1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Metadata.h" 24 #include "llvm/Operator.h" 25 #include "llvm/DataLayout.h" 26 #include "llvm/Support/ConstantRange.h" 27 #include "llvm/Support/GetElementPtrTypeIterator.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/PatternMatch.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include <cstring> 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 const unsigned MaxDepth = 6; 36 37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 38 /// unknown returns 0). For vector types, returns the element type's bitwidth. 39 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 40 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 41 return BitWidth; 42 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 43 return TD ? 44 TD->getPointerSizeInBits(cast<PointerType>(Ty)->getAddressSpace()) : 0; 45 } 46 47 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 48 APInt &KnownZero, APInt &KnownOne, 49 APInt &KnownZero2, APInt &KnownOne2, 50 const DataLayout *TD, unsigned Depth) { 51 if (!Add) { 52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 53 // We know that the top bits of C-X are clear if X contains less bits 54 // than C (i.e. no wrap-around can happen). For example, 20-X is 55 // positive if we can prove that X is >= 0 and < 16. 56 if (!CLHS->getValue().isNegative()) { 57 unsigned BitWidth = KnownZero.getBitWidth(); 58 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 59 // NLZ can't be BitWidth with no sign bit 60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 61 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 62 63 // If all of the MaskV bits are known to be zero, then we know the 64 // output top bits are zero, because we now know that the output is 65 // from [0-C]. 66 if ((KnownZero2 & MaskV) == MaskV) { 67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 68 // Top bits known zero. 69 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 70 } 71 } 72 } 73 } 74 75 unsigned BitWidth = KnownZero.getBitWidth(); 76 77 // If one of the operands has trailing zeros, then the bits that the 78 // other operand has in those bit positions will be preserved in the 79 // result. For an add, this works with either operand. For a subtract, 80 // this only works if the known zeros are in the right operand. 81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 82 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 assert((LHSKnownZero & LHSKnownOne) == 0 && 84 "Bits known to be one AND zero?"); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 88 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 90 91 // Determine which operand has more trailing zeros, and use that 92 // many bits from the other operand. 93 if (LHSKnownZeroOut > RHSKnownZeroOut) { 94 if (Add) { 95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 96 KnownZero |= KnownZero2 & Mask; 97 KnownOne |= KnownOne2 & Mask; 98 } else { 99 // If the known zeros are in the left operand for a subtract, 100 // fall back to the minimum known zeros in both operands. 101 KnownZero |= APInt::getLowBitsSet(BitWidth, 102 std::min(LHSKnownZeroOut, 103 RHSKnownZeroOut)); 104 } 105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 107 KnownZero |= LHSKnownZero & Mask; 108 KnownOne |= LHSKnownOne & Mask; 109 } 110 111 // Are we still trying to solve for the sign bit? 112 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 113 if (NSW) { 114 if (Add) { 115 // Adding two positive numbers can't wrap into negative 116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 117 KnownZero |= APInt::getSignBit(BitWidth); 118 // and adding two negative numbers can't wrap into positive. 119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 120 KnownOne |= APInt::getSignBit(BitWidth); 121 } else { 122 // Subtracting a negative number from a positive one can't wrap 123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 124 KnownZero |= APInt::getSignBit(BitWidth); 125 // neither can subtracting a positive number from a negative one. 126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 127 KnownOne |= APInt::getSignBit(BitWidth); 128 } 129 } 130 } 131 } 132 133 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 134 APInt &KnownZero, APInt &KnownOne, 135 APInt &KnownZero2, APInt &KnownOne2, 136 const DataLayout *TD, unsigned Depth) { 137 unsigned BitWidth = KnownZero.getBitWidth(); 138 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1); 139 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 142 143 bool isKnownNegative = false; 144 bool isKnownNonNegative = false; 145 // If the multiplication is known not to overflow, compute the sign bit. 146 if (NSW) { 147 if (Op0 == Op1) { 148 // The product of a number with itself is non-negative. 149 isKnownNonNegative = true; 150 } else { 151 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 152 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 153 bool isKnownNegativeOp1 = KnownOne.isNegative(); 154 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 155 // The product of two numbers with the same sign is non-negative. 156 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 157 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 158 // The product of a negative number and a non-negative number is either 159 // negative or zero. 160 if (!isKnownNonNegative) 161 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 162 isKnownNonZero(Op0, TD, Depth)) || 163 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 164 isKnownNonZero(Op1, TD, Depth)); 165 } 166 } 167 168 // If low bits are zero in either operand, output low known-0 bits. 169 // Also compute a conserative estimate for high known-0 bits. 170 // More trickiness is possible, but this is sufficient for the 171 // interesting case of alignment computation. 172 KnownOne.clearAllBits(); 173 unsigned TrailZ = KnownZero.countTrailingOnes() + 174 KnownZero2.countTrailingOnes(); 175 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 176 KnownZero2.countLeadingOnes(), 177 BitWidth) - BitWidth; 178 179 TrailZ = std::min(TrailZ, BitWidth); 180 LeadZ = std::min(LeadZ, BitWidth); 181 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 182 APInt::getHighBitsSet(BitWidth, LeadZ); 183 184 // Only make use of no-wrap flags if we failed to compute the sign bit 185 // directly. This matters if the multiplication always overflows, in 186 // which case we prefer to follow the result of the direct computation, 187 // though as the program is invoking undefined behaviour we can choose 188 // whatever we like here. 189 if (isKnownNonNegative && !KnownOne.isNegative()) 190 KnownZero.setBit(BitWidth - 1); 191 else if (isKnownNegative && !KnownZero.isNegative()) 192 KnownOne.setBit(BitWidth - 1); 193 } 194 195 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 196 unsigned BitWidth = KnownZero.getBitWidth(); 197 unsigned NumRanges = Ranges.getNumOperands() / 2; 198 assert(NumRanges >= 1); 199 200 // Use the high end of the ranges to find leading zeros. 201 unsigned MinLeadingZeros = BitWidth; 202 for (unsigned i = 0; i < NumRanges; ++i) { 203 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 204 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 205 ConstantRange Range(Lower->getValue(), Upper->getValue()); 206 if (Range.isWrappedSet()) 207 MinLeadingZeros = 0; // -1 has no zeros 208 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 209 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 210 } 211 212 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 213 } 214 /// ComputeMaskedBits - Determine which of the bits are known to be either zero 215 /// or one and return them in the KnownZero/KnownOne bit sets. 216 /// 217 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 218 /// we cannot optimize based on the assumption that it is zero without changing 219 /// it to be an explicit zero. If we don't change it to zero, other code could 220 /// optimized based on the contradictory assumption that it is non-zero. 221 /// Because instcombine aggressively folds operations with undef args anyway, 222 /// this won't lose us code quality. 223 /// 224 /// This function is defined on values with integer type, values with pointer 225 /// type (but only if TD is non-null), and vectors of integers. In the case 226 /// where V is a vector, known zero, and known one values are the 227 /// same width as the vector element, and the bit is set only if it is true 228 /// for all of the elements in the vector. 