1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(const Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 45 /// known to be either zero or one and return them in the KnownZero/KnownOne 46 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 47 /// processing. 48 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 49 /// we cannot optimize based on the assumption that it is zero without changing 50 /// it to be an explicit zero. If we don't change it to zero, other code could 51 /// optimized based on the contradictory assumption that it is non-zero. 52 /// Because instcombine aggressively folds operations with undef args anyway, 53 /// this won't lose us code quality. 54 /// 55 /// This function is defined on values with integer type, values with pointer 56 /// type (but only if TD is non-null), and vectors of integers. In the case 57 /// where V is a vector, the mask, known zero, and known one values are the 58 /// same width as the vector element, and the bit is set only if it is true 59 /// for all of the elements in the vector. 60 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 61 APInt &KnownZero, APInt &KnownOne, 62 const TargetData *TD, unsigned Depth) { 63 assert(V && "No Value?"); 64 assert(Depth <= MaxDepth && "Limit Search Depth"); 65 unsigned BitWidth = Mask.getBitWidth(); 66 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy()) 67 && "Not integer or pointer type!"); 68 assert((!TD || 69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 70 (!V->getType()->isIntOrIntVectorTy() || 71 V->getType()->getScalarSizeInBits() == BitWidth) && 72 KnownZero.getBitWidth() == BitWidth && 73 KnownOne.getBitWidth() == BitWidth && 74 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 75 76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 77 // We know all of the bits for a constant! 78 KnownOne = CI->getValue() & Mask; 79 KnownZero = ~KnownOne & Mask; 80 return; 81 } 82 // Null and aggregate-zero are all-zeros. 83 if (isa<ConstantPointerNull>(V) || 84 isa<ConstantAggregateZero>(V)) { 85 KnownOne.clearAllBits(); 86 KnownZero = Mask; 87 return; 88 } 89 // Handle a constant vector by taking the intersection of the known bits of 90 // each element. 91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) { 92 KnownZero.setAllBits(); KnownOne.setAllBits(); 93 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0); 95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2, 96 TD, Depth); 97 KnownZero &= KnownZero2; 98 KnownOne &= KnownOne2; 99 } 100 return; 101 } 102 // The address of an aligned GlobalValue has trailing zeros. 103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 104 unsigned Align = GV->getAlignment(); 105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) { 106 const Type *ObjectType = GV->getType()->getElementType(); 107 // If the object is defined in the current Module, we'll be giving 108 // it the preferred alignment. Otherwise, we have to assume that it 109 // may only have the minimum ABI alignment. 110 if (!GV->isDeclaration() && !GV->mayBeOverridden()) 111 Align = TD->getPrefTypeAlignment(ObjectType); 112 else 113 Align = TD->getABITypeAlignment(ObjectType); 114 } 115 if (Align > 0) 116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 117 CountTrailingZeros_32(Align)); 118 else 119 KnownZero.clearAllBits(); 120 KnownOne.clearAllBits(); 121 return; 122 } 123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 124 // the bits of its aliasee. 125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 126 if (GA->mayBeOverridden()) { 127 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 128 } else { 129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 130 TD, Depth+1); 131 } 132 return; 133 } 134 135 KnownZero.clearAllBits(); KnownOne.clearAllBits(); // Start out not knowing anything. 136 137 if (Depth == MaxDepth || Mask == 0) 138 return; // Limit search depth. 139 140 Operator *I = dyn_cast<Operator>(V); 141 if (!I) return; 142 143 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 144 switch (I->getOpcode()) { 145 default: break; 146 case Instruction::And: { 147 // If either the LHS or the RHS are Zero, the result is zero. 148 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 149 APInt Mask2(Mask & ~KnownZero); 150 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 151 Depth+1); 152 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 153 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 154 155 // Output known-1 bits are only known if set in both the LHS & RHS. 156 KnownOne &= KnownOne2; 157 // Output known-0 are known to be clear if zero in either the LHS | RHS. 158 KnownZero |= KnownZero2; 159 return; 160 } 161 case Instruction::Or: { 162 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 163 APInt Mask2(Mask & ~KnownOne); 164 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 165 Depth+1); 166 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 167 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 168 169 // Output known-0 bits are only known if clear in both the LHS & RHS. 170 KnownZero &= KnownZero2; 171 // Output known-1 are known to be set if set in either the LHS | RHS. 172 KnownOne |= KnownOne2; 173 return; 174 } 175 case Instruction::Xor: { 176 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 177 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 178 Depth+1); 179 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 180 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 181 182 // Output known-0 bits are known if clear or set in both the LHS & RHS. 183 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 184 // Output known-1 are known to be set if set in only one of the LHS, RHS. 185 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 186 KnownZero = KnownZeroOut; 187 return; 188 } 189 case Instruction::Mul: { 190 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 191 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1); 192 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 193 Depth+1); 194 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 195 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 196 197 // If low bits are zero in either operand, output low known-0 bits. 198 // Also compute a conserative estimate for high known-0 bits. 199 // More trickiness is possible, but this is sufficient for the 200 // interesting case of alignment computation. 201 KnownOne.clearAllBits(); 202 unsigned TrailZ = KnownZero.countTrailingOnes() + 203 KnownZero2.countTrailingOnes(); 204 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 205 KnownZero2.countLeadingOnes(), 206 BitWidth) - BitWidth; 207 208 TrailZ = std::min(TrailZ, BitWidth); 209 LeadZ = std::min(LeadZ, BitWidth); 210 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 211 APInt::getHighBitsSet(BitWidth, LeadZ); 212 KnownZero &= Mask; 213 return; 214 } 215 case Instruction::UDiv: { 216 // For the purposes of computing leading zeros we can conservatively 217 // treat a udiv as a logical right shift by the power of 2 known to 218 // be less than the denominator. 219 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 220 ComputeMaskedBits(I->getOperand(0), 221 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 222 unsigned LeadZ = KnownZero2.countLeadingOnes(); 223 224 KnownOne2.clearAllBits(); 225 KnownZero2.clearAllBits(); 226 ComputeMaskedBits(I->getOperand(1), 227 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 228 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 229 if (RHSUnknownLeadingOnes != BitWidth) 230 LeadZ = std::min(BitWidth, 231 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 232 233 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 234 return; 235 } 236 case Instruction::Select: 237 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 238 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 239 Depth+1); 240 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 241 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 242 243 // Only known if known in both the LHS and RHS. 244 KnownOne &= KnownOne2; 245 KnownZero &= KnownZero2; 246 return; 247 case Instruction::FPTrunc: 248 case Instruction::FPExt: 249 case Instruction::FPToUI: 250 case Instruction::FPToSI: 251 case Instruction::SIToFP: 252 case Instruction::UIToFP: 253 return; // Can't work with floating point. 