1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsRISCV.h" 56 #include "llvm/IR/IntrinsicsX86.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include <algorithm> 72 #include <array> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace llvm::PatternMatch; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// If true, it is safe to use metadata during simplification. 112 InstrInfoQuery IIQ; 113 114 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 115 const DominatorTree *DT, bool UseInstrInfo, 116 OptimizationRemarkEmitter *ORE = nullptr) 117 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 118 }; 119 120 } // end anonymous namespace 121 122 // Given the provided Value and, potentially, a context instruction, return 123 // the preferred context instruction (if any). 124 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 125 // If we've been provided with a context instruction, then use that (provided 126 // it has been inserted). 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 // If the value is really an already-inserted instruction, then use that. 131 CxtI = dyn_cast<Instruction>(V); 132 if (CxtI && CxtI->getParent()) 133 return CxtI; 134 135 return nullptr; 136 } 137 138 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 139 // If we've been provided with a context instruction, then use that (provided 140 // it has been inserted). 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 // If the value is really an already-inserted instruction, then use that. 145 CxtI = dyn_cast<Instruction>(V1); 146 if (CxtI && CxtI->getParent()) 147 return CxtI; 148 149 CxtI = dyn_cast<Instruction>(V2); 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 return nullptr; 154 } 155 156 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 157 const APInt &DemandedElts, 158 APInt &DemandedLHS, APInt &DemandedRHS) { 159 // The length of scalable vectors is unknown at compile time, thus we 160 // cannot check their values 161 if (isa<ScalableVectorType>(Shuf->getType())) 162 return false; 163 164 int NumElts = 165 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 166 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 167 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 168 if (DemandedElts.isNullValue()) 169 return true; 170 // Simple case of a shuffle with zeroinitializer. 171 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 172 DemandedLHS.setBit(0); 173 return true; 174 } 175 for (int i = 0; i != NumMaskElts; ++i) { 176 if (!DemandedElts[i]) 177 continue; 178 int M = Shuf->getMaskValue(i); 179 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 180 181 // For undef elements, we don't know anything about the common state of 182 // the shuffle result. 183 if (M == -1) 184 return false; 185 if (M < NumElts) 186 DemandedLHS.setBit(M % NumElts); 187 else 188 DemandedRHS.setBit(M % NumElts); 189 } 190 191 return true; 192 } 193 194 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 195 KnownBits &Known, unsigned Depth, const Query &Q); 196 197 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 198 const Query &Q) { 199 // FIXME: We currently have no way to represent the DemandedElts of a scalable 200 // vector 201 if (isa<ScalableVectorType>(V->getType())) { 202 Known.resetAll(); 203 return; 204 } 205 206 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 207 APInt DemandedElts = 208 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 209 computeKnownBits(V, DemandedElts, Known, Depth, Q); 210 } 211 212 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 213 const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT, 216 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 217 ::computeKnownBits(V, Known, Depth, 218 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 219 } 220 221 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 222 KnownBits &Known, const DataLayout &DL, 223 unsigned Depth, AssumptionCache *AC, 224 const Instruction *CxtI, const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, DemandedElts, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 231 unsigned Depth, const Query &Q); 232 233 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 234 const Query &Q); 235 236 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, 239 const DominatorTree *DT, 240 OptimizationRemarkEmitter *ORE, 241 bool UseInstrInfo) { 242 return ::computeKnownBits( 243 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 244 } 245 246 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 247 const DataLayout &DL, unsigned Depth, 248 AssumptionCache *AC, const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, DemandedElts, Depth, 254 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 255 } 256 257 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 258 const DataLayout &DL, AssumptionCache *AC, 259 const Instruction *CxtI, const DominatorTree *DT, 260 bool UseInstrInfo) { 261 assert(LHS->getType() == RHS->getType() && 262 "LHS and RHS should have the same type"); 263 assert(LHS->getType()->isIntOrIntVectorTy() && 264 "LHS and RHS should be integers"); 265 // Look for an inverted mask: (X & ~M) op (Y & M). 266 Value *M; 267 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 268 match(RHS, m_c_And(m_Specific(M), m_Value()))) 269 return true; 270 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 271 match(LHS, m_c_And(m_Specific(M), m_Value()))) 272 return true; 273 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 274 KnownBits LHSKnown(IT->getBitWidth()); 275 KnownBits RHSKnown(IT->getBitWidth()); 276 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 277 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 278 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 279 } 280 281 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 282 for (const User *U : CxtI->users()) { 283 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 284 if (IC->isEquality()) 285 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 286 if (C->isNullValue()) 287 continue; 288 return false; 289 } 290 return true; 291 } 292 293 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 294 const Query &Q); 295 296 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 297 bool OrZero, unsigned Depth, 298 AssumptionCache *AC, const Instruction *CxtI, 299 const DominatorTree *DT, bool UseInstrInfo) { 300 return ::isKnownToBeAPowerOfTwo( 301 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 302 } 303 304 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 305 unsigned Depth, const Query &Q); 306 307 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 308 309 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 310 AssumptionCache *AC, const Instruction *CxtI, 311 const DominatorTree *DT, bool UseInstrInfo) { 312 return ::isKnownNonZero(V, Depth, 313 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 314 } 315 316 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 317 unsigned Depth, AssumptionCache *AC, 318 const Instruction *CxtI, const DominatorTree *DT, 319 bool UseInstrInfo) { 320 KnownBits Known = 321 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 322 return Known.isNonNegative(); 323 } 324 325 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 326 AssumptionCache *AC, const Instruction *CxtI, 327 const DominatorTree *DT, bool UseInstrInfo) { 328 if (auto *CI = dyn_cast<ConstantInt>(V)) 329 return CI->getValue().isStrictlyPositive(); 330 331 // TODO: We'd doing two recursive queries here. We should factor this such 332 // that only a single query is needed. 333 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 334 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 335 } 336 337 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 338 AssumptionCache *AC, const Instruction *CxtI, 339 const DominatorTree *DT, bool UseInstrInfo) { 340 KnownBits Known = 341 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 342 return Known.isNegative(); 343 } 344 345 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 346 const Query &Q); 347 348 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 349 const DataLayout &DL, AssumptionCache *AC, 350 const Instruction *CxtI, const DominatorTree *DT, 351 bool UseInstrInfo) { 352 return ::isKnownNonEqual(V1, V2, 0, 353 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 354 UseInstrInfo, /*ORE=*/nullptr)); 355 } 356 357 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 358 const Query &Q); 359 360 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 361 const DataLayout &DL, unsigned Depth, 362 AssumptionCache *AC, const Instruction *CxtI, 363 const DominatorTree *DT, bool UseInstrInfo) { 364 return ::MaskedValueIsZero( 365 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 366 } 367 368 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 369 unsigned Depth, const Query &Q); 370 371 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 372 const Query &Q) { 373 // FIXME: We currently have no way to represent the DemandedElts of a scalable 374 // vector 375 if (isa<ScalableVectorType>(V->getType())) 376 return 1; 377 378 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 379 APInt DemandedElts = 380 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 381 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 382 } 383 384 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 385 unsigned Depth, AssumptionCache *AC, 386 const Instruction *CxtI, 387 const DominatorTree *DT, bool UseInstrInfo) { 388 return ::ComputeNumSignBits( 389 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 390 } 391 392 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 393 bool NSW, const APInt &DemandedElts, 394 KnownBits &KnownOut, KnownBits &Known2, 395 unsigned Depth, const Query &Q) { 396 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 397 398 // If one operand is unknown and we have no nowrap information, 399 // the result will be unknown independently of the second operand. 400 if (KnownOut.isUnknown() && !NSW) 401 return; 402 403 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 404 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 405 } 406 407 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 408 const APInt &DemandedElts, KnownBits &Known, 409 KnownBits &Known2, unsigned Depth, 410 const Query &Q) { 411 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 414 bool isKnownNegative = false; 415 bool isKnownNonNegative = false; 416 // If the multiplication is known not to overflow, compute the sign bit. 417 if (NSW) { 418 if (Op0 == Op1) { 419 // The product of a number with itself is non-negative. 420 isKnownNonNegative = true; 421 } else { 422 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 423 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 424 bool isKnownNegativeOp1 = Known.isNegative(); 425 bool isKnownNegativeOp0 = Known2.isNegative(); 426 // The product of two numbers with the same sign is non-negative. 427 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 428 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 429 // The product of a negative number and a non-negative number is either 430 // negative or zero. 431 if (!isKnownNonNegative) 432 isKnownNegative = 433 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 434 Known2.isNonZero()) || 435 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 436 } 437 } 438 439 Known = KnownBits::mul(Known, Known2); 440 441 // Only make use of no-wrap flags if we failed to compute the sign bit 442 // directly. This matters if the multiplication always overflows, in 443 // which case we prefer to follow the result of the direct computation, 444 // though as the program is invoking undefined behaviour we can choose 445 // whatever we like here. 446 if (isKnownNonNegative && !Known.isNegative()) 447 Known.makeNonNegative(); 448 else if (isKnownNegative && !Known.isNonNegative()) 449 Known.makeNegative(); 450 } 451 452 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 453 KnownBits &Known) { 454 unsigned BitWidth = Known.getBitWidth(); 455 unsigned NumRanges = Ranges.getNumOperands() / 2; 456 assert(NumRanges >= 1); 457 458 Known.Zero.setAllBits(); 459 Known.One.setAllBits(); 460 461 for (unsigned i = 0; i < NumRanges; ++i) { 462 ConstantInt *Lower = 463 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 464 ConstantInt *Upper = 465 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 466 ConstantRange Range(Lower->getValue(), Upper->getValue()); 467 468 // The first CommonPrefixBits of all values in Range are equal. 469 unsigned CommonPrefixBits = 470 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 471 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 472 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 473 Known.One &= UnsignedMax & Mask; 474 Known.Zero &= ~UnsignedMax & Mask; 475 } 476 } 477 478 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 479 SmallVector<const Value *, 16> WorkSet(1, I); 480 SmallPtrSet<const Value *, 32> Visited; 481 SmallPtrSet<const Value *, 16> EphValues; 482 483 // The instruction defining an assumption's condition itself is always 484 // considered ephemeral to that assumption (even if it has other 485 // non-ephemeral users). See r246696's test case for an example. 486 if (is_contained(I->operands(), E)) 487 return true; 488 489 while (!WorkSet.empty()) { 490 const Value *V = WorkSet.pop_back_val(); 491 if (!Visited.insert(V).second) 492 continue; 493 494 // If all uses of this value are ephemeral, then so is this value. 495 if (llvm::all_of(V->users(), [&](const User *U) { 496 return EphValues.count(U); 497 })) { 498 if (V == E) 499 return true; 500 501 if (V == I || isSafeToSpeculativelyExecute(V)) { 502 EphValues.insert(V); 503 if (const User *U = dyn_cast<User>(V)) 504 append_range(WorkSet, U->operands()); 505 } 506 } 507 } 508 509 return false; 510 } 511 512 // Is this an intrinsic that cannot be speculated but also cannot trap? 513 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 514 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 515 return CI->isAssumeLikeIntrinsic(); 516 517 return false; 518 } 519 520 bool llvm::isValidAssumeForContext(const Instruction *Inv, 521 const Instruction *CxtI, 522 const DominatorTree *DT) { 523 // There are two restrictions on the use of an assume: 524 // 1. The assume must dominate the context (or the control flow must 525 // reach the assume whenever it reaches the context). 526 // 2. The context must not be in the assume's set of ephemeral values 527 // (otherwise we will use the assume to prove that the condition 528 // feeding the assume is trivially true, thus causing the removal of 529 // the assume). 