1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/CallSite.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/GetElementPtrTypeIterator.h" 24 #include "llvm/IR/GlobalAlias.h" 25 #include "llvm/IR/GlobalVariable.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/LLVMContext.h" 29 #include "llvm/IR/Metadata.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/MathExtras.h" 33 #include <cstring> 34 using namespace llvm; 35 using namespace llvm::PatternMatch; 36 37 const unsigned MaxDepth = 6; 38 39 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 40 /// unknown returns 0). For vector types, returns the element type's bitwidth. 41 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 42 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 43 return BitWidth; 44 45 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 46 } 47 48 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 49 APInt &KnownZero, APInt &KnownOne, 50 APInt &KnownZero2, APInt &KnownOne2, 51 const DataLayout *TD, unsigned Depth) { 52 if (!Add) { 53 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 54 // We know that the top bits of C-X are clear if X contains less bits 55 // than C (i.e. no wrap-around can happen). For example, 20-X is 56 // positive if we can prove that X is >= 0 and < 16. 57 if (!CLHS->getValue().isNegative()) { 58 unsigned BitWidth = KnownZero.getBitWidth(); 59 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 60 // NLZ can't be BitWidth with no sign bit 61 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 62 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 63 64 // If all of the MaskV bits are known to be zero, then we know the 65 // output top bits are zero, because we now know that the output is 66 // from [0-C]. 67 if ((KnownZero2 & MaskV) == MaskV) { 68 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 69 // Top bits known zero. 70 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 71 } 72 } 73 } 74 } 75 76 unsigned BitWidth = KnownZero.getBitWidth(); 77 78 // If one of the operands has trailing zeros, then the bits that the 79 // other operand has in those bit positions will be preserved in the 80 // result. For an add, this works with either operand. For a subtract, 81 // this only works if the known zeros are in the right operand. 82 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 83 llvm::computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 84 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 85 86 llvm::computeKnownBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 87 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 88 89 // Determine which operand has more trailing zeros, and use that 90 // many bits from the other operand. 91 if (LHSKnownZeroOut > RHSKnownZeroOut) { 92 if (Add) { 93 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 94 KnownZero |= KnownZero2 & Mask; 95 KnownOne |= KnownOne2 & Mask; 96 } else { 97 // If the known zeros are in the left operand for a subtract, 98 // fall back to the minimum known zeros in both operands. 99 KnownZero |= APInt::getLowBitsSet(BitWidth, 100 std::min(LHSKnownZeroOut, 101 RHSKnownZeroOut)); 102 } 103 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 104 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 105 KnownZero |= LHSKnownZero & Mask; 106 KnownOne |= LHSKnownOne & Mask; 107 } 108 109 // Are we still trying to solve for the sign bit? 110 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 111 if (NSW) { 112 if (Add) { 113 // Adding two positive numbers can't wrap into negative 114 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 115 KnownZero |= APInt::getSignBit(BitWidth); 116 // and adding two negative numbers can't wrap into positive. 117 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 118 KnownOne |= APInt::getSignBit(BitWidth); 119 } else { 120 // Subtracting a negative number from a positive one can't wrap 121 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 122 KnownZero |= APInt::getSignBit(BitWidth); 123 // neither can subtracting a positive number from a negative one. 124 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 125 KnownOne |= APInt::getSignBit(BitWidth); 126 } 127 } 128 } 129 } 130 131 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 132 APInt &KnownZero, APInt &KnownOne, 133 APInt &KnownZero2, APInt &KnownOne2, 134 const DataLayout *TD, unsigned Depth) { 135 unsigned BitWidth = KnownZero.getBitWidth(); 136 computeKnownBits(Op1, KnownZero, KnownOne, TD, Depth+1); 137 computeKnownBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 138 139 bool isKnownNegative = false; 140 bool isKnownNonNegative = false; 141 // If the multiplication is known not to overflow, compute the sign bit. 142 if (NSW) { 143 if (Op0 == Op1) { 144 // The product of a number with itself is non-negative. 145 isKnownNonNegative = true; 146 } else { 147 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 148 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 149 bool isKnownNegativeOp1 = KnownOne.isNegative(); 150 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 151 // The product of two numbers with the same sign is non-negative. 152 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 153 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 154 // The product of a negative number and a non-negative number is either 155 // negative or zero. 156 if (!isKnownNonNegative) 157 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 158 isKnownNonZero(Op0, TD, Depth)) || 159 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 160 isKnownNonZero(Op1, TD, Depth)); 161 } 162 } 163 164 // If low bits are zero in either operand, output low known-0 bits. 165 // Also compute a conserative estimate for high known-0 bits. 166 // More trickiness is possible, but this is sufficient for the 167 // interesting case of alignment computation. 168 KnownOne.clearAllBits(); 169 unsigned TrailZ = KnownZero.countTrailingOnes() + 170 KnownZero2.countTrailingOnes(); 171 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 172 KnownZero2.countLeadingOnes(), 173 BitWidth) - BitWidth; 174 175 TrailZ = std::min(TrailZ, BitWidth); 176 LeadZ = std::min(LeadZ, BitWidth); 177 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 178 APInt::getHighBitsSet(BitWidth, LeadZ); 179 180 // Only make use of no-wrap flags if we failed to compute the sign bit 181 // directly. This matters if the multiplication always overflows, in 182 // which case we prefer to follow the result of the direct computation, 183 // though as the program is invoking undefined behaviour we can choose 184 // whatever we like here. 185 if (isKnownNonNegative && !KnownOne.isNegative()) 186 KnownZero.setBit(BitWidth - 1); 187 else if (isKnownNegative && !KnownZero.isNegative()) 188 KnownOne.setBit(BitWidth - 1); 189 } 190 191 void llvm::computeKnownBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 192 unsigned BitWidth = KnownZero.getBitWidth(); 193 unsigned NumRanges = Ranges.getNumOperands() / 2; 194 assert(NumRanges >= 1); 195 196 // Use the high end of the ranges to find leading zeros. 197 unsigned MinLeadingZeros = BitWidth; 198 for (unsigned i = 0; i < NumRanges; ++i) { 199 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 200 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 201 ConstantRange Range(Lower->getValue(), Upper->getValue()); 202 if (Range.isWrappedSet()) 203 MinLeadingZeros = 0; // -1 has no zeros 204 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 205 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 206 } 207 208 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 209 } 210 211 /// Determine which bits of V are known to be either zero or one and return 212 /// them in the KnownZero/KnownOne bit sets. 213 /// 214 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 215 /// we cannot optimize based on the assumption that it is zero without changing 216 /// it to be an explicit zero. If we don't change it to zero, other code could 217 /// optimized based on the contradictory assumption that it is non-zero. 218 /// Because instcombine aggressively folds operations with undef args anyway, 219 /// this won't lose us code quality. 220 /// 221 /// This function is defined on values with integer type, values with pointer 222 /// type (but only if TD is non-null), and vectors of integers. In the case 223 /// where V is a vector, known zero, and known one values are the 224 /// same width as the vector element, and the bit is set only if it is true 225 /// for all of the elements in the vector. 226 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 227 const DataLayout *TD, unsigned Depth) { 228 assert(V && "No Value?"); 229 assert(Depth <= MaxDepth && "Limit Search Depth"); 230 unsigned BitWidth = KnownZero.getBitWidth(); 231 232 assert((V->getType()->isIntOrIntVectorTy() || 233 V->getType()->getScalarType()->isPointerTy()) && 234 "Not integer or pointer type!"); 235 assert((!TD || 236 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 237 (!V->getType()->isIntOrIntVectorTy() || 238 V->getType()->getScalarSizeInBits() == BitWidth) && 239 KnownZero.getBitWidth() == BitWidth && 240 KnownOne.getBitWidth() == BitWidth && 241 "V, KnownOne and KnownZero should have same BitWidth"); 242 243 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 244 // We know all of the bits for a constant! 245 KnownOne = CI->getValue(); 246 KnownZero = ~KnownOne; 247 return; 248 } 249 // Null and aggregate-zero are all-zeros. 