1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   unsigned BitWidth = Known.getBitWidth();
419   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
420   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
421 
422   bool isKnownNegative = false;
423   bool isKnownNonNegative = false;
424   // If the multiplication is known not to overflow, compute the sign bit.
425   if (NSW) {
426     if (Op0 == Op1) {
427       // The product of a number with itself is non-negative.
428       isKnownNonNegative = true;
429     } else {
430       bool isKnownNonNegativeOp1 = Known.isNonNegative();
431       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
432       bool isKnownNegativeOp1 = Known.isNegative();
433       bool isKnownNegativeOp0 = Known2.isNegative();
434       // The product of two numbers with the same sign is non-negative.
435       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
436         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
437       // The product of a negative number and a non-negative number is either
438       // negative or zero.
439       if (!isKnownNonNegative)
440         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
441                            isKnownNonZero(Op0, Depth, Q)) ||
442                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
443                            isKnownNonZero(Op1, Depth, Q));
444     }
445   }
446 
447   assert(!Known.hasConflict() && !Known2.hasConflict());
448   // Compute a conservative estimate for high known-0 bits.
449   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
450                              Known2.countMinLeadingZeros(),
451                              BitWidth) - BitWidth;
452   LeadZ = std::min(LeadZ, BitWidth);
453 
454   // The result of the bottom bits of an integer multiply can be
455   // inferred by looking at the bottom bits of both operands and
456   // multiplying them together.
457   // We can infer at least the minimum number of known trailing bits
458   // of both operands. Depending on number of trailing zeros, we can
459   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
460   // a and b are divisible by m and n respectively.
461   // We then calculate how many of those bits are inferrable and set
462   // the output. For example, the i8 mul:
463   //  a = XXXX1100 (12)
464   //  b = XXXX1110 (14)
465   // We know the bottom 3 bits are zero since the first can be divided by
466   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
467   // Applying the multiplication to the trimmed arguments gets:
468   //    XX11 (3)
469   //    X111 (7)
470   // -------
471   //    XX11
472   //   XX11
473   //  XX11
474   // XX11
475   // -------
476   // XXXXX01
477   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
478   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
479   // The proof for this can be described as:
480   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
481   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
482   //                    umin(countTrailingZeros(C2), C6) +
483   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
484   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
485   // %aa = shl i8 %a, C5
486   // %bb = shl i8 %b, C6
487   // %aaa = or i8 %aa, C1
488   // %bbb = or i8 %bb, C2
489   // %mul = mul i8 %aaa, %bbb
490   // %mask = and i8 %mul, C7
491   //   =>
492   // %mask = i8 ((C1*C2)&C7)
493   // Where C5, C6 describe the known bits of %a, %b
494   // C1, C2 describe the known bottom bits of %a, %b.
495   // C7 describes the mask of the known bits of the result.
496   APInt Bottom0 = Known.One;
497   APInt Bottom1 = Known2.One;
498 
499   // How many times we'd be able to divide each argument by 2 (shr by 1).
500   // This gives us the number of trailing zeros on the multiplication result.
501   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
502   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
503   unsigned TrailZero0 = Known.countMinTrailingZeros();
504   unsigned TrailZero1 = Known2.countMinTrailingZeros();
505   unsigned TrailZ = TrailZero0 + TrailZero1;
506 
507   // Figure out the fewest known-bits operand.
508   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
509                                       TrailBitsKnown1 - TrailZero1);
510   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
511 
512   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
513                       Bottom1.getLoBits(TrailBitsKnown1);
514 
515   Known.resetAll();
516   Known.Zero.setHighBits(LeadZ);
517   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
518   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
519 
520   // Only make use of no-wrap flags if we failed to compute the sign bit
521   // directly.  This matters if the multiplication always overflows, in
522   // which case we prefer to follow the result of the direct computation,
523   // though as the program is invoking undefined behaviour we can choose
524   // whatever we like here.
525   if (isKnownNonNegative && !Known.isNegative())
526     Known.makeNonNegative();
527   else if (isKnownNegative && !Known.isNonNegative())
528     Known.makeNegative();
529 }
530 
531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
532                                              KnownBits &Known) {
533   unsigned BitWidth = Known.getBitWidth();
534   unsigned NumRanges = Ranges.getNumOperands() / 2;
535   assert(NumRanges >= 1);
536 
537   Known.Zero.setAllBits();
538   Known.One.setAllBits();
539 
540   for (unsigned i = 0; i < NumRanges; ++i) {
541     ConstantInt *Lower =
542         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
543     ConstantInt *Upper =
544         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
545     ConstantRange Range(Lower->getValue(), Upper->getValue());
546 
547     // The first CommonPrefixBits of all values in Range are equal.
548     unsigned CommonPrefixBits =
549         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
550     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
551     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
552     Known.One &= UnsignedMax & Mask;
553     Known.Zero &= ~UnsignedMax & Mask;
554   }
555 }
556 
557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
558   SmallVector<const Value *, 16> WorkSet(1, I);
559   SmallPtrSet<const Value *, 32> Visited;
560   SmallPtrSet<const Value *, 16> EphValues;
561 
562   // The instruction defining an assumption's condition itself is always
563   // considered ephemeral to that assumption (even if it has other
564   // non-ephemeral users). See r246696's test case for an example.
565   if (is_contained(I->operands(), E))
566     return true;
567 
568   while (!WorkSet.empty()) {
569     const Value *V = WorkSet.pop_back_val();
570     if (!Visited.insert(V).second)
571       continue;
572 
573     // If all uses of this value are ephemeral, then so is this value.
574     if (llvm::all_of(V->users(), [&](const User *U) {
575                                    return EphValues.count(U);
576                                  })) {
577       if (V == E)
578         return true;
579 
580       if (V == I || isSafeToSpeculativelyExecute(V)) {
581        EphValues.insert(V);
582        if (const User *U = dyn_cast<User>(V))
583          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
584               J != JE; ++J)
585            WorkSet.push_back(*J);
586       }
587     }
588   }
589 
590   return false;
591 }
592 
593 // Is this an intrinsic that cannot be speculated but also cannot trap?
594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
595   if (const CallInst *CI = dyn_cast<CallInst>(I))
596     if (Function *F = CI->getCalledFunction())
597       switch (F->getIntrinsicID()) {
598       default: break;
599       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
600       case Intrinsic::assume:
601       case Intrinsic::sideeffect:
602       case Intrinsic::dbg_declare:
603       case Intrinsic::dbg_value:
604       case Intrinsic::dbg_label:
605       case Intrinsic::invariant_start:
606       case Intrinsic::invariant_end:
607       case Intrinsic::lifetime_start:
608       case Intrinsic::lifetime_end:
609       case Intrinsic::objectsize:
610       case Intrinsic::ptr_annotation:
611       case Intrinsic::var_annotation:
612         return true;
613       }
614 
615   return false;
616 }
617 
618 bool llvm::isValidAssumeForContext(const Instruction *Inv,
619                                    const Instruction *CxtI,
620                                    const DominatorTree *DT) {
621   // There are two restrictions on the use of an assume:
622   //  1. The assume must dominate the context (or the control flow must
623   //     reach the assume whenever it reaches the context).
624   //  2. The context must not be in the assume's set of ephemeral values
625   //     (otherwise we will use the assume to prove that the condition
626   //     feeding the assume is trivially true, thus causing the removal of
627   //     the assume).
628 
629   if (Inv->getParent() == CxtI->getParent()) {
630     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
631     // in the BB.
632     if (Inv->comesBefore(CxtI))
633       return true;
634 
635     // Don't let an assume affect itself - this would cause the problems
636     // `isEphemeralValueOf` is trying to prevent, and it would also make
637     // the loop below go out of bounds.
638     if (Inv == CxtI)
639       return false;
640 
641     // The context comes first, but they're both in the same block.
642     // Make sure there is nothing in between that might interrupt
643     // the control flow, not even CxtI itself.
644     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
645       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
646         return false;
647 
648     return !isEphemeralValueOf(Inv, CxtI);
649   }
650 
651   // Inv and CxtI are in different blocks.
652   if (DT) {
653     if (DT->dominates(Inv, CxtI))
654       return true;
655   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
656     // We don't have a DT, but this trivially dominates.
657     return true;
658   }
659 
660   return false;
661 }
662 
663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
664   // Use of assumptions is context-sensitive. If we don't have a context, we
665   // cannot use them!
666   if (!Q.AC || !Q.CxtI)
667     return false;
668 
669   // Note that the patterns below need to be kept in sync with the code
670   // in AssumptionCache::updateAffectedValues.
671 
672   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
673     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
674 
675     Value *RHS;
676     CmpInst::Predicate Pred;
677     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
678       return false;
679     // assume(v u> y) -> assume(v != 0)
680     if (Pred == ICmpInst::ICMP_UGT)
681       return true;
682 
683     // assume(v != 0)
684     // We special-case this one to ensure that we handle `assume(v != null)`.
685     if (Pred == ICmpInst::ICMP_NE)
686       return match(RHS, m_Zero());
687 
688     // All other predicates - rely on generic ConstantRange handling.
689     ConstantInt *CI;
690     if (!match(RHS, m_ConstantInt(CI)))
691       return false;
692     ConstantRange RHSRange(CI->getValue());
693     ConstantRange TrueValues =
694         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
695     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
696   };
697 
698   if (Q.CxtI && V->getType()->isPointerTy()) {
699     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
700     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
701                               V->getType()->getPointerAddressSpace()))
702       AttrKinds.push_back(Attribute::Dereferenceable);
703 
704     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
705       return true;
706   }
707 
708   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
709     if (!AssumeVH)
710       continue;
711     CallInst *I = cast<CallInst>(AssumeVH);
712     assert(I->getFunction() == Q.CxtI->getFunction() &&
713            "Got assumption for the wrong function!");
714     if (Q.isExcluded(I))
715       continue;
716 
717     // Warning: This loop can end up being somewhat performance sensitive.
718     // We're running this loop for once for each value queried resulting in a
719     // runtime of ~O(#assumes * #values).
720 
721     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
722            "must be an assume intrinsic");
723 
724     Value *Arg = I->getArgOperand(0);
725     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
726     if (!Cmp)
727       continue;
728 
729     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
730       return true;
731   }
732 
733   return false;
734 }
735 
736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
737                                        unsigned Depth, const Query &Q) {
738   // Use of assumptions is context-sensitive. If we don't have a context, we
739   // cannot use them!
740   if (!Q.AC || !Q.CxtI)
741     return;
742 
743   unsigned BitWidth = Known.getBitWidth();
744 
745   // Note that the patterns below need to be kept in sync with the code
746   // in AssumptionCache::updateAffectedValues.
747 
748   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
749     if (!AssumeVH)
750       continue;
751     CallInst *I = cast<CallInst>(AssumeVH);
752     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
753            "Got assumption for the wrong function!");
754     if (Q.isExcluded(I))
755       continue;
756 
757     // Warning: This loop can end up being somewhat performance sensitive.
758     // We're running this loop for once for each value queried resulting in a
759     // runtime of ~O(#assumes * #values).
760 
761     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
762            "must be an assume intrinsic");
763 
764     Value *Arg = I->getArgOperand(0);
765 
766     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
767       assert(BitWidth == 1 && "assume operand is not i1?");
768       Known.setAllOnes();
769       return;
770     }
771     if (match(Arg, m_Not(m_Specific(V))) &&
772         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
773       assert(BitWidth == 1 && "assume operand is not i1?");
774       Known.setAllZero();
775       return;
776     }
777 
778     // The remaining tests are all recursive, so bail out if we hit the limit.
779     if (Depth == MaxAnalysisRecursionDepth)
780       continue;
781 
782     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
783     if (!Cmp)
784       continue;
785 
786     // Note that ptrtoint may change the bitwidth.
787     Value *A, *B;
788     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
789 
790     CmpInst::Predicate Pred;
791     uint64_t C;
792     switch (Cmp->getPredicate()) {
793     default:
794       break;
795     case ICmpInst::ICMP_EQ:
796       // assume(v = a)
797       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
798           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
799         KnownBits RHSKnown =
800             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
801         Known.Zero |= RHSKnown.Zero;
802         Known.One  |= RHSKnown.One;
803       // assume(v & b = a)
804       } else if (match(Cmp,
805                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
806                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
807         KnownBits RHSKnown =
808             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
809         KnownBits MaskKnown =
810             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
811 
812         // For those bits in the mask that are known to be one, we can propagate
813         // known bits from the RHS to V.
814         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
815         Known.One  |= RHSKnown.One  & MaskKnown.One;
816       // assume(~(v & b) = a)
817       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
818                                      m_Value(A))) &&
819                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
820         KnownBits RHSKnown =
821             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
822         KnownBits MaskKnown =
823             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
824 
825         // For those bits in the mask that are known to be one, we can propagate
826         // inverted known bits from the RHS to V.
827         Known.Zero |= RHSKnown.One  & MaskKnown.One;
828         Known.One  |= RHSKnown.Zero & MaskKnown.One;
829       // assume(v | b = a)
830       } else if (match(Cmp,
831                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
832                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
833         KnownBits RHSKnown =
834             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
835         KnownBits BKnown =
836             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
837 
838         // For those bits in B that are known to be zero, we can propagate known
839         // bits from the RHS to V.
840         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
841         Known.One  |= RHSKnown.One  & BKnown.Zero;
842       // assume(~(v | b) = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
848         KnownBits BKnown =
849             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
850 
851         // For those bits in B that are known to be zero, we can propagate
852         // inverted known bits from the RHS to V.
853         Known.Zero |= RHSKnown.One  & BKnown.Zero;
854         Known.One  |= RHSKnown.Zero & BKnown.Zero;
855       // assume(v ^ b = a)
856       } else if (match(Cmp,
857                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
861         KnownBits BKnown =
862             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
863 
864         // For those bits in B that are known to be zero, we can propagate known
865         // bits from the RHS to V. For those bits in B that are known to be one,
866         // we can propagate inverted known bits from the RHS to V.
867         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
868         Known.One  |= RHSKnown.One  & BKnown.Zero;
869         Known.Zero |= RHSKnown.One  & BKnown.One;
870         Known.One  |= RHSKnown.Zero & BKnown.One;
871       // assume(~(v ^ b) = a)
872       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
873                                      m_Value(A))) &&
874                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
875         KnownBits RHSKnown =
876             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
877         KnownBits BKnown =
878             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
879 
880         // For those bits in B that are known to be zero, we can propagate
881         // inverted known bits from the RHS to V. For those bits in B that are
882         // known to be one, we can propagate known bits from the RHS to V.
883         Known.Zero |= RHSKnown.One  & BKnown.Zero;
884         Known.One  |= RHSKnown.Zero & BKnown.Zero;
885         Known.Zero |= RHSKnown.Zero & BKnown.One;
886         Known.One  |= RHSKnown.One  & BKnown.One;
887       // assume(v << c = a)
888       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
889                                      m_Value(A))) &&
890                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
891         KnownBits RHSKnown =
892             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
893 
894         // For those bits in RHS that are known, we can propagate them to known
895         // bits in V shifted to the right by C.
896         RHSKnown.Zero.lshrInPlace(C);
897         Known.Zero |= RHSKnown.Zero;
898         RHSKnown.One.lshrInPlace(C);
899         Known.One  |= RHSKnown.One;
900       // assume(~(v << c) = a)
901       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
902                                      m_Value(A))) &&
903                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
904         KnownBits RHSKnown =
905             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
906         // For those bits in RHS that are known, we can propagate them inverted
907         // to known bits in V shifted to the right by C.
908         RHSKnown.One.lshrInPlace(C);
909         Known.Zero |= RHSKnown.One;
910         RHSKnown.Zero.lshrInPlace(C);
911         Known.One  |= RHSKnown.Zero;
912       // assume(v >> c = a)
913       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
914                                      m_Value(A))) &&
915                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
916         KnownBits RHSKnown =
917             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
918         // For those bits in RHS that are known, we can propagate them to known
919         // bits in V shifted to the right by C.
920         Known.Zero |= RHSKnown.Zero << C;
921         Known.One  |= RHSKnown.One  << C;
922       // assume(~(v >> c) = a)
923       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
924                                      m_Value(A))) &&
925                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
926         KnownBits RHSKnown =
927             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
928         // For those bits in RHS that are known, we can propagate them inverted
929         // to known bits in V shifted to the right by C.
930         Known.Zero |= RHSKnown.One  << C;
931         Known.One  |= RHSKnown.Zero << C;
932       }
933       break;
934     case ICmpInst::ICMP_SGE:
935       // assume(v >=_s c) where c is non-negative
936       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
937           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
938         KnownBits RHSKnown =
939             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
940 
941         if (RHSKnown.isNonNegative()) {
942           // We know that the sign bit is zero.
943           Known.makeNonNegative();
944         }
945       }
946       break;
947     case ICmpInst::ICMP_SGT:
948       // assume(v >_s c) where c is at least -1.
949       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
950           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
951         KnownBits RHSKnown =
952             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
953 
954         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
955           // We know that the sign bit is zero.
956           Known.makeNonNegative();
957         }
958       }
959       break;
960     case ICmpInst::ICMP_SLE:
961       // assume(v <=_s c) where c is negative
962       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
963           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
964         KnownBits RHSKnown =
965             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
966 
967         if (RHSKnown.isNegative()) {
968           // We know that the sign bit is one.
969           Known.makeNegative();
970         }
971       }
972       break;
973     case ICmpInst::ICMP_SLT:
974       // assume(v <_s c) where c is non-positive
975       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
976           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
977         KnownBits RHSKnown =
978             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
979 
980         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
981           // We know that the sign bit is one.
982           Known.makeNegative();
983         }
984       }
985       break;
986     case ICmpInst::ICMP_ULE:
987       // assume(v <=_u c)
988       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
989           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
990         KnownBits RHSKnown =
991             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
992 
993         // Whatever high bits in c are zero are known to be zero.
994         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
995       }
996       break;
997     case ICmpInst::ICMP_ULT:
998       // assume(v <_u c)
999       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
1000           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
1001         KnownBits RHSKnown =
1002             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
1003 
1004         // If the RHS is known zero, then this assumption must be wrong (nothing
1005         // is unsigned less than zero). Signal a conflict and get out of here.
1006         if (RHSKnown.isZero()) {
1007           Known.Zero.setAllBits();
1008           Known.One.setAllBits();
1009           break;
1010         }
1011 
1012         // Whatever high bits in c are zero are known to be zero (if c is a power
1013         // of 2, then one more).
1014         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
1015           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
1016         else
1017           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
1018       }
1019       break;
1020     }
1021   }
1022 
1023   // If assumptions conflict with each other or previous known bits, then we
1024   // have a logical fallacy. It's possible that the assumption is not reachable,
1025   // so this isn't a real bug. On the other hand, the program may have undefined
1026   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
1027   // clear out the known bits, try to warn the user, and hope for the best.
1028   if (Known.Zero.intersects(Known.One)) {
1029     Known.resetAll();
1030 
1031     if (Q.ORE)
1032       Q.ORE->emit([&]() {
1033         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
1034         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
1035                                           CxtI)
1036                << "Detected conflicting code assumptions. Program may "
1037                   "have undefined behavior, or compiler may have "
1038                   "internal error.";
1039       });
1040   }
1041 }
1042 
1043 /// Compute known bits from a shift operator, including those with a
1044 /// non-constant shift amount. Known is the output of this function. Known2 is a
1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
1046 /// operator-specific functions that, given the known-zero or known-one bits
1047 /// respectively, and a shift amount, compute the implied known-zero or
1048 /// known-one bits of the shift operator's result respectively for that shift
1049 /// amount. The results from calling KZF and KOF are conservatively combined for
1050 /// all permitted shift amounts.
1051 static void computeKnownBitsFromShiftOperator(
1052     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1053     KnownBits &Known2, unsigned Depth, const Query &Q,
1054     function_ref<APInt(const APInt &, unsigned)> KZF,
1055     function_ref<APInt(const APInt &, unsigned)> KOF) {
1056   unsigned BitWidth = Known.getBitWidth();
1057 
1058   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1059   if (Known.isConstant()) {
1060     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
1061 
1062     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
1063     Known.Zero = KZF(Known.Zero, ShiftAmt);
1064     Known.One  = KOF(Known.One, ShiftAmt);
1065     // If the known bits conflict, this must be an overflowing left shift, so
1066     // the shift result is poison. We can return anything we want. Choose 0 for
1067     // the best folding opportunity.
1068     if (Known.hasConflict())
1069       Known.setAllZero();
1070 
1071     return;
1072   }
1073 
1074   // If the shift amount could be greater than or equal to the bit-width of the
1075   // LHS, the value could be poison, but bail out because the check below is
1076   // expensive.
1077   // TODO: Should we just carry on?
1078   if (Known.getMaxValue().uge(BitWidth)) {
1079     Known.resetAll();
1080     return;
1081   }
1082 
1083   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1084   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1085   // limit value (which implies all bits are known).
1086   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1087   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1088 
1089   // It would be more-clearly correct to use the two temporaries for this
1090   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1091   Known.resetAll();
1092 
1093   // If we know the shifter operand is nonzero, we can sometimes infer more
1094   // known bits. However this is expensive to compute, so be lazy about it and
1095   // only compute it when absolutely necessary.
1096   Optional<bool> ShifterOperandIsNonZero;
1097 
1098   // Early exit if we can't constrain any well-defined shift amount.
1099   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1100       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1101     ShifterOperandIsNonZero =
1102         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1103     if (!*ShifterOperandIsNonZero)
1104       return;
1105   }
1106 
1107   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1108 
1109   Known.Zero.setAllBits();
1110   Known.One.setAllBits();
1111   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1112     // Combine the shifted known input bits only for those shift amounts
1113     // compatible with its known constraints.
1114     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1115       continue;
1116     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1117       continue;
1118     // If we know the shifter is nonzero, we may be able to infer more known
1119     // bits. This check is sunk down as far as possible to avoid the expensive
1120     // call to isKnownNonZero if the cheaper checks above fail.
1121     if (ShiftAmt == 0) {
1122       if (!ShifterOperandIsNonZero.hasValue())
1123         ShifterOperandIsNonZero =
1124             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1125       if (*ShifterOperandIsNonZero)
1126         continue;
1127     }
1128 
1129     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1130     Known.One  &= KOF(Known2.One, ShiftAmt);
1131   }
1132 
1133   // If the known bits conflict, the result is poison. Return a 0 and hope the
1134   // caller can further optimize that.
1135   if (Known.hasConflict())
1136     Known.setAllZero();
1137 }
1138 
1139 static void computeKnownBitsFromOperator(const Operator *I,
1140                                          const APInt &DemandedElts,
1141                                          KnownBits &Known, unsigned Depth,
1142                                          const Query &Q) {
1143   unsigned BitWidth = Known.getBitWidth();
1144 
1145   KnownBits Known2(BitWidth);
1146   switch (I->getOpcode()) {
1147   default: break;
1148   case Instruction::Load:
1149     if (MDNode *MD =
1150             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1151       computeKnownBitsFromRangeMetadata(*MD, Known);
1152     break;
1153   case Instruction::And: {
1154     // If either the LHS or the RHS are Zero, the result is zero.
1155     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1156     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1157 
1158     Known &= Known2;
1159 
1160     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1161     // here we handle the more general case of adding any odd number by
1162     // matching the form add(x, add(x, y)) where y is odd.
1163     // TODO: This could be generalized to clearing any bit set in y where the
1164     // following bit is known to be unset in y.
1165     Value *X = nullptr, *Y = nullptr;
1166     if (!Known.Zero[0] && !Known.One[0] &&
1167         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1168       Known2.resetAll();
1169       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1170       if (Known2.countMinTrailingOnes() > 0)
1171         Known.Zero.setBit(0);
1172     }
1173     break;
1174   }
1175   case Instruction::Or:
1176     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1178 
1179     Known |= Known2;
1180     break;
1181   case Instruction::Xor:
1182     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1183     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1184 
1185     Known ^= Known2;
1186     break;
1187   case Instruction::Mul: {
1188     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1189     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1190                         Known, Known2, Depth, Q);
1191     break;
1192   }
1193   case Instruction::UDiv: {
1194     // For the purposes of computing leading zeros we can conservatively
1195     // treat a udiv as a logical right shift by the power of 2 known to
1196     // be less than the denominator.
