Must have someplace to insert!"); 2751 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2752 idx_range); 2753 Value *To = UndefValue::get(IndexedType); 2754 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2755 unsigned IdxSkip = Idxs.size(); 2756 2757 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2758 } 2759 2760 /// Given an aggregrate and an sequence of indices, see if 2761 /// the scalar value indexed is already around as a register, for example if it 2762 /// were inserted directly into the aggregrate. 2763 /// 2764 /// If InsertBefore is not null, this function will duplicate (modified) 2765 /// insertvalues when a part of a nested struct is extracted. 2766 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2767 Instruction *InsertBefore) { 2768 // Nothing to index? Just return V then (this is useful at the end of our 2769 // recursion). 2770 if (idx_range.empty()) 2771 return V; 2772 // We have indices, so V should have an indexable type. 2773 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2774 "Not looking at a struct or array?"); 2775 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2776 "Invalid indices for type?"); 2777 2778 if (Constant *C = dyn_cast<Constant>(V)) { 2779 C = C->getAggregateElement(idx_range[0]); 2780 if (!C) return nullptr; 2781 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2782 } 2783 2784 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2785 // Loop the indices for the insertvalue instruction in parallel with the 2786 // requested indices 2787 const unsigned *req_idx = idx_range.begin(); 2788 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2789 i != e; ++i, ++req_idx) { 2790 if (req_idx == idx_range.end()) { 2791 // We can't handle this without inserting insertvalues 2792 if (!InsertBefore) 2793 return nullptr; 2794 2795 // The requested index identifies a part of a nested aggregate. Handle 2796 // this specially. For example, 2797 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2798 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2799 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2800 // This can be changed into 2801 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2802 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2803 // which allows the unused 0,0 element from the nested struct to be 2804 // removed. 2805 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2806 InsertBefore); 2807 } 2808 2809 // This insert value inserts something else than what we are looking for. 2810 // See if the (aggregate) value inserted into has the value we are 2811 // looking for, then. 2812 if (*req_idx != *i) 2813 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2814 InsertBefore); 2815 } 2816 // If we end up here, the indices of the insertvalue match with those 2817 // requested (though possibly only partially). Now we recursively look at 2818 // the inserted value, passing any remaining indices. 2819 return FindInsertedValue(I->getInsertedValueOperand(), 2820 makeArrayRef(req_idx, idx_range.end()), 2821 InsertBefore); 2822 } 2823 2824 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2825 // If we're extracting a value from an aggregate that was extracted from 2826 // something else, we can extract from that something else directly instead. 2827 // However, we will need to chain I's indices with the requested indices. 2828 2829 // Calculate the number of indices required 2830 unsigned size = I->getNumIndices() + idx_range.size(); 2831 // Allocate some space to put the new indices in 2832 SmallVector<unsigned, 5> Idxs; 2833 Idxs.reserve(size); 2834 // Add indices from the extract value instruction 2835 Idxs.append(I->idx_begin(), I->idx_end()); 2836 2837 // Add requested indices 2838 Idxs.append(idx_range.begin(), idx_range.end()); 2839 2840 assert(Idxs.size() == size 2841 && "Number of indices added not correct?"); 2842 2843 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2844 } 2845 // Otherwise, we don't know (such as, extracting from a function return value 2846 // or load instruction) 2847 return nullptr; 2848 } 2849 2850 /// Analyze the specified pointer to see if it can be expressed as a base 2851 /// pointer plus a constant offset. Return the base and offset to the caller. 2852 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2853 const DataLayout &DL) { 2854 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2855 APInt ByteOffset(BitWidth, 0); 2856 2857 // We walk up the defs but use a visited set to handle unreachable code. In 2858 // that case, we stop after accumulating the cycle once (not that it 2859 // matters). 2860 SmallPtrSet<Value *, 16> Visited; 2861 while (Visited.insert(Ptr).second) { 2862 if (Ptr->getType()->isVectorTy()) 2863 break; 2864 2865 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2866 APInt GEPOffset(BitWidth, 0); 2867 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2868 break; 2869 2870 ByteOffset += GEPOffset; 2871 2872 Ptr = GEP->getPointerOperand(); 2873 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2874 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2875 Ptr = cast<Operator>(Ptr)->getOperand(0); 2876 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2877 if (GA->mayBeOverridden()) 2878 break; 2879 Ptr = GA->getAliasee(); 2880 } else { 2881 break; 2882 } 2883 } 2884 Offset = ByteOffset.getSExtValue(); 2885 return Ptr; 2886 } 2887 2888 2889 /// This function computes the length of a null-terminated C string pointed to 2890 /// by V. If successful, it returns true and returns the string in Str. 2891 /// If unsuccessful, it returns false. 2892 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2893 uint64_t Offset, bool TrimAtNul) { 2894 assert(V); 2895 2896 // Look through bitcast instructions and geps. 2897 V = V->stripPointerCasts(); 2898 2899 // If the value is a GEP instruction or constant expression, treat it as an 2900 // offset. 2901 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2902 // Make sure the GEP has exactly three arguments. 2903 if (GEP->getNumOperands() != 3) 2904 return false; 2905 2906 // Make sure the index-ee is a pointer to array of i8. 2907 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2908 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2909 return false; 2910 2911 // Check to make sure that the first operand of the GEP is an integer and 2912 // has value 0 so that we are sure we're indexing into the initializer. 2913 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2914 if (!FirstIdx || !FirstIdx->isZero()) 2915 return false; 2916 2917 // If the second index isn't a ConstantInt, then this is a variable index 2918 // into the array. If this occurs, we can't say anything meaningful about 2919 // the string. 