530 531 if (Inv->getParent() == CxtI->getParent()) { 532 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 533 // in the BB. 534 if (Inv->comesBefore(CxtI)) 535 return true; 536 537 // Don't let an assume affect itself - this would cause the problems 538 // `isEphemeralValueOf` is trying to prevent, and it would also make 539 // the loop below go out of bounds. 540 if (Inv == CxtI) 541 return false; 542 543 // The context comes first, but they're both in the same block. 544 // Make sure there is nothing in between that might interrupt 545 // the control flow, not even CxtI itself. 546 // We limit the scan distance between the assume and its context instruction 547 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 548 // it can be adjusted if needed (could be turned into a cl::opt). 549 unsigned ScanLimit = 15; 550 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 551 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 552 return false; 553 554 return !isEphemeralValueOf(Inv, CxtI); 555 } 556 557 // Inv and CxtI are in different blocks. 558 if (DT) { 559 if (DT->dominates(Inv, CxtI)) 560 return true; 561 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 562 // We don't have a DT, but this trivially dominates. 563 return true; 564 } 565 566 return false; 567 } 568 569 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 570 // v u> y implies v != 0. 571 if (Pred == ICmpInst::ICMP_UGT) 572 return true; 573 574 // Special-case v != 0 to also handle v != null. 575 if (Pred == ICmpInst::ICMP_NE) 576 return match(RHS, m_Zero()); 577 578 // All other predicates - rely on generic ConstantRange handling. 579 const APInt *C; 580 if (!match(RHS, m_APInt(C))) 581 return false; 582 583 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 584 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 585 } 586 587 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 588 // Use of assumptions is context-sensitive. If we don't have a context, we 589 // cannot use them! 590 if (!Q.AC || !Q.CxtI) 591 return false; 592 593 if (Q.CxtI && V->getType()->isPointerTy()) { 594 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 595 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 596 V->getType()->getPointerAddressSpace())) 597 AttrKinds.push_back(Attribute::Dereferenceable); 598 599 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 600 return true; 601 } 602 603 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 604 if (!AssumeVH) 605 continue; 606 CallInst *I = cast<CallInst>(AssumeVH); 607 assert(I->getFunction() == Q.CxtI->getFunction() && 608 "Got assumption for the wrong function!"); 609 610 // Warning: This loop can end up being somewhat performance sensitive. 611 // We're running this loop for once for each value queried resulting in a 612 // runtime of ~O(#assumes * #values). 613 614 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 615 "must be an assume intrinsic"); 616 617 Value *RHS; 618 CmpInst::Predicate Pred; 619 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 620 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 621 return false; 622 623 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 624 return true; 625 } 626 627 return false; 628 } 629 630 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 631 unsigned Depth, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return; 636 637 unsigned BitWidth = Known.getBitWidth(); 638 639 // Refine Known set if the pointer alignment is set by assume bundles. 640 if (V->getType()->isPointerTy()) { 641 if (RetainedKnowledge RK = getKnowledgeValidInContext( 642 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 643 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 644 } 645 } 646 647 // Note that the patterns below need to be kept in sync with the code 648 // in AssumptionCache::updateAffectedValues. 649 650 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 651 if (!AssumeVH) 652 continue; 653 CallInst *I = cast<CallInst>(AssumeVH); 654 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 655 "Got assumption for the wrong function!"); 656 657 // Warning: This loop can end up being somewhat performance sensitive. 658 // We're running this loop for once for each value queried resulting in a 659 // runtime of ~O(#assumes * #values). 660 661 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 662 "must be an assume intrinsic"); 663 664 Value *Arg = I->getArgOperand(0); 665 666 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 assert(BitWidth == 1 && "assume operand is not i1?"); 668 Known.setAllOnes(); 669 return; 670 } 671 if (match(Arg, m_Not(m_Specific(V))) && 672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 673 assert(BitWidth == 1 && "assume operand is not i1?"); 674 Known.setAllZero(); 675 return; 676 } 677 678 // The remaining tests are all recursive, so bail out if we hit the limit. 679 if (Depth == MaxAnalysisRecursionDepth) 680 continue; 681 682 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 683 if (!Cmp) 684 continue; 685 686 // We are attempting to compute known bits for the operands of an assume. 687 // Do not try to use other assumptions for those recursive calls because 688 // that can lead to mutual recursion and a compile-time explosion. 689 // An example of the mutual recursion: computeKnownBits can call 690 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 691 // and so on. 692 Query QueryNoAC = Q; 693 QueryNoAC.AC = nullptr; 694 695 // Note that ptrtoint may change the bitwidth. 696 Value *A, *B; 697 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 698 699 CmpInst::Predicate Pred; 700 uint64_t C; 701 switch (Cmp->getPredicate()) { 702 default: 703 break; 704 case ICmpInst::ICMP_EQ: 705 // assume(v = a) 706 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 KnownBits RHSKnown = 709 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 710 Known.Zero |= RHSKnown.Zero; 711 Known.One |= RHSKnown.One; 712 // assume(v & b = a) 713 } else if (match(Cmp, 714 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown = 717 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 718 KnownBits MaskKnown = 719 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 720 721 // For those bits in the mask that are known to be one, we can propagate 722 // known bits from the RHS to V. 723 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 724 Known.One |= RHSKnown.One & MaskKnown.One; 725 // assume(~(v & b) = a) 726 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 727 m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 731 KnownBits MaskKnown = 732 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 733 734 // For those bits in the mask that are known to be one, we can propagate 735 // inverted known bits from the RHS to V. 736 Known.Zero |= RHSKnown.One & MaskKnown.One; 737 Known.One |= RHSKnown.Zero & MaskKnown.One; 738 // assume(v | b = a) 739 } else if (match(Cmp, 740 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 742 KnownBits RHSKnown = 743 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 744 KnownBits BKnown = 745 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 746 747 // For those bits in B that are known to be zero, we can propagate known 748 // bits from the RHS to V. 749 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 750 Known.One |= RHSKnown.One & BKnown.Zero; 751 // assume(~(v | b) = a) 752 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 753 m_Value(A))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown = 756 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 757 KnownBits BKnown = 758 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 759 760 // For those bits in B that are known to be zero, we can propagate 761 // inverted known bits from the RHS to V. 762 Known.Zero |= RHSKnown.One & BKnown.Zero; 763 Known.One |= RHSKnown.Zero & BKnown.Zero; 764 // assume(v ^ b = a) 765 } else if (match(Cmp, 766 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 KnownBits RHSKnown = 769 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 770 KnownBits BKnown = 771 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 772 773 // For those bits in B that are known to be zero, we can propagate known 774 // bits from the RHS to V. For those bits in B that are known to be one, 775 // we can propagate inverted known bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 Known.Zero |= RHSKnown.One & BKnown.One; 779 Known.One |= RHSKnown.Zero & BKnown.One; 780 // assume(~(v ^ b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown = 785 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 786 KnownBits BKnown = 787 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. For those bits in B that are 791 // known to be one, we can propagate known bits from the RHS to V. 792 Known.Zero |= RHSKnown.One & BKnown.Zero; 793 Known.One |= RHSKnown.Zero & BKnown.Zero; 794 Known.Zero |= RHSKnown.Zero & BKnown.One; 795 Known.One |= RHSKnown.One & BKnown.One; 796 // assume(v << c = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 803 // For those bits in RHS that are known, we can propagate them to known 804 // bits in V shifted to the right by C. 805 RHSKnown.Zero.lshrInPlace(C); 806 Known.Zero |= RHSKnown.Zero; 807 RHSKnown.One.lshrInPlace(C); 808 Known.One |= RHSKnown.One; 809 // assume(~(v << c) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 // For those bits in RHS that are known, we can propagate them inverted 816 // to known bits in V shifted to the right by C. 817 RHSKnown.One.lshrInPlace(C); 818 Known.Zero |= RHSKnown.One; 819 RHSKnown.Zero.lshrInPlace(C); 820 Known.One |= RHSKnown.Zero; 821 // assume(v >> c = a) 822 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 823 m_Value(A))) && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 825 KnownBits RHSKnown = 826 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 827 // For those bits in RHS that are known, we can propagate them to known 828 // bits in V shifted to the right by C. 829 Known.Zero |= RHSKnown.Zero << C; 830 Known.One |= RHSKnown.One << C; 831 // assume(~(v >> c) = a) 832 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 833 m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 837 // For those bits in RHS that are known, we can propagate them inverted 838 // to known bits in V shifted to the right by C. 839 Known.Zero |= RHSKnown.One << C; 840 Known.One |= RHSKnown.Zero << C; 841 } 842 break; 843 case ICmpInst::ICMP_SGE: 844 // assume(v >=_s c) where c is non-negative 845 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 846 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 847 KnownBits RHSKnown = 848 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 849 850 if (RHSKnown.isNonNegative()) { 851 // We know that the sign bit is zero. 852 Known.makeNonNegative(); 853 } 854 } 855 break; 856 case ICmpInst::ICMP_SGT: 857 // assume(v >_s c) where c is at least -1. 858 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 KnownBits RHSKnown = 861 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 862 863 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 864 // We know that the sign bit is zero. 865 Known.makeNonNegative(); 866 } 867 } 868 break; 869 case ICmpInst::ICMP_SLE: 870 // assume(v <=_s c) where c is negative 871 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 872 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 873 KnownBits RHSKnown = 874 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 875 876 if (RHSKnown.isNegative()) { 877 // We know that the sign bit is one. 878 Known.makeNegative(); 879 } 880 } 881 break; 882 case ICmpInst::ICMP_SLT: 883 // assume(v <_s c) where c is non-positive 884 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 885 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 886 KnownBits RHSKnown = 887 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 888 889 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 890 // We know that the sign bit is one. 891 Known.makeNegative(); 892 } 893 } 894 break; 895 case ICmpInst::ICMP_ULE: 896 // assume(v <=_u c) 897 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 898 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 899 KnownBits RHSKnown = 900 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 901 902 // Whatever high bits in c are zero are known to be zero. 903 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 904 } 905 break; 906 case ICmpInst::ICMP_ULT: 907 // assume(v <_u c) 908 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 909 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 910 KnownBits RHSKnown = 911 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 912 913 // If the RHS is known zero, then this assumption must be wrong (nothing 914 // is unsigned less than zero). Signal a conflict and get out of here. 915 if (RHSKnown.isZero()) { 916 Known.Zero.setAllBits(); 917 Known.One.setAllBits(); 918 break; 919 } 920 921 // Whatever high bits in c are zero are known to be zero (if c is a power 922 // of 2, then one more). 923 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 925 else 926 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 927 } 928 break; 929 } 930 } 931 932 // If assumptions conflict with each other or previous known bits, then we 933 // have a logical fallacy. It's possible that the assumption is not reachable, 934 // so this isn't a real bug. On the other hand, the program may have undefined 935 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 936 // clear out the known bits, try to warn the user, and hope for the best. 937 if (Known.Zero.intersects(Known.One)) { 938 Known.resetAll(); 939 940 if (Q.ORE) 941 Q.ORE->emit([&]() { 942 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 943 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 944 CxtI) 945 << "Detected conflicting code assumptions. Program may " 946 "have undefined behavior, or compiler may have " 947 "internal error."; 948 }); 949 } 950 } 951 952 /// Compute known bits from a shift operator, including those with a 953 /// non-constant shift amount. Known is the output of this function. Known2 is a 954 /// pre-allocated temporary with the same bit width as Known and on return 955 /// contains the known bit of the shift value source. KF is an 956 /// operator-specific function that, given the known-bits and a shift amount, 957 /// compute the implied known-bits of the shift operator's result respectively 958 /// for that shift amount. The results from calling KF are conservatively 959 /// combined for all permitted shift amounts. 