1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/CallSite.h" 25 #include "llvm/IR/ConstantRange.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/Dominators.h" 29 #include "llvm/IR/GetElementPtrTypeIterator.h" 30 #include "llvm/IR/GlobalAlias.h" 31 #include "llvm/IR/GlobalVariable.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/LLVMContext.h" 35 #include "llvm/IR/Metadata.h" 36 #include "llvm/IR/Operator.h" 37 #include "llvm/IR/PatternMatch.h" 38 #include "llvm/IR/Statepoint.h" 39 #include "llvm/Support/Debug.h" 40 #include "llvm/Support/MathExtras.h" 41 #include <algorithm> 42 #include <array> 43 #include <cstring> 44 using namespace llvm; 45 using namespace llvm::PatternMatch; 46 47 const unsigned MaxDepth = 6; 48 49 // Controls the number of uses of the value searched for possible 50 // dominating comparisons. 51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 52 cl::Hidden, cl::init(20)); 53 54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 55 /// 0). For vector types, returns the element type's bitwidth. 56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 57 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 58 return BitWidth; 59 60 return DL.getPointerTypeSizeInBits(Ty); 61 } 62 63 namespace { 64 // Simplifying using an assume can only be done in a particular control-flow 65 // context (the context instruction provides that context). If an assume and 66 // the context instruction are not in the same block then the DT helps in 67 // figuring out if we can use it. 68 struct Query { 69 const DataLayout &DL; 70 AssumptionCache *AC; 71 const Instruction *CxtI; 72 const DominatorTree *DT; 73 74 /// Set of assumptions that should be excluded from further queries. 75 /// This is because of the potential for mutual recursion to cause 76 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 77 /// classic case of this is assume(x = y), which will attempt to determine 78 /// bits in x from bits in y, which will attempt to determine bits in y from 79 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 80 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 81 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 82 /// on. 83 std::array<const Value*, MaxDepth> Excluded; 84 unsigned NumExcluded; 85 86 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 87 const DominatorTree *DT) 88 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {} 89 90 Query(const Query &Q, const Value *NewExcl) 91 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) { 92 Excluded = Q.Excluded; 93 Excluded[NumExcluded++] = NewExcl; 94 assert(NumExcluded <= Excluded.size()); 95 } 96 97 bool isExcluded(const Value *Value) const { 98 if (NumExcluded == 0) 99 return false; 100 auto End = Excluded.begin() + NumExcluded; 101 return std::find(Excluded.begin(), End, Value) != End; 102 } 103 }; 104 } // end anonymous namespace 105 106 // Given the provided Value and, potentially, a context instruction, return 107 // the preferred context instruction (if any). 108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 109 // If we've been provided with a context instruction, then use that (provided 110 // it has been inserted). 111 if (CxtI && CxtI->getParent()) 112 return CxtI; 113 114 // If the value is really an already-inserted instruction, then use that. 115 CxtI = dyn_cast<Instruction>(V); 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 return nullptr; 120 } 121 122 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 123 unsigned Depth, const Query &Q); 124 125 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 126 const DataLayout &DL, unsigned Depth, 127 AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT) { 129 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 130 Query(DL, AC, safeCxtI(V, CxtI), DT)); 131 } 132 133 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 134 const DataLayout &DL, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 assert(LHS->getType() == RHS->getType() && 138 "LHS and RHS should have the same type"); 139 assert(LHS->getType()->isIntOrIntVectorTy() && 140 "LHS and RHS should be integers"); 141 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 142 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 143 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 144 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 145 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 146 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 147 } 148 149 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 150 unsigned Depth, const Query &Q); 151 152 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 153 const DataLayout &DL, unsigned Depth, 154 AssumptionCache *AC, const Instruction *CxtI, 155 const DominatorTree *DT) { 156 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 157 Query(DL, AC, safeCxtI(V, CxtI), DT)); 158 } 159 160 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 161 const Query &Q); 162 163 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 164 bool OrZero, 165 unsigned Depth, AssumptionCache *AC, 166 const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 173 174 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 175 AssumptionCache *AC, const Instruction *CxtI, 176 const DominatorTree *DT) { 177 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 178 } 179 180 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 181 unsigned Depth, 182 AssumptionCache *AC, const Instruction *CxtI, 183 const DominatorTree *DT) { 184 bool NonNegative, Negative; 185 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 186 return NonNegative; 187 } 188 189 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 190 AssumptionCache *AC, const Instruction *CxtI, 191 const DominatorTree *DT) { 192 if (auto *CI = dyn_cast<ConstantInt>(V)) 193 return CI->getValue().isStrictlyPositive(); 194 195 // TODO: We'd doing two recursive queries here. We should factor this such 196 // that only a single query is needed. 197 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 198 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 199 } 200 201 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 bool NonNegative, Negative; 205 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 206 return Negative; 207 } 208 209 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 210 211 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 212 const DataLayout &DL, 213 AssumptionCache *AC, const Instruction *CxtI, 214 const DominatorTree *DT) { 215 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 216 safeCxtI(V1, safeCxtI(V2, CxtI)), 217 DT)); 218 } 219 220 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 221 const Query &Q); 222 223 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 224 const DataLayout &DL, 225 unsigned Depth, AssumptionCache *AC, 226 const Instruction *CxtI, const DominatorTree *DT) { 227 return ::MaskedValueIsZero(V, Mask, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT)); 229 } 230 231 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 232 const Query &Q); 233 234 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 242 bool NSW, 243 APInt &KnownZero, APInt &KnownOne, 244 APInt &KnownZero2, APInt &KnownOne2, 245 unsigned Depth, const Query &Q) { 246 if (!Add) { 247 if (const ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 248 // We know that the top bits of C-X are clear if X contains less bits 249 // than C (i.e. no wrap-around can happen). For example, 20-X is 250 // positive if we can prove that X is >= 0 and < 16. 251 if (!CLHS->getValue().isNegative()) { 252 unsigned BitWidth = KnownZero.getBitWidth(); 253 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 254 // NLZ can't be BitWidth with no sign bit 255 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 256 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 257 258 // If all of the MaskV bits are known to be zero, then we know the 259 // output top bits are zero, because we now know that the output is 260 // from [0-C]. 261 if ((KnownZero2 & MaskV) == MaskV) { 262 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 263 // Top bits known zero. 264 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 265 } 266 } 267 } 268 } 269 270 unsigned BitWidth = KnownZero.getBitWidth(); 271 272 // If an initial sequence of bits in the result is not needed, the 273 // corresponding bits in the operands are not needed. 274 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 275 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 276 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 277 278 // Carry in a 1 for a subtract, rather than a 0. 279 APInt CarryIn(BitWidth, 0); 280 if (!Add) { 281 // Sum = LHS + ~RHS + 1 282 std::swap(KnownZero2, KnownOne2); 283 CarryIn.setBit(0); 284 } 285 286 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 287 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 288 289 // Compute known bits of the carry. 290 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 291 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 292 293 // Compute set of known bits (where all three relevant bits are known). 294 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 295 APInt RHSKnown = KnownZero2 | KnownOne2; 296 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 297 APInt Known = LHSKnown & RHSKnown & CarryKnown; 298 299 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 300 "known bits of sum differ"); 301 302 // Compute known bits of the result. 303 KnownZero = ~PossibleSumOne & Known; 304 KnownOne = PossibleSumOne & Known; 305 306 // Are we still trying to solve for the sign bit? 307 if (!Known.isNegative()) { 308 if (NSW) { 309 // Adding two non-negative numbers, or subtracting a negative number from 310 // a non-negative one, can't wrap into negative. 311 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 312 KnownZero |= APInt::getSignBit(BitWidth); 313 // Adding two negative numbers, or subtracting a non-negative number from 314 // a negative one, can't wrap into non-negative. 315 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 316 KnownOne |= APInt::getSignBit(BitWidth); 317 } 318 } 319 } 320 321 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 322 APInt &KnownZero, APInt &KnownOne, 323 APInt &KnownZero2, APInt &KnownOne2, 324 unsigned Depth, const Query &Q) { 325 unsigned BitWidth = KnownZero.getBitWidth(); 326 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 327 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 328 329 bool isKnownNegative = false; 330 bool isKnownNonNegative = false; 331 // If the multiplication is known not to overflow, compute the sign bit. 332 if (NSW) { 333 if (Op0 == Op1) { 334 // The product of a number with itself is non-negative. 335 isKnownNonNegative = true; 336 } else { 337 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 338 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 339 bool isKnownNegativeOp1 = KnownOne.isNegative(); 340 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 341 // The product of two numbers with the same sign is non-negative. 342 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 343 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 344 // The product of a negative number and a non-negative number is either 345 // negative or zero. 346 if (!isKnownNonNegative) 347 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 348 isKnownNonZero(Op0, Depth, Q)) || 349 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 350 isKnownNonZero(Op1, Depth, Q)); 351 } 352 } 353 354 // If low bits are zero in either operand, output low known-0 bits. 355 // Also compute a conservative estimate for high known-0 bits. 356 // More trickiness is possible, but this is sufficient for the 357 // interesting case of alignment computation. 358 KnownOne.clearAllBits(); 359 unsigned TrailZ = KnownZero.countTrailingOnes() + 360 KnownZero2.countTrailingOnes(); 361 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 362 KnownZero2.countLeadingOnes(), 363 BitWidth) - BitWidth; 364 365 TrailZ = std::min(TrailZ, BitWidth); 366 LeadZ = std::min(LeadZ, BitWidth); 367 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 368 APInt::getHighBitsSet(BitWidth, LeadZ); 369 370 // Only make use of no-wrap flags if we failed to compute the sign bit 371 // directly. This matters if the multiplication always overflows, in 372 // which case we prefer to follow the result of the direct computation, 373 // though as the program is invoking undefined behaviour we can choose 374 // whatever we like here. 375 if (isKnownNonNegative && !KnownOne.isNegative()) 376 KnownZero.setBit(BitWidth - 1); 377 else if (isKnownNegative && !KnownZero.isNegative()) 378 KnownOne.setBit(BitWidth - 1); 379 } 380 381 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 382 APInt &KnownZero, 383 APInt &KnownOne) { 384 unsigned BitWidth = KnownZero.getBitWidth(); 385 unsigned NumRanges = Ranges.getNumOperands() / 2; 386 assert(NumRanges >= 1); 387 388 KnownZero.setAllBits(); 389 KnownOne.setAllBits(); 390 391 for (unsigned i = 0; i < NumRanges; ++i) { 392 ConstantInt *Lower = 393 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 394 ConstantInt *Upper = 395 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 396 ConstantRange Range(Lower->getValue(), Upper->getValue()); 397 398 // The first CommonPrefixBits of all values in Range are equal. 399 unsigned CommonPrefixBits = 400 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 401 402 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 403 KnownOne &= Range.getUnsignedMax() & Mask; 404 KnownZero &= ~Range.getUnsignedMax() & Mask; 405 } 406 } 407 408 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 409 SmallVector<const Value *, 16> WorkSet(1, I); 410 SmallPtrSet<const Value *, 32> Visited; 411 SmallPtrSet<const Value *, 16> EphValues; 412 413 // The instruction defining an assumption's condition itself is always 414 // considered ephemeral to that assumption (even if it has other 415 // non-ephemeral users). See r246696's test case for an example. 416 if (is_contained(I->operands(), E)) 417 return true; 418 419 while (!WorkSet.empty()) { 420 const Value *V = WorkSet.pop_back_val(); 421 if (!Visited.insert(V).second) 422 continue; 423 424 // If all uses of this value are ephemeral, then so is this value. 425 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 426 if (V == E) 427 return true; 428 429 EphValues.insert(V); 430 if (const User *U = dyn_cast<User>(V)) 431 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 432 J != JE; ++J) { 433 if (isSafeToSpeculativelyExecute(*J)) 434 WorkSet.push_back(*J); 435 } 436 } 437 } 438 439 return false; 440 } 441 442 // Is this an intrinsic that cannot be speculated but also cannot trap? 443 static bool isAssumeLikeIntrinsic(const Instruction *I) { 444 if (const CallInst *CI = dyn_cast<CallInst>(I)) 445 if (Function *F = CI->getCalledFunction()) 446 switch (F->getIntrinsicID()) { 447 default: break; 448 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 449 case Intrinsic::assume: 450 case Intrinsic::dbg_declare: 451 case Intrinsic::dbg_value: 452 case Intrinsic::invariant_start: 453 case Intrinsic::invariant_end: 454 case Intrinsic::lifetime_start: 455 case Intrinsic::lifetime_end: 456 case Intrinsic::objectsize: 457 case Intrinsic::ptr_annotation: 458 case Intrinsic::var_annotation: 459 return true; 460 } 461 462 return false; 463 } 464 465 bool llvm::isValidAssumeForContext(const Instruction *Inv, 466 const Instruction *CxtI, 467 const DominatorTree *DT) { 468 469 // There are two restrictions on the use of an assume: 470 // 1. The assume must dominate the context (or the control flow must 471 // reach the assume whenever it reaches the context). 472 // 2. The context must not be in the assume's set of ephemeral values 473 // (otherwise we will use the assume to prove that the condition 474 // feeding the assume is trivially true, thus causing the removal of 475 // the assume). 476 477 if (DT) { 478 if (DT->dominates(Inv, CxtI)) 479 return true; 480 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 481 // We don't have a DT, but this trivially dominates. 482 return true; 483 } 484 485 // With or without a DT, the only remaining case we will check is if the 486 // instructions are in the same BB. Give up if that is not the case. 487 if (Inv->getParent() != CxtI->getParent()) 488 return false; 489 490 // If we have a dom tree, then we now know that the assume doens't dominate 491 // the other instruction. If we don't have a dom tree then we can check if 492 // the assume is first in the BB. 493 if (!DT) { 494 // Search forward from the assume until we reach the context (or the end 495 // of the block); the common case is that the assume will come first. 496 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 497 IE = Inv->getParent()->end(); I != IE; ++I) 498 if (&*I == CxtI) 499 return true; 500 } 501 502 // The context comes first, but they're both in the same block. Make sure 503 // there is nothing in between that might interrupt the control flow. 504 for (BasicBlock::const_iterator I = 505 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 506 I != IE; ++I) 507 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 508 return false; 509 510 return !isEphemeralValueOf(Inv, CxtI); 511 } 512 513 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 514 APInt &KnownOne, unsigned Depth, 515 const Query &Q) { 516 // Use of assumptions is context-sensitive. If we don't have a context, we 517 // cannot use them! 518 if (!Q.AC || !Q.CxtI) 519 return; 520 521 unsigned BitWidth = KnownZero.getBitWidth(); 522 523 for (auto &AssumeVH : Q.AC->assumptions()) { 524 if (!AssumeVH) 525 continue; 526 CallInst *I = cast<CallInst>(AssumeVH); 527 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 528 "Got assumption for the wrong function!"); 529 if (Q.isExcluded(I)) 530 continue; 531 532 // Warning: This loop can end up being somewhat performance sensetive. 533 // We're running this loop for once for each value queried resulting in a 534 // runtime of ~O(#assumes * #values). 535 536 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 537 "must be an assume intrinsic"); 538 539 Value *Arg = I->getArgOperand(0); 540 541 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 542 assert(BitWidth == 1 && "assume operand is not i1?"); 543 KnownZero.clearAllBits(); 544 KnownOne.setAllBits(); 545 return; 546 } 547 548 // The remaining tests are all recursive, so bail out if we hit the limit. 