2920 uint64_t StartIdx = 0; 2921 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2922 StartIdx = CI->getZExtValue(); 2923 else 2924 return false; 2925 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2926 TrimAtNul); 2927 } 2928 2929 // The GEP instruction, constant or instruction, must reference a global 2930 // variable that is a constant and is initialized. The referenced constant 2931 // initializer is the array that we'll use for optimization. 2932 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2933 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2934 return false; 2935 2936 // Handle the all-zeros case 2937 if (GV->getInitializer()->isNullValue()) { 2938 // This is a degenerate case. The initializer is constant zero so the 2939 // length of the string must be zero. 2940 Str = ""; 2941 return true; 2942 } 2943 2944 // Must be a Constant Array 2945 const ConstantDataArray *Array = 2946 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2947 if (!Array || !Array->isString()) 2948 return false; 2949 2950 // Get the number of elements in the array 2951 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2952 2953 // Start out with the entire array in the StringRef. 2954 Str = Array->getAsString(); 2955 2956 if (Offset > NumElts) 2957 return false; 2958 2959 // Skip over 'offset' bytes. 2960 Str = Str.substr(Offset); 2961 2962 if (TrimAtNul) { 2963 // Trim off the \0 and anything after it. If the array is not nul 2964 // terminated, we just return the whole end of string. The client may know 2965 // some other way that the string is length-bound. 2966 Str = Str.substr(0, Str.find('\0')); 2967 } 2968 return true; 2969 } 2970 2971 // These next two are very similar to the above, but also look through PHI 2972 // nodes. 2973 // TODO: See if we can integrate these two together. 2974 2975 /// If we can compute the length of the string pointed to by 2976 /// the specified pointer, return 'len+1'. If we can't, return 0. 2977 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2978 // Look through noop bitcast instructions. 2979 V = V->stripPointerCasts(); 2980 2981 // If this is a PHI node, there are two cases: either we have already seen it 2982 // or we haven't. 2983 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2984 if (!PHIs.insert(PN).second) 2985 return ~0ULL; // already in the set. 2986 2987 // If it was new, see if all the input strings are the same length. 2988 uint64_t LenSoFar = ~0ULL; 2989 for (Value *IncValue : PN->incoming_values()) { 2990 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2991 if (Len == 0) return 0; // Unknown length -> unknown. 2992 2993 if (Len == ~0ULL) continue; 2994 2995 if (Len != LenSoFar && LenSoFar != ~0ULL) 2996 return 0; // Disagree -> unknown. 2997 LenSoFar = Len; 2998 } 2999 3000 // Success, all agree. 3001 return LenSoFar; 3002 } 3003 3004 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3005 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 3006 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3007 if (Len1 == 0) return 0; 3008 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3009 if (Len2 == 0) return 0; 3010 if (Len1 == ~0ULL) return Len2; 3011 if (Len2 == ~0ULL) return Len1; 3012 if (Len1 != Len2) return 0; 3013 return Len1; 3014 } 3015 3016 // Otherwise, see if we can read the string. 3017 StringRef StrData; 3018 if (!getConstantStringInfo(V, StrData)) 3019 return 0; 3020 3021 return StrData.size()+1; 3022 } 3023 3024 /// If we can compute the length of the string pointed to by 3025 /// the specified pointer, return 'len+1'. If we can't, return 0. 3026 uint64_t llvm::GetStringLength(Value *V) { 3027 if (!V->getType()->isPointerTy()) return 0; 3028 3029 SmallPtrSet<PHINode*, 32> PHIs; 3030 uint64_t Len = GetStringLengthH(V, PHIs); 3031 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3032 // an empty string as a length. 3033 return Len == ~0ULL ? 1 : Len; 3034 } 3035 3036 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3037 /// previous iteration of the loop was referring to the same object as \p PN. 3038 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 3039 // Find the loop-defined value. 3040 Loop *L = LI->getLoopFor(PN->getParent()); 3041 if (PN->getNumIncomingValues() != 2) 3042 return true; 3043 3044 // Find the value from previous iteration. 3045 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3046 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3047 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3048 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3049 return true; 3050 3051 // If a new pointer is loaded in the loop, the pointer references a different 3052 // object in every iteration. E.g.: 3053 // for (i) 3054 // int *p = a[i]; 3055 // ... 3056 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3057 if (!L->isLoopInvariant(Load->getPointerOperand())) 3058 return false; 3059 return true; 3060 } 3061 3062 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3063 unsigned MaxLookup) { 3064 if (!V->getType()->isPointerTy()) 3065 return V; 3066 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3067 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3068 V = GEP->getPointerOperand(); 3069 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3070 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3071 V = cast<Operator>(V)->getOperand(0); 3072 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3073 if (GA->mayBeOverridden()) 3074 return V; 3075 V = GA->getAliasee(); 3076 } else { 3077 // See if InstructionSimplify knows any relevant tricks. 3078 if (Instruction *I = dyn_cast<Instruction>(V)) 3079 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3080 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3081 V = Simplified; 3082 continue; 3083 } 3084 3085 return V; 3086 } 3087 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3088 } 3089 return V; 3090 } 3091 3092 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3093 const DataLayout &DL, LoopInfo *LI, 3094 unsigned MaxLookup) { 3095 SmallPtrSet<Value *, 4> Visited; 3096 SmallVector<Value *, 4> Worklist; 3097 Worklist.push_back(V); 3098 do { 3099 Value *P = Worklist.pop_back_val(); 3100 P = GetUnderlyingObject(P, DL, MaxLookup); 3101 3102 if (!Visited.insert(P).second) 3103 continue; 3104 3105 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3106 Worklist.push_back(SI->getTrueValue()); 3107 Worklist.push_back(SI->getFalseValue()); 3108 continue; 3109 } 3110 3111 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3112 // If this PHI changes the underlying object in every iteration of the 3113 // loop, don't look through it. Consider: 3114 // int **A; 3115 // for (i) { 3116 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3117 // Curr = A[i]; 3118 // *Prev, *Curr; 3119 // 3120 // Prev is tracking Curr one iteration behind so they refer to different 3121 // underlying objects. 