960 static void computeKnownBitsFromShiftOperator( 961 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 962 KnownBits &Known2, unsigned Depth, const Query &Q, 963 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 964 unsigned BitWidth = Known.getBitWidth(); 965 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 966 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 967 968 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 969 // BitWidth > 64 and any upper bits are known, we'll end up returning the 970 // limit value (which implies all bits are known). 971 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 972 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 973 bool ShiftAmtIsConstant = Known.isConstant(); 974 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 975 976 if (ShiftAmtIsConstant) { 977 Known = KF(Known2, Known); 978 979 // If the known bits conflict, this must be an overflowing left shift, so 980 // the shift result is poison. We can return anything we want. Choose 0 for 981 // the best folding opportunity. 982 if (Known.hasConflict()) 983 Known.setAllZero(); 984 985 return; 986 } 987 988 // If the shift amount could be greater than or equal to the bit-width of the 989 // LHS, the value could be poison, but bail out because the check below is 990 // expensive. 991 // TODO: Should we just carry on? 992 if (MaxShiftAmtIsOutOfRange) { 993 Known.resetAll(); 994 return; 995 } 996 997 // It would be more-clearly correct to use the two temporaries for this 998 // calculation. Reusing the APInts here to prevent unnecessary allocations. 999 Known.resetAll(); 1000 1001 // If we know the shifter operand is nonzero, we can sometimes infer more 1002 // known bits. However this is expensive to compute, so be lazy about it and 1003 // only compute it when absolutely necessary. 1004 Optional<bool> ShifterOperandIsNonZero; 1005 1006 // Early exit if we can't constrain any well-defined shift amount. 1007 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1008 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1009 ShifterOperandIsNonZero = 1010 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1011 if (!*ShifterOperandIsNonZero) 1012 return; 1013 } 1014 1015 Known.Zero.setAllBits(); 1016 Known.One.setAllBits(); 1017 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1018 // Combine the shifted known input bits only for those shift amounts 1019 // compatible with its known constraints. 1020 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1021 continue; 1022 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1023 continue; 1024 // If we know the shifter is nonzero, we may be able to infer more known 1025 // bits. This check is sunk down as far as possible to avoid the expensive 1026 // call to isKnownNonZero if the cheaper checks above fail. 1027 if (ShiftAmt == 0) { 1028 if (!ShifterOperandIsNonZero.hasValue()) 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (*ShifterOperandIsNonZero) 1032 continue; 1033 } 1034 1035 Known = KnownBits::commonBits( 1036 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1037 } 1038 1039 // If the known bits conflict, the result is poison. Return a 0 and hope the 1040 // caller can further optimize that. 1041 if (Known.hasConflict()) 1042 Known.setAllZero(); 1043 } 1044 1045 static void computeKnownBitsFromOperator(const Operator *I, 1046 const APInt &DemandedElts, 1047 KnownBits &Known, unsigned Depth, 1048 const Query &Q) { 1049 unsigned BitWidth = Known.getBitWidth(); 1050 1051 KnownBits Known2(BitWidth); 1052 switch (I->getOpcode()) { 1053 default: break; 1054 case Instruction::Load: 1055 if (MDNode *MD = 1056 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1057 computeKnownBitsFromRangeMetadata(*MD, Known); 1058 break; 1059 case Instruction::And: { 1060 // If either the LHS or the RHS are Zero, the result is zero. 1061 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1063 1064 Known &= Known2; 1065 1066 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1067 // here we handle the more general case of adding any odd number by 1068 // matching the form add(x, add(x, y)) where y is odd. 1069 // TODO: This could be generalized to clearing any bit set in y where the 1070 // following bit is known to be unset in y. 1071 Value *X = nullptr, *Y = nullptr; 1072 if (!Known.Zero[0] && !Known.One[0] && 1073 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1074 Known2.resetAll(); 1075 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1076 if (Known2.countMinTrailingOnes() > 0) 1077 Known.Zero.setBit(0); 1078 } 1079 break; 1080 } 1081 case Instruction::Or: 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known |= Known2; 1086 break; 1087 case Instruction::Xor: 1088 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1090 1091 Known ^= Known2; 1092 break; 1093 case Instruction::Mul: { 1094 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1095 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1096 Known, Known2, Depth, Q); 1097 break; 1098 } 1099 case Instruction::UDiv: { 1100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1101 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1102 Known = KnownBits::udiv(Known, Known2); 1103 break; 1104 } 1105 case Instruction::Select: { 1106 const Value *LHS = nullptr, *RHS = nullptr; 1107 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1108 if (SelectPatternResult::isMinOrMax(SPF)) { 1109 computeKnownBits(RHS, Known, Depth + 1, Q); 1110 computeKnownBits(LHS, Known2, Depth + 1, Q); 1111 switch (SPF) { 1112 default: 1113 llvm_unreachable("Unhandled select pattern flavor!"); 1114 case SPF_SMAX: 1115 Known = KnownBits::smax(Known, Known2); 1116 break; 1117 case SPF_SMIN: 1118 Known = KnownBits::smin(Known, Known2); 1119 break; 1120 case SPF_UMAX: 1121 Known = KnownBits::umax(Known, Known2); 1122 break; 1123 case SPF_UMIN: 1124 Known = KnownBits::umin(Known, Known2); 1125 break; 1126 } 1127 break; 1128 } 1129 1130 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1131 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1132 1133 // Only known if known in both the LHS and RHS. 1134 Known = KnownBits::commonBits(Known, Known2); 1135 1136 if (SPF == SPF_ABS) { 1137 // RHS from matchSelectPattern returns the negation part of abs pattern. 1138 // If the negate has an NSW flag we can assume the sign bit of the result 1139 // will be 0 because that makes abs(INT_MIN) undefined. 1140 if (match(RHS, m_Neg(m_Specific(LHS))) && 1141 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1142 Known.Zero.setSignBit(); 1143 } 1144 1145 break; 1146 } 1147 case Instruction::FPTrunc: 1148 case Instruction::FPExt: 1149 case Instruction::FPToUI: 1150 case Instruction::FPToSI: 1151 case Instruction::SIToFP: 1152 case Instruction::UIToFP: 1153 break; // Can't work with floating point. 1154 case Instruction::PtrToInt: 1155 case Instruction::IntToPtr: 1156 // Fall through and handle them the same as zext/trunc. 1157 LLVM_FALLTHROUGH; 1158 case Instruction::ZExt: 1159 case Instruction::Trunc: { 1160 Type *SrcTy = I->getOperand(0)->getType(); 1161 1162 unsigned SrcBitWidth; 1163 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1164 // which fall through here. 1165 Type *ScalarTy = SrcTy->getScalarType(); 1166 SrcBitWidth = ScalarTy->isPointerTy() ? 1167 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1168 Q.DL.getTypeSizeInBits(ScalarTy); 1169 1170 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1171 Known = Known.anyextOrTrunc(SrcBitWidth); 1172 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1173 Known = Known.zextOrTrunc(BitWidth); 1174 break; 1175 } 1176 case Instruction::BitCast: { 1177 Type *SrcTy = I->getOperand(0)->getType(); 1178 if (SrcTy->isIntOrPtrTy() && 1179 // TODO: For now, not handling conversions like: 1180 // (bitcast i64 %x to <2 x i32>) 1181 !I->getType()->isVectorTy()) { 1182 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1183 break; 1184 } 1185 1186 // Handle cast from vector integer type to scalar or vector integer. 1187 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1188 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1189 !I->getType()->isIntOrIntVectorTy()) 1190 break; 1191 1192 // Look through a cast from narrow vector elements to wider type. 1193 // Examples: v4i32 -> v2i64, v3i8 -> v24 1194 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1195 if (BitWidth % SubBitWidth == 0) { 1196 // Known bits are automatically intersected across demanded elements of a 1197 // vector. So for example, if a bit is computed as known zero, it must be 1198 // zero across all demanded elements of the vector. 1199 // 1200 // For this bitcast, each demanded element of the output is sub-divided 1201 // across a set of smaller vector elements in the source vector. To get 1202 // the known bits for an entire element of the output, compute the known 1203 // bits for each sub-element sequentially. This is done by shifting the 1204 // one-set-bit demanded elements parameter across the sub-elements for 1205 // consecutive calls to computeKnownBits. We are using the demanded 1206 // elements parameter as a mask operator. 1207 // 1208 // The known bits of each sub-element are then inserted into place 1209 // (dependent on endian) to form the full result of known bits. 1210 unsigned NumElts = DemandedElts.getBitWidth(); 1211 unsigned SubScale = BitWidth / SubBitWidth; 1212 APInt SubDemandedElts = APInt::getNullValue(NumElts * SubScale); 1213 for (unsigned i = 0; i != NumElts; ++i) { 1214 if (DemandedElts[i]) 1215 SubDemandedElts.setBit(i * SubScale); 1216 } 1217 1218 KnownBits KnownSrc(SubBitWidth); 1219 for (unsigned i = 0; i != SubScale; ++i) { 1220 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1221 Depth + 1, Q); 1222 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1223 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1224 } 1225 } 1226 break; 1227 } 1228 case Instruction::SExt: { 1229 // Compute the bits in the result that are not present in the input. 1230 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1231 1232 Known = Known.trunc(SrcBitWidth); 1233 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1234 // If the sign bit of the input is known set or clear, then we know the 1235 // top bits of the result. 1236 Known = Known.sext(BitWidth); 1237 break; 1238 } 1239 case Instruction::Shl: { 1240 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1241 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1242 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1243 // If this shift has "nsw" keyword, then the result is either a poison 1244 // value or has the same sign bit as the first operand. 1245 if (NSW) { 1246 if (KnownVal.Zero.isSignBitSet()) 1247 Result.Zero.setSignBit(); 1248 if (KnownVal.One.isSignBitSet()) 1249 Result.One.setSignBit(); 1250 } 1251 return Result; 1252 }; 1253 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1254 KF); 1255 // Trailing zeros of a right-shifted constant never decrease. 1256 const APInt *C; 1257 if (match(I->getOperand(0), m_APInt(C))) 1258 Known.Zero.setLowBits(C->countTrailingZeros()); 1259 break; 1260 } 1261 case Instruction::LShr: { 1262 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1263 return KnownBits::lshr(KnownVal, KnownAmt); 1264 }; 1265 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1266 KF); 1267 // Leading zeros of a left-shifted constant never decrease. 1268 const APInt *C; 1269 if (match(I->getOperand(0), m_APInt(C))) 1270 Known.Zero.setHighBits(C->countLeadingZeros()); 1271 break; 1272 } 1273 case Instruction::AShr: { 1274 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1275 return KnownBits::ashr(KnownVal, KnownAmt); 1276 }; 1277 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1278 KF); 1279 break; 1280 } 1281 case Instruction::Sub: { 1282 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1283 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1284 DemandedElts, Known, Known2, Depth, Q); 1285 break; 1286 } 1287 case Instruction::Add: { 1288 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1289 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1290 DemandedElts, Known, Known2, Depth, Q); 1291 break; 1292 } 1293 case Instruction::SRem: 1294 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1295 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1296 Known = KnownBits::srem(Known, Known2); 1297 break; 1298 1299 case Instruction::URem: 1300 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1301 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1302 Known = KnownBits::urem(Known, Known2); 1303 break; 1304 case Instruction::Alloca: 1305 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1306 break; 1307 case Instruction::GetElementPtr: { 1308 // Analyze all of the subscripts of this getelementptr instruction 1309 // to determine if we can prove known low zero bits. 1310 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1311 // Accumulate the constant indices in a separate variable 1312 // to minimize the number of calls to computeForAddSub. 1313 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1314 1315 gep_type_iterator GTI = gep_type_begin(I); 1316 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1317 // TrailZ can only become smaller, short-circuit if we hit zero. 1318 if (Known.isUnknown()) 1319 break; 1320 1321 Value *Index = I->getOperand(i); 1322 1323 // Handle case when index is zero. 1324 Constant *CIndex = dyn_cast<Constant>(Index); 1325 if (CIndex && CIndex->isZeroValue()) 1326 continue; 1327 1328 if (StructType *STy = GTI.getStructTypeOrNull()) { 1329 // Handle struct member offset arithmetic. 1330 1331 assert(CIndex && 1332 "Access to structure field must be known at compile time"); 1333 1334 if (CIndex->getType()->isVectorTy()) 1335 Index = CIndex->getSplatValue(); 1336 1337 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1338 const StructLayout *SL = Q.DL.getStructLayout(STy); 1339 uint64_t Offset = SL->getElementOffset(Idx); 1340 AccConstIndices += Offset; 1341 continue; 1342 } 1343 1344 // Handle array index arithmetic. 1345 Type *IndexedTy = GTI.getIndexedType(); 1346 if (!IndexedTy->isSized()) { 1347 Known.resetAll(); 1348 break; 1349 } 1350 1351 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1352 KnownBits IndexBits(IndexBitWidth); 1353 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1354 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1355 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1356 KnownBits ScalingFactor(IndexBitWidth); 1357 // Multiply by current sizeof type. 1358 // &A[i] == A + i * sizeof(*A[i]). 