1197     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1198     unsigned LeadZ = Known2.countMinLeadingZeros();
1199 
1200     Known2.resetAll();
1201     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1202     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1203     if (RHSMaxLeadingZeros != BitWidth)
1204       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1205 
1206     Known.Zero.setHighBits(LeadZ);
1207     break;
1208   }
1209   case Instruction::Select: {
1210     const Value *LHS = nullptr, *RHS = nullptr;
1211     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1212     if (SelectPatternResult::isMinOrMax(SPF)) {
1213       computeKnownBits(RHS, Known, Depth + 1, Q);
1214       computeKnownBits(LHS, Known2, Depth + 1, Q);
1215     } else {
1216       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1217       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1218     }
1219 
1220     unsigned MaxHighOnes = 0;
1221     unsigned MaxHighZeros = 0;
1222     if (SPF == SPF_SMAX) {
1223       // If both sides are negative, the result is negative.
1224       if (Known.isNegative() && Known2.isNegative())
1225         // We can derive a lower bound on the result by taking the max of the
1226         // leading one bits.
1227         MaxHighOnes =
1228             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1229       // If either side is non-negative, the result is non-negative.
1230       else if (Known.isNonNegative() || Known2.isNonNegative())
1231         MaxHighZeros = 1;
1232     } else if (SPF == SPF_SMIN) {
1233       // If both sides are non-negative, the result is non-negative.
1234       if (Known.isNonNegative() && Known2.isNonNegative())
1235         // We can derive an upper bound on the result by taking the max of the
1236         // leading zero bits.
1237         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1238                                 Known2.countMinLeadingZeros());
1239       // If either side is negative, the result is negative.
1240       else if (Known.isNegative() || Known2.isNegative())
1241         MaxHighOnes = 1;
1242     } else if (SPF == SPF_UMAX) {
1243       // We can derive a lower bound on the result by taking the max of the
1244       // leading one bits.
1245       MaxHighOnes =
1246           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1247     } else if (SPF == SPF_UMIN) {
1248       // We can derive an upper bound on the result by taking the max of the
1249       // leading zero bits.
1250       MaxHighZeros =
1251           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1252     } else if (SPF == SPF_ABS) {
1253       // RHS from matchSelectPattern returns the negation part of abs pattern.
1254       // If the negate has an NSW flag we can assume the sign bit of the result
1255       // will be 0 because that makes abs(INT_MIN) undefined.
1256       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1257           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1258         MaxHighZeros = 1;
1259     }
1260 
1261     // Only known if known in both the LHS and RHS.
1262     Known.One &= Known2.One;
1263     Known.Zero &= Known2.Zero;
1264     if (MaxHighOnes > 0)
1265       Known.One.setHighBits(MaxHighOnes);
1266     if (MaxHighZeros > 0)
1267       Known.Zero.setHighBits(MaxHighZeros);
1268     break;
1269   }
1270   case Instruction::FPTrunc:
1271   case Instruction::FPExt:
1272   case Instruction::FPToUI:
1273   case Instruction::FPToSI:
1274   case Instruction::SIToFP:
1275   case Instruction::UIToFP:
1276     break; // Can't work with floating point.
1277   case Instruction::PtrToInt:
1278   case Instruction::IntToPtr:
1279     // Fall through and handle them the same as zext/trunc.
1280     LLVM_FALLTHROUGH;
1281   case Instruction::ZExt:
1282   case Instruction::Trunc: {
1283     Type *SrcTy = I->getOperand(0)->getType();
1284 
1285     unsigned SrcBitWidth;
1286     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1287     // which fall through here.
1288     Type *ScalarTy = SrcTy->getScalarType();
1289     SrcBitWidth = ScalarTy->isPointerTy() ?
1290       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1291       Q.DL.getTypeSizeInBits(ScalarTy);
1292 
1293     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1294     Known = Known.anyextOrTrunc(SrcBitWidth);
1295     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1296     Known = Known.zextOrTrunc(BitWidth);
1297     break;
1298   }
1299   case Instruction::BitCast: {
1300     Type *SrcTy = I->getOperand(0)->getType();
1301     if (SrcTy->isIntOrPtrTy() &&
1302         // TODO: For now, not handling conversions like:
1303         // (bitcast i64 %x to <2 x i32>)
1304         !I->getType()->isVectorTy()) {
1305       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1306       break;
1307     }
1308     break;
1309   }
1310   case Instruction::SExt: {
1311     // Compute the bits in the result that are not present in the input.
1312     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1313 
1314     Known = Known.trunc(SrcBitWidth);
1315     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1316     // If the sign bit of the input is known set or clear, then we know the
1317     // top bits of the result.
1318     Known = Known.sext(BitWidth);
1319     break;
1320   }
1321   case Instruction::Shl: {
1322     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1323     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1324     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1325       APInt KZResult = KnownZero << ShiftAmt;
1326       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1327       // If this shift has "nsw" keyword, then the result is either a poison
1328       // value or has the same sign bit as the first operand.
1329       if (NSW && KnownZero.isSignBitSet())
1330         KZResult.setSignBit();
1331       return KZResult;
1332     };
1333 
1334     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1335       APInt KOResult = KnownOne << ShiftAmt;
1336       if (NSW && KnownOne.isSignBitSet())
1337         KOResult.setSignBit();
1338       return KOResult;
1339     };
1340 
1341     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1342                                       KZF, KOF);
1343     break;
1344   }
1345   case Instruction::LShr: {
1346     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1347     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1348       APInt KZResult = KnownZero.lshr(ShiftAmt);
1349       // High bits known zero.
1350       KZResult.setHighBits(ShiftAmt);
1351       return KZResult;
1352     };
1353 
1354     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1355       return KnownOne.lshr(ShiftAmt);
1356     };
1357 
1358     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1359                                       KZF, KOF);
1360     break;
1361   }
1362   case Instruction::AShr: {
1363     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1364     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1365       return KnownZero.ashr(ShiftAmt);
1366     };
1367 
1368     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1369       return KnownOne.ashr(ShiftAmt);
1370     };
1371 
1372     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1373                                       KZF, KOF);
1374     break;
1375   }
1376   case Instruction::Sub: {
1377     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1378     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1379                            DemandedElts, Known, Known2, Depth, Q);
1380     break;
1381   }
1382   case Instruction::Add: {
1383     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1384     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1385                            DemandedElts, Known, Known2, Depth, Q);
1386     break;
1387   }
1388   case Instruction::SRem:
1389     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1390       APInt RA = Rem->getValue().abs();
1391       if (RA.isPowerOf2()) {
1392         APInt LowBits = RA - 1;
1393         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1394 
1395         // The low bits of the first operand are unchanged by the srem.
1396         Known.Zero = Known2.Zero & LowBits;
1397         Known.One = Known2.One & LowBits;
1398 
1399         // If the first operand is non-negative or has all low bits zero, then
1400         // the upper bits are all zero.
1401         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1402           Known.Zero |= ~LowBits;
1403 
1404         // If the first operand is negative and not all low bits are zero, then
1405         // the upper bits are all one.
1406         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1407           Known.One |= ~LowBits;
1408 
1409         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1410         break;
1411       }
1412     }
1413 
1414     // The sign bit is the LHS's sign bit, except when the result of the
1415     // remainder is zero.
1416     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1417     // If it's known zero, our sign bit is also zero.
1418     if (Known2.isNonNegative())
1419       Known.makeNonNegative();
1420 
1421     break;
1422   case Instruction::URem: {
1423     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1424       const APInt &RA = Rem->getValue();
1425       if (RA.isPowerOf2()) {
1426         APInt LowBits = (RA - 1);
1427         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1428         Known.Zero |= ~LowBits;
1429         Known.One &= LowBits;
1430         break;
1431       }
1432     }
1433 
1434     // Since the result is less than or equal to either operand, any leading
1435     // zero bits in either operand must also exist in the result.
1436     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1437     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1438 
1439     unsigned Leaders =
1440         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1441     Known.resetAll();
1442     Known.Zero.setHighBits(Leaders);
1443     break;
1444   }
1445   case Instruction::Alloca:
1446     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1447     break;
1448   case Instruction::GetElementPtr: {
1449     // Analyze all of the subscripts of this getelementptr instruction
1450     // to determine if we can prove known low zero bits.
1451     KnownBits LocalKnown(BitWidth);
1452     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1453     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1454 
1455     gep_type_iterator GTI = gep_type_begin(I);
1456     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1457       // TrailZ can only become smaller, short-circuit if we hit zero.
1458       if (TrailZ == 0)
1459         break;
1460 
1461       Value *Index = I->getOperand(i);
1462       if (StructType *STy = GTI.getStructTypeOrNull()) {
1463         // Handle struct member offset arithmetic.
1464 
1465         // Handle case when index is vector zeroinitializer
1466         Constant *CIndex = cast<Constant>(Index);
1467         if (CIndex->isZeroValue())
1468           continue;
1469 
1470         if (CIndex->getType()->isVectorTy())
1471           Index = CIndex->getSplatValue();
1472 
1473         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1474         const StructLayout *SL = Q.DL.getStructLayout(STy);
1475         uint64_t Offset = SL->getElementOffset(Idx);
1476         TrailZ = std::min<unsigned>(TrailZ,
1477                                     countTrailingZeros(Offset));
1478       } else {
1479         // Handle array index arithmetic.
1480         Type *IndexedTy = GTI.getIndexedType();
1481         if (!IndexedTy->isSized()) {
1482           TrailZ = 0;
1483           break;
1484         }
1485         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1486         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1487         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1488         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1489         TrailZ = std::min(TrailZ,
1490                           unsigned(countTrailingZeros(TypeSize) +
1491                                    LocalKnown.countMinTrailingZeros()));
1492       }
1493     }
1494 
1495     Known.Zero.setLowBits(TrailZ);
1496     break;
1497   }
1498   case Instruction::PHI: {
1499     const PHINode *P = cast<PHINode>(I);
1500     // Handle the case of a simple two-predecessor recurrence PHI.
1501     // There's a lot more that could theoretically be done here, but
1502     // this is sufficient to catch some interesting cases.
1503     if (P->getNumIncomingValues() == 2) {
1504       for (unsigned i = 0; i != 2; ++i) {
1505         Value *L = P->getIncomingValue(i);
1506         Value *R = P->getIncomingValue(!i);
1507         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1508         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1509         Operator *LU = dyn_cast<Operator>(L);
1510         if (!LU)
1511           continue;
1512         unsigned Opcode = LU->getOpcode();
1513         // Check for operations that have the property that if
1514         // both their operands have low zero bits, the result
1515         // will have low zero bits.
1516         if (Opcode == Instruction::Add ||
1517             Opcode == Instruction::Sub ||
1518             Opcode == Instruction::And ||
1519             Opcode == Instruction::Or ||
1520             Opcode == Instruction::Mul) {
1521           Value *LL = LU->getOperand(0);
1522           Value *LR = LU->getOperand(1);
1523           // Find a recurrence.
1524           if (LL == I)
1525             L = LR;
1526           else if (LR == I)
1527             L = LL;
1528           else
1529             continue; // Check for recurrence with L and R flipped.
1530 
1531           // Change the context instruction to the "edge" that flows into the
1532           // phi. This is important because that is where the value is actually
1533           // "evaluated" even though it is used later somewhere else. (see also
1534           // D69571).
1535           Query RecQ = Q;
1536 
1537           // Ok, we have a PHI of the form L op= R. Check for low
1538           // zero bits.
1539           RecQ.CxtI = RInst;
1540           computeKnownBits(R, Known2, Depth + 1, RecQ);
1541 
1542           // We need to take the minimum number of known bits
1543           KnownBits Known3(BitWidth);
1544           RecQ.CxtI = LInst;
1545           computeKnownBits(L, Known3, Depth + 1, RecQ);
1546 
1547           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1548                                          Known3.countMinTrailingZeros()));
1549 
1550           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1551           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1552             // If initial value of recurrence is nonnegative, and we are adding
1553             // a nonnegative number with nsw, the result can only be nonnegative
1554             // or poison value regardless of the number of times we execute the
1555             // add in phi recurrence. If initial value is negative and we are
1556             // adding a negative number with nsw, the result can only be
1557             // negative or poison value. Similar arguments apply to sub and mul.
1558             //
1559             // (add non-negative, non-negative) --> non-negative
1560             // (add negative, negative) --> negative
1561             if (Opcode == Instruction::Add) {
1562               if (Known2.isNonNegative() && Known3.isNonNegative())
1563                 Known.makeNonNegative();
1564               else if (Known2.isNegative() && Known3.isNegative())
1565                 Known.makeNegative();
1566             }
1567 
1568             // (sub nsw non-negative, negative) --> non-negative
1569             // (sub nsw negative, non-negative) --> negative
1570             else if (Opcode == Instruction::Sub && LL == I) {
1571               if (Known2.isNonNegative() && Known3.isNegative())
1572                 Known.makeNonNegative();
1573               else if (Known2.isNegative() && Known3.isNonNegative())
1574                 Known.makeNegative();
1575             }
1576 
1577             // (mul nsw non-negative, non-negative) --> non-negative
1578             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1579                      Known3.isNonNegative())
1580               Known.makeNonNegative();
1581           }
1582 
1583           break;
1584         }
1585       }
1586     }
1587 
1588     // Unreachable blocks may have zero-operand PHI nodes.
1589     if (P->getNumIncomingValues() == 0)
1590       break;
1591 
1592     // Otherwise take the unions of the known bit sets of the operands,
1593     // taking conservative care to avoid excessive recursion.
1594     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1595       // Skip if every incoming value references to ourself.
1596       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1597         break;
1598 
1599       Known.Zero.setAllBits();
1600       Known.One.setAllBits();
1601       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1602         Value *IncValue = P->getIncomingValue(u);
1603         // Skip direct self references.
1604         if (IncValue == P) continue;
1605 
1606         // Change the context instruction to the "edge" that flows into the
1607         // phi. This is important because that is where the value is actually
1608         // "evaluated" even though it is used later somewhere else. (see also
1609         // D69571).
1610         Query RecQ = Q;
1611         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1612 
1613         Known2 = KnownBits(BitWidth);
1614         // Recurse, but cap the recursion to one level, because we don't
1615         // want to waste time spinning around in loops.
1616         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1617         Known.Zero &= Known2.Zero;
1618         Known.One &= Known2.One;
1619         // If all bits have been ruled out, there's no need to check
1620         // more operands.
1621         if (!Known.Zero && !Known.One)
1622           break;
1623       }
1624     }
1625     break;
1626   }
1627   case Instruction::Call:
1628   case Instruction::Invoke:
1629     // If range metadata is attached to this call, set known bits from that,
1630     // and then intersect with known bits based on other properties of the
1631     // function.
1632     if (MDNode *MD =
1633             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1634       computeKnownBitsFromRangeMetadata(*MD, Known);
1635     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1636       computeKnownBits(RV, Known2, Depth + 1, Q);
1637       Known.Zero |= Known2.Zero;
1638       Known.One |= Known2.One;
1639     }
1640     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1641       switch (II->getIntrinsicID()) {
1642       default: break;
1643       case Intrinsic::abs:
1644         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1645 
1646         // If the source's MSB is zero then we know the rest of the bits.
1647         if (Known2.isNonNegative()) {
1648           Known.Zero |= Known2.Zero;
1649           Known.One |= Known2.One;
1650           break;
1651         }
1652 
1653         // Absolute value preserves trailing zero count.
1654         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1655 
1656         // If this call is undefined for INT_MIN, the result is positive. We
1657         // also know it can't be INT_MIN if there is a set bit that isn't the
1658         // sign bit.
1659         Known2.One.clearSignBit();
1660         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1661           Known.Zero.setSignBit();
1662         // FIXME: Handle known negative input?
1663         // FIXME: Calculate the negated Known bits and combine them?
1664         break;
1665       case Intrinsic::bitreverse:
1666         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1667         Known.Zero |= Known2.Zero.reverseBits();
1668         Known.One |= Known2.One.reverseBits();
1669         break;
1670       case Intrinsic::bswap:
1671         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1672         Known.Zero |= Known2.Zero.byteSwap();
1673         Known.One |= Known2.One.byteSwap();
1674         break;
1675       case Intrinsic::ctlz: {
1676         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1677         // If we have a known 1, its position is our upper bound.
1678         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1679         // If this call is undefined for 0, the result will be less than 2^n.
1680         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1681           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1682         unsigned LowBits = Log2_32(PossibleLZ)+1;
1683         Known.Zero.setBitsFrom(LowBits);
1684         break;
1685       }
1686       case Intrinsic::cttz: {
1687         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1688         // If we have a known 1, its position is our upper bound.
1689         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1690         // If this call is undefined for 0, the result will be less than 2^n.
1691         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1692           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1693         unsigned LowBits = Log2_32(PossibleTZ)+1;
1694         Known.Zero.setBitsFrom(LowBits);
1695         break;
1696       }
1697       case Intrinsic::ctpop: {
1698         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1699         // We can bound the space the count needs.  Also, bits known to be zero
1700         // can't contribute to the population.
1701         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1702         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1703         Known.Zero.setBitsFrom(LowBits);
1704         // TODO: we could bound KnownOne using the lower bound on the number
1705         // of bits which might be set provided by popcnt KnownOne2.
1706         break;
1707       }
1708       case Intrinsic::fshr:
1709       case Intrinsic::fshl: {
1710         const APInt *SA;
1711         if (!match(I->getOperand(2), m_APInt(SA)))
1712           break;
1713 
1714         // Normalize to funnel shift left.
1715         uint64_t ShiftAmt = SA->urem(BitWidth);
1716         if (II->getIntrinsicID() == Intrinsic::fshr)
1717           ShiftAmt = BitWidth - ShiftAmt;
1718 
1719         KnownBits Known3(BitWidth);
1720         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1721         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1722 
1723         Known.Zero =
1724             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1725         Known.One =
1726             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1727         break;
1728       }
1729       case Intrinsic::uadd_sat:
1730       case Intrinsic::usub_sat: {
1731         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1732         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1733         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1734 
1735         // Add: Leading ones of either operand are preserved.
1736         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1737         // as leading zeros in the result.
1738         unsigned LeadingKnown;
1739         if (IsAdd)
1740           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1741                                   Known2.countMinLeadingOnes());
1742         else
1743           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1744                                   Known2.countMinLeadingOnes());
1745 
1746         Known = KnownBits::computeForAddSub(
1747             IsAdd, /* NSW */ false, Known, Known2);
1748 
1749         // We select between the operation result and all-ones/zero
1750         // respectively, so we can preserve known ones/zeros.
1751         if (IsAdd) {
1752           Known.One.setHighBits(LeadingKnown);
1753           Known.Zero.clearAllBits();
1754         } else {
1755           Known.Zero.setHighBits(LeadingKnown);
1756           Known.One.clearAllBits();
1757         }
1758         break;
1759       }
1760       case Intrinsic::x86_sse42_crc32_64_64:
1761         Known.Zero.setBitsFrom(32);
1762         break;
1763       }
1764     }
1765     break;
1766   case Instruction::ShuffleVector: {
1767     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1768     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1769     if (!Shuf) {
1770       Known.resetAll();
1771       return;
1772     }
1773     // For undef elements, we don't know anything about the common state of
1774     // the shuffle result.
1775     APInt DemandedLHS, DemandedRHS;
1776     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1777       Known.resetAll();
1778       return;
1779     }
1780     Known.One.setAllBits();
1781     Known.Zero.setAllBits();
1782     if (!!DemandedLHS) {
1783       const Value *LHS = Shuf->getOperand(0);
1784       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1785       // If we don't know any bits, early out.
1786       if (Known.isUnknown())
1787         break;
1788     }
1789     if (!!DemandedRHS) {
1790       const Value *RHS = Shuf->getOperand(1);
1791       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1792       Known.One &= Known2.One;
1793       Known.Zero &= Known2.Zero;
1794     }
1795     break;
1796   }
1797   case Instruction::InsertElement: {
1798     const Value *Vec = I->getOperand(0);
1799     const Value *Elt = I->getOperand(1);
1800     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1801     // Early out if the index is non-constant or out-of-range.
1802     unsigned NumElts = DemandedElts.getBitWidth();
1803     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1804       Known.resetAll();
1805       return;
1806     }
1807     Known.One.setAllBits();
1808     Known.Zero.setAllBits();
1809     unsigned EltIdx = CIdx->getZExtValue();
1810     // Do we demand the inserted element?
1811     if (DemandedElts[EltIdx]) {
1812       computeKnownBits(Elt, Known, Depth + 1, Q);
1813       // If we don't know any bits, early out.
1814       if (Known.isUnknown())
1815         break;
1816     }
1817     // We don't need the base vector element that has been inserted.
1818     APInt DemandedVecElts = DemandedElts;
1819     DemandedVecElts.clearBit(EltIdx);
1820     if (!!DemandedVecElts) {
1821       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1822       Known.One &= Known2.One;
1823       Known.Zero &= Known2.Zero;
1824     }
1825     break;
1826   }
1827   case Instruction::ExtractElement: {
1828     // Look through extract element. If the index is non-constant or
1829     // out-of-range demand all elements, otherwise just the extracted element.
1830     const Value *Vec = I->getOperand(0);
1831     const Value *Idx = I->getOperand(1);
1832     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1833     if (isa<ScalableVectorType>(Vec->getType())) {
1834       // FIXME: there's probably *something* we can do with scalable vectors
1835       Known.resetAll();
1836       break;
1837     }
1838     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1839     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1840     if (CIdx && CIdx->getValue().ult(NumElts))
1841       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1842     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1843     break;
1844   }
1845   case Instruction::ExtractValue:
1846     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1847       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1848       if (EVI->getNumIndices() != 1) break;
1849       if (EVI->getIndices()[0] == 0) {
1850         switch (II->getIntrinsicID()) {
1851         default: break;
1852         case Intrinsic::uadd_with_overflow:
1853         case Intrinsic::sadd_with_overflow:
1854           computeKnownBitsAddSub(true, II->getArgOperand(0),
1855                                  II->getArgOperand(1), false, DemandedElts,
1856                                  Known, Known2, Depth, Q);
1857           break;
1858         case Intrinsic::usub_with_overflow:
1859         case Intrinsic::ssub_with_overflow:
1860           computeKnownBitsAddSub(false, II->getArgOperand(0),
1861                                  II->getArgOperand(1), false, DemandedElts,
1862                                  Known, Known2, Depth, Q);
1863           break;
1864         case Intrinsic::umul_with_overflow:
1865         case Intrinsic::smul_with_overflow:
1866           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1867                               DemandedElts, Known, Known2, Depth, Q);
1868           break;
1869         }
1870       }
1871     }
1872     break;
1873   }
1874 }
1875 
1876 /// Determine which bits of V are known to be either zero or one and return
1877 /// them.
1878 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1879                            unsigned Depth, const Query &Q) {
1880   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1881   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1882   return Known;
1883 }
1884 
1885 /// Determine which bits of V are known to be either zero or one and return
1886 /// them.
1887 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1888   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1889   computeKnownBits(V, Known, Depth, Q);
1890   return Known;
1891 }
1892 
1893 /// Determine which bits of V are known to be either zero or one and return
1894 /// them in the Known bit set.
1895 ///
1896 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1897 /// we cannot optimize based on the assumption that it is zero without changing
1898 /// it to be an explicit zero.  If we don't change it to zero, other code could
1899 /// optimized based on the contradictory assumption that it is non-zero.
1900 /// Because instcombine aggressively folds operations with undef args anyway,
1901 /// this won't lose us code quality.
1902 ///
1903 /// This function is defined on values with integer type, values with pointer
1904 /// type, and vectors of integers.  In the case
1905 /// where V is a vector, known zero, and known one values are the
1906 /// same width as the vector element, and the bit is set only if it is true
1907 /// for all of the demanded elements in the vector specified by DemandedElts.
1908 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1909                       KnownBits &Known, unsigned Depth, const Query &Q) {
1910   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1911     // No demanded elts or V is a scalable vector, better to assume we don't
1912     // know anything.