229 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, 230 const DataLayout *TD, unsigned Depth) { 231 assert(V && "No Value?"); 232 assert(Depth <= MaxDepth && "Limit Search Depth"); 233 unsigned BitWidth = KnownZero.getBitWidth(); 234 235 assert((V->getType()->isIntOrIntVectorTy() || 236 V->getType()->getScalarType()->isPointerTy()) && 237 "Not integer or pointer type!"); 238 assert((!TD || 239 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 240 (!V->getType()->isIntOrIntVectorTy() || 241 V->getType()->getScalarSizeInBits() == BitWidth) && 242 KnownZero.getBitWidth() == BitWidth && 243 KnownOne.getBitWidth() == BitWidth && 244 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 245 246 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 247 // We know all of the bits for a constant! 248 KnownOne = CI->getValue(); 249 KnownZero = ~KnownOne; 250 return; 251 } 252 // Null and aggregate-zero are all-zeros. 253 if (isa<ConstantPointerNull>(V) || 254 isa<ConstantAggregateZero>(V)) { 255 KnownOne.clearAllBits(); 256 KnownZero = APInt::getAllOnesValue(BitWidth); 257 return; 258 } 259 // Handle a constant vector by taking the intersection of the known bits of 260 // each element. There is no real need to handle ConstantVector here, because 261 // we don't handle undef in any particularly useful way. 262 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 263 // We know that CDS must be a vector of integers. Take the intersection of 264 // each element. 265 KnownZero.setAllBits(); KnownOne.setAllBits(); 266 APInt Elt(KnownZero.getBitWidth(), 0); 267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 268 Elt = CDS->getElementAsInteger(i); 269 KnownZero &= ~Elt; 270 KnownOne &= Elt; 271 } 272 return; 273 } 274 275 // The address of an aligned GlobalValue has trailing zeros. 276 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 277 unsigned Align = GV->getAlignment(); 278 if (Align == 0 && TD) { 279 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 280 Type *ObjectType = GVar->getType()->getElementType(); 281 if (ObjectType->isSized()) { 282 // If the object is defined in the current Module, we'll be giving 283 // it the preferred alignment. Otherwise, we have to assume that it 284 // may only have the minimum ABI alignment. 285 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 286 Align = TD->getPreferredAlignment(GVar); 287 else 288 Align = TD->getABITypeAlignment(ObjectType); 289 } 290 } 291 } 292 if (Align > 0) 293 KnownZero = APInt::getLowBitsSet(BitWidth, 294 CountTrailingZeros_32(Align)); 295 else 296 KnownZero.clearAllBits(); 297 KnownOne.clearAllBits(); 298 return; 299 } 300 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 301 // the bits of its aliasee. 302 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 303 if (GA->mayBeOverridden()) { 304 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 305 } else { 306 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 307 } 308 return; 309 } 310 311 if (Argument *A = dyn_cast<Argument>(V)) { 312 unsigned Align = 0; 313 314 if (A->hasByValAttr()) { 315 // Get alignment information off byval arguments if specified in the IR. 316 Align = A->getParamAlignment(); 317 } else if (TD && A->hasStructRetAttr()) { 318 // An sret parameter has at least the ABI alignment of the return type. 319 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 320 if (EltTy->isSized()) 321 Align = TD->getABITypeAlignment(EltTy); 322 } 323 324 if (Align) 325 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 326 return; 327 } 328 329 // Start out not knowing anything. 330 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 331 332 if (Depth == MaxDepth) 333 return; // Limit search depth. 334 335 Operator *I = dyn_cast<Operator>(V); 336 if (!I) return; 337 338 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 339 switch (I->getOpcode()) { 340 default: break; 341 case Instruction::Load: 342 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 343 computeMaskedBitsLoad(*MD, KnownZero); 344 return; 345 case Instruction::And: { 346 // If either the LHS or the RHS are Zero, the result is zero. 347 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 348 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 349 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 350 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 351 352 // Output known-1 bits are only known if set in both the LHS & RHS. 353 KnownOne &= KnownOne2; 354 // Output known-0 are known to be clear if zero in either the LHS | RHS. 355 KnownZero |= KnownZero2; 356 return; 357 } 358 case Instruction::Or: { 359 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 360 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 361 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 362 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 363 364 // Output known-0 bits are only known if clear in both the LHS & RHS. 365 KnownZero &= KnownZero2; 366 // Output known-1 are known to be set if set in either the LHS | RHS. 367 KnownOne |= KnownOne2; 368 return; 369 } 370 case Instruction::Xor: { 371 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 372 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 373 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 374 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 375 376 // Output known-0 bits are known if clear or set in both the LHS & RHS. 377 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 378 // Output known-1 are known to be set if set in only one of the LHS, RHS. 379 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 380 KnownZero = KnownZeroOut; 381 return; 382 } 383 case Instruction::Mul: { 384 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 385 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 386 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 387 break; 388 } 389 case Instruction::UDiv: { 390 // For the purposes of computing leading zeros we can conservatively 391 // treat a udiv as a logical right shift by the power of 2 known to 392 // be less than the denominator. 393 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 394 unsigned LeadZ = KnownZero2.countLeadingOnes(); 395 396 KnownOne2.clearAllBits(); 397 KnownZero2.clearAllBits(); 398 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 399 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 400 if (RHSUnknownLeadingOnes != BitWidth) 401 LeadZ = std::min(BitWidth, 402 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 403 404 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 405 return; 406 } 407 case Instruction::Select: 408 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 409 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 410 Depth+1); 411 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 412 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 413 414 // Only known if known in both the LHS and RHS. 415 KnownOne &= KnownOne2; 416 KnownZero &= KnownZero2; 417 return; 418 case Instruction::FPTrunc: 419 case Instruction::FPExt: 420 case Instruction::FPToUI: 421 case Instruction::FPToSI: 422 case Instruction::SIToFP: 423 case Instruction::UIToFP: 424 return; // Can't work with floating point. 425 case Instruction::PtrToInt: 426 case Instruction::IntToPtr: 427 // We can't handle these if we don't know the pointer size. 428 if (!TD) return; 429 // FALL THROUGH and handle them the same as zext/trunc. 430 case Instruction::ZExt: 431 case Instruction::Trunc: { 432 Type *SrcTy = I->getOperand(0)->getType(); 433 434 unsigned SrcBitWidth; 435 // Note that we handle pointer operands here because of inttoptr/ptrtoint 436 // which fall through here. 437 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 438 439 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 440 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 441 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 442 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 443 KnownZero = KnownZero.zextOrTrunc(BitWidth); 444 KnownOne = KnownOne.zextOrTrunc(BitWidth); 445 // Any top bits are known to be zero. 446 if (BitWidth > SrcBitWidth) 447 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 448 return; 449 } 450 case Instruction::BitCast: { 451 Type *SrcTy = I->getOperand(0)->getType(); 452 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 453 // TODO: For now, not handling conversions like: 454 // (bitcast i64 %x to <2 x i32>) 455 !I->getType()->isVectorTy()) { 456 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 457 return; 458 } 459 break; 460 } 461 case Instruction::SExt: { 462 // Compute the bits in the result that are not present in the input. 463 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 464 465 KnownZero = KnownZero.trunc(SrcBitWidth); 466 KnownOne = KnownOne.trunc(SrcBitWidth); 467 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 468 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 469 KnownZero = KnownZero.zext(BitWidth); 470 KnownOne = KnownOne.zext(BitWidth); 471 472 // If the sign bit of the input is known set or clear, then we know the 473 // top bits of the result. 