3122 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3123 isSameUnderlyingObjectInLoop(PN, LI)) 3124 for (Value *IncValue : PN->incoming_values()) 3125 Worklist.push_back(IncValue); 3126 continue; 3127 } 3128 3129 Objects.push_back(P); 3130 } while (!Worklist.empty()); 3131 } 3132 3133 /// Return true if the only users of this pointer are lifetime markers. 3134 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3135 for (const User *U : V->users()) { 3136 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3137 if (!II) return false; 3138 3139 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3140 II->getIntrinsicID() != Intrinsic::lifetime_end) 3141 return false; 3142 } 3143 return true; 3144 } 3145 3146 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3147 Type *Ty, const DataLayout &DL, 3148 const Instruction *CtxI, 3149 const DominatorTree *DT, 3150 const TargetLibraryInfo *TLI) { 3151 assert(Offset.isNonNegative() && "offset can't be negative"); 3152 assert(Ty->isSized() && "must be sized"); 3153 3154 APInt DerefBytes(Offset.getBitWidth(), 0); 3155 bool CheckForNonNull = false; 3156 if (const Argument *A = dyn_cast<Argument>(BV)) { 3157 DerefBytes = A->getDereferenceableBytes(); 3158 if (!DerefBytes.getBoolValue()) { 3159 DerefBytes = A->getDereferenceableOrNullBytes(); 3160 CheckForNonNull = true; 3161 } 3162 } else if (auto CS = ImmutableCallSite(BV)) { 3163 DerefBytes = CS.getDereferenceableBytes(0); 3164 if (!DerefBytes.getBoolValue()) { 3165 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3166 CheckForNonNull = true; 3167 } 3168 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3169 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3170 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3171 DerefBytes = CI->getLimitedValue(); 3172 } 3173 if (!DerefBytes.getBoolValue()) { 3174 if (MDNode *MD = 3175 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3176 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3177 DerefBytes = CI->getLimitedValue(); 3178 } 3179 CheckForNonNull = true; 3180 } 3181 } 3182 3183 if (DerefBytes.getBoolValue()) 3184 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3185 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3186 return true; 3187 3188 return false; 3189 } 3190 3191 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3192 const Instruction *CtxI, 3193 const DominatorTree *DT, 3194 const TargetLibraryInfo *TLI) { 3195 Type *VTy = V->getType(); 3196 Type *Ty = VTy->getPointerElementType(); 3197 if (!Ty->isSized()) 3198 return false; 3199 3200 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3201 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3202 } 3203 3204 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3205 const DataLayout &DL) { 3206 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3207 3208 if (!BaseAlign) { 3209 Type *Ty = Base->getType()->getPointerElementType(); 3210 if (!Ty->isSized()) 3211 return false; 3212 BaseAlign = DL.getABITypeAlignment(Ty); 3213 } 3214 3215 APInt Alignment(Offset.getBitWidth(), Align); 3216 3217 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3218 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3219 } 3220 3221 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3222 Type *Ty = Base->getType(); 3223 assert(Ty->isSized() && "must be sized"); 3224 APInt Offset(DL.getTypeStoreSizeInBits(Ty), 0); 3225 return isAligned(Base, Offset, Align, DL); 3226 } 3227 3228 /// Test if V is always a pointer to allocated and suitably aligned memory for 3229 /// a simple load or store. 3230 static bool isDereferenceableAndAlignedPointer( 3231 const Value *V, unsigned Align, const DataLayout &DL, 3232 const Instruction *CtxI, const DominatorTree *DT, 3233 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3234 // Note that it is not safe to speculate into a malloc'd region because 3235 // malloc may return null. 3236 3237 // These are obviously ok if aligned. 3238 if (isa<AllocaInst>(V)) 3239 return isAligned(V, Align, DL); 3240 3241 // It's not always safe to follow a bitcast, for example: 3242 // bitcast i8* (alloca i8) to i32* 3243 // would result in a 4-byte load from a 1-byte alloca. However, 3244 // if we're casting from a pointer from a type of larger size 3245 // to a type of smaller size (or the same size), and the alignment 3246 // is at least as large as for the resulting pointer type, then 3247 // we can look through the bitcast. 3248 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3249 Type *STy = BC->getSrcTy()->getPointerElementType(), 3250 *DTy = BC->getDestTy()->getPointerElementType(); 3251 if (STy->isSized() && DTy->isSized() && 3252 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3253 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3254 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3255 CtxI, DT, TLI, Visited); 3256 } 3257 3258 // Global variables which can't collapse to null are ok. 3259 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3260 if (!GV->hasExternalWeakLinkage()) 3261 return isAligned(V, Align, DL); 3262 3263 // byval arguments are okay. 3264 if (const Argument *A = dyn_cast<Argument>(V)) 3265 if (A->hasByValAttr()) 3266 return isAligned(V, Align, DL); 3267 3268 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3269 return isAligned(V, Align, DL); 3270 3271 // For GEPs, determine if the indexing lands within the allocated object. 3272 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3273 Type *Ty = GEP->getResultElementType(); 3274 const Value *Base = GEP->getPointerOperand(); 3275 3276 // Conservatively require that the base pointer be fully dereferenceable 3277 // and aligned. 3278 if (!Visited.insert(Base).second) 3279 return false; 3280 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3281 Visited)) 3282 return false; 3283 3284 APInt Offset(DL.getPointerTypeSizeInBits(GEP->getType()), 0); 3285 if (!GEP->accumulateConstantOffset(DL, Offset)) 3286 return false; 3287 3288 // Check if the load is within the bounds of the underlying object 3289 // and offset is aligned. 