254 case Instruction::PtrToInt: 255 case Instruction::IntToPtr: 256 // We can't handle these if we don't know the pointer size. 257 if (!TD) return; 258 // FALL THROUGH and handle them the same as zext/trunc. 259 case Instruction::ZExt: 260 case Instruction::Trunc: { 261 const Type *SrcTy = I->getOperand(0)->getType(); 262 263 unsigned SrcBitWidth; 264 // Note that we handle pointer operands here because of inttoptr/ptrtoint 265 // which fall through here. 266 if (SrcTy->isPointerTy()) 267 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 268 else 269 SrcBitWidth = SrcTy->getScalarSizeInBits(); 270 271 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 272 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 273 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 274 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 275 Depth+1); 276 KnownZero = KnownZero.zextOrTrunc(BitWidth); 277 KnownOne = KnownOne.zextOrTrunc(BitWidth); 278 // Any top bits are known to be zero. 279 if (BitWidth > SrcBitWidth) 280 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 281 return; 282 } 283 case Instruction::BitCast: { 284 const Type *SrcTy = I->getOperand(0)->getType(); 285 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 286 // TODO: For now, not handling conversions like: 287 // (bitcast i64 %x to <2 x i32>) 288 !I->getType()->isVectorTy()) { 289 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 290 Depth+1); 291 return; 292 } 293 break; 294 } 295 case Instruction::SExt: { 296 // Compute the bits in the result that are not present in the input. 297 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 298 299 APInt MaskIn = Mask.trunc(SrcBitWidth); 300 KnownZero = KnownZero.trunc(SrcBitWidth); 301 KnownOne = KnownOne.trunc(SrcBitWidth); 302 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 303 Depth+1); 304 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 305 KnownZero = KnownZero.zext(BitWidth); 306 KnownOne = KnownOne.zext(BitWidth); 307 308 // If the sign bit of the input is known set or clear, then we know the 309 // top bits of the result. 310 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 311 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 312 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 313 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 314 return; 315 } 316 case Instruction::Shl: 317 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 318 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 319 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 320 APInt Mask2(Mask.lshr(ShiftAmt)); 321 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 322 Depth+1); 323 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 324 KnownZero <<= ShiftAmt; 325 KnownOne <<= ShiftAmt; 326 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 327 return; 328 } 329 break; 330 case Instruction::LShr: 331 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 332 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 333 // Compute the new bits that are at the top now. 334 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 335 336 // Unsigned shift right. 337 APInt Mask2(Mask.shl(ShiftAmt)); 338 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 339 Depth+1); 340 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 341 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 342 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 343 // high bits known zero. 344 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 345 return; 346 } 347 break; 348 case Instruction::AShr: 349 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 350 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 351 // Compute the new bits that are at the top now. 352 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 353 354 // Signed shift right. 355 APInt Mask2(Mask.shl(ShiftAmt)); 356 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 357 Depth+1); 358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 359 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 360 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 361 362 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 363 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 364 KnownZero |= HighBits; 365 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 366 KnownOne |= HighBits; 367 return; 368 } 369 break; 370 case Instruction::Sub: { 371 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) { 372 // We know that the top bits of C-X are clear if X contains less bits 373 // than C (i.e. no wrap-around can happen). For example, 20-X is 374 // positive if we can prove that X is >= 0 and < 16. 375 if (!CLHS->getValue().isNegative()) { 376 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 377 // NLZ can't be BitWidth with no sign bit 378 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 379 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2, 380 TD, Depth+1); 381 382 // If all of the MaskV bits are known to be zero, then we know the 383 // output top bits are zero, because we now know that the output is 384 // from [0-C]. 385 if ((KnownZero2 & MaskV) == MaskV) { 386 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 387 // Top bits known zero. 388 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 389 } 390 } 391 } 392 } 393 // fall through 394 case Instruction::Add: { 395 // If one of the operands has trailing zeros, then the bits that the 396 // other operand has in those bit positions will be preserved in the 397 // result. For an add, this works with either operand. For a subtract, 398 // this only works if the known zeros are in the right operand. 399 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 400 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 401 BitWidth - Mask.countLeadingZeros()); 402 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 403 Depth+1); 404 assert((LHSKnownZero & LHSKnownOne) == 0 && 405 "Bits known to be one AND zero?"); 406 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 407 408 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD, 409 Depth+1); 410 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 411 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 412 413 // Determine which operand has more trailing zeros, and use that 414 // many bits from the other operand. 415 if (LHSKnownZeroOut > RHSKnownZeroOut) { 416 if (I->getOpcode() == Instruction::Add) { 417 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 418 KnownZero |= KnownZero2 & Mask; 419 KnownOne |= KnownOne2 & Mask; 420 } else { 421 // If the known zeros are in the left operand for a subtract, 422 // fall back to the minimum known zeros in both operands. 