474 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 475 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 476 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 477 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 478 return; 479 } 480 case Instruction::Shl: 481 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 482 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 483 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 484 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 485 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 486 KnownZero <<= ShiftAmt; 487 KnownOne <<= ShiftAmt; 488 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 489 return; 490 } 491 break; 492 case Instruction::LShr: 493 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 494 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 495 // Compute the new bits that are at the top now. 496 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 497 498 // Unsigned shift right. 499 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 500 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 501 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 502 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 503 // high bits known zero. 504 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 505 return; 506 } 507 break; 508 case Instruction::AShr: 509 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 510 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 511 // Compute the new bits that are at the top now. 512 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 513 514 // Signed shift right. 515 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 516 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 517 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 518 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 519 520 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 521 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 522 KnownZero |= HighBits; 523 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 524 KnownOne |= HighBits; 525 return; 526 } 527 break; 528 case Instruction::Sub: { 529 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 530 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 531 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 532 Depth); 533 break; 534 } 535 case Instruction::Add: { 536 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 537 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 538 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 539 Depth); 540 break; 541 } 542 case Instruction::SRem: 543 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 544 APInt RA = Rem->getValue().abs(); 545 if (RA.isPowerOf2()) { 546 APInt LowBits = RA - 1; 547 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 548 549 // The low bits of the first operand are unchanged by the srem. 550 KnownZero = KnownZero2 & LowBits; 551 KnownOne = KnownOne2 & LowBits; 552 553 // If the first operand is non-negative or has all low bits zero, then 554 // the upper bits are all zero. 555 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 556 KnownZero |= ~LowBits; 557 558 // If the first operand is negative and not all low bits are zero, then 559 // the upper bits are all one. 560 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 561 KnownOne |= ~LowBits; 562 563 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 564 } 565 } 566 567 // The sign bit is the LHS's sign bit, except when the result of the 568 // remainder is zero. 569 if (KnownZero.isNonNegative()) { 570 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 571 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 572 Depth+1); 573 // If it's known zero, our sign bit is also zero. 574 if (LHSKnownZero.isNegative()) 575 KnownZero.setBit(BitWidth - 1); 576 } 577 578 break; 579 case Instruction::URem: { 580 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 581 APInt RA = Rem->getValue(); 582 if (RA.isPowerOf2()) { 583 APInt LowBits = (RA - 1); 584 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, 585 Depth+1); 586 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 587 KnownZero |= ~LowBits; 588 KnownOne &= LowBits; 589 break; 590 } 591 } 592 593 // Since the result is less than or equal to either operand, any leading 594 // zero bits in either operand must also exist in the result. 595 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 596 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 597 598 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 599 KnownZero2.countLeadingOnes()); 600 KnownOne.clearAllBits(); 601 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 602 break; 603 } 604 605 case Instruction::Alloca: { 606 AllocaInst *AI = cast<AllocaInst>(V); 607 unsigned Align = AI->getAlignment(); 608 if (Align == 0 && TD) 609 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 610 611 if (Align > 0) 612 KnownZero = APInt::getLowBitsSet(BitWidth, CountTrailingZeros_32(Align)); 613 break; 614 } 615 case Instruction::GetElementPtr: { 616 // Analyze all of the subscripts of this getelementptr instruction 617 // to determine if we can prove known low zero bits. 618 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 619 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 620 Depth+1); 621 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 622 623 gep_type_iterator GTI = gep_type_begin(I); 624 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 625 Value *Index = I->getOperand(i); 626 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 627 // Handle struct member offset arithmetic. 628 if (!TD) return; 629 const StructLayout *SL = TD->getStructLayout(STy); 630 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 631 uint64_t Offset = SL->getElementOffset(Idx); 632 TrailZ = std::min(TrailZ, 633 CountTrailingZeros_64(Offset)); 634 } else { 635 // Handle array index arithmetic. 636 Type *IndexedTy = GTI.getIndexedType(); 637 if (!IndexedTy->isSized()) return; 638 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 639 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 640 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 641 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 642 TrailZ = std::min(TrailZ, 643 unsigned(CountTrailingZeros_64(TypeSize) + 644 LocalKnownZero.countTrailingOnes())); 645 } 646 } 647 648 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 649 break; 650 } 651 case Instruction::PHI: { 652 PHINode *P = cast<PHINode>(I); 653 // Handle the case of a simple two-predecessor recurrence PHI. 654 // There's a lot more that could theoretically be done here, but 655 // this is sufficient to catch some interesting cases. 656 if (P->getNumIncomingValues() == 2) { 657 for (unsigned i = 0; i != 2; ++i) { 658 Value *L = P->getIncomingValue(i); 659 Value *R = P->getIncomingValue(!i); 660 Operator *LU = dyn_cast<Operator>(L); 661 if (!LU) 662 continue; 663 unsigned Opcode = LU->getOpcode(); 664 // Check for operations that have the property that if 665 // both their operands have low zero bits, the result 666 // will have low zero bits. 667 if (Opcode == Instruction::Add || 668 Opcode == Instruction::Sub || 669 Opcode == Instruction::And || 670 Opcode == Instruction::Or || 671 Opcode == Instruction::Mul) { 672 Value *LL = LU->getOperand(0); 673 Value *LR = LU->getOperand(1); 674 // Find a recurrence. 675 if (LL == I) 676 L = LR; 677 else if (LR == I) 678 L = LL; 679 else 680 break; 681 // Ok, we have a PHI of the form L op= R. Check for low 682 // zero bits. 683 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1); 684 685 // We need to take the minimum number of known bits 686 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 687 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1); 688 689 KnownZero = APInt::getLowBitsSet(BitWidth, 690 std::min(KnownZero2.countTrailingOnes(), 691 KnownZero3.countTrailingOnes())); 692 break; 693 } 694 } 695 } 696 697 // Unreachable blocks may have zero-operand PHI nodes. 698 if (P->getNumIncomingValues() == 0) 699 return; 700 701 // Otherwise take the unions of the known bit sets of the operands, 702 // taking conservative care to avoid excessive recursion. 703 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 704 // Skip if every incoming value references to ourself. 705 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 706 break; 707 708 KnownZero = APInt::getAllOnesValue(BitWidth); 709 KnownOne = APInt::getAllOnesValue(BitWidth); 710 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 711 // Skip direct self references. 712 if (P->getIncomingValue(i) == P) continue; 713 714 KnownZero2 = APInt(BitWidth, 0); 715 KnownOne2 = APInt(BitWidth, 0); 716 // Recurse, but cap the recursion to one level, because we don't 717 // want to waste time spinning around in loops. 718 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 719 MaxDepth-1); 720 KnownZero &= KnownZero2; 721 KnownOne &= KnownOne2; 722 // If all bits have been ruled out, there's no need to check 723 // more operands. 