1913     Known.resetAll();
1914     return;
1915   }
1916 
1917   assert(V && "No Value?");
1918   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1919 
1920 #ifndef NDEBUG
1921   Type *Ty = V->getType();
1922   unsigned BitWidth = Known.getBitWidth();
1923 
1924   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1925          "Not integer or pointer type!");
1926 
1927   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1928     assert(
1929         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1930         "DemandedElt width should equal the fixed vector number of elements");
1931   } else {
1932     assert(DemandedElts == APInt(1, 1) &&
1933            "DemandedElt width should be 1 for scalars");
1934   }
1935 
1936   Type *ScalarTy = Ty->getScalarType();
1937   if (ScalarTy->isPointerTy()) {
1938     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1939            "V and Known should have same BitWidth");
1940   } else {
1941     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1942            "V and Known should have same BitWidth");
1943   }
1944 #endif
1945 
1946   const APInt *C;
1947   if (match(V, m_APInt(C))) {
1948     // We know all of the bits for a scalar constant or a splat vector constant!
1949     Known.One = *C;
1950     Known.Zero = ~Known.One;
1951     return;
1952   }
1953   // Null and aggregate-zero are all-zeros.
1954   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1955     Known.setAllZero();
1956     return;
1957   }
1958   // Handle a constant vector by taking the intersection of the known bits of
1959   // each element.
1960   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1961     // We know that CDV must be a vector of integers. Take the intersection of
1962     // each element.
1963     Known.Zero.setAllBits(); Known.One.setAllBits();
1964     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1965       if (!DemandedElts[i])
1966         continue;
1967       APInt Elt = CDV->getElementAsAPInt(i);
1968       Known.Zero &= ~Elt;
1969       Known.One &= Elt;
1970     }
1971     return;
1972   }
1973 
1974   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1975     // We know that CV must be a vector of integers. Take the intersection of
1976     // each element.
1977     Known.Zero.setAllBits(); Known.One.setAllBits();
1978     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1979       if (!DemandedElts[i])
1980         continue;
1981       Constant *Element = CV->getAggregateElement(i);
1982       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1983       if (!ElementCI) {
1984         Known.resetAll();
1985         return;
1986       }
1987       const APInt &Elt = ElementCI->getValue();
1988       Known.Zero &= ~Elt;
1989       Known.One &= Elt;
1990     }
1991     return;
1992   }
1993 
1994   // Start out not knowing anything.
1995   Known.resetAll();
1996 
1997   // We can't imply anything about undefs.
1998   if (isa<UndefValue>(V))
1999     return;
2000 
2001   // There's no point in looking through other users of ConstantData for
2002   // assumptions.  Confirm that we've handled them all.
2003   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2004 
2005   // All recursive calls that increase depth must come after this.
2006   if (Depth == MaxAnalysisRecursionDepth)
2007     return;
2008 
2009   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2010   // the bits of its aliasee.
2011   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2012     if (!GA->isInterposable())
2013       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2014     return;
2015   }
2016 
2017   if (const Operator *I = dyn_cast<Operator>(V))
2018     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2019 
2020   // Aligned pointers have trailing zeros - refine Known.Zero set
2021   if (isa<PointerType>(V->getType())) {
2022     Align Alignment = V->getPointerAlignment(Q.DL);
2023     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
2024   }
2025 
2026   // computeKnownBitsFromAssume strictly refines Known.
2027   // Therefore, we run them after computeKnownBitsFromOperator.
2028 
2029   // Check whether a nearby assume intrinsic can determine some known bits.
2030   computeKnownBitsFromAssume(V, Known, Depth, Q);
2031 
2032   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2033 }
2034 
2035 /// Return true if the given value is known to have exactly one
2036 /// bit set when defined. For vectors return true if every element is known to
2037 /// be a power of two when defined. Supports values with integer or pointer
2038 /// types and vectors of integers.
2039 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2040                             const Query &Q) {
2041   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2042 
2043   // Attempt to match against constants.
2044   if (OrZero && match(V, m_Power2OrZero()))
2045       return true;
2046   if (match(V, m_Power2()))
2047       return true;
2048 
2049   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2050   // it is shifted off the end then the result is undefined.
2051   if (match(V, m_Shl(m_One(), m_Value())))
2052     return true;
2053 
2054   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2055   // the bottom.  If it is shifted off the bottom then the result is undefined.
2056   if (match(V, m_LShr(m_SignMask(), m_Value())))
2057     return true;
2058 
2059   // The remaining tests are all recursive, so bail out if we hit the limit.
2060   if (Depth++ == MaxAnalysisRecursionDepth)
2061     return false;
2062 
2063   Value *X = nullptr, *Y = nullptr;
2064   // A shift left or a logical shift right of a power of two is a power of two
2065   // or zero.
2066   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2067                  match(V, m_LShr(m_Value(X), m_Value()))))
2068     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2069 
2070   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2071     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2072 
2073   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2074     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2075            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2076 
2077   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2078     // A power of two and'd with anything is a power of two or zero.
2079     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2080         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2081       return true;
2082     // X & (-X) is always a power of two or zero.
2083     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2084       return true;
2085     return false;
2086   }
2087 
2088   // Adding a power-of-two or zero to the same power-of-two or zero yields
2089   // either the original power-of-two, a larger power-of-two or zero.
2090   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2091     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2092     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2093         Q.IIQ.hasNoSignedWrap(VOBO)) {
2094       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2095           match(X, m_And(m_Value(), m_Specific(Y))))
2096         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2097           return true;
2098       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2099           match(Y, m_And(m_Value(), m_Specific(X))))
2100         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2101           return true;
2102 
2103       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2104       KnownBits LHSBits(BitWidth);
2105       computeKnownBits(X, LHSBits, Depth, Q);
2106 
2107       KnownBits RHSBits(BitWidth);
2108       computeKnownBits(Y, RHSBits, Depth, Q);
2109       // If i8 V is a power of two or zero:
2110       //  ZeroBits: 1 1 1 0 1 1 1 1
2111       // ~ZeroBits: 0 0 0 1 0 0 0 0
2112       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2113         // If OrZero isn't set, we cannot give back a zero result.
2114         // Make sure either the LHS or RHS has a bit set.
2115         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2116           return true;
2117     }
2118   }
2119 
2120   // An exact divide or right shift can only shift off zero bits, so the result
2121   // is a power of two only if the first operand is a power of two and not
2122   // copying a sign bit (sdiv int_min, 2).
2123   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2124       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2125     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2126                                   Depth, Q);
2127   }
2128 
2129   return false;
2130 }
2131 
2132 /// Test whether a GEP's result is known to be non-null.
2133 ///
2134 /// Uses properties inherent in a GEP to try to determine whether it is known
2135 /// to be non-null.
2136 ///
2137 /// Currently this routine does not support vector GEPs.
2138 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2139                               const Query &Q) {
2140   const Function *F = nullptr;
2141   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2142     F = I->getFunction();
2143 
2144   if (!GEP->isInBounds() ||
2145       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2146     return false;
2147 
2148   // FIXME: Support vector-GEPs.
2149   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2150 
2151   // If the base pointer is non-null, we cannot walk to a null address with an
2152   // inbounds GEP in address space zero.
2153   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2154     return true;
2155 
2156   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2157   // If so, then the GEP cannot produce a null pointer, as doing so would
2158   // inherently violate the inbounds contract within address space zero.
2159   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2160        GTI != GTE; ++GTI) {
2161     // Struct types are easy -- they must always be indexed by a constant.
2162     if (StructType *STy = GTI.getStructTypeOrNull()) {
2163       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2164       unsigned ElementIdx = OpC->getZExtValue();
2165       const StructLayout *SL = Q.DL.getStructLayout(STy);
2166       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2167       if (ElementOffset > 0)
2168         return true;
2169       continue;
2170     }
2171 
2172     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2173     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2174       continue;
2175 
2176     // Fast path the constant operand case both for efficiency and so we don't
2177     // increment Depth when just zipping down an all-constant GEP.
2178     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2179       if (!OpC->isZero())
2180         return true;
2181       continue;
2182     }
2183 
2184     // We post-increment Depth here because while isKnownNonZero increments it
2185     // as well, when we pop back up that increment won't persist. We don't want
2186     // to recurse 10k times just because we have 10k GEP operands. We don't
2187     // bail completely out because we want to handle constant GEPs regardless
2188     // of depth.
2189     if (Depth++ >= MaxAnalysisRecursionDepth)
2190       continue;
2191 
2192     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2193       return true;
2194   }
2195 
2196   return false;
2197 }
2198 
2199 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2200                                                   const Instruction *CtxI,
2201                                                   const DominatorTree *DT) {
2202   if (isa<Constant>(V))
2203     return false;
2204 
2205   if (!CtxI || !DT)
2206     return false;
2207 
2208   unsigned NumUsesExplored = 0;
2209   for (auto *U : V->users()) {
2210     // Avoid massive lists
2211     if (NumUsesExplored >= DomConditionsMaxUses)
2212       break;
2213     NumUsesExplored++;
2214 
2215     // If the value is used as an argument to a call or invoke, then argument
2216     // attributes may provide an answer about null-ness.
2217     if (const auto *CB = dyn_cast<CallBase>(U))
2218       if (auto *CalledFunc = CB->getCalledFunction())
2219         for (const Argument &Arg : CalledFunc->args())
2220           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2221               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2222             return true;
2223 
2224     // If the value is used as a load/store, then the pointer must be non null.
2225     if (V == getLoadStorePointerOperand(U)) {
2226       const Instruction *I = cast<Instruction>(U);
2227       if (!NullPointerIsDefined(I->getFunction(),
2228                                 V->getType()->getPointerAddressSpace()) &&
2229           DT->dominates(I, CtxI))
2230         return true;
2231     }
2232 
2233     // Consider only compare instructions uniquely controlling a branch
2234     CmpInst::Predicate Pred;
2235     if (!match(const_cast<User *>(U),
2236                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2237         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2238       continue;
2239 
2240     SmallVector<const User *, 4> WorkList;
2241     SmallPtrSet<const User *, 4> Visited;
2242     for (auto *CmpU : U->users()) {
2243       assert(WorkList.empty() && "Should be!");
2244       if (Visited.insert(CmpU).second)
2245         WorkList.push_back(CmpU);
2246 
2247       while (!WorkList.empty()) {
2248         auto *Curr = WorkList.pop_back_val();
2249 
2250         // If a user is an AND, add all its users to the work list. We only
2251         // propagate "pred != null" condition through AND because it is only
2252         // correct to assume that all conditions of AND are met in true branch.
2253         // TODO: Support similar logic of OR and EQ predicate?
2254         if (Pred == ICmpInst::ICMP_NE)
2255           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2256             if (BO->getOpcode() == Instruction::And) {
2257               for (auto *BOU : BO->users())
2258                 if (Visited.insert(BOU).second)
2259                   WorkList.push_back(BOU);
2260               continue;
2261             }
2262 
2263         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2264           assert(BI->isConditional() && "uses a comparison!");
2265 
2266           BasicBlock *NonNullSuccessor =
2267               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2268           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2269           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2270             return true;
2271         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2272                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2273           return true;
2274         }
2275       }
2276     }
2277   }
2278 
2279   return false;
2280 }
2281 
2282 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2283 /// ensure that the value it's attached to is never Value?  'RangeType' is
2284 /// is the type of the value described by the range.
2285 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2286   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2287   assert(NumRanges >= 1);
2288   for (unsigned i = 0; i < NumRanges; ++i) {
2289     ConstantInt *Lower =
2290         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2291     ConstantInt *Upper =
2292         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2293     ConstantRange Range(Lower->getValue(), Upper->getValue());
2294     if (Range.contains(Value))
2295       return false;
2296   }
2297   return true;
2298 }
2299 
2300 /// Return true if the given value is known to be non-zero when defined. For
2301 /// vectors, return true if every demanded element is known to be non-zero when
2302 /// defined. For pointers, if the context instruction and dominator tree are
2303 /// specified, perform context-sensitive analysis and return true if the
2304 /// pointer couldn't possibly be null at the specified instruction.
2305 /// Supports values with integer or pointer type and vectors of integers.
2306 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2307                     const Query &Q) {
2308   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2309   // vector
2310   if (isa<ScalableVectorType>(V->getType()))
2311     return false;
2312 
2313   if (auto *C = dyn_cast<Constant>(V)) {
2314     if (C->isNullValue())
2315       return false;
2316     if (isa<ConstantInt>(C))
2317       // Must be non-zero due to null test above.
2318       return true;
2319 
2320     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2321       // See the comment for IntToPtr/PtrToInt instructions below.
2322       if (CE->getOpcode() == Instruction::IntToPtr ||
2323           CE->getOpcode() == Instruction::PtrToInt)
2324         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2325             Q.DL.getTypeSizeInBits(CE->getType()))
2326           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2327     }
2328 
2329     // For constant vectors, check that all elements are undefined or known
2330     // non-zero to determine that the whole vector is known non-zero.
2331     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2332       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2333         if (!DemandedElts[i])
2334           continue;
2335         Constant *Elt = C->getAggregateElement(i);
2336         if (!Elt || Elt->isNullValue())
2337           return false;
2338         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2339           return false;
2340       }
2341       return true;
2342     }
2343 
2344     // A global variable in address space 0 is non null unless extern weak
2345     // or an absolute symbol reference. Other address spaces may have null as a
2346     // valid address for a global, so we can't assume anything.
2347     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2348       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2349           GV->getType()->getAddressSpace() == 0)
2350         return true;
2351     } else
2352       return false;
2353   }
2354 
2355   if (auto *I = dyn_cast<Instruction>(V)) {
2356     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2357       // If the possible ranges don't contain zero, then the value is
2358       // definitely non-zero.
2359       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2360         const APInt ZeroValue(Ty->getBitWidth(), 0);
2361         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2362           return true;
2363       }
2364     }
2365   }
2366 
2367   if (isKnownNonZeroFromAssume(V, Q))
2368     return true;
2369 
2370   // Some of the tests below are recursive, so bail out if we hit the limit.
2371   if (Depth++ >= MaxAnalysisRecursionDepth)
2372     return false;
2373 
2374   // Check for pointer simplifications.
2375 
2376   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2377     // Alloca never returns null, malloc might.
2378     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2379       return true;
2380 
2381     // A byval, inalloca may not be null in a non-default addres space. A
2382     // nonnull argument is assumed never 0.
2383     if (const Argument *A = dyn_cast<Argument>(V)) {
2384       if (((A->hasPassPointeeByValueCopyAttr() &&
2385             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2386            A->hasNonNullAttr()))
2387         return true;
2388     }
2389 
2390     // A Load tagged with nonnull metadata is never null.
2391     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2392       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2393         return true;
2394 
2395     if (const auto *Call = dyn_cast<CallBase>(V)) {
2396       if (Call->isReturnNonNull())
2397         return true;
2398       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2399         return isKnownNonZero(RP, Depth, Q);
2400     }
2401   }
2402 
2403   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2404     return true;
2405 
2406   // Check for recursive pointer simplifications.
2407   if (V->getType()->isPointerTy()) {
2408     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2409     // do not alter the value, or at least not the nullness property of the
2410     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2411     //
2412     // Note that we have to take special care to avoid looking through
2413     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2414     // as casts that can alter the value, e.g., AddrSpaceCasts.
2415     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2416       if (isGEPKnownNonNull(GEP, Depth, Q))
2417         return true;
2418 
2419     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2420       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2421 
2422     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2423       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2424           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2425         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2426   }
2427 
2428   // Similar to int2ptr above, we can look through ptr2int here if the cast
2429   // is a no-op or an extend and not a truncate.
2430   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2431     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2432         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2433       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2434 
2435   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2436 
2437   // X | Y != 0 if X != 0 or Y != 0.
2438   Value *X = nullptr, *Y = nullptr;
2439   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2440     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2441            isKnownNonZero(Y, DemandedElts, Depth, Q);
2442 
2443   // ext X != 0 if X != 0.
2444   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2445     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2446 
2447   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2448   // if the lowest bit is shifted off the end.
2449   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2450     // shl nuw can't remove any non-zero bits.
2451     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2452     if (Q.IIQ.hasNoUnsignedWrap(BO))
2453       return isKnownNonZero(X, Depth, Q);
2454 
2455     KnownBits Known(BitWidth);
2456     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2457     if (Known.One[0])
2458       return true;
2459   }
2460   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2461   // defined if the sign bit is shifted off the end.
2462   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2463     // shr exact can only shift out zero bits.
2464     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2465     if (BO->isExact())
2466       return isKnownNonZero(X, Depth, Q);
2467 
2468     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2469     if (Known.isNegative())
2470       return true;
2471 
2472     // If the shifter operand is a constant, and all of the bits shifted
2473     // out are known to be zero, and X is known non-zero then at least one
2474     // non-zero bit must remain.
2475     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2476       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2477       // Is there a known one in the portion not shifted out?
2478       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2479         return true;
2480       // Are all the bits to be shifted out known zero?
2481       if (Known.countMinTrailingZeros() >= ShiftVal)
2482         return isKnownNonZero(X, DemandedElts, Depth, Q);
2483     }
2484   }
2485   // div exact can only produce a zero if the dividend is zero.
2486   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2487     return isKnownNonZero(X, DemandedElts, Depth, Q);
2488   }
2489   // X + Y.
2490   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2491     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2492     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2493 
2494     // If X and Y are both non-negative (as signed values) then their sum is not
2495     // zero unless both X and Y are zero.
2496     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2497       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2498           isKnownNonZero(Y, DemandedElts, Depth, Q))
2499         return true;
2500 
2501     // If X and Y are both negative (as signed values) then their sum is not
2502     // zero unless both X and Y equal INT_MIN.
2503     if (XKnown.isNegative() && YKnown.isNegative()) {
2504       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2505       // The sign bit of X is set.  If some other bit is set then X is not equal
2506       // to INT_MIN.
2507       if (XKnown.One.intersects(Mask))
2508         return true;
2509       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2510       // to INT_MIN.
2511       if (YKnown.One.intersects(Mask))
2512         return true;
2513     }
2514 
2515     // The sum of a non-negative number and a power of two is not zero.
2516     if (XKnown.isNonNegative() &&
2517         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2518       return true;
2519     if (YKnown.isNonNegative() &&
2520         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2521       return true;
2522   }
2523   // X * Y.
2524   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2525     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2526     // If X and Y are non-zero then so is X * Y as long as the multiplication
2527     // does not overflow.
2528     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2529         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2530         isKnownNonZero(Y, DemandedElts, Depth, Q))
2531       return true;
2532   }
2533   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2534   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2535     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2536         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2537       return true;
2538   }
2539   // PHI
2540   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2541     // Try and detect a recurrence that monotonically increases from a
2542     // starting value, as these are common as induction variables.
2543     if (PN->getNumIncomingValues() == 2) {
2544       Value *Start = PN->getIncomingValue(0);
2545       Value *Induction = PN->getIncomingValue(1);
2546       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2547         std::swap(Start, Induction);
2548       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2549         if (!C->isZero() && !C->isNegative()) {
2550           ConstantInt *X;
2551           if (Q.IIQ.UseInstrInfo &&
2552               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2553                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2554               !X->isNegative())
2555             return true;
2556         }
2557       }
2558     }
2559     // Check if all incoming values are non-zero constant.
2560     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2561       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2562     });
2563     if (AllNonZeroConstants)
2564       return true;
2565   }
2566   // ExtractElement
2567   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2568     const Value *Vec = EEI->getVectorOperand();
2569     const Value *Idx = EEI->getIndexOperand();
2570     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2571     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2572       unsigned NumElts = VecTy->getNumElements();
2573       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2574       if (CIdx && CIdx->getValue().ult(NumElts))
2575         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2576       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2577     }
2578   }
2579 
2580   KnownBits Known(BitWidth);
2581   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2582   return Known.One != 0;
2583 }
2584 
2585 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2586   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2587   // vector
2588   if (isa<ScalableVectorType>(V->getType()))
2589     return false;
2590 
2591   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2592   APInt DemandedElts =
2593       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2594   return isKnownNonZero(V, DemandedElts, Depth, Q);
2595 }
2596 
2597 /// Return true if V2 == V1 + X, where X is known non-zero.
2598 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2599   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2600   if (!BO || BO->getOpcode() != Instruction::Add)
2601     return false;
2602   Value *Op = nullptr;
2603   if (V2 == BO->getOperand(0))
2604     Op = BO->getOperand(1);
2605   else if (V2 == BO->getOperand(1))
2606     Op = BO->getOperand(0);
2607   else
2608     return false;
2609   return isKnownNonZero(Op, 0, Q);
2610 }
2611 
2612 /// Return true if it is known that V1 != V2.
2613 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2614   if (V1 == V2)
2615     return false;
2616   if (V1->getType() != V2->getType())
2617     // We can't look through casts yet.
2618     return false;
2619   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2620     return true;
2621 
2622   if (V1->getType()->isIntOrIntVectorTy()) {
2623     // Are any known bits in V1 contradictory to known bits in V2? If V1
2624     // has a known zero where V2 has a known one, they must not be equal.
2625     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2626     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2627 
2628     if (Known1.Zero.intersects(Known2.One) ||
2629         Known2.Zero.intersects(Known1.One))
2630       return true;
2631   }
2632   return false;
2633 }
2634 
2635 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2636 /// simplify operations downstream. Mask is known to be zero for bits that V
2637 /// cannot have.
2638 ///
2639 /// This function is defined on values with integer type, values with pointer
2640 /// type, and vectors of integers.  In the case
2641 /// where V is a vector, the mask, known zero, and known one values are the
2642 /// same width as the vector element, and the bit is set only if it is true
2643 /// for all of the elements in the vector.
2644 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2645                        const Query &Q) {
2646   KnownBits Known(Mask.getBitWidth());
2647   computeKnownBits(V, Known, Depth, Q);
2648   return Mask.isSubsetOf(Known.Zero);
2649 }
2650 
2651 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2652 // Returns the input and lower/upper bounds.
2653 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2654                                 const APInt *&CLow, const APInt *&CHigh) {
2655   assert(isa<Operator>(Select) &&
2656          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2657          "Input should be a Select!");
2658 
2659   const Value *LHS = nullptr, *RHS = nullptr;
2660   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2661   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2662     return false;
2663 
2664   if (!match(RHS, m_APInt(CLow)))
2665     return false;
2666 
2667   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2668   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2669   if (getInverseMinMaxFlavor(SPF) != SPF2)
2670     return false;
2671 
2672   if (!match(RHS2, m_APInt(CHigh)))
2673     return false;
2674 
2675   if (SPF == SPF_SMIN)
2676     std::swap(CLow, CHigh);
2677 
2678   In = LHS2;
2679   return CLow->sle(*CHigh);
2680 }
2681 
2682 /// For vector constants, loop over the elements and find the constant with the
2683 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2684 /// or if any element was not analyzed; otherwise, return the count for the
2685 /// element with the minimum number of sign bits.
2686 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2687                                                  const APInt &DemandedElts,
2688                                                  unsigned TyBits) {
2689   const auto *CV = dyn_cast<Constant>(V);
2690   if (!CV || !isa<FixedVectorType>(CV->getType()))
2691     return 0;
2692 
2693   unsigned MinSignBits = TyBits;
2694   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2695   for (unsigned i = 0; i != NumElts; ++i) {
2696     if (!DemandedElts[i])
2697       continue;
2698     // If we find a non-ConstantInt, bail out.
2699     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2700     if (!Elt)
2701       return 0;
2702 
2703     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2704   }
2705 
2706   return MinSignBits;
2707 }
2708 
2709 static unsigned ComputeNumSignBitsImpl(const Value *V,
2710                                        const APInt &DemandedElts,
2711                                        unsigned Depth, const Query &Q);
2712 
2713 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2714                                    unsigned Depth, const Query &Q) {
2715   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2716   assert(Result > 0 && "At least one sign bit needs to be present!");
2717   return Result;
2718 }
2719 
2720 /// Return the number of times the sign bit of the register is replicated into
2721 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2722 /// (itself), but other cases can give us information. For example, immediately
2723 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2724 /// other, so we return 3. For vectors, return the number of sign bits for the
2725 /// vector element with the minimum number of known sign bits of the demanded
2726 /// elements in the vector specified by DemandedElts.