549 if (Depth == MaxDepth) 550 continue; 551 552 Value *A, *B; 553 auto m_V = m_CombineOr(m_Specific(V), 554 m_CombineOr(m_PtrToInt(m_Specific(V)), 555 m_BitCast(m_Specific(V)))); 556 557 CmpInst::Predicate Pred; 558 ConstantInt *C; 559 // assume(v = a) 560 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 561 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 562 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 563 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 564 KnownZero |= RHSKnownZero; 565 KnownOne |= RHSKnownOne; 566 // assume(v & b = a) 567 } else if (match(Arg, 568 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 569 Pred == ICmpInst::ICMP_EQ && 570 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 571 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 572 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 573 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 574 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 575 576 // For those bits in the mask that are known to be one, we can propagate 577 // known bits from the RHS to V. 578 KnownZero |= RHSKnownZero & MaskKnownOne; 579 KnownOne |= RHSKnownOne & MaskKnownOne; 580 // assume(~(v & b) = a) 581 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 582 m_Value(A))) && 583 Pred == ICmpInst::ICMP_EQ && 584 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 585 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 586 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 587 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 588 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 589 590 // For those bits in the mask that are known to be one, we can propagate 591 // inverted known bits from the RHS to V. 592 KnownZero |= RHSKnownOne & MaskKnownOne; 593 KnownOne |= RHSKnownZero & MaskKnownOne; 594 // assume(v | b = a) 595 } else if (match(Arg, 596 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 597 Pred == ICmpInst::ICMP_EQ && 598 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 599 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 600 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 601 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 602 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 603 604 // For those bits in B that are known to be zero, we can propagate known 605 // bits from the RHS to V. 606 KnownZero |= RHSKnownZero & BKnownZero; 607 KnownOne |= RHSKnownOne & BKnownZero; 608 // assume(~(v | b) = a) 609 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 610 m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && 612 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 613 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 614 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 615 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 616 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 617 618 // For those bits in B that are known to be zero, we can propagate 619 // inverted known bits from the RHS to V. 620 KnownZero |= RHSKnownOne & BKnownZero; 621 KnownOne |= RHSKnownZero & BKnownZero; 622 // assume(v ^ b = a) 623 } else if (match(Arg, 624 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 625 Pred == ICmpInst::ICMP_EQ && 626 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 627 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 628 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 629 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 630 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 631 632 // For those bits in B that are known to be zero, we can propagate known 633 // bits from the RHS to V. For those bits in B that are known to be one, 634 // we can propagate inverted known bits from the RHS to V. 635 KnownZero |= RHSKnownZero & BKnownZero; 636 KnownOne |= RHSKnownOne & BKnownZero; 637 KnownZero |= RHSKnownOne & BKnownOne; 638 KnownOne |= RHSKnownZero & BKnownOne; 639 // assume(~(v ^ b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 645 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 646 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 647 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 648 649 // For those bits in B that are known to be zero, we can propagate 650 // inverted known bits from the RHS to V. For those bits in B that are 651 // known to be one, we can propagate known bits from the RHS to V. 652 KnownZero |= RHSKnownOne & BKnownZero; 653 KnownOne |= RHSKnownZero & BKnownZero; 654 KnownZero |= RHSKnownZero & BKnownOne; 655 KnownOne |= RHSKnownOne & BKnownOne; 656 // assume(v << c = a) 657 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 658 m_Value(A))) && 659 Pred == ICmpInst::ICMP_EQ && 660 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 661 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 662 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 663 // For those bits in RHS that are known, we can propagate them to known 664 // bits in V shifted to the right by C. 665 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 666 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 667 // assume(~(v << c) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 673 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 674 // For those bits in RHS that are known, we can propagate them inverted 675 // to known bits in V shifted to the right by C. 676 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 677 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 678 // assume(v >> c = a) 679 } else if (match(Arg, 680 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 681 m_AShr(m_V, m_ConstantInt(C))), 682 m_Value(A))) && 683 Pred == ICmpInst::ICMP_EQ && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 686 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 687 // For those bits in RHS that are known, we can propagate them to known 688 // bits in V shifted to the right by C. 689 KnownZero |= RHSKnownZero << C->getZExtValue(); 690 KnownOne |= RHSKnownOne << C->getZExtValue(); 691 // assume(~(v >> c) = a) 692 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 693 m_LShr(m_V, m_ConstantInt(C)), 694 m_AShr(m_V, m_ConstantInt(C)))), 695 m_Value(A))) && 696 Pred == ICmpInst::ICMP_EQ && 697 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 698 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 699 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 700 // For those bits in RHS that are known, we can propagate them inverted 701 // to known bits in V shifted to the right by C. 702 KnownZero |= RHSKnownOne << C->getZExtValue(); 703 KnownOne |= RHSKnownZero << C->getZExtValue(); 704 // assume(v >=_s c) where c is non-negative 705 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 706 Pred == ICmpInst::ICMP_SGE && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 709 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 710 711 if (RHSKnownZero.isNegative()) { 712 // We know that the sign bit is zero. 713 KnownZero |= APInt::getSignBit(BitWidth); 714 } 715 // assume(v >_s c) where c is at least -1. 716 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 717 Pred == ICmpInst::ICMP_SGT && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 720 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 721 722 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 723 // We know that the sign bit is zero. 724 KnownZero |= APInt::getSignBit(BitWidth); 725 } 726 // assume(v <=_s c) where c is negative 727 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 728 Pred == ICmpInst::ICMP_SLE && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 731 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 732 733 if (RHSKnownOne.isNegative()) { 734 // We know that the sign bit is one. 735 KnownOne |= APInt::getSignBit(BitWidth); 736 } 737 // assume(v <_s c) where c is non-positive 738 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 739 Pred == ICmpInst::ICMP_SLT && 740 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 741 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 742 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 743 744 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 745 // We know that the sign bit is one. 746 KnownOne |= APInt::getSignBit(BitWidth); 747 } 748 // assume(v <=_u c) 749 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 750 Pred == ICmpInst::ICMP_ULE && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 753 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 754 755 // Whatever high bits in c are zero are known to be zero. 756 KnownZero |= 757 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 758 // assume(v <_u c) 759 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 760 Pred == ICmpInst::ICMP_ULT && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 763 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 764 765 // Whatever high bits in c are zero are known to be zero (if c is a power 766 // of 2, then one more). 767 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 768 KnownZero |= 769 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 770 else 771 KnownZero |= 772 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 } 776 777 // Compute known bits from a shift operator, including those with a 778 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 779 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 780 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 781 // functors that, given the known-zero or known-one bits respectively, and a 782 // shift amount, compute the implied known-zero or known-one bits of the shift 783 // operator's result respectively for that shift amount. The results from calling 784 // KZF and KOF are conservatively combined for all permitted shift amounts. 785 static void computeKnownBitsFromShiftOperator( 786 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 787 APInt &KnownOne2, unsigned Depth, const Query &Q, 788 function_ref<APInt(const APInt &, unsigned)> KZF, 789 function_ref<APInt(const APInt &, unsigned)> KOF) { 790 unsigned BitWidth = KnownZero.getBitWidth(); 791 792 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 793 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 794 795 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 796 KnownZero = KZF(KnownZero, ShiftAmt); 797 KnownOne = KOF(KnownOne, ShiftAmt); 798 // If there is conflict between KnownZero and KnownOne, this must be an 799 // overflowing left shift, so the shift result is undefined. Clear KnownZero 800 // and KnownOne bits so that other code could propagate this undef. 801 if ((KnownZero & KnownOne) != 0) { 802 KnownZero.clearAllBits(); 803 KnownOne.clearAllBits(); 804 } 805 806 return; 807 } 808 809 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 810 811 // Note: We cannot use KnownZero.getLimitedValue() here, because if 812 // BitWidth > 64 and any upper bits are known, we'll end up returning the 813 // limit value (which implies all bits are known). 814 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 815 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 816 817 // It would be more-clearly correct to use the two temporaries for this 818 // calculation. Reusing the APInts here to prevent unnecessary allocations. 819 KnownZero.clearAllBits(); 820 KnownOne.clearAllBits(); 821 822 // If we know the shifter operand is nonzero, we can sometimes infer more 823 // known bits. However this is expensive to compute, so be lazy about it and 824 // only compute it when absolutely necessary. 825 Optional<bool> ShifterOperandIsNonZero; 826 827 // Early exit if we can't constrain any well-defined shift amount. 828 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 829 ShifterOperandIsNonZero = 830 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 831 if (!*ShifterOperandIsNonZero) 832 return; 833 } 834 835 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 836 837 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 838 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 839 // Combine the shifted known input bits only for those shift amounts 840 // compatible with its known constraints. 841 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 842 continue; 843 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 844 continue; 845 // If we know the shifter is nonzero, we may be able to infer more known 846 // bits. This check is sunk down as far as possible to avoid the expensive 847 // call to isKnownNonZero if the cheaper checks above fail. 848 if (ShiftAmt == 0) { 849 if (!ShifterOperandIsNonZero.hasValue()) 850 ShifterOperandIsNonZero = 851 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 852 if (*ShifterOperandIsNonZero) 853 continue; 854 } 855 856 KnownZero &= KZF(KnownZero2, ShiftAmt); 857 KnownOne &= KOF(KnownOne2, ShiftAmt); 858 } 859 860 // If there are no compatible shift amounts, then we've proven that the shift 861 // amount must be >= the BitWidth, and the result is undefined. We could 862 // return anything we'd like, but we need to make sure the sets of known bits 863 // stay disjoint (it should be better for some other code to actually 864 // propagate the undef than to pick a value here using known bits). 865 if ((KnownZero & KnownOne) != 0) { 866 KnownZero.clearAllBits(); 867 KnownOne.clearAllBits(); 868 } 869 } 870 871 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 872 APInt &KnownOne, unsigned Depth, 873 const Query &Q) { 874 unsigned BitWidth = KnownZero.getBitWidth(); 875 876 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 877 switch (I->getOpcode()) { 878 default: break; 879 case Instruction::Load: 880 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 881 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 882 break; 883 case Instruction::And: { 884 // If either the LHS or the RHS are Zero, the result is zero. 885 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 886 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 887 888 // Output known-1 bits are only known if set in both the LHS & RHS. 889 KnownOne &= KnownOne2; 890 // Output known-0 are known to be clear if zero in either the LHS | RHS. 891 KnownZero |= KnownZero2; 892 893 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 894 // here we handle the more general case of adding any odd number by 895 // matching the form add(x, add(x, y)) where y is odd. 896 // TODO: This could be generalized to clearing any bit set in y where the 897 // following bit is known to be unset in y. 898 Value *Y = nullptr; 899 if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 900 m_Value(Y))) || 901 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 902 m_Value(Y)))) { 903 APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0); 904 computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q); 905 if (KnownOne3.countTrailingOnes() > 0) 906 KnownZero |= APInt::getLowBitsSet(BitWidth, 1); 907 } 908 break; 909 } 910 case Instruction::Or: { 911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 913 914 // Output known-0 bits are only known if clear in both the LHS & RHS. 915 KnownZero &= KnownZero2; 916 // Output known-1 are known to be set if set in either the LHS | RHS. 917 KnownOne |= KnownOne2; 918 break; 919 } 920 case Instruction::Xor: { 921 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 922 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 923 924 // Output known-0 bits are known if clear or set in both the LHS & RHS. 925 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 926 // Output known-1 are known to be set if set in only one of the LHS, RHS. 927 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 928 KnownZero = KnownZeroOut; 929 break; 930 } 931 case Instruction::Mul: { 932 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 933 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 934 KnownOne, KnownZero2, KnownOne2, Depth, Q); 935 break; 936 } 937 case Instruction::UDiv: { 938 // For the purposes of computing leading zeros we can conservatively 939 // treat a udiv as a logical right shift by the power of 2 known to 940 // be less than the denominator. 941 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 942 unsigned LeadZ = KnownZero2.countLeadingOnes(); 943 944 KnownOne2.clearAllBits(); 945 KnownZero2.clearAllBits(); 946 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 947 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 948 if (RHSUnknownLeadingOnes != BitWidth) 949 LeadZ = std::min(BitWidth, 950 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 951 952 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 953 break; 954 } 955 case Instruction::Select: { 956 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 957 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 958 959 const Value *LHS; 960 const Value *RHS; 961 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 962 if (SelectPatternResult::isMinOrMax(SPF)) { 963 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 964 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 965 } else { 966 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 967 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 968 } 969 970 unsigned MaxHighOnes = 0; 971 unsigned MaxHighZeros = 0; 972 if (SPF == SPF_SMAX) { 973 // If both sides are negative, the result is negative. 974 if (KnownOne[BitWidth - 1] && KnownOne2[BitWidth - 1]) 975 // We can derive a lower bound on the result by taking the max of the 976 // leading one bits. 977 MaxHighOnes = 978 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 979 // If either side is non-negative, the result is non-negative. 980 else if (KnownZero[BitWidth - 1] || KnownZero2[BitWidth - 1]) 981 MaxHighZeros = 1; 982 } else if (SPF == SPF_SMIN) { 983 // If both sides are non-negative, the result is non-negative. 984 if (KnownZero[BitWidth - 1] && KnownZero2[BitWidth - 1]) 985 // We can derive an upper bound on the result by taking the max of the 986 // leading zero bits. 987 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 988 KnownZero2.countLeadingOnes()); 989 // If either side is negative, the result is negative. 990 else if (KnownOne[BitWidth - 1] || KnownOne2[BitWidth - 1]) 991 MaxHighOnes = 1; 992 } else if (SPF == SPF_UMAX) { 993 // We can derive a lower bound on the result by taking the max of the 994 // leading one bits. 995 MaxHighOnes = 996 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 997 } else if (SPF == SPF_UMIN) { 998 // We can derive an upper bound on the result by taking the max of the 999 // leading zero bits. 1000 MaxHighZeros = 1001 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1002 } 1003 1004 // Only known if known in both the LHS and RHS. 1005 KnownOne &= KnownOne2; 1006 KnownZero &= KnownZero2; 1007 if (MaxHighOnes > 0) 1008 KnownOne |= APInt::getHighBitsSet(BitWidth, MaxHighOnes); 1009 if (MaxHighZeros > 0) 1010 KnownZero |= APInt::getHighBitsSet(BitWidth, MaxHighZeros); 1011 break; 1012 } 1013 case Instruction::FPTrunc: 1014 case Instruction::FPExt: 1015 case Instruction::FPToUI: 1016 case Instruction::FPToSI: 1017 case Instruction::SIToFP: 1018 case Instruction::UIToFP: 1019 break; // Can't work with floating point. 1020 case Instruction::PtrToInt: 1021 case Instruction::IntToPtr: 1022 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1023 // Fall through and handle them the same as zext/trunc. 