724 if (!KnownZero && !KnownOne) 725 break; 726 } 727 } 728 break; 729 } 730 case Instruction::Call: 731 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 732 switch (II->getIntrinsicID()) { 733 default: break; 734 case Intrinsic::ctlz: 735 case Intrinsic::cttz: { 736 unsigned LowBits = Log2_32(BitWidth)+1; 737 // If this call is undefined for 0, the result will be less than 2^n. 738 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 739 LowBits -= 1; 740 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 741 break; 742 } 743 case Intrinsic::ctpop: { 744 unsigned LowBits = Log2_32(BitWidth)+1; 745 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 746 break; 747 } 748 case Intrinsic::x86_sse42_crc32_64_8: 749 case Intrinsic::x86_sse42_crc32_64_64: 750 KnownZero = APInt::getHighBitsSet(64, 32); 751 break; 752 } 753 } 754 break; 755 case Instruction::ExtractValue: 756 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 757 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 758 if (EVI->getNumIndices() != 1) break; 759 if (EVI->getIndices()[0] == 0) { 760 switch (II->getIntrinsicID()) { 761 default: break; 762 case Intrinsic::uadd_with_overflow: 763 case Intrinsic::sadd_with_overflow: 764 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 765 II->getArgOperand(1), false, KnownZero, 766 KnownOne, KnownZero2, KnownOne2, TD, Depth); 767 break; 768 case Intrinsic::usub_with_overflow: 769 case Intrinsic::ssub_with_overflow: 770 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 771 II->getArgOperand(1), false, KnownZero, 772 KnownOne, KnownZero2, KnownOne2, TD, Depth); 773 break; 774 case Intrinsic::umul_with_overflow: 775 case Intrinsic::smul_with_overflow: 776 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 777 false, KnownZero, KnownOne, 778 KnownZero2, KnownOne2, TD, Depth); 779 break; 780 } 781 } 782 } 783 } 784 } 785 786 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 787 /// one. Convenience wrapper around ComputeMaskedBits. 788 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 789 const DataLayout *TD, unsigned Depth) { 790 unsigned BitWidth = getBitWidth(V->getType(), TD); 791 if (!BitWidth) { 792 KnownZero = false; 793 KnownOne = false; 794 return; 795 } 796 APInt ZeroBits(BitWidth, 0); 797 APInt OneBits(BitWidth, 0); 798 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth); 799 KnownOne = OneBits[BitWidth - 1]; 800 KnownZero = ZeroBits[BitWidth - 1]; 801 } 802 803 /// isPowerOfTwo - Return true if the given value is known to have exactly one 804 /// bit set when defined. For vectors return true if every element is known to 805 /// be a power of two when defined. Supports values with integer or pointer 806 /// types and vectors of integers. 807 bool llvm::isPowerOfTwo(Value *V, const DataLayout *TD, bool OrZero, 808 unsigned Depth) { 809 if (Constant *C = dyn_cast<Constant>(V)) { 810 if (C->isNullValue()) 811 return OrZero; 812 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 813 return CI->getValue().isPowerOf2(); 814 // TODO: Handle vector constants. 815 } 816 817 // 1 << X is clearly a power of two if the one is not shifted off the end. If 818 // it is shifted off the end then the result is undefined. 819 if (match(V, m_Shl(m_One(), m_Value()))) 820 return true; 821 822 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 823 // bottom. If it is shifted off the bottom then the result is undefined. 824 if (match(V, m_LShr(m_SignBit(), m_Value()))) 825 return true; 826 827 // The remaining tests are all recursive, so bail out if we hit the limit. 828 if (Depth++ == MaxDepth) 829 return false; 830 831 Value *X = 0, *Y = 0; 832 // A shift of a power of two is a power of two or zero. 833 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 834 match(V, m_Shr(m_Value(X), m_Value())))) 835 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 836 837 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 838 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 839 840 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 841 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 842 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 843 844 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 845 // A power of two and'd with anything is a power of two or zero. 846 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 847 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 848 return true; 849 // X & (-X) is always a power of two or zero. 850 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 851 return true; 852 return false; 853 } 854 855 // An exact divide or right shift can only shift off zero bits, so the result 856 // is a power of two only if the first operand is a power of two and not 857 // copying a sign bit (sdiv int_min, 2). 858 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 859 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 860 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 861 } 862 863 return false; 864 } 865 866 /// isKnownNonZero - Return true if the given value is known to be non-zero 867 /// when defined. For vectors return true if every element is known to be 868 /// non-zero when defined. Supports values with integer or pointer type and 869 /// vectors of integers. 870 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 871 if (Constant *C = dyn_cast<Constant>(V)) { 872 if (C->isNullValue()) 873 return false; 874 if (isa<ConstantInt>(C)) 875 // Must be non-zero due to null test above. 876 return true; 877 // TODO: Handle vectors 878 return false; 879 } 880 881 // The remaining tests are all recursive, so bail out if we hit the limit. 882 if (Depth++ >= MaxDepth) 883 return false; 884 885 unsigned BitWidth = getBitWidth(V->getType(), TD); 886 887 // X | Y != 0 if X != 0 or Y != 0. 888 Value *X = 0, *Y = 0; 889 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 890 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 891 892 // ext X != 0 if X != 0. 893 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 894 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 895 896 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 897 // if the lowest bit is shifted off the end. 898 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 899 // shl nuw can't remove any non-zero bits. 900 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 901 if (BO->hasNoUnsignedWrap()) 902 return isKnownNonZero(X, TD, Depth); 903 904 APInt KnownZero(BitWidth, 0); 905 APInt KnownOne(BitWidth, 0); 906 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 907 if (KnownOne[0]) 908 return true; 909 } 910 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 911 // defined if the sign bit is shifted off the end. 912 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 913 // shr exact can only shift out zero bits. 914 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 915 if (BO->isExact()) 916 return isKnownNonZero(X, TD, Depth); 917 918 bool XKnownNonNegative, XKnownNegative; 919 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 920 if (XKnownNegative) 921 return true; 922 } 923 // div exact can only produce a zero if the dividend is zero. 924 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 925 return isKnownNonZero(X, TD, Depth); 926 } 927 // X + Y. 928 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 929 bool XKnownNonNegative, XKnownNegative; 930 bool YKnownNonNegative, YKnownNegative; 931 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 932 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 933 934 // If X and Y are both non-negative (as signed values) then their sum is not 935 // zero unless both X and Y are zero. 936 if (XKnownNonNegative && YKnownNonNegative) 937 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 938 return true; 939 940 // If X and Y are both negative (as signed values) then their sum is not 941 // zero unless both X and Y equal INT_MIN. 942 if (BitWidth && XKnownNegative && YKnownNegative) { 943 APInt KnownZero(BitWidth, 0); 944 APInt KnownOne(BitWidth, 0); 945 APInt Mask = APInt::getSignedMaxValue(BitWidth); 946 // The sign bit of X is set. If some other bit is set then X is not equal 947 // to INT_MIN. 948 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 949 if ((KnownOne & Mask) != 0) 950 return true; 951 // The sign bit of Y is set. If some other bit is set then Y is not equal 952 // to INT_MIN. 953 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth); 954 if ((KnownOne & Mask) != 0) 955 return true; 956 } 957 958 // The sum of a non-negative number and a power of two is not zero. 959 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 960 return true; 961 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 962 return true; 963 } 964 // X * Y. 965 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 966 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 967 // If X and Y are non-zero then so is X * Y as long as the multiplication 968 // does not overflow. 