3290 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3291 Type *BaseType = GEP->getSourceElementType(); 3292 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3293 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3294 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3295 } 3296 3297 // For gc.relocate, look through relocations 3298 if (const GCRelocateInst *RelocateInst = dyn_cast<GCRelocateInst>(V)) 3299 return isDereferenceableAndAlignedPointer( 3300 RelocateInst->getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3301 3302 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3303 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3304 CtxI, DT, TLI, Visited); 3305 3306 // If we don't know, assume the worst. 3307 return false; 3308 } 3309 3310 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3311 const DataLayout &DL, 3312 const Instruction *CtxI, 3313 const DominatorTree *DT, 3314 const TargetLibraryInfo *TLI) { 3315 // When dereferenceability information is provided by a dereferenceable 3316 // attribute, we know exactly how many bytes are dereferenceable. If we can 3317 // determine the exact offset to the attributed variable, we can use that 3318 // information here. 3319 Type *VTy = V->getType(); 3320 Type *Ty = VTy->getPointerElementType(); 3321 3322 // Require ABI alignment for loads without alignment specification 3323 if (Align == 0) 3324 Align = DL.getABITypeAlignment(Ty); 3325 3326 if (Ty->isSized()) { 3327 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3328 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3329 3330 if (Offset.isNonNegative()) 3331 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3332 isAligned(BV, Offset, Align, DL)) 3333 return true; 3334 } 3335 3336 SmallPtrSet<const Value *, 32> Visited; 3337 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3338 Visited); 3339 } 3340 3341 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3342 const Instruction *CtxI, 3343 const DominatorTree *DT, 3344 const TargetLibraryInfo *TLI) { 3345 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3346 } 3347 3348 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3349 const Instruction *CtxI, 3350 const DominatorTree *DT, 3351 const TargetLibraryInfo *TLI) { 3352 const Operator *Inst = dyn_cast<Operator>(V); 3353 if (!Inst) 3354 return false; 3355 3356 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3357 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3358 if (C->canTrap()) 3359 return false; 3360 3361 switch (Inst->getOpcode()) { 3362 default: 3363 return true; 3364 case Instruction::UDiv: 3365 case Instruction::URem: { 3366 // x / y is undefined if y == 0. 3367 const APInt *V; 3368 if (match(Inst->getOperand(1), m_APInt(V))) 3369 return *V != 0; 3370 return false; 3371 } 3372 case Instruction::SDiv: 3373 case Instruction::SRem: { 3374 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3375 const APInt *Numerator, *Denominator; 3376 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3377 return false; 3378 // We cannot hoist this division if the denominator is 0. 3379 if (*Denominator == 0) 3380 return false; 3381 // It's safe to hoist if the denominator is not 0 or -1. 3382 if (*Denominator != -1) 3383 return true; 3384 // At this point we know that the denominator is -1. It is safe to hoist as 3385 // long we know that the numerator is not INT_MIN. 3386 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3387 return !Numerator->isMinSignedValue(); 3388 // The numerator *might* be MinSignedValue. 3389 return false; 3390 } 3391 case Instruction::Load: { 3392 const LoadInst *LI = cast<LoadInst>(Inst); 3393 if (!LI->isUnordered() || 3394 // Speculative load may create a race that did not exist in the source. 3395 LI->getParent()->getParent()->hasFnAttribute( 3396 Attribute::SanitizeThread) || 3397 // Speculative load may load data from dirty regions. 3398 LI->getParent()->getParent()->hasFnAttribute( 3399 Attribute::SanitizeAddress)) 3400 return false; 3401 const DataLayout &DL = LI->getModule()->getDataLayout(); 3402 return isDereferenceableAndAlignedPointer( 3403 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3404 } 3405 case Instruction::Call: { 3406 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3407 switch (II->getIntrinsicID()) { 3408 // These synthetic intrinsics have no side-effects and just mark 3409 // information about their operands. 3410 // FIXME: There are other no-op synthetic instructions that potentially 3411 // should be considered at least *safe* to speculate... 3412 case Intrinsic::dbg_declare: 3413 case Intrinsic::dbg_value: 3414 return true; 3415 3416 case Intrinsic::bswap: 3417 case Intrinsic::ctlz: 3418 case Intrinsic::ctpop: 3419 case Intrinsic::cttz: 3420 case Intrinsic::objectsize: 3421 case Intrinsic::sadd_with_overflow: 3422 case Intrinsic::smul_with_overflow: 3423 case Intrinsic::ssub_with_overflow: 3424 case Intrinsic::uadd_with_overflow: 3425 case Intrinsic::umul_with_overflow: 3426 case Intrinsic::usub_with_overflow: 3427 return true; 3428 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3429 // errno like libm sqrt would. 3430 case Intrinsic::sqrt: 3431 case Intrinsic::fma: 3432 case Intrinsic::fmuladd: 3433 case Intrinsic::fabs: 3434 case Intrinsic::minnum: 3435 case Intrinsic::maxnum: 3436 return true; 3437 // TODO: some fp intrinsics are marked as having the same error handling 3438 // as libm. They're safe to speculate when they won't error. 3439 // TODO: are convert_{from,to}_fp16 safe? 3440 // TODO: can we list target-specific intrinsics here? 3441 default: break; 3442 } 3443 } 3444 return false; // The called function could have undefined behavior or 3445 // side-effects, even if marked readnone nounwind. 3446 } 3447 case Instruction::VAArg: 3448 case Instruction::Alloca: 3449 case Instruction::Invoke: 3450 case Instruction::PHI: 3451 case Instruction::Store: 3452 case Instruction::Ret: 3453 case Instruction::Br: 3454 case Instruction::IndirectBr: 3455 case Instruction::Switch: 3456 case Instruction::Unreachable: 3457 case Instruction::Fence: 3458 case Instruction::AtomicRMW: 3459 case Instruction::AtomicCmpXchg: 3460 case Instruction::LandingPad: 3461 case Instruction::Resume: 3462 case Instruction::CatchSwitch: 3463 case Instruction::CatchPad: 3464 case Instruction::CatchRet: 3465 case Instruction::CleanupPad: 3466 case Instruction::CleanupRet: 3467 return false; // Misc instructions which have effects 3468 } 3469 } 3470 3471 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3472 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3473 } 3474 3475 /// Return true if we know that the specified value is never null. 3476 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3477 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3478 3479 // Alloca never returns null, malloc might. 