1024 LLVM_FALLTHROUGH; 1025 case Instruction::ZExt: 1026 case Instruction::Trunc: { 1027 Type *SrcTy = I->getOperand(0)->getType(); 1028 1029 unsigned SrcBitWidth; 1030 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1031 // which fall through here. 1032 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1033 1034 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1035 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1036 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1037 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1038 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1039 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1040 // Any top bits are known to be zero. 1041 if (BitWidth > SrcBitWidth) 1042 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1043 break; 1044 } 1045 case Instruction::BitCast: { 1046 Type *SrcTy = I->getOperand(0)->getType(); 1047 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1048 // TODO: For now, not handling conversions like: 1049 // (bitcast i64 %x to <2 x i32>) 1050 !I->getType()->isVectorTy()) { 1051 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1052 break; 1053 } 1054 break; 1055 } 1056 case Instruction::SExt: { 1057 // Compute the bits in the result that are not present in the input. 1058 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1059 1060 KnownZero = KnownZero.trunc(SrcBitWidth); 1061 KnownOne = KnownOne.trunc(SrcBitWidth); 1062 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1063 KnownZero = KnownZero.zext(BitWidth); 1064 KnownOne = KnownOne.zext(BitWidth); 1065 1066 // If the sign bit of the input is known set or clear, then we know the 1067 // top bits of the result. 1068 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1069 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1070 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1071 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1072 break; 1073 } 1074 case Instruction::Shl: { 1075 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1076 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1077 auto KZF = [BitWidth, NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1078 APInt KZResult = 1079 (KnownZero << ShiftAmt) | 1080 APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0. 1081 // If this shift has "nsw" keyword, then the result is either a poison 1082 // value or has the same sign bit as the first operand. 1083 if (NSW && KnownZero.isNegative()) 1084 KZResult.setBit(BitWidth - 1); 1085 return KZResult; 1086 }; 1087 1088 auto KOF = [BitWidth, NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1089 APInt KOResult = KnownOne << ShiftAmt; 1090 if (NSW && KnownOne.isNegative()) 1091 KOResult.setBit(BitWidth - 1); 1092 return KOResult; 1093 }; 1094 1095 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1096 KnownZero2, KnownOne2, Depth, Q, KZF, 1097 KOF); 1098 break; 1099 } 1100 case Instruction::LShr: { 1101 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1102 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1103 return APIntOps::lshr(KnownZero, ShiftAmt) | 1104 // High bits known zero. 1105 APInt::getHighBitsSet(BitWidth, ShiftAmt); 1106 }; 1107 1108 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1109 return APIntOps::lshr(KnownOne, ShiftAmt); 1110 }; 1111 1112 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1113 KnownZero2, KnownOne2, Depth, Q, KZF, 1114 KOF); 1115 break; 1116 } 1117 case Instruction::AShr: { 1118 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1119 auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) { 1120 return APIntOps::ashr(KnownZero, ShiftAmt); 1121 }; 1122 1123 auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) { 1124 return APIntOps::ashr(KnownOne, ShiftAmt); 1125 }; 1126 1127 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1128 KnownZero2, KnownOne2, Depth, Q, KZF, 1129 KOF); 1130 break; 1131 } 1132 case Instruction::Sub: { 1133 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1134 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1135 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1136 Q); 1137 break; 1138 } 1139 case Instruction::Add: { 1140 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1141 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1142 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1143 Q); 1144 break; 1145 } 1146 case Instruction::SRem: 1147 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1148 APInt RA = Rem->getValue().abs(); 1149 if (RA.isPowerOf2()) { 1150 APInt LowBits = RA - 1; 1151 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1152 Q); 1153 1154 // The low bits of the first operand are unchanged by the srem. 1155 KnownZero = KnownZero2 & LowBits; 1156 KnownOne = KnownOne2 & LowBits; 1157 1158 // If the first operand is non-negative or has all low bits zero, then 1159 // the upper bits are all zero. 1160 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1161 KnownZero |= ~LowBits; 1162 1163 // If the first operand is negative and not all low bits are zero, then 1164 // the upper bits are all one. 1165 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1166 KnownOne |= ~LowBits; 1167 1168 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1169 } 1170 } 1171 1172 // The sign bit is the LHS's sign bit, except when the result of the 1173 // remainder is zero. 1174 if (KnownZero.isNonNegative()) { 1175 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1176 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1, 1177 Q); 1178 // If it's known zero, our sign bit is also zero. 1179 if (LHSKnownZero.isNegative()) 1180 KnownZero.setBit(BitWidth - 1); 1181 } 1182 1183 break; 1184 case Instruction::URem: { 1185 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1186 const APInt &RA = Rem->getValue(); 1187 if (RA.isPowerOf2()) { 1188 APInt LowBits = (RA - 1); 1189 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1190 KnownZero |= ~LowBits; 1191 KnownOne &= LowBits; 1192 break; 1193 } 1194 } 1195 1196 // Since the result is less than or equal to either operand, any leading 1197 // zero bits in either operand must also exist in the result. 1198 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1199 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1200 1201 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1202 KnownZero2.countLeadingOnes()); 1203 KnownOne.clearAllBits(); 1204 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1205 break; 1206 } 1207 1208 case Instruction::Alloca: { 1209 const AllocaInst *AI = cast<AllocaInst>(I); 1210 unsigned Align = AI->getAlignment(); 1211 if (Align == 0) 1212 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1213 1214 if (Align > 0) 1215 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1216 break; 1217 } 1218 case Instruction::GetElementPtr: { 1219 // Analyze all of the subscripts of this getelementptr instruction 1220 // to determine if we can prove known low zero bits. 1221 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1222 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1223 Q); 1224 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1225 1226 gep_type_iterator GTI = gep_type_begin(I); 1227 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1228 Value *Index = I->getOperand(i); 1229 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1230 // Handle struct member offset arithmetic. 1231 1232 // Handle case when index is vector zeroinitializer 1233 Constant *CIndex = cast<Constant>(Index); 1234 if (CIndex->isZeroValue()) 1235 continue; 1236 1237 if (CIndex->getType()->isVectorTy()) 1238 Index = CIndex->getSplatValue(); 1239 1240 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1241 const StructLayout *SL = Q.DL.getStructLayout(STy); 1242 uint64_t Offset = SL->getElementOffset(Idx); 1243 TrailZ = std::min<unsigned>(TrailZ, 1244 countTrailingZeros(Offset)); 1245 } else { 1246 // Handle array index arithmetic. 1247 Type *IndexedTy = GTI.getIndexedType(); 1248 if (!IndexedTy->isSized()) { 1249 TrailZ = 0; 1250 break; 1251 } 1252 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1253 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1254 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1255 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1256 TrailZ = std::min(TrailZ, 1257 unsigned(countTrailingZeros(TypeSize) + 1258 LocalKnownZero.countTrailingOnes())); 1259 } 1260 } 1261 1262 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1263 break; 1264 } 1265 case Instruction::PHI: { 1266 const PHINode *P = cast<PHINode>(I); 1267 // Handle the case of a simple two-predecessor recurrence PHI. 1268 // There's a lot more that could theoretically be done here, but 1269 // this is sufficient to catch some interesting cases. 1270 if (P->getNumIncomingValues() == 2) { 1271 for (unsigned i = 0; i != 2; ++i) { 1272 Value *L = P->getIncomingValue(i); 1273 Value *R = P->getIncomingValue(!i); 1274 Operator *LU = dyn_cast<Operator>(L); 1275 if (!LU) 1276 continue; 1277 unsigned Opcode = LU->getOpcode(); 1278 // Check for operations that have the property that if 1279 // both their operands have low zero bits, the result 1280 // will have low zero bits. 1281 if (Opcode == Instruction::Add || 1282 Opcode == Instruction::Sub || 1283 Opcode == Instruction::And || 1284 Opcode == Instruction::Or || 1285 Opcode == Instruction::Mul) { 1286 Value *LL = LU->getOperand(0); 1287 Value *LR = LU->getOperand(1); 1288 // Find a recurrence. 1289 if (LL == I) 1290 L = LR; 1291 else if (LR == I) 1292 L = LL; 1293 else 1294 break; 1295 // Ok, we have a PHI of the form L op= R. Check for low 1296 // zero bits. 1297 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1298 1299 // We need to take the minimum number of known bits 1300 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1301 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1302 1303 KnownZero = APInt::getLowBitsSet(BitWidth, 1304 std::min(KnownZero2.countTrailingOnes(), 1305 KnownZero3.countTrailingOnes())); 1306 break; 1307 } 1308 } 1309 } 1310 1311 // Unreachable blocks may have zero-operand PHI nodes. 1312 if (P->getNumIncomingValues() == 0) 1313 break; 1314 1315 // Otherwise take the unions of the known bit sets of the operands, 1316 // taking conservative care to avoid excessive recursion. 1317 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1318 // Skip if every incoming value references to ourself. 1319 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1320 break; 1321 1322 KnownZero = APInt::getAllOnesValue(BitWidth); 1323 KnownOne = APInt::getAllOnesValue(BitWidth); 1324 for (Value *IncValue : P->incoming_values()) { 1325 // Skip direct self references. 1326 if (IncValue == P) continue; 1327 1328 KnownZero2 = APInt(BitWidth, 0); 1329 KnownOne2 = APInt(BitWidth, 0); 1330 // Recurse, but cap the recursion to one level, because we don't 1331 // want to waste time spinning around in loops. 1332 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1333 KnownZero &= KnownZero2; 1334 KnownOne &= KnownOne2; 1335 // If all bits have been ruled out, there's no need to check 1336 // more operands. 1337 if (!KnownZero && !KnownOne) 1338 break; 1339 } 1340 } 1341 break; 1342 } 1343 case Instruction::Call: 1344 case Instruction::Invoke: 1345 // If range metadata is attached to this call, set known bits from that, 1346 // and then intersect with known bits based on other properties of the 1347 // function. 1348 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1349 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1350 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1351 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1352 KnownZero |= KnownZero2; 1353 KnownOne |= KnownOne2; 1354 } 1355 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1356 switch (II->getIntrinsicID()) { 1357 default: break; 1358 case Intrinsic::bswap: 1359 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1360 KnownZero |= KnownZero2.byteSwap(); 1361 KnownOne |= KnownOne2.byteSwap(); 1362 break; 1363 case Intrinsic::ctlz: 1364 case Intrinsic::cttz: { 1365 unsigned LowBits = Log2_32(BitWidth)+1; 1366 // If this call is undefined for 0, the result will be less than 2^n. 1367 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1368 LowBits -= 1; 1369 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1370 break; 1371 } 1372 case Intrinsic::ctpop: { 1373 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1374 // We can bound the space the count needs. Also, bits known to be zero 1375 // can't contribute to the population. 1376 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1377 unsigned LeadingZeros = 1378 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1379 assert(LeadingZeros <= BitWidth); 1380 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1381 KnownOne &= ~KnownZero; 1382 // TODO: we could bound KnownOne using the lower bound on the number 1383 // of bits which might be set provided by popcnt KnownOne2. 1384 break; 1385 } 1386 case Intrinsic::x86_sse42_crc32_64_64: 1387 KnownZero |= APInt::getHighBitsSet(64, 32); 1388 break; 1389 } 1390 } 1391 break; 1392 case Instruction::ExtractValue: 1393 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1394 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1395 if (EVI->getNumIndices() != 1) break; 1396 if (EVI->getIndices()[0] == 0) { 1397 switch (II->getIntrinsicID()) { 1398 default: break; 1399 case Intrinsic::uadd_with_overflow: 1400 case Intrinsic::sadd_with_overflow: 1401 computeKnownBitsAddSub(true, II->getArgOperand(0), 1402 II->getArgOperand(1), false, KnownZero, 1403 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1404 break; 1405 case Intrinsic::usub_with_overflow: 1406 case Intrinsic::ssub_with_overflow: 1407 computeKnownBitsAddSub(false, II->getArgOperand(0), 1408 II->getArgOperand(1), false, KnownZero, 1409 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1410 break; 1411 case Intrinsic::umul_with_overflow: 1412 case Intrinsic::smul_with_overflow: 1413 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1414 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1415 Q); 1416 break; 1417 } 1418 } 1419 } 1420 } 1421 } 1422 1423 /// Determine which bits of V are known to be either zero or one and return 1424 /// them in the KnownZero/KnownOne bit sets. 1425 /// 1426 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1427 /// we cannot optimize based on the assumption that it is zero without changing 1428 /// it to be an explicit zero. If we don't change it to zero, other code could 1429 /// optimized based on the contradictory assumption that it is non-zero. 1430 /// Because instcombine aggressively folds operations with undef args anyway, 1431 /// this won't lose us code quality. 1432 /// 1433 /// This function is defined on values with integer type, values with pointer 1434 /// type, and vectors of integers. In the case 1435 /// where V is a vector, known zero, and known one values are the 1436 /// same width as the vector element, and the bit is set only if it is true 1437 /// for all of the elements in the vector. 1438 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1439 unsigned Depth, const Query &Q) { 1440 assert(V && "No Value?"); 1441 assert(Depth <= MaxDepth && "Limit Search Depth"); 1442 unsigned BitWidth = KnownZero.getBitWidth(); 1443 1444 assert((V->getType()->isIntOrIntVectorTy() || 1445 V->getType()->getScalarType()->isPointerTy()) && 1446 "Not integer or pointer type!"); 1447 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1448 (!V->getType()->isIntOrIntVectorTy() || 1449 V->getType()->getScalarSizeInBits() == BitWidth) && 1450 KnownZero.getBitWidth() == BitWidth && 1451 KnownOne.getBitWidth() == BitWidth && 1452 "V, KnownOne and KnownZero should have same BitWidth"); 1453 1454 const APInt *C; 1455 if (match(V, m_APInt(C))) { 1456 // We know all of the bits for a scalar constant or a splat vector constant! 1457 KnownOne = *C; 1458 KnownZero = ~KnownOne; 1459 return; 1460 } 1461 // Null and aggregate-zero are all-zeros. 1462 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1463 KnownOne.clearAllBits(); 1464 KnownZero = APInt::getAllOnesValue(BitWidth); 1465 return; 1466 } 1467 // Handle a constant vector by taking the intersection of the known bits of 1468 // each element. 1469 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1470 // We know that CDS must be a vector of integers. Take the intersection of 1471 // each element. 1472 KnownZero.setAllBits(); KnownOne.setAllBits(); 1473 APInt Elt(KnownZero.getBitWidth(), 0); 1474 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1475 Elt = CDS->getElementAsInteger(i); 1476 KnownZero &= ~Elt; 1477 KnownOne &= Elt; 1478 } 1479 return; 1480 } 1481 1482 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1483 // We know that CV must be a vector of integers. Take the intersection of 1484 // each element. 1485 KnownZero.setAllBits(); KnownOne.setAllBits(); 1486 APInt Elt(KnownZero.getBitWidth(), 0); 1487 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1488 Constant *Element = CV->getAggregateElement(i); 1489 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1490 if (!ElementCI) { 1491 KnownZero.clearAllBits(); 1492 KnownOne.clearAllBits(); 1493 return; 1494 } 1495 Elt = ElementCI->getValue(); 1496 KnownZero &= ~Elt; 1497 KnownOne &= Elt; 1498 } 1499 return; 1500 } 1501 1502 // Start out not knowing anything. 1503 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1504 1505 // Limit search depth. 1506 // All recursive calls that increase depth must come after this. 1507 if (Depth == MaxDepth) 1508 return; 1509 1510 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1511 // the bits of its aliasee. 1512 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1513 if (!GA->isInterposable()) 1514 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1515 return; 1516 } 1517 1518 if (const Operator *I = dyn_cast<Operator>(V)) 1519 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1520 1521 // Aligned pointers have trailing zeros - refine KnownZero set 1522 if (V->getType()->isPointerTy()) { 1523 unsigned Align = V->getPointerAlignment(Q.DL); 1524 if (Align) 1525 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1526 } 1527 1528 // computeKnownBitsFromAssume strictly refines KnownZero and 1529 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1530 1531 // Check whether a nearby assume intrinsic can determine some known bits. 1532 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1533 1534 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1535 } 1536 1537 /// Determine whether the sign bit is known to be zero or one. 1538 /// Convenience wrapper around computeKnownBits. 1539 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1540 unsigned Depth, const Query &Q) { 1541 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1542 if (!BitWidth) { 1543 KnownZero = false; 1544 KnownOne = false; 1545 return; 1546 } 1547 APInt ZeroBits(BitWidth, 0); 1548 APInt OneBits(BitWidth, 0); 1549 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1550 KnownOne = OneBits[BitWidth - 1]; 1551 KnownZero = ZeroBits[BitWidth - 1]; 1552 } 1553 1554 /// Return true if the given value is known to have exactly one 1555 /// bit set when defined. For vectors return true if every element is known to 1556 /// be a power of two when defined. Supports values with integer or pointer 1557 /// types and vectors of integers. 