969 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 970 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 971 return true; 972 } 973 // (C ? X : Y) != 0 if X != 0 and Y != 0. 974 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 975 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 976 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 977 return true; 978 } 979 980 if (!BitWidth) return false; 981 APInt KnownZero(BitWidth, 0); 982 APInt KnownOne(BitWidth, 0); 983 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 984 return KnownOne != 0; 985 } 986 987 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 988 /// this predicate to simplify operations downstream. Mask is known to be zero 989 /// for bits that V cannot have. 990 /// 991 /// This function is defined on values with integer type, values with pointer 992 /// type (but only if TD is non-null), and vectors of integers. In the case 993 /// where V is a vector, the mask, known zero, and known one values are the 994 /// same width as the vector element, and the bit is set only if it is true 995 /// for all of the elements in the vector. 996 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 997 const DataLayout *TD, unsigned Depth) { 998 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 999 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1000 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1001 return (KnownZero & Mask) == Mask; 1002 } 1003 1004 1005 1006 /// ComputeNumSignBits - Return the number of times the sign bit of the 1007 /// register is replicated into the other bits. We know that at least 1 bit 1008 /// is always equal to the sign bit (itself), but other cases can give us 1009 /// information. For example, immediately after an "ashr X, 2", we know that 1010 /// the top 3 bits are all equal to each other, so we return 3. 1011 /// 1012 /// 'Op' must have a scalar integer type. 1013 /// 1014 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1015 unsigned Depth) { 1016 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1017 "ComputeNumSignBits requires a DataLayout object to operate " 1018 "on non-integer values!"); 1019 Type *Ty = V->getType(); 1020 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1021 Ty->getScalarSizeInBits(); 1022 unsigned Tmp, Tmp2; 1023 unsigned FirstAnswer = 1; 1024 1025 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1026 // below. 1027 1028 if (Depth == 6) 1029 return 1; // Limit search depth. 1030 1031 Operator *U = dyn_cast<Operator>(V); 1032 switch (Operator::getOpcode(V)) { 1033 default: break; 1034 case Instruction::SExt: 1035 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1036 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1037 1038 case Instruction::AShr: { 1039 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1040 // ashr X, C -> adds C sign bits. Vectors too. 1041 const APInt *ShAmt; 1042 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1043 Tmp += ShAmt->getZExtValue(); 1044 if (Tmp > TyBits) Tmp = TyBits; 1045 } 1046 return Tmp; 1047 } 1048 case Instruction::Shl: { 1049 const APInt *ShAmt; 1050 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1051 // shl destroys sign bits. 1052 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1053 Tmp2 = ShAmt->getZExtValue(); 1054 if (Tmp2 >= TyBits || // Bad shift. 1055 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1056 return Tmp - Tmp2; 1057 } 1058 break; 1059 } 1060 case Instruction::And: 1061 case Instruction::Or: 1062 case Instruction::Xor: // NOT is handled here. 1063 // Logical binary ops preserve the number of sign bits at the worst. 1064 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1065 if (Tmp != 1) { 1066 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1067 FirstAnswer = std::min(Tmp, Tmp2); 1068 // We computed what we know about the sign bits as our first 1069 // answer. Now proceed to the generic code that uses 1070 // ComputeMaskedBits, and pick whichever answer is better. 1071 } 1072 break; 1073 1074 case Instruction::Select: 1075 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1076 if (Tmp == 1) return 1; // Early out. 1077 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1078 return std::min(Tmp, Tmp2); 1079 1080 case Instruction::Add: 1081 // Add can have at most one carry bit. Thus we know that the output 1082 // is, at worst, one more bit than the inputs. 1083 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1084 if (Tmp == 1) return 1; // Early out. 1085 1086 // Special case decrementing a value (ADD X, -1): 1087 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1088 if (CRHS->isAllOnesValue()) { 1089 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1090 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1091 1092 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1093 // sign bits set. 1094 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1095 return TyBits; 1096 1097 // If we are subtracting one from a positive number, there is no carry 1098 // out of the result. 1099 if (KnownZero.isNegative()) 1100 return Tmp; 1101 } 1102 1103 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1104 if (Tmp2 == 1) return 1; 1105 return std::min(Tmp, Tmp2)-1; 1106 1107 case Instruction::Sub: 1108 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1109 if (Tmp2 == 1) return 1; 1110 1111 // Handle NEG. 1112 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1113 if (CLHS->isNullValue()) { 1114 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1115 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1116 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1117 // sign bits set. 1118 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1119 return TyBits; 1120 1121 // If the input is known to be positive (the sign bit is known clear), 1122 // the output of the NEG has the same number of sign bits as the input. 1123 if (KnownZero.isNegative()) 1124 return Tmp2; 1125 1126 // Otherwise, we treat this like a SUB. 1127 } 1128 1129 // Sub can have at most one carry bit. Thus we know that the output 1130 // is, at worst, one more bit than the inputs. 1131 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1132 if (Tmp == 1) return 1; // Early out. 1133 return std::min(Tmp, Tmp2)-1; 1134 1135 case Instruction::PHI: { 1136 PHINode *PN = cast<PHINode>(U); 1137 // Don't analyze large in-degree PHIs. 1138 if (PN->getNumIncomingValues() > 4) break; 1139 1140 // Take the minimum of all incoming values. This can't infinitely loop 1141 // because of our depth threshold. 1142 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1143 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1144 if (Tmp == 1) return Tmp; 1145 Tmp = std::min(Tmp, 1146 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1147 } 1148 return Tmp; 1149 } 1150 1151 case Instruction::Trunc: 1152 // FIXME: it's tricky to do anything useful for this, but it is an important 1153 // case for targets like X86. 1154 break; 1155 } 1156 1157 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1158 // use this information. 1159 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1160 APInt Mask; 1161 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1162 1163 if (KnownZero.isNegative()) { // sign bit is 0 1164 Mask = KnownZero; 1165 } else if (KnownOne.isNegative()) { // sign bit is 1; 1166 Mask = KnownOne; 1167 } else { 1168 // Nothing known. 1169 return FirstAnswer; 1170 } 1171 1172 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1173 // the number of identical bits in the top of the input value. 1174 Mask = ~Mask; 1175 Mask <<= Mask.getBitWidth()-TyBits; 1176 // Return # leading zeros. We use 'min' here in case Val was zero before 1177 // shifting. We don't want to return '64' as for an i32 "0". 1178 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1179 } 1180 1181 /// ComputeMultiple - This function computes the integer multiple of Base that 1182 /// equals V. If successful, it returns true and returns the multiple in 1183 /// Multiple. If unsuccessful, it returns false. It looks 1184 /// through SExt instructions only if LookThroughSExt is true. 1185 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1186 bool LookThroughSExt, unsigned Depth) { 1187 const unsigned MaxDepth = 6; 1188 1189 assert(V && "No Value?"); 1190 assert(Depth <= MaxDepth && "Limit Search Depth"); 1191 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1192 1193 Type *T = V->getType(); 1194 1195 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1196 1197 if (Base == 0) 1198 return false; 1199 1200 if (Base == 1) { 1201 Multiple = V; 1202 return true; 1203 } 1204 1205 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1206 Constant *BaseVal = ConstantInt::get(T, Base); 1207 if (CO && CO == BaseVal) { 1208 // Multiple is 1. 