3480 if (isa<AllocaInst>(V)) return true; 3481 3482 // A byval, inalloca, or nonnull argument is never null. 3483 if (const Argument *A = dyn_cast<Argument>(V)) 3484 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3485 3486 // A global variable in address space 0 is non null unless extern weak. 3487 // Other address spaces may have null as a valid address for a global, 3488 // so we can't assume anything. 3489 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3490 return !GV->hasExternalWeakLinkage() && 3491 GV->getType()->getAddressSpace() == 0; 3492 3493 // A Load tagged w/nonnull metadata is never null. 3494 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3495 return LI->getMetadata(LLVMContext::MD_nonnull); 3496 3497 if (auto CS = ImmutableCallSite(V)) 3498 if (CS.isReturnNonNull()) 3499 return true; 3500 3501 return false; 3502 } 3503 3504 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3505 const Instruction *CtxI, 3506 const DominatorTree *DT) { 3507 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3508 3509 unsigned NumUsesExplored = 0; 3510 for (auto U : V->users()) { 3511 // Avoid massive lists 3512 if (NumUsesExplored >= DomConditionsMaxUses) 3513 break; 3514 NumUsesExplored++; 3515 // Consider only compare instructions uniquely controlling a branch 3516 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3517 if (!Cmp) 3518 continue; 3519 3520 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3521 continue; 3522 3523 for (auto *CmpU : Cmp->users()) { 3524 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3525 if (!BI) 3526 continue; 3527 3528 assert(BI->isConditional() && "uses a comparison!"); 3529 3530 BasicBlock *NonNullSuccessor = nullptr; 3531 CmpInst::Predicate Pred; 3532 3533 if (match(const_cast<ICmpInst*>(Cmp), 3534 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3535 if (Pred == ICmpInst::ICMP_EQ) 3536 NonNullSuccessor = BI->getSuccessor(1); 3537 else if (Pred == ICmpInst::ICMP_NE) 3538 NonNullSuccessor = BI->getSuccessor(0); 3539 } 3540 3541 if (NonNullSuccessor) { 3542 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3543 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3544 return true; 3545 } 3546 } 3547 } 3548 3549 return false; 3550 } 3551 3552 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3553 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3554 if (isKnownNonNull(V, TLI)) 3555 return true; 3556 3557 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3558 } 3559 3560 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3561 const DataLayout &DL, 3562 AssumptionCache *AC, 3563 const Instruction *CxtI, 3564 const DominatorTree *DT) { 3565 // Multiplying n * m significant bits yields a result of n + m significant 3566 // bits. If the total number of significant bits does not exceed the 3567 // result bit width (minus 1), there is no overflow. 3568 // This means if we have enough leading zero bits in the operands 3569 // we can guarantee that the result does not overflow. 3570 // Ref: "Hacker's Delight" by Henry Warren 3571 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3572 APInt LHSKnownZero(BitWidth, 0); 3573 APInt LHSKnownOne(BitWidth, 0); 3574 APInt RHSKnownZero(BitWidth, 0); 3575 APInt RHSKnownOne(BitWidth, 0); 3576 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3577 DT); 3578 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3579 DT); 3580 // Note that underestimating the number of zero bits gives a more 3581 // conservative answer. 3582 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3583 RHSKnownZero.countLeadingOnes(); 3584 // First handle the easy case: if we have enough zero bits there's 3585 // definitely no overflow. 3586 if (ZeroBits >= BitWidth) 3587 return OverflowResult::NeverOverflows; 3588 3589 // Get the largest possible values for each operand. 3590 APInt LHSMax = ~LHSKnownZero; 3591 APInt RHSMax = ~RHSKnownZero; 3592 3593 // We know the multiply operation doesn't overflow if the maximum values for 3594 // each operand will not overflow after we multiply them together. 3595 bool MaxOverflow; 3596 LHSMax.umul_ov(RHSMax, MaxOverflow); 3597 if (!MaxOverflow) 3598 return OverflowResult::NeverOverflows; 3599 3600 // We know it always overflows if multiplying the smallest possible values for 3601 // the operands also results in overflow. 3602 bool MinOverflow; 3603 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3604 if (MinOverflow) 3605 return OverflowResult::AlwaysOverflows; 3606 3607 return OverflowResult::MayOverflow; 3608 } 3609 3610 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3611 const DataLayout &DL, 3612 AssumptionCache *AC, 3613 const Instruction *CxtI, 3614 const DominatorTree *DT) { 3615 bool LHSKnownNonNegative, LHSKnownNegative; 3616 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3617 AC, CxtI, DT); 3618 if (LHSKnownNonNegative || LHSKnownNegative) { 3619 bool RHSKnownNonNegative, RHSKnownNegative; 3620 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3621 AC, CxtI, DT); 3622 3623 if (LHSKnownNegative && RHSKnownNegative) { 3624 // The sign bit is set in both cases: this MUST overflow. 3625 // Create a simple add instruction, and insert it into the struct. 3626 return OverflowResult::AlwaysOverflows; 3627 } 3628 3629 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3630 // The sign bit is clear in both cases: this CANNOT overflow. 3631 // Create a simple add instruction, and insert it into the struct. 3632 return OverflowResult::NeverOverflows; 3633 } 3634 } 3635 3636 return OverflowResult::MayOverflow; 3637 } 3638 3639 static OverflowResult computeOverflowForSignedAdd( 3640 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3641 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3642 if (Add && Add->hasNoSignedWrap()) { 3643 return OverflowResult::NeverOverflows; 3644 } 3645 3646 bool LHSKnownNonNegative, LHSKnownNegative; 3647 bool RHSKnownNonNegative, RHSKnownNegative; 3648 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3649 AC, CxtI, DT); 3650 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3651 AC, CxtI, DT); 3652 3653 if ((LHSKnownNonNegative && RHSKnownNegative) || 3654 (LHSKnownNegative && RHSKnownNonNegative)) { 3655 // The sign bits are opposite: this CANNOT overflow. 3656 return OverflowResult::NeverOverflows; 3657 } 3658 3659 // The remaining code needs Add to be available. Early returns if not so. 3660 if (!Add) 3661 return OverflowResult::MayOverflow; 3662 3663 // If the sign of Add is the same as at least one of the operands, this add 3664 // CANNOT overflow. This is particularly useful when the sum is 3665 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3666 // operands. 