1558 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1559 const Query &Q) { 1560 if (const Constant *C = dyn_cast<Constant>(V)) { 1561 if (C->isNullValue()) 1562 return OrZero; 1563 1564 const APInt *ConstIntOrConstSplatInt; 1565 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1566 return ConstIntOrConstSplatInt->isPowerOf2(); 1567 } 1568 1569 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1570 // it is shifted off the end then the result is undefined. 1571 if (match(V, m_Shl(m_One(), m_Value()))) 1572 return true; 1573 1574 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1575 // bottom. If it is shifted off the bottom then the result is undefined. 1576 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1577 return true; 1578 1579 // The remaining tests are all recursive, so bail out if we hit the limit. 1580 if (Depth++ == MaxDepth) 1581 return false; 1582 1583 Value *X = nullptr, *Y = nullptr; 1584 // A shift left or a logical shift right of a power of two is a power of two 1585 // or zero. 1586 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1587 match(V, m_LShr(m_Value(X), m_Value())))) 1588 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1589 1590 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1591 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1592 1593 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1594 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1595 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1596 1597 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1598 // A power of two and'd with anything is a power of two or zero. 1599 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1600 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1601 return true; 1602 // X & (-X) is always a power of two or zero. 1603 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1604 return true; 1605 return false; 1606 } 1607 1608 // Adding a power-of-two or zero to the same power-of-two or zero yields 1609 // either the original power-of-two, a larger power-of-two or zero. 1610 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1611 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1612 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1613 if (match(X, m_And(m_Specific(Y), m_Value())) || 1614 match(X, m_And(m_Value(), m_Specific(Y)))) 1615 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1616 return true; 1617 if (match(Y, m_And(m_Specific(X), m_Value())) || 1618 match(Y, m_And(m_Value(), m_Specific(X)))) 1619 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1620 return true; 1621 1622 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1623 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1624 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1625 1626 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1627 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1628 // If i8 V is a power of two or zero: 1629 // ZeroBits: 1 1 1 0 1 1 1 1 1630 // ~ZeroBits: 0 0 0 1 0 0 0 0 1631 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1632 // If OrZero isn't set, we cannot give back a zero result. 1633 // Make sure either the LHS or RHS has a bit set. 1634 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1635 return true; 1636 } 1637 } 1638 1639 // An exact divide or right shift can only shift off zero bits, so the result 1640 // is a power of two only if the first operand is a power of two and not 1641 // copying a sign bit (sdiv int_min, 2). 1642 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1643 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1644 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1645 Depth, Q); 1646 } 1647 1648 return false; 1649 } 1650 1651 /// \brief Test whether a GEP's result is known to be non-null. 1652 /// 1653 /// Uses properties inherent in a GEP to try to determine whether it is known 1654 /// to be non-null. 1655 /// 1656 /// Currently this routine does not support vector GEPs. 1657 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1658 const Query &Q) { 1659 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1660 return false; 1661 1662 // FIXME: Support vector-GEPs. 1663 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1664 1665 // If the base pointer is non-null, we cannot walk to a null address with an 1666 // inbounds GEP in address space zero. 1667 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1668 return true; 1669 1670 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1671 // If so, then the GEP cannot produce a null pointer, as doing so would 1672 // inherently violate the inbounds contract within address space zero. 1673 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1674 GTI != GTE; ++GTI) { 1675 // Struct types are easy -- they must always be indexed by a constant. 1676 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1677 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1678 unsigned ElementIdx = OpC->getZExtValue(); 1679 const StructLayout *SL = Q.DL.getStructLayout(STy); 1680 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1681 if (ElementOffset > 0) 1682 return true; 1683 continue; 1684 } 1685 1686 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1687 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1688 continue; 1689 1690 // Fast path the constant operand case both for efficiency and so we don't 1691 // increment Depth when just zipping down an all-constant GEP. 1692 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1693 if (!OpC->isZero()) 1694 return true; 1695 continue; 1696 } 1697 1698 // We post-increment Depth here because while isKnownNonZero increments it 1699 // as well, when we pop back up that increment won't persist. We don't want 1700 // to recurse 10k times just because we have 10k GEP operands. We don't 1701 // bail completely out because we want to handle constant GEPs regardless 1702 // of depth. 1703 if (Depth++ >= MaxDepth) 1704 continue; 1705 1706 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1707 return true; 1708 } 1709 1710 return false; 1711 } 1712 1713 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1714 /// ensure that the value it's attached to is never Value? 'RangeType' is 1715 /// is the type of the value described by the range. 1716 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1717 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1718 assert(NumRanges >= 1); 1719 for (unsigned i = 0; i < NumRanges; ++i) { 1720 ConstantInt *Lower = 1721 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1722 ConstantInt *Upper = 1723 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1724 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1725 if (Range.contains(Value)) 1726 return false; 1727 } 1728 return true; 1729 } 1730 1731 /// Return true if the given value is known to be non-zero when defined. 1732 /// For vectors return true if every element is known to be non-zero when 1733 /// defined. Supports values with integer or pointer type and vectors of 1734 /// integers. 1735 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1736 if (auto *C = dyn_cast<Constant>(V)) { 1737 if (C->isNullValue()) 1738 return false; 1739 if (isa<ConstantInt>(C)) 1740 // Must be non-zero due to null test above. 1741 return true; 1742 1743 // For constant vectors, check that all elements are undefined or known 1744 // non-zero to determine that the whole vector is known non-zero. 1745 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1746 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1747 Constant *Elt = C->getAggregateElement(i); 1748 if (!Elt || Elt->isNullValue()) 1749 return false; 1750 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1751 return false; 1752 } 1753 return true; 1754 } 1755 1756 return false; 1757 } 1758 1759 if (auto *I = dyn_cast<Instruction>(V)) { 1760 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1761 // If the possible ranges don't contain zero, then the value is 1762 // definitely non-zero. 1763 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1764 const APInt ZeroValue(Ty->getBitWidth(), 0); 1765 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1766 return true; 1767 } 1768 } 1769 } 1770 1771 // The remaining tests are all recursive, so bail out if we hit the limit. 1772 if (Depth++ >= MaxDepth) 1773 return false; 1774 1775 // Check for pointer simplifications. 1776 if (V->getType()->isPointerTy()) { 1777 if (isKnownNonNull(V)) 1778 return true; 1779 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1780 if (isGEPKnownNonNull(GEP, Depth, Q)) 1781 return true; 1782 } 1783 1784 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1785 1786 // X | Y != 0 if X != 0 or Y != 0. 1787 Value *X = nullptr, *Y = nullptr; 1788 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1789 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1790 1791 // ext X != 0 if X != 0. 1792 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1793 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1794 1795 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1796 // if the lowest bit is shifted off the end. 1797 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1798 // shl nuw can't remove any non-zero bits. 1799 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1800 if (BO->hasNoUnsignedWrap()) 1801 return isKnownNonZero(X, Depth, Q); 1802 1803 APInt KnownZero(BitWidth, 0); 1804 APInt KnownOne(BitWidth, 0); 1805 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1806 if (KnownOne[0]) 1807 return true; 1808 } 1809 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1810 // defined if the sign bit is shifted off the end. 1811 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1812 // shr exact can only shift out zero bits. 1813 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1814 if (BO->isExact()) 1815 return isKnownNonZero(X, Depth, Q); 1816 1817 bool XKnownNonNegative, XKnownNegative; 1818 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1819 if (XKnownNegative) 1820 return true; 1821 1822 // If the shifter operand is a constant, and all of the bits shifted 1823 // out are known to be zero, and X is known non-zero then at least one 1824 // non-zero bit must remain. 1825 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1826 APInt KnownZero(BitWidth, 0); 1827 APInt KnownOne(BitWidth, 0); 1828 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1829 1830 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1831 // Is there a known one in the portion not shifted out? 1832 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1833 return true; 1834 // Are all the bits to be shifted out known zero? 1835 if (KnownZero.countTrailingOnes() >= ShiftVal) 1836 return isKnownNonZero(X, Depth, Q); 1837 } 1838 } 1839 // div exact can only produce a zero if the dividend is zero. 1840 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1841 return isKnownNonZero(X, Depth, Q); 1842 } 1843 // X + Y. 1844 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1845 bool XKnownNonNegative, XKnownNegative; 1846 bool YKnownNonNegative, YKnownNegative; 1847 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1848 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1849 1850 // If X and Y are both non-negative (as signed values) then their sum is not 1851 // zero unless both X and Y are zero. 1852 if (XKnownNonNegative && YKnownNonNegative) 1853 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1854 return true; 1855 1856 // If X and Y are both negative (as signed values) then their sum is not 1857 // zero unless both X and Y equal INT_MIN. 1858 if (BitWidth && XKnownNegative && YKnownNegative) { 1859 APInt KnownZero(BitWidth, 0); 1860 APInt KnownOne(BitWidth, 0); 1861 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1862 // The sign bit of X is set. If some other bit is set then X is not equal 1863 // to INT_MIN. 1864 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1865 if ((KnownOne & Mask) != 0) 1866 return true; 1867 // The sign bit of Y is set. If some other bit is set then Y is not equal 1868 // to INT_MIN. 1869 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1870 if ((KnownOne & Mask) != 0) 1871 return true; 1872 } 1873 1874 // The sum of a non-negative number and a power of two is not zero. 1875 if (XKnownNonNegative && 1876 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1877 return true; 1878 if (YKnownNonNegative && 1879 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1880 return true; 1881 } 1882 // X * Y. 1883 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1884 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1885 // If X and Y are non-zero then so is X * Y as long as the multiplication 1886 // does not overflow. 1887 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1888 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1889 return true; 1890 } 1891 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1892 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1893 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1894 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1895 return true; 1896 } 1897 // PHI 1898 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1899 // Try and detect a recurrence that monotonically increases from a 1900 // starting value, as these are common as induction variables. 1901 if (PN->getNumIncomingValues() == 2) { 1902 Value *Start = PN->getIncomingValue(0); 1903 Value *Induction = PN->getIncomingValue(1); 1904 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1905 std::swap(Start, Induction); 1906 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1907 if (!C->isZero() && !C->isNegative()) { 1908 ConstantInt *X; 1909 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1910 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1911 !X->isNegative()) 1912 return true; 1913 } 1914 } 1915 } 1916 // Check if all incoming values are non-zero constant. 1917 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1918 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1919 }); 1920 if (AllNonZeroConstants) 1921 return true; 1922 } 1923 1924 if (!BitWidth) return false; 1925 APInt KnownZero(BitWidth, 0); 1926 APInt KnownOne(BitWidth, 0); 1927 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1928 return KnownOne != 0; 1929 } 1930 1931 /// Return true if V2 == V1 + X, where X is known non-zero. 1932 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 1933 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1934 if (!BO || BO->getOpcode() != Instruction::Add) 1935 return false; 1936 Value *Op = nullptr; 1937 if (V2 == BO->getOperand(0)) 1938 Op = BO->getOperand(1); 1939 else if (V2 == BO->getOperand(1)) 1940 Op = BO->getOperand(0); 1941 else 1942 return false; 1943 return isKnownNonZero(Op, 0, Q); 1944 } 1945 1946 /// Return true if it is known that V1 != V2. 1947 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 1948 if (V1->getType()->isVectorTy() || V1 == V2) 1949 return false; 1950 if (V1->getType() != V2->getType()) 1951 // We can't look through casts yet. 1952 return false; 1953 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 1954 return true; 1955 1956 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1957 // Are any known bits in V1 contradictory to known bits in V2? If V1 1958 // has a known zero where V2 has a known one, they must not be equal. 1959 auto BitWidth = Ty->getBitWidth(); 1960 APInt KnownZero1(BitWidth, 0); 1961 APInt KnownOne1(BitWidth, 0); 1962 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 1963 APInt KnownZero2(BitWidth, 0); 1964 APInt KnownOne2(BitWidth, 0); 1965 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 1966 1967 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 1968 if (OppositeBits.getBoolValue()) 1969 return true; 1970 } 1971 return false; 1972 } 1973 1974 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1975 /// simplify operations downstream. Mask is known to be zero for bits that V 1976 /// cannot have. 1977 /// 1978 /// This function is defined on values with integer type, values with pointer 1979 /// type, and vectors of integers. In the case 1980 /// where V is a vector, the mask, known zero, and known one values are the 1981 /// same width as the vector element, and the bit is set only if it is true 1982 /// for all of the elements in the vector. 1983 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 1984 const Query &Q) { 1985 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1986 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1987 return (KnownZero & Mask) == Mask; 1988 } 1989 1990 /// For vector constants, loop over the elements and find the constant with the 1991 /// minimum number of sign bits. Return 0 if the value is not a vector constant 1992 /// or if any element was not analyzed; otherwise, return the count for the 1993 /// element with the minimum number of sign bits. 1994 static unsigned computeNumSignBitsVectorConstant(const Value *V, 1995 unsigned TyBits) { 1996 const auto *CV = dyn_cast<Constant>(V); 1997 if (!CV || !CV->getType()->isVectorTy()) 1998 return 0; 1999 2000 unsigned MinSignBits = TyBits; 2001 unsigned NumElts = CV->getType()->getVectorNumElements(); 2002 for (unsigned i = 0; i != NumElts; ++i) { 2003 // If we find a non-ConstantInt, bail out. 2004 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2005 if (!Elt) 2006 return 0; 2007 2008 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2009 APInt EltVal = Elt->getValue(); 2010 if (EltVal.isNegative()) 2011 EltVal = ~EltVal; 2012 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2013 } 2014 2015 return MinSignBits; 2016 } 2017 2018 /// Return the number of times the sign bit of the register is replicated into 2019 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2020 /// (itself), but other cases can give us information. For example, immediately 2021 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2022 /// other, so we return 3. For vectors, return the number of sign bits for the 2023 /// vector element with the mininum number of known sign bits. 2024 unsigned ComputeNumSignBits(const Value *V, unsigned Depth, const Query &Q) { 2025 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2026 unsigned Tmp, Tmp2; 2027 unsigned FirstAnswer = 1; 2028 2029 // Note that ConstantInt is handled by the general computeKnownBits case 2030 // below. 2031 2032 if (Depth == 6) 2033 return 1; // Limit search depth. 2034 2035 const Operator *U = dyn_cast<Operator>(V); 2036 switch (Operator::getOpcode(V)) { 2037 default: break; 2038 case Instruction::SExt: 2039 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2040 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2041 2042 case Instruction::SDiv: { 2043 const APInt *Denominator; 2044 // sdiv X, C -> adds log(C) sign bits. 2045 if (match(U->getOperand(1), m_APInt(Denominator))) { 2046 2047 // Ignore non-positive denominator. 2048 if (!Denominator->isStrictlyPositive()) 2049 break; 2050 2051 // Calculate the incoming numerator bits. 2052 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2053 2054 // Add floor(log(C)) bits to the numerator bits. 2055 return std::min(TyBits, NumBits + Denominator->logBase2()); 2056 } 2057 break; 2058 } 2059 2060 case Instruction::SRem: { 2061 const APInt *Denominator; 2062 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2063 // positive constant. This let us put a lower bound on the number of sign 2064 // bits. 2065 if (match(U->getOperand(1), m_APInt(Denominator))) { 2066 2067 // Ignore non-positive denominator. 