250 if (isa<ConstantPointerNull>(V) || 251 isa<ConstantAggregateZero>(V)) { 252 KnownOne.clearAllBits(); 253 KnownZero = APInt::getAllOnesValue(BitWidth); 254 return; 255 } 256 // Handle a constant vector by taking the intersection of the known bits of 257 // each element. There is no real need to handle ConstantVector here, because 258 // we don't handle undef in any particularly useful way. 259 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 260 // We know that CDS must be a vector of integers. Take the intersection of 261 // each element. 262 KnownZero.setAllBits(); KnownOne.setAllBits(); 263 APInt Elt(KnownZero.getBitWidth(), 0); 264 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 265 Elt = CDS->getElementAsInteger(i); 266 KnownZero &= ~Elt; 267 KnownOne &= Elt; 268 } 269 return; 270 } 271 272 // The address of an aligned GlobalValue has trailing zeros. 273 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 274 unsigned Align = GV->getAlignment(); 275 if (Align == 0 && TD) { 276 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 277 Type *ObjectType = GVar->getType()->getElementType(); 278 if (ObjectType->isSized()) { 279 // If the object is defined in the current Module, we'll be giving 280 // it the preferred alignment. Otherwise, we have to assume that it 281 // may only have the minimum ABI alignment. 282 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 283 Align = TD->getPreferredAlignment(GVar); 284 else 285 Align = TD->getABITypeAlignment(ObjectType); 286 } 287 } 288 } 289 if (Align > 0) 290 KnownZero = APInt::getLowBitsSet(BitWidth, 291 countTrailingZeros(Align)); 292 else 293 KnownZero.clearAllBits(); 294 KnownOne.clearAllBits(); 295 return; 296 } 297 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 298 // the bits of its aliasee. 299 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 300 if (GA->mayBeOverridden()) { 301 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 302 } else { 303 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 304 } 305 return; 306 } 307 308 if (Argument *A = dyn_cast<Argument>(V)) { 309 unsigned Align = 0; 310 311 if (A->hasByValOrInAllocaAttr()) { 312 // Get alignment information off byval/inalloca arguments if specified in 313 // the IR. 314 Align = A->getParamAlignment(); 315 } else if (TD && A->hasStructRetAttr()) { 316 // An sret parameter has at least the ABI alignment of the return type. 317 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 318 if (EltTy->isSized()) 319 Align = TD->getABITypeAlignment(EltTy); 320 } 321 322 if (Align) 323 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 324 return; 325 } 326 327 // Start out not knowing anything. 328 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 329 330 if (Depth == MaxDepth) 331 return; // Limit search depth. 332 333 Operator *I = dyn_cast<Operator>(V); 334 if (!I) return; 335 336 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 337 switch (I->getOpcode()) { 338 default: break; 339 case Instruction::Load: 340 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 341 computeKnownBitsLoad(*MD, KnownZero); 342 break; 343 case Instruction::And: { 344 // If either the LHS or the RHS are Zero, the result is zero. 345 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 346 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 347 348 // Output known-1 bits are only known if set in both the LHS & RHS. 349 KnownOne &= KnownOne2; 350 // Output known-0 are known to be clear if zero in either the LHS | RHS. 351 KnownZero |= KnownZero2; 352 break; 353 } 354 case Instruction::Or: { 355 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 356 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 357 358 // Output known-0 bits are only known if clear in both the LHS & RHS. 359 KnownZero &= KnownZero2; 360 // Output known-1 are known to be set if set in either the LHS | RHS. 361 KnownOne |= KnownOne2; 362 break; 363 } 364 case Instruction::Xor: { 365 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 366 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 367 368 // Output known-0 bits are known if clear or set in both the LHS & RHS. 369 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 370 // Output known-1 are known to be set if set in only one of the LHS, RHS. 371 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 372 KnownZero = KnownZeroOut; 373 break; 374 } 375 case Instruction::Mul: { 376 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 377 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, 378 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 379 break; 380 } 381 case Instruction::UDiv: { 382 // For the purposes of computing leading zeros we can conservatively 383 // treat a udiv as a logical right shift by the power of 2 known to 384 // be less than the denominator. 385 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 386 unsigned LeadZ = KnownZero2.countLeadingOnes(); 387 388 KnownOne2.clearAllBits(); 389 KnownZero2.clearAllBits(); 390 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 391 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 392 if (RHSUnknownLeadingOnes != BitWidth) 393 LeadZ = std::min(BitWidth, 394 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 395 396 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 397 break; 398 } 399 case Instruction::Select: 400 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 401 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 402 Depth+1); 403 404 // Only known if known in both the LHS and RHS. 405 KnownOne &= KnownOne2; 406 KnownZero &= KnownZero2; 407 break; 408 case Instruction::FPTrunc: 409 case Instruction::FPExt: 410 case Instruction::FPToUI: 411 case Instruction::FPToSI: 412 case Instruction::SIToFP: 413 case Instruction::UIToFP: 414 break; // Can't work with floating point. 415 case Instruction::PtrToInt: 416 case Instruction::IntToPtr: 417 // We can't handle these if we don't know the pointer size. 418 if (!TD) break; 419 // FALL THROUGH and handle them the same as zext/trunc. 420 case Instruction::ZExt: 421 case Instruction::Trunc: { 422 Type *SrcTy = I->getOperand(0)->getType(); 423 424 unsigned SrcBitWidth; 425 // Note that we handle pointer operands here because of inttoptr/ptrtoint 426 // which fall through here. 427 if(TD) { 428 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 429 } else { 430 SrcBitWidth = SrcTy->getScalarSizeInBits(); 431 if (!SrcBitWidth) break; 432 } 433 434 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 435 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 436 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 437 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 438 KnownZero = KnownZero.zextOrTrunc(BitWidth); 439 KnownOne = KnownOne.zextOrTrunc(BitWidth); 440 // Any top bits are known to be zero. 441 if (BitWidth > SrcBitWidth) 442 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 443 break; 444 } 445 case Instruction::BitCast: { 446 Type *SrcTy = I->getOperand(0)->getType(); 447 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 448 // TODO: For now, not handling conversions like: 449 // (bitcast i64 %x to <2 x i32>) 450 !I->getType()->isVectorTy()) { 451 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 452 break; 453 } 454 break; 455 } 456 case Instruction::SExt: { 457 // Compute the bits in the result that are not present in the input. 458 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 459 460 KnownZero = KnownZero.trunc(SrcBitWidth); 461 KnownOne = KnownOne.trunc(SrcBitWidth); 462 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 463 KnownZero = KnownZero.zext(BitWidth); 464 KnownOne = KnownOne.zext(BitWidth); 465 466 // If the sign bit of the input is known set or clear, then we know the 467 // top bits of the result. 468 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 469 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 470 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 471 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 472 break; 473 } 474 case Instruction::Shl: 475 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 476 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 477 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 478 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 479 KnownZero <<= ShiftAmt; 480 KnownOne <<= ShiftAmt; 481 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 482 break; 483 } 484 break; 485 case Instruction::LShr: 486 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 487 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 488 // Compute the new bits that are at the top now. 489 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 490 491 // Unsigned shift right. 492 computeKnownBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 493 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 494 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 495 // high bits known zero. 496 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 497 break; 498 } 499 break; 500 case Instruction::AShr: 501 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 502 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 503 // Compute the new bits that are at the top now. 504 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 505 506 // Signed shift right. 