3667 bool LHSOrRHSKnownNonNegative = 3668 (LHSKnownNonNegative || RHSKnownNonNegative); 3669 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3670 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3671 bool AddKnownNonNegative, AddKnownNegative; 3672 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3673 /*Depth=*/0, AC, CxtI, DT); 3674 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3675 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3676 return OverflowResult::NeverOverflows; 3677 } 3678 } 3679 3680 return OverflowResult::MayOverflow; 3681 } 3682 3683 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3684 const DataLayout &DL, 3685 AssumptionCache *AC, 3686 const Instruction *CxtI, 3687 const DominatorTree *DT) { 3688 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3689 Add, DL, AC, CxtI, DT); 3690 } 3691 3692 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3693 const DataLayout &DL, 3694 AssumptionCache *AC, 3695 const Instruction *CxtI, 3696 const DominatorTree *DT) { 3697 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3698 } 3699 3700 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3701 // FIXME: This conservative implementation can be relaxed. E.g. most 3702 // atomic operations are guaranteed to terminate on most platforms 3703 // and most functions terminate. 3704 3705 return !I->isAtomic() && // atomics may never succeed on some platforms 3706 !isa<CallInst>(I) && // could throw and might not terminate 3707 !isa<InvokeInst>(I) && // might not terminate and could throw to 3708 // non-successor (see bug 24185 for details). 3709 !isa<ResumeInst>(I) && // has no successors 3710 !isa<ReturnInst>(I); // has no successors 3711 } 3712 3713 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3714 const Loop *L) { 3715 // The loop header is guaranteed to be executed for every iteration. 3716 // 3717 // FIXME: Relax this constraint to cover all basic blocks that are 3718 // guaranteed to be executed at every iteration. 3719 if (I->getParent() != L->getHeader()) return false; 3720 3721 for (const Instruction &LI : *L->getHeader()) { 3722 if (&LI == I) return true; 3723 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3724 } 3725 llvm_unreachable("Instruction not contained in its own parent basic block."); 3726 } 3727 3728 bool llvm::propagatesFullPoison(const Instruction *I) { 3729 switch (I->getOpcode()) { 3730 case Instruction::Add: 3731 case Instruction::Sub: 3732 case Instruction::Xor: 3733 case Instruction::Trunc: 3734 case Instruction::BitCast: 3735 case Instruction::AddrSpaceCast: 3736 // These operations all propagate poison unconditionally. Note that poison 3737 // is not any particular value, so xor or subtraction of poison with 3738 // itself still yields poison, not zero. 3739 return true; 3740 3741 case Instruction::AShr: 3742 case Instruction::SExt: 3743 // For these operations, one bit of the input is replicated across 3744 // multiple output bits. A replicated poison bit is still poison. 3745 return true; 3746 3747 case Instruction::Shl: { 3748 // Left shift *by* a poison value is poison. The number of 3749 // positions to shift is unsigned, so no negative values are 3750 // possible there. Left shift by zero places preserves poison. So 3751 // it only remains to consider left shift of poison by a positive 3752 // number of places. 3753 // 3754 // A left shift by a positive number of places leaves the lowest order bit 3755 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3756 // make the poison operand violate that flag, yielding a fresh full-poison 3757 // value. 3758 auto *OBO = cast<OverflowingBinaryOperator>(I); 3759 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3760 } 3761 3762 case Instruction::Mul: { 3763 // A multiplication by zero yields a non-poison zero result, so we need to 3764 // rule out zero as an operand. Conservatively, multiplication by a 3765 // non-zero constant is not multiplication by zero. 3766 // 3767 // Multiplication by a non-zero constant can leave some bits 3768 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3769 // order bit unpoisoned. So we need to consider that. 3770 // 3771 // Multiplication by 1 preserves poison. If the multiplication has a 3772 // no-wrap flag, then we can make the poison operand violate that flag 3773 // when multiplied by any integer other than 0 and 1. 3774 auto *OBO = cast<OverflowingBinaryOperator>(I); 3775 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3776 for (Value *V : OBO->operands()) { 3777 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3778 // A ConstantInt cannot yield poison, so we can assume that it is 3779 // the other operand that is poison. 3780 return !CI->isZero(); 3781 } 3782 } 3783 } 3784 return false; 3785 } 3786 3787 case Instruction::GetElementPtr: 3788 // A GEP implicitly represents a sequence of additions, subtractions, 3789 // truncations, sign extensions and multiplications. The multiplications 3790 // are by the non-zero sizes of some set of types, so we do not have to be 3791 // concerned with multiplication by zero. If the GEP is in-bounds, then 3792 // these operations are implicitly no-signed-wrap so poison is propagated 3793 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3794 return cast<GEPOperator>(I)->isInBounds(); 3795 3796 default: 3797 return false; 3798 } 3799 } 3800 3801 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3802 switch (I->getOpcode()) { 3803 case Instruction::Store: 3804 return cast<StoreInst>(I)->getPointerOperand(); 3805 3806 case Instruction::Load: 3807 return cast<LoadInst>(I)->getPointerOperand(); 3808 3809 case Instruction::AtomicCmpXchg: 3810 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3811 3812 case Instruction::AtomicRMW: 3813 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3814 3815 case Instruction::UDiv: 3816 case Instruction::SDiv: 3817 case Instruction::URem: 3818 case Instruction::SRem: 3819 return I->getOperand(1); 3820 3821 default: 3822 return nullptr; 3823 } 3824 } 3825 3826 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3827 // We currently only look for uses of poison values within the same basic 3828 // block, as that makes it easier to guarantee that the uses will be 3829 // executed given that PoisonI is executed. 3830 // 3831 // FIXME: Expand this to consider uses beyond the same basic block. To do 3832 // this, look out for the distinction between post-dominance and strong 3833 // post-dominance. 