1359 if (IndexTypeSize.isScalable()) { 1360 // For scalable types the only thing we know about sizeof is 1361 // that this is a multiple of the minimum size. 1362 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1363 } else if (IndexBits.isConstant()) { 1364 APInt IndexConst = IndexBits.getConstant(); 1365 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1366 IndexConst *= ScalingFactor; 1367 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1368 continue; 1369 } else { 1370 ScalingFactor = 1371 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1372 } 1373 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1374 1375 // If the offsets have a different width from the pointer, according 1376 // to the language reference we need to sign-extend or truncate them 1377 // to the width of the pointer. 1378 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1379 1380 // Note that inbounds does *not* guarantee nsw for the addition, as only 1381 // the offset is signed, while the base address is unsigned. 1382 Known = KnownBits::computeForAddSub( 1383 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1384 } 1385 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1386 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1387 Known = KnownBits::computeForAddSub( 1388 /*Add=*/true, /*NSW=*/false, Known, Index); 1389 } 1390 break; 1391 } 1392 case Instruction::PHI: { 1393 const PHINode *P = cast<PHINode>(I); 1394 BinaryOperator *BO = nullptr; 1395 Value *R = nullptr, *L = nullptr; 1396 if (matchSimpleRecurrence(P, BO, R, L)) { 1397 // Handle the case of a simple two-predecessor recurrence PHI. 1398 // There's a lot more that could theoretically be done here, but 1399 // this is sufficient to catch some interesting cases. 1400 unsigned Opcode = BO->getOpcode(); 1401 1402 // If this is a shift recurrence, we know the bits being shifted in. 1403 // We can combine that with information about the start value of the 1404 // recurrence to conclude facts about the result. 1405 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1406 Opcode == Instruction::Shl) && 1407 BO->getOperand(0) == I) { 1408 1409 // We have matched a recurrence of the form: 1410 // %iv = [R, %entry], [%iv.next, %backedge] 1411 // %iv.next = shift_op %iv, L 1412 1413 // Recurse with the phi context to avoid concern about whether facts 1414 // inferred hold at original context instruction. TODO: It may be 1415 // correct to use the original context. IF warranted, explore and 1416 // add sufficient tests to cover. 1417 Query RecQ = Q; 1418 RecQ.CxtI = P; 1419 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1420 switch (Opcode) { 1421 case Instruction::Shl: 1422 // A shl recurrence will only increase the tailing zeros 1423 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1424 break; 1425 case Instruction::LShr: 1426 // A lshr recurrence will preserve the leading zeros of the 1427 // start value 1428 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1429 break; 1430 case Instruction::AShr: 1431 // An ashr recurrence will extend the initial sign bit 1432 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1433 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1434 break; 1435 }; 1436 } 1437 1438 // Check for operations that have the property that if 1439 // both their operands have low zero bits, the result 1440 // will have low zero bits. 1441 if (Opcode == Instruction::Add || 1442 Opcode == Instruction::Sub || 1443 Opcode == Instruction::And || 1444 Opcode == Instruction::Or || 1445 Opcode == Instruction::Mul) { 1446 // Change the context instruction to the "edge" that flows into the 1447 // phi. This is important because that is where the value is actually 1448 // "evaluated" even though it is used later somewhere else. (see also 1449 // D69571). 1450 Query RecQ = Q; 1451 1452 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1453 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1454 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1455 1456 // Ok, we have a PHI of the form L op= R. Check for low 1457 // zero bits. 1458 RecQ.CxtI = RInst; 1459 computeKnownBits(R, Known2, Depth + 1, RecQ); 1460 1461 // We need to take the minimum number of known bits 1462 KnownBits Known3(BitWidth); 1463 RecQ.CxtI = LInst; 1464 computeKnownBits(L, Known3, Depth + 1, RecQ); 1465 1466 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1467 Known3.countMinTrailingZeros())); 1468 1469 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1470 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1471 // If initial value of recurrence is nonnegative, and we are adding 1472 // a nonnegative number with nsw, the result can only be nonnegative 1473 // or poison value regardless of the number of times we execute the 1474 // add in phi recurrence. If initial value is negative and we are 1475 // adding a negative number with nsw, the result can only be 1476 // negative or poison value. Similar arguments apply to sub and mul. 1477 // 1478 // (add non-negative, non-negative) --> non-negative 1479 // (add negative, negative) --> negative 1480 if (Opcode == Instruction::Add) { 1481 if (Known2.isNonNegative() && Known3.isNonNegative()) 1482 Known.makeNonNegative(); 1483 else if (Known2.isNegative() && Known3.isNegative()) 1484 Known.makeNegative(); 1485 } 1486 1487 // (sub nsw non-negative, negative) --> non-negative 1488 // (sub nsw negative, non-negative) --> negative 1489 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1490 if (Known2.isNonNegative() && Known3.isNegative()) 1491 Known.makeNonNegative(); 1492 else if (Known2.isNegative() && Known3.isNonNegative()) 1493 Known.makeNegative(); 1494 } 1495 1496 // (mul nsw non-negative, non-negative) --> non-negative 1497 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1498 Known3.isNonNegative()) 1499 Known.makeNonNegative(); 1500 } 1501 1502 break; 1503 } 1504 } 1505 1506 // Unreachable blocks may have zero-operand PHI nodes. 1507 if (P->getNumIncomingValues() == 0) 1508 break; 1509 1510 // Otherwise take the unions of the known bit sets of the operands, 1511 // taking conservative care to avoid excessive recursion. 1512 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1513 // Skip if every incoming value references to ourself. 1514 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1515 break; 1516 1517 Known.Zero.setAllBits(); 1518 Known.One.setAllBits(); 1519 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1520 Value *IncValue = P->getIncomingValue(u); 1521 // Skip direct self references. 1522 if (IncValue == P) continue; 1523 1524 // Change the context instruction to the "edge" that flows into the 1525 // phi. This is important because that is where the value is actually 1526 // "evaluated" even though it is used later somewhere else. (see also 1527 // D69571). 1528 Query RecQ = Q; 1529 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1530 1531 Known2 = KnownBits(BitWidth); 1532 // Recurse, but cap the recursion to one level, because we don't 1533 // want to waste time spinning around in loops. 1534 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1535 Known = KnownBits::commonBits(Known, Known2); 1536 // If all bits have been ruled out, there's no need to check 1537 // more operands. 1538 if (Known.isUnknown()) 1539 break; 1540 } 1541 } 1542 break; 1543 } 1544 case Instruction::Call: 1545 case Instruction::Invoke: 1546 // If range metadata is attached to this call, set known bits from that, 1547 // and then intersect with known bits based on other properties of the 1548 // function. 1549 if (MDNode *MD = 1550 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1551 computeKnownBitsFromRangeMetadata(*MD, Known); 1552 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1553 computeKnownBits(RV, Known2, Depth + 1, Q); 1554 Known.Zero |= Known2.Zero; 1555 Known.One |= Known2.One; 1556 } 1557 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1558 switch (II->getIntrinsicID()) { 1559 default: break; 1560 case Intrinsic::abs: { 1561 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1562 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1563 Known = Known2.abs(IntMinIsPoison); 1564 break; 1565 } 1566 case Intrinsic::bitreverse: 1567 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1568 Known.Zero |= Known2.Zero.reverseBits(); 1569 Known.One |= Known2.One.reverseBits(); 1570 break; 1571 case Intrinsic::bswap: 1572 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1573 Known.Zero |= Known2.Zero.byteSwap(); 1574 Known.One |= Known2.One.byteSwap(); 1575 break; 1576 case Intrinsic::ctlz: { 1577 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1578 // If we have a known 1, its position is our upper bound. 1579 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1580 // If this call is undefined for 0, the result will be less than 2^n. 1581 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1582 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1583 unsigned LowBits = Log2_32(PossibleLZ)+1; 1584 Known.Zero.setBitsFrom(LowBits); 1585 break; 1586 } 1587 case Intrinsic::cttz: { 1588 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1589 // If we have a known 1, its position is our upper bound. 1590 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1591 // If this call is undefined for 0, the result will be less than 2^n. 1592 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1593 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1594 unsigned LowBits = Log2_32(PossibleTZ)+1; 1595 Known.Zero.setBitsFrom(LowBits); 1596 break; 1597 } 1598 case Intrinsic::ctpop: { 1599 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1600 // We can bound the space the count needs. Also, bits known to be zero 1601 // can't contribute to the population. 1602 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1603 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1604 Known.Zero.setBitsFrom(LowBits); 1605 // TODO: we could bound KnownOne using the lower bound on the number 1606 // of bits which might be set provided by popcnt KnownOne2. 1607 break; 1608 } 1609 case Intrinsic::fshr: 1610 case Intrinsic::fshl: { 1611 const APInt *SA; 1612 if (!match(I->getOperand(2), m_APInt(SA))) 1613 break; 1614 1615 // Normalize to funnel shift left. 1616 uint64_t ShiftAmt = SA->urem(BitWidth); 1617 if (II->getIntrinsicID() == Intrinsic::fshr) 1618 ShiftAmt = BitWidth - ShiftAmt; 1619 1620 KnownBits Known3(BitWidth); 1621 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1623 1624 Known.Zero = 1625 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1626 Known.One = 1627 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1628 break; 1629 } 1630 case Intrinsic::uadd_sat: 1631 case Intrinsic::usub_sat: { 1632 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1633 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1634 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1635 1636 // Add: Leading ones of either operand are preserved. 1637 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1638 // as leading zeros in the result. 1639 unsigned LeadingKnown; 1640 if (IsAdd) 1641 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1642 Known2.countMinLeadingOnes()); 1643 else 1644 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1645 Known2.countMinLeadingOnes()); 1646 1647 Known = KnownBits::computeForAddSub( 1648 IsAdd, /* NSW */ false, Known, Known2); 1649 1650 // We select between the operation result and all-ones/zero 1651 // respectively, so we can preserve known ones/zeros. 1652 if (IsAdd) { 1653 Known.One.setHighBits(LeadingKnown); 1654 Known.Zero.clearAllBits(); 1655 } else { 1656 Known.Zero.setHighBits(LeadingKnown); 1657 Known.One.clearAllBits(); 1658 } 1659 break; 1660 } 1661 case Intrinsic::umin: 1662 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1663 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1664 Known = KnownBits::umin(Known, Known2); 1665 break; 1666 case Intrinsic::umax: 1667 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1668 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1669 Known = KnownBits::umax(Known, Known2); 1670 break; 1671 case Intrinsic::smin: 1672 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1673 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1674 Known = KnownBits::smin(Known, Known2); 1675 break; 1676 case Intrinsic::smax: 1677 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1678 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1679 Known = KnownBits::smax(Known, Known2); 1680 break; 1681 case Intrinsic::x86_sse42_crc32_64_64: 1682 Known.Zero.setBitsFrom(32); 1683 break; 1684 case Intrinsic::riscv_vsetvli: 1685 case Intrinsic::riscv_vsetvlimax: 1686 // Assume that VL output is positive and would fit in an int32_t. 1687 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1688 if (BitWidth >= 32) 1689 Known.Zero.setBitsFrom(31); 1690 break; 1691 } 1692 } 1693 break; 1694 case Instruction::ShuffleVector: { 1695 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1696 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1697 if (!Shuf) { 1698 Known.resetAll(); 1699 return; 1700 } 1701 // For undef elements, we don't know anything about the common state of 1702 // the shuffle result. 1703 APInt DemandedLHS, DemandedRHS; 1704 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1705 Known.resetAll(); 1706 return; 1707 } 1708 Known.One.setAllBits(); 1709 Known.Zero.setAllBits(); 1710 if (!!DemandedLHS) { 1711 const Value *LHS = Shuf->getOperand(0); 1712 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1713 // If we don't know any bits, early out. 1714 if (Known.isUnknown()) 1715 break; 1716 } 1717 if (!!DemandedRHS) { 1718 const Value *RHS = Shuf->getOperand(1); 1719 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1720 Known = KnownBits::commonBits(Known, Known2); 1721 } 1722 break; 1723 } 1724 case Instruction::InsertElement: { 1725 const Value *Vec = I->getOperand(0); 1726 const Value *Elt = I->getOperand(1); 1727 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1728 // Early out if the index is non-constant or out-of-range. 1729 unsigned NumElts = DemandedElts.getBitWidth(); 1730 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1731 Known.resetAll(); 1732 return; 1733 } 1734 Known.One.setAllBits(); 1735 Known.Zero.setAllBits(); 1736 unsigned EltIdx = CIdx->getZExtValue(); 1737 // Do we demand the inserted element? 