507 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 508 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 509 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 510 511 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 512 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 513 KnownZero |= HighBits; 514 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 515 KnownOne |= HighBits; 516 break; 517 } 518 break; 519 case Instruction::Sub: { 520 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 521 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 522 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 523 Depth); 524 break; 525 } 526 case Instruction::Add: { 527 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 528 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 529 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 530 Depth); 531 break; 532 } 533 case Instruction::SRem: 534 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 535 APInt RA = Rem->getValue().abs(); 536 if (RA.isPowerOf2()) { 537 APInt LowBits = RA - 1; 538 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 539 540 // The low bits of the first operand are unchanged by the srem. 541 KnownZero = KnownZero2 & LowBits; 542 KnownOne = KnownOne2 & LowBits; 543 544 // If the first operand is non-negative or has all low bits zero, then 545 // the upper bits are all zero. 546 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 547 KnownZero |= ~LowBits; 548 549 // If the first operand is negative and not all low bits are zero, then 550 // the upper bits are all one. 551 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 552 KnownOne |= ~LowBits; 553 554 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 555 } 556 } 557 558 // The sign bit is the LHS's sign bit, except when the result of the 559 // remainder is zero. 560 if (KnownZero.isNonNegative()) { 561 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 562 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 563 Depth+1); 564 // If it's known zero, our sign bit is also zero. 565 if (LHSKnownZero.isNegative()) 566 KnownZero.setBit(BitWidth - 1); 567 } 568 569 break; 570 case Instruction::URem: { 571 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 572 APInt RA = Rem->getValue(); 573 if (RA.isPowerOf2()) { 574 APInt LowBits = (RA - 1); 575 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, 576 Depth+1); 577 KnownZero |= ~LowBits; 578 KnownOne &= LowBits; 579 break; 580 } 581 } 582 583 // Since the result is less than or equal to either operand, any leading 584 // zero bits in either operand must also exist in the result. 585 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 586 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 587 588 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 589 KnownZero2.countLeadingOnes()); 590 KnownOne.clearAllBits(); 591 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 592 break; 593 } 594 595 case Instruction::Alloca: { 596 AllocaInst *AI = cast<AllocaInst>(V); 597 unsigned Align = AI->getAlignment(); 598 if (Align == 0 && TD) 599 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 600 601 if (Align > 0) 602 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 603 break; 604 } 605 case Instruction::GetElementPtr: { 606 // Analyze all of the subscripts of this getelementptr instruction 607 // to determine if we can prove known low zero bits. 608 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 609 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 610 Depth+1); 611 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 612 613 gep_type_iterator GTI = gep_type_begin(I); 614 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 615 Value *Index = I->getOperand(i); 616 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 617 // Handle struct member offset arithmetic. 618 if (!TD) { 619 TrailZ = 0; 620 break; 621 } 622 623 // Handle case when index is vector zeroinitializer 624 Constant *CIndex = cast<Constant>(Index); 625 if (CIndex->isZeroValue()) 626 continue; 627 628 if (CIndex->getType()->isVectorTy()) 629 Index = CIndex->getSplatValue(); 630 631 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 632 const StructLayout *SL = TD->getStructLayout(STy); 633 uint64_t Offset = SL->getElementOffset(Idx); 634 TrailZ = std::min<unsigned>(TrailZ, 635 countTrailingZeros(Offset)); 636 } else { 637 // Handle array index arithmetic. 638 Type *IndexedTy = GTI.getIndexedType(); 639 if (!IndexedTy->isSized()) { 640 TrailZ = 0; 641 break; 642 } 643 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 644 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 645 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 646 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 647 TrailZ = std::min(TrailZ, 648 unsigned(countTrailingZeros(TypeSize) + 649 LocalKnownZero.countTrailingOnes())); 650 } 651 } 652 653 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 654 break; 655 } 656 case Instruction::PHI: { 657 PHINode *P = cast<PHINode>(I); 658 // Handle the case of a simple two-predecessor recurrence PHI. 659 // There's a lot more that could theoretically be done here, but 660 // this is sufficient to catch some interesting cases. 661 if (P->getNumIncomingValues() == 2) { 662 for (unsigned i = 0; i != 2; ++i) { 663 Value *L = P->getIncomingValue(i); 664 Value *R = P->getIncomingValue(!i); 665 Operator *LU = dyn_cast<Operator>(L); 666 if (!LU) 667 continue; 668 unsigned Opcode = LU->getOpcode(); 669 // Check for operations that have the property that if 670 // both their operands have low zero bits, the result 671 // will have low zero bits. 672 if (Opcode == Instruction::Add || 673 Opcode == Instruction::Sub || 674 Opcode == Instruction::And || 675 Opcode == Instruction::Or || 676 Opcode == Instruction::Mul) { 677 Value *LL = LU->getOperand(0); 678 Value *LR = LU->getOperand(1); 679 // Find a recurrence. 680 if (LL == I) 681 L = LR; 682 else if (LR == I) 683 L = LL; 684 else 685 break; 686 // Ok, we have a PHI of the form L op= R. Check for low 687 // zero bits. 688 computeKnownBits(R, KnownZero2, KnownOne2, TD, Depth+1); 689 690 // We need to take the minimum number of known bits 691 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 692 computeKnownBits(L, KnownZero3, KnownOne3, TD, Depth+1); 693 694 KnownZero = APInt::getLowBitsSet(BitWidth, 695 std::min(KnownZero2.countTrailingOnes(), 696 KnownZero3.countTrailingOnes())); 697 break; 698 } 699 } 700 } 701 702 // Unreachable blocks may have zero-operand PHI nodes. 703 if (P->getNumIncomingValues() == 0) 704 break; 705 706 // Otherwise take the unions of the known bit sets of the operands, 707 // taking conservative care to avoid excessive recursion. 708 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 709 // Skip if every incoming value references to ourself. 710 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 711 break; 712 713 KnownZero = APInt::getAllOnesValue(BitWidth); 714 KnownOne = APInt::getAllOnesValue(BitWidth); 715 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 716 // Skip direct self references. 717 if (P->getIncomingValue(i) == P) continue; 718 719 KnownZero2 = APInt(BitWidth, 0); 720 KnownOne2 = APInt(BitWidth, 0); 721 // Recurse, but cap the recursion to one level, because we don't 722 // want to waste time spinning around in loops. 723 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 724 MaxDepth-1); 725 KnownZero &= KnownZero2; 726 KnownOne &= KnownOne2; 727 // If all bits have been ruled out, there's no need to check 728 // more operands. 729 if (!KnownZero && !KnownOne) 730 break; 731 } 732 } 733 break; 734 } 735 case Instruction::Call: 736 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 737 switch (II->getIntrinsicID()) { 738 default: break; 739 case Intrinsic::ctlz: 740 case Intrinsic::cttz: { 741 unsigned LowBits = Log2_32(BitWidth)+1; 742 // If this call is undefined for 0, the result will be less than 2^n. 743 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 744 LowBits -= 1; 745 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 746 break; 747 } 748 case Intrinsic::ctpop: { 749 unsigned LowBits = Log2_32(BitWidth)+1; 750 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 751 break; 752 } 753 case Intrinsic::x86_sse42_crc32_64_64: 754 KnownZero = APInt::getHighBitsSet(64, 32); 755 break; 756 } 757 } 758 break; 759 case Instruction::ExtractValue: 760 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 761 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 762 if (EVI->getNumIndices() != 1) break; 763 if (EVI->getIndices()[0] == 0) { 764 switch (II->getIntrinsicID()) { 765 default: break; 766 case Intrinsic::uadd_with_overflow: 767 case Intrinsic::sadd_with_overflow: 768 computeKnownBitsAddSub(true, II->getArgOperand(0), 769 II->getArgOperand(1), false, KnownZero, 770 KnownOne, KnownZero2, KnownOne2, TD, Depth); 771 break; 772 case Intrinsic::usub_with_overflow: 773 case Intrinsic::ssub_with_overflow: 774 computeKnownBitsAddSub(false, II->getArgOperand(0), 775 II->getArgOperand(1), false, KnownZero, 776 KnownOne, KnownZero2, KnownOne2, TD, Depth); 777 break; 778 case Intrinsic::umul_with_overflow: 779 case Intrinsic::smul_with_overflow: 780 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), 781 false, KnownZero, KnownOne, 782 KnownZero2, KnownOne2, TD, Depth); 783 break; 784 } 785 } 786 } 787 } 788 789 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 790 } 791 792 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 793 /// one. Convenience wrapper around computeKnownBits. 