3834 const BasicBlock *BB = PoisonI->getParent(); 3835 3836 // Set of instructions that we have proved will yield poison if PoisonI 3837 // does. 3838 SmallSet<const Value *, 16> YieldsPoison; 3839 YieldsPoison.insert(PoisonI); 3840 3841 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3842 I != E; ++I) { 3843 if (&*I != PoisonI) { 3844 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3845 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3846 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3847 return false; 3848 } 3849 3850 // Mark poison that propagates from I through uses of I. 3851 if (YieldsPoison.count(&*I)) { 3852 for (const User *User : I->users()) { 3853 const Instruction *UserI = cast<Instruction>(User); 3854 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3855 YieldsPoison.insert(User); 3856 } 3857 } 3858 } 3859 return false; 3860 } 3861 3862 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3863 if (FMF.noNaNs()) 3864 return true; 3865 3866 if (auto *C = dyn_cast<ConstantFP>(V)) 3867 return !C->isNaN(); 3868 return false; 3869 } 3870 3871 static bool isKnownNonZero(Value *V) { 3872 if (auto *C = dyn_cast<ConstantFP>(V)) 3873 return !C->isZero(); 3874 return false; 3875 } 3876 3877 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3878 FastMathFlags FMF, 3879 Value *CmpLHS, Value *CmpRHS, 3880 Value *TrueVal, Value *FalseVal, 3881 Value *&LHS, Value *&RHS) { 3882 LHS = CmpLHS; 3883 RHS = CmpRHS; 3884 3885 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3886 // return inconsistent results between implementations. 3887 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3888 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3889 // Therefore we behave conservatively and only proceed if at least one of the 3890 // operands is known to not be zero, or if we don't care about signed zeroes. 3891 switch (Pred) { 3892 default: break; 3893 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3894 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3895 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3896 !isKnownNonZero(CmpRHS)) 3897 return {SPF_UNKNOWN, SPNB_NA, false}; 3898 } 3899 3900 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3901 bool Ordered = false; 3902 3903 // When given one NaN and one non-NaN input: 3904 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3905 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3906 // ordered comparison fails), which could be NaN or non-NaN. 3907 // so here we discover exactly what NaN behavior is required/accepted. 3908 if (CmpInst::isFPPredicate(Pred)) { 3909 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3910 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3911 3912 if (LHSSafe && RHSSafe) { 3913 // Both operands are known non-NaN. 3914 NaNBehavior = SPNB_RETURNS_ANY; 3915 } else if (CmpInst::isOrdered(Pred)) { 3916 // An ordered comparison will return false when given a NaN, so it 3917 // returns the RHS. 3918 Ordered = true; 3919 if (LHSSafe) 3920 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3921 NaNBehavior = SPNB_RETURNS_NAN; 3922 else if (RHSSafe) 3923 NaNBehavior = SPNB_RETURNS_OTHER; 3924 else 3925 // Completely unsafe. 3926 return {SPF_UNKNOWN, SPNB_NA, false}; 3927 } else { 3928 Ordered = false; 3929 // An unordered comparison will return true when given a NaN, so it 3930 // returns the LHS. 3931 if (LHSSafe) 3932 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3933 NaNBehavior = SPNB_RETURNS_OTHER; 3934 else if (RHSSafe) 3935 NaNBehavior = SPNB_RETURNS_NAN; 3936 else 3937 // Completely unsafe. 3938 return {SPF_UNKNOWN, SPNB_NA, false}; 3939 } 3940 } 3941 3942 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3943 std::swap(CmpLHS, CmpRHS); 3944 Pred = CmpInst::getSwappedPredicate(Pred); 3945 if (NaNBehavior == SPNB_RETURNS_NAN) 3946 NaNBehavior = SPNB_RETURNS_OTHER; 3947 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3948 NaNBehavior = SPNB_RETURNS_NAN; 3949 Ordered = !Ordered; 3950 } 3951 3952 // ([if]cmp X, Y) ? X : Y 3953 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3954 switch (Pred) { 3955 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3956 case ICmpInst::ICMP_UGT: 3957 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3958 case ICmpInst::ICMP_SGT: 3959 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3960 case ICmpInst::ICMP_ULT: 3961 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3962 case ICmpInst::ICMP_SLT: 3963 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3964 case FCmpInst::FCMP_UGT: 3965 case FCmpInst::FCMP_UGE: 3966 case FCmpInst::FCMP_OGT: 3967 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3968 case FCmpInst::FCMP_ULT: 3969 case FCmpInst::FCMP_ULE: 3970 case FCmpInst::FCMP_OLT: 3971 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3972 } 3973 } 3974 3975 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3976 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3977 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3978 3979 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3980 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3981 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3982 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3983 } 3984 3985 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3986 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3987 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3988 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3989 } 3990 } 3991 3992 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3993 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3994 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3995 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3996 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3997 LHS = TrueVal; 3998 RHS = FalseVal; 3999 return {SPF_SMIN, SPNB_NA, false}; 4000 } 4001 } 4002 } 4003 4004 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 4005 4006 return {SPF_UNKNOWN, SPNB_NA, false}; 4007 } 4008 4009 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4010 Instruction::CastOps *CastOp) { 4011 CastInst *CI = dyn_cast<CastInst>(V1); 4012 Constant *C = dyn_cast<Constant>(V2); 4013 CastInst *CI2 = dyn_cast<CastInst>(V2); 4014 if (!CI) 4015 return nullptr; 4016 *CastOp = CI->getOpcode(); 4017 4018 if (CI2) { 4019 // If V1 and V2 are both the same cast from the same type, we can look 4020 // through V1. 4021 if (CI2->getOpcode() == CI->getOpcode() && 4022 CI2->getSrcTy() == CI->getSrcTy()) 4023 return CI2->getOperand(0); 4024 return nullptr; 4025 } else if (!C) { 4026 return nullptr; 4027 } 4028 4029 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 4030 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 4031 // This is only valid if the truncated value can be sign-extended 4032 // back to the original value. 