2727 static unsigned ComputeNumSignBitsImpl(const Value *V,
2728                                        const APInt &DemandedElts,
2729                                        unsigned Depth, const Query &Q) {
2730   Type *Ty = V->getType();
2731 
2732   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2733   // vector
2734   if (isa<ScalableVectorType>(Ty))
2735     return 1;
2736 
2737 #ifndef NDEBUG
2738   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2739 
2740   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2741     assert(
2742         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2743         "DemandedElt width should equal the fixed vector number of elements");
2744   } else {
2745     assert(DemandedElts == APInt(1, 1) &&
2746            "DemandedElt width should be 1 for scalars");
2747   }
2748 #endif
2749 
2750   // We return the minimum number of sign bits that are guaranteed to be present
2751   // in V, so for undef we have to conservatively return 1.  We don't have the
2752   // same behavior for poison though -- that's a FIXME today.
2753 
2754   Type *ScalarTy = Ty->getScalarType();
2755   unsigned TyBits = ScalarTy->isPointerTy() ?
2756     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2757     Q.DL.getTypeSizeInBits(ScalarTy);
2758 
2759   unsigned Tmp, Tmp2;
2760   unsigned FirstAnswer = 1;
2761 
2762   // Note that ConstantInt is handled by the general computeKnownBits case
2763   // below.
2764 
2765   if (Depth == MaxAnalysisRecursionDepth)
2766     return 1;
2767 
2768   if (auto *U = dyn_cast<Operator>(V)) {
2769     switch (Operator::getOpcode(V)) {
2770     default: break;
2771     case Instruction::SExt:
2772       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2773       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2774 
2775     case Instruction::SDiv: {
2776       const APInt *Denominator;
2777       // sdiv X, C -> adds log(C) sign bits.
2778       if (match(U->getOperand(1), m_APInt(Denominator))) {
2779 
2780         // Ignore non-positive denominator.
2781         if (!Denominator->isStrictlyPositive())
2782           break;
2783 
2784         // Calculate the incoming numerator bits.
2785         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2786 
2787         // Add floor(log(C)) bits to the numerator bits.
2788         return std::min(TyBits, NumBits + Denominator->logBase2());
2789       }
2790       break;
2791     }
2792 
2793     case Instruction::SRem: {
2794       const APInt *Denominator;
2795       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2796       // positive constant.  This let us put a lower bound on the number of sign
2797       // bits.
2798       if (match(U->getOperand(1), m_APInt(Denominator))) {
2799 
2800         // Ignore non-positive denominator.
2801         if (!Denominator->isStrictlyPositive())
2802           break;
2803 
2804         // Calculate the incoming numerator bits. SRem by a positive constant
2805         // can't lower the number of sign bits.
2806         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2807 
2808         // Calculate the leading sign bit constraints by examining the
2809         // denominator.  Given that the denominator is positive, there are two
2810         // cases:
2811         //
2812         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2813         //     (1 << ceilLogBase2(C)).
2814         //
2815         //  2. the numerator is negative. Then the result range is (-C,0] and
2816         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2817         //
2818         // Thus a lower bound on the number of sign bits is `TyBits -
2819         // ceilLogBase2(C)`.
2820 
2821         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2822         return std::max(NumrBits, ResBits);
2823       }
2824       break;
2825     }
2826 
2827     case Instruction::AShr: {
2828       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2829       // ashr X, C   -> adds C sign bits.  Vectors too.
2830       const APInt *ShAmt;
2831       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2832         if (ShAmt->uge(TyBits))
2833           break; // Bad shift.
2834         unsigned ShAmtLimited = ShAmt->getZExtValue();
2835         Tmp += ShAmtLimited;
2836         if (Tmp > TyBits) Tmp = TyBits;
2837       }
2838       return Tmp;
2839     }
2840     case Instruction::Shl: {
2841       const APInt *ShAmt;
2842       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2843         // shl destroys sign bits.
2844         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2845         if (ShAmt->uge(TyBits) ||   // Bad shift.
2846             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2847         Tmp2 = ShAmt->getZExtValue();
2848         return Tmp - Tmp2;
2849       }
2850       break;
2851     }
2852     case Instruction::And:
2853     case Instruction::Or:
2854     case Instruction::Xor: // NOT is handled here.
2855       // Logical binary ops preserve the number of sign bits at the worst.
2856       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2857       if (Tmp != 1) {
2858         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2859         FirstAnswer = std::min(Tmp, Tmp2);
2860         // We computed what we know about the sign bits as our first
2861         // answer. Now proceed to the generic code that uses
2862         // computeKnownBits, and pick whichever answer is better.
2863       }
2864       break;
2865 
2866     case Instruction::Select: {
2867       // If we have a clamp pattern, we know that the number of sign bits will
2868       // be the minimum of the clamp min/max range.
2869       const Value *X;
2870       const APInt *CLow, *CHigh;
2871       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2872         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2873 
2874       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2875       if (Tmp == 1) break;
2876       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2877       return std::min(Tmp, Tmp2);
2878     }
2879 
2880     case Instruction::Add:
2881       // Add can have at most one carry bit.  Thus we know that the output
2882       // is, at worst, one more bit than the inputs.
2883       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2884       if (Tmp == 1) break;
2885 
2886       // Special case decrementing a value (ADD X, -1):
2887       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2888         if (CRHS->isAllOnesValue()) {
2889           KnownBits Known(TyBits);
2890           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2891 
2892           // If the input is known to be 0 or 1, the output is 0/-1, which is
2893           // all sign bits set.
2894           if ((Known.Zero | 1).isAllOnesValue())
2895             return TyBits;
2896 
2897           // If we are subtracting one from a positive number, there is no carry
2898           // out of the result.
2899           if (Known.isNonNegative())
2900             return Tmp;
2901         }
2902 
2903       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2904       if (Tmp2 == 1) break;
2905       return std::min(Tmp, Tmp2) - 1;
2906 
2907     case Instruction::Sub:
2908       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2909       if (Tmp2 == 1) break;
2910 
2911       // Handle NEG.
2912       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2913         if (CLHS->isNullValue()) {
2914           KnownBits Known(TyBits);
2915           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2916           // If the input is known to be 0 or 1, the output is 0/-1, which is
2917           // all sign bits set.
2918           if ((Known.Zero | 1).isAllOnesValue())
2919             return TyBits;
2920 
2921           // If the input is known to be positive (the sign bit is known clear),
2922           // the output of the NEG has the same number of sign bits as the
2923           // input.
2924           if (Known.isNonNegative())
2925             return Tmp2;
2926 
2927           // Otherwise, we treat this like a SUB.
2928         }
2929 
2930       // Sub can have at most one carry bit.  Thus we know that the output
2931       // is, at worst, one more bit than the inputs.
2932       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2933       if (Tmp == 1) break;
2934       return std::min(Tmp, Tmp2) - 1;
2935 
2936     case Instruction::Mul: {
2937       // The output of the Mul can be at most twice the valid bits in the
2938       // inputs.
2939       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2940       if (SignBitsOp0 == 1) break;
2941       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2942       if (SignBitsOp1 == 1) break;
2943       unsigned OutValidBits =
2944           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2945       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2946     }
2947 
2948     case Instruction::PHI: {
2949       const PHINode *PN = cast<PHINode>(U);
2950       unsigned NumIncomingValues = PN->getNumIncomingValues();
2951       // Don't analyze large in-degree PHIs.
2952       if (NumIncomingValues > 4) break;
2953       // Unreachable blocks may have zero-operand PHI nodes.
2954       if (NumIncomingValues == 0) break;
2955 
2956       // Take the minimum of all incoming values.  This can't infinitely loop
2957       // because of our depth threshold.
2958       Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2959       for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2960         if (Tmp == 1) return Tmp;
2961         Tmp = std::min(
2962             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2963       }
2964       return Tmp;
2965     }
2966 
2967     case Instruction::Trunc:
2968       // FIXME: it's tricky to do anything useful for this, but it is an
2969       // important case for targets like X86.
2970       break;
2971 
2972     case Instruction::ExtractElement:
2973       // Look through extract element. At the moment we keep this simple and
2974       // skip tracking the specific element. But at least we might find
2975       // information valid for all elements of the vector (for example if vector
2976       // is sign extended, shifted, etc).
2977       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2978 
2979     case Instruction::ShuffleVector: {
2980       // Collect the minimum number of sign bits that are shared by every vector
2981       // element referenced by the shuffle.
2982       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2983       if (!Shuf) {
2984         // FIXME: Add support for shufflevector constant expressions.
2985         return 1;
2986       }
2987       APInt DemandedLHS, DemandedRHS;
2988       // For undef elements, we don't know anything about the common state of
2989       // the shuffle result.
2990       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2991         return 1;
2992       Tmp = std::numeric_limits<unsigned>::max();
2993       if (!!DemandedLHS) {
2994         const Value *LHS = Shuf->getOperand(0);
2995         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2996       }
2997       // If we don't know anything, early out and try computeKnownBits
2998       // fall-back.
2999       if (Tmp == 1)
3000         break;
3001       if (!!DemandedRHS) {
3002         const Value *RHS = Shuf->getOperand(1);
3003         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3004         Tmp = std::min(Tmp, Tmp2);
3005       }
3006       // If we don't know anything, early out and try computeKnownBits
3007       // fall-back.
3008       if (Tmp == 1)
3009         break;
3010       assert(Tmp <= Ty->getScalarSizeInBits() &&
3011              "Failed to determine minimum sign bits");
3012       return Tmp;
3013     }
3014     case Instruction::Call: {
3015       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3016         switch (II->getIntrinsicID()) {
3017         default: break;
3018         case Intrinsic::abs:
3019           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3020           if (Tmp == 1) break;
3021 
3022           // Absolute value reduces number of sign bits by at most 1.
3023           return Tmp - 1;
3024         }
3025       }
3026     }
3027     }
3028   }
3029 
3030   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3031   // use this information.
3032 
3033   // If we can examine all elements of a vector constant successfully, we're
3034   // done (we can't do any better than that). If not, keep trying.
3035   if (unsigned VecSignBits =
3036           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3037     return VecSignBits;
3038 
3039   KnownBits Known(TyBits);
3040   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3041 
3042   // If we know that the sign bit is either zero or one, determine the number of
3043   // identical bits in the top of the input value.
3044   return std::max(FirstAnswer, Known.countMinSignBits());
3045 }
3046 
3047 /// This function computes the integer multiple of Base that equals V.
3048 /// If successful, it returns true and returns the multiple in
3049 /// Multiple. If unsuccessful, it returns false. It looks
3050 /// through SExt instructions only if LookThroughSExt is true.
3051 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
3052                            bool LookThroughSExt, unsigned Depth) {
3053   assert(V && "No Value?");
3054   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3055   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3056 
3057   Type *T = V->getType();
3058 
3059   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3060 
3061   if (Base == 0)
3062     return false;
3063 
3064   if (Base == 1) {
3065     Multiple = V;
3066     return true;
3067   }
3068 
3069   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3070   Constant *BaseVal = ConstantInt::get(T, Base);
3071   if (CO && CO == BaseVal) {
3072     // Multiple is 1.
3073     Multiple = ConstantInt::get(T, 1);
3074     return true;
3075   }
3076 
3077   if (CI && CI->getZExtValue() % Base == 0) {
3078     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3079     return true;
3080   }
3081 
3082   if (Depth == MaxAnalysisRecursionDepth) return false;
3083 
3084   Operator *I = dyn_cast<Operator>(V);
3085   if (!I) return false;
3086 
3087   switch (I->getOpcode()) {
3088   default: break;
3089   case Instruction::SExt:
3090     if (!LookThroughSExt) return false;
3091     // otherwise fall through to ZExt
3092     LLVM_FALLTHROUGH;
3093   case Instruction::ZExt:
3094     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3095                            LookThroughSExt, Depth+1);
3096   case Instruction::Shl:
3097   case Instruction::Mul: {
3098     Value *Op0 = I->getOperand(0);
3099     Value *Op1 = I->getOperand(1);
3100 
3101     if (I->getOpcode() == Instruction::Shl) {
3102       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3103       if (!Op1CI) return false;
3104       // Turn Op0 << Op1 into Op0 * 2^Op1
3105       APInt Op1Int = Op1CI->getValue();
3106       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3107       APInt API(Op1Int.getBitWidth(), 0);
3108       API.setBit(BitToSet);
3109       Op1 = ConstantInt::get(V->getContext(), API);
3110     }
3111 
3112     Value *Mul0 = nullptr;
3113     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3114       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3115         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3116           if (Op1C->getType()->getPrimitiveSizeInBits() <
3117               MulC->getType()->getPrimitiveSizeInBits())
3118             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3119           if (Op1C->getType()->getPrimitiveSizeInBits() >
3120               MulC->getType()->getPrimitiveSizeInBits())
3121             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3122 
3123           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3124           Multiple = ConstantExpr::getMul(MulC, Op1C);
3125           return true;
3126         }
3127 
3128       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3129         if (Mul0CI->getValue() == 1) {
3130           // V == Base * Op1, so return Op1
3131           Multiple = Op1;
3132           return true;
3133         }
3134     }
3135 
3136     Value *Mul1 = nullptr;
3137     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3138       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3139         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3140           if (Op0C->getType()->getPrimitiveSizeInBits() <
3141               MulC->getType()->getPrimitiveSizeInBits())
3142             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3143           if (Op0C->getType()->getPrimitiveSizeInBits() >
3144               MulC->getType()->getPrimitiveSizeInBits())
3145             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3146 
3147           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3148           Multiple = ConstantExpr::getMul(MulC, Op0C);
3149           return true;
3150         }
3151 
3152       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3153         if (Mul1CI->getValue() == 1) {
3154           // V == Base * Op0, so return Op0
3155           Multiple = Op0;
3156           return true;
3157         }
3158     }
3159   }
3160   }
3161 
3162   // We could not determine if V is a multiple of Base.
3163   return false;
3164 }
3165 
3166 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3167                                             const TargetLibraryInfo *TLI) {
3168   const Function *F = CB.getCalledFunction();
3169   if (!F)
3170     return Intrinsic::not_intrinsic;
3171 
3172   if (F->isIntrinsic())
3173     return F->getIntrinsicID();
3174 
3175   // We are going to infer semantics of a library function based on mapping it
3176   // to an LLVM intrinsic. Check that the library function is available from
3177   // this callbase and in this environment.
3178   LibFunc Func;
3179   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3180       !CB.onlyReadsMemory())
3181     return Intrinsic::not_intrinsic;
3182 
3183   switch (Func) {
3184   default:
3185     break;
3186   case LibFunc_sin:
3187   case LibFunc_sinf:
3188   case LibFunc_sinl:
3189     return Intrinsic::sin;
3190   case LibFunc_cos:
3191   case LibFunc_cosf:
3192   case LibFunc_cosl:
3193     return Intrinsic::cos;
3194   case LibFunc_exp:
3195   case LibFunc_expf:
3196   case LibFunc_expl:
3197     return Intrinsic::exp;
3198   case LibFunc_exp2:
3199   case LibFunc_exp2f:
3200   case LibFunc_exp2l:
3201     return Intrinsic::exp2;
3202   case LibFunc_log:
3203   case LibFunc_logf:
3204   case LibFunc_logl:
3205     return Intrinsic::log;
3206   case LibFunc_log10:
3207   case LibFunc_log10f:
3208   case LibFunc_log10l:
3209     return Intrinsic::log10;
3210   case LibFunc_log2:
3211   case LibFunc_log2f:
3212   case LibFunc_log2l:
3213     return Intrinsic::log2;
3214   case LibFunc_fabs:
3215   case LibFunc_fabsf:
3216   case LibFunc_fabsl:
3217     return Intrinsic::fabs;
3218   case LibFunc_fmin:
3219   case LibFunc_fminf:
3220   case LibFunc_fminl:
3221     return Intrinsic::minnum;
3222   case LibFunc_fmax:
3223   case LibFunc_fmaxf:
3224   case LibFunc_fmaxl:
3225     return Intrinsic::maxnum;
3226   case LibFunc_copysign:
3227   case LibFunc_copysignf:
3228   case LibFunc_copysignl:
3229     return Intrinsic::copysign;
3230   case LibFunc_floor:
3231   case LibFunc_floorf:
3232   case LibFunc_floorl:
3233     return Intrinsic::floor;
3234   case LibFunc_ceil:
3235   case LibFunc_ceilf:
3236   case LibFunc_ceill:
3237     return Intrinsic::ceil;
3238   case LibFunc_trunc:
3239   case LibFunc_truncf:
3240   case LibFunc_truncl:
3241     return Intrinsic::trunc;
3242   case LibFunc_rint:
3243   case LibFunc_rintf:
3244   case LibFunc_rintl:
3245     return Intrinsic::rint;
3246   case LibFunc_nearbyint:
3247   case LibFunc_nearbyintf:
3248   case LibFunc_nearbyintl:
3249     return Intrinsic::nearbyint;
3250   case LibFunc_round:
3251   case LibFunc_roundf:
3252   case LibFunc_roundl:
3253     return Intrinsic::round;
3254   case LibFunc_roundeven:
3255   case LibFunc_roundevenf:
3256   case LibFunc_roundevenl:
3257     return Intrinsic::roundeven;
3258   case LibFunc_pow:
3259   case LibFunc_powf:
3260   case LibFunc_powl:
3261     return Intrinsic::pow;
3262   case LibFunc_sqrt:
3263   case LibFunc_sqrtf:
3264   case LibFunc_sqrtl:
3265     return Intrinsic::sqrt;
3266   }
3267 
3268   return Intrinsic::not_intrinsic;
3269 }
3270 
3271 /// Return true if we can prove that the specified FP value is never equal to
3272 /// -0.0.
3273 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3274 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3275 ///       the same as +0.0 in floating-point ops.
3276 ///
3277 /// NOTE: this function will need to be revisited when we support non-default
3278 /// rounding modes!
3279 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3280                                 unsigned Depth) {
3281   if (auto *CFP = dyn_cast<ConstantFP>(V))
3282     return !CFP->getValueAPF().isNegZero();
3283 
3284   if (Depth == MaxAnalysisRecursionDepth)
3285     return false;
3286 
3287   auto *Op = dyn_cast<Operator>(V);
3288   if (!Op)
3289     return false;
3290 
3291   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3292   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3293     return true;
3294 
3295   // sitofp and uitofp turn into +0.0 for zero.
3296   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3297     return true;
3298 
3299   if (auto *Call = dyn_cast<CallInst>(Op)) {
3300     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3301     switch (IID) {
3302     default:
3303       break;
3304     // sqrt(-0.0) = -0.0, no other negative results are possible.
3305     case Intrinsic::sqrt:
3306     case Intrinsic::canonicalize:
3307       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3308     // fabs(x) != -0.0
3309     case Intrinsic::fabs:
3310       return true;
3311     }
3312   }
3313 
3314   return false;
3315 }
3316 
3317 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3318 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3319 /// bit despite comparing equal.
3320 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3321                                             const TargetLibraryInfo *TLI,
3322                                             bool SignBitOnly,
3323                                             unsigned Depth) {
3324   // TODO: This function does not do the right thing when SignBitOnly is true
3325   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3326   // which flips the sign bits of NaNs.  See
3327   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3328 
3329   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3330     return !CFP->getValueAPF().isNegative() ||
3331            (!SignBitOnly && CFP->getValueAPF().isZero());
3332   }
3333 
3334   // Handle vector of constants.
3335   if (auto *CV = dyn_cast<Constant>(V)) {
3336     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3337       unsigned NumElts = CVFVTy->getNumElements();
3338       for (unsigned i = 0; i != NumElts; ++i) {
3339         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3340         if (!CFP)
3341           return false;
3342         if (CFP->getValueAPF().isNegative() &&
3343             (SignBitOnly || !CFP->getValueAPF().isZero()))
3344           return false;
3345       }
3346 
3347       // All non-negative ConstantFPs.
3348       return true;
3349     }
3350   }
3351 
3352   if (Depth == MaxAnalysisRecursionDepth)
3353     return false;
3354 
3355   const Operator *I = dyn_cast<Operator>(V);
3356   if (!I)
3357     return false;
3358 
3359   switch (I->getOpcode()) {
3360   default:
3361     break;
3362   // Unsigned integers are always nonnegative.
3363   case Instruction::UIToFP:
3364     return true;
3365   case Instruction::FMul:
3366   case Instruction::FDiv:
3367     // X * X is always non-negative or a NaN.
3368     // X / X is always exactly 1.0 or a NaN.
3369     if (I->getOperand(0) == I->getOperand(1) &&
3370         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3371       return true;
3372 
3373     LLVM_FALLTHROUGH;
3374   case Instruction::FAdd:
3375   case Instruction::FRem:
3376     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3377                                            Depth + 1) &&
3378            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3379                                            Depth + 1);
3380   case Instruction::Select:
3381     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3382                                            Depth + 1) &&
3383            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3384                                            Depth + 1);
3385   case Instruction::FPExt:
3386   case Instruction::FPTrunc:
3387     // Widening/narrowing never change sign.
3388     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3389                                            Depth + 1);
3390   case Instruction::ExtractElement:
3391     // Look through extract element. At the moment we keep this simple and skip
3392     // tracking the specific element. But at least we might find information
3393     // valid for all elements of the vector.
3394     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3395                                            Depth + 1);
3396   case Instruction::Call:
3397     const auto *CI = cast<CallInst>(I);
3398     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3399     switch (IID) {
3400     default:
3401       break;
3402     case Intrinsic::maxnum: {
3403       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3404       auto isPositiveNum = [&](Value *V) {
3405         if (SignBitOnly) {
3406           // With SignBitOnly, this is tricky because the result of
3407           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3408           // a constant strictly greater than 0.0.
3409           const APFloat *C;
3410           return match(V, m_APFloat(C)) &&
3411                  *C > APFloat::getZero(C->getSemantics());
3412         }
3413 
3414         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3415         // maxnum can't be ordered-less-than-zero.
3416         return isKnownNeverNaN(V, TLI) &&
3417                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3418       };
3419 
3420       // TODO: This could be improved. We could also check that neither operand
3421       //       has its sign bit set (and at least 1 is not-NAN?).
3422       return isPositiveNum(V0) || isPositiveNum(V1);
3423     }
3424 
3425     case Intrinsic::maximum:
3426       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3427                                              Depth + 1) ||
3428              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3429                                              Depth + 1);
3430     case Intrinsic::minnum:
3431     case Intrinsic::minimum:
3432       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3433                                              Depth + 1) &&
3434              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3435                                              Depth + 1);
3436     case Intrinsic::exp:
3437     case Intrinsic::exp2:
3438     case Intrinsic::fabs:
3439       return true;
3440 
3441     case Intrinsic::sqrt:
3442       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3443       if (!SignBitOnly)
3444         return true;
3445       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3446                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3447 
3448     case Intrinsic::powi:
3449       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3450         // powi(x,n) is non-negative if n is even.
3451         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3452           return true;
3453       }
3454       // TODO: This is not correct.  Given that exp is an integer, here are the
3455       // ways that pow can return a negative value:
3456       //
3457       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3458       //   pow(-0, exp)   --> -inf if exp is negative odd.
3459       //   pow(-0, exp)   --> -0 if exp is positive odd.
3460       //   pow(-inf, exp) --> -0 if exp is negative odd.
3461       //   pow(-inf, exp) --> -inf if exp is positive odd.
3462       //
3463       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3464       // but we must return false if x == -0.  Unfortunately we do not currently
3465       // have a way of expressing this constraint.  See details in
3466       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3467       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3468                                              Depth + 1);
3469 
3470     case Intrinsic::fma:
3471     case Intrinsic::fmuladd:
3472       // x*x+y is non-negative if y is non-negative.
3473       return I->getOperand(0) == I->getOperand(1) &&
3474              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3475              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3476                                              Depth + 1);
3477     }
3478     break;
3479   }
3480   return false;
3481 }
3482 
3483 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3484                                        const TargetLibraryInfo *TLI) {
3485   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3486 }
3487 
3488 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3489   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3490 }
3491 
3492 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3493                                 unsigned Depth) {
3494   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3495 
3496   // If we're told that infinities won't happen, assume they won't.