2068 if (!Denominator->isStrictlyPositive()) 2069 break; 2070 2071 // Calculate the incoming numerator bits. SRem by a positive constant 2072 // can't lower the number of sign bits. 2073 unsigned NumrBits = 2074 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2075 2076 // Calculate the leading sign bit constraints by examining the 2077 // denominator. Given that the denominator is positive, there are two 2078 // cases: 2079 // 2080 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2081 // (1 << ceilLogBase2(C)). 2082 // 2083 // 2. the numerator is negative. Then the result range is (-C,0] and 2084 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2085 // 2086 // Thus a lower bound on the number of sign bits is `TyBits - 2087 // ceilLogBase2(C)`. 2088 2089 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2090 return std::max(NumrBits, ResBits); 2091 } 2092 break; 2093 } 2094 2095 case Instruction::AShr: { 2096 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2097 // ashr X, C -> adds C sign bits. Vectors too. 2098 const APInt *ShAmt; 2099 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2100 Tmp += ShAmt->getZExtValue(); 2101 if (Tmp > TyBits) Tmp = TyBits; 2102 } 2103 return Tmp; 2104 } 2105 case Instruction::Shl: { 2106 const APInt *ShAmt; 2107 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2108 // shl destroys sign bits. 2109 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2110 Tmp2 = ShAmt->getZExtValue(); 2111 if (Tmp2 >= TyBits || // Bad shift. 2112 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2113 return Tmp - Tmp2; 2114 } 2115 break; 2116 } 2117 case Instruction::And: 2118 case Instruction::Or: 2119 case Instruction::Xor: // NOT is handled here. 2120 // Logical binary ops preserve the number of sign bits at the worst. 2121 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2122 if (Tmp != 1) { 2123 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2124 FirstAnswer = std::min(Tmp, Tmp2); 2125 // We computed what we know about the sign bits as our first 2126 // answer. Now proceed to the generic code that uses 2127 // computeKnownBits, and pick whichever answer is better. 2128 } 2129 break; 2130 2131 case Instruction::Select: 2132 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2133 if (Tmp == 1) return 1; // Early out. 2134 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2135 return std::min(Tmp, Tmp2); 2136 2137 case Instruction::Add: 2138 // Add can have at most one carry bit. Thus we know that the output 2139 // is, at worst, one more bit than the inputs. 2140 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2141 if (Tmp == 1) return 1; // Early out. 2142 2143 // Special case decrementing a value (ADD X, -1): 2144 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2145 if (CRHS->isAllOnesValue()) { 2146 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2147 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2148 2149 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2150 // sign bits set. 2151 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2152 return TyBits; 2153 2154 // If we are subtracting one from a positive number, there is no carry 2155 // out of the result. 2156 if (KnownZero.isNegative()) 2157 return Tmp; 2158 } 2159 2160 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2161 if (Tmp2 == 1) return 1; 2162 return std::min(Tmp, Tmp2)-1; 2163 2164 case Instruction::Sub: 2165 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2166 if (Tmp2 == 1) return 1; 2167 2168 // Handle NEG. 2169 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2170 if (CLHS->isNullValue()) { 2171 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2172 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2173 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2174 // sign bits set. 2175 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2176 return TyBits; 2177 2178 // If the input is known to be positive (the sign bit is known clear), 2179 // the output of the NEG has the same number of sign bits as the input. 2180 if (KnownZero.isNegative()) 2181 return Tmp2; 2182 2183 // Otherwise, we treat this like a SUB. 2184 } 2185 2186 // Sub can have at most one carry bit. Thus we know that the output 2187 // is, at worst, one more bit than the inputs. 2188 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2189 if (Tmp == 1) return 1; // Early out. 2190 return std::min(Tmp, Tmp2)-1; 2191 2192 case Instruction::PHI: { 2193 const PHINode *PN = cast<PHINode>(U); 2194 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2195 // Don't analyze large in-degree PHIs. 2196 if (NumIncomingValues > 4) break; 2197 // Unreachable blocks may have zero-operand PHI nodes. 2198 if (NumIncomingValues == 0) break; 2199 2200 // Take the minimum of all incoming values. This can't infinitely loop 2201 // because of our depth threshold. 2202 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2203 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2204 if (Tmp == 1) return Tmp; 2205 Tmp = std::min( 2206 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2207 } 2208 return Tmp; 2209 } 2210 2211 case Instruction::Trunc: 2212 // FIXME: it's tricky to do anything useful for this, but it is an important 2213 // case for targets like X86. 2214 break; 2215 } 2216 2217 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2218 // use this information. 2219 2220 // If we can examine all elements of a vector constant successfully, we're 2221 // done (we can't do any better than that). If not, keep trying. 2222 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2223 return VecSignBits; 2224 2225 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2226 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2227 2228 // If we know that the sign bit is either zero or one, determine the number of 2229 // identical bits in the top of the input value. 2230 if (KnownZero.isNegative()) 2231 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2232 2233 if (KnownOne.isNegative()) 2234 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2235 2236 // computeKnownBits gave us no extra information about the top bits. 2237 return FirstAnswer; 2238 } 2239 2240 /// This function computes the integer multiple of Base that equals V. 2241 /// If successful, it returns true and returns the multiple in 2242 /// Multiple. If unsuccessful, it returns false. It looks 2243 /// through SExt instructions only if LookThroughSExt is true. 2244 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2245 bool LookThroughSExt, unsigned Depth) { 2246 const unsigned MaxDepth = 6; 2247 2248 assert(V && "No Value?"); 2249 assert(Depth <= MaxDepth && "Limit Search Depth"); 2250 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2251 2252 Type *T = V->getType(); 2253 2254 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2255 2256 if (Base == 0) 2257 return false; 2258 2259 if (Base == 1) { 2260 Multiple = V; 2261 return true; 2262 } 2263 2264 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2265 Constant *BaseVal = ConstantInt::get(T, Base); 2266 if (CO && CO == BaseVal) { 2267 // Multiple is 1. 2268 Multiple = ConstantInt::get(T, 1); 2269 return true; 2270 } 2271 2272 if (CI && CI->getZExtValue() % Base == 0) { 2273 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2274 return true; 2275 } 2276 2277 if (Depth == MaxDepth) return false; // Limit search depth. 2278 2279 Operator *I = dyn_cast<Operator>(V); 2280 if (!I) return false; 2281 2282 switch (I->getOpcode()) { 2283 default: break; 2284 case Instruction::SExt: 2285 if (!LookThroughSExt) return false; 2286 // otherwise fall through to ZExt 2287 case Instruction::ZExt: 2288 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2289 LookThroughSExt, Depth+1); 2290 case Instruction::Shl: 2291 case Instruction::Mul: { 2292 Value *Op0 = I->getOperand(0); 2293 Value *Op1 = I->getOperand(1); 2294 2295 if (I->getOpcode() == Instruction::Shl) { 2296 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2297 if (!Op1CI) return false; 2298 // Turn Op0 << Op1 into Op0 * 2^Op1 2299 APInt Op1Int = Op1CI->getValue(); 2300 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2301 APInt API(Op1Int.getBitWidth(), 0); 2302 API.setBit(BitToSet); 2303 Op1 = ConstantInt::get(V->getContext(), API); 2304 } 2305 2306 Value *Mul0 = nullptr; 2307 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2308 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2309 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2310 if (Op1C->getType()->getPrimitiveSizeInBits() < 2311 MulC->getType()->getPrimitiveSizeInBits()) 2312 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2313 if (Op1C->getType()->getPrimitiveSizeInBits() > 2314 MulC->getType()->getPrimitiveSizeInBits()) 2315 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2316 2317 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2318 Multiple = ConstantExpr::getMul(MulC, Op1C); 2319 return true; 2320 } 2321 2322 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2323 if (Mul0CI->getValue() == 1) { 2324 // V == Base * Op1, so return Op1 2325 Multiple = Op1; 2326 return true; 2327 } 2328 } 2329 2330 Value *Mul1 = nullptr; 2331 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2332 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2333 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2334 if (Op0C->getType()->getPrimitiveSizeInBits() < 2335 MulC->getType()->getPrimitiveSizeInBits()) 2336 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2337 if (Op0C->getType()->getPrimitiveSizeInBits() > 2338 MulC->getType()->getPrimitiveSizeInBits()) 2339 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2340 2341 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2342 Multiple = ConstantExpr::getMul(MulC, Op0C); 2343 return true; 2344 } 2345 2346 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2347 if (Mul1CI->getValue() == 1) { 2348 // V == Base * Op0, so return Op0 2349 Multiple = Op0; 2350 return true; 2351 } 2352 } 2353 } 2354 } 2355 2356 // We could not determine if V is a multiple of Base. 2357 return false; 2358 } 2359 2360 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2361 const TargetLibraryInfo *TLI) { 2362 const Function *F = ICS.getCalledFunction(); 2363 if (!F) 2364 return Intrinsic::not_intrinsic; 2365 2366 if (F->isIntrinsic()) 2367 return F->getIntrinsicID(); 2368 2369 if (!TLI) 2370 return Intrinsic::not_intrinsic; 2371 2372 LibFunc::Func Func; 2373 // We're going to make assumptions on the semantics of the functions, check 2374 // that the target knows that it's available in this environment and it does 2375 // not have local linkage. 2376 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2377 return Intrinsic::not_intrinsic; 2378 2379 if (!ICS.onlyReadsMemory()) 2380 return Intrinsic::not_intrinsic; 2381 2382 // Otherwise check if we have a call to a function that can be turned into a 2383 // vector intrinsic. 2384 switch (Func) { 2385 default: 2386 break; 2387 case LibFunc::sin: 2388 case LibFunc::sinf: 2389 case LibFunc::sinl: 2390 return Intrinsic::sin; 2391 case LibFunc::cos: 2392 case LibFunc::cosf: 2393 case LibFunc::cosl: 2394 return Intrinsic::cos; 2395 case LibFunc::exp: 2396 case LibFunc::expf: 2397 case LibFunc::expl: 2398 return Intrinsic::exp; 2399 case LibFunc::exp2: 2400 case LibFunc::exp2f: 2401 case LibFunc::exp2l: 2402 return Intrinsic::exp2; 2403 case LibFunc::log: 2404 case LibFunc::logf: 2405 case LibFunc::logl: 2406 return Intrinsic::log; 2407 case LibFunc::log10: 2408 case LibFunc::log10f: 2409 case LibFunc::log10l: 2410 return Intrinsic::log10; 2411 case LibFunc::log2: 2412 case LibFunc::log2f: 2413 case LibFunc::log2l: 2414 return Intrinsic::log2; 2415 case LibFunc::fabs: 2416 case LibFunc::fabsf: 2417 case LibFunc::fabsl: 2418 return Intrinsic::fabs; 2419 case LibFunc::fmin: 2420 case LibFunc::fminf: 2421 case LibFunc::fminl: 2422 return Intrinsic::minnum; 2423 case LibFunc::fmax: 2424 case LibFunc::fmaxf: 2425 case LibFunc::fmaxl: 2426 return Intrinsic::maxnum; 2427 case LibFunc::copysign: 2428 case LibFunc::copysignf: 2429 case LibFunc::copysignl: 2430 return Intrinsic::copysign; 2431 case LibFunc::floor: 2432 case LibFunc::floorf: 2433 case LibFunc::floorl: 2434 return Intrinsic::floor; 2435 case LibFunc::ceil: 2436 case LibFunc::ceilf: 2437 case LibFunc::ceill: 2438 return Intrinsic::ceil; 2439 case LibFunc::trunc: 2440 case LibFunc::truncf: 2441 case LibFunc::truncl: 2442 return Intrinsic::trunc; 2443 case LibFunc::rint: 2444 case LibFunc::rintf: 2445 case LibFunc::rintl: 2446 return Intrinsic::rint; 2447 case LibFunc::nearbyint: 2448 case LibFunc::nearbyintf: 2449 case LibFunc::nearbyintl: 2450 return Intrinsic::nearbyint; 2451 case LibFunc::round: 2452 case LibFunc::roundf: 2453 case LibFunc::roundl: 2454 return Intrinsic::round; 2455 case LibFunc::pow: 2456 case LibFunc::powf: 2457 case LibFunc::powl: 2458 return Intrinsic::pow; 2459 case LibFunc::sqrt: 2460 case LibFunc::sqrtf: 2461 case LibFunc::sqrtl: 2462 if (ICS->hasNoNaNs()) 2463 return Intrinsic::sqrt; 2464 return Intrinsic::not_intrinsic; 2465 } 2466 2467 return Intrinsic::not_intrinsic; 2468 } 2469 2470 /// Return true if we can prove that the specified FP value is never equal to 2471 /// -0.0. 2472 /// 2473 /// NOTE: this function will need to be revisited when we support non-default 2474 /// rounding modes! 2475 /// 2476 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2477 unsigned Depth) { 2478 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2479 return !CFP->getValueAPF().isNegZero(); 2480 2481 // FIXME: Magic number! At the least, this should be given a name because it's 2482 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2483 // expose it as a parameter, so it can be used for testing / experimenting. 2484 if (Depth == 6) 2485 return false; // Limit search depth. 2486 2487 const Operator *I = dyn_cast<Operator>(V); 2488 if (!I) return false; 2489 2490 // Check if the nsz fast-math flag is set 2491 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2492 if (FPO->hasNoSignedZeros()) 2493 return true; 2494 2495 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2496 if (I->getOpcode() == Instruction::FAdd) 2497 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2498 if (CFP->isNullValue()) 2499 return true; 2500 2501 // sitofp and uitofp turn into +0.0 for zero. 2502 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2503 return true; 2504 2505 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2506 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2507 switch (IID) { 2508 default: 2509 break; 2510 // sqrt(-0.0) = -0.0, no other negative results are possible. 2511 case Intrinsic::sqrt: 2512 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2513 // fabs(x) != -0.0 2514 case Intrinsic::fabs: 2515 return true; 2516 } 2517 } 2518 2519 return false; 2520 } 2521 2522 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2523 const TargetLibraryInfo *TLI, 2524 unsigned Depth) { 2525 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2526 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2527 2528 // FIXME: Magic number! At the least, this should be given a name because it's 2529 // used similarly in CannotBeNegativeZero(). A better fix may be to 2530 // expose it as a parameter, so it can be used for testing / experimenting. 2531 if (Depth == 6) 2532 return false; // Limit search depth. 2533 2534 const Operator *I = dyn_cast<Operator>(V); 2535 if (!I) return false; 2536 2537 switch (I->getOpcode()) { 2538 default: break; 2539 // Unsigned integers are always nonnegative. 2540 case Instruction::UIToFP: 2541 return true; 2542 case Instruction::FMul: 2543 // x*x is always non-negative or a NaN. 2544 if (I->getOperand(0) == I->getOperand(1)) 2545 return true; 2546 LLVM_FALLTHROUGH; 2547 case Instruction::FAdd: 2548 case Instruction::FDiv: 2549 case Instruction::FRem: 2550 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2551 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2552 case Instruction::Select: 2553 return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) && 2554 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2555 case Instruction::FPExt: 2556 case Instruction::FPTrunc: 2557 // Widening/narrowing never change sign. 2558 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2559 case Instruction::Call: 2560 Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI); 2561 switch (IID) { 2562 default: 2563 break; 2564 case Intrinsic::maxnum: 2565 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) || 2566 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2567 case Intrinsic::minnum: 2568 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) && 2569 CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1); 2570 case Intrinsic::exp: 2571 case Intrinsic::exp2: 2572 case Intrinsic::fabs: 2573 case Intrinsic::sqrt: 2574 return true; 2575 case Intrinsic::powi: 2576 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2577 // powi(x,n) is non-negative if n is even. 2578 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2579 return true; 2580 } 2581 return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1); 2582 case Intrinsic::fma: 2583 case Intrinsic::fmuladd: 2584 // x*x+y is non-negative if y is non-negative. 2585 return I->getOperand(0) == I->getOperand(1) && 2586 CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1); 2587 } 2588 break; 2589 } 2590 return false; 2591 } 2592 2593 /// If the specified value can be set by repeating the same byte in memory, 2594 /// return the i8 value that it is represented with. This is 2595 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2596 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2597 /// byte store (e.g. i16 0x1234), return null. 2598 Value *llvm::isBytewiseValue(Value *V) { 2599 // All byte-wide stores are splatable, even of arbitrary variables. 2600 if (V->getType()->isIntegerTy(8)) return V; 2601 2602 // Handle 'null' ConstantArrayZero etc. 2603 if (Constant *C = dyn_cast<Constant>(V)) 2604 if (C->isNullValue()) 2605 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2606 2607 // Constant float and double values can be handled as integer values if the 2608 // corresponding integer value is "byteable". An important case is 0.0. 2609 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2610 if (CFP->getType()->isFloatTy()) 2611 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2612 if (CFP->getType()->isDoubleTy()) 2613 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2614 // Don't handle long double formats, which have strange constraints. 