423 KnownZero |= APInt::getLowBitsSet(BitWidth, 424 std::min(LHSKnownZeroOut, 425 RHSKnownZeroOut)); 426 } 427 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 428 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 429 KnownZero |= LHSKnownZero & Mask; 430 KnownOne |= LHSKnownOne & Mask; 431 } 432 return; 433 } 434 case Instruction::SRem: 435 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 436 APInt RA = Rem->getValue().abs(); 437 if (RA.isPowerOf2()) { 438 APInt LowBits = RA - 1; 439 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 440 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 441 Depth+1); 442 443 // The low bits of the first operand are unchanged by the srem. 444 KnownZero = KnownZero2 & LowBits; 445 KnownOne = KnownOne2 & LowBits; 446 447 // If the first operand is non-negative or has all low bits zero, then 448 // the upper bits are all zero. 449 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 450 KnownZero |= ~LowBits; 451 452 // If the first operand is negative and not all low bits are zero, then 453 // the upper bits are all one. 454 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 455 KnownOne |= ~LowBits; 456 457 KnownZero &= Mask; 458 KnownOne &= Mask; 459 460 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 461 } 462 } 463 break; 464 case Instruction::URem: { 465 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 466 APInt RA = Rem->getValue(); 467 if (RA.isPowerOf2()) { 468 APInt LowBits = (RA - 1); 469 APInt Mask2 = LowBits & Mask; 470 KnownZero |= ~LowBits & Mask; 471 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 472 Depth+1); 473 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 474 break; 475 } 476 } 477 478 // Since the result is less than or equal to either operand, any leading 479 // zero bits in either operand must also exist in the result. 480 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 481 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 482 TD, Depth+1); 483 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 484 TD, Depth+1); 485 486 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 487 KnownZero2.countLeadingOnes()); 488 KnownOne.clearAllBits(); 489 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 490 break; 491 } 492 493 case Instruction::Alloca: { 494 AllocaInst *AI = cast<AllocaInst>(V); 495 unsigned Align = AI->getAlignment(); 496 if (Align == 0 && TD) 497 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 498 499 if (Align > 0) 500 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 501 CountTrailingZeros_32(Align)); 502 break; 503 } 504 case Instruction::GetElementPtr: { 505 // Analyze all of the subscripts of this getelementptr instruction 506 // to determine if we can prove known low zero bits. 507 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 508 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 509 ComputeMaskedBits(I->getOperand(0), LocalMask, 510 LocalKnownZero, LocalKnownOne, TD, Depth+1); 511 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 512 513 gep_type_iterator GTI = gep_type_begin(I); 514 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 515 Value *Index = I->getOperand(i); 516 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 517 // Handle struct member offset arithmetic. 518 if (!TD) return; 519 const StructLayout *SL = TD->getStructLayout(STy); 520 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 521 uint64_t Offset = SL->getElementOffset(Idx); 522 TrailZ = std::min(TrailZ, 523 CountTrailingZeros_64(Offset)); 524 } else { 525 // Handle array index arithmetic. 526 const Type *IndexedTy = GTI.getIndexedType(); 527 if (!IndexedTy->isSized()) return; 528 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 529 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 530 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 531 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 532 ComputeMaskedBits(Index, LocalMask, 533 LocalKnownZero, LocalKnownOne, TD, Depth+1); 534 TrailZ = std::min(TrailZ, 535 unsigned(CountTrailingZeros_64(TypeSize) + 536 LocalKnownZero.countTrailingOnes())); 537 } 538 } 539 540 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 541 break; 542 } 543 case Instruction::PHI: { 544 PHINode *P = cast<PHINode>(I); 545 // Handle the case of a simple two-predecessor recurrence PHI. 546 // There's a lot more that could theoretically be done here, but 547 // this is sufficient to catch some interesting cases. 548 if (P->getNumIncomingValues() == 2) { 549 for (unsigned i = 0; i != 2; ++i) { 550 Value *L = P->getIncomingValue(i); 551 Value *R = P->getIncomingValue(!i); 552 Operator *LU = dyn_cast<Operator>(L); 553 if (!LU) 554 continue; 555 unsigned Opcode = LU->getOpcode(); 556 // Check for operations that have the property that if 557 // both their operands have low zero bits, the result 558 // will have low zero bits. 559 if (Opcode == Instruction::Add || 560 Opcode == Instruction::Sub || 561 Opcode == Instruction::And || 562 Opcode == Instruction::Or || 563 Opcode == Instruction::Mul) { 564 Value *LL = LU->getOperand(0); 565 Value *LR = LU->getOperand(1); 566 // Find a recurrence. 567 if (LL == I) 568 L = LR; 569 else if (LR == I) 570 L = LL; 571 else 572 break; 573 // Ok, we have a PHI of the form L op= R. Check for low 574 // zero bits. 575 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 576 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 577 Mask2 = APInt::getLowBitsSet(BitWidth, 578 KnownZero2.countTrailingOnes()); 579 580 // We need to take the minimum number of known bits 581 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 582 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 583 584 KnownZero = Mask & 585 APInt::getLowBitsSet(BitWidth, 586 std::min(KnownZero2.countTrailingOnes(), 587 KnownZero3.countTrailingOnes())); 588 break; 589 } 590 } 591 } 592 593 // Otherwise take the unions of the known bit sets of the operands, 594 // taking conservative care to avoid excessive recursion. 595 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 596 KnownZero = APInt::getAllOnesValue(BitWidth); 597 KnownOne = APInt::getAllOnesValue(BitWidth); 598 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 599 // Skip direct self references. 600 if (P->getIncomingValue(i) == P) continue; 601 602 KnownZero2 = APInt(BitWidth, 0); 603 KnownOne2 = APInt(BitWidth, 0); 604 // Recurse, but cap the recursion to one level, because we don't 605 // want to waste time spinning around in loops. 606 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 607 KnownZero2, KnownOne2, TD, MaxDepth-1); 608 KnownZero &= KnownZero2; 609 KnownOne &= KnownOne2; 610 // If all bits have been ruled out, there's no need to check 611 // more operands. 612 if (!KnownZero && !KnownOne) 613 break; 614 } 615 } 616 break; 617 } 618 case Instruction::Call: 619 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 620 switch (II->getIntrinsicID()) { 621 default: break; 622 case Intrinsic::ctpop: 623 case Intrinsic::ctlz: 624 case Intrinsic::cttz: { 625 unsigned LowBits = Log2_32(BitWidth)+1; 626 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 627 break; 628 } 629 } 630 } 631 break; 632 } 633 } 634 635 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 636 /// one. Convenience wrapper around ComputeMaskedBits. 637 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 638 const TargetData *TD, unsigned Depth) { 639 unsigned BitWidth = getBitWidth(V->getType(), TD); 640 if (!BitWidth) { 641 KnownZero = false; 642 KnownOne = false; 643 return; 644 } 645 APInt ZeroBits(BitWidth, 0); 646 APInt OneBits(BitWidth, 0); 647 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 648 Depth); 649 KnownOne = OneBits[BitWidth - 1]; 650 KnownZero = ZeroBits[BitWidth - 1]; 651 } 652 653 /// isPowerOfTwo - Return true if the given value is known to have exactly one 654 /// bit set when defined. For vectors return true if every element is known to 655 /// be a power of two when defined. Supports values with integer or pointer 656 /// types and vectors of integers. 657 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, unsigned Depth) { 658 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 659 return CI->getValue().isPowerOf2(); 660 // TODO: Handle vector constants. 661 662 // 1 << X is clearly a power of two if the one is not shifted off the end. If 663 // it is shifted off the end then the result is undefined. 