794 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 795 const DataLayout *TD, unsigned Depth) { 796 unsigned BitWidth = getBitWidth(V->getType(), TD); 797 if (!BitWidth) { 798 KnownZero = false; 799 KnownOne = false; 800 return; 801 } 802 APInt ZeroBits(BitWidth, 0); 803 APInt OneBits(BitWidth, 0); 804 computeKnownBits(V, ZeroBits, OneBits, TD, Depth); 805 KnownOne = OneBits[BitWidth - 1]; 806 KnownZero = ZeroBits[BitWidth - 1]; 807 } 808 809 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 810 /// bit set when defined. For vectors return true if every element is known to 811 /// be a power of two when defined. Supports values with integer or pointer 812 /// types and vectors of integers. 813 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 814 if (Constant *C = dyn_cast<Constant>(V)) { 815 if (C->isNullValue()) 816 return OrZero; 817 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 818 return CI->getValue().isPowerOf2(); 819 // TODO: Handle vector constants. 820 } 821 822 // 1 << X is clearly a power of two if the one is not shifted off the end. If 823 // it is shifted off the end then the result is undefined. 824 if (match(V, m_Shl(m_One(), m_Value()))) 825 return true; 826 827 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 828 // bottom. If it is shifted off the bottom then the result is undefined. 829 if (match(V, m_LShr(m_SignBit(), m_Value()))) 830 return true; 831 832 // The remaining tests are all recursive, so bail out if we hit the limit. 833 if (Depth++ == MaxDepth) 834 return false; 835 836 Value *X = nullptr, *Y = nullptr; 837 // A shift of a power of two is a power of two or zero. 838 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 839 match(V, m_Shr(m_Value(X), m_Value())))) 840 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 841 842 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 843 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 844 845 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 846 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 847 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 848 849 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 850 // A power of two and'd with anything is a power of two or zero. 851 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 852 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 853 return true; 854 // X & (-X) is always a power of two or zero. 855 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 856 return true; 857 return false; 858 } 859 860 // Adding a power-of-two or zero to the same power-of-two or zero yields 861 // either the original power-of-two, a larger power-of-two or zero. 862 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 863 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 864 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 865 if (match(X, m_And(m_Specific(Y), m_Value())) || 866 match(X, m_And(m_Value(), m_Specific(Y)))) 867 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 868 return true; 869 if (match(Y, m_And(m_Specific(X), m_Value())) || 870 match(Y, m_And(m_Value(), m_Specific(X)))) 871 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 872 return true; 873 874 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 875 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 876 computeKnownBits(X, LHSZeroBits, LHSOneBits, nullptr, Depth); 877 878 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 879 computeKnownBits(Y, RHSZeroBits, RHSOneBits, nullptr, Depth); 880 // If i8 V is a power of two or zero: 881 // ZeroBits: 1 1 1 0 1 1 1 1 882 // ~ZeroBits: 0 0 0 1 0 0 0 0 883 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 884 // If OrZero isn't set, we cannot give back a zero result. 885 // Make sure either the LHS or RHS has a bit set. 886 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 887 return true; 888 } 889 } 890 891 // An exact divide or right shift can only shift off zero bits, so the result 892 // is a power of two only if the first operand is a power of two and not 893 // copying a sign bit (sdiv int_min, 2). 894 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 895 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 896 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 897 } 898 899 return false; 900 } 901 902 /// \brief Test whether a GEP's result is known to be non-null. 903 /// 904 /// Uses properties inherent in a GEP to try to determine whether it is known 905 /// to be non-null. 906 /// 907 /// Currently this routine does not support vector GEPs. 908 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 909 unsigned Depth) { 910 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 911 return false; 912 913 // FIXME: Support vector-GEPs. 914 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 915 916 // If the base pointer is non-null, we cannot walk to a null address with an 917 // inbounds GEP in address space zero. 918 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 919 return true; 920 921 // Past this, if we don't have DataLayout, we can't do much. 922 if (!DL) 923 return false; 924 925 // Walk the GEP operands and see if any operand introduces a non-zero offset. 926 // If so, then the GEP cannot produce a null pointer, as doing so would 927 // inherently violate the inbounds contract within address space zero. 928 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 929 GTI != GTE; ++GTI) { 930 // Struct types are easy -- they must always be indexed by a constant. 931 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 932 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 933 unsigned ElementIdx = OpC->getZExtValue(); 934 const StructLayout *SL = DL->getStructLayout(STy); 935 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 936 if (ElementOffset > 0) 937 return true; 938 continue; 939 } 940 941 // If we have a zero-sized type, the index doesn't matter. Keep looping. 942 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 943 continue; 944 945 // Fast path the constant operand case both for efficiency and so we don't 946 // increment Depth when just zipping down an all-constant GEP. 947 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 948 if (!OpC->isZero()) 949 return true; 950 continue; 951 } 952 953 // We post-increment Depth here because while isKnownNonZero increments it 954 // as well, when we pop back up that increment won't persist. We don't want 955 // to recurse 10k times just because we have 10k GEP operands. We don't 956 // bail completely out because we want to handle constant GEPs regardless 957 // of depth. 958 if (Depth++ >= MaxDepth) 959 continue; 960 961 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 962 return true; 963 } 964 965 return false; 966 } 967 968 /// isKnownNonZero - Return true if the given value is known to be non-zero 969 /// when defined. For vectors return true if every element is known to be 970 /// non-zero when defined. Supports values with integer or pointer type and 971 /// vectors of integers. 972 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 973 if (Constant *C = dyn_cast<Constant>(V)) { 974 if (C->isNullValue()) 975 return false; 976 if (isa<ConstantInt>(C)) 977 // Must be non-zero due to null test above. 978 return true; 979 // TODO: Handle vectors 980 return false; 981 } 982 983 // The remaining tests are all recursive, so bail out if we hit the limit. 984 if (Depth++ >= MaxDepth) 985 return false; 986 987 // Check for pointer simplifications. 988 if (V->getType()->isPointerTy()) { 989 if (isKnownNonNull(V)) 990 return true; 991 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 992 if (isGEPKnownNonNull(GEP, TD, Depth)) 993 return true; 994 } 995 996 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 997 998 // X | Y != 0 if X != 0 or Y != 0. 999 Value *X = nullptr, *Y = nullptr; 1000 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1001 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 1002 1003 // ext X != 0 if X != 0. 1004 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1005 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 1006 1007 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1008 // if the lowest bit is shifted off the end. 1009 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1010 // shl nuw can't remove any non-zero bits. 1011 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1012 if (BO->hasNoUnsignedWrap()) 1013 return isKnownNonZero(X, TD, Depth); 1014 1015 APInt KnownZero(BitWidth, 0); 1016 APInt KnownOne(BitWidth, 0); 1017 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1018 if (KnownOne[0]) 1019 return true; 1020 } 1021 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1022 // defined if the sign bit is shifted off the end. 1023 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1024 // shr exact can only shift out zero bits. 1025 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1026 if (BO->isExact()) 1027 return isKnownNonZero(X, TD, Depth); 1028 1029 bool XKnownNonNegative, XKnownNegative; 1030 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1031 if (XKnownNegative) 1032 return true; 1033 } 1034 // div exact can only produce a zero if the dividend is zero. 1035 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1036 return isKnownNonZero(X, TD, Depth); 1037 } 1038 // X + Y. 1039 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1040 bool XKnownNonNegative, XKnownNegative; 1041 bool