1209 Multiple = ConstantInt::get(T, 1); 1210 return true; 1211 } 1212 1213 if (CI && CI->getZExtValue() % Base == 0) { 1214 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1215 return true; 1216 } 1217 1218 if (Depth == MaxDepth) return false; // Limit search depth. 1219 1220 Operator *I = dyn_cast<Operator>(V); 1221 if (!I) return false; 1222 1223 switch (I->getOpcode()) { 1224 default: break; 1225 case Instruction::SExt: 1226 if (!LookThroughSExt) return false; 1227 // otherwise fall through to ZExt 1228 case Instruction::ZExt: 1229 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1230 LookThroughSExt, Depth+1); 1231 case Instruction::Shl: 1232 case Instruction::Mul: { 1233 Value *Op0 = I->getOperand(0); 1234 Value *Op1 = I->getOperand(1); 1235 1236 if (I->getOpcode() == Instruction::Shl) { 1237 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1238 if (!Op1CI) return false; 1239 // Turn Op0 << Op1 into Op0 * 2^Op1 1240 APInt Op1Int = Op1CI->getValue(); 1241 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1242 APInt API(Op1Int.getBitWidth(), 0); 1243 API.setBit(BitToSet); 1244 Op1 = ConstantInt::get(V->getContext(), API); 1245 } 1246 1247 Value *Mul0 = NULL; 1248 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1249 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1250 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1251 if (Op1C->getType()->getPrimitiveSizeInBits() < 1252 MulC->getType()->getPrimitiveSizeInBits()) 1253 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1254 if (Op1C->getType()->getPrimitiveSizeInBits() > 1255 MulC->getType()->getPrimitiveSizeInBits()) 1256 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1257 1258 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1259 Multiple = ConstantExpr::getMul(MulC, Op1C); 1260 return true; 1261 } 1262 1263 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1264 if (Mul0CI->getValue() == 1) { 1265 // V == Base * Op1, so return Op1 1266 Multiple = Op1; 1267 return true; 1268 } 1269 } 1270 1271 Value *Mul1 = NULL; 1272 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1273 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1274 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1275 if (Op0C->getType()->getPrimitiveSizeInBits() < 1276 MulC->getType()->getPrimitiveSizeInBits()) 1277 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1278 if (Op0C->getType()->getPrimitiveSizeInBits() > 1279 MulC->getType()->getPrimitiveSizeInBits()) 1280 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1281 1282 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1283 Multiple = ConstantExpr::getMul(MulC, Op0C); 1284 return true; 1285 } 1286 1287 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1288 if (Mul1CI->getValue() == 1) { 1289 // V == Base * Op0, so return Op0 1290 Multiple = Op0; 1291 return true; 1292 } 1293 } 1294 } 1295 } 1296 1297 // We could not determine if V is a multiple of Base. 1298 return false; 1299 } 1300 1301 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1302 /// value is never equal to -0.0. 1303 /// 1304 /// NOTE: this function will need to be revisited when we support non-default 1305 /// rounding modes! 1306 /// 1307 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1308 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1309 return !CFP->getValueAPF().isNegZero(); 1310 1311 if (Depth == 6) 1312 return 1; // Limit search depth. 1313 1314 const Operator *I = dyn_cast<Operator>(V); 1315 if (I == 0) return false; 1316 1317 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1318 if (I->getOpcode() == Instruction::FAdd && 1319 isa<ConstantFP>(I->getOperand(1)) && 1320 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1321 return true; 1322 1323 // sitofp and uitofp turn into +0.0 for zero. 1324 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1325 return true; 1326 1327 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1328 // sqrt(-0.0) = -0.0, no other negative results are possible. 1329 if (II->getIntrinsicID() == Intrinsic::sqrt) 1330 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1331 1332 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1333 if (const Function *F = CI->getCalledFunction()) { 1334 if (F->isDeclaration()) { 1335 // abs(x) != -0.0 1336 if (F->getName() == "abs") return true; 1337 // fabs[lf](x) != -0.0 1338 if (F->getName() == "fabs") return true; 1339 if (F->getName() == "fabsf") return true; 1340 if (F->getName() == "fabsl") return true; 1341 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1342 F->getName() == "sqrtl") 1343 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 /// isBytewiseValue - If the specified value can be set by repeating the same 1351 /// byte in memory, return the i8 value that it is represented with. This is 1352 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1353 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1354 /// byte store (e.g. i16 0x1234), return null. 1355 Value *llvm::isBytewiseValue(Value *V) { 1356 // All byte-wide stores are splatable, even of arbitrary variables. 1357 if (V->getType()->isIntegerTy(8)) return V; 1358 1359 // Handle 'null' ConstantArrayZero etc. 1360 if (Constant *C = dyn_cast<Constant>(V)) 1361 if (C->isNullValue()) 1362 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1363 1364 // Constant float and double values can be handled as integer values if the 1365 // corresponding integer value is "byteable". An important case is 0.0. 1366 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1367 if (CFP->getType()->isFloatTy()) 1368 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1369 if (CFP->getType()->isDoubleTy()) 1370 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1371 // Don't handle long double formats, which have strange constraints. 1372 } 1373 1374 // We can handle constant integers that are power of two in size and a 1375 // multiple of 8 bits. 1376 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1377 unsigned Width = CI->getBitWidth(); 1378 if (isPowerOf2_32(Width) && Width > 8) { 1379 // We can handle this value if the recursive binary decomposition is the 1380 // same at all levels. 1381 APInt Val = CI->getValue(); 1382 APInt Val2; 1383 while (Val.getBitWidth() != 8) { 1384 unsigned NextWidth = Val.getBitWidth()/2; 1385 Val2 = Val.lshr(NextWidth); 1386 Val2 = Val2.trunc(Val.getBitWidth()/2); 1387 Val = Val.trunc(Val.getBitWidth()/2); 1388 1389 // If the top/bottom halves aren't the same, reject it. 1390 if (Val != Val2) 1391 return 0; 1392 } 1393 return ConstantInt::get(V->getContext(), Val); 1394 } 1395 } 1396 1397 // A ConstantDataArray/Vector is splatable if all its members are equal and 1398 // also splatable. 1399 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1400 Value *Elt = CA->getElementAsConstant(0); 1401 Value *Val = isBytewiseValue(Elt); 1402 if (!Val) 1403 return 0; 1404 1405 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1406 if (CA->getElementAsConstant(I) != Elt) 1407 return 0; 1408 1409 return Val; 1410 } 1411 1412 // Conceptually, we could handle things like: 1413 // %a = zext i8 %X to i16 1414 // %b = shl i16 %a, 8 1415 // %c = or i16 %a, %b 1416 // but until there is an example that actually needs this, it doesn't seem 1417 // worth worrying about. 1418 return 0; 1419 } 1420 1421 1422 // This is the recursive version of BuildSubAggregate. It takes a few different 1423 // arguments. Idxs is the index within the nested struct From that we are 1424 // looking at now (which is of type IndexedType). IdxSkip is the number of 1425 // indices from Idxs that should be left out when inserting into the resulting 1426 // struct. To is the result struct built so far, new insertvalue instructions 1427 // build on that. 1428 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1429 SmallVector<unsigned, 10> &Idxs, 1430 unsigned IdxSkip, 1431 Instruction *InsertBefore) { 1432 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1433 if (STy) { 1434 // Save the original To argument so we can modify it 1435 Value *OrigTo = To; 1436 // General case, the type indexed by Idxs is a struct 1437 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1438 // Process each struct element recursively 1439 Idxs.push_back(i); 1440 Value *PrevTo = To; 1441 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1442 InsertBefore); 1443 Idxs.pop_back(); 1444 if (!To) { 1445 // Couldn't find any inserted value for this index? Cleanup 1446 while (PrevTo != OrigTo) { 1447 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1448 PrevTo = Del->getAggregateOperand(); 1449 Del->eraseFromParent(); 1450 } 1451 // Stop processing elements 1452 break; 1453 } 1454 } 1455 // If we successfully found a value for each of our subaggregates 1456 if (To) 1457 return To; 1458 } 1459 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1460 // the struct's elements had a value that was inserted directly. In the latter 1461 // case, perhaps we can't determine each of the subelements individually, but 1462 // we might be able to find the complete struct somewhere. 