664 if (match(V, m_Shl(m_One(), m_Value()))) 665 return true; 666 667 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 668 // bottom. If it is shifted off the bottom then the result is undefined. 669 ConstantInt *CI; 670 if (match(V, m_LShr(m_ConstantInt(CI), m_Value())) && 671 CI->getValue().isSignBit()) 672 return true; 673 674 // The remaining tests are all recursive, so bail out if we hit the limit. 675 if (Depth++ == MaxDepth) 676 return false; 677 678 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 679 return isPowerOfTwo(ZI->getOperand(0), TD, Depth); 680 681 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 682 return isPowerOfTwo(SI->getTrueValue(), TD, Depth) && 683 isPowerOfTwo(SI->getFalseValue(), TD, Depth); 684 685 return false; 686 } 687 688 /// isKnownNonZero - Return true if the given value is known to be non-zero 689 /// when defined. For vectors return true if every element is known to be 690 /// non-zero when defined. Supports values with integer or pointer type and 691 /// vectors of integers. 692 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 693 if (Constant *C = dyn_cast<Constant>(V)) { 694 if (C->isNullValue()) 695 return false; 696 if (isa<ConstantInt>(C)) 697 // Must be non-zero due to null test above. 698 return true; 699 // TODO: Handle vectors 700 return false; 701 } 702 703 // The remaining tests are all recursive, so bail out if we hit the limit. 704 if (Depth++ == MaxDepth) 705 return false; 706 707 unsigned BitWidth = getBitWidth(V->getType(), TD); 708 709 // X | Y != 0 if X != 0 or Y != 0. 710 Value *X = 0, *Y = 0; 711 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 712 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 713 714 // ext X != 0 if X != 0. 715 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 716 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 717 718 // shl X, A != 0 if X is odd. Note that the value of the shift is undefined 719 // if the lowest bit is shifted off the end. 720 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 721 APInt KnownZero(BitWidth, 0); 722 APInt KnownOne(BitWidth, 0); 723 ComputeMaskedBits(V, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 724 if (KnownOne[0]) 725 return true; 726 } 727 // shr X, A != 0 if X is negative. Note that the value of the shift is not 728 // defined if the sign bit is shifted off the end. 729 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 730 bool XKnownNonNegative, XKnownNegative; 731 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 732 if (XKnownNegative) 733 return true; 734 } 735 // X + Y. 736 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 737 bool XKnownNonNegative, XKnownNegative; 738 bool YKnownNonNegative, YKnownNegative; 739 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 740 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 741 742 // If X and Y are both non-negative (as signed values) then their sum is not 743 // zero unless both X and Y are zero. 744 if (XKnownNonNegative && YKnownNonNegative) 745 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 746 return true; 747 748 // If X and Y are both negative (as signed values) then their sum is not 749 // zero unless both X and Y equal INT_MIN. 750 if (BitWidth && XKnownNegative && YKnownNegative) { 751 APInt KnownZero(BitWidth, 0); 752 APInt KnownOne(BitWidth, 0); 753 APInt Mask = APInt::getSignedMaxValue(BitWidth); 754 // The sign bit of X is set. If some other bit is set then X is not equal 755 // to INT_MIN. 756 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 757 if ((KnownOne & Mask) != 0) 758 return true; 759 // The sign bit of Y is set. If some other bit is set then Y is not equal 760 // to INT_MIN. 761 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 762 if ((KnownOne & Mask) != 0) 763 return true; 764 } 765 766 // The sum of a non-negative number and a power of two is not zero. 767 if (XKnownNonNegative && isPowerOfTwo(Y, TD, Depth)) 768 return true; 769 if (YKnownNonNegative && isPowerOfTwo(X, TD, Depth)) 770 return true; 771 } 772 // (C ? X : Y) != 0 if X != 0 and Y != 0. 773 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 774 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 775 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 776 return true; 777 } 778 779 if (!BitWidth) return false; 780 APInt KnownZero(BitWidth, 0); 781 APInt KnownOne(BitWidth, 0); 782 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 783 TD, Depth); 784 return KnownOne != 0; 785 } 786 787 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 788 /// this predicate to simplify operations downstream. Mask is known to be zero 789 /// for bits that V cannot have. 790 /// 791 /// This function is defined on values with integer type, values with pointer 792 /// type (but only if TD is non-null), and vectors of integers. In the case 793 /// where V is a vector, the mask, known zero, and known one values are the 794 /// same width as the vector element, and the bit is set only if it is true 795 /// for all of the elements in the vector. 796 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 797 const TargetData *TD, unsigned Depth) { 798 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 799 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 800 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 801 return (KnownZero & Mask) == Mask; 802 } 803 804 805 806 /// ComputeNumSignBits - Return the number of times the sign bit of the 807 /// register is replicated into the other bits. We know that at least 1 bit 808 /// is always equal to the sign bit (itself), but other cases can give us 809 /// information. For example, immediately after an "ashr X, 2", we know that 810 /// the top 3 bits are all equal to each other, so we return 3. 811 /// 812 /// 'Op' must have a scalar integer type. 813 /// 814 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 815 unsigned Depth) { 816 assert((TD || V->getType()->isIntOrIntVectorTy()) && 817 "ComputeNumSignBits requires a TargetData object to operate " 818 "on non-integer values!"); 819 const Type *Ty = V->getType(); 820 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 821 Ty->getScalarSizeInBits(); 822 unsigned Tmp, Tmp2; 823 unsigned FirstAnswer = 1; 824 825 // Note that ConstantInt is handled by the general ComputeMaskedBits case 826 // below. 827 828 if (Depth == 6) 829 return 1; // Limit search depth. 830 831 Operator *U = dyn_cast<Operator>(V); 832 switch (Operator::getOpcode(V)) { 833 default: break; 834 case Instruction::SExt: 835 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 836 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 837 838 case Instruction::AShr: 839 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 840 // ashr X, C -> adds C sign bits. 841 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 842 Tmp += C->getZExtValue(); 843 if (Tmp > TyBits) Tmp = TyBits; 844 } 845 // vector ashr X, <C, C, C, C> -> adds C sign bits 846 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) { 847 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) { 848 Tmp += CI->getZExtValue(); 849 if (Tmp > TyBits) Tmp = TyBits; 850 } 851 } 852 return Tmp; 853 case Instruction::Shl: 854 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) { 855 // shl destroys sign bits. 856 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 857 if (C->getZExtValue() >= TyBits || // Bad shift. 858 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out. 859 return Tmp - C->getZExtValue(); 860 } 861 break; 862 case Instruction::And: 863 case Instruction::Or: 864 case Instruction::Xor: // NOT is handled here. 865 // Logical binary ops preserve the number of sign bits at the worst. 