1738 if (DemandedElts[EltIdx]) { 1739 computeKnownBits(Elt, Known, Depth + 1, Q); 1740 // If we don't know any bits, early out. 1741 if (Known.isUnknown()) 1742 break; 1743 } 1744 // We don't need the base vector element that has been inserted. 1745 APInt DemandedVecElts = DemandedElts; 1746 DemandedVecElts.clearBit(EltIdx); 1747 if (!!DemandedVecElts) { 1748 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1749 Known = KnownBits::commonBits(Known, Known2); 1750 } 1751 break; 1752 } 1753 case Instruction::ExtractElement: { 1754 // Look through extract element. If the index is non-constant or 1755 // out-of-range demand all elements, otherwise just the extracted element. 1756 const Value *Vec = I->getOperand(0); 1757 const Value *Idx = I->getOperand(1); 1758 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1759 if (isa<ScalableVectorType>(Vec->getType())) { 1760 // FIXME: there's probably *something* we can do with scalable vectors 1761 Known.resetAll(); 1762 break; 1763 } 1764 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1765 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1766 if (CIdx && CIdx->getValue().ult(NumElts)) 1767 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1768 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1769 break; 1770 } 1771 case Instruction::ExtractValue: 1772 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1773 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1774 if (EVI->getNumIndices() != 1) break; 1775 if (EVI->getIndices()[0] == 0) { 1776 switch (II->getIntrinsicID()) { 1777 default: break; 1778 case Intrinsic::uadd_with_overflow: 1779 case Intrinsic::sadd_with_overflow: 1780 computeKnownBitsAddSub(true, II->getArgOperand(0), 1781 II->getArgOperand(1), false, DemandedElts, 1782 Known, Known2, Depth, Q); 1783 break; 1784 case Intrinsic::usub_with_overflow: 1785 case Intrinsic::ssub_with_overflow: 1786 computeKnownBitsAddSub(false, II->getArgOperand(0), 1787 II->getArgOperand(1), false, DemandedElts, 1788 Known, Known2, Depth, Q); 1789 break; 1790 case Intrinsic::umul_with_overflow: 1791 case Intrinsic::smul_with_overflow: 1792 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1793 DemandedElts, Known, Known2, Depth, Q); 1794 break; 1795 } 1796 } 1797 } 1798 break; 1799 case Instruction::Freeze: 1800 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1801 Depth + 1)) 1802 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1803 break; 1804 } 1805 } 1806 1807 /// Determine which bits of V are known to be either zero or one and return 1808 /// them. 1809 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1810 unsigned Depth, const Query &Q) { 1811 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1812 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1813 return Known; 1814 } 1815 1816 /// Determine which bits of V are known to be either zero or one and return 1817 /// them. 1818 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1819 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1820 computeKnownBits(V, Known, Depth, Q); 1821 return Known; 1822 } 1823 1824 /// Determine which bits of V are known to be either zero or one and return 1825 /// them in the Known bit set. 1826 /// 1827 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1828 /// we cannot optimize based on the assumption that it is zero without changing 1829 /// it to be an explicit zero. If we don't change it to zero, other code could 1830 /// optimized based on the contradictory assumption that it is non-zero. 1831 /// Because instcombine aggressively folds operations with undef args anyway, 1832 /// this won't lose us code quality. 1833 /// 1834 /// This function is defined on values with integer type, values with pointer 1835 /// type, and vectors of integers. In the case 1836 /// where V is a vector, known zero, and known one values are the 1837 /// same width as the vector element, and the bit is set only if it is true 1838 /// for all of the demanded elements in the vector specified by DemandedElts. 1839 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1840 KnownBits &Known, unsigned Depth, const Query &Q) { 1841 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1842 // No demanded elts or V is a scalable vector, better to assume we don't 1843 // know anything. 1844 Known.resetAll(); 1845 return; 1846 } 1847 1848 assert(V && "No Value?"); 1849 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1850 1851 #ifndef NDEBUG 1852 Type *Ty = V->getType(); 1853 unsigned BitWidth = Known.getBitWidth(); 1854 1855 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1856 "Not integer or pointer type!"); 1857 1858 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1859 assert( 1860 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1861 "DemandedElt width should equal the fixed vector number of elements"); 1862 } else { 1863 assert(DemandedElts == APInt(1, 1) && 1864 "DemandedElt width should be 1 for scalars"); 1865 } 1866 1867 Type *ScalarTy = Ty->getScalarType(); 1868 if (ScalarTy->isPointerTy()) { 1869 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1870 "V and Known should have same BitWidth"); 1871 } else { 1872 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1873 "V and Known should have same BitWidth"); 1874 } 1875 #endif 1876 1877 const APInt *C; 1878 if (match(V, m_APInt(C))) { 1879 // We know all of the bits for a scalar constant or a splat vector constant! 1880 Known = KnownBits::makeConstant(*C); 1881 return; 1882 } 1883 // Null and aggregate-zero are all-zeros. 1884 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1885 Known.setAllZero(); 1886 return; 1887 } 1888 // Handle a constant vector by taking the intersection of the known bits of 1889 // each element. 1890 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1891 // We know that CDV must be a vector of integers. Take the intersection of 1892 // each element. 1893 Known.Zero.setAllBits(); Known.One.setAllBits(); 1894 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1895 if (!DemandedElts[i]) 1896 continue; 1897 APInt Elt = CDV->getElementAsAPInt(i); 1898 Known.Zero &= ~Elt; 1899 Known.One &= Elt; 1900 } 1901 return; 1902 } 1903 1904 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1905 // We know that CV must be a vector of integers. Take the intersection of 1906 // each element. 1907 Known.Zero.setAllBits(); Known.One.setAllBits(); 1908 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1909 if (!DemandedElts[i]) 1910 continue; 1911 Constant *Element = CV->getAggregateElement(i); 1912 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1913 if (!ElementCI) { 1914 Known.resetAll(); 1915 return; 1916 } 1917 const APInt &Elt = ElementCI->getValue(); 1918 Known.Zero &= ~Elt; 1919 Known.One &= Elt; 1920 } 1921 return; 1922 } 1923 1924 // Start out not knowing anything. 1925 Known.resetAll(); 1926 1927 // We can't imply anything about undefs. 1928 if (isa<UndefValue>(V)) 1929 return; 1930 1931 // There's no point in looking through other users of ConstantData for 1932 // assumptions. Confirm that we've handled them all. 1933 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1934 1935 // All recursive calls that increase depth must come after this. 1936 if (Depth == MaxAnalysisRecursionDepth) 1937 return; 1938 1939 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1940 // the bits of its aliasee. 1941 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1942 if (!GA->isInterposable()) 1943 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1944 return; 1945 } 1946 1947 if (const Operator *I = dyn_cast<Operator>(V)) 1948 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1949 1950 // Aligned pointers have trailing zeros - refine Known.Zero set 1951 if (isa<PointerType>(V->getType())) { 1952 Align Alignment = V->getPointerAlignment(Q.DL); 1953 Known.Zero.setLowBits(Log2(Alignment)); 1954 } 1955 1956 // computeKnownBitsFromAssume strictly refines Known. 1957 // Therefore, we run them after computeKnownBitsFromOperator. 1958 1959 // Check whether a nearby assume intrinsic can determine some known bits. 1960 computeKnownBitsFromAssume(V, Known, Depth, Q); 1961 1962 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1963 } 1964 1965 /// Return true if the given value is known to have exactly one 1966 /// bit set when defined. For vectors return true if every element is known to 1967 /// be a power of two when defined. Supports values with integer or pointer 1968 /// types and vectors of integers. 1969 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1970 const Query &Q) { 1971 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1972 1973 // Attempt to match against constants. 1974 if (OrZero && match(V, m_Power2OrZero())) 1975 return true; 1976 if (match(V, m_Power2())) 1977 return true; 1978 1979 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1980 // it is shifted off the end then the result is undefined. 1981 if (match(V, m_Shl(m_One(), m_Value()))) 1982 return true; 1983 1984 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1985 // the bottom. If it is shifted off the bottom then the result is undefined. 1986 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1987 return true; 1988 1989 // The remaining tests are all recursive, so bail out if we hit the limit. 1990 if (Depth++ == MaxAnalysisRecursionDepth) 1991 return false; 1992 1993 Value *X = nullptr, *Y = nullptr; 1994 // A shift left or a logical shift right of a power of two is a power of two 1995 // or zero. 1996 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1997 match(V, m_LShr(m_Value(X), m_Value())))) 1998 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1999 2000 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2001 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2002 2003 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2004 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2005 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2006 2007 // Peek through min/max. 2008 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2009 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2010 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2011 } 2012 2013 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2014 // A power of two and'd with anything is a power of two or zero. 2015 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2016 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2017 return true; 2018 // X & (-X) is always a power of two or zero. 2019 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2020 return true; 2021 return false; 2022 } 2023 2024 // Adding a power-of-two or zero to the same power-of-two or zero yields 2025 // either the original power-of-two, a larger power-of-two or zero. 2026 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2027 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2028 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2029 Q.IIQ.hasNoSignedWrap(VOBO)) { 2030 if (match(X, m_And(m_Specific(Y), m_Value())) || 2031 match(X, m_And(m_Value(), m_Specific(Y)))) 2032 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2033 return true; 2034 if (match(Y, m_And(m_Specific(X), m_Value())) || 2035 match(Y, m_And(m_Value(), m_Specific(X)))) 2036 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2037 return true; 2038 2039 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2040 KnownBits LHSBits(BitWidth); 2041 computeKnownBits(X, LHSBits, Depth, Q); 2042 2043 KnownBits RHSBits(BitWidth); 2044 computeKnownBits(Y, RHSBits, Depth, Q); 2045 // If i8 V is a power of two or zero: 2046 // ZeroBits: 1 1 1 0 1 1 1 1 2047 // ~ZeroBits: 0 0 0 1 0 0 0 0 2048 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2049 // If OrZero isn't set, we cannot give back a zero result. 2050 // Make sure either the LHS or RHS has a bit set. 2051 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2052 return true; 2053 } 2054 } 2055 2056 // An exact divide or right shift can only shift off zero bits, so the result 2057 // is a power of two only if the first operand is a power of two and not 2058 // copying a sign bit (sdiv int_min, 2). 2059 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2060 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2061 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2062 Depth, Q); 2063 } 2064 2065 return false; 2066 } 2067 2068 /// Test whether a GEP's result is known to be non-null. 2069 /// 2070 /// Uses properties inherent in a GEP to try to determine whether it is known 2071 /// to be non-null. 2072 /// 2073 /// Currently this routine does not support vector GEPs. 2074 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2075 const Query &Q) { 2076 const Function *F = nullptr; 2077 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2078 F = I->getFunction(); 2079 2080 if (!GEP->isInBounds() || 2081 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2082 return false; 2083 2084 // FIXME: Support vector-GEPs. 2085 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2086 2087 // If the base pointer is non-null, we cannot walk to a null address with an 2088 // inbounds GEP in address space zero. 2089 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2090 return true; 2091 2092 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2093 // If so, then the GEP cannot produce a null pointer, as doing so would 2094 // inherently violate the inbounds contract within address space zero. 2095 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2096 GTI != GTE; ++GTI) { 2097 // Struct types are easy -- they must always be indexed by a constant. 2098 if (StructType *STy = GTI.getStructTypeOrNull()) { 2099 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2100 unsigned ElementIdx = OpC->getZExtValue(); 2101 const StructLayout *SL = Q.DL.getStructLayout(STy); 2102 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2103 if (ElementOffset > 0) 2104 return true; 2105 continue; 2106 } 2107 2108 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2109 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2110 continue; 2111 2112 // Fast path the constant operand case both for efficiency and so we don't 2113 // increment Depth when just zipping down an all-constant GEP. 2114 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2115 if (!OpC->isZero()) 2116 return true; 2117 continue; 2118 } 2119 2120 // We post-increment Depth here because while isKnownNonZero increments it 2121 // as well, when we pop back up that increment won't persist. We don't want 2122 // to recurse 10k times just because we have 10k GEP operands. We don't 2123 // bail completely out because we want to handle constant GEPs regardless 2124 // of depth. 