3497   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3498     if (FPMathOp->hasNoInfs())
3499       return true;
3500 
3501   // Handle scalar constants.
3502   if (auto *CFP = dyn_cast<ConstantFP>(V))
3503     return !CFP->isInfinity();
3504 
3505   if (Depth == MaxAnalysisRecursionDepth)
3506     return false;
3507 
3508   if (auto *Inst = dyn_cast<Instruction>(V)) {
3509     switch (Inst->getOpcode()) {
3510     case Instruction::Select: {
3511       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3512              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3513     }
3514     case Instruction::UIToFP:
3515       // If the input type fits into the floating type the result is finite.
3516       return ilogb(APFloat::getLargest(
3517                  Inst->getType()->getScalarType()->getFltSemantics())) >=
3518              (int)Inst->getOperand(0)->getType()->getScalarSizeInBits();
3519     default:
3520       break;
3521     }
3522   }
3523 
3524   // try to handle fixed width vector constants
3525   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3526   if (VFVTy && isa<Constant>(V)) {
3527     // For vectors, verify that each element is not infinity.
3528     unsigned NumElts = VFVTy->getNumElements();
3529     for (unsigned i = 0; i != NumElts; ++i) {
3530       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3531       if (!Elt)
3532         return false;
3533       if (isa<UndefValue>(Elt))
3534         continue;
3535       auto *CElt = dyn_cast<ConstantFP>(Elt);
3536       if (!CElt || CElt->isInfinity())
3537         return false;
3538     }
3539     // All elements were confirmed non-infinity or undefined.
3540     return true;
3541   }
3542 
3543   // was not able to prove that V never contains infinity
3544   return false;
3545 }
3546 
3547 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3548                            unsigned Depth) {
3549   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3550 
3551   // If we're told that NaNs won't happen, assume they won't.
3552   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3553     if (FPMathOp->hasNoNaNs())
3554       return true;
3555 
3556   // Handle scalar constants.
3557   if (auto *CFP = dyn_cast<ConstantFP>(V))
3558     return !CFP->isNaN();
3559 
3560   if (Depth == MaxAnalysisRecursionDepth)
3561     return false;
3562 
3563   if (auto *Inst = dyn_cast<Instruction>(V)) {
3564     switch (Inst->getOpcode()) {
3565     case Instruction::FAdd:
3566     case Instruction::FSub:
3567       // Adding positive and negative infinity produces NaN.
3568       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3569              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3570              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3571               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3572 
3573     case Instruction::FMul:
3574       // Zero multiplied with infinity produces NaN.
3575       // FIXME: If neither side can be zero fmul never produces NaN.
3576       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3577              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3578              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3579              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3580 
3581     case Instruction::FDiv:
3582     case Instruction::FRem:
3583       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3584       return false;
3585 
3586     case Instruction::Select: {
3587       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3588              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3589     }
3590     case Instruction::SIToFP:
3591     case Instruction::UIToFP:
3592       return true;
3593     case Instruction::FPTrunc:
3594     case Instruction::FPExt:
3595       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3596     default:
3597       break;
3598     }
3599   }
3600 
3601   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3602     switch (II->getIntrinsicID()) {
3603     case Intrinsic::canonicalize:
3604     case Intrinsic::fabs:
3605     case Intrinsic::copysign:
3606     case Intrinsic::exp:
3607     case Intrinsic::exp2:
3608     case Intrinsic::floor:
3609     case Intrinsic::ceil:
3610     case Intrinsic::trunc:
3611     case Intrinsic::rint:
3612     case Intrinsic::nearbyint:
3613     case Intrinsic::round:
3614     case Intrinsic::roundeven:
3615       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3616     case Intrinsic::sqrt:
3617       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3618              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3619     case Intrinsic::minnum:
3620     case Intrinsic::maxnum:
3621       // If either operand is not NaN, the result is not NaN.
3622       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3623              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3624     default:
3625       return false;
3626     }
3627   }
3628 
3629   // Try to handle fixed width vector constants
3630   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3631   if (VFVTy && isa<Constant>(V)) {
3632     // For vectors, verify that each element is not NaN.
3633     unsigned NumElts = VFVTy->getNumElements();
3634     for (unsigned i = 0; i != NumElts; ++i) {
3635       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3636       if (!Elt)
3637         return false;
3638       if (isa<UndefValue>(Elt))
3639         continue;
3640       auto *CElt = dyn_cast<ConstantFP>(Elt);
3641       if (!CElt || CElt->isNaN())
3642         return false;
3643     }
3644     // All elements were confirmed not-NaN or undefined.
3645     return true;
3646   }
3647 
3648   // Was not able to prove that V never contains NaN
3649   return false;
3650 }
3651 
3652 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3653 
3654   // All byte-wide stores are splatable, even of arbitrary variables.
3655   if (V->getType()->isIntegerTy(8))
3656     return V;
3657 
3658   LLVMContext &Ctx = V->getContext();
3659 
3660   // Undef don't care.
3661   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3662   if (isa<UndefValue>(V))
3663     return UndefInt8;
3664 
3665   // Return Undef for zero-sized type.
3666   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3667     return UndefInt8;
3668 
3669   Constant *C = dyn_cast<Constant>(V);
3670   if (!C) {
3671     // Conceptually, we could handle things like:
3672     //   %a = zext i8 %X to i16
3673     //   %b = shl i16 %a, 8
3674     //   %c = or i16 %a, %b
3675     // but until there is an example that actually needs this, it doesn't seem
3676     // worth worrying about.
3677     return nullptr;
3678   }
3679 
3680   // Handle 'null' ConstantArrayZero etc.
3681   if (C->isNullValue())
3682     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3683 
3684   // Constant floating-point values can be handled as integer values if the
3685   // corresponding integer value is "byteable".  An important case is 0.0.
3686   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3687     Type *Ty = nullptr;
3688     if (CFP->getType()->isHalfTy())
3689       Ty = Type::getInt16Ty(Ctx);
3690     else if (CFP->getType()->isFloatTy())
3691       Ty = Type::getInt32Ty(Ctx);
3692     else if (CFP->getType()->isDoubleTy())
3693       Ty = Type::getInt64Ty(Ctx);
3694     // Don't handle long double formats, which have strange constraints.
3695     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3696               : nullptr;
3697   }
3698 
3699   // We can handle constant integers that are multiple of 8 bits.
3700   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3701     if (CI->getBitWidth() % 8 == 0) {
3702       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3703       if (!CI->getValue().isSplat(8))
3704         return nullptr;
3705       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3706     }
3707   }
3708 
3709   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3710     if (CE->getOpcode() == Instruction::IntToPtr) {
3711       auto PS = DL.getPointerSizeInBits(
3712           cast<PointerType>(CE->getType())->getAddressSpace());
3713       return isBytewiseValue(
3714           ConstantExpr::getIntegerCast(CE->getOperand(0),
3715                                        Type::getIntNTy(Ctx, PS), false),
3716           DL);
3717     }
3718   }
3719 
3720   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3721     if (LHS == RHS)
3722       return LHS;
3723     if (!LHS || !RHS)
3724       return nullptr;
3725     if (LHS == UndefInt8)
3726       return RHS;
3727     if (RHS == UndefInt8)
3728       return LHS;
3729     return nullptr;
3730   };
3731 
3732   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3733     Value *Val = UndefInt8;
3734     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3735       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3736         return nullptr;
3737     return Val;
3738   }
3739 
3740   if (isa<ConstantAggregate>(C)) {
3741     Value *Val = UndefInt8;
3742     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3743       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3744         return nullptr;
3745     return Val;
3746   }
3747 
3748   // Don't try to handle the handful of other constants.
3749   return nullptr;
3750 }
3751 
3752 // This is the recursive version of BuildSubAggregate. It takes a few different
3753 // arguments. Idxs is the index within the nested struct From that we are
3754 // looking at now (which is of type IndexedType). IdxSkip is the number of
3755 // indices from Idxs that should be left out when inserting into the resulting
3756 // struct. To is the result struct built so far, new insertvalue instructions
3757 // build on that.
3758 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3759                                 SmallVectorImpl<unsigned> &Idxs,
3760                                 unsigned IdxSkip,
3761                                 Instruction *InsertBefore) {
3762   StructType *STy = dyn_cast<StructType>(IndexedType);
3763   if (STy) {
3764     // Save the original To argument so we can modify it
3765     Value *OrigTo = To;
3766     // General case, the type indexed by Idxs is a struct
3767     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3768       // Process each struct element recursively
3769       Idxs.push_back(i);
3770       Value *PrevTo = To;
3771       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3772                              InsertBefore);
3773       Idxs.pop_back();
3774       if (!To) {
3775         // Couldn't find any inserted value for this index? Cleanup
3776         while (PrevTo != OrigTo) {
3777           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3778           PrevTo = Del->getAggregateOperand();
3779           Del->eraseFromParent();
3780         }
3781         // Stop processing elements
3782         break;
3783       }
3784     }
3785     // If we successfully found a value for each of our subaggregates
3786     if (To)
3787       return To;
3788   }
3789   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3790   // the struct's elements had a value that was inserted directly. In the latter
3791   // case, perhaps we can't determine each of the subelements individually, but
3792   // we might be able to find the complete struct somewhere.
3793 
3794   // Find the value that is at that particular spot
3795   Value *V = FindInsertedValue(From, Idxs);
3796 
3797   if (!V)
3798     return nullptr;
3799 
3800   // Insert the value in the new (sub) aggregate
3801   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3802                                  "tmp", InsertBefore);
3803 }
3804 
3805 // This helper takes a nested struct and extracts a part of it (which is again a
3806 // struct) into a new value. For example, given the struct:
3807 // { a, { b, { c, d }, e } }
3808 // and the indices "1, 1" this returns
3809 // { c, d }.
3810 //
3811 // It does this by inserting an insertvalue for each element in the resulting
3812 // struct, as opposed to just inserting a single struct. This will only work if
3813 // each of the elements of the substruct are known (ie, inserted into From by an
3814 // insertvalue instruction somewhere).
3815 //
3816 // All inserted insertvalue instructions are inserted before InsertBefore
3817 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3818                                 Instruction *InsertBefore) {
3819   assert(InsertBefore && "Must have someplace to insert!");
3820   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3821                                                              idx_range);
3822   Value *To = UndefValue::get(IndexedType);
3823   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3824   unsigned IdxSkip = Idxs.size();
3825 
3826   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3827 }
3828 
3829 /// Given an aggregate and a sequence of indices, see if the scalar value
3830 /// indexed is already around as a register, for example if it was inserted
3831 /// directly into the aggregate.
3832 ///
3833 /// If InsertBefore is not null, this function will duplicate (modified)
3834 /// insertvalues when a part of a nested struct is extracted.
3835 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3836                                Instruction *InsertBefore) {
3837   // Nothing to index? Just return V then (this is useful at the end of our
3838   // recursion).
3839   if (idx_range.empty())
3840     return V;
3841   // We have indices, so V should have an indexable type.
3842   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3843          "Not looking at a struct or array?");
3844   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3845          "Invalid indices for type?");
3846 
3847   if (Constant *C = dyn_cast<Constant>(V)) {
3848     C = C->getAggregateElement(idx_range[0]);
3849     if (!C) return nullptr;
3850     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3851   }
3852 
3853   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3854     // Loop the indices for the insertvalue instruction in parallel with the
3855     // requested indices
3856     const unsigned *req_idx = idx_range.begin();
3857     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3858          i != e; ++i, ++req_idx) {
3859       if (req_idx == idx_range.end()) {
3860         // We can't handle this without inserting insertvalues
3861         if (!InsertBefore)
3862           return nullptr;
3863 
3864         // The requested index identifies a part of a nested aggregate. Handle
3865         // this specially. For example,
3866         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3867         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3868         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3869         // This can be changed into
3870         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3871         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3872         // which allows the unused 0,0 element from the nested struct to be
3873         // removed.
3874         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3875                                  InsertBefore);
3876       }
3877 
3878       // This insert value inserts something else than what we are looking for.
3879       // See if the (aggregate) value inserted into has the value we are
3880       // looking for, then.
3881       if (*req_idx != *i)
3882         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3883                                  InsertBefore);
3884     }
3885     // If we end up here, the indices of the insertvalue match with those
3886     // requested (though possibly only partially). Now we recursively look at
3887     // the inserted value, passing any remaining indices.
3888     return FindInsertedValue(I->getInsertedValueOperand(),
3889                              makeArrayRef(req_idx, idx_range.end()),
3890                              InsertBefore);
3891   }
3892 
3893   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3894     // If we're extracting a value from an aggregate that was extracted from
3895     // something else, we can extract from that something else directly instead.
3896     // However, we will need to chain I's indices with the requested indices.
3897 
3898     // Calculate the number of indices required
3899     unsigned size = I->getNumIndices() + idx_range.size();
3900     // Allocate some space to put the new indices in
3901     SmallVector<unsigned, 5> Idxs;
3902     Idxs.reserve(size);
3903     // Add indices from the extract value instruction
3904     Idxs.append(I->idx_begin(), I->idx_end());
3905 
3906     // Add requested indices
3907     Idxs.append(idx_range.begin(), idx_range.end());
3908 
3909     assert(Idxs.size() == size
3910            && "Number of indices added not correct?");
3911 
3912     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3913   }
3914   // Otherwise, we don't know (such as, extracting from a function return value
3915   // or load instruction)
3916   return nullptr;
3917 }
3918 
3919 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3920                                        unsigned CharSize) {
3921   // Make sure the GEP has exactly three arguments.
3922   if (GEP->getNumOperands() != 3)
3923     return false;
3924 
3925   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3926   // CharSize.
3927   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3928   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3929     return false;
3930 
3931   // Check to make sure that the first operand of the GEP is an integer and
3932   // has value 0 so that we are sure we're indexing into the initializer.
3933   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3934   if (!FirstIdx || !FirstIdx->isZero())
3935     return false;
3936 
3937   return true;
3938 }
3939 
3940 bool llvm::getConstantDataArrayInfo(const Value *V,
3941                                     ConstantDataArraySlice &Slice,
3942                                     unsigned ElementSize, uint64_t Offset) {
3943   assert(V);
3944 
3945   // Look through bitcast instructions and geps.
3946   V = V->stripPointerCasts();
3947 
3948   // If the value is a GEP instruction or constant expression, treat it as an
3949   // offset.
3950   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3951     // The GEP operator should be based on a pointer to string constant, and is
3952     // indexing into the string constant.
3953     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3954       return false;
3955 
3956     // If the second index isn't a ConstantInt, then this is a variable index
3957     // into the array.  If this occurs, we can't say anything meaningful about
3958     // the string.
3959     uint64_t StartIdx = 0;
3960     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3961       StartIdx = CI->getZExtValue();
3962     else
3963       return false;
3964     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3965                                     StartIdx + Offset);
3966   }
3967 
3968   // The GEP instruction, constant or instruction, must reference a global
3969   // variable that is a constant and is initialized. The referenced constant
3970   // initializer is the array that we'll use for optimization.
3971   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3972   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3973     return false;
3974 
3975   const ConstantDataArray *Array;
3976   ArrayType *ArrayTy;
3977   if (GV->getInitializer()->isNullValue()) {
3978     Type *GVTy = GV->getValueType();
3979     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3980       // A zeroinitializer for the array; there is no ConstantDataArray.
3981       Array = nullptr;
3982     } else {
3983       const DataLayout &DL = GV->getParent()->getDataLayout();
3984       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3985       uint64_t Length = SizeInBytes / (ElementSize / 8);
3986       if (Length <= Offset)
3987         return false;
3988 
3989       Slice.Array = nullptr;
3990       Slice.Offset = 0;
3991       Slice.Length = Length - Offset;
3992       return true;
3993     }
3994   } else {
3995     // This must be a ConstantDataArray.
3996     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3997     if (!Array)
3998       return false;
3999     ArrayTy = Array->getType();
4000   }
4001   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
4002     return false;
4003 
4004   uint64_t NumElts = ArrayTy->getArrayNumElements();
4005   if (Offset > NumElts)
4006     return false;
4007 
4008   Slice.Array = Array;
4009   Slice.Offset = Offset;
4010   Slice.Length = NumElts - Offset;
4011   return true;
4012 }
4013 
4014 /// This function computes the length of a null-terminated C string pointed to
4015 /// by V. If successful, it returns true and returns the string in Str.
4016 /// If unsuccessful, it returns false.
4017 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4018                                  uint64_t Offset, bool TrimAtNul) {
4019   ConstantDataArraySlice Slice;
4020   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4021     return false;
4022 
4023   if (Slice.Array == nullptr) {
4024     if (TrimAtNul) {
4025       Str = StringRef();
4026       return true;
4027     }
4028     if (Slice.Length == 1) {
4029       Str = StringRef("", 1);
4030       return true;
4031     }
4032     // We cannot instantiate a StringRef as we do not have an appropriate string
4033     // of 0s at hand.
4034     return false;
4035   }
4036 
4037   // Start out with the entire array in the StringRef.
4038   Str = Slice.Array->getAsString();
4039   // Skip over 'offset' bytes.
4040   Str = Str.substr(Slice.Offset);
4041 
4042   if (TrimAtNul) {
4043     // Trim off the \0 and anything after it.  If the array is not nul
4044     // terminated, we just return the whole end of string.  The client may know
4045     // some other way that the string is length-bound.
4046     Str = Str.substr(0, Str.find('\0'));
4047   }
4048   return true;
4049 }
4050 
4051 // These next two are very similar to the above, but also look through PHI
4052 // nodes.
4053 // TODO: See if we can integrate these two together.
4054 
4055 /// If we can compute the length of the string pointed to by
4056 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4057 static uint64_t GetStringLengthH(const Value *V,
4058                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4059                                  unsigned CharSize) {
4060   // Look through noop bitcast instructions.
4061   V = V->stripPointerCasts();
4062 
4063   // If this is a PHI node, there are two cases: either we have already seen it
4064   // or we haven't.
4065   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4066     if (!PHIs.insert(PN).second)
4067       return ~0ULL;  // already in the set.
4068 
4069     // If it was new, see if all the input strings are the same length.
4070     uint64_t LenSoFar = ~0ULL;
4071     for (Value *IncValue : PN->incoming_values()) {
4072       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4073       if (Len == 0) return 0; // Unknown length -> unknown.
4074 
4075       if (Len == ~0ULL) continue;
4076 
4077       if (Len != LenSoFar && LenSoFar != ~0ULL)
4078         return 0;    // Disagree -> unknown.
4079       LenSoFar = Len;
4080     }
4081 
4082     // Success, all agree.
4083     return LenSoFar;
4084   }
4085 
4086   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4087   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4088     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4089     if (Len1 == 0) return 0;
4090     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4091     if (Len2 == 0) return 0;
4092     if (Len1 == ~0ULL) return Len2;
4093     if (Len2 == ~0ULL) return Len1;
4094     if (Len1 != Len2) return 0;
4095     return Len1;
4096   }
4097 
4098   // Otherwise, see if we can read the string.
4099   ConstantDataArraySlice Slice;
4100   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4101     return 0;
4102 
4103   if (Slice.Array == nullptr)
4104     return 1;
4105 
4106   // Search for nul characters
4107   unsigned NullIndex = 0;
4108   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4109     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4110       break;
4111   }
4112 
4113   return NullIndex + 1;
4114 }
4115 
4116 /// If we can compute the length of the string pointed to by
4117 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4118 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4119   if (!V->getType()->isPointerTy())
4120     return 0;
4121 
4122   SmallPtrSet<const PHINode*, 32> PHIs;
4123   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4124   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4125   // an empty string as a length.
4126   return Len == ~0ULL ? 1 : Len;
4127 }
4128 
4129 const Value *
4130 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4131                                            bool MustPreserveNullness) {
4132   assert(Call &&
4133          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4134   if (const Value *RV = Call->getReturnedArgOperand())
4135     return RV;
4136   // This can be used only as a aliasing property.
4137   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4138           Call, MustPreserveNullness))
4139     return Call->getArgOperand(0);
4140   return nullptr;
4141 }
4142 
4143 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4144     const CallBase *Call, bool MustPreserveNullness) {
4145   switch (Call->getIntrinsicID()) {
4146   case Intrinsic::launder_invariant_group:
4147   case Intrinsic::strip_invariant_group:
4148   case Intrinsic::aarch64_irg:
4149   case Intrinsic::aarch64_tagp:
4150     return true;
4151   case Intrinsic::ptrmask:
4152     return !MustPreserveNullness;
4153   default:
4154     return false;
4155   }
4156 }
4157 
4158 /// \p PN defines a loop-variant pointer to an object.  Check if the
4159 /// previous iteration of the loop was referring to the same object as \p PN.
4160 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4161                                          const LoopInfo *LI) {
4162   // Find the loop-defined value.
4163   Loop *L = LI->getLoopFor(PN->getParent());
4164   if (PN->getNumIncomingValues() != 2)
4165     return true;
4166 
4167   // Find the value from previous iteration.
4168   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4169   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4170     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4171   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4172     return true;
4173 
4174   // If a new pointer is loaded in the loop, the pointer references a different
4175   // object in every iteration.  E.g.:
4176   //    for (i)
4177   //       int *p = a[i];
4178   //       ...
4179   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4180     if (!L->isLoopInvariant(Load->getPointerOperand()))
4181       return false;
4182   return true;
4183 }
4184 
4185 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4186   if (!V->getType()->isPointerTy())
4187     return V;
4188   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4189     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4190       V = GEP->getPointerOperand();
4191     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4192                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4193       V = cast<Operator>(V)->getOperand(0);
4194       if (!V->getType()->isPointerTy())
4195         return V;
4196     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4197       if (GA->isInterposable())
4198         return V;
4199       V = GA->getAliasee();
4200     } else {
4201       if (auto *PHI = dyn_cast<PHINode>(V)) {
4202         // Look through single-arg phi nodes created by LCSSA.
4203         if (PHI->getNumIncomingValues() == 1) {
4204           V = PHI->getIncomingValue(0);
4205           continue;
4206         }
4207       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4208         // CaptureTracking can know about special capturing properties of some
4209         // intrinsics like launder.invariant.group, that can't be expressed with
4210         // the attributes, but have properties like returning aliasing pointer.
4211         // Because some analysis may assume that nocaptured pointer is not
4212         // returned from some special intrinsic (because function would have to
4213         // be marked with returns attribute), it is crucial to use this function
4214         // because it should be in sync with CaptureTracking. Not using it may
4215         // cause weird miscompilations where 2 aliasing pointers are assumed to
4216         // noalias.
4217         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4218           V = RP;
4219           continue;
4220         }
4221       }
4222 
4223       return V;
4224     }
4225     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4226   }
4227   return V;
4228 }
4229 
4230 void llvm::getUnderlyingObjects(const Value *V,
4231                                 SmallVectorImpl<const Value *> &Objects,
4232                                 LoopInfo *LI, unsigned MaxLookup) {
4233   SmallPtrSet<const Value *, 4> Visited;
4234   SmallVector<const Value *, 4> Worklist;
4235   Worklist.push_back(V);
4236   do {
4237     const Value *P = Worklist.pop_back_val();
4238     P = getUnderlyingObject(P, MaxLookup);
4239 
4240     if (!Visited.insert(P).second)
4241       continue;
4242 
4243     if (auto *SI = dyn_cast<SelectInst>(P)) {
4244       Worklist.push_back(SI->getTrueValue());
4245       Worklist.push_back(SI->getFalseValue());
4246       continue;
4247     }
4248 
4249     if (auto *PN = dyn_cast<PHINode>(P)) {
4250       // If this PHI changes the underlying object in every iteration of the
4251       // loop, don't look through it.  Consider:
4252       //   int **A;
4253       //   for (i) {
4254       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4255       //     Curr = A[i];
4256       //     *Prev, *Curr;
4257       //
4258       // Prev is tracking Curr one iteration behind so they refer to different
4259       // underlying objects.