866 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 867 if (Tmp != 1) { 868 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 869 FirstAnswer = std::min(Tmp, Tmp2); 870 // We computed what we know about the sign bits as our first 871 // answer. Now proceed to the generic code that uses 872 // ComputeMaskedBits, and pick whichever answer is better. 873 } 874 break; 875 876 case Instruction::Select: 877 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 878 if (Tmp == 1) return 1; // Early out. 879 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 880 return std::min(Tmp, Tmp2); 881 882 case Instruction::Add: 883 // Add can have at most one carry bit. Thus we know that the output 884 // is, at worst, one more bit than the inputs. 885 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 886 if (Tmp == 1) return 1; // Early out. 887 888 // Special case decrementing a value (ADD X, -1): 889 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 890 if (CRHS->isAllOnesValue()) { 891 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 892 APInt Mask = APInt::getAllOnesValue(TyBits); 893 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 894 Depth+1); 895 896 // If the input is known to be 0 or 1, the output is 0/-1, which is all 897 // sign bits set. 898 if ((KnownZero | APInt(TyBits, 1)) == Mask) 899 return TyBits; 900 901 // If we are subtracting one from a positive number, there is no carry 902 // out of the result. 903 if (KnownZero.isNegative()) 904 return Tmp; 905 } 906 907 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 908 if (Tmp2 == 1) return 1; 909 return std::min(Tmp, Tmp2)-1; 910 911 case Instruction::Sub: 912 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 913 if (Tmp2 == 1) return 1; 914 915 // Handle NEG. 916 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 917 if (CLHS->isNullValue()) { 918 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 919 APInt Mask = APInt::getAllOnesValue(TyBits); 920 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 921 TD, Depth+1); 922 // If the input is known to be 0 or 1, the output is 0/-1, which is all 923 // sign bits set. 924 if ((KnownZero | APInt(TyBits, 1)) == Mask) 925 return TyBits; 926 927 // If the input is known to be positive (the sign bit is known clear), 928 // the output of the NEG has the same number of sign bits as the input. 929 if (KnownZero.isNegative()) 930 return Tmp2; 931 932 // Otherwise, we treat this like a SUB. 933 } 934 935 // Sub can have at most one carry bit. Thus we know that the output 936 // is, at worst, one more bit than the inputs. 937 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 938 if (Tmp == 1) return 1; // Early out. 939 return std::min(Tmp, Tmp2)-1; 940 941 case Instruction::PHI: { 942 PHINode *PN = cast<PHINode>(U); 943 // Don't analyze large in-degree PHIs. 944 if (PN->getNumIncomingValues() > 4) break; 945 946 // Take the minimum of all incoming values. This can't infinitely loop 947 // because of our depth threshold. 948 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 949 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 950 if (Tmp == 1) return Tmp; 951 Tmp = std::min(Tmp, 952 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 953 } 954 return Tmp; 955 } 956 957 case Instruction::Trunc: 958 // FIXME: it's tricky to do anything useful for this, but it is an important 959 // case for targets like X86. 960 break; 961 } 962 963 // Finally, if we can prove that the top bits of the result are 0's or 1's, 964 // use this information. 965 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 966 APInt Mask = APInt::getAllOnesValue(TyBits); 967 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 968 969 if (KnownZero.isNegative()) { // sign bit is 0 970 Mask = KnownZero; 971 } else if (KnownOne.isNegative()) { // sign bit is 1; 972 Mask = KnownOne; 973 } else { 974 // Nothing known. 975 return FirstAnswer; 976 } 977 978 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 979 // the number of identical bits in the top of the input value. 980 Mask = ~Mask; 981 Mask <<= Mask.getBitWidth()-TyBits; 982 // Return # leading zeros. We use 'min' here in case Val was zero before 983 // shifting. We don't want to return '64' as for an i32 "0". 984 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 985 } 986 987 /// ComputeMultiple - This function computes the integer multiple of Base that 988 /// equals V. If successful, it returns true and returns the multiple in 989 /// Multiple. If unsuccessful, it returns false. It looks 990 /// through SExt instructions only if LookThroughSExt is true. 991 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 992 bool LookThroughSExt, unsigned Depth) { 993 const unsigned MaxDepth = 6; 994 995 assert(V && "No Value?"); 996 assert(Depth <= MaxDepth && "Limit Search Depth"); 997 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 998 999 const Type *T = V->getType(); 1000 1001 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1002 1003 if (Base == 0) 1004 return false; 1005 1006 if (Base == 1) { 1007 Multiple = V; 1008 return true; 1009 } 1010 1011 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1012 Constant *BaseVal = ConstantInt::get(T, Base); 1013 if (CO && CO == BaseVal) { 1014 // Multiple is 1. 1015 Multiple = ConstantInt::get(T, 1); 1016 return true; 1017 } 1018 1019 if (CI && CI->getZExtValue() % Base == 0) { 1020 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1021 return true; 1022 } 1023 1024 if (Depth == MaxDepth) return false; // Limit search depth. 1025 1026 Operator *I = dyn_cast<Operator>(V); 1027 if (!I) return false; 1028 1029 switch (I->getOpcode()) { 1030 default: break; 1031 case Instruction::SExt: 1032 if (!LookThroughSExt) return false; 1033 // otherwise fall through to ZExt 1034 case Instruction::ZExt: 1035 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1036 LookThroughSExt, Depth+1); 1037 case Instruction::Shl: 1038 case Instruction::Mul: { 1039 Value *Op0 = I->getOperand(0); 1040 Value *Op1 = I->getOperand(1); 1041 1042 if (I->getOpcode() == Instruction::Shl) { 1043 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1044 if (!Op1CI) return false; 1045 // Turn Op0 << Op1 into Op0 * 2^Op1 1046 APInt Op1Int = Op1CI->getValue(); 1047 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1048 APInt API(Op1Int.getBitWidth(), 0); 1049 API.setBit(BitToSet); 1050 Op1 = ConstantInt::get(V->getContext(), API); 1051 } 1052 1053 Value *Mul0 = NULL; 1054 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1055 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1056 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1057 if (Op1C->getType()->getPrimitiveSizeInBits() < 1058 MulC->getType()->getPrimitiveSizeInBits()) 1059 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1060 if (Op1C->getType()->getPrimitiveSizeInBits() > 1061 MulC->getType()->getPrimitiveSizeInBits()) 1062 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1063 1064 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1065 Multiple = ConstantExpr::getMul(MulC, Op1C); 1066 return true; 1067 } 1068 1069 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1070 if (Mul0CI->getValue() == 1) { 1071 // V == Base * Op1, so return Op1 1072 Multiple = Op1; 1073 return true; 1074 } 1075 } 1076 1077 Value *Mul1 = NULL; 1078 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1079 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1080 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1081 if (Op0C->getType()->getPrimitiveSizeInBits() < 1082 MulC->getType()->getPrimitiveSizeInBits()) 1083 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1084 if (Op0C->getType()->getPrimitiveSizeInBits() > 1085 MulC->getType()->getPrimitiveSizeInBits()) 1086 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1087 1088 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1089 Multiple = ConstantExpr::getMul(MulC, Op0C); 1090 return true; 1091 } 1092 1093 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1094 if (Mul1CI->getValue() == 1) { 1095 // V == Base * Op0, so return Op0 1096 Multiple = Op0; 1097 return true; 1098 } 1099 } 1100 } 1101 } 1102 1103 // We could not determine if V is a multiple of Base. 1104 return false; 1105 } 1106 1107 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1108 /// value is never equal to -0.0. 