YKnownNonNegative, YKnownNegative; 1042 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1043 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1044 1045 // If X and Y are both non-negative (as signed values) then their sum is not 1046 // zero unless both X and Y are zero. 1047 if (XKnownNonNegative && YKnownNonNegative) 1048 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1049 return true; 1050 1051 // If X and Y are both negative (as signed values) then their sum is not 1052 // zero unless both X and Y equal INT_MIN. 1053 if (BitWidth && XKnownNegative && YKnownNegative) { 1054 APInt KnownZero(BitWidth, 0); 1055 APInt KnownOne(BitWidth, 0); 1056 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1057 // The sign bit of X is set. If some other bit is set then X is not equal 1058 // to INT_MIN. 1059 computeKnownBits(X, KnownZero, KnownOne, TD, Depth); 1060 if ((KnownOne & Mask) != 0) 1061 return true; 1062 // The sign bit of Y is set. If some other bit is set then Y is not equal 1063 // to INT_MIN. 1064 computeKnownBits(Y, KnownZero, KnownOne, TD, Depth); 1065 if ((KnownOne & Mask) != 0) 1066 return true; 1067 } 1068 1069 // The sum of a non-negative number and a power of two is not zero. 1070 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1071 return true; 1072 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1073 return true; 1074 } 1075 // X * Y. 1076 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1077 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1078 // If X and Y are non-zero then so is X * Y as long as the multiplication 1079 // does not overflow. 1080 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1081 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1082 return true; 1083 } 1084 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1085 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1086 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1087 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1088 return true; 1089 } 1090 1091 if (!BitWidth) return false; 1092 APInt KnownZero(BitWidth, 0); 1093 APInt KnownOne(BitWidth, 0); 1094 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1095 return KnownOne != 0; 1096 } 1097 1098 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1099 /// this predicate to simplify operations downstream. Mask is known to be zero 1100 /// for bits that V cannot have. 1101 /// 1102 /// This function is defined on values with integer type, values with pointer 1103 /// type (but only if TD is non-null), and vectors of integers. In the case 1104 /// where V is a vector, the mask, known zero, and known one values are the 1105 /// same width as the vector element, and the bit is set only if it is true 1106 /// for all of the elements in the vector. 1107 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1108 const DataLayout *TD, unsigned Depth) { 1109 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1110 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1111 return (KnownZero & Mask) == Mask; 1112 } 1113 1114 1115 1116 /// ComputeNumSignBits - Return the number of times the sign bit of the 1117 /// register is replicated into the other bits. We know that at least 1 bit 1118 /// is always equal to the sign bit (itself), but other cases can give us 1119 /// information. For example, immediately after an "ashr X, 2", we know that 1120 /// the top 3 bits are all equal to each other, so we return 3. 1121 /// 1122 /// 'Op' must have a scalar integer type. 1123 /// 1124 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1125 unsigned Depth) { 1126 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1127 "ComputeNumSignBits requires a DataLayout object to operate " 1128 "on non-integer values!"); 1129 Type *Ty = V->getType(); 1130 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1131 Ty->getScalarSizeInBits(); 1132 unsigned Tmp, Tmp2; 1133 unsigned FirstAnswer = 1; 1134 1135 // Note that ConstantInt is handled by the general computeKnownBits case 1136 // below. 1137 1138 if (Depth == 6) 1139 return 1; // Limit search depth. 1140 1141 Operator *U = dyn_cast<Operator>(V); 1142 switch (Operator::getOpcode(V)) { 1143 default: break; 1144 case Instruction::SExt: 1145 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1146 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1147 1148 case Instruction::AShr: { 1149 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1150 // ashr X, C -> adds C sign bits. Vectors too. 1151 const APInt *ShAmt; 1152 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1153 Tmp += ShAmt->getZExtValue(); 1154 if (Tmp > TyBits) Tmp = TyBits; 1155 } 1156 return Tmp; 1157 } 1158 case Instruction::Shl: { 1159 const APInt *ShAmt; 1160 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1161 // shl destroys sign bits. 1162 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1163 Tmp2 = ShAmt->getZExtValue(); 1164 if (Tmp2 >= TyBits || // Bad shift. 1165 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1166 return Tmp - Tmp2; 1167 } 1168 break; 1169 } 1170 case Instruction::And: 1171 case Instruction::Or: 1172 case Instruction::Xor: // NOT is handled here. 1173 // Logical binary ops preserve the number of sign bits at the worst. 1174 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1175 if (Tmp != 1) { 1176 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1177 FirstAnswer = std::min(Tmp, Tmp2); 1178 // We computed what we know about the sign bits as our first 1179 // answer. Now proceed to the generic code that uses 1180 // computeKnownBits, and pick whichever answer is better. 1181 } 1182 break; 1183 1184 case Instruction::Select: 1185 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1186 if (Tmp == 1) return 1; // Early out. 1187 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1188 return std::min(Tmp, Tmp2); 1189 1190 case Instruction::Add: 1191 // Add can have at most one carry bit. Thus we know that the output 1192 // is, at worst, one more bit than the inputs. 1193 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1194 if (Tmp == 1) return 1; // Early out. 1195 1196 // Special case decrementing a value (ADD X, -1): 1197 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1198 if (CRHS->isAllOnesValue()) { 1199 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1200 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1201 1202 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1203 // sign bits set. 1204 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1205 return TyBits; 1206 1207 // If we are subtracting one from a positive number, there is no carry 1208 // out of the result. 1209 if (KnownZero.isNegative()) 1210 return Tmp; 1211 } 1212 1213 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1214 if (Tmp2 == 1) return 1; 1215 return std::min(Tmp, Tmp2)-1; 1216 1217 case Instruction::Sub: 1218 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1219 if (Tmp2 == 1) return 1; 1220 1221 // Handle NEG. 1222 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1223 if (CLHS->isNullValue()) { 1224 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1225 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1226 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1227 // sign bits set. 1228 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1229 return TyBits; 1230 1231 // If the input is known to be positive (the sign bit is known clear), 1232 // the output of the NEG has the same number of sign bits as the input. 1233 if (KnownZero.isNegative()) 1234 return Tmp2; 1235 1236 // Otherwise, we treat this like a SUB. 1237 } 1238 1239 // Sub can have at most one carry bit. Thus we know that the output 1240 // is, at worst, one more bit than the inputs. 1241 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1242 if (Tmp == 1) return 1; // Early out. 1243 return std::min(Tmp, Tmp2)-1; 1244 1245 case Instruction::PHI: { 1246 PHINode *PN = cast<PHINode>(U); 1247 // Don't analyze large in-degree PHIs. 1248 if (PN->getNumIncomingValues() > 4) break; 1249 1250 // Take the minimum of all incoming values. This can't infinitely loop 1251 // because of our depth threshold. 1252 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1253 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1254 if (Tmp == 1) return Tmp; 1255 Tmp = std::min(Tmp, 1256 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1257 } 1258 return Tmp; 1259 } 1260 1261 case Instruction::Trunc: 1262 // FIXME: it's tricky to do anything useful for this, but it is an important 1263 // case for targets like X86. 1264 break; 1265 } 1266 1267 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1268 // use this information. 1269 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1270 APInt Mask; 1271 computeKnownBits(V, KnownZero, KnownOne, TD, Depth); 1272 1273 if (KnownZero.isNegative()) { // sign bit is 0 1274 Mask = KnownZero; 1275 } else if (KnownOne.isNegative()) { // sign bit is 1; 1276 Mask = KnownOne; 1277 } else { 1278 // Nothing known. 1279 return FirstAnswer; 1280 } 1281 1282 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1283 // the number of identical bits in the top of the input value. 1284 Mask = ~Mask; 1285 Mask <<= Mask.getBitWidth()-TyBits; 1286 // Return # leading zeros. We use 'min' here in case Val was zero before 1287 // shifting. We don't want to return '64' as for an i32 "0". 