2125 if (Depth++ >= MaxAnalysisRecursionDepth) 2126 continue; 2127 2128 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2129 return true; 2130 } 2131 2132 return false; 2133 } 2134 2135 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2136 const Instruction *CtxI, 2137 const DominatorTree *DT) { 2138 if (isa<Constant>(V)) 2139 return false; 2140 2141 if (!CtxI || !DT) 2142 return false; 2143 2144 unsigned NumUsesExplored = 0; 2145 for (auto *U : V->users()) { 2146 // Avoid massive lists 2147 if (NumUsesExplored >= DomConditionsMaxUses) 2148 break; 2149 NumUsesExplored++; 2150 2151 // If the value is used as an argument to a call or invoke, then argument 2152 // attributes may provide an answer about null-ness. 2153 if (const auto *CB = dyn_cast<CallBase>(U)) 2154 if (auto *CalledFunc = CB->getCalledFunction()) 2155 for (const Argument &Arg : CalledFunc->args()) 2156 if (CB->getArgOperand(Arg.getArgNo()) == V && 2157 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2158 DT->dominates(CB, CtxI)) 2159 return true; 2160 2161 // If the value is used as a load/store, then the pointer must be non null. 2162 if (V == getLoadStorePointerOperand(U)) { 2163 const Instruction *I = cast<Instruction>(U); 2164 if (!NullPointerIsDefined(I->getFunction(), 2165 V->getType()->getPointerAddressSpace()) && 2166 DT->dominates(I, CtxI)) 2167 return true; 2168 } 2169 2170 // Consider only compare instructions uniquely controlling a branch 2171 Value *RHS; 2172 CmpInst::Predicate Pred; 2173 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2174 continue; 2175 2176 bool NonNullIfTrue; 2177 if (cmpExcludesZero(Pred, RHS)) 2178 NonNullIfTrue = true; 2179 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2180 NonNullIfTrue = false; 2181 else 2182 continue; 2183 2184 SmallVector<const User *, 4> WorkList; 2185 SmallPtrSet<const User *, 4> Visited; 2186 for (auto *CmpU : U->users()) { 2187 assert(WorkList.empty() && "Should be!"); 2188 if (Visited.insert(CmpU).second) 2189 WorkList.push_back(CmpU); 2190 2191 while (!WorkList.empty()) { 2192 auto *Curr = WorkList.pop_back_val(); 2193 2194 // If a user is an AND, add all its users to the work list. We only 2195 // propagate "pred != null" condition through AND because it is only 2196 // correct to assume that all conditions of AND are met in true branch. 2197 // TODO: Support similar logic of OR and EQ predicate? 2198 if (NonNullIfTrue) 2199 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2200 for (auto *CurrU : Curr->users()) 2201 if (Visited.insert(CurrU).second) 2202 WorkList.push_back(CurrU); 2203 continue; 2204 } 2205 2206 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2207 assert(BI->isConditional() && "uses a comparison!"); 2208 2209 BasicBlock *NonNullSuccessor = 2210 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2211 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2212 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2213 return true; 2214 } else if (NonNullIfTrue && isGuard(Curr) && 2215 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2216 return true; 2217 } 2218 } 2219 } 2220 } 2221 2222 return false; 2223 } 2224 2225 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2226 /// ensure that the value it's attached to is never Value? 'RangeType' is 2227 /// is the type of the value described by the range. 2228 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2229 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2230 assert(NumRanges >= 1); 2231 for (unsigned i = 0; i < NumRanges; ++i) { 2232 ConstantInt *Lower = 2233 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2234 ConstantInt *Upper = 2235 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2236 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2237 if (Range.contains(Value)) 2238 return false; 2239 } 2240 return true; 2241 } 2242 2243 /// Try to detect a recurrence that monotonically increases/decreases from a 2244 /// non-zero starting value. These are common as induction variables. 2245 static bool isNonZeroRecurrence(const PHINode *PN) { 2246 BinaryOperator *BO = nullptr; 2247 Value *Start = nullptr, *Step = nullptr; 2248 const APInt *StartC, *StepC; 2249 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2250 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2251 return false; 2252 2253 switch (BO->getOpcode()) { 2254 case Instruction::Add: 2255 // Starting from non-zero and stepping away from zero can never wrap back 2256 // to zero. 2257 return BO->hasNoUnsignedWrap() || 2258 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2259 StartC->isNegative() == StepC->isNegative()); 2260 case Instruction::Mul: 2261 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2262 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2263 case Instruction::Shl: 2264 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2265 case Instruction::AShr: 2266 case Instruction::LShr: 2267 return BO->isExact(); 2268 default: 2269 return false; 2270 } 2271 } 2272 2273 /// Return true if the given value is known to be non-zero when defined. For 2274 /// vectors, return true if every demanded element is known to be non-zero when 2275 /// defined. For pointers, if the context instruction and dominator tree are 2276 /// specified, perform context-sensitive analysis and return true if the 2277 /// pointer couldn't possibly be null at the specified instruction. 2278 /// Supports values with integer or pointer type and vectors of integers. 2279 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2280 const Query &Q) { 2281 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2282 // vector 2283 if (isa<ScalableVectorType>(V->getType())) 2284 return false; 2285 2286 if (auto *C = dyn_cast<Constant>(V)) { 2287 if (C->isNullValue()) 2288 return false; 2289 if (isa<ConstantInt>(C)) 2290 // Must be non-zero due to null test above. 2291 return true; 2292 2293 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2294 // See the comment for IntToPtr/PtrToInt instructions below. 2295 if (CE->getOpcode() == Instruction::IntToPtr || 2296 CE->getOpcode() == Instruction::PtrToInt) 2297 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2298 .getFixedSize() <= 2299 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2300 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2301 } 2302 2303 // For constant vectors, check that all elements are undefined or known 2304 // non-zero to determine that the whole vector is known non-zero. 2305 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2306 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2307 if (!DemandedElts[i]) 2308 continue; 2309 Constant *Elt = C->getAggregateElement(i); 2310 if (!Elt || Elt->isNullValue()) 2311 return false; 2312 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2313 return false; 2314 } 2315 return true; 2316 } 2317 2318 // A global variable in address space 0 is non null unless extern weak 2319 // or an absolute symbol reference. Other address spaces may have null as a 2320 // valid address for a global, so we can't assume anything. 2321 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2322 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2323 GV->getType()->getAddressSpace() == 0) 2324 return true; 2325 } else 2326 return false; 2327 } 2328 2329 if (auto *I = dyn_cast<Instruction>(V)) { 2330 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2331 // If the possible ranges don't contain zero, then the value is 2332 // definitely non-zero. 2333 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2334 const APInt ZeroValue(Ty->getBitWidth(), 0); 2335 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2336 return true; 2337 } 2338 } 2339 } 2340 2341 if (isKnownNonZeroFromAssume(V, Q)) 2342 return true; 2343 2344 // Some of the tests below are recursive, so bail out if we hit the limit. 2345 if (Depth++ >= MaxAnalysisRecursionDepth) 2346 return false; 2347 2348 // Check for pointer simplifications. 2349 2350 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2351 // Alloca never returns null, malloc might. 2352 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2353 return true; 2354 2355 // A byval, inalloca may not be null in a non-default addres space. A 2356 // nonnull argument is assumed never 0. 2357 if (const Argument *A = dyn_cast<Argument>(V)) { 2358 if (((A->hasPassPointeeByValueCopyAttr() && 2359 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2360 A->hasNonNullAttr())) 2361 return true; 2362 } 2363 2364 // A Load tagged with nonnull metadata is never null. 2365 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2366 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2367 return true; 2368 2369 if (const auto *Call = dyn_cast<CallBase>(V)) { 2370 if (Call->isReturnNonNull()) 2371 return true; 2372 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2373 return isKnownNonZero(RP, Depth, Q); 2374 } 2375 } 2376 2377 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2378 return true; 2379 2380 // Check for recursive pointer simplifications. 2381 if (V->getType()->isPointerTy()) { 2382 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2383 // do not alter the value, or at least not the nullness property of the 2384 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2385 // 2386 // Note that we have to take special care to avoid looking through 2387 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2388 // as casts that can alter the value, e.g., AddrSpaceCasts. 2389 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2390 return isGEPKnownNonNull(GEP, Depth, Q); 2391 2392 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2393 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2394 2395 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2396 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2397 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2398 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2399 } 2400 2401 // Similar to int2ptr above, we can look through ptr2int here if the cast 2402 // is a no-op or an extend and not a truncate. 2403 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2404 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2405 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2406 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2407 2408 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2409 2410 // X | Y != 0 if X != 0 or Y != 0. 2411 Value *X = nullptr, *Y = nullptr; 2412 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2413 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2414 isKnownNonZero(Y, DemandedElts, Depth, Q); 2415 2416 // ext X != 0 if X != 0. 2417 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2418 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2419 2420 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2421 // if the lowest bit is shifted off the end. 2422 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2423 // shl nuw can't remove any non-zero bits. 2424 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2425 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2426 return isKnownNonZero(X, Depth, Q); 2427 2428 KnownBits Known(BitWidth); 2429 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2430 if (Known.One[0]) 2431 return true; 2432 } 2433 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2434 // defined if the sign bit is shifted off the end. 2435 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2436 // shr exact can only shift out zero bits. 2437 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2438 if (BO->isExact()) 2439 return isKnownNonZero(X, Depth, Q); 2440 2441 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2442 if (Known.isNegative()) 2443 return true; 2444 2445 // If the shifter operand is a constant, and all of the bits shifted 2446 // out are known to be zero, and X is known non-zero then at least one 2447 // non-zero bit must remain. 2448 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2449 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2450 // Is there a known one in the portion not shifted out? 2451 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2452 return true; 2453 // Are all the bits to be shifted out known zero? 2454 if (Known.countMinTrailingZeros() >= ShiftVal) 2455 return isKnownNonZero(X, DemandedElts, Depth, Q); 2456 } 2457 } 2458 // div exact can only produce a zero if the dividend is zero. 2459 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2460 return isKnownNonZero(X, DemandedElts, Depth, Q); 2461 } 2462 // X + Y. 2463 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2464 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2465 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2466 2467 // If X and Y are both non-negative (as signed values) then their sum is not 2468 // zero unless both X and Y are zero. 2469 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2470 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2471 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2472 return true; 2473 2474 // If X and Y are both negative (as signed values) then their sum is not 2475 // zero unless both X and Y equal INT_MIN. 2476 if (XKnown.isNegative() && YKnown.isNegative()) { 2477 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2478 // The sign bit of X is set. If some other bit is set then X is not equal 2479 // to INT_MIN. 2480 if (XKnown.One.intersects(Mask)) 2481 return true; 2482 // The sign bit of Y is set. If some other bit is set then Y is not equal 2483 // to INT_MIN. 2484 if (YKnown.One.intersects(Mask)) 2485 return true; 2486 } 2487 2488 // The sum of a non-negative number and a power of two is not zero. 2489 if (XKnown.isNonNegative() && 2490 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2491 return true; 2492 if (YKnown.isNonNegative() && 2493 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2494 return true; 2495 } 2496 // X * Y. 2497 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2498 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2499 // If X and Y are non-zero then so is X * Y as long as the multiplication 2500 // does not overflow. 