4260       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4261           isSameUnderlyingObjectInLoop(PN, LI))
4262         for (Value *IncValue : PN->incoming_values())
4263           Worklist.push_back(IncValue);
4264       continue;
4265     }
4266 
4267     Objects.push_back(P);
4268   } while (!Worklist.empty());
4269 }
4270 
4271 /// This is the function that does the work of looking through basic
4272 /// ptrtoint+arithmetic+inttoptr sequences.
4273 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4274   do {
4275     if (const Operator *U = dyn_cast<Operator>(V)) {
4276       // If we find a ptrtoint, we can transfer control back to the
4277       // regular getUnderlyingObjectFromInt.
4278       if (U->getOpcode() == Instruction::PtrToInt)
4279         return U->getOperand(0);
4280       // If we find an add of a constant, a multiplied value, or a phi, it's
4281       // likely that the other operand will lead us to the base
4282       // object. We don't have to worry about the case where the
4283       // object address is somehow being computed by the multiply,
4284       // because our callers only care when the result is an
4285       // identifiable object.
4286       if (U->getOpcode() != Instruction::Add ||
4287           (!isa<ConstantInt>(U->getOperand(1)) &&
4288            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4289            !isa<PHINode>(U->getOperand(1))))
4290         return V;
4291       V = U->getOperand(0);
4292     } else {
4293       return V;
4294     }
4295     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4296   } while (true);
4297 }
4298 
4299 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4300 /// ptrtoint+arithmetic+inttoptr sequences.
4301 /// It returns false if unidentified object is found in getUnderlyingObjects.
4302 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4303                                           SmallVectorImpl<Value *> &Objects) {
4304   SmallPtrSet<const Value *, 16> Visited;
4305   SmallVector<const Value *, 4> Working(1, V);
4306   do {
4307     V = Working.pop_back_val();
4308 
4309     SmallVector<const Value *, 4> Objs;
4310     getUnderlyingObjects(V, Objs);
4311 
4312     for (const Value *V : Objs) {
4313       if (!Visited.insert(V).second)
4314         continue;
4315       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4316         const Value *O =
4317           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4318         if (O->getType()->isPointerTy()) {
4319           Working.push_back(O);
4320           continue;
4321         }
4322       }
4323       // If getUnderlyingObjects fails to find an identifiable object,
4324       // getUnderlyingObjectsForCodeGen also fails for safety.
4325       if (!isIdentifiedObject(V)) {
4326         Objects.clear();
4327         return false;
4328       }
4329       Objects.push_back(const_cast<Value *>(V));
4330     }
4331   } while (!Working.empty());
4332   return true;
4333 }
4334 
4335 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4336   AllocaInst *Result = nullptr;
4337   SmallPtrSet<Value *, 4> Visited;
4338   SmallVector<Value *, 4> Worklist;
4339 
4340   auto AddWork = [&](Value *V) {
4341     if (Visited.insert(V).second)
4342       Worklist.push_back(V);
4343   };
4344 
4345   AddWork(V);
4346   do {
4347     V = Worklist.pop_back_val();
4348     assert(Visited.count(V));
4349 
4350     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4351       if (Result && Result != AI)
4352         return nullptr;
4353       Result = AI;
4354     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4355       AddWork(CI->getOperand(0));
4356     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4357       for (Value *IncValue : PN->incoming_values())
4358         AddWork(IncValue);
4359     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4360       AddWork(SI->getTrueValue());
4361       AddWork(SI->getFalseValue());
4362     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4363       if (OffsetZero && !GEP->hasAllZeroIndices())
4364         return nullptr;
4365       AddWork(GEP->getPointerOperand());
4366     } else {
4367       return nullptr;
4368     }
4369   } while (!Worklist.empty());
4370 
4371   return Result;
4372 }
4373 
4374 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4375     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4376   for (const User *U : V->users()) {
4377     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4378     if (!II)
4379       return false;
4380 
4381     if (AllowLifetime && II->isLifetimeStartOrEnd())
4382       continue;
4383 
4384     if (AllowDroppable && II->isDroppable())
4385       continue;
4386 
4387     return false;
4388   }
4389   return true;
4390 }
4391 
4392 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4393   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4394       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4395 }
4396 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4397   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4398       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4399 }
4400 
4401 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4402   if (!LI.isUnordered())
4403     return true;
4404   const Function &F = *LI.getFunction();
4405   // Speculative load may create a race that did not exist in the source.
4406   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4407     // Speculative load may load data from dirty regions.
4408     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4409     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4410 }
4411 
4412 
4413 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4414                                         const Instruction *CtxI,
4415                                         const DominatorTree *DT) {
4416   const Operator *Inst = dyn_cast<Operator>(V);
4417   if (!Inst)
4418     return false;
4419 
4420   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4421     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4422       if (C->canTrap())
4423         return false;
4424 
4425   switch (Inst->getOpcode()) {
4426   default:
4427     return true;
4428   case Instruction::UDiv:
4429   case Instruction::URem: {
4430     // x / y is undefined if y == 0.
4431     const APInt *V;
4432     if (match(Inst->getOperand(1), m_APInt(V)))
4433       return *V != 0;
4434     return false;
4435   }
4436   case Instruction::SDiv:
4437   case Instruction::SRem: {
4438     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4439     const APInt *Numerator, *Denominator;
4440     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4441       return false;
4442     // We cannot hoist this division if the denominator is 0.
4443     if (*Denominator == 0)
4444       return false;
4445     // It's safe to hoist if the denominator is not 0 or -1.
4446     if (*Denominator != -1)
4447       return true;
4448     // At this point we know that the denominator is -1.  It is safe to hoist as
4449     // long we know that the numerator is not INT_MIN.
4450     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4451       return !Numerator->isMinSignedValue();
4452     // The numerator *might* be MinSignedValue.
4453     return false;
4454   }
4455   case Instruction::Load: {
4456     const LoadInst *LI = cast<LoadInst>(Inst);
4457     if (mustSuppressSpeculation(*LI))
4458       return false;
4459     const DataLayout &DL = LI->getModule()->getDataLayout();
4460     return isDereferenceableAndAlignedPointer(
4461         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4462         DL, CtxI, DT);
4463   }
4464   case Instruction::Call: {
4465     auto *CI = cast<const CallInst>(Inst);
4466     const Function *Callee = CI->getCalledFunction();
4467 
4468     // The called function could have undefined behavior or side-effects, even
4469     // if marked readnone nounwind.
4470     return Callee && Callee->isSpeculatable();
4471   }
4472   case Instruction::VAArg:
4473   case Instruction::Alloca:
4474   case Instruction::Invoke:
4475   case Instruction::CallBr:
4476   case Instruction::PHI:
4477   case Instruction::Store:
4478   case Instruction::Ret:
4479   case Instruction::Br:
4480   case Instruction::IndirectBr:
4481   case Instruction::Switch:
4482   case Instruction::Unreachable:
4483   case Instruction::Fence:
4484   case Instruction::AtomicRMW:
4485   case Instruction::AtomicCmpXchg:
4486   case Instruction::LandingPad:
4487   case Instruction::Resume:
4488   case Instruction::CatchSwitch:
4489   case Instruction::CatchPad:
4490   case Instruction::CatchRet:
4491   case Instruction::CleanupPad:
4492   case Instruction::CleanupRet:
4493     return false; // Misc instructions which have effects
4494   }
4495 }
4496 
4497 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4498   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4499 }
4500 
4501 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4502 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4503   switch (OR) {
4504     case ConstantRange::OverflowResult::MayOverflow:
4505       return OverflowResult::MayOverflow;
4506     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4507       return OverflowResult::AlwaysOverflowsLow;
4508     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4509       return OverflowResult::AlwaysOverflowsHigh;
4510     case ConstantRange::OverflowResult::NeverOverflows:
4511       return OverflowResult::NeverOverflows;
4512   }
4513   llvm_unreachable("Unknown OverflowResult");
4514 }
4515 
4516 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4517 static ConstantRange computeConstantRangeIncludingKnownBits(
4518     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4519     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4520     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4521   KnownBits Known = computeKnownBits(
4522       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4523   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4524   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4525   ConstantRange::PreferredRangeType RangeType =
4526       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4527   return CR1.intersectWith(CR2, RangeType);
4528 }
4529 
4530 OverflowResult llvm::computeOverflowForUnsignedMul(
4531     const Value *LHS, const Value *RHS, const DataLayout &DL,
4532     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4533     bool UseInstrInfo) {
4534   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4535                                         nullptr, UseInstrInfo);
4536   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4537                                         nullptr, UseInstrInfo);
4538   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4539   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4540   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4541 }
4542 
4543 OverflowResult
4544 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4545                                   const DataLayout &DL, AssumptionCache *AC,
4546                                   const Instruction *CxtI,
4547                                   const DominatorTree *DT, bool UseInstrInfo) {
4548   // Multiplying n * m significant bits yields a result of n + m significant
4549   // bits. If the total number of significant bits does not exceed the
4550   // result bit width (minus 1), there is no overflow.
4551   // This means if we have enough leading sign bits in the operands
4552   // we can guarantee that the result does not overflow.
4553   // Ref: "Hacker's Delight" by Henry Warren
4554   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4555 
4556   // Note that underestimating the number of sign bits gives a more
4557   // conservative answer.
4558   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4559                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4560 
4561   // First handle the easy case: if we have enough sign bits there's
4562   // definitely no overflow.
4563   if (SignBits > BitWidth + 1)
4564     return OverflowResult::NeverOverflows;
4565 
4566   // There are two ambiguous cases where there can be no overflow:
4567   //   SignBits == BitWidth + 1    and
4568   //   SignBits == BitWidth
4569   // The second case is difficult to check, therefore we only handle the
4570   // first case.
4571   if (SignBits == BitWidth + 1) {
4572     // It overflows only when both arguments are negative and the true
4573     // product is exactly the minimum negative number.
4574     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4575     // For simplicity we just check if at least one side is not negative.
4576     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4577                                           nullptr, UseInstrInfo);
4578     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4579                                           nullptr, UseInstrInfo);
4580     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4581       return OverflowResult::NeverOverflows;
4582   }
4583   return OverflowResult::MayOverflow;
4584 }
4585 
4586 OverflowResult llvm::computeOverflowForUnsignedAdd(
4587     const Value *LHS, const Value *RHS, const DataLayout &DL,
4588     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4589     bool UseInstrInfo) {
4590   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4591       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4592       nullptr, UseInstrInfo);
4593   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4594       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4595       nullptr, UseInstrInfo);
4596   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4597 }
4598 
4599 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4600                                                   const Value *RHS,
4601                                                   const AddOperator *Add,
4602                                                   const DataLayout &DL,
4603                                                   AssumptionCache *AC,
4604                                                   const Instruction *CxtI,
4605                                                   const DominatorTree *DT) {
4606   if (Add && Add->hasNoSignedWrap()) {
4607     return OverflowResult::NeverOverflows;
4608   }
4609 
4610   // If LHS and RHS each have at least two sign bits, the addition will look
4611   // like
4612   //
4613   // XX..... +
4614   // YY.....
4615   //
4616   // If the carry into the most significant position is 0, X and Y can't both
4617   // be 1 and therefore the carry out of the addition is also 0.
4618   //
4619   // If the carry into the most significant position is 1, X and Y can't both
4620   // be 0 and therefore the carry out of the addition is also 1.
4621   //
4622   // Since the carry into the most significant position is always equal to
4623   // the carry out of the addition, there is no signed overflow.
4624   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4625       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4626     return OverflowResult::NeverOverflows;
4627 
4628   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4629       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4630   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4631       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4632   OverflowResult OR =
4633       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4634   if (OR != OverflowResult::MayOverflow)
4635     return OR;
4636 
4637   // The remaining code needs Add to be available. Early returns if not so.
4638   if (!Add)
4639     return OverflowResult::MayOverflow;
4640 
4641   // If the sign of Add is the same as at least one of the operands, this add
4642   // CANNOT overflow. If this can be determined from the known bits of the
4643   // operands the above signedAddMayOverflow() check will have already done so.
4644   // The only other way to improve on the known bits is from an assumption, so
4645   // call computeKnownBitsFromAssume() directly.
4646   bool LHSOrRHSKnownNonNegative =
4647       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4648   bool LHSOrRHSKnownNegative =
4649       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4650   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4651     KnownBits AddKnown(LHSRange.getBitWidth());
4652     computeKnownBitsFromAssume(
4653         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4654     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4655         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4656       return OverflowResult::NeverOverflows;
4657   }
4658 
4659   return OverflowResult::MayOverflow;
4660 }
4661 
4662 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4663                                                    const Value *RHS,
4664                                                    const DataLayout &DL,
4665                                                    AssumptionCache *AC,
4666                                                    const Instruction *CxtI,
4667                                                    const DominatorTree *DT) {
4668   // Checking for conditions implied by dominating conditions may be expensive.
4669   // Limit it to usub_with_overflow calls for now.
4670   if (match(CxtI,
4671             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4672     if (auto C =
4673             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4674       if (*C)
4675         return OverflowResult::NeverOverflows;
4676       return OverflowResult::AlwaysOverflowsLow;
4677     }
4678   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4679       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4680   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4681       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4682   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4683 }
4684 
4685 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4686                                                  const Value *RHS,
4687                                                  const DataLayout &DL,
4688                                                  AssumptionCache *AC,
4689                                                  const Instruction *CxtI,
4690                                                  const DominatorTree *DT) {
4691   // If LHS and RHS each have at least two sign bits, the subtraction
4692   // cannot overflow.
4693   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4694       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4695     return OverflowResult::NeverOverflows;
4696 
4697   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4698       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4699   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4700       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4701   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4702 }
4703 
4704 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4705                                      const DominatorTree &DT) {
4706   SmallVector<const BranchInst *, 2> GuardingBranches;
4707   SmallVector<const ExtractValueInst *, 2> Results;
4708 
4709   for (const User *U : WO->users()) {
4710     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4711       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4712 
4713       if (EVI->getIndices()[0] == 0)
4714         Results.push_back(EVI);
4715       else {
4716         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4717 
4718         for (const auto *U : EVI->users())
4719           if (const auto *B = dyn_cast<BranchInst>(U)) {
4720             assert(B->isConditional() && "How else is it using an i1?");
4721             GuardingBranches.push_back(B);
4722           }
4723       }
4724     } else {
4725       // We are using the aggregate directly in a way we don't want to analyze
4726       // here (storing it to a global, say).
4727       return false;
4728     }
4729   }
4730 
4731   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4732     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4733     if (!NoWrapEdge.isSingleEdge())
4734       return false;
4735 
4736     // Check if all users of the add are provably no-wrap.
4737     for (const auto *Result : Results) {
4738       // If the extractvalue itself is not executed on overflow, the we don't
4739       // need to check each use separately, since domination is transitive.
4740       if (DT.dominates(NoWrapEdge, Result->getParent()))
4741         continue;
4742 
4743       for (auto &RU : Result->uses())
4744         if (!DT.dominates(NoWrapEdge, RU))
4745           return false;
4746     }
4747 
4748     return true;
4749   };
4750 
4751   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4752 }
4753 
4754 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4755   // See whether I has flags that may create poison
4756   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4757     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4758       return true;
4759   }
4760   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4761     if (ExactOp->isExact())
4762       return true;
4763   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4764     auto FMF = FP->getFastMathFlags();
4765     if (FMF.noNaNs() || FMF.noInfs())
4766       return true;
4767   }
4768 
4769   unsigned Opcode = Op->getOpcode();
4770 
4771   // Check whether opcode is a poison/undef-generating operation
4772   switch (Opcode) {
4773   case Instruction::Shl:
4774   case Instruction::AShr:
4775   case Instruction::LShr: {
4776     // Shifts return poison if shiftwidth is larger than the bitwidth.
4777     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4778       SmallVector<Constant *, 4> ShiftAmounts;
4779       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4780         unsigned NumElts = FVTy->getNumElements();
4781         for (unsigned i = 0; i < NumElts; ++i)
4782           ShiftAmounts.push_back(C->getAggregateElement(i));
4783       } else if (isa<ScalableVectorType>(C->getType()))
4784         return true; // Can't tell, just return true to be safe
4785       else
4786         ShiftAmounts.push_back(C);
4787 
4788       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4789         auto *CI = dyn_cast<ConstantInt>(C);
4790         return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth();
4791       });
4792       return !Safe;
4793     }
4794     return true;
4795   }
4796   case Instruction::FPToSI:
4797   case Instruction::FPToUI:
4798     // fptosi/ui yields poison if the resulting value does not fit in the
4799     // destination type.
4800     return true;
4801   case Instruction::Call:
4802   case Instruction::CallBr:
4803   case Instruction::Invoke: {
4804     const auto *CB = cast<CallBase>(Op);
4805     return !CB->hasRetAttr(Attribute::NoUndef);
4806   }
4807   case Instruction::InsertElement:
4808   case Instruction::ExtractElement: {
4809     // If index exceeds the length of the vector, it returns poison
4810     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4811     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4812     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4813     if (!Idx ||
4814         Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue())
4815       return true;
4816     return false;
4817   }
4818   case Instruction::ShuffleVector: {
4819     // shufflevector may return undef.
4820     if (PoisonOnly)
4821       return false;
4822     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4823                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4824                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4825     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4826   }
4827   case Instruction::FNeg:
4828   case Instruction::PHI:
4829   case Instruction::Select:
4830   case Instruction::URem:
4831   case Instruction::SRem:
4832   case Instruction::ExtractValue:
4833   case Instruction::InsertValue:
4834   case Instruction::Freeze:
4835   case Instruction::ICmp:
4836   case Instruction::FCmp:
4837     return false;
4838   case Instruction::GetElementPtr: {
4839     const auto *GEP = cast<GEPOperator>(Op);
4840     return GEP->isInBounds();
4841   }
4842   default: {
4843     const auto *CE = dyn_cast<ConstantExpr>(Op);
4844     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4845       return false;
4846     else if (Instruction::isBinaryOp(Opcode))
4847       return false;
4848     // Be conservative and return true.
4849     return true;
4850   }
4851   }
4852 }
4853 
4854 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4855   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4856 }
4857 
4858 bool llvm::canCreatePoison(const Operator *Op) {
4859   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4860 }
4861 
4862 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V,
4863                                             const Instruction *CtxI,
4864                                             const DominatorTree *DT,
4865                                             unsigned Depth) {
4866   if (Depth >= MaxAnalysisRecursionDepth)
4867     return false;
4868 
4869   if (const auto *A = dyn_cast<Argument>(V)) {
4870     if (A->hasAttribute(Attribute::NoUndef))
4871       return true;
4872   }
4873 
4874   if (auto *C = dyn_cast<Constant>(V)) {
4875     if (isa<UndefValue>(C))
4876       return false;
4877 
4878     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4879         isa<ConstantPointerNull>(C) || isa<Function>(C))
4880       return true;
4881 
4882     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4883       return !C->containsConstantExpression() && !C->containsUndefElement();
4884   }
4885 
4886   // Strip cast operations from a pointer value.
4887   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4888   // inbounds with zero offset. To guarantee that the result isn't poison, the
4889   // stripped pointer is checked as it has to be pointing into an allocated
4890   // object or be null `null` to ensure `inbounds` getelement pointers with a
4891   // zero offset could not produce poison.
4892   // It can strip off addrspacecast that do not change bit representation as
4893   // well. We believe that such addrspacecast is equivalent to no-op.
4894   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4895   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4896       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4897     return true;
4898 
4899   auto OpCheck = [&](const Value *V) {
4900     return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1);
4901   };
4902 
4903   if (auto *Opr = dyn_cast<Operator>(V)) {
4904     // If the value is a freeze instruction, then it can never
4905     // be undef or poison.
4906     if (isa<FreezeInst>(V))
4907       return true;
4908 
4909     if (const auto *CB = dyn_cast<CallBase>(V)) {
4910       if (CB->hasRetAttr(Attribute::NoUndef))
4911         return true;
4912     }
4913 
4914     if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4915       return true;
4916   }
4917 
4918   if (auto *I = dyn_cast<Instruction>(V)) {
4919     if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1))
4920       // Note: once we have an agreement that poison is a value-wise concept,
4921       // we can remove the isIntegerTy(1) constraint.
4922       return true;
4923   }
4924 
4925   // CxtI may be null or a cloned instruction.
4926   if (!CtxI || !CtxI->getParent() || !DT)
4927     return false;
4928 
4929   auto *DNode = DT->getNode(CtxI->getParent());
4930   if (!DNode)
4931     // Unreachable block
4932     return false;
4933 
4934   // If V is used as a branch condition before reaching CtxI, V cannot be
4935   // undef or poison.
4936   //   br V, BB1, BB2
4937   // BB1:
4938   //   CtxI ; V cannot be undef or poison here
4939   auto *Dominator = DNode->getIDom();
4940   while (Dominator) {
4941     auto *TI = Dominator->getBlock()->getTerminator();
4942 
4943     if (auto BI = dyn_cast<BranchInst>(TI)) {
4944       if (BI->isConditional() && BI->getCondition() == V)
4945         return true;
4946     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4947       if (SI->getCondition() == V)
4948         return true;
4949     }
4950 
4951     Dominator = Dominator->getIDom();
4952   }
4953 
4954   return false;
4955 }
4956 
4957 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4958                                                  const DataLayout &DL,
4959                                                  AssumptionCache *AC,
4960                                                  const Instruction *CxtI,
4961                                                  const DominatorTree *DT) {
4962   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4963                                        Add, DL, AC, CxtI, DT);
4964 }
4965 
4966 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4967                                                  const Value *RHS,
4968                                                  const DataLayout &DL,
4969                                                  AssumptionCache *AC,
4970                                                  const Instruction *CxtI,
4971                                                  const DominatorTree *DT) {
4972   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4973 }
4974 
4975 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4976   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4977   // of time because it's possible for another thread to interfere with it for an
4978   // arbitrary length of time, but programs aren't allowed to rely on that.
4979 
4980   // If there is no successor, then execution can't transfer to it.
4981   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4982     return !CRI->unwindsToCaller();
4983   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4984     return !CatchSwitch->unwindsToCaller();
4985   if (isa<ResumeInst>(I))
4986     return false;
4987   if (isa<ReturnInst>(I))
4988     return false;
4989   if (isa<UnreachableInst>(I))
4990     return false;
4991 
4992   // Calls can throw, or contain an infinite loop, or kill the process.
4993   if (const auto *CB = dyn_cast<CallBase>(I)) {
4994     // Call sites that throw have implicit non-local control flow.
4995     if (!CB->doesNotThrow())
4996       return false;
4997 
4998     // A function which doens't throw and has "willreturn" attribute will
4999     // always return.
5000     if (CB->hasFnAttr(Attribute::WillReturn))
5001       return true;
5002 
5003     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5004     // etc. and thus not return.  However, LLVM already assumes that
5005     //
5006     //  - Thread exiting actions are modeled as writes to memory invisible to
5007     //    the program.
5008     //
5009     //  - Loops that don't have side effects (side effects are volatile/atomic
5010     //    stores and IO) always terminate (see http://llvm.org/PR965).
5011     //    Furthermore IO itself is also modeled as writes to memory invisible to
5012     //    the program.
5013     //
5014     // We rely on those assumptions here, and use the memory effects of the call
5015     // target as a proxy for checking that it always returns.
5016 
5017     // FIXME: This isn't aggressive enough; a call which only writes to a global
5018     // is guaranteed to return.
5019     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5020   }
5021 
5022   // Other instructions return normally.
5023   return true;
5024 }
5025 
5026 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5027   // TODO: This is slightly conservative for invoke instruction since exiting
5028   // via an exception *is* normal control for them.
5029   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5030     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5031       return false;
5032   return true;
5033 }
5034 
5035 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5036                                                   const Loop *L) {
5037   // The loop header is guaranteed to be executed for every iteration.
5038   //
5039   // FIXME: Relax this constraint to cover all basic blocks that are
5040   // guaranteed to be executed at every iteration.