1288 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1289 } 1290 1291 /// ComputeMultiple - This function computes the integer multiple of Base that 1292 /// equals V. If successful, it returns true and returns the multiple in 1293 /// Multiple. If unsuccessful, it returns false. It looks 1294 /// through SExt instructions only if LookThroughSExt is true. 1295 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1296 bool LookThroughSExt, unsigned Depth) { 1297 const unsigned MaxDepth = 6; 1298 1299 assert(V && "No Value?"); 1300 assert(Depth <= MaxDepth && "Limit Search Depth"); 1301 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1302 1303 Type *T = V->getType(); 1304 1305 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1306 1307 if (Base == 0) 1308 return false; 1309 1310 if (Base == 1) { 1311 Multiple = V; 1312 return true; 1313 } 1314 1315 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1316 Constant *BaseVal = ConstantInt::get(T, Base); 1317 if (CO && CO == BaseVal) { 1318 // Multiple is 1. 1319 Multiple = ConstantInt::get(T, 1); 1320 return true; 1321 } 1322 1323 if (CI && CI->getZExtValue() % Base == 0) { 1324 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1325 return true; 1326 } 1327 1328 if (Depth == MaxDepth) return false; // Limit search depth. 1329 1330 Operator *I = dyn_cast<Operator>(V); 1331 if (!I) return false; 1332 1333 switch (I->getOpcode()) { 1334 default: break; 1335 case Instruction::SExt: 1336 if (!LookThroughSExt) return false; 1337 // otherwise fall through to ZExt 1338 case Instruction::ZExt: 1339 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1340 LookThroughSExt, Depth+1); 1341 case Instruction::Shl: 1342 case Instruction::Mul: { 1343 Value *Op0 = I->getOperand(0); 1344 Value *Op1 = I->getOperand(1); 1345 1346 if (I->getOpcode() == Instruction::Shl) { 1347 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1348 if (!Op1CI) return false; 1349 // Turn Op0 << Op1 into Op0 * 2^Op1 1350 APInt Op1Int = Op1CI->getValue(); 1351 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1352 APInt API(Op1Int.getBitWidth(), 0); 1353 API.setBit(BitToSet); 1354 Op1 = ConstantInt::get(V->getContext(), API); 1355 } 1356 1357 Value *Mul0 = nullptr; 1358 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1359 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1360 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1361 if (Op1C->getType()->getPrimitiveSizeInBits() < 1362 MulC->getType()->getPrimitiveSizeInBits()) 1363 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1364 if (Op1C->getType()->getPrimitiveSizeInBits() > 1365 MulC->getType()->getPrimitiveSizeInBits()) 1366 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1367 1368 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1369 Multiple = ConstantExpr::getMul(MulC, Op1C); 1370 return true; 1371 } 1372 1373 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1374 if (Mul0CI->getValue() == 1) { 1375 // V == Base * Op1, so return Op1 1376 Multiple = Op1; 1377 return true; 1378 } 1379 } 1380 1381 Value *Mul1 = nullptr; 1382 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1383 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1384 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1385 if (Op0C->getType()->getPrimitiveSizeInBits() < 1386 MulC->getType()->getPrimitiveSizeInBits()) 1387 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1388 if (Op0C->getType()->getPrimitiveSizeInBits() > 1389 MulC->getType()->getPrimitiveSizeInBits()) 1390 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1391 1392 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1393 Multiple = ConstantExpr::getMul(MulC, Op0C); 1394 return true; 1395 } 1396 1397 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1398 if (Mul1CI->getValue() == 1) { 1399 // V == Base * Op0, so return Op0 1400 Multiple = Op0; 1401 return true; 1402 } 1403 } 1404 } 1405 } 1406 1407 // We could not determine if V is a multiple of Base. 1408 return false; 1409 } 1410 1411 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1412 /// value is never equal to -0.0. 1413 /// 1414 /// NOTE: this function will need to be revisited when we support non-default 1415 /// rounding modes! 1416 /// 1417 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1418 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1419 return !CFP->getValueAPF().isNegZero(); 1420 1421 if (Depth == 6) 1422 return 1; // Limit search depth. 1423 1424 const Operator *I = dyn_cast<Operator>(V); 1425 if (!I) return false; 1426 1427 // Check if the nsz fast-math flag is set 1428 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1429 if (FPO->hasNoSignedZeros()) 1430 return true; 1431 1432 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1433 if (I->getOpcode() == Instruction::FAdd) 1434 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1435 if (CFP->isNullValue()) 1436 return true; 1437 1438 // sitofp and uitofp turn into +0.0 for zero. 1439 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1440 return true; 1441 1442 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1443 // sqrt(-0.0) = -0.0, no other negative results are possible. 1444 if (II->getIntrinsicID() == Intrinsic::sqrt) 1445 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1446 1447 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1448 if (const Function *F = CI->getCalledFunction()) { 1449 if (F->isDeclaration()) { 1450 // abs(x) != -0.0 1451 if (F->getName() == "abs") return true; 1452 // fabs[lf](x) != -0.0 1453 if (F->getName() == "fabs") return true; 1454 if (F->getName() == "fabsf") return true; 1455 if (F->getName() == "fabsl") return true; 1456 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1457 F->getName() == "sqrtl") 1458 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1459 } 1460 } 1461 1462 return false; 1463 } 1464 1465 /// isBytewiseValue - If the specified value can be set by repeating the same 1466 /// byte in memory, return the i8 value that it is represented with. This is 1467 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1468 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1469 /// byte store (e.g. i16 0x1234), return null. 1470 Value *llvm::isBytewiseValue(Value *V) { 1471 // All byte-wide stores are splatable, even of arbitrary variables. 1472 if (V->getType()->isIntegerTy(8)) return V; 1473 1474 // Handle 'null' ConstantArrayZero etc. 1475 if (Constant *C = dyn_cast<Constant>(V)) 1476 if (C->isNullValue()) 1477 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1478 1479 // Constant float and double values can be handled as integer values if the 1480 // corresponding integer value is "byteable". An important case is 0.0. 1481 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1482 if (CFP->getType()->isFloatTy()) 1483 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1484 if (CFP->getType()->isDoubleTy()) 1485 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1486 // Don't handle long double formats, which have strange constraints. 1487 } 1488 1489 // We can handle constant integers that are power of two in size and a 1490 // multiple of 8 bits. 1491 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1492 unsigned Width = CI->getBitWidth(); 1493 if (isPowerOf2_32(Width) && Width > 8) { 1494 // We can handle this value if the recursive binary decomposition is the 1495 // same at all levels. 1496 APInt Val = CI->getValue(); 1497 APInt Val2; 1498 while (Val.getBitWidth() != 8) { 1499 unsigned NextWidth = Val.getBitWidth()/2; 1500 Val2 = Val.lshr(NextWidth); 1501 Val2 = Val2.trunc(Val.getBitWidth()/2); 1502 Val = Val.trunc(Val.getBitWidth()/2); 1503 1504 // If the top/bottom halves aren't the same, reject it. 1505 if (Val != Val2) 1506 return nullptr; 1507 } 1508 return ConstantInt::get(V->getContext(), Val); 1509 } 1510 } 1511 1512 // A ConstantDataArray/Vector is splatable if all its members are equal and 1513 // also splatable. 1514 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1515 Value *Elt = CA->getElementAsConstant(0); 1516 Value *Val = isBytewiseValue(Elt); 1517 if (!Val) 1518 return nullptr; 1519 1520 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1521 if (CA->getElementAsConstant(I) != Elt) 1522 return nullptr; 1523 1524 return Val; 1525 } 1526 1527 // Conceptually, we could handle things like: 1528 // %a = zext i8 %X to i16 1529 // %b = shl i16 %a, 8 1530 // %c = or i16 %a, %b 1531 // but until there is an example that actually needs this, it doesn't seem 1532 // worth worrying about. 1533 return nullptr; 1534 } 1535 1536 1537 // This is the recursive version of BuildSubAggregate. It takes a few different 1538 // arguments. Idxs is the index within the nested struct From that we are 1539 // looking at now (which is of type IndexedType). IdxSkip is the number of 1540 // indices from Idxs that should be left out when inserting into the resulting 1541 // struct. To is the result struct built so far, new insertvalue instructions 1542 // build on that. 1543 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1544 SmallVectorImpl<unsigned> &Idxs, 1545 unsigned IdxSkip, 1546 Instruction *InsertBefore) { 1547 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1548 if (STy) { 1549 // Save the original To argument so we can modify it 1550 Value *OrigTo = To; 1551 // General case, the type indexed by Idxs is a struct 1552 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1553 // Process each struct element recursively 1554 Idxs.push_back(i); 1555 Value *PrevTo = To; 1556 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1557 InsertBefore); 1558 Idxs.pop_back(); 1559 if (!To) { 1560 // Couldn't find any inserted value for this index? Cleanup 1561 while (PrevTo != OrigTo) { 1562 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1563 PrevTo = Del->getAggregateOperand(); 1564 Del->eraseFromParent(); 1565 } 1566 // Stop processing elements 1567 break; 1568 } 1569 } 1570 // If we successfully found a value for each of our subaggregates 1571 if (To) 1572 return To; 1573 } 1574 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1575 // the struct's elements had a value that was inserted directly. In the latter 1576 // case, perhaps we can't determine each of the subelements individually, but 1577 // we might be able to find the complete struct somewhere. 