2501 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2502 isKnownNonZero(X, DemandedElts, Depth, Q) && 2503 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2504 return true; 2505 } 2506 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2507 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2508 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2509 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2510 return true; 2511 } 2512 // PHI 2513 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2514 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2515 return true; 2516 2517 // Check if all incoming values are non-zero using recursion. 2518 Query RecQ = Q; 2519 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2520 return llvm::all_of(PN->operands(), [&](const Use &U) { 2521 if (U.get() == PN) 2522 return true; 2523 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2524 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2525 }); 2526 } 2527 // ExtractElement 2528 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2529 const Value *Vec = EEI->getVectorOperand(); 2530 const Value *Idx = EEI->getIndexOperand(); 2531 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2532 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2533 unsigned NumElts = VecTy->getNumElements(); 2534 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2535 if (CIdx && CIdx->getValue().ult(NumElts)) 2536 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2537 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2538 } 2539 } 2540 // Freeze 2541 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2542 auto *Op = FI->getOperand(0); 2543 if (isKnownNonZero(Op, Depth, Q) && 2544 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2545 return true; 2546 } 2547 2548 KnownBits Known(BitWidth); 2549 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2550 return Known.One != 0; 2551 } 2552 2553 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2554 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2555 // vector 2556 if (isa<ScalableVectorType>(V->getType())) 2557 return false; 2558 2559 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2560 APInt DemandedElts = 2561 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2562 return isKnownNonZero(V, DemandedElts, Depth, Q); 2563 } 2564 2565 /// If the pair of operators are the same invertible function, return the 2566 /// the operands of the function corresponding to each input. Otherwise, 2567 /// return None. An invertible function is one that is 1-to-1 and maps 2568 /// every input value to exactly one output value. This is equivalent to 2569 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2570 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2571 static Optional<std::pair<Value*, Value*>> 2572 getInvertibleOperands(const Operator *Op1, 2573 const Operator *Op2) { 2574 if (Op1->getOpcode() != Op2->getOpcode()) 2575 return None; 2576 2577 auto getOperands = [&](unsigned OpNum) -> auto { 2578 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2579 }; 2580 2581 switch (Op1->getOpcode()) { 2582 default: 2583 break; 2584 case Instruction::Add: 2585 case Instruction::Sub: 2586 if (Op1->getOperand(0) == Op2->getOperand(0)) 2587 return getOperands(1); 2588 if (Op1->getOperand(1) == Op2->getOperand(1)) 2589 return getOperands(0); 2590 break; 2591 case Instruction::Mul: { 2592 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2593 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2594 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2595 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2596 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2597 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2598 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2599 break; 2600 2601 // Assume operand order has been canonicalized 2602 if (Op1->getOperand(1) == Op2->getOperand(1) && 2603 isa<ConstantInt>(Op1->getOperand(1)) && 2604 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2605 return getOperands(0); 2606 break; 2607 } 2608 case Instruction::Shl: { 2609 // Same as multiplies, with the difference that we don't need to check 2610 // for a non-zero multiply. Shifts always multiply by non-zero. 2611 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2612 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2613 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2614 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2615 break; 2616 2617 if (Op1->getOperand(1) == Op2->getOperand(1)) 2618 return getOperands(0); 2619 break; 2620 } 2621 case Instruction::AShr: 2622 case Instruction::LShr: { 2623 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2624 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2625 if (!PEO1->isExact() || !PEO2->isExact()) 2626 break; 2627 2628 if (Op1->getOperand(1) == Op2->getOperand(1)) 2629 return getOperands(0); 2630 break; 2631 } 2632 case Instruction::SExt: 2633 case Instruction::ZExt: 2634 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2635 return getOperands(0); 2636 break; 2637 case Instruction::PHI: { 2638 const PHINode *PN1 = cast<PHINode>(Op1); 2639 const PHINode *PN2 = cast<PHINode>(Op2); 2640 2641 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2642 // are a single invertible function of the start values? Note that repeated 2643 // application of an invertible function is also invertible 2644 BinaryOperator *BO1 = nullptr; 2645 Value *Start1 = nullptr, *Step1 = nullptr; 2646 BinaryOperator *BO2 = nullptr; 2647 Value *Start2 = nullptr, *Step2 = nullptr; 2648 if (PN1->getParent() != PN2->getParent() || 2649 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2650 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2651 break; 2652 2653 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2654 cast<Operator>(BO2)); 2655 if (!Values) 2656 break; 2657 2658 // We have to be careful of mutually defined recurrences here. Ex: 2659 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2660 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2661 // The invertibility of these is complicated, and not worth reasoning 2662 // about (yet?). 2663 if (Values->first != PN1 || Values->second != PN2) 2664 break; 2665 2666 return std::make_pair(Start1, Start2); 2667 } 2668 } 2669 return None; 2670 } 2671 2672 /// Return true if V2 == V1 + X, where X is known non-zero. 2673 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2674 const Query &Q) { 2675 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2676 if (!BO || BO->getOpcode() != Instruction::Add) 2677 return false; 2678 Value *Op = nullptr; 2679 if (V2 == BO->getOperand(0)) 2680 Op = BO->getOperand(1); 2681 else if (V2 == BO->getOperand(1)) 2682 Op = BO->getOperand(0); 2683 else 2684 return false; 2685 return isKnownNonZero(Op, Depth + 1, Q); 2686 } 2687 2688 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2689 /// the multiplication is nuw or nsw. 2690 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2691 const Query &Q) { 2692 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2693 const APInt *C; 2694 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2695 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2696 !C->isNullValue() && !C->isOneValue() && 2697 isKnownNonZero(V1, Depth + 1, Q); 2698 } 2699 return false; 2700 } 2701 2702 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2703 /// the shift is nuw or nsw. 2704 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2705 const Query &Q) { 2706 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2707 const APInt *C; 2708 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2709 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2710 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2711 } 2712 return false; 2713 } 2714 2715 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2716 unsigned Depth, const Query &Q) { 2717 // Check two PHIs are in same block. 2718 if (PN1->getParent() != PN2->getParent()) 2719 return false; 2720 2721 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2722 bool UsedFullRecursion = false; 2723 for (const BasicBlock *IncomBB : PN1->blocks()) { 2724 if (!VisitedBBs.insert(IncomBB).second) 2725 continue; // Don't reprocess blocks that we have dealt with already. 2726 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2727 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2728 const APInt *C1, *C2; 2729 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2730 continue; 2731 2732 // Only one pair of phi operands is allowed for full recursion. 2733 if (UsedFullRecursion) 2734 return false; 2735 2736 Query RecQ = Q; 2737 RecQ.CxtI = IncomBB->getTerminator(); 2738 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2739 return false; 2740 UsedFullRecursion = true; 2741 } 2742 return true; 2743 } 2744 2745 /// Return true if it is known that V1 != V2. 2746 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2747 const Query &Q) { 2748 if (V1 == V2) 2749 return false; 2750 if (V1->getType() != V2->getType()) 2751 // We can't look through casts yet. 2752 return false; 2753 2754 if (Depth >= MaxAnalysisRecursionDepth) 2755 return false; 2756 2757 // See if we can recurse through (exactly one of) our operands. This 2758 // requires our operation be 1-to-1 and map every input value to exactly 2759 // one output value. Such an operation is invertible. 2760 auto *O1 = dyn_cast<Operator>(V1); 2761 auto *O2 = dyn_cast<Operator>(V2); 2762 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2763 if (auto Values = getInvertibleOperands(O1, O2)) 2764 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2765 2766 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2767 const PHINode *PN2 = cast<PHINode>(V2); 2768 // FIXME: This is missing a generalization to handle the case where one is 2769 // a PHI and another one isn't. 2770 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2771 return true; 2772 }; 2773 } 2774 2775 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2776 return true; 2777 2778 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2779 return true; 2780 2781 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2782 return true; 2783 2784 if (V1->getType()->isIntOrIntVectorTy()) { 2785 // Are any known bits in V1 contradictory to known bits in V2? If V1 2786 // has a known zero where V2 has a known one, they must not be equal. 2787 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2788 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2789 2790 if (Known1.Zero.intersects(Known2.One) || 2791 Known2.Zero.intersects(Known1.One)) 2792 return true; 2793 } 2794 return false; 2795 } 2796 2797 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2798 /// simplify operations downstream. Mask is known to be zero for bits that V 2799 /// cannot have. 2800 /// 2801 /// This function is defined on values with integer type, values with pointer 2802 /// type, and vectors of integers. In the case 2803 /// where V is a vector, the mask, known zero, and known one values are the 2804 /// same width as the vector element, and the bit is set only if it is true 2805 /// for all of the elements in the vector. 2806 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2807 const Query &Q) { 2808 KnownBits Known(Mask.getBitWidth()); 2809 computeKnownBits(V, Known, Depth, Q); 2810 return Mask.isSubsetOf(Known.Zero); 2811 } 2812 2813 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2814 // Returns the input and lower/upper bounds. 2815 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2816 const APInt *&CLow, const APInt *&CHigh) { 2817 assert(isa<Operator>(Select) && 2818 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2819 "Input should be a Select!"); 2820 2821 const Value *LHS = nullptr, *RHS = nullptr; 2822 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2823 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2824 return false; 2825 2826 if (!match(RHS, m_APInt(CLow))) 2827 return false; 2828 2829 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2830 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2831 if (getInverseMinMaxFlavor(SPF) != SPF2) 2832 return false; 2833 2834 if (!match(RHS2, m_APInt(CHigh))) 2835 return false; 2836 2837 if (SPF == SPF_SMIN) 2838 std::swap(CLow, CHigh); 2839 2840 In = LHS2; 2841 return CLow->sle(*CHigh); 2842 } 2843 2844 /// For vector constants, loop over the elements and find the constant with the 2845 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2846 /// or if any element was not analyzed; otherwise, return the count for the 2847 /// element with the minimum number of sign bits. 2848 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2849 const APInt &DemandedElts, 2850 unsigned TyBits) { 2851 const auto *CV = dyn_cast<Constant>(V); 2852 if (!CV || !isa<FixedVectorType>(CV->getType())) 2853 return 0; 2854 2855 unsigned MinSignBits = TyBits; 2856 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2857 for (unsigned i = 0; i != NumElts; ++i) { 2858 if (!DemandedElts[i]) 2859 continue; 2860 // If we find a non-ConstantInt, bail out. 2861 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2862 if (!Elt) 2863 return 0; 2864 2865 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2866 } 2867 2868 return MinSignBits; 2869 } 2870 2871 static unsigned ComputeNumSignBitsImpl(const Value *V, 2872 const APInt &DemandedElts, 2873 unsigned Depth, const Query &Q); 2874 2875 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2876 unsigned Depth, const Query &Q) { 2877 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2878 assert(Result > 0 && "At least one sign bit needs to be present!"); 2879 return Result; 2880 } 2881 2882 /// Return the number of times the sign bit of the register is replicated into 2883 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2884 /// (itself), but other cases can give us information. For example, immediately 2885 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2886 /// other, so we return 3. For vectors, return the number of sign bits for the 2887 /// vector element with the minimum number of known sign bits of the demanded 2888 /// elements in the vector specified by DemandedElts. 2889 static unsigned ComputeNumSignBitsImpl(const Value *V, 2890 const APInt &DemandedElts, 2891 unsigned Depth, const Query &Q) { 2892 Type *Ty = V->getType(); 2893 2894 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2895 // vector 2896 if (isa<ScalableVectorType>(Ty)) 2897 return 1; 2898 2899 #ifndef NDEBUG 2900 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2901 2902 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2903 assert( 2904 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2905 "DemandedElt width should equal the fixed vector number of elements"); 2906 } else { 2907 assert(DemandedElts == APInt(1, 1) && 2908 "DemandedElt width should be 1 for scalars"); 2909 } 2910 #endif 2911 2912 // We return the minimum number of sign bits that are guaranteed to be present 2913 // in V, so for undef we have to conservatively return 1. We don't have the 2914 // same behavior for poison though -- that's a FIXME today. 