4033 if (ConstantExpr::getSExt(T, C->getType()) == C) 4034 return T; 4035 return nullptr; 4036 } 4037 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 4038 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 4039 4040 if (isa<TruncInst>(CI)) 4041 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 4042 4043 if (isa<FPToUIInst>(CI)) 4044 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 4045 4046 if (isa<FPToSIInst>(CI)) 4047 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 4048 4049 if (isa<UIToFPInst>(CI)) 4050 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 4051 4052 if (isa<SIToFPInst>(CI)) 4053 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 4054 4055 if (isa<FPTruncInst>(CI)) 4056 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 4057 4058 if (isa<FPExtInst>(CI)) 4059 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 4060 4061 return nullptr; 4062 } 4063 4064 SelectPatternResult llvm::matchSelectPattern(Value *V, 4065 Value *&LHS, Value *&RHS, 4066 Instruction::CastOps *CastOp) { 4067 SelectInst *SI = dyn_cast<SelectInst>(V); 4068 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4069 4070 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4071 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4072 4073 CmpInst::Predicate Pred = CmpI->getPredicate(); 4074 Value *CmpLHS = CmpI->getOperand(0); 4075 Value *CmpRHS = CmpI->getOperand(1); 4076 Value *TrueVal = SI->getTrueValue(); 4077 Value *FalseVal = SI->getFalseValue(); 4078 FastMathFlags FMF; 4079 if (isa<FPMathOperator>(CmpI)) 4080 FMF = CmpI->getFastMathFlags(); 4081 4082 // Bail out early. 4083 if (CmpI->isEquality()) 4084 return {SPF_UNKNOWN, SPNB_NA, false}; 4085 4086 // Deal with type mismatches. 4087 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4088 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4089 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4090 cast<CastInst>(TrueVal)->getOperand(0), C, 4091 LHS, RHS); 4092 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4093 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4094 C, cast<CastInst>(FalseVal)->getOperand(0), 4095 LHS, RHS); 4096 } 4097 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4098 LHS, RHS); 4099 } 4100 4101 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) { 4102 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4103 assert(NumRanges >= 1 && "Must have at least one range!"); 4104 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4105 4106 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4107 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4108 4109 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4110 4111 for (unsigned i = 1; i < NumRanges; ++i) { 4112 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4113 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4114 4115 // Note: unionWith will potentially create a range that contains values not 4116 // contained in any of the original N ranges. 4117 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4118 } 4119 4120 return CR; 4121 } 4122 4123 /// Return true if "icmp Pred LHS RHS" is always true. 4124 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 4125 const DataLayout &DL, unsigned Depth, 4126 AssumptionCache *AC, const Instruction *CxtI, 4127 const DominatorTree *DT) { 4128 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4129 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4130 return true; 4131 4132 switch (Pred) { 4133 default: 4134 return false; 4135 4136 case CmpInst::ICMP_SLE: { 4137 const APInt *C; 4138 4139 // LHS s<= LHS +_{nsw} C if C >= 0 4140 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4141 return !C->isNegative(); 4142 return false; 4143 } 4144 4145 case CmpInst::ICMP_ULE: { 4146 const APInt *C; 4147 4148 // LHS u<= LHS +_{nuw} C for any C 4149 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4150 return true; 4151 4152 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4153 auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X, 4154 const APInt *&CA, const APInt *&CB) { 4155 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4156 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4157 return true; 4158 4159 // If X & C == 0 then (X | C) == X +_{nuw} C 4160 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4161 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4162 unsigned BitWidth = CA->getBitWidth(); 4163 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4164 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4165 4166 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4167 return true; 4168 } 4169 4170 return false; 4171 }; 4172 4173 Value *X; 4174 const APInt *CLHS, *CRHS; 4175 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4176 return CLHS->ule(*CRHS); 4177 4178 return false; 4179 } 4180 } 4181 } 4182 4183 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4184 /// ALHS ARHS" is true. 4185 static bool isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, 4186 Value *ARHS, Value *BLHS, Value *BRHS, 4187 const DataLayout &DL, unsigned Depth, 4188 AssumptionCache *AC, const Instruction *CxtI, 4189 const DominatorTree *DT) { 4190 switch (Pred) { 4191 default: 4192 return false; 4193 4194 case CmpInst::ICMP_SLT: 4195 case CmpInst::ICMP_SLE: 4196 return isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4197 DT) && 4198 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, 4199 DT); 4200 4201 case CmpInst::ICMP_ULT: 4202 case CmpInst::ICMP_ULE: 4203 return isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4204 DT) && 4205 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, 4206 DT); 4207 } 4208 } 4209 4210 bool llvm::isImpliedCondition(Value *LHS, Value *RHS, const DataLayout &DL, 4211 unsigned Depth, AssumptionCache *AC, 4212 const Instruction *CxtI, 4213 const DominatorTree *DT) { 4214 assert(LHS->getType() == RHS->getType() && "mismatched type"); 4215 Type *OpTy = LHS->getType(); 4216 assert(OpTy->getScalarType()->isIntegerTy(1)); 4217 4218 // LHS ==> RHS by definition 4219 if (LHS == RHS) return true; 4220 4221 if (OpTy->isVectorTy()) 4222 // TODO: extending the code below to handle vectors 4223 return false; 4224 assert(OpTy->isIntegerTy(1) && "implied by above"); 4225 4226 ICmpInst::Predicate APred, BPred; 4227 Value *ALHS, *ARHS; 4228 Value *BLHS, *BRHS; 4229 4230 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4231 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4232 return false; 4233 4234 if (APred == BPred) 4235 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4236 CxtI, DT); 4237 4238 return false; 4239 } 4240