1578 1579 // Find the value that is at that particular spot 1580 Value *V = FindInsertedValue(From, Idxs); 1581 1582 if (!V) 1583 return nullptr; 1584 1585 // Insert the value in the new (sub) aggregrate 1586 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1587 "tmp", InsertBefore); 1588 } 1589 1590 // This helper takes a nested struct and extracts a part of it (which is again a 1591 // struct) into a new value. For example, given the struct: 1592 // { a, { b, { c, d }, e } } 1593 // and the indices "1, 1" this returns 1594 // { c, d }. 1595 // 1596 // It does this by inserting an insertvalue for each element in the resulting 1597 // struct, as opposed to just inserting a single struct. This will only work if 1598 // each of the elements of the substruct are known (ie, inserted into From by an 1599 // insertvalue instruction somewhere). 1600 // 1601 // All inserted insertvalue instructions are inserted before InsertBefore 1602 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1603 Instruction *InsertBefore) { 1604 assert(InsertBefore && "Must have someplace to insert!"); 1605 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1606 idx_range); 1607 Value *To = UndefValue::get(IndexedType); 1608 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1609 unsigned IdxSkip = Idxs.size(); 1610 1611 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1612 } 1613 1614 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1615 /// the scalar value indexed is already around as a register, for example if it 1616 /// were inserted directly into the aggregrate. 1617 /// 1618 /// If InsertBefore is not null, this function will duplicate (modified) 1619 /// insertvalues when a part of a nested struct is extracted. 1620 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1621 Instruction *InsertBefore) { 1622 // Nothing to index? Just return V then (this is useful at the end of our 1623 // recursion). 1624 if (idx_range.empty()) 1625 return V; 1626 // We have indices, so V should have an indexable type. 1627 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1628 "Not looking at a struct or array?"); 1629 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1630 "Invalid indices for type?"); 1631 1632 if (Constant *C = dyn_cast<Constant>(V)) { 1633 C = C->getAggregateElement(idx_range[0]); 1634 if (!C) return nullptr; 1635 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1636 } 1637 1638 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1639 // Loop the indices for the insertvalue instruction in parallel with the 1640 // requested indices 1641 const unsigned *req_idx = idx_range.begin(); 1642 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1643 i != e; ++i, ++req_idx) { 1644 if (req_idx == idx_range.end()) { 1645 // We can't handle this without inserting insertvalues 1646 if (!InsertBefore) 1647 return nullptr; 1648 1649 // The requested index identifies a part of a nested aggregate. Handle 1650 // this specially. For example, 1651 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1652 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1653 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1654 // This can be changed into 1655 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1656 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1657 // which allows the unused 0,0 element from the nested struct to be 1658 // removed. 1659 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1660 InsertBefore); 1661 } 1662 1663 // This insert value inserts something else than what we are looking for. 1664 // See if the (aggregrate) value inserted into has the value we are 1665 // looking for, then. 1666 if (*req_idx != *i) 1667 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1668 InsertBefore); 1669 } 1670 // If we end up here, the indices of the insertvalue match with those 1671 // requested (though possibly only partially). Now we recursively look at 1672 // the inserted value, passing any remaining indices. 1673 return FindInsertedValue(I->getInsertedValueOperand(), 1674 makeArrayRef(req_idx, idx_range.end()), 1675 InsertBefore); 1676 } 1677 1678 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1679 // If we're extracting a value from an aggregrate that was extracted from 1680 // something else, we can extract from that something else directly instead. 1681 // However, we will need to chain I's indices with the requested indices. 1682 1683 // Calculate the number of indices required 1684 unsigned size = I->getNumIndices() + idx_range.size(); 1685 // Allocate some space to put the new indices in 1686 SmallVector<unsigned, 5> Idxs; 1687 Idxs.reserve(size); 1688 // Add indices from the extract value instruction 1689 Idxs.append(I->idx_begin(), I->idx_end()); 1690 1691 // Add requested indices 1692 Idxs.append(idx_range.begin(), idx_range.end()); 1693 1694 assert(Idxs.size() == size 1695 && "Number of indices added not correct?"); 1696 1697 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1698 } 1699 // Otherwise, we don't know (such as, extracting from a function return value 1700 // or load instruction) 1701 return nullptr; 1702 } 1703 1704 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1705 /// it can be expressed as a base pointer plus a constant offset. Return the 1706 /// base and offset to the caller. 1707 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1708 const DataLayout *DL) { 1709 // Without DataLayout, conservatively assume 64-bit offsets, which is 1710 // the widest we support. 1711 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1712 APInt ByteOffset(BitWidth, 0); 1713 while (1) { 1714 if (Ptr->getType()->isVectorTy()) 1715 break; 1716 1717 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1718 if (DL) { 1719 APInt GEPOffset(BitWidth, 0); 1720 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1721 break; 1722 1723 ByteOffset += GEPOffset; 1724 } 1725 1726 Ptr = GEP->getPointerOperand(); 1727 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1728 Ptr = cast<Operator>(Ptr)->getOperand(0); 1729 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1730 if (GA->mayBeOverridden()) 1731 break; 1732 Ptr = GA->getAliasee(); 1733 } else { 1734 break; 1735 } 1736 } 1737 Offset = ByteOffset.getSExtValue(); 1738 return Ptr; 1739 } 1740 1741 1742 /// getConstantStringInfo - This function computes the length of a 1743 /// null-terminated C string pointed to by V. If successful, it returns true 1744 /// and returns the string in Str. If unsuccessful, it returns false. 1745 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1746 uint64_t Offset, bool TrimAtNul) { 1747 assert(V); 1748 1749 // Look through bitcast instructions and geps. 1750 V = V->stripPointerCasts(); 1751 1752 // If the value is a GEP instructionor constant expression, treat it as an 1753 // offset. 1754 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1755 // Make sure the GEP has exactly three arguments. 1756 if (GEP->getNumOperands() != 3) 1757 return false; 1758 1759 // Make sure the index-ee is a pointer to array of i8. 1760 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1761 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1762 if (!AT || !AT->getElementType()->isIntegerTy(8)) 1763 return false; 1764 1765 // Check to make sure that the first operand of the GEP is an integer and 1766 // has value 0 so that we are sure we're indexing into the initializer. 1767 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1768 if (!FirstIdx || !FirstIdx->isZero()) 1769 return false; 1770 1771 // If the second index isn't a ConstantInt, then this is a variable index 1772 // into the array. If this occurs, we can't say anything meaningful about 1773 // the string. 1774 uint64_t StartIdx = 0; 1775 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1776 StartIdx = CI->getZExtValue(); 1777 else 1778 return false; 1779 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1780 } 1781 1782 // The GEP instruction, constant or instruction, must reference a global 1783 // variable that is a constant and is initialized. The referenced constant 1784 // initializer is the array that we'll use for optimization. 1785 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1786 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1787 return false; 1788 1789 // Handle the all-zeros case 1790 if (GV->getInitializer()->isNullValue()) { 1791 // This is a degenerate case. The initializer is constant zero so the 1792 // length of the string must be zero. 1793 Str = ""; 1794 return true; 1795 } 1796 1797 // Must be a Constant Array 1798 const ConstantDataArray *Array = 1799 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1800 if (!Array || !Array->isString()) 1801 return false; 1802 1803 // Get the number of elements in the array 1804 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1805 1806 // Start out with the entire array in the StringRef. 