5041   if (I->getParent() != L->getHeader()) return false;
5042 
5043   for (const Instruction &LI : *L->getHeader()) {
5044     if (&LI == I) return true;
5045     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5046   }
5047   llvm_unreachable("Instruction not contained in its own parent basic block.");
5048 }
5049 
5050 bool llvm::propagatesPoison(const Instruction *I) {
5051   switch (I->getOpcode()) {
5052   case Instruction::Freeze:
5053   case Instruction::Select:
5054   case Instruction::PHI:
5055   case Instruction::Call:
5056   case Instruction::Invoke:
5057     return false;
5058   case Instruction::ICmp:
5059   case Instruction::FCmp:
5060   case Instruction::GetElementPtr:
5061     return true;
5062   default:
5063     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5064       return true;
5065 
5066     // Be conservative and return false.
5067     return false;
5068   }
5069 }
5070 
5071 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5072                                      SmallPtrSetImpl<const Value *> &Operands) {
5073   switch (I->getOpcode()) {
5074     case Instruction::Store:
5075       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5076       break;
5077 
5078     case Instruction::Load:
5079       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5080       break;
5081 
5082     case Instruction::AtomicCmpXchg:
5083       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5084       break;
5085 
5086     case Instruction::AtomicRMW:
5087       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5088       break;
5089 
5090     case Instruction::UDiv:
5091     case Instruction::SDiv:
5092     case Instruction::URem:
5093     case Instruction::SRem:
5094       Operands.insert(I->getOperand(1));
5095       break;
5096 
5097     case Instruction::Call:
5098     case Instruction::Invoke: {
5099       const CallBase *CB = cast<CallBase>(I);
5100       if (CB->isIndirectCall())
5101         Operands.insert(CB->getCalledOperand());
5102       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5103         if (CB->paramHasAttr(i, Attribute::NoUndef))
5104           Operands.insert(CB->getArgOperand(i));
5105       }
5106       break;
5107     }
5108 
5109     default:
5110       break;
5111   }
5112 }
5113 
5114 bool llvm::mustTriggerUB(const Instruction *I,
5115                          const SmallSet<const Value *, 16>& KnownPoison) {
5116   SmallPtrSet<const Value *, 4> NonPoisonOps;
5117   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5118 
5119   for (const auto *V : NonPoisonOps)
5120     if (KnownPoison.count(V))
5121       return true;
5122 
5123   return false;
5124 }
5125 
5126 
5127 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) {
5128   // We currently only look for uses of poison values within the same basic
5129   // block, as that makes it easier to guarantee that the uses will be
5130   // executed given that PoisonI is executed.
5131   //
5132   // FIXME: Expand this to consider uses beyond the same basic block. To do
5133   // this, look out for the distinction between post-dominance and strong
5134   // post-dominance.
5135   const BasicBlock *BB = PoisonI->getParent();
5136 
5137   // Set of instructions that we have proved will yield poison if PoisonI
5138   // does.
5139   SmallSet<const Value *, 16> YieldsPoison;
5140   SmallSet<const BasicBlock *, 4> Visited;
5141   YieldsPoison.insert(PoisonI);
5142   Visited.insert(PoisonI->getParent());
5143 
5144   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
5145 
5146   unsigned Iter = 0;
5147   while (Iter++ < MaxAnalysisRecursionDepth) {
5148     for (auto &I : make_range(Begin, End)) {
5149       if (&I != PoisonI) {
5150         if (mustTriggerUB(&I, YieldsPoison))
5151           return true;
5152         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5153           return false;
5154       }
5155 
5156       // Mark poison that propagates from I through uses of I.
5157       if (YieldsPoison.count(&I)) {
5158         for (const User *User : I.users()) {
5159           const Instruction *UserI = cast<Instruction>(User);
5160           if (propagatesPoison(UserI))
5161             YieldsPoison.insert(User);
5162         }
5163       }
5164     }
5165 
5166     if (auto *NextBB = BB->getSingleSuccessor()) {
5167       if (Visited.insert(NextBB).second) {
5168         BB = NextBB;
5169         Begin = BB->getFirstNonPHI()->getIterator();
5170         End = BB->end();
5171         continue;
5172       }
5173     }
5174 
5175     break;
5176   }
5177   return false;
5178 }
5179 
5180 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5181   if (FMF.noNaNs())
5182     return true;
5183 
5184   if (auto *C = dyn_cast<ConstantFP>(V))
5185     return !C->isNaN();
5186 
5187   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5188     if (!C->getElementType()->isFloatingPointTy())
5189       return false;
5190     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5191       if (C->getElementAsAPFloat(I).isNaN())
5192         return false;
5193     }
5194     return true;
5195   }
5196 
5197   if (isa<ConstantAggregateZero>(V))
5198     return true;
5199 
5200   return false;
5201 }
5202 
5203 static bool isKnownNonZero(const Value *V) {
5204   if (auto *C = dyn_cast<ConstantFP>(V))
5205     return !C->isZero();
5206 
5207   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5208     if (!C->getElementType()->isFloatingPointTy())
5209       return false;
5210     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5211       if (C->getElementAsAPFloat(I).isZero())
5212         return false;
5213     }
5214     return true;
5215   }
5216 
5217   return false;
5218 }
5219 
5220 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5221 /// Given non-min/max outer cmp/select from the clamp pattern this
5222 /// function recognizes if it can be substitued by a "canonical" min/max
5223 /// pattern.
5224 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5225                                                Value *CmpLHS, Value *CmpRHS,
5226                                                Value *TrueVal, Value *FalseVal,
5227                                                Value *&LHS, Value *&RHS) {
5228   // Try to match
5229   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5230   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5231   // and return description of the outer Max/Min.
5232 
5233   // First, check if select has inverse order:
5234   if (CmpRHS == FalseVal) {
5235     std::swap(TrueVal, FalseVal);
5236     Pred = CmpInst::getInversePredicate(Pred);
5237   }
5238 
5239   // Assume success now. If there's no match, callers should not use these anyway.
5240   LHS = TrueVal;
5241   RHS = FalseVal;
5242 
5243   const APFloat *FC1;
5244   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5245     return {SPF_UNKNOWN, SPNB_NA, false};
5246 
5247   const APFloat *FC2;
5248   switch (Pred) {
5249   case CmpInst::FCMP_OLT:
5250   case CmpInst::FCMP_OLE:
5251   case CmpInst::FCMP_ULT:
5252   case CmpInst::FCMP_ULE:
5253     if (match(FalseVal,
5254               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5255                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5256         *FC1 < *FC2)
5257       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5258     break;
5259   case CmpInst::FCMP_OGT:
5260   case CmpInst::FCMP_OGE:
5261   case CmpInst::FCMP_UGT:
5262   case CmpInst::FCMP_UGE:
5263     if (match(FalseVal,
5264               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5265                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5266         *FC1 > *FC2)
5267       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5268     break;
5269   default:
5270     break;
5271   }
5272 
5273   return {SPF_UNKNOWN, SPNB_NA, false};
5274 }
5275 
5276 /// Recognize variations of:
5277 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5278 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5279                                       Value *CmpLHS, Value *CmpRHS,
5280                                       Value *TrueVal, Value *FalseVal) {
5281   // Swap the select operands and predicate to match the patterns below.
5282   if (CmpRHS != TrueVal) {
5283     Pred = ICmpInst::getSwappedPredicate(Pred);
5284     std::swap(TrueVal, FalseVal);
5285   }
5286   const APInt *C1;
5287   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5288     const APInt *C2;
5289     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5290     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5291         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5292       return {SPF_SMAX, SPNB_NA, false};
5293 
5294     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5295     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5296         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5297       return {SPF_SMIN, SPNB_NA, false};
5298 
5299     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5300     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5301         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5302       return {SPF_UMAX, SPNB_NA, false};
5303 
5304     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5305     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5306         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5307       return {SPF_UMIN, SPNB_NA, false};
5308   }
5309   return {SPF_UNKNOWN, SPNB_NA, false};
5310 }
5311 
5312 /// Recognize variations of:
5313 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5314 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5315                                                Value *CmpLHS, Value *CmpRHS,
5316                                                Value *TVal, Value *FVal,
5317                                                unsigned Depth) {
5318   // TODO: Allow FP min/max with nnan/nsz.
5319   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5320 
5321   Value *A = nullptr, *B = nullptr;
5322   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5323   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5324     return {SPF_UNKNOWN, SPNB_NA, false};
5325 
5326   Value *C = nullptr, *D = nullptr;
5327   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5328   if (L.Flavor != R.Flavor)
5329     return {SPF_UNKNOWN, SPNB_NA, false};
5330 
5331   // We have something like: x Pred y ? min(a, b) : min(c, d).
5332   // Try to match the compare to the min/max operations of the select operands.
5333   // First, make sure we have the right compare predicate.
5334   switch (L.Flavor) {
5335   case SPF_SMIN:
5336     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5337       Pred = ICmpInst::getSwappedPredicate(Pred);
5338       std::swap(CmpLHS, CmpRHS);
5339     }
5340     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5341       break;
5342     return {SPF_UNKNOWN, SPNB_NA, false};
5343   case SPF_SMAX:
5344     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5345       Pred = ICmpInst::getSwappedPredicate(Pred);
5346       std::swap(CmpLHS, CmpRHS);
5347     }
5348     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5349       break;
5350     return {SPF_UNKNOWN, SPNB_NA, false};
5351   case SPF_UMIN:
5352     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5353       Pred = ICmpInst::getSwappedPredicate(Pred);
5354       std::swap(CmpLHS, CmpRHS);
5355     }
5356     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5357       break;
5358     return {SPF_UNKNOWN, SPNB_NA, false};
5359   case SPF_UMAX:
5360     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5361       Pred = ICmpInst::getSwappedPredicate(Pred);
5362       std::swap(CmpLHS, CmpRHS);
5363     }
5364     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5365       break;
5366     return {SPF_UNKNOWN, SPNB_NA, false};
5367   default:
5368     return {SPF_UNKNOWN, SPNB_NA, false};
5369   }
5370 
5371   // If there is a common operand in the already matched min/max and the other
5372   // min/max operands match the compare operands (either directly or inverted),
5373   // then this is min/max of the same flavor.
5374 
5375   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5376   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5377   if (D == B) {
5378     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5379                                          match(A, m_Not(m_Specific(CmpRHS)))))
5380       return {L.Flavor, SPNB_NA, false};
5381   }
5382   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5383   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5384   if (C == B) {
5385     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5386                                          match(A, m_Not(m_Specific(CmpRHS)))))
5387       return {L.Flavor, SPNB_NA, false};
5388   }
5389   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5390   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5391   if (D == A) {
5392     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5393                                          match(B, m_Not(m_Specific(CmpRHS)))))
5394       return {L.Flavor, SPNB_NA, false};
5395   }
5396   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5397   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5398   if (C == A) {
5399     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5400                                          match(B, m_Not(m_Specific(CmpRHS)))))
5401       return {L.Flavor, SPNB_NA, false};
5402   }
5403 
5404   return {SPF_UNKNOWN, SPNB_NA, false};
5405 }
5406 
5407 /// If the input value is the result of a 'not' op, constant integer, or vector
5408 /// splat of a constant integer, return the bitwise-not source value.
5409 /// TODO: This could be extended to handle non-splat vector integer constants.
5410 static Value *getNotValue(Value *V) {
5411   Value *NotV;
5412   if (match(V, m_Not(m_Value(NotV))))
5413     return NotV;
5414 
5415   const APInt *C;
5416   if (match(V, m_APInt(C)))
5417     return ConstantInt::get(V->getType(), ~(*C));
5418 
5419   return nullptr;
5420 }
5421 
5422 /// Match non-obvious integer minimum and maximum sequences.
5423 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5424                                        Value *CmpLHS, Value *CmpRHS,
5425                                        Value *TrueVal, Value *FalseVal,
5426                                        Value *&LHS, Value *&RHS,
5427                                        unsigned Depth) {
5428   // Assume success. If there's no match, callers should not use these anyway.
5429   LHS = TrueVal;
5430   RHS = FalseVal;
5431 
5432   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5433   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5434     return SPR;
5435 
5436   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5437   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5438     return SPR;
5439 
5440   // Look through 'not' ops to find disguised min/max.
5441   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5442   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5443   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5444     switch (Pred) {
5445     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5446     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5447     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5448     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5449     default: break;
5450     }
5451   }
5452 
5453   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5454   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5455   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5456     switch (Pred) {
5457     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5458     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5459     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5460     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5461     default: break;
5462     }
5463   }
5464 
5465   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5466     return {SPF_UNKNOWN, SPNB_NA, false};
5467 
5468   // Z = X -nsw Y
5469   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5470   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5471   if (match(TrueVal, m_Zero()) &&
5472       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5473     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5474 
5475   // Z = X -nsw Y
5476   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5477   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5478   if (match(FalseVal, m_Zero()) &&
5479       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5480     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5481 
5482   const APInt *C1;
5483   if (!match(CmpRHS, m_APInt(C1)))
5484     return {SPF_UNKNOWN, SPNB_NA, false};
5485 
5486   // An unsigned min/max can be written with a signed compare.
5487   const APInt *C2;
5488   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5489       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5490     // Is the sign bit set?
5491     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5492     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5493     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5494         C2->isMaxSignedValue())
5495       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5496 
5497     // Is the sign bit clear?
5498     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5499     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5500     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5501         C2->isMinSignedValue())
5502       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5503   }
5504 
5505   return {SPF_UNKNOWN, SPNB_NA, false};
5506 }
5507 
5508 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5509   assert(X && Y && "Invalid operand");
5510 
5511   // X = sub (0, Y) || X = sub nsw (0, Y)
5512   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5513       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5514     return true;
5515 
5516   // Y = sub (0, X) || Y = sub nsw (0, X)
5517   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5518       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5519     return true;
5520 
5521   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5522   Value *A, *B;
5523   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5524                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5525          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5526                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5527 }
5528 
5529 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5530                                               FastMathFlags FMF,
5531                                               Value *CmpLHS, Value *CmpRHS,
5532                                               Value *TrueVal, Value *FalseVal,
5533                                               Value *&LHS, Value *&RHS,
5534                                               unsigned Depth) {
5535   if (CmpInst::isFPPredicate(Pred)) {
5536     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5537     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5538     // purpose of identifying min/max. Disregard vector constants with undefined
5539     // elements because those can not be back-propagated for analysis.
5540     Value *OutputZeroVal = nullptr;
5541     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5542         !cast<Constant>(TrueVal)->containsUndefElement())
5543       OutputZeroVal = TrueVal;
5544     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5545              !cast<Constant>(FalseVal)->containsUndefElement())
5546       OutputZeroVal = FalseVal;
5547 
5548     if (OutputZeroVal) {
5549       if (match(CmpLHS, m_AnyZeroFP()))
5550         CmpLHS = OutputZeroVal;
5551       if (match(CmpRHS, m_AnyZeroFP()))
5552         CmpRHS = OutputZeroVal;
5553     }
5554   }
5555 
5556   LHS = CmpLHS;
5557   RHS = CmpRHS;
5558 
5559   // Signed zero may return inconsistent results between implementations.
5560   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5561   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5562   // Therefore, we behave conservatively and only proceed if at least one of the
5563   // operands is known to not be zero or if we don't care about signed zero.
5564   switch (Pred) {
5565   default: break;
5566   // FIXME: Include OGT/OLT/UGT/ULT.
5567   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5568   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5569     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5570         !isKnownNonZero(CmpRHS))
5571       return {SPF_UNKNOWN, SPNB_NA, false};
5572   }
5573 
5574   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5575   bool Ordered = false;
5576 
5577   // When given one NaN and one non-NaN input:
5578   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5579   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5580   //     ordered comparison fails), which could be NaN or non-NaN.
5581   // so here we discover exactly what NaN behavior is required/accepted.
5582   if (CmpInst::isFPPredicate(Pred)) {
5583     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5584     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5585 
5586     if (LHSSafe && RHSSafe) {
5587       // Both operands are known non-NaN.
5588       NaNBehavior = SPNB_RETURNS_ANY;
5589     } else if (CmpInst::isOrdered(Pred)) {
5590       // An ordered comparison will return false when given a NaN, so it
5591       // returns the RHS.
5592       Ordered = true;
5593       if (LHSSafe)
5594         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5595         NaNBehavior = SPNB_RETURNS_NAN;
5596       else if (RHSSafe)
5597         NaNBehavior = SPNB_RETURNS_OTHER;
5598       else
5599         // Completely unsafe.
5600         return {SPF_UNKNOWN, SPNB_NA, false};
5601     } else {
5602       Ordered = false;
5603       // An unordered comparison will return true when given a NaN, so it
5604       // returns the LHS.
5605       if (LHSSafe)
5606         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5607         NaNBehavior = SPNB_RETURNS_OTHER;
5608       else if (RHSSafe)
5609         NaNBehavior = SPNB_RETURNS_NAN;
5610       else
5611         // Completely unsafe.
5612         return {SPF_UNKNOWN, SPNB_NA, false};
5613     }
5614   }
5615 
5616   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5617     std::swap(CmpLHS, CmpRHS);
5618     Pred = CmpInst::getSwappedPredicate(Pred);
5619     if (NaNBehavior == SPNB_RETURNS_NAN)
5620       NaNBehavior = SPNB_RETURNS_OTHER;
5621     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5622       NaNBehavior = SPNB_RETURNS_NAN;
5623     Ordered = !Ordered;
5624   }
5625 
5626   // ([if]cmp X, Y) ? X : Y
5627   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5628     switch (Pred) {
5629     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5630     case ICmpInst::ICMP_UGT:
5631     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5632     case ICmpInst::ICMP_SGT:
5633     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5634     case ICmpInst::ICMP_ULT:
5635     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5636     case ICmpInst::ICMP_SLT:
5637     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5638     case FCmpInst::FCMP_UGT:
5639     case FCmpInst::FCMP_UGE:
5640     case FCmpInst::FCMP_OGT:
5641     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5642     case FCmpInst::FCMP_ULT:
5643     case FCmpInst::FCMP_ULE:
5644     case FCmpInst::FCMP_OLT:
5645     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5646     }
5647   }
5648 
5649   if (isKnownNegation(TrueVal, FalseVal)) {
5650     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5651     // match against either LHS or sext(LHS).
5652     auto MaybeSExtCmpLHS =
5653         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5654     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5655     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5656     if (match(TrueVal, MaybeSExtCmpLHS)) {
5657       // Set the return values. If the compare uses the negated value (-X >s 0),
5658       // swap the return values because the negated value is always 'RHS'.
5659       LHS = TrueVal;
5660       RHS = FalseVal;
5661       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5662         std::swap(LHS, RHS);
5663 
5664       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5665       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5666       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5667         return {SPF_ABS, SPNB_NA, false};
5668 
5669       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5670       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5671         return {SPF_ABS, SPNB_NA, false};
5672 
5673       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5674       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5675       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5676         return {SPF_NABS, SPNB_NA, false};
5677     }
5678     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5679       // Set the return values. If the compare uses the negated value (-X >s 0),
5680       // swap the return values because the negated value is always 'RHS'.
5681       LHS = FalseVal;
5682       RHS = TrueVal;
5683       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5684         std::swap(LHS, RHS);
5685 
5686       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5687       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5688       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5689         return {SPF_NABS, SPNB_NA, false};
5690 
5691       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5692       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5693       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5694         return {SPF_ABS, SPNB_NA, false};
5695     }
5696   }
5697 
5698   if (CmpInst::isIntPredicate(Pred))
5699     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5700 
5701   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5702   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5703   // semantics than minNum. Be conservative in such case.
5704   if (NaNBehavior != SPNB_RETURNS_ANY ||
5705       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5706        !isKnownNonZero(CmpRHS)))
5707     return {SPF_UNKNOWN, SPNB_NA, false};
5708 
5709   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5710 }
5711 
5712 /// Helps to match a select pattern in case of a type mismatch.
5713 ///
5714 /// The function processes the case when type of true and false values of a
5715 /// select instruction differs from type of the cmp instruction operands because
5716 /// of a cast instruction. The function checks if it is legal to move the cast
5717 /// operation after "select". If yes, it returns the new second value of
5718 /// "select" (with the assumption that cast is moved):
5719 /// 1. As operand of cast instruction when both values of "select" are same cast
5720 /// instructions.
5721 /// 2. As restored constant (by applying reverse cast operation) when the first
5722 /// value of the "select" is a cast operation and the second value is a
5723 /// constant.
5724 /// NOTE: We return only the new second value because the first value could be
5725 /// accessed as operand of cast instruction.
5726 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5727                               Instruction::CastOps *CastOp) {
5728   auto *Cast1 = dyn_cast<CastInst>(V1);
5729   if (!Cast1)
5730     return nullptr;
5731 
5732   *CastOp = Cast1->getOpcode();
5733   Type *SrcTy = Cast1->getSrcTy();
5734   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5735     // If V1 and V2 are both the same cast from the same type, look through V1.
5736     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5737       return Cast2->getOperand(0);
5738     return nullptr;
5739   }
5740 
5741   auto *C = dyn_cast<Constant>(V2);
5742   if (!C)
5743     return nullptr;
5744 
5745   Constant *CastedTo = nullptr;
5746   switch (*CastOp) {
5747   case Instruction::ZExt:
5748     if (CmpI->isUnsigned())
5749       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5750     break;
5751   case Instruction::SExt:
5752     if (CmpI->isSigned())
5753       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5754     break;
5755   case Instruction::Trunc:
5756     Constant *CmpConst;
5757     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5758         CmpConst->getType() == SrcTy) {
5759       // Here we have the following case:
5760       //
5761       //   %cond = cmp iN %x, CmpConst
5762       //   %tr = trunc iN %x to iK
5763       //   %narrowsel = select i1 %cond, iK %t, iK C
5764       //
5765       // We can always move trunc after select operation:
5766       //
5767       //   %cond = cmp iN %x, CmpConst
5768       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5769       //   %tr = trunc iN %widesel to iK
5770       //
5771       // Note that C could be extended in any way because we don't care about
5772       // upper bits after truncation. It can't be abs pattern, because it would
5773       // look like:
5774       //
5775       //   select i1 %cond, x, -x.
5776       //
5777       // So only min/max pattern could be matched. Such match requires widened C
5778       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5779       // CmpConst == C is checked below.
5780       CastedTo = CmpConst;
5781     } else {
5782       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5783     }
5784     break;
5785   case Instruction::FPTrunc:
5786     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5787     break;
5788   case Instruction::FPExt:
5789     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5790     break;
5791   case Instruction::FPToUI:
5792     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5793     break;
5794   case Instruction::FPToSI:
5795     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5796     break;
5797   case Instruction::UIToFP:
5798     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5799     break;
5800   case Instruction::SIToFP:
5801     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5802     break;
5803   default:
5804     break;
5805   }
5806 
5807   if (!CastedTo)
5808     return nullptr;
5809 
5810   // Make sure the cast doesn't lose any information.
5811   Constant *CastedBack =
5812       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5813   if (CastedBack != C)
5814     return nullptr;
5815 
5816   return CastedTo;
5817 }
5818 
5819 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5820                                              Instruction::CastOps *CastOp,
5821                                              unsigned Depth) {
5822   if (Depth >= MaxAnalysisRecursionDepth)
5823     return {SPF_UNKNOWN, SPNB_NA, false};
5824 
5825   SelectInst *SI = dyn_cast<SelectInst>(V);
5826   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5827 
5828   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5829   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5830 
5831   Value *TrueVal = SI->getTrueValue();
5832   Value *FalseVal = SI->getFalseValue();
5833 
5834   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5835                                             CastOp, Depth);
5836 }
5837 
5838 SelectPatternResult llvm::matchDecomposedSelectPattern(
5839     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5840     Instruction::CastOps *CastOp, unsigned Depth) {
5841   CmpInst::Predicate Pred = CmpI->getPredicate();
5842   Value *CmpLHS = CmpI->getOperand(0);
5843   Value *CmpRHS = CmpI->getOperand(1);
5844   FastMathFlags FMF;
5845   if (isa<FPMathOperator>(CmpI))
5846     FMF = CmpI->getFastMathFlags();
5847 
5848   // Bail out early.
5849   if (CmpI->isEquality())
5850     return {SPF_UNKNOWN, SPNB_NA, false};
5851 
5852   // Deal with type mismatches.
5853   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5854     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5855       // If this is a potential fmin/fmax with a cast to integer, then ignore
5856       // -0.0 because there is no corresponding integer value.