2615 } 2616 2617 // We can handle constant integers that are multiple of 8 bits. 2618 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2619 if (CI->getBitWidth() % 8 == 0) { 2620 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2621 2622 if (!CI->getValue().isSplat(8)) 2623 return nullptr; 2624 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2625 } 2626 } 2627 2628 // A ConstantDataArray/Vector is splatable if all its members are equal and 2629 // also splatable. 2630 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2631 Value *Elt = CA->getElementAsConstant(0); 2632 Value *Val = isBytewiseValue(Elt); 2633 if (!Val) 2634 return nullptr; 2635 2636 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2637 if (CA->getElementAsConstant(I) != Elt) 2638 return nullptr; 2639 2640 return Val; 2641 } 2642 2643 // Conceptually, we could handle things like: 2644 // %a = zext i8 %X to i16 2645 // %b = shl i16 %a, 8 2646 // %c = or i16 %a, %b 2647 // but until there is an example that actually needs this, it doesn't seem 2648 // worth worrying about. 2649 return nullptr; 2650 } 2651 2652 2653 // This is the recursive version of BuildSubAggregate. It takes a few different 2654 // arguments. Idxs is the index within the nested struct From that we are 2655 // looking at now (which is of type IndexedType). IdxSkip is the number of 2656 // indices from Idxs that should be left out when inserting into the resulting 2657 // struct. To is the result struct built so far, new insertvalue instructions 2658 // build on that. 2659 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2660 SmallVectorImpl<unsigned> &Idxs, 2661 unsigned IdxSkip, 2662 Instruction *InsertBefore) { 2663 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2664 if (STy) { 2665 // Save the original To argument so we can modify it 2666 Value *OrigTo = To; 2667 // General case, the type indexed by Idxs is a struct 2668 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2669 // Process each struct element recursively 2670 Idxs.push_back(i); 2671 Value *PrevTo = To; 2672 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2673 InsertBefore); 2674 Idxs.pop_back(); 2675 if (!To) { 2676 // Couldn't find any inserted value for this index? Cleanup 2677 while (PrevTo != OrigTo) { 2678 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2679 PrevTo = Del->getAggregateOperand(); 2680 Del->eraseFromParent(); 2681 } 2682 // Stop processing elements 2683 break; 2684 } 2685 } 2686 // If we successfully found a value for each of our subaggregates 2687 if (To) 2688 return To; 2689 } 2690 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2691 // the struct's elements had a value that was inserted directly. In the latter 2692 // case, perhaps we can't determine each of the subelements individually, but 2693 // we might be able to find the complete struct somewhere. 2694 2695 // Find the value that is at that particular spot 2696 Value *V = FindInsertedValue(From, Idxs); 2697 2698 if (!V) 2699 return nullptr; 2700 2701 // Insert the value in the new (sub) aggregrate 2702 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2703 "tmp", InsertBefore); 2704 } 2705 2706 // This helper takes a nested struct and extracts a part of it (which is again a 2707 // struct) into a new value. For example, given the struct: 2708 // { a, { b, { c, d }, e } } 2709 // and the indices "1, 1" this returns 2710 // { c, d }. 2711 // 2712 // It does this by inserting an insertvalue for each element in the resulting 2713 // struct, as opposed to just inserting a single struct. This will only work if 2714 // each of the elements of the substruct are known (ie, inserted into From by an 2715 // insertvalue instruction somewhere). 2716 // 2717 // All inserted insertvalue instructions are inserted before InsertBefore 2718 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2719 Instruction *InsertBefore) { 2720 assert(InsertBefore && "Must have someplace to insert!"); 2721 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2722 idx_range); 2723 Value *To = UndefValue::get(IndexedType); 2724 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2725 unsigned IdxSkip = Idxs.size(); 2726 2727 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2728 } 2729 2730 /// Given an aggregrate and an sequence of indices, see if 2731 /// the scalar value indexed is already around as a register, for example if it 2732 /// were inserted directly into the aggregrate. 2733 /// 2734 /// If InsertBefore is not null, this function will duplicate (modified) 2735 /// insertvalues when a part of a nested struct is extracted. 2736 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2737 Instruction *InsertBefore) { 2738 // Nothing to index? Just return V then (this is useful at the end of our 2739 // recursion). 2740 if (idx_range.empty()) 2741 return V; 2742 // We have indices, so V should have an indexable type. 2743 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2744 "Not looking at a struct or array?"); 2745 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2746 "Invalid indices for type?"); 2747 2748 if (Constant *C = dyn_cast<Constant>(V)) { 2749 C = C->getAggregateElement(idx_range[0]); 2750 if (!C) return nullptr; 2751 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2752 } 2753 2754 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2755 // Loop the indices for the insertvalue instruction in parallel with the 2756 // requested indices 2757 const unsigned *req_idx = idx_range.begin(); 2758 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2759 i != e; ++i, ++req_idx) { 2760 if (req_idx == idx_range.end()) { 2761 // We can't handle this without inserting insertvalues 2762 if (!InsertBefore) 2763 return nullptr; 2764 2765 // The requested index identifies a part of a nested aggregate. Handle 2766 // this specially. For example, 2767 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2768 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2769 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2770 // This can be changed into 2771 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2772 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2773 // which allows the unused 0,0 element from the nested struct to be 2774 // removed. 2775 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2776 InsertBefore); 2777 } 2778 2779 // This insert value inserts something else than what we are looking for. 2780 // See if the (aggregate) value inserted into has the value we are 2781 // looking for, then. 2782 if (*req_idx != *i) 2783 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2784 InsertBefore); 2785 } 2786 // If we end up here, the indices of the insertvalue match with those 2787 // requested (though possibly only partially). Now we recursively look at 2788 // the inserted value, passing any remaining indices. 2789 return FindInsertedValue(I->getInsertedValueOperand(), 2790 makeArrayRef(req_idx, idx_range.end()), 2791 InsertBefore); 2792 } 2793 2794 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2795 // If we're extracting a value from an aggregate that was extracted from 2796 // something else, we can extract from that something else directly instead. 2797 // However, we will need to chain I's indices with the requested indices. 2798 2799 // Calculate the number of indices required 2800 unsigned size = I->getNumIndices() + idx_range.size(); 2801 // Allocate some space to put the new indices in 2802 SmallVector<unsigned, 5> Idxs; 2803 Idxs.reserve(size); 2804 // Add indices from the extract value instruction 2805 Idxs.append(I->idx_begin(), I->idx_end()); 2806 2807 // Add requested indices 2808 Idxs.append(idx_range.begin(), idx_range.end()); 2809 2810 assert(Idxs.size() == size 2811 && "Number of indices added not correct?"); 2812 2813 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2814 } 2815 // Otherwise, we don't know (such as, extracting from a function return value 2816 // or load instruction) 2817 return nullptr; 2818 } 2819 2820 /// Analyze the specified pointer to see if it can be expressed as a base 2821 /// pointer plus a constant offset. Return the base and offset to the caller. 2822 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2823 const DataLayout &DL) { 2824 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2825 APInt ByteOffset(BitWidth, 0); 2826 2827 // We walk up the defs but use a visited set to handle unreachable code. In 2828 // that case, we stop after accumulating the cycle once (not that it 2829 // matters). 2830 SmallPtrSet<Value *, 16> Visited; 2831 while (Visited.insert(Ptr).second) { 2832 if (Ptr->getType()->isVectorTy()) 2833 break; 2834 2835 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2836 APInt GEPOffset(BitWidth, 0); 2837 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2838 break; 2839 2840 ByteOffset += GEPOffset; 2841 2842 Ptr = GEP->getPointerOperand(); 2843 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2844 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2845 Ptr = cast<Operator>(Ptr)->getOperand(0); 2846 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2847 if (GA->isInterposable()) 2848 break; 2849 Ptr = GA->getAliasee(); 2850 } else { 2851 break; 2852 } 2853 } 2854 Offset = ByteOffset.getSExtValue(); 2855 return Ptr; 2856 } 2857 2858 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 2859 // Make sure the GEP has exactly three arguments. 2860 if (GEP->getNumOperands() != 3) 2861 return false; 2862 2863 // Make sure the index-ee is a pointer to array of i8. 2864 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 2865 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2866 return false; 2867 2868 // Check to make sure that the first operand of the GEP is an integer and 2869 // has value 0 so that we are sure we're indexing into the initializer. 2870 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2871 if (!FirstIdx || !FirstIdx->isZero()) 2872 return false; 2873 2874 return true; 2875 } 2876 2877 /// This function computes the length of a null-terminated C string pointed to 2878 /// by V. If successful, it returns true and returns the string in Str. 2879 /// If unsuccessful, it returns false. 2880 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2881 uint64_t Offset, bool TrimAtNul) { 2882 assert(V); 2883 2884 // Look through bitcast instructions and geps. 2885 V = V->stripPointerCasts(); 2886 2887 // If the value is a GEP instruction or constant expression, treat it as an 2888 // offset. 2889 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2890 // The GEP operator should be based on a pointer to string constant, and is 2891 // indexing into the string constant. 2892 if (!isGEPBasedOnPointerToString(GEP)) 2893 return false; 2894 2895 // If the second index isn't a ConstantInt, then this is a variable index 2896 // into the array. If this occurs, we can't say anything meaningful about 2897 // the string. 2898 uint64_t StartIdx = 0; 2899 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2900 StartIdx = CI->getZExtValue(); 2901 else 2902 return false; 2903 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2904 TrimAtNul); 2905 } 2906 2907 // The GEP instruction, constant or instruction, must reference a global 2908 // variable that is a constant and is initialized. The referenced constant 2909 // initializer is the array that we'll use for optimization. 2910 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2911 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2912 return false; 2913 2914 // Handle the all-zeros case. 2915 if (GV->getInitializer()->isNullValue()) { 2916 // This is a degenerate case. The initializer is constant zero so the 2917 // length of the string must be zero. 2918 Str = ""; 2919 return true; 2920 } 2921 2922 // This must be a ConstantDataArray. 2923 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 2924 if (!Array || !Array->isString()) 2925 return false; 2926 2927 // Get the number of elements in the array. 2928 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2929 2930 // Start out with the entire array in the StringRef. 2931 Str = Array->getAsString(); 2932 2933 if (Offset > NumElts) 2934 return false; 2935 2936 // Skip over 'offset' bytes. 2937 Str = Str.substr(Offset); 2938 2939 if (TrimAtNul) { 2940 // Trim off the \0 and anything after it. If the array is not nul 2941 // terminated, we just return the whole end of string. The client may know 2942 // some other way that the string is length-bound. 2943 Str = Str.substr(0, Str.find('\0')); 2944 } 2945 return true; 2946 } 2947 2948 // These next two are very similar to the above, but also look through PHI 2949 // nodes. 2950 // TODO: See if we can integrate these two together. 2951 2952 /// If we can compute the length of the string pointed to by 2953 /// the specified pointer, return 'len+1'. If we can't, return 0. 2954 static uint64_t GetStringLengthH(const Value *V, 2955 SmallPtrSetImpl<const PHINode*> &PHIs) { 2956 // Look through noop bitcast instructions. 2957 V = V->stripPointerCasts(); 2958 2959 // If this is a PHI node, there are two cases: either we have already seen it 2960 // or we haven't. 2961 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2962 if (!PHIs.insert(PN).second) 2963 return ~0ULL; // already in the set. 2964 2965 // If it was new, see if all the input strings are the same length. 2966 uint64_t LenSoFar = ~0ULL; 2967 for (Value *IncValue : PN->incoming_values()) { 2968 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2969 if (Len == 0) return 0; // Unknown length -> unknown. 2970 2971 if (Len == ~0ULL) continue; 2972 2973 if (Len != LenSoFar && LenSoFar != ~0ULL) 2974 return 0; // Disagree -> unknown. 2975 LenSoFar = Len; 2976 } 2977 2978 // Success, all agree. 2979 return LenSoFar; 2980 } 2981 2982 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2983 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2984 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2985 if (Len1 == 0) return 0; 2986 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2987 if (Len2 == 0) return 0; 2988 if (Len1 == ~0ULL) return Len2; 2989 if (Len2 == ~0ULL) return Len1; 2990 if (Len1 != Len2) return 0; 2991 return Len1; 2992 } 2993 2994 // Otherwise, see if we can read the string. 2995 StringRef StrData; 2996 if (!getConstantStringInfo(V, StrData)) 2997 return 0; 2998 2999 return StrData.size()+1; 3000 } 3001 3002 /// If we can compute the length of the string pointed to by 3003 /// the specified pointer, return 'len+1'. If we can't, return 0. 3004 uint64_t llvm::GetStringLength(const Value *V) { 3005 if (!V->getType()->isPointerTy()) return 0; 3006 3007 SmallPtrSet<const PHINode*, 32> PHIs; 3008 uint64_t Len = GetStringLengthH(V, PHIs); 3009 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3010 // an empty string as a length. 3011 return Len == ~0ULL ? 1 : Len; 3012 } 3013 3014 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3015 /// previous iteration of the loop was referring to the same object as \p PN. 3016 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3017 const LoopInfo *LI) { 3018 // Find the loop-defined value. 3019 Loop *L = LI->getLoopFor(PN->getParent()); 3020 if (PN->getNumIncomingValues() != 2) 3021 return true; 3022 3023 // Find the value from previous iteration. 3024 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3025 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3026 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3027 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3028 return true; 3029 3030 // If a new pointer is loaded in the loop, the pointer references a different 3031 // object in every iteration. E.g.: 3032 // for (i) 3033 // int *p = a[i]; 3034 // ... 3035 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3036 if (!L->isLoopInvariant(Load->getPointerOperand())) 3037 return false; 3038 return true; 3039 } 3040 3041 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3042 unsigned MaxLookup) { 3043 if (!V->getType()->isPointerTy()) 3044 return V; 3045 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3046 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3047 V = GEP->getPointerOperand(); 3048 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3049 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3050 V = cast<Operator>(V)->getOperand(0); 3051 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3052 if (GA->isInterposable()) 3053 return V; 3054 V = GA->getAliasee(); 3055 } else { 3056 if (auto CS = CallSite(V)) 3057 if (Value *RV = CS.getReturnedArgOperand()) { 3058 V = RV; 3059 continue; 3060 } 3061 3062 // See if InstructionSimplify knows any relevant tricks. 3063 if (Instruction *I = dyn_cast<Instruction>(V)) 3064 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3065 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3066 V = Simplified; 3067 continue; 3068 } 3069 3070 return V; 3071 } 3072 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3073 } 3074 return V; 3075 } 3076 3077 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3078 const DataLayout &DL, LoopInfo *LI, 3079 unsigned MaxLookup) { 3080 SmallPtrSet<Value *, 4> Visited; 3081 SmallVector<Value *, 4> Worklist; 3082 Worklist.push_back(V); 3083 do { 3084 Value *P = Worklist.pop_back_val(); 3085 P = GetUnderlyingObject(P, DL, MaxLookup); 3086 3087 if (!Visited.insert(P).second) 3088 continue; 3089 3090 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3091 Worklist.push_back(SI->getTrueValue()); 3092 Worklist.push_back(SI->getFalseValue()); 3093 continue; 3094 } 3095 3096 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3097 // If this PHI changes the underlying object in every iteration of the 3098 // loop, don't look through it. Consider: 3099 // int **A; 3100 // for (i) { 3101 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3102 // Curr = A[i]; 3103 // *Prev, *Curr; 3104 // 3105 // Prev is tracking Curr one iteration behind so they refer to different 3106 // underlying objects. 3107 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3108 isSameUnderlyingObjectInLoop(PN, LI)) 3109 for (Value *IncValue : PN->incoming_values()) 3110 Worklist.push_back(IncValue); 3111 continue; 3112 } 3113 3114 Objects.push_back(P); 3115 } while (!Worklist.empty()); 3116 } 3117 3118 /// Return true if the only users of this pointer are lifetime markers. 3119 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3120 for (const User *U : V->users()) { 3121 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3122 if (!II) return false; 3123 3124 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3125 II->getIntrinsicID() != Intrinsic::lifetime_end) 3126 return false; 3127 } 3128 return true; 3129 } 3130 3131 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3132 const Instruction *CtxI, 3133 const DominatorTree *DT) { 3134 const Operator *Inst = dyn_cast<Operator>(V); 3135 if (!Inst) 3136 return false; 3137 3138 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3139 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3140 if (C->canTrap()) 3141 return false; 3142 3143 switch (Inst->getOpcode()) { 3144 default: 3145 return true; 3146 case Instruction::UDiv: 3147 case Instruction::URem: { 3148 // x / y is undefined if y == 0. 