1463 1464 // Find the value that is at that particular spot 1465 Value *V = FindInsertedValue(From, Idxs); 1466 1467 if (!V) 1468 return NULL; 1469 1470 // Insert the value in the new (sub) aggregrate 1471 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1472 "tmp", InsertBefore); 1473 } 1474 1475 // This helper takes a nested struct and extracts a part of it (which is again a 1476 // struct) into a new value. For example, given the struct: 1477 // { a, { b, { c, d }, e } } 1478 // and the indices "1, 1" this returns 1479 // { c, d }. 1480 // 1481 // It does this by inserting an insertvalue for each element in the resulting 1482 // struct, as opposed to just inserting a single struct. This will only work if 1483 // each of the elements of the substruct are known (ie, inserted into From by an 1484 // insertvalue instruction somewhere). 1485 // 1486 // All inserted insertvalue instructions are inserted before InsertBefore 1487 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1488 Instruction *InsertBefore) { 1489 assert(InsertBefore && "Must have someplace to insert!"); 1490 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1491 idx_range); 1492 Value *To = UndefValue::get(IndexedType); 1493 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1494 unsigned IdxSkip = Idxs.size(); 1495 1496 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1497 } 1498 1499 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1500 /// the scalar value indexed is already around as a register, for example if it 1501 /// were inserted directly into the aggregrate. 1502 /// 1503 /// If InsertBefore is not null, this function will duplicate (modified) 1504 /// insertvalues when a part of a nested struct is extracted. 1505 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1506 Instruction *InsertBefore) { 1507 // Nothing to index? Just return V then (this is useful at the end of our 1508 // recursion). 1509 if (idx_range.empty()) 1510 return V; 1511 // We have indices, so V should have an indexable type. 1512 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1513 "Not looking at a struct or array?"); 1514 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1515 "Invalid indices for type?"); 1516 1517 if (Constant *C = dyn_cast<Constant>(V)) { 1518 C = C->getAggregateElement(idx_range[0]); 1519 if (C == 0) return 0; 1520 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1521 } 1522 1523 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1524 // Loop the indices for the insertvalue instruction in parallel with the 1525 // requested indices 1526 const unsigned *req_idx = idx_range.begin(); 1527 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1528 i != e; ++i, ++req_idx) { 1529 if (req_idx == idx_range.end()) { 1530 // We can't handle this without inserting insertvalues 1531 if (!InsertBefore) 1532 return 0; 1533 1534 // The requested index identifies a part of a nested aggregate. Handle 1535 // this specially. For example, 1536 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1537 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1538 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1539 // This can be changed into 1540 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1541 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1542 // which allows the unused 0,0 element from the nested struct to be 1543 // removed. 1544 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1545 InsertBefore); 1546 } 1547 1548 // This insert value inserts something else than what we are looking for. 1549 // See if the (aggregrate) value inserted into has the value we are 1550 // looking for, then. 1551 if (*req_idx != *i) 1552 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1553 InsertBefore); 1554 } 1555 // If we end up here, the indices of the insertvalue match with those 1556 // requested (though possibly only partially). Now we recursively look at 1557 // the inserted value, passing any remaining indices. 1558 return FindInsertedValue(I->getInsertedValueOperand(), 1559 makeArrayRef(req_idx, idx_range.end()), 1560 InsertBefore); 1561 } 1562 1563 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1564 // If we're extracting a value from an aggregrate that was extracted from 1565 // something else, we can extract from that something else directly instead. 1566 // However, we will need to chain I's indices with the requested indices. 1567 1568 // Calculate the number of indices required 1569 unsigned size = I->getNumIndices() + idx_range.size(); 1570 // Allocate some space to put the new indices in 1571 SmallVector<unsigned, 5> Idxs; 1572 Idxs.reserve(size); 1573 // Add indices from the extract value instruction 1574 Idxs.append(I->idx_begin(), I->idx_end()); 1575 1576 // Add requested indices 1577 Idxs.append(idx_range.begin(), idx_range.end()); 1578 1579 assert(Idxs.size() == size 1580 && "Number of indices added not correct?"); 1581 1582 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1583 } 1584 // Otherwise, we don't know (such as, extracting from a function return value 1585 // or load instruction) 1586 return 0; 1587 } 1588 1589 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1590 /// it can be expressed as a base pointer plus a constant offset. Return the 1591 /// base and offset to the caller. 1592 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1593 const DataLayout &TD) { 1594 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1595 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1596 return Ptr; 1597 1598 // Just look through bitcasts. 1599 if (PtrOp->getOpcode() == Instruction::BitCast) 1600 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1601 1602 // If this is a GEP with constant indices, we can look through it. 1603 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1604 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1605 1606 gep_type_iterator GTI = gep_type_begin(GEP); 1607 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1608 ++I, ++GTI) { 1609 ConstantInt *OpC = cast<ConstantInt>(*I); 1610 if (OpC->isZero()) continue; 1611 1612 // Handle a struct and array indices which add their offset to the pointer. 1613 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1614 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1615 } else { 1616 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1617 Offset += OpC->getSExtValue()*Size; 1618 } 1619 } 1620 1621 // Re-sign extend from the pointer size if needed to get overflow edge cases 1622 // right. 1623 unsigned AS = GEP->getPointerAddressSpace(); 1624 unsigned PtrSize = TD.getPointerSizeInBits(AS); 1625 if (PtrSize < 64) 1626 Offset = SignExtend64(Offset, PtrSize); 1627 1628 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1629 } 1630 1631 1632 /// getConstantStringInfo - This function computes the length of a 1633 /// null-terminated C string pointed to by V. If successful, it returns true 1634 /// and returns the string in Str. If unsuccessful, it returns false. 1635 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1636 uint64_t Offset, bool TrimAtNul) { 1637 assert(V); 1638 1639 // Look through bitcast instructions and geps. 1640 V = V->stripPointerCasts(); 1641 1642 // If the value is a GEP instructionor constant expression, treat it as an 1643 // offset. 1644 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1645 // Make sure the GEP has exactly three arguments. 1646 if (GEP->getNumOperands() != 3) 1647 return false; 1648 1649 // Make sure the index-ee is a pointer to array of i8. 1650 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1651 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1652 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1653 return false; 1654 1655 // Check to make sure that the first operand of the GEP is an integer and 1656 // has value 0 so that we are sure we're indexing into the initializer. 1657 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1658 if (FirstIdx == 0 || !FirstIdx->isZero()) 1659 return false; 1660 1661 // If the second index isn't a ConstantInt, then this is a variable index 1662 // into the array. If this occurs, we can't say anything meaningful about 1663 // the string. 1664 uint64_t StartIdx = 0; 1665 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1666 StartIdx = CI->getZExtValue(); 1667 else 1668 return false; 1669 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1670 } 1671 1672 // The GEP instruction, constant or instruction, must reference a global 1673 // variable that is a constant and is initialized. The referenced constant 1674 // initializer is the array that we'll use for optimization. 