5857       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5858         FMF.setNoSignedZeros();
5859       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5860                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5861                                   LHS, RHS, Depth);
5862     }
5863     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5864       // If this is a potential fmin/fmax with a cast to integer, then ignore
5865       // -0.0 because there is no corresponding integer value.
5866       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5867         FMF.setNoSignedZeros();
5868       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5869                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5870                                   LHS, RHS, Depth);
5871     }
5872   }
5873   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5874                               LHS, RHS, Depth);
5875 }
5876 
5877 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5878   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5879   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5880   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5881   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5882   if (SPF == SPF_FMINNUM)
5883     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5884   if (SPF == SPF_FMAXNUM)
5885     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5886   llvm_unreachable("unhandled!");
5887 }
5888 
5889 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5890   if (SPF == SPF_SMIN) return SPF_SMAX;
5891   if (SPF == SPF_UMIN) return SPF_UMAX;
5892   if (SPF == SPF_SMAX) return SPF_SMIN;
5893   if (SPF == SPF_UMAX) return SPF_UMIN;
5894   llvm_unreachable("unhandled!");
5895 }
5896 
5897 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5898   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5899 }
5900 
5901 /// Return true if "icmp Pred LHS RHS" is always true.
5902 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5903                             const Value *RHS, const DataLayout &DL,
5904                             unsigned Depth) {
5905   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5906   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5907     return true;
5908 
5909   switch (Pred) {
5910   default:
5911     return false;
5912 
5913   case CmpInst::ICMP_SLE: {
5914     const APInt *C;
5915 
5916     // LHS s<= LHS +_{nsw} C   if C >= 0
5917     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5918       return !C->isNegative();
5919     return false;
5920   }
5921 
5922   case CmpInst::ICMP_ULE: {
5923     const APInt *C;
5924 
5925     // LHS u<= LHS +_{nuw} C   for any C
5926     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5927       return true;
5928 
5929     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5930     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5931                                        const Value *&X,
5932                                        const APInt *&CA, const APInt *&CB) {
5933       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5934           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5935         return true;
5936 
5937       // If X & C == 0 then (X | C) == X +_{nuw} C
5938       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5939           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5940         KnownBits Known(CA->getBitWidth());
5941         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5942                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5943         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5944           return true;
5945       }
5946 
5947       return false;
5948     };
5949 
5950     const Value *X;
5951     const APInt *CLHS, *CRHS;
5952     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5953       return CLHS->ule(*CRHS);
5954 
5955     return false;
5956   }
5957   }
5958 }
5959 
5960 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5961 /// ALHS ARHS" is true.  Otherwise, return None.
5962 static Optional<bool>
5963 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5964                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5965                       const DataLayout &DL, unsigned Depth) {
5966   switch (Pred) {
5967   default:
5968     return None;
5969 
5970   case CmpInst::ICMP_SLT:
5971   case CmpInst::ICMP_SLE:
5972     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5973         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5974       return true;
5975     return None;
5976 
5977   case CmpInst::ICMP_ULT:
5978   case CmpInst::ICMP_ULE:
5979     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5980         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5981       return true;
5982     return None;
5983   }
5984 }
5985 
5986 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5987 /// when the operands match, but are swapped.
5988 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5989                           const Value *BLHS, const Value *BRHS,
5990                           bool &IsSwappedOps) {
5991 
5992   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5993   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5994   return IsMatchingOps || IsSwappedOps;
5995 }
5996 
5997 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
5998 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
5999 /// Otherwise, return None if we can't infer anything.
6000 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6001                                                     CmpInst::Predicate BPred,
6002                                                     bool AreSwappedOps) {
6003   // Canonicalize the predicate as if the operands were not commuted.
6004   if (AreSwappedOps)
6005     BPred = ICmpInst::getSwappedPredicate(BPred);
6006 
6007   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6008     return true;
6009   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6010     return false;
6011 
6012   return None;
6013 }
6014 
6015 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6016 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6017 /// Otherwise, return None if we can't infer anything.
6018 static Optional<bool>
6019 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6020                                  const ConstantInt *C1,
6021                                  CmpInst::Predicate BPred,
6022                                  const ConstantInt *C2) {
6023   ConstantRange DomCR =
6024       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6025   ConstantRange CR =
6026       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6027   ConstantRange Intersection = DomCR.intersectWith(CR);
6028   ConstantRange Difference = DomCR.difference(CR);
6029   if (Intersection.isEmptySet())
6030     return false;
6031   if (Difference.isEmptySet())
6032     return true;
6033   return None;
6034 }
6035 
6036 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6037 /// false.  Otherwise, return None if we can't infer anything.
6038 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6039                                          CmpInst::Predicate BPred,
6040                                          const Value *BLHS, const Value *BRHS,
6041                                          const DataLayout &DL, bool LHSIsTrue,
6042                                          unsigned Depth) {
6043   Value *ALHS = LHS->getOperand(0);
6044   Value *ARHS = LHS->getOperand(1);
6045 
6046   // The rest of the logic assumes the LHS condition is true.  If that's not the
6047   // case, invert the predicate to make it so.
6048   CmpInst::Predicate APred =
6049       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6050 
6051   // Can we infer anything when the two compares have matching operands?
6052   bool AreSwappedOps;
6053   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6054     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6055             APred, BPred, AreSwappedOps))
6056       return Implication;
6057     // No amount of additional analysis will infer the second condition, so
6058     // early exit.
6059     return None;
6060   }
6061 
6062   // Can we infer anything when the LHS operands match and the RHS operands are
6063   // constants (not necessarily matching)?
6064   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6065     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6066             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6067       return Implication;
6068     // No amount of additional analysis will infer the second condition, so
6069     // early exit.
6070     return None;
6071   }
6072 
6073   if (APred == BPred)
6074     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6075   return None;
6076 }
6077 
6078 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6079 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6080 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6081 static Optional<bool>
6082 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6083                    const Value *RHSOp0, const Value *RHSOp1,
6084 
6085                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6086   // The LHS must be an 'or' or an 'and' instruction.
6087   assert((LHS->getOpcode() == Instruction::And ||
6088           LHS->getOpcode() == Instruction::Or) &&
6089          "Expected LHS to be 'and' or 'or'.");
6090 
6091   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6092 
6093   // If the result of an 'or' is false, then we know both legs of the 'or' are
6094   // false.  Similarly, if the result of an 'and' is true, then we know both
6095   // legs of the 'and' are true.
6096   Value *ALHS, *ARHS;
6097   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6098       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6099     // FIXME: Make this non-recursion.
6100     if (Optional<bool> Implication = isImpliedCondition(
6101             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6102       return Implication;
6103     if (Optional<bool> Implication = isImpliedCondition(
6104             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6105       return Implication;
6106     return None;
6107   }
6108   return None;
6109 }
6110 
6111 Optional<bool>
6112 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6113                          const Value *RHSOp0, const Value *RHSOp1,
6114                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6115   // Bail out when we hit the limit.
6116   if (Depth == MaxAnalysisRecursionDepth)
6117     return None;
6118 
6119   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6120   // example.
6121   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6122     return None;
6123 
6124   Type *OpTy = LHS->getType();
6125   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6126 
6127   // FIXME: Extending the code below to handle vectors.
6128   if (OpTy->isVectorTy())
6129     return None;
6130 
6131   assert(OpTy->isIntegerTy(1) && "implied by above");
6132 
6133   // Both LHS and RHS are icmps.
6134   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6135   if (LHSCmp)
6136     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6137                               Depth);
6138 
6139   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6140   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6141   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6142   if (LHSBO) {
6143     if ((LHSBO->getOpcode() == Instruction::And ||
6144          LHSBO->getOpcode() == Instruction::Or))
6145       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6146                                 Depth);
6147   }
6148   return None;
6149 }
6150 
6151 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6152                                         const DataLayout &DL, bool LHSIsTrue,
6153                                         unsigned Depth) {
6154   // LHS ==> RHS by definition
6155   if (LHS == RHS)
6156     return LHSIsTrue;
6157 
6158   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6159   if (RHSCmp)
6160     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6161                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6162                               LHSIsTrue, Depth);
6163   return None;
6164 }
6165 
6166 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6167 // condition dominating ContextI or nullptr, if no condition is found.
6168 static std::pair<Value *, bool>
6169 getDomPredecessorCondition(const Instruction *ContextI) {
6170   if (!ContextI || !ContextI->getParent())
6171     return {nullptr, false};
6172 
6173   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6174   // dominator tree (eg, from a SimplifyQuery) instead?
6175   const BasicBlock *ContextBB = ContextI->getParent();
6176   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6177   if (!PredBB)
6178     return {nullptr, false};
6179 
6180   // We need a conditional branch in the predecessor.
6181   Value *PredCond;
6182   BasicBlock *TrueBB, *FalseBB;
6183   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6184     return {nullptr, false};
6185 
6186   // The branch should get simplified. Don't bother simplifying this condition.
6187   if (TrueBB == FalseBB)
6188     return {nullptr, false};
6189 
6190   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6191          "Predecessor block does not point to successor?");
6192 
6193   // Is this condition implied by the predecessor condition?
6194   return {PredCond, TrueBB == ContextBB};
6195 }
6196 
6197 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6198                                              const Instruction *ContextI,
6199                                              const DataLayout &DL) {
6200   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6201   auto PredCond = getDomPredecessorCondition(ContextI);
6202   if (PredCond.first)
6203     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6204   return None;
6205 }
6206 
6207 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6208                                              const Value *LHS, const Value *RHS,
6209                                              const Instruction *ContextI,
6210                                              const DataLayout &DL) {
6211   auto PredCond = getDomPredecessorCondition(ContextI);
6212   if (PredCond.first)
6213     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6214                               PredCond.second);
6215   return None;
6216 }
6217 
6218 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6219                               APInt &Upper, const InstrInfoQuery &IIQ) {
6220   unsigned Width = Lower.getBitWidth();
6221   const APInt *C;
6222   switch (BO.getOpcode()) {
6223   case Instruction::Add:
6224     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6225       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6226       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6227         // 'add nuw x, C' produces [C, UINT_MAX].
6228         Lower = *C;
6229       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6230         if (C->isNegative()) {
6231           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6232           Lower = APInt::getSignedMinValue(Width);
6233           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6234         } else {
6235           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6236           Lower = APInt::getSignedMinValue(Width) + *C;
6237           Upper = APInt::getSignedMaxValue(Width) + 1;
6238         }
6239       }
6240     }
6241     break;
6242 
6243   case Instruction::And:
6244     if (match(BO.getOperand(1), m_APInt(C)))
6245       // 'and x, C' produces [0, C].
6246       Upper = *C + 1;
6247     break;
6248 
6249   case Instruction::Or:
6250     if (match(BO.getOperand(1), m_APInt(C)))
6251       // 'or x, C' produces [C, UINT_MAX].
6252       Lower = *C;
6253     break;
6254 
6255   case Instruction::AShr:
6256     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6257       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6258       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6259       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6260     } else if (match(BO.getOperand(0), m_APInt(C))) {
6261       unsigned ShiftAmount = Width - 1;
6262       if (!C->isNullValue() && IIQ.isExact(&BO))
6263         ShiftAmount = C->countTrailingZeros();
6264       if (C->isNegative()) {
6265         // 'ashr C, x' produces [C, C >> (Width-1)]
6266         Lower = *C;
6267         Upper = C->ashr(ShiftAmount) + 1;
6268       } else {
6269         // 'ashr C, x' produces [C >> (Width-1), C]
6270         Lower = C->ashr(ShiftAmount);
6271         Upper = *C + 1;
6272       }
6273     }
6274     break;
6275 
6276   case Instruction::LShr:
6277     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6278       // 'lshr x, C' produces [0, UINT_MAX >> C].
6279       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6280     } else if (match(BO.getOperand(0), m_APInt(C))) {
6281       // 'lshr C, x' produces [C >> (Width-1), C].
6282       unsigned ShiftAmount = Width - 1;
6283       if (!C->isNullValue() && IIQ.isExact(&BO))
6284         ShiftAmount = C->countTrailingZeros();
6285       Lower = C->lshr(ShiftAmount);
6286       Upper = *C + 1;
6287     }
6288     break;
6289 
6290   case Instruction::Shl:
6291     if (match(BO.getOperand(0), m_APInt(C))) {
6292       if (IIQ.hasNoUnsignedWrap(&BO)) {
6293         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6294         Lower = *C;
6295         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6296       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6297         if (C->isNegative()) {
6298           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6299           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6300           Lower = C->shl(ShiftAmount);
6301           Upper = *C + 1;
6302         } else {
6303           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6304           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6305           Lower = *C;
6306           Upper = C->shl(ShiftAmount) + 1;
6307         }
6308       }
6309     }
6310     break;
6311 
6312   case Instruction::SDiv:
6313     if (match(BO.getOperand(1), m_APInt(C))) {
6314       APInt IntMin = APInt::getSignedMinValue(Width);
6315       APInt IntMax = APInt::getSignedMaxValue(Width);
6316       if (C->isAllOnesValue()) {
6317         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6318         //    where C != -1 and C != 0 and C != 1
6319         Lower = IntMin + 1;
6320         Upper = IntMax + 1;
6321       } else if (C->countLeadingZeros() < Width - 1) {
6322         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6323         //    where C != -1 and C != 0 and C != 1
6324         Lower = IntMin.sdiv(*C);
6325         Upper = IntMax.sdiv(*C);
6326         if (Lower.sgt(Upper))
6327           std::swap(Lower, Upper);
6328         Upper = Upper + 1;
6329         assert(Upper != Lower && "Upper part of range has wrapped!");
6330       }
6331     } else if (match(BO.getOperand(0), m_APInt(C))) {
6332       if (C->isMinSignedValue()) {
6333         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6334         Lower = *C;
6335         Upper = Lower.lshr(1) + 1;
6336       } else {
6337         // 'sdiv C, x' produces [-|C|, |C|].
6338         Upper = C->abs() + 1;
6339         Lower = (-Upper) + 1;
6340       }
6341     }
6342     break;
6343 
6344   case Instruction::UDiv:
6345     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6346       // 'udiv x, C' produces [0, UINT_MAX / C].
6347       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6348     } else if (match(BO.getOperand(0), m_APInt(C))) {
6349       // 'udiv C, x' produces [0, C].
6350       Upper = *C + 1;
6351     }
6352     break;
6353 
6354   case Instruction::SRem:
6355     if (match(BO.getOperand(1), m_APInt(C))) {
6356       // 'srem x, C' produces (-|C|, |C|).
6357       Upper = C->abs();
6358       Lower = (-Upper) + 1;
6359     }
6360     break;
6361 
6362   case Instruction::URem:
6363     if (match(BO.getOperand(1), m_APInt(C)))
6364       // 'urem x, C' produces [0, C).
6365       Upper = *C;
6366     break;
6367 
6368   default:
6369     break;
6370   }
6371 }
6372 
6373 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6374                                   APInt &Upper) {
6375   unsigned Width = Lower.getBitWidth();
6376   const APInt *C;
6377   switch (II.getIntrinsicID()) {
6378   case Intrinsic::uadd_sat:
6379     // uadd.sat(x, C) produces [C, UINT_MAX].
6380     if (match(II.getOperand(0), m_APInt(C)) ||
6381         match(II.getOperand(1), m_APInt(C)))
6382       Lower = *C;
6383     break;
6384   case Intrinsic::sadd_sat:
6385     if (match(II.getOperand(0), m_APInt(C)) ||
6386         match(II.getOperand(1), m_APInt(C))) {
6387       if (C->isNegative()) {
6388         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6389         Lower = APInt::getSignedMinValue(Width);
6390         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6391       } else {
6392         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6393         Lower = APInt::getSignedMinValue(Width) + *C;
6394         Upper = APInt::getSignedMaxValue(Width) + 1;
6395       }
6396     }
6397     break;
6398   case Intrinsic::usub_sat:
6399     // usub.sat(C, x) produces [0, C].
6400     if (match(II.getOperand(0), m_APInt(C)))
6401       Upper = *C + 1;
6402     // usub.sat(x, C) produces [0, UINT_MAX - C].
6403     else if (match(II.getOperand(1), m_APInt(C)))
6404       Upper = APInt::getMaxValue(Width) - *C + 1;
6405     break;
6406   case Intrinsic::ssub_sat:
6407     if (match(II.getOperand(0), m_APInt(C))) {
6408       if (C->isNegative()) {
6409         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6410         Lower = APInt::getSignedMinValue(Width);
6411         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6412       } else {
6413         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6414         Lower = *C - APInt::getSignedMaxValue(Width);
6415         Upper = APInt::getSignedMaxValue(Width) + 1;
6416       }
6417     } else if (match(II.getOperand(1), m_APInt(C))) {
6418       if (C->isNegative()) {
6419         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6420         Lower = APInt::getSignedMinValue(Width) - *C;
6421         Upper = APInt::getSignedMaxValue(Width) + 1;
6422       } else {
6423         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6424         Lower = APInt::getSignedMinValue(Width);
6425         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6426       }
6427     }
6428     break;
6429   case Intrinsic::umin:
6430   case Intrinsic::umax:
6431   case Intrinsic::smin:
6432   case Intrinsic::smax:
6433     if (!match(II.getOperand(0), m_APInt(C)) &&
6434         !match(II.getOperand(1), m_APInt(C)))
6435       break;
6436 
6437     switch (II.getIntrinsicID()) {
6438     case Intrinsic::umin:
6439       Upper = *C + 1;
6440       break;
6441     case Intrinsic::umax:
6442       Lower = *C;
6443       break;
6444     case Intrinsic::smin:
6445       Lower = APInt::getSignedMinValue(Width);
6446       Upper = *C + 1;
6447       break;
6448     case Intrinsic::smax:
6449       Lower = *C;
6450       Upper = APInt::getSignedMaxValue(Width) + 1;
6451       break;
6452     default:
6453       llvm_unreachable("Must be min/max intrinsic");
6454     }
6455     break;
6456   case Intrinsic::abs:
6457     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6458     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6459     if (match(II.getOperand(1), m_One()))
6460       Upper = APInt::getSignedMaxValue(Width) + 1;
6461     else
6462       Upper = APInt::getSignedMinValue(Width) + 1;
6463     break;
6464   default:
6465     break;
6466   }
6467 }
6468 
6469 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6470                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6471   const Value *LHS = nullptr, *RHS = nullptr;
6472   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6473   if (R.Flavor == SPF_UNKNOWN)
6474     return;
6475 
6476   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6477 
6478   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6479     // If the negation part of the abs (in RHS) has the NSW flag,
6480     // then the result of abs(X) is [0..SIGNED_MAX],
6481     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6482     Lower = APInt::getNullValue(BitWidth);
6483     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6484         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6485       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6486     else
6487       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6488     return;
6489   }
6490 
6491   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6492     // The result of -abs(X) is <= 0.
6493     Lower = APInt::getSignedMinValue(BitWidth);
6494     Upper = APInt(BitWidth, 1);
6495     return;
6496   }
6497 
6498   const APInt *C;
6499   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6500     return;
6501 
6502   switch (R.Flavor) {
6503     case SPF_UMIN:
6504       Upper = *C + 1;
6505       break;
6506     case SPF_UMAX:
6507       Lower = *C;
6508       break;
6509     case SPF_SMIN:
6510       Lower = APInt::getSignedMinValue(BitWidth);
6511       Upper = *C + 1;
6512       break;
6513     case SPF_SMAX:
6514       Lower = *C;
6515       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6516       break;
6517     default:
6518       break;
6519   }
6520 }
6521 
6522 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6523                                          AssumptionCache *AC,
6524                                          const Instruction *CtxI,
6525                                          unsigned Depth) {
6526   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6527 
6528   if (Depth == MaxAnalysisRecursionDepth)
6529     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6530 
6531   const APInt *C;
6532   if (match(V, m_APInt(C)))
6533     return ConstantRange(*C);
6534 
6535   InstrInfoQuery IIQ(UseInstrInfo);
6536   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6537   APInt Lower = APInt(BitWidth, 0);
6538   APInt Upper = APInt(BitWidth, 0);
6539   if (auto *BO = dyn_cast<BinaryOperator>(V))
6540     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6541   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6542     setLimitsForIntrinsic(*II, Lower, Upper);
6543   else if (auto *SI = dyn_cast<SelectInst>(V))
6544     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6545 
6546   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6547 
6548   if (auto *I = dyn_cast<Instruction>(V))
6549     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6550       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6551 
6552   if (CtxI && AC) {
6553     // Try to restrict the range based on information from assumptions.
6554     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6555       if (!AssumeVH)
6556         continue;
6557       CallInst *I = cast<CallInst>(AssumeVH);
6558       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6559              "Got assumption for the wrong function!");
6560       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6561              "must be an assume intrinsic");
6562 
6563       if (!isValidAssumeForContext(I, CtxI, nullptr))
6564         continue;
6565       Value *Arg = I->getArgOperand(0);
6566       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6567       // Currently we just use information from comparisons.
6568       if (!Cmp || Cmp->getOperand(0) != V)
6569         continue;
6570       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6571                                                AC, I, Depth + 1);
6572       CR = CR.intersectWith(
6573           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6574     }
6575   }
6576 
6577   return CR;
6578 }
6579 
6580 static Optional<int64_t>
6581 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6582   // Skip over the first indices.
6583   gep_type_iterator GTI = gep_type_begin(GEP);
6584   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6585     /*skip along*/;
6586 
6587   // Compute the offset implied by the rest of the indices.
6588   int64_t Offset = 0;
6589   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6590     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6591     if (!OpC)
6592       return None;
6593     if (OpC->isZero())
6594       continue; // No offset.
6595 
6596     // Handle struct indices, which add their field offset to the pointer.
6597     if (StructType *STy = GTI.getStructTypeOrNull()) {
6598       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6599       continue;
6600     }
6601 
6602     // Otherwise, we have a sequential type like an array or fixed-length
6603     // vector. Multiply the index by the ElementSize.
6604     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6605     if (Size.isScalable())
6606       return None;
6607     Offset += Size.getFixedSize() * OpC->getSExtValue();
6608   }
6609 
6610   return Offset;
6611 }
6612 
6613 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6614                                         const DataLayout &DL) {
6615   Ptr1 = Ptr1->stripPointerCasts();
6616   Ptr2 = Ptr2->stripPointerCasts();
6617 
6618   // Handle the trivial case first.
6619   if (Ptr1 == Ptr2) {
6620     return 0;
6621   }
6622 
6623   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6624   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6625 
6626   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6627   // as in "P" and "gep P, 1".
6628   // Also do this iteratively to handle the the following case:
6629   //   Ptr_t1 = GEP Ptr1, c1
6630   //   Ptr_t2 = GEP Ptr_t1, c2
6631   //   Ptr2 = GEP Ptr_t2, c3
6632   // where we will return c1+c2+c3.
6633   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6634   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6635   // are the same, and return the difference between offsets.
6636   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6637                                  const Value *Ptr) -> Optional<int64_t> {
6638     const GEPOperator *GEP_T = GEP;
6639     int64_t OffsetVal = 0;
6640     bool HasSameBase = false;
6641     while (GEP_T) {
6642       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6643       if (!Offset)
6644         return None;
6645       OffsetVal += *Offset;
6646       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6647       if (Op0 == Ptr) {
6648         HasSameBase = true;
6649         break;
6650       }
6651       GEP_T = dyn_cast<GEPOperator>(Op0);
6652     }
6653     if (!HasSameBase)
6654       return None;
6655     return OffsetVal;
6656   };
6657 
6658   if (GEP1) {
6659     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6660     if (Offset)
6661       return -*Offset;
6662   }
6663   if (GEP2) {
6664     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6665     if (Offset)
6666       return Offset;
6667   }
6668 
6669   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6670   // base.  After that base, they may have some number of common (and
6671   // potentially variable) indices.  After that they handle some constant
6672   // offset, which determines their offset from each other.  At this point, we
6673   // handle no other case.
6674   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6675     return None;
6676 
6677   // Skip any common indices and track the GEP types.
6678   unsigned Idx = 1;
6679   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6680     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6681       break;
6682 
6683   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6684   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6685   if (!Offset1 || !Offset2)
6686     return None;
6687   return *Offset2 - *Offset1;
6688 }
6689