1109 /// 1110 /// NOTE: this function will need to be revisited when we support non-default 1111 /// rounding modes! 1112 /// 1113 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1114 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1115 return !CFP->getValueAPF().isNegZero(); 1116 1117 if (Depth == 6) 1118 return 1; // Limit search depth. 1119 1120 const Operator *I = dyn_cast<Operator>(V); 1121 if (I == 0) return false; 1122 1123 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1124 if (I->getOpcode() == Instruction::FAdd && 1125 isa<ConstantFP>(I->getOperand(1)) && 1126 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1127 return true; 1128 1129 // sitofp and uitofp turn into +0.0 for zero. 1130 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1131 return true; 1132 1133 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1134 // sqrt(-0.0) = -0.0, no other negative results are possible. 1135 if (II->getIntrinsicID() == Intrinsic::sqrt) 1136 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1137 1138 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1139 if (const Function *F = CI->getCalledFunction()) { 1140 if (F->isDeclaration()) { 1141 // abs(x) != -0.0 1142 if (F->getName() == "abs") return true; 1143 // fabs[lf](x) != -0.0 1144 if (F->getName() == "fabs") return true; 1145 if (F->getName() == "fabsf") return true; 1146 if (F->getName() == "fabsl") return true; 1147 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1148 F->getName() == "sqrtl") 1149 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1150 } 1151 } 1152 1153 return false; 1154 } 1155 1156 /// isBytewiseValue - If the specified value can be set by repeating the same 1157 /// byte in memory, return the i8 value that it is represented with. This is 1158 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1159 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1160 /// byte store (e.g. i16 0x1234), return null. 1161 Value *llvm::isBytewiseValue(Value *V) { 1162 // All byte-wide stores are splatable, even of arbitrary variables. 1163 if (V->getType()->isIntegerTy(8)) return V; 1164 1165 // Constant float and double values can be handled as integer values if the 1166 // corresponding integer value is "byteable". An important case is 0.0. 1167 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1168 if (CFP->getType()->isFloatTy()) 1169 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1170 if (CFP->getType()->isDoubleTy()) 1171 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1172 // Don't handle long double formats, which have strange constraints. 1173 } 1174 1175 // We can handle constant integers that are power of two in size and a 1176 // multiple of 8 bits. 1177 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1178 unsigned Width = CI->getBitWidth(); 1179 if (isPowerOf2_32(Width) && Width > 8) { 1180 // We can handle this value if the recursive binary decomposition is the 1181 // same at all levels. 1182 APInt Val = CI->getValue(); 1183 APInt Val2; 1184 while (Val.getBitWidth() != 8) { 1185 unsigned NextWidth = Val.getBitWidth()/2; 1186 Val2 = Val.lshr(NextWidth); 1187 Val2 = Val2.trunc(Val.getBitWidth()/2); 1188 Val = Val.trunc(Val.getBitWidth()/2); 1189 1190 // If the top/bottom halves aren't the same, reject it. 1191 if (Val != Val2) 1192 return 0; 1193 } 1194 return ConstantInt::get(V->getContext(), Val); 1195 } 1196 } 1197 1198 // A ConstantArray is splatable if all its members are equal and also 1199 // splatable. 1200 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) { 1201 if (CA->getNumOperands() == 0) 1202 return 0; 1203 1204 Value *Val = isBytewiseValue(CA->getOperand(0)); 1205 if (!Val) 1206 return 0; 1207 1208 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I) 1209 if (CA->getOperand(I-1) != CA->getOperand(I)) 1210 return 0; 1211 1212 return Val; 1213 } 1214 1215 // Conceptually, we could handle things like: 1216 // %a = zext i8 %X to i16 1217 // %b = shl i16 %a, 8 1218 // %c = or i16 %a, %b 1219 // but until there is an example that actually needs this, it doesn't seem 1220 // worth worrying about. 1221 return 0; 1222 } 1223 1224 1225 // This is the recursive version of BuildSubAggregate. It takes a few different 1226 // arguments. Idxs is the index within the nested struct From that we are 1227 // looking at now (which is of type IndexedType). IdxSkip is the number of 1228 // indices from Idxs that should be left out when inserting into the resulting 1229 // struct. To is the result struct built so far, new insertvalue instructions 1230 // build on that. 1231 static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType, 1232 SmallVector<unsigned, 10> &Idxs, 1233 unsigned IdxSkip, 1234 Instruction *InsertBefore) { 1235 const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1236 if (STy) { 1237 // Save the original To argument so we can modify it 1238 Value *OrigTo = To; 1239 // General case, the type indexed by Idxs is a struct 1240 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1241 // Process each struct element recursively 1242 Idxs.push_back(i); 1243 Value *PrevTo = To; 1244 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1245 InsertBefore); 1246 Idxs.pop_back(); 1247 if (!To) { 1248 // Couldn't find any inserted value for this index? Cleanup 1249 while (PrevTo != OrigTo) { 1250 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1251 PrevTo = Del->getAggregateOperand(); 1252 Del->eraseFromParent(); 1253 } 1254 // Stop processing elements 1255 break; 1256 } 1257 } 1258 // If we succesfully found a value for each of our subaggregates 1259 if (To) 1260 return To; 1261 } 1262 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1263 // the struct's elements had a value that was inserted directly. In the latter 1264 // case, perhaps we can't determine each of the subelements individually, but 1265 // we might be able to find the complete struct somewhere. 1266 1267 // Find the value that is at that particular spot 1268 Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end()); 1269 1270 if (!V) 1271 return NULL; 1272 1273 // Insert the value in the new (sub) aggregrate 1274 return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip, 1275 Idxs.end(), "tmp", InsertBefore); 1276 } 1277 1278 // This helper takes a nested struct and extracts a part of it (which is again a 1279 // struct) into a new value. For example, given the struct: 1280 // { a, { b, { c, d }, e } } 1281 // and the indices "1, 1" this returns 1282 // { c, d }. 1283 // 1284 // It does this by inserting an insertvalue for each element in the resulting 1285 // struct, as opposed to just inserting a single struct. This will only work if 1286 // each of the elements of the substruct are known (ie, inserted into From by an 1287 // insertvalue instruction somewhere). 1288 // 1289 // All inserted insertvalue instructions are inserted before InsertBefore 1290 static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin, 1291 const unsigned *idx_end, 1292 Instruction *InsertBefore) { 1293 assert(InsertBefore && "Must have someplace to insert!"); 1294 const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1295 idx_begin, 1296 idx_end); 1297 Value *To = UndefValue::get(IndexedType); 1298 SmallVector<unsigned, 10> Idxs(idx_begin, idx_end); 1299 unsigned IdxSkip = Idxs.size(); 1300 1301 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1302 } 1303 1304 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1305 /// the scalar value indexed is already around as a register, for example if it 1306 /// were inserted directly into the aggregrate. 