3149 const APInt *V; 3150 if (match(Inst->getOperand(1), m_APInt(V))) 3151 return *V != 0; 3152 return false; 3153 } 3154 case Instruction::SDiv: 3155 case Instruction::SRem: { 3156 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3157 const APInt *Numerator, *Denominator; 3158 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3159 return false; 3160 // We cannot hoist this division if the denominator is 0. 3161 if (*Denominator == 0) 3162 return false; 3163 // It's safe to hoist if the denominator is not 0 or -1. 3164 if (*Denominator != -1) 3165 return true; 3166 // At this point we know that the denominator is -1. It is safe to hoist as 3167 // long we know that the numerator is not INT_MIN. 3168 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3169 return !Numerator->isMinSignedValue(); 3170 // The numerator *might* be MinSignedValue. 3171 return false; 3172 } 3173 case Instruction::Load: { 3174 const LoadInst *LI = cast<LoadInst>(Inst); 3175 if (!LI->isUnordered() || 3176 // Speculative load may create a race that did not exist in the source. 3177 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3178 // Speculative load may load data from dirty regions. 3179 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3180 return false; 3181 const DataLayout &DL = LI->getModule()->getDataLayout(); 3182 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3183 LI->getAlignment(), DL, CtxI, DT); 3184 } 3185 case Instruction::Call: { 3186 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3187 switch (II->getIntrinsicID()) { 3188 // These synthetic intrinsics have no side-effects and just mark 3189 // information about their operands. 3190 // FIXME: There are other no-op synthetic instructions that potentially 3191 // should be considered at least *safe* to speculate... 3192 case Intrinsic::dbg_declare: 3193 case Intrinsic::dbg_value: 3194 return true; 3195 3196 case Intrinsic::bswap: 3197 case Intrinsic::ctlz: 3198 case Intrinsic::ctpop: 3199 case Intrinsic::cttz: 3200 case Intrinsic::objectsize: 3201 case Intrinsic::sadd_with_overflow: 3202 case Intrinsic::smul_with_overflow: 3203 case Intrinsic::ssub_with_overflow: 3204 case Intrinsic::uadd_with_overflow: 3205 case Intrinsic::umul_with_overflow: 3206 case Intrinsic::usub_with_overflow: 3207 return true; 3208 // These intrinsics are defined to have the same behavior as libm 3209 // functions except for setting errno. 3210 case Intrinsic::sqrt: 3211 case Intrinsic::fma: 3212 case Intrinsic::fmuladd: 3213 return true; 3214 // These intrinsics are defined to have the same behavior as libm 3215 // functions, and the corresponding libm functions never set errno. 3216 case Intrinsic::trunc: 3217 case Intrinsic::copysign: 3218 case Intrinsic::fabs: 3219 case Intrinsic::minnum: 3220 case Intrinsic::maxnum: 3221 return true; 3222 // These intrinsics are defined to have the same behavior as libm 3223 // functions, which never overflow when operating on the IEEE754 types 3224 // that we support, and never set errno otherwise. 3225 case Intrinsic::ceil: 3226 case Intrinsic::floor: 3227 case Intrinsic::nearbyint: 3228 case Intrinsic::rint: 3229 case Intrinsic::round: 3230 return true; 3231 // TODO: are convert_{from,to}_fp16 safe? 3232 // TODO: can we list target-specific intrinsics here? 3233 default: break; 3234 } 3235 } 3236 return false; // The called function could have undefined behavior or 3237 // side-effects, even if marked readnone nounwind. 3238 } 3239 case Instruction::VAArg: 3240 case Instruction::Alloca: 3241 case Instruction::Invoke: 3242 case Instruction::PHI: 3243 case Instruction::Store: 3244 case Instruction::Ret: 3245 case Instruction::Br: 3246 case Instruction::IndirectBr: 3247 case Instruction::Switch: 3248 case Instruction::Unreachable: 3249 case Instruction::Fence: 3250 case Instruction::AtomicRMW: 3251 case Instruction::AtomicCmpXchg: 3252 case Instruction::LandingPad: 3253 case Instruction::Resume: 3254 case Instruction::CatchSwitch: 3255 case Instruction::CatchPad: 3256 case Instruction::CatchRet: 3257 case Instruction::CleanupPad: 3258 case Instruction::CleanupRet: 3259 return false; // Misc instructions which have effects 3260 } 3261 } 3262 3263 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3264 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3265 } 3266 3267 /// Return true if we know that the specified value is never null. 3268 bool llvm::isKnownNonNull(const Value *V) { 3269 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3270 3271 // Alloca never returns null, malloc might. 3272 if (isa<AllocaInst>(V)) return true; 3273 3274 // A byval, inalloca, or nonnull argument is never null. 3275 if (const Argument *A = dyn_cast<Argument>(V)) 3276 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3277 3278 // A global variable in address space 0 is non null unless extern weak. 3279 // Other address spaces may have null as a valid address for a global, 3280 // so we can't assume anything. 3281 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3282 return !GV->hasExternalWeakLinkage() && 3283 GV->getType()->getAddressSpace() == 0; 3284 3285 // A Load tagged with nonnull metadata is never null. 3286 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3287 return LI->getMetadata(LLVMContext::MD_nonnull); 3288 3289 if (auto CS = ImmutableCallSite(V)) 3290 if (CS.isReturnNonNull()) 3291 return true; 3292 3293 return false; 3294 } 3295 3296 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3297 const Instruction *CtxI, 3298 const DominatorTree *DT) { 3299 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3300 3301 unsigned NumUsesExplored = 0; 3302 for (auto *U : V->users()) { 3303 // Avoid massive lists 3304 if (NumUsesExplored >= DomConditionsMaxUses) 3305 break; 3306 NumUsesExplored++; 3307 // Consider only compare instructions uniquely controlling a branch 3308 CmpInst::Predicate Pred; 3309 if (!match(const_cast<User *>(U), 3310 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3311 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3312 continue; 3313 3314 for (auto *CmpU : U->users()) { 3315 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3316 assert(BI->isConditional() && "uses a comparison!"); 3317 3318 BasicBlock *NonNullSuccessor = 3319 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3320 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3321 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3322 return true; 3323 } else if (Pred == ICmpInst::ICMP_NE && 3324 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3325 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3326 return true; 3327 } 3328 } 3329 } 3330 3331 return false; 3332 } 3333 3334 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3335 const DominatorTree *DT) { 3336 if (isKnownNonNull(V)) 3337 return true; 3338 3339 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3340 } 3341 3342 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3343 const Value *RHS, 3344 const DataLayout &DL, 3345 AssumptionCache *AC, 3346 const Instruction *CxtI, 3347 const DominatorTree *DT) { 3348 // Multiplying n * m significant bits yields a result of n + m significant 3349 // bits. If the total number of significant bits does not exceed the 3350 // result bit width (minus 1), there is no overflow. 3351 // This means if we have enough leading zero bits in the operands 3352 // we can guarantee that the result does not overflow. 3353 // Ref: "Hacker's Delight" by Henry Warren 3354 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3355 APInt LHSKnownZero(BitWidth, 0); 3356 APInt LHSKnownOne(BitWidth, 0); 3357 APInt RHSKnownZero(BitWidth, 0); 3358 APInt RHSKnownOne(BitWidth, 0); 3359 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3360 DT); 3361 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3362 DT); 3363 // Note that underestimating the number of zero bits gives a more 3364 // conservative answer. 3365 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3366 RHSKnownZero.countLeadingOnes(); 3367 // First handle the easy case: if we have enough zero bits there's 3368 // definitely no overflow. 3369 if (ZeroBits >= BitWidth) 3370 return OverflowResult::NeverOverflows; 3371 3372 // Get the largest possible values for each operand. 3373 APInt LHSMax = ~LHSKnownZero; 3374 APInt RHSMax = ~RHSKnownZero; 3375 3376 // We know the multiply operation doesn't overflow if the maximum values for 3377 // each operand will not overflow after we multiply them together. 3378 bool MaxOverflow; 3379 LHSMax.umul_ov(RHSMax, MaxOverflow); 3380 if (!MaxOverflow) 3381 return OverflowResult::NeverOverflows; 3382 3383 // We know it always overflows if multiplying the smallest possible values for 3384 // the operands also results in overflow. 3385 bool MinOverflow; 3386 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3387 if (MinOverflow) 3388 return OverflowResult::AlwaysOverflows; 3389 3390 return OverflowResult::MayOverflow; 3391 } 3392 3393 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3394 const Value *RHS, 3395 const DataLayout &DL, 3396 AssumptionCache *AC, 3397 const Instruction *CxtI, 3398 const DominatorTree *DT) { 3399 bool LHSKnownNonNegative, LHSKnownNegative; 3400 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3401 AC, CxtI, DT); 3402 if (LHSKnownNonNegative || LHSKnownNegative) { 3403 bool RHSKnownNonNegative, RHSKnownNegative; 3404 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3405 AC, CxtI, DT); 3406 3407 if (LHSKnownNegative && RHSKnownNegative) { 3408 // The sign bit is set in both cases: this MUST overflow. 3409 // Create a simple add instruction, and insert it into the struct. 3410 return OverflowResult::AlwaysOverflows; 3411 } 3412 3413 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3414 // The sign bit is clear in both cases: this CANNOT overflow. 3415 // Create a simple add instruction, and insert it into the struct. 3416 return OverflowResult::NeverOverflows; 3417 } 3418 } 3419 3420 return OverflowResult::MayOverflow; 3421 } 3422 3423 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3424 const Value *RHS, 3425 const AddOperator *Add, 3426 const DataLayout &DL, 3427 AssumptionCache *AC, 3428 const Instruction *CxtI, 3429 const DominatorTree *DT) { 3430 if (Add && Add->hasNoSignedWrap()) { 3431 return OverflowResult::NeverOverflows; 3432 } 3433 3434 bool LHSKnownNonNegative, LHSKnownNegative; 3435 bool RHSKnownNonNegative, RHSKnownNegative; 3436 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3437 AC, CxtI, DT); 3438 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3439 AC, CxtI, DT); 3440 3441 if ((LHSKnownNonNegative && RHSKnownNegative) || 3442 (LHSKnownNegative && RHSKnownNonNegative)) { 3443 // The sign bits are opposite: this CANNOT overflow. 3444 return OverflowResult::NeverOverflows; 3445 } 3446 3447 // The remaining code needs Add to be available. Early returns if not so. 3448 if (!Add) 3449 return OverflowResult::MayOverflow; 3450 3451 // If the sign of Add is the same as at least one of the operands, this add 3452 // CANNOT overflow. This is particularly useful when the sum is 3453 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3454 // operands. 3455 bool LHSOrRHSKnownNonNegative = 3456 (LHSKnownNonNegative || RHSKnownNonNegative); 3457 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3458 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3459 bool AddKnownNonNegative, AddKnownNegative; 3460 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3461 /*Depth=*/0, AC, CxtI, DT); 3462 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3463 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3464 return OverflowResult::NeverOverflows; 3465 } 3466 } 3467 3468 return OverflowResult::MayOverflow; 3469 } 3470 3471 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3472 const DominatorTree &DT) { 3473 #ifndef NDEBUG 3474 auto IID = II->getIntrinsicID(); 3475 assert((IID == Intrinsic::sadd_with_overflow || 3476 IID == Intrinsic::uadd_with_overflow || 3477 IID == Intrinsic::ssub_with_overflow || 3478 IID == Intrinsic::usub_with_overflow || 3479 IID == Intrinsic::smul_with_overflow || 3480 IID == Intrinsic::umul_with_overflow) && 3481 "Not an overflow intrinsic!"); 3482 #endif 3483 3484 SmallVector<const BranchInst *, 2> GuardingBranches; 3485 SmallVector<const ExtractValueInst *, 2> Results; 3486 3487 for (const User *U : II->users()) { 3488 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3489 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3490 3491 if (EVI->getIndices()[0] == 0) 3492 Results.push_back(EVI); 3493 else { 3494 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3495 3496 for (const auto *U : EVI->users()) 3497 if (const auto *B = dyn_cast<BranchInst>(U)) { 3498 assert(B->isConditional() && "How else is it using an i1?"); 3499 GuardingBranches.push_back(B); 3500 } 3501 } 3502 } else { 3503 // We are using the aggregate directly in a way we don't want to analyze 3504 // here (storing it to a global, say). 3505 return false; 3506 } 3507 } 3508 3509 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3510 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3511 if (!NoWrapEdge.isSingleEdge()) 3512 return false; 3513 3514 // Check if all users of the add are provably no-wrap. 3515 for (const auto *Result : Results) { 3516 // If the extractvalue itself is not executed on overflow, the we don't 3517 // need to check each use separately, since domination is transitive. 3518 if (DT.dominates(NoWrapEdge, Result->getParent())) 3519 continue; 3520 3521 for (auto &RU : Result->uses()) 3522 if (!DT.dominates(NoWrapEdge, RU)) 3523 return false; 3524 } 3525 3526 return true; 3527 }; 3528 3529 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3530 } 3531 3532 3533 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3534 const DataLayout &DL, 3535 AssumptionCache *AC, 3536 const Instruction *CxtI, 3537 const DominatorTree *DT) { 3538 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3539 Add, DL, AC, CxtI, DT); 3540 } 3541 3542 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3543 const Value *RHS, 3544 const DataLayout &DL, 3545 AssumptionCache *AC, 3546 const Instruction *CxtI, 3547 const DominatorTree *DT) { 3548 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3549 } 3550 3551 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3552 // A memory operation returns normally if it isn't volatile. A volatile 3553 // operation is allowed to trap. 3554 // 3555 // An atomic operation isn't guaranteed to return in a reasonable amount of 3556 // time because it's possible for another thread to interfere with it for an 3557 // arbitrary length of time, but programs aren't allowed to rely on that. 3558 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3559 return !LI->isVolatile(); 3560 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3561 return !SI->isVolatile(); 3562 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3563 return !CXI->isVolatile(); 3564 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3565 return !RMWI->isVolatile(); 3566 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3567 return !MII->isVolatile(); 3568 3569 // If there is no successor, then execution can't transfer to it. 3570 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3571 return !CRI->unwindsToCaller(); 3572 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3573 return !CatchSwitch->unwindsToCaller(); 3574 if (isa<ResumeInst>(I)) 3575 return false; 3576 if (isa<ReturnInst>(I)) 3577 return false; 3578 3579 // Calls can throw, or contain an infinite loop, or kill the process. 3580 if (CallSite CS = CallSite(const_cast<Instruction*>(I))) { 3581 // Calls which don't write to arbitrary memory are safe. 3582 // FIXME: Ignoring infinite loops without any side-effects is too aggressive, 3583 // but it's consistent with other passes. See http://llvm.org/PR965 . 3584 // FIXME: This isn't aggressive enough; a call which only writes to a 3585 // global is guaranteed to return. 3586 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3587 match(I, m_Intrinsic<Intrinsic::assume>()); 3588 } 3589 3590 // Other instructions return normally. 3591 return true; 3592 } 3593 3594 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3595 const Loop *L) { 3596 // The loop header is guaranteed to be executed for every iteration. 3597 // 3598 // FIXME: Relax this constraint to cover all basic blocks that are 3599 // guaranteed to be executed at every iteration. 3600 if (I->getParent() != L->getHeader()) return false; 3601 3602 for (const Instruction &LI : *L->getHeader()) { 3603 if (&LI == I) return true; 3604 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3605 } 3606 llvm_unreachable("Instruction not contained in its own parent basic block."); 3607 } 3608 3609 bool llvm::propagatesFullPoison(const Instruction *I) { 3610 switch (I->getOpcode()) { 3611 case Instruction::Add: 3612 case Instruction::Sub: 3613 case Instruction::Xor: 3614 case Instruction::Trunc: 3615 case Instruction::BitCast: 3616 case Instruction::AddrSpaceCast: 3617 // These operations all propagate poison unconditionally. Note that poison 3618 // is not any particular value, so xor or subtraction of poison with 3619 // itself still yields poison, not zero. 3620 return true; 3621 3622 case Instruction::AShr: 3623 case Instruction::SExt: 3624 // For these operations, one bit of the input is replicated across 3625 // multiple output bits. A replicated poison bit is still poison. 3626 return true; 3627 3628 case Instruction::Shl: { 3629 // Left shift *by* a poison value is poison. The number of 3630 // positions to shift is unsigned, so no negative values are 3631 // possible there. Left shift by zero places preserves poison. So 3632 // it only remains to consider left shift of poison by a positive 3633 // number of places. 3634 // 3635 // A left shift by a positive number of places leaves the lowest order bit 3636 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3637 // make the poison operand violate that flag, yielding a fresh full-poison 3638 // value. 3639 auto *OBO = cast<OverflowingBinaryOperator>(I); 3640 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3641 } 3642 3643 case Instruction::Mul: { 3644 // A multiplication by zero yields a non-poison zero result, so we need to 3645 // rule out zero as an operand. Conservatively, multiplication by a 3646 // non-zero constant is not multiplication by zero. 3647 // 3648 // Multiplication by a non-zero constant can leave some bits 3649 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3650 // order bit unpoisoned. So we need to consider that. 3651 // 3652 // Multiplication by 1 preserves poison. If the multiplication has a 3653 // no-wrap flag, then we can make the poison operand violate that flag 3654 // when multiplied by any integer other than 0 and 1. 3655 auto *OBO = cast<OverflowingBinaryOperator>(I); 3656 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3657 for (Value *V : OBO->operands()) { 3658 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3659 // A ConstantInt cannot yield poison, so we can assume that it is 3660 // the other operand that is poison. 