2915 2916 Type *ScalarTy = Ty->getScalarType(); 2917 unsigned TyBits = ScalarTy->isPointerTy() ? 2918 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2919 Q.DL.getTypeSizeInBits(ScalarTy); 2920 2921 unsigned Tmp, Tmp2; 2922 unsigned FirstAnswer = 1; 2923 2924 // Note that ConstantInt is handled by the general computeKnownBits case 2925 // below. 2926 2927 if (Depth == MaxAnalysisRecursionDepth) 2928 return 1; 2929 2930 if (auto *U = dyn_cast<Operator>(V)) { 2931 switch (Operator::getOpcode(V)) { 2932 default: break; 2933 case Instruction::SExt: 2934 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2935 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2936 2937 case Instruction::SDiv: { 2938 const APInt *Denominator; 2939 // sdiv X, C -> adds log(C) sign bits. 2940 if (match(U->getOperand(1), m_APInt(Denominator))) { 2941 2942 // Ignore non-positive denominator. 2943 if (!Denominator->isStrictlyPositive()) 2944 break; 2945 2946 // Calculate the incoming numerator bits. 2947 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2948 2949 // Add floor(log(C)) bits to the numerator bits. 2950 return std::min(TyBits, NumBits + Denominator->logBase2()); 2951 } 2952 break; 2953 } 2954 2955 case Instruction::SRem: { 2956 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2957 2958 const APInt *Denominator; 2959 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2960 // positive constant. This let us put a lower bound on the number of sign 2961 // bits. 2962 if (match(U->getOperand(1), m_APInt(Denominator))) { 2963 2964 // Ignore non-positive denominator. 2965 if (Denominator->isStrictlyPositive()) { 2966 // Calculate the leading sign bit constraints by examining the 2967 // denominator. Given that the denominator is positive, there are two 2968 // cases: 2969 // 2970 // 1. The numerator is positive. The result range is [0,C) and 2971 // [0,C) u< (1 << ceilLogBase2(C)). 2972 // 2973 // 2. The numerator is negative. Then the result range is (-C,0] and 2974 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2975 // 2976 // Thus a lower bound on the number of sign bits is `TyBits - 2977 // ceilLogBase2(C)`. 2978 2979 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2980 Tmp = std::max(Tmp, ResBits); 2981 } 2982 } 2983 return Tmp; 2984 } 2985 2986 case Instruction::AShr: { 2987 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2988 // ashr X, C -> adds C sign bits. Vectors too. 2989 const APInt *ShAmt; 2990 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2991 if (ShAmt->uge(TyBits)) 2992 break; // Bad shift. 2993 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2994 Tmp += ShAmtLimited; 2995 if (Tmp > TyBits) Tmp = TyBits; 2996 } 2997 return Tmp; 2998 } 2999 case Instruction::Shl: { 3000 const APInt *ShAmt; 3001 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3002 // shl destroys sign bits. 3003 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3004 if (ShAmt->uge(TyBits) || // Bad shift. 3005 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3006 Tmp2 = ShAmt->getZExtValue(); 3007 return Tmp - Tmp2; 3008 } 3009 break; 3010 } 3011 case Instruction::And: 3012 case Instruction::Or: 3013 case Instruction::Xor: // NOT is handled here. 3014 // Logical binary ops preserve the number of sign bits at the worst. 3015 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3016 if (Tmp != 1) { 3017 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3018 FirstAnswer = std::min(Tmp, Tmp2); 3019 // We computed what we know about the sign bits as our first 3020 // answer. Now proceed to the generic code that uses 3021 // computeKnownBits, and pick whichever answer is better. 3022 } 3023 break; 3024 3025 case Instruction::Select: { 3026 // If we have a clamp pattern, we know that the number of sign bits will 3027 // be the minimum of the clamp min/max range. 3028 const Value *X; 3029 const APInt *CLow, *CHigh; 3030 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3031 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3032 3033 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3034 if (Tmp == 1) break; 3035 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3036 return std::min(Tmp, Tmp2); 3037 } 3038 3039 case Instruction::Add: 3040 // Add can have at most one carry bit. Thus we know that the output 3041 // is, at worst, one more bit than the inputs. 3042 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3043 if (Tmp == 1) break; 3044 3045 // Special case decrementing a value (ADD X, -1): 3046 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3047 if (CRHS->isAllOnesValue()) { 3048 KnownBits Known(TyBits); 3049 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3050 3051 // If the input is known to be 0 or 1, the output is 0/-1, which is 3052 // all sign bits set. 3053 if ((Known.Zero | 1).isAllOnesValue()) 3054 return TyBits; 3055 3056 // If we are subtracting one from a positive number, there is no carry 3057 // out of the result. 3058 if (Known.isNonNegative()) 3059 return Tmp; 3060 } 3061 3062 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3063 if (Tmp2 == 1) break; 3064 return std::min(Tmp, Tmp2) - 1; 3065 3066 case Instruction::Sub: 3067 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3068 if (Tmp2 == 1) break; 3069 3070 // Handle NEG. 3071 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3072 if (CLHS->isNullValue()) { 3073 KnownBits Known(TyBits); 3074 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3075 // If the input is known to be 0 or 1, the output is 0/-1, which is 3076 // all sign bits set. 3077 if ((Known.Zero | 1).isAllOnesValue()) 3078 return TyBits; 3079 3080 // If the input is known to be positive (the sign bit is known clear), 3081 // the output of the NEG has the same number of sign bits as the 3082 // input. 3083 if (Known.isNonNegative()) 3084 return Tmp2; 3085 3086 // Otherwise, we treat this like a SUB. 3087 } 3088 3089 // Sub can have at most one carry bit. Thus we know that the output 3090 // is, at worst, one more bit than the inputs. 3091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3092 if (Tmp == 1) break; 3093 return std::min(Tmp, Tmp2) - 1; 3094 3095 case Instruction::Mul: { 3096 // The output of the Mul can be at most twice the valid bits in the 3097 // inputs. 3098 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3099 if (SignBitsOp0 == 1) break; 3100 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3101 if (SignBitsOp1 == 1) break; 3102 unsigned OutValidBits = 3103 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3104 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3105 } 3106 3107 case Instruction::PHI: { 3108 const PHINode *PN = cast<PHINode>(U); 3109 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3110 // Don't analyze large in-degree PHIs. 3111 if (NumIncomingValues > 4) break; 3112 // Unreachable blocks may have zero-operand PHI nodes. 3113 if (NumIncomingValues == 0) break; 3114 3115 // Take the minimum of all incoming values. This can't infinitely loop 3116 // because of our depth threshold. 3117 Query RecQ = Q; 3118 Tmp = TyBits; 3119 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3120 if (Tmp == 1) return Tmp; 3121 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3122 Tmp = std::min( 3123 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3124 } 3125 return Tmp; 3126 } 3127 3128 case Instruction::Trunc: 3129 // FIXME: it's tricky to do anything useful for this, but it is an 3130 // important case for targets like X86. 3131 break; 3132 3133 case Instruction::ExtractElement: 3134 // Look through extract element. At the moment we keep this simple and 3135 // skip tracking the specific element. But at least we might find 3136 // information valid for all elements of the vector (for example if vector 3137 // is sign extended, shifted, etc). 3138 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3139 3140 case Instruction::ShuffleVector: { 3141 // Collect the minimum number of sign bits that are shared by every vector 3142 // element referenced by the shuffle. 3143 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3144 if (!Shuf) { 3145 // FIXME: Add support for shufflevector constant expressions. 3146 return 1; 3147 } 3148 APInt DemandedLHS, DemandedRHS; 3149 // For undef elements, we don't know anything about the common state of 3150 // the shuffle result. 3151 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3152 return 1; 3153 Tmp = std::numeric_limits<unsigned>::max(); 3154 if (!!DemandedLHS) { 3155 const Value *LHS = Shuf->getOperand(0); 3156 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3157 } 3158 // If we don't know anything, early out and try computeKnownBits 3159 // fall-back. 3160 if (Tmp == 1) 3161 break; 3162 if (!!DemandedRHS) { 3163 const Value *RHS = Shuf->getOperand(1); 3164 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3165 Tmp = std::min(Tmp, Tmp2); 3166 } 3167 // If we don't know anything, early out and try computeKnownBits 3168 // fall-back. 3169 if (Tmp == 1) 3170 break; 3171 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3172 return Tmp; 3173 } 3174 case Instruction::Call: { 3175 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3176 switch (II->getIntrinsicID()) { 3177 default: break; 3178 case Intrinsic::abs: 3179 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3180 if (Tmp == 1) break; 3181 3182 // Absolute value reduces number of sign bits by at most 1. 3183 return Tmp - 1; 3184 } 3185 } 3186 } 3187 } 3188 } 3189 3190 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3191 // use this information. 3192 3193 // If we can examine all elements of a vector constant successfully, we're 3194 // done (we can't do any better than that). If not, keep trying. 3195 if (unsigned VecSignBits = 3196 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3197 return VecSignBits; 3198 3199 KnownBits Known(TyBits); 3200 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3201 3202 // If we know that the sign bit is either zero or one, determine the number of 3203 // identical bits in the top of the input value. 3204 return std::max(FirstAnswer, Known.countMinSignBits()); 3205 } 3206 3207 /// This function computes the integer multiple of Base that equals V. 3208 /// If successful, it returns true and returns the multiple in 3209 /// Multiple. If unsuccessful, it returns false. It looks 3210 /// through SExt instructions only if LookThroughSExt is true. 3211 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3212 bool LookThroughSExt, unsigned Depth) { 3213 assert(V && "No Value?"); 3214 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3215 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3216 3217 Type *T = V->getType(); 3218 3219 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3220 3221 if (Base == 0) 3222 return false; 3223 3224 if (Base == 1) { 3225 Multiple = V; 3226 return true; 3227 } 3228 3229 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3230 Constant *BaseVal = ConstantInt::get(T, Base); 3231 if (CO && CO == BaseVal) { 3232 // Multiple is 1. 3233 Multiple = ConstantInt::get(T, 1); 3234 return true; 3235 } 3236 3237 if (CI && CI->getZExtValue() % Base == 0) { 3238 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3239 return true; 3240 } 3241 3242 if (Depth == MaxAnalysisRecursionDepth) return false; 3243 3244 Operator *I = dyn_cast<Operator>(V); 3245 if (!I) return false; 3246 3247 switch (I->getOpcode()) { 3248 default: break; 3249 case Instruction::SExt: 3250 if (!LookThroughSExt) return false; 3251 // otherwise fall through to ZExt 3252 LLVM_FALLTHROUGH; 3253 case Instruction::ZExt: 3254 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3255 LookThroughSExt, Depth+1); 3256 case Instruction::Shl: 3257 case Instruction::Mul: { 3258 Value *Op0 = I->getOperand(0); 3259 Value *Op1 = I->getOperand(1); 3260 3261 if (I->getOpcode() == Instruction::Shl) { 3262 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3263 if (!Op1CI) return false; 3264 // Turn Op0 << Op1 into Op0 * 2^Op1 3265 APInt Op1Int = Op1CI->getValue(); 3266 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3267 APInt API(Op1Int.getBitWidth(), 0); 3268 API.setBit(BitToSet); 3269 Op1 = ConstantInt::get(V->getContext(), API); 3270 } 3271 3272 Value *Mul0 = nullptr; 3273 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3274 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3275 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3276 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3277 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3278 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3279 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3280 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3281 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3282 3283 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3284 Multiple = ConstantExpr::getMul(MulC, Op1C); 3285 return true; 3286 } 3287 3288 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3289 if (Mul0CI->getValue() == 1) { 3290 // V == Base * Op1, so return Op1 3291 Multiple = Op1; 3292 return true; 3293 } 3294 } 3295 3296 Value *Mul1 = nullptr; 3297 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3298 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3299 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3300 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3301 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3302 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3303 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3304 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3305 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3306 3307 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3308 Multiple = ConstantExpr::getMul(MulC, Op0C); 3309 return true; 3310 } 3311 3312 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3313 if (Mul1CI->getValue() == 1) { 3314 // V == Base * Op0, so return Op0 3315 Multiple = Op0; 3316 return true; 3317 } 3318 } 3319 } 3320 } 3321 3322 // We could not determine if V is a multiple of Base. 3323 return false; 3324 } 3325 3326 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3327 const TargetLibraryInfo *TLI) { 3328 const Function *F = CB.getCalledFunction(); 3329 if (!F) 3330 return Intrinsic::not_intrinsic; 3331