1307 /// 1308 /// If InsertBefore is not null, this function will duplicate (modified) 1309 /// insertvalues when a part of a nested struct is extracted. 1310 Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin, 1311 const unsigned *idx_end, Instruction *InsertBefore) { 1312 // Nothing to index? Just return V then (this is useful at the end of our 1313 // recursion) 1314 if (idx_begin == idx_end) 1315 return V; 1316 // We have indices, so V should have an indexable type 1317 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) 1318 && "Not looking at a struct or array?"); 1319 assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end) 1320 && "Invalid indices for type?"); 1321 const CompositeType *PTy = cast<CompositeType>(V->getType()); 1322 1323 if (isa<UndefValue>(V)) 1324 return UndefValue::get(ExtractValueInst::getIndexedType(PTy, 1325 idx_begin, 1326 idx_end)); 1327 else if (isa<ConstantAggregateZero>(V)) 1328 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy, 1329 idx_begin, 1330 idx_end)); 1331 else if (Constant *C = dyn_cast<Constant>(V)) { 1332 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) 1333 // Recursively process this constant 1334 return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1, 1335 idx_end, InsertBefore); 1336 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1337 // Loop the indices for the insertvalue instruction in parallel with the 1338 // requested indices 1339 const unsigned *req_idx = idx_begin; 1340 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1341 i != e; ++i, ++req_idx) { 1342 if (req_idx == idx_end) { 1343 if (InsertBefore) 1344 // The requested index identifies a part of a nested aggregate. Handle 1345 // this specially. For example, 1346 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1347 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1348 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1349 // This can be changed into 1350 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1351 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1352 // which allows the unused 0,0 element from the nested struct to be 1353 // removed. 1354 return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore); 1355 else 1356 // We can't handle this without inserting insertvalues 1357 return 0; 1358 } 1359 1360 // This insert value inserts something else than what we are looking for. 1361 // See if the (aggregrate) value inserted into has the value we are 1362 // looking for, then. 1363 if (*req_idx != *i) 1364 return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end, 1365 InsertBefore); 1366 } 1367 // If we end up here, the indices of the insertvalue match with those 1368 // requested (though possibly only partially). Now we recursively look at 1369 // the inserted value, passing any remaining indices. 1370 return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end, 1371 InsertBefore); 1372 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1373 // If we're extracting a value from an aggregrate that was extracted from 1374 // something else, we can extract from that something else directly instead. 1375 // However, we will need to chain I's indices with the requested indices. 1376 1377 // Calculate the number of indices required 1378 unsigned size = I->getNumIndices() + (idx_end - idx_begin); 1379 // Allocate some space to put the new indices in 1380 SmallVector<unsigned, 5> Idxs; 1381 Idxs.reserve(size); 1382 // Add indices from the extract value instruction 1383 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1384 i != e; ++i) 1385 Idxs.push_back(*i); 1386 1387 // Add requested indices 1388 for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i) 1389 Idxs.push_back(*i); 1390 1391 assert(Idxs.size() == size 1392 && "Number of indices added not correct?"); 1393 1394 return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(), 1395 InsertBefore); 1396 } 1397 // Otherwise, we don't know (such as, extracting from a function return value 1398 // or load instruction) 1399 return 0; 1400 } 1401 1402 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1403 /// it can be expressed as a base pointer plus a constant offset. Return the 1404 /// base and offset to the caller. 1405 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1406 const TargetData &TD) { 1407 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1408 if (PtrOp == 0) return Ptr; 1409 1410 // Just look through bitcasts. 1411 if (PtrOp->getOpcode() == Instruction::BitCast) 1412 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1413 1414 // If this is a GEP with constant indices, we can look through it. 1415 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1416 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1417 1418 gep_type_iterator GTI = gep_type_begin(GEP); 1419 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1420 ++I, ++GTI) { 1421 ConstantInt *OpC = cast<ConstantInt>(*I); 1422 if (OpC->isZero()) continue; 1423 1424 // Handle a struct and array indices which add their offset to the pointer. 1425 if (const StructType *STy = dyn_cast<StructType>(*GTI)) { 1426 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1427 } else { 1428 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1429 Offset += OpC->getSExtValue()*Size; 1430 } 1431 } 1432 1433 // Re-sign extend from the pointer size if needed to get overflow edge cases 1434 // right. 1435 unsigned PtrSize = TD.getPointerSizeInBits(); 1436 if (PtrSize < 64) 1437 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1438 1439 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1440 } 1441 1442 1443 /// GetConstantStringInfo - This function computes the length of a 1444 /// null-terminated C string pointed to by V. If successful, it returns true 1445 /// and returns the string in Str. If unsuccessful, it returns false. 1446 bool llvm::GetConstantStringInfo(const Value *V, std::string &Str, 1447 uint64_t Offset, 1448 bool StopAtNul) { 1449 // If V is NULL then return false; 1450 if (V == NULL) return false; 1451 1452 // Look through bitcast instructions. 1453 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1454 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul); 1455 1456 // If the value is not a GEP instruction nor a constant expression with a 1457 // GEP instruction, then return false because ConstantArray can't occur 1458 // any other way 1459 const User *GEP = 0; 1460 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1461 GEP = GEPI; 1462 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1463 if (CE->getOpcode() == Instruction::BitCast) 1464 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul); 1465 if (CE->getOpcode() != Instruction::GetElementPtr) 1466 return false; 1467 GEP = CE; 1468 } 1469 1470 if (GEP) { 1471 // Make sure the GEP has exactly three arguments. 1472 if (GEP->getNumOperands() != 3) 1473 return false; 1474 1475 // Make sure the index-ee is a pointer to array of i8. 1476 const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1477 const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1478 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1479 return false; 1480 1481 // Check to make sure that the first operand of the GEP is an integer and 1482 // has value 0 so that we are sure we're indexing into the initializer. 1483 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1484 if (FirstIdx == 0 || !FirstIdx->isZero()) 1485 return false; 1486 1487 // If the second index isn't a ConstantInt, then this is a variable index 1488 // into the array. If this occurs, we can't say anything meaningful about 1489 // the string. 