3661 return !CI->isZero(); 3662 } 3663 } 3664 } 3665 return false; 3666 } 3667 3668 case Instruction::ICmp: 3669 // Comparing poison with any value yields poison. This is why, for 3670 // instance, x s< (x +nsw 1) can be folded to true. 3671 return true; 3672 3673 case Instruction::GetElementPtr: 3674 // A GEP implicitly represents a sequence of additions, subtractions, 3675 // truncations, sign extensions and multiplications. The multiplications 3676 // are by the non-zero sizes of some set of types, so we do not have to be 3677 // concerned with multiplication by zero. If the GEP is in-bounds, then 3678 // these operations are implicitly no-signed-wrap so poison is propagated 3679 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3680 return cast<GEPOperator>(I)->isInBounds(); 3681 3682 default: 3683 return false; 3684 } 3685 } 3686 3687 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3688 switch (I->getOpcode()) { 3689 case Instruction::Store: 3690 return cast<StoreInst>(I)->getPointerOperand(); 3691 3692 case Instruction::Load: 3693 return cast<LoadInst>(I)->getPointerOperand(); 3694 3695 case Instruction::AtomicCmpXchg: 3696 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3697 3698 case Instruction::AtomicRMW: 3699 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3700 3701 case Instruction::UDiv: 3702 case Instruction::SDiv: 3703 case Instruction::URem: 3704 case Instruction::SRem: 3705 return I->getOperand(1); 3706 3707 default: 3708 return nullptr; 3709 } 3710 } 3711 3712 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3713 // We currently only look for uses of poison values within the same basic 3714 // block, as that makes it easier to guarantee that the uses will be 3715 // executed given that PoisonI is executed. 3716 // 3717 // FIXME: Expand this to consider uses beyond the same basic block. To do 3718 // this, look out for the distinction between post-dominance and strong 3719 // post-dominance. 3720 const BasicBlock *BB = PoisonI->getParent(); 3721 3722 // Set of instructions that we have proved will yield poison if PoisonI 3723 // does. 3724 SmallSet<const Value *, 16> YieldsPoison; 3725 SmallSet<const BasicBlock *, 4> Visited; 3726 YieldsPoison.insert(PoisonI); 3727 Visited.insert(PoisonI->getParent()); 3728 3729 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3730 3731 unsigned Iter = 0; 3732 while (Iter++ < MaxDepth) { 3733 for (auto &I : make_range(Begin, End)) { 3734 if (&I != PoisonI) { 3735 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3736 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3737 return true; 3738 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3739 return false; 3740 } 3741 3742 // Mark poison that propagates from I through uses of I. 3743 if (YieldsPoison.count(&I)) { 3744 for (const User *User : I.users()) { 3745 const Instruction *UserI = cast<Instruction>(User); 3746 if (propagatesFullPoison(UserI)) 3747 YieldsPoison.insert(User); 3748 } 3749 } 3750 } 3751 3752 if (auto *NextBB = BB->getSingleSuccessor()) { 3753 if (Visited.insert(NextBB).second) { 3754 BB = NextBB; 3755 Begin = BB->getFirstNonPHI()->getIterator(); 3756 End = BB->end(); 3757 continue; 3758 } 3759 } 3760 3761 break; 3762 }; 3763 return false; 3764 } 3765 3766 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3767 if (FMF.noNaNs()) 3768 return true; 3769 3770 if (auto *C = dyn_cast<ConstantFP>(V)) 3771 return !C->isNaN(); 3772 return false; 3773 } 3774 3775 static bool isKnownNonZero(const Value *V) { 3776 if (auto *C = dyn_cast<ConstantFP>(V)) 3777 return !C->isZero(); 3778 return false; 3779 } 3780 3781 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3782 FastMathFlags FMF, 3783 Value *CmpLHS, Value *CmpRHS, 3784 Value *TrueVal, Value *FalseVal, 3785 Value *&LHS, Value *&RHS) { 3786 LHS = CmpLHS; 3787 RHS = CmpRHS; 3788 3789 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3790 // return inconsistent results between implementations. 3791 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3792 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3793 // Therefore we behave conservatively and only proceed if at least one of the 3794 // operands is known to not be zero, or if we don't care about signed zeroes. 3795 switch (Pred) { 3796 default: break; 3797 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3798 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3799 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3800 !isKnownNonZero(CmpRHS)) 3801 return {SPF_UNKNOWN, SPNB_NA, false}; 3802 } 3803 3804 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3805 bool Ordered = false; 3806 3807 // When given one NaN and one non-NaN input: 3808 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3809 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3810 // ordered comparison fails), which could be NaN or non-NaN. 3811 // so here we discover exactly what NaN behavior is required/accepted. 3812 if (CmpInst::isFPPredicate(Pred)) { 3813 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3814 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3815 3816 if (LHSSafe && RHSSafe) { 3817 // Both operands are known non-NaN. 3818 NaNBehavior = SPNB_RETURNS_ANY; 3819 } else if (CmpInst::isOrdered(Pred)) { 3820 // An ordered comparison will return false when given a NaN, so it 3821 // returns the RHS. 3822 Ordered = true; 3823 if (LHSSafe) 3824 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3825 NaNBehavior = SPNB_RETURNS_NAN; 3826 else if (RHSSafe) 3827 NaNBehavior = SPNB_RETURNS_OTHER; 3828 else 3829 // Completely unsafe. 3830 return {SPF_UNKNOWN, SPNB_NA, false}; 3831 } else { 3832 Ordered = false; 3833 // An unordered comparison will return true when given a NaN, so it 3834 // returns the LHS. 3835 if (LHSSafe) 3836 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3837 NaNBehavior = SPNB_RETURNS_OTHER; 3838 else if (RHSSafe) 3839 NaNBehavior = SPNB_RETURNS_NAN; 3840 else 3841 // Completely unsafe. 3842 return {SPF_UNKNOWN, SPNB_NA, false}; 3843 } 3844 } 3845 3846 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3847 std::swap(CmpLHS, CmpRHS); 3848 Pred = CmpInst::getSwappedPredicate(Pred); 3849 if (NaNBehavior == SPNB_RETURNS_NAN) 3850 NaNBehavior = SPNB_RETURNS_OTHER; 3851 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3852 NaNBehavior = SPNB_RETURNS_NAN; 3853 Ordered = !Ordered; 3854 } 3855 3856 // ([if]cmp X, Y) ? X : Y 3857 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3858 switch (Pred) { 3859 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3860 case ICmpInst::ICMP_UGT: 3861 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3862 case ICmpInst::ICMP_SGT: 3863 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3864 case ICmpInst::ICMP_ULT: 3865 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3866 case ICmpInst::ICMP_SLT: 3867 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3868 case FCmpInst::FCMP_UGT: 3869 case FCmpInst::FCMP_UGE: 3870 case FCmpInst::FCMP_OGT: 3871 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3872 case FCmpInst::FCMP_ULT: 3873 case FCmpInst::FCMP_ULE: 3874 case FCmpInst::FCMP_OLT: 3875 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3876 } 3877 } 3878 3879 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3880 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3881 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3882 3883 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3884 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3885 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3886 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3887 } 3888 3889 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3890 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3891 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3892 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3893 } 3894 } 3895 3896 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3897 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3898 if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() && 3899 ~C1->getValue() == C2->getValue() && 3900 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3901 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3902 LHS = TrueVal; 3903 RHS = FalseVal; 3904 return {SPF_SMIN, SPNB_NA, false}; 3905 } 3906 } 3907 } 3908 3909 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3910 3911 return {SPF_UNKNOWN, SPNB_NA, false}; 3912 } 3913 3914 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3915 Instruction::CastOps *CastOp) { 3916 CastInst *CI = dyn_cast<CastInst>(V1); 3917 Constant *C = dyn_cast<Constant>(V2); 3918 if (!CI) 3919 return nullptr; 3920 *CastOp = CI->getOpcode(); 3921 3922 if (auto *CI2 = dyn_cast<CastInst>(V2)) { 3923 // If V1 and V2 are both the same cast from the same type, we can look 3924 // through V1. 3925 if (CI2->getOpcode() == CI->getOpcode() && 3926 CI2->getSrcTy() == CI->getSrcTy()) 3927 return CI2->getOperand(0); 3928 return nullptr; 3929 } else if (!C) { 3930 return nullptr; 3931 } 3932 3933 Constant *CastedTo = nullptr; 3934 3935 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3936 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3937 3938 if (isa<SExtInst>(CI) && CmpI->isSigned()) 3939 CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true); 3940 3941 if (isa<TruncInst>(CI)) 3942 CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3943 3944 if (isa<FPTruncInst>(CI)) 3945 CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3946 3947 if (isa<FPExtInst>(CI)) 3948 CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3949 3950 if (isa<FPToUIInst>(CI)) 3951 CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3952 3953 if (isa<FPToSIInst>(CI)) 3954 CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3955 3956 if (isa<UIToFPInst>(CI)) 3957 CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3958 3959 if (isa<SIToFPInst>(CI)) 3960 CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3961 3962 if (!CastedTo) 3963 return nullptr; 3964 3965 Constant *CastedBack = 3966 ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true); 3967 // Make sure the cast doesn't lose any information. 3968 if (CastedBack != C) 3969 return nullptr; 3970 3971 return CastedTo; 3972 } 3973 3974 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 3975 Instruction::CastOps *CastOp) { 3976 SelectInst *SI = dyn_cast<SelectInst>(V); 3977 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3978 3979 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3980 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3981 3982 CmpInst::Predicate Pred = CmpI->getPredicate(); 3983 Value *CmpLHS = CmpI->getOperand(0); 3984 Value *CmpRHS = CmpI->getOperand(1); 3985 Value *TrueVal = SI->getTrueValue(); 3986 Value *FalseVal = SI->getFalseValue(); 3987 FastMathFlags FMF; 3988 if (isa<FPMathOperator>(CmpI)) 3989 FMF = CmpI->getFastMathFlags(); 3990 3991 // Bail out early. 3992 if (CmpI->isEquality()) 3993 return {SPF_UNKNOWN, SPNB_NA, false}; 3994 3995 // Deal with type mismatches. 3996 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3997 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3998 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3999 cast<CastInst>(TrueVal)->getOperand(0), C, 4000 LHS, RHS); 4001 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4002 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4003 C, cast<CastInst>(FalseVal)->getOperand(0), 4004 LHS, RHS); 4005 } 4006 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4007 LHS, RHS); 4008 } 4009 4010 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { 4011 const unsigned NumRanges = Ranges.getNumOperands() / 2; 4012 assert(NumRanges >= 1 && "Must have at least one range!"); 4013 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); 4014 4015 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); 4016 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); 4017 4018 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); 4019 4020 for (unsigned i = 1; i < NumRanges; ++i) { 4021 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 4022 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 4023 4024 // Note: unionWith will potentially create a range that contains values not 4025 // contained in any of the original N ranges. 4026 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); 4027 } 4028 4029 return CR; 4030 } 4031 4032 /// Return true if "icmp Pred LHS RHS" is always true. 4033 static bool isTruePredicate(CmpInst::Predicate Pred, 4034 const Value *LHS, const Value *RHS, 4035 const DataLayout &DL, unsigned Depth, 4036 AssumptionCache *AC, const Instruction *CxtI, 4037 const DominatorTree *DT) { 4038 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4039 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4040 return true; 4041 4042 switch (Pred) { 4043 default: 4044 return false; 4045 4046 case CmpInst::ICMP_SLE: { 4047 const APInt *C; 4048 4049 // LHS s<= LHS +_{nsw} C if C >= 0 4050 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4051 return !C->isNegative(); 4052 return false; 4053 } 4054 4055 case CmpInst::ICMP_ULE: { 4056 const APInt *C; 4057 4058 // LHS u<= LHS +_{nuw} C for any C 4059 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4060 return true; 4061 4062 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4063 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4064 const Value *&X, 4065 const APInt *&CA, const APInt *&CB) { 4066 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4067 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4068 return true; 4069 4070 // If X & C == 0 then (X | C) == X +_{nuw} C 4071 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4072 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4073 unsigned BitWidth = CA->getBitWidth(); 4074 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4075 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4076 4077 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4078 return true; 4079 } 4080 4081 return false; 4082 }; 4083 4084 const Value *X; 4085 const APInt *CLHS, *CRHS; 4086 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4087 return CLHS->ule(*CRHS); 4088 4089 return false; 4090 } 4091 } 4092 } 4093 4094 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4095 /// ALHS ARHS" is true. Otherwise, return None. 4096 static Optional<bool> 4097 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4098 const Value *ARHS, const Value *BLHS, 4099 const Value *BRHS, const DataLayout &DL, 4100 unsigned Depth, AssumptionCache *AC, 4101 const Instruction *CxtI, const DominatorTree *DT) { 4102 switch (Pred) { 4103 default: 4104 return None; 4105 4106 case CmpInst::ICMP_SLT: 4107 case CmpInst::ICMP_SLE: 4108 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4109 DT) && 4110 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4111 return true; 4112 return None; 4113 4114 case CmpInst::ICMP_ULT: 4115 case CmpInst::ICMP_ULE: 4116 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4117 DT) && 4118 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4119 return true; 4120 return None; 4121 } 4122 } 4123 4124 /// Return true if the operands of the two compares match. IsSwappedOps is true 4125 /// when the operands match, but are swapped. 4126 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4127 const Value *BLHS, const Value *BRHS, 4128 bool &IsSwappedOps) { 4129 4130 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4131 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4132 return IsMatchingOps || IsSwappedOps; 4133 } 4134 4135 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4136 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4137 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4138 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4139 const Value *ALHS, 4140 const Value *ARHS, 4141 CmpInst::Predicate BPred, 4142 const Value *BLHS, 4143 const Value *BRHS, 4144 bool IsSwappedOps) { 4145 // Canonicalize the operands so they're matching. 4146 if (IsSwappedOps) { 4147 std::swap(BLHS, BRHS); 4148 BPred = ICmpInst::getSwappedPredicate(BPred); 4149 } 4150 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4151 return true; 4152 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4153 return false; 4154 4155 return None; 4156 } 4157 4158 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4159 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4160 /// C2" is false. Otherwise, return None if we can't infer anything. 4161 static Optional<bool> 4162 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4163 const ConstantInt *C1, 4164 CmpInst::Predicate BPred, 4165 const Value *BLHS, const ConstantInt *C2) { 4166 assert(ALHS == BLHS && "LHS operands must match."); 4167 ConstantRange DomCR = 4168 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4169 ConstantRange CR = 4170 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4171 ConstantRange Intersection = DomCR.intersectWith(CR); 4172 ConstantRange Difference = DomCR.difference(CR); 4173 if (Intersection.isEmptySet()) 4174 return false; 4175 if (Difference.isEmptySet()) 4176 return true; 4177 return None; 4178 } 4179 4180 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4181 const DataLayout &DL, bool InvertAPred, 4182 unsigned Depth, AssumptionCache *AC, 4183 const Instruction *CxtI, 4184 const DominatorTree *DT) { 4185 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4186 if (LHS->getType() != RHS->getType()) 4187 return None; 4188 4189 Type *OpTy = LHS->getType(); 4190 assert(OpTy->getScalarType()->isIntegerTy(1)); 4191 4192 // LHS ==> RHS by definition 4193 if (!InvertAPred && LHS == RHS) 4194 return true; 4195 4196 if (OpTy->isVectorTy()) 4197 // TODO: extending the code below to handle vectors 4198 return None; 4199 assert(OpTy->isIntegerTy(1) && "implied by above"); 4200 4201 ICmpInst::Predicate APred, BPred; 4202 Value *ALHS, *ARHS; 4203 Value *BLHS, *BRHS; 4204 4205 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4206 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4207 return None; 4208 4209 if (InvertAPred) 4210 APred = CmpInst::getInversePredicate(APred); 4211 4212 // Can we infer anything when the two compares have matching operands? 4213 bool IsSwappedOps; 4214 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4215 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4216 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4217 return Implication; 4218 // No amount of additional analysis will infer the second condition, so 4219 // early exit. 4220 return None; 4221 } 4222 4223 // Can we infer anything when the LHS operands match and the RHS operands are 4224 // constants (not necessarily matching)? 4225 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4226 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4227 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4228 cast<ConstantInt>(BRHS))) 4229 return Implication; 4230 // No amount of additional analysis will infer the second condition, so 4231 // early exit. 4232 return None; 4233 } 4234 4235 if (APred == BPred) 4236 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4237 CxtI, DT); 4238 4239 return None; 4240 } 4241