1675 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1676 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1677 return false; 1678 1679 // Handle the all-zeros case 1680 if (GV->getInitializer()->isNullValue()) { 1681 // This is a degenerate case. The initializer is constant zero so the 1682 // length of the string must be zero. 1683 Str = ""; 1684 return true; 1685 } 1686 1687 // Must be a Constant Array 1688 const ConstantDataArray *Array = 1689 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1690 if (Array == 0 || !Array->isString()) 1691 return false; 1692 1693 // Get the number of elements in the array 1694 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1695 1696 // Start out with the entire array in the StringRef. 1697 Str = Array->getAsString(); 1698 1699 if (Offset > NumElts) 1700 return false; 1701 1702 // Skip over 'offset' bytes. 1703 Str = Str.substr(Offset); 1704 1705 if (TrimAtNul) { 1706 // Trim off the \0 and anything after it. If the array is not nul 1707 // terminated, we just return the whole end of string. The client may know 1708 // some other way that the string is length-bound. 1709 Str = Str.substr(0, Str.find('\0')); 1710 } 1711 return true; 1712 } 1713 1714 // These next two are very similar to the above, but also look through PHI 1715 // nodes. 1716 // TODO: See if we can integrate these two together. 1717 1718 /// GetStringLengthH - If we can compute the length of the string pointed to by 1719 /// the specified pointer, return 'len+1'. If we can't, return 0. 1720 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1721 // Look through noop bitcast instructions. 1722 V = V->stripPointerCasts(); 1723 1724 // If this is a PHI node, there are two cases: either we have already seen it 1725 // or we haven't. 1726 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1727 if (!PHIs.insert(PN)) 1728 return ~0ULL; // already in the set. 1729 1730 // If it was new, see if all the input strings are the same length. 1731 uint64_t LenSoFar = ~0ULL; 1732 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1733 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1734 if (Len == 0) return 0; // Unknown length -> unknown. 1735 1736 if (Len == ~0ULL) continue; 1737 1738 if (Len != LenSoFar && LenSoFar != ~0ULL) 1739 return 0; // Disagree -> unknown. 1740 LenSoFar = Len; 1741 } 1742 1743 // Success, all agree. 1744 return LenSoFar; 1745 } 1746 1747 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1748 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1749 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1750 if (Len1 == 0) return 0; 1751 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1752 if (Len2 == 0) return 0; 1753 if (Len1 == ~0ULL) return Len2; 1754 if (Len2 == ~0ULL) return Len1; 1755 if (Len1 != Len2) return 0; 1756 return Len1; 1757 } 1758 1759 // Otherwise, see if we can read the string. 1760 StringRef StrData; 1761 if (!getConstantStringInfo(V, StrData)) 1762 return 0; 1763 1764 return StrData.size()+1; 1765 } 1766 1767 /// GetStringLength - If we can compute the length of the string pointed to by 1768 /// the specified pointer, return 'len+1'. If we can't, return 0. 1769 uint64_t llvm::GetStringLength(Value *V) { 1770 if (!V->getType()->isPointerTy()) return 0; 1771 1772 SmallPtrSet<PHINode*, 32> PHIs; 1773 uint64_t Len = GetStringLengthH(V, PHIs); 1774 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1775 // an empty string as a length. 1776 return Len == ~0ULL ? 1 : Len; 1777 } 1778 1779 Value * 1780 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1781 if (!V->getType()->isPointerTy()) 1782 return V; 1783 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1784 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1785 V = GEP->getPointerOperand(); 1786 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1787 V = cast<Operator>(V)->getOperand(0); 1788 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1789 if (GA->mayBeOverridden()) 1790 return V; 1791 V = GA->getAliasee(); 1792 } else { 1793 // See if InstructionSimplify knows any relevant tricks. 1794 if (Instruction *I = dyn_cast<Instruction>(V)) 1795 // TODO: Acquire a DominatorTree and use it. 1796 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1797 V = Simplified; 1798 continue; 1799 } 1800 1801 return V; 1802 } 1803 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1804 } 1805 return V; 1806 } 1807 1808 void 1809 llvm::GetUnderlyingObjects(Value *V, 1810 SmallVectorImpl<Value *> &Objects, 1811 const DataLayout *TD, 1812 unsigned MaxLookup) { 1813 SmallPtrSet<Value *, 4> Visited; 1814 SmallVector<Value *, 4> Worklist; 1815 Worklist.push_back(V); 1816 do { 1817 Value *P = Worklist.pop_back_val(); 1818 P = GetUnderlyingObject(P, TD, MaxLookup); 1819 1820 if (!Visited.insert(P)) 1821 continue; 1822 1823 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1824 Worklist.push_back(SI->getTrueValue()); 1825 Worklist.push_back(SI->getFalseValue()); 1826 continue; 1827 } 1828 1829 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1830 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1831 Worklist.push_back(PN->getIncomingValue(i)); 1832 continue; 1833 } 1834 1835 Objects.push_back(P); 1836 } while (!Worklist.empty()); 1837 } 1838 1839 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1840 /// are lifetime markers. 1841 /// 1842 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1843 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1844 UI != UE; ++UI) { 1845 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1846 if (!II) return false; 1847 1848 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1849 II->getIntrinsicID() != Intrinsic::lifetime_end) 1850 return false; 1851 } 1852 return true; 1853 } 1854 1855 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1856 const DataLayout *TD) { 1857 const Operator *Inst = dyn_cast<Operator>(V); 1858 if (!Inst) 1859 return false; 1860 1861 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1862 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1863 if (C->canTrap()) 1864 return false; 1865 1866 switch (Inst->getOpcode()) { 1867 default: 1868 return true; 1869 case Instruction::UDiv: 1870 case Instruction::URem: 1871 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1872 return isKnownNonZero(Inst->getOperand(1), TD); 1873 case Instruction::SDiv: 1874 case Instruction::SRem: { 1875 Value *Op = Inst->getOperand(1); 1876 // x / y is undefined if y == 0 1877 if (!isKnownNonZero(Op, TD)) 1878 return false; 1879 // x / y might be undefined if y == -1 1880 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1881 if (BitWidth == 0) 1882 return false; 1883 APInt KnownZero(BitWidth, 0); 1884 APInt KnownOne(BitWidth, 0); 1885 ComputeMaskedBits(Op, KnownZero, KnownOne, TD); 1886 return !!KnownZero; 1887 } 1888 case Instruction::Load: { 1889 const LoadInst *LI = cast<LoadInst>(Inst); 1890 if (!LI->isUnordered()) 1891 return false; 1892 return LI->getPointerOperand()->isDereferenceablePointer(); 1893 } 1894 case Instruction::Call: { 1895 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1896 switch (II->getIntrinsicID()) { 1897 // These synthetic intrinsics have no side-effects, and just mark 1898 // information about their operands. 1899 // FIXME: There are other no-op synthetic instructions that potentially 1900 // should be considered at least *safe* to speculate... 1901 case Intrinsic::dbg_declare: 1902 case Intrinsic::dbg_value: 1903 return true; 1904 1905 case Intrinsic::bswap: 1906 case Intrinsic::ctlz: 1907 case Intrinsic::ctpop: 1908 case Intrinsic::cttz: 1909 case Intrinsic::objectsize: 1910 case Intrinsic::sadd_with_overflow: 1911 case Intrinsic::smul_with_overflow: 1912 case Intrinsic::ssub_with_overflow: 1913 case Intrinsic::uadd_with_overflow: 1914 case Intrinsic::umul_with_overflow: 1915 case Intrinsic::usub_with_overflow: 1916 return true; 1917 // TODO: some fp intrinsics are marked as having the same error handling 1918 // as libm. They're safe to speculate when they won't error. 1919 // TODO: are convert_{from,to}_fp16 safe? 1920 // TODO: can we list target-specific intrinsics here? 1921 default: break; 1922 } 1923 } 1924 return false; // The called function could have undefined behavior or 1925 // side-effects, even if marked readnone nounwind. 1926 } 1927 case Instruction::VAArg: 1928 case Instruction::Alloca: 1929 case Instruction::Invoke: 1930 case Instruction::PHI: 1931 case Instruction::Store: 1932 case Instruction::Ret: 1933 case Instruction::Br: 1934 case Instruction::IndirectBr: 1935 case Instruction::Switch: 1936 case Instruction::Unreachable: 1937 case Instruction::Fence: 1938 case Instruction::LandingPad: 1939 case Instruction::AtomicRMW: 1940 case Instruction::AtomicCmpXchg: 1941 case Instruction::Resume: 1942 return false; // Misc instructions which have effects 1943 } 1944 } 1945