1490 uint64_t StartIdx = 0; 1491 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1492 StartIdx = CI->getZExtValue(); 1493 else 1494 return false; 1495 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset, 1496 StopAtNul); 1497 } 1498 1499 // The GEP instruction, constant or instruction, must reference a global 1500 // variable that is a constant and is initialized. The referenced constant 1501 // initializer is the array that we'll use for optimization. 1502 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V); 1503 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1504 return false; 1505 const Constant *GlobalInit = GV->getInitializer(); 1506 1507 // Handle the ConstantAggregateZero case 1508 if (isa<ConstantAggregateZero>(GlobalInit)) { 1509 // This is a degenerate case. The initializer is constant zero so the 1510 // length of the string must be zero. 1511 Str.clear(); 1512 return true; 1513 } 1514 1515 // Must be a Constant Array 1516 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1517 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8)) 1518 return false; 1519 1520 // Get the number of elements in the array 1521 uint64_t NumElts = Array->getType()->getNumElements(); 1522 1523 if (Offset > NumElts) 1524 return false; 1525 1526 // Traverse the constant array from 'Offset' which is the place the GEP refers 1527 // to in the array. 1528 Str.reserve(NumElts-Offset); 1529 for (unsigned i = Offset; i != NumElts; ++i) { 1530 const Constant *Elt = Array->getOperand(i); 1531 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1532 if (!CI) // This array isn't suitable, non-int initializer. 1533 return false; 1534 if (StopAtNul && CI->isZero()) 1535 return true; // we found end of string, success! 1536 Str += (char)CI->getZExtValue(); 1537 } 1538 1539 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy. 1540 return true; 1541 } 1542 1543 // These next two are very similar to the above, but also look through PHI 1544 // nodes. 1545 // TODO: See if we can integrate these two together. 1546 1547 /// GetStringLengthH - If we can compute the length of the string pointed to by 1548 /// the specified pointer, return 'len+1'. If we can't, return 0. 1549 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1550 // Look through noop bitcast instructions. 1551 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 1552 return GetStringLengthH(BCI->getOperand(0), PHIs); 1553 1554 // If this is a PHI node, there are two cases: either we have already seen it 1555 // or we haven't. 1556 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1557 if (!PHIs.insert(PN)) 1558 return ~0ULL; // already in the set. 1559 1560 // If it was new, see if all the input strings are the same length. 1561 uint64_t LenSoFar = ~0ULL; 1562 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1563 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1564 if (Len == 0) return 0; // Unknown length -> unknown. 1565 1566 if (Len == ~0ULL) continue; 1567 1568 if (Len != LenSoFar && LenSoFar != ~0ULL) 1569 return 0; // Disagree -> unknown. 1570 LenSoFar = Len; 1571 } 1572 1573 // Success, all agree. 1574 return LenSoFar; 1575 } 1576 1577 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1578 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1579 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1580 if (Len1 == 0) return 0; 1581 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1582 if (Len2 == 0) return 0; 1583 if (Len1 == ~0ULL) return Len2; 1584 if (Len2 == ~0ULL) return Len1; 1585 if (Len1 != Len2) return 0; 1586 return Len1; 1587 } 1588 1589 // If the value is not a GEP instruction nor a constant expression with a 1590 // GEP instruction, then return unknown. 1591 User *GEP = 0; 1592 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) { 1593 GEP = GEPI; 1594 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 1595 if (CE->getOpcode() != Instruction::GetElementPtr) 1596 return 0; 1597 GEP = CE; 1598 } else { 1599 return 0; 1600 } 1601 1602 // Make sure the GEP has exactly three arguments. 1603 if (GEP->getNumOperands() != 3) 1604 return 0; 1605 1606 // Check to make sure that the first operand of the GEP is an integer and 1607 // has value 0 so that we are sure we're indexing into the initializer. 1608 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) { 1609 if (!Idx->isZero()) 1610 return 0; 1611 } else 1612 return 0; 1613 1614 // If the second index isn't a ConstantInt, then this is a variable index 1615 // into the array. If this occurs, we can't say anything meaningful about 1616 // the string. 1617 uint64_t StartIdx = 0; 1618 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1619 StartIdx = CI->getZExtValue(); 1620 else 1621 return 0; 1622 1623 // The GEP instruction, constant or instruction, must reference a global 1624 // variable that is a constant and is initialized. The referenced constant 1625 // initializer is the array that we'll use for optimization. 1626 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 1627 if (!GV || !GV->isConstant() || !GV->hasInitializer() || 1628 GV->mayBeOverridden()) 1629 return 0; 1630 Constant *GlobalInit = GV->getInitializer(); 1631 1632 // Handle the ConstantAggregateZero case, which is a degenerate case. The 1633 // initializer is constant zero so the length of the string must be zero. 1634 if (isa<ConstantAggregateZero>(GlobalInit)) 1635 return 1; // Len = 0 offset by 1. 1636 1637 // Must be a Constant Array 1638 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit); 1639 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8)) 1640 return false; 1641 1642 // Get the number of elements in the array 1643 uint64_t NumElts = Array->getType()->getNumElements(); 1644 1645 // Traverse the constant array from StartIdx (derived above) which is 1646 // the place the GEP refers to in the array. 1647 for (unsigned i = StartIdx; i != NumElts; ++i) { 1648 Constant *Elt = Array->getOperand(i); 1649 ConstantInt *CI = dyn_cast<ConstantInt>(Elt); 1650 if (!CI) // This array isn't suitable, non-int initializer. 1651 return 0; 1652 if (CI->isZero()) 1653 return i-StartIdx+1; // We found end of string, success! 1654 } 1655 1656 return 0; // The array isn't null terminated, conservatively return 'unknown'. 1657 } 1658 1659 /// GetStringLength - If we can compute the length of the string pointed to by 1660 /// the specified pointer, return 'len+1'. If we can't, return 0. 1661 uint64_t llvm::GetStringLength(Value *V) { 1662 if (!V->getType()->isPointerTy()) return 0; 1663 1664 SmallPtrSet<PHINode*, 32> PHIs; 1665 uint64_t Len = GetStringLengthH(V, PHIs); 1666 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1667 // an empty string as a length. 1668 return Len == ~0ULL ? 1 : Len; 1669 } 1670 1671 Value * 1672 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1673 if (!V->getType()->isPointerTy()) 1674 return V; 1675 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1676 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1677 V = GEP->getPointerOperand(); 1678 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1679 V = cast<Operator>(V)->getOperand(0); 1680 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1681 if (GA->mayBeOverridden()) 1682 return V; 1683 V = GA->getAliasee(); 1684 } else { 1685 // See if InstructionSimplify knows any relevant tricks. 1686 if (Instruction *I = dyn_cast<Instruction>(V)) 1687 // TODO: Aquire a DominatorTree and use it. 1688 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1689 V = Simplified; 1690 continue; 1691 } 1692 1693 return V; 1694 } 1695 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1696 } 1697 return V; 1698 } 1699