1807 Str = Array->getAsString(); 1808 1809 if (Offset > NumElts) 1810 return false; 1811 1812 // Skip over 'offset' bytes. 1813 Str = Str.substr(Offset); 1814 1815 if (TrimAtNul) { 1816 // Trim off the \0 and anything after it. If the array is not nul 1817 // terminated, we just return the whole end of string. The client may know 1818 // some other way that the string is length-bound. 1819 Str = Str.substr(0, Str.find('\0')); 1820 } 1821 return true; 1822 } 1823 1824 // These next two are very similar to the above, but also look through PHI 1825 // nodes. 1826 // TODO: See if we can integrate these two together. 1827 1828 /// GetStringLengthH - If we can compute the length of the string pointed to by 1829 /// the specified pointer, return 'len+1'. If we can't, return 0. 1830 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1831 // Look through noop bitcast instructions. 1832 V = V->stripPointerCasts(); 1833 1834 // If this is a PHI node, there are two cases: either we have already seen it 1835 // or we haven't. 1836 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1837 if (!PHIs.insert(PN)) 1838 return ~0ULL; // already in the set. 1839 1840 // If it was new, see if all the input strings are the same length. 1841 uint64_t LenSoFar = ~0ULL; 1842 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1843 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1844 if (Len == 0) return 0; // Unknown length -> unknown. 1845 1846 if (Len == ~0ULL) continue; 1847 1848 if (Len != LenSoFar && LenSoFar != ~0ULL) 1849 return 0; // Disagree -> unknown. 1850 LenSoFar = Len; 1851 } 1852 1853 // Success, all agree. 1854 return LenSoFar; 1855 } 1856 1857 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1858 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1859 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1860 if (Len1 == 0) return 0; 1861 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1862 if (Len2 == 0) return 0; 1863 if (Len1 == ~0ULL) return Len2; 1864 if (Len2 == ~0ULL) return Len1; 1865 if (Len1 != Len2) return 0; 1866 return Len1; 1867 } 1868 1869 // Otherwise, see if we can read the string. 1870 StringRef StrData; 1871 if (!getConstantStringInfo(V, StrData)) 1872 return 0; 1873 1874 return StrData.size()+1; 1875 } 1876 1877 /// GetStringLength - If we can compute the length of the string pointed to by 1878 /// the specified pointer, return 'len+1'. If we can't, return 0. 1879 uint64_t llvm::GetStringLength(Value *V) { 1880 if (!V->getType()->isPointerTy()) return 0; 1881 1882 SmallPtrSet<PHINode*, 32> PHIs; 1883 uint64_t Len = GetStringLengthH(V, PHIs); 1884 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1885 // an empty string as a length. 1886 return Len == ~0ULL ? 1 : Len; 1887 } 1888 1889 Value * 1890 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1891 if (!V->getType()->isPointerTy()) 1892 return V; 1893 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1894 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1895 V = GEP->getPointerOperand(); 1896 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1897 V = cast<Operator>(V)->getOperand(0); 1898 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1899 if (GA->mayBeOverridden()) 1900 return V; 1901 V = GA->getAliasee(); 1902 } else { 1903 // See if InstructionSimplify knows any relevant tricks. 1904 if (Instruction *I = dyn_cast<Instruction>(V)) 1905 // TODO: Acquire a DominatorTree and use it. 1906 if (Value *Simplified = SimplifyInstruction(I, TD, nullptr)) { 1907 V = Simplified; 1908 continue; 1909 } 1910 1911 return V; 1912 } 1913 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1914 } 1915 return V; 1916 } 1917 1918 void 1919 llvm::GetUnderlyingObjects(Value *V, 1920 SmallVectorImpl<Value *> &Objects, 1921 const DataLayout *TD, 1922 unsigned MaxLookup) { 1923 SmallPtrSet<Value *, 4> Visited; 1924 SmallVector<Value *, 4> Worklist; 1925 Worklist.push_back(V); 1926 do { 1927 Value *P = Worklist.pop_back_val(); 1928 P = GetUnderlyingObject(P, TD, MaxLookup); 1929 1930 if (!Visited.insert(P)) 1931 continue; 1932 1933 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1934 Worklist.push_back(SI->getTrueValue()); 1935 Worklist.push_back(SI->getFalseValue()); 1936 continue; 1937 } 1938 1939 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1940 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1941 Worklist.push_back(PN->getIncomingValue(i)); 1942 continue; 1943 } 1944 1945 Objects.push_back(P); 1946 } while (!Worklist.empty()); 1947 } 1948 1949 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1950 /// are lifetime markers. 1951 /// 1952 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1953 for (const User *U : V->users()) { 1954 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1955 if (!II) return false; 1956 1957 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1958 II->getIntrinsicID() != Intrinsic::lifetime_end) 1959 return false; 1960 } 1961 return true; 1962 } 1963 1964 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1965 const DataLayout *TD) { 1966 const Operator *Inst = dyn_cast<Operator>(V); 1967 if (!Inst) 1968 return false; 1969 1970 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1971 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1972 if (C->canTrap()) 1973 return false; 1974 1975 switch (Inst->getOpcode()) { 1976 default: 1977 return true; 1978 case Instruction::UDiv: 1979 case Instruction::URem: 1980 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1981 return isKnownNonZero(Inst->getOperand(1), TD); 1982 case Instruction::SDiv: 1983 case Instruction::SRem: { 1984 Value *Op = Inst->getOperand(1); 1985 // x / y is undefined if y == 0 1986 if (!isKnownNonZero(Op, TD)) 1987 return false; 1988 // x / y might be undefined if y == -1 1989 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1990 if (BitWidth == 0) 1991 return false; 1992 APInt KnownZero(BitWidth, 0); 1993 APInt KnownOne(BitWidth, 0); 1994 computeKnownBits(Op, KnownZero, KnownOne, TD); 1995 return !!KnownZero; 1996 } 1997 case Instruction::Load: { 1998 const LoadInst *LI = cast<LoadInst>(Inst); 1999 if (!LI->isUnordered() || 2000 // Speculative load may create a race that did not exist in the source. 2001 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2002 return false; 2003 return LI->getPointerOperand()->isDereferenceablePointer(); 2004 } 2005 case Instruction::Call: { 2006 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2007 switch (II->getIntrinsicID()) { 2008 // These synthetic intrinsics have no side-effects, and just mark 2009 // information about their operands. 2010 // FIXME: There are other no-op synthetic instructions that potentially 2011 // should be considered at least *safe* to speculate... 2012 case Intrinsic::dbg_declare: 2013 case Intrinsic::dbg_value: 2014 return true; 2015 2016 case Intrinsic::bswap: 2017 case Intrinsic::ctlz: 2018 case Intrinsic::ctpop: 2019 case Intrinsic::cttz: 2020 case Intrinsic::objectsize: 2021 case Intrinsic::sadd_with_overflow: 2022 case Intrinsic::smul_with_overflow: 2023 case Intrinsic::ssub_with_overflow: 2024 case Intrinsic::uadd_with_overflow: 2025 case Intrinsic::umul_with_overflow: 2026 case Intrinsic::usub_with_overflow: 2027 return true; 2028 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2029 // errno like libm sqrt would. 2030 case Intrinsic::sqrt: 2031 case Intrinsic::fma: 2032 case Intrinsic::fmuladd: 2033 return true; 2034 // TODO: some fp intrinsics are marked as having the same error handling 2035 // as libm. They're safe to speculate when they won't error. 2036 // TODO: are convert_{from,to}_fp16 safe? 2037 // TODO: can we list target-specific intrinsics here? 2038 default: break; 2039 } 2040 } 2041 return false; // The called function could have undefined behavior or 2042 // side-effects, even if marked readnone nounwind. 2043 } 2044 case Instruction::VAArg: 2045 case Instruction::Alloca: 2046 case Instruction::Invoke: 2047 case Instruction::PHI: 2048 case Instruction::Store: 2049 case Instruction::Ret: 2050 case Instruction::Br: 2051 case Instruction::IndirectBr: 2052 case Instruction::Switch: 2053 case Instruction::Unreachable: 2054 case Instruction::Fence: 2055 case Instruction::LandingPad: 2056 case Instruction::AtomicRMW: 2057 case Instruction::AtomicCmpXchg: 2058 case Instruction::Resume: 2059 return false; // Misc instructions which have effects 2060 } 2061 } 2062 2063 /// isKnownNonNull - Return true if we know that the specified value is never 2064 /// null. 2065 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2066 // Alloca never returns null, malloc might. 2067 if (isa<AllocaInst>(V)) return true; 2068 2069 // A byval, inalloca, or nonnull argument is never null. 2070 if (const Argument *A = dyn_cast<Argument>(V)) 2071 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2072 2073 // Global values are not null unless extern weak. 2074 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2075 return !GV->hasExternalWeakLinkage(); 2076 2077 if (ImmutableCallSite CS = V) 2078 if (CS.paramHasAttr(0, Attribute::NonNull)) 2079 return true; 2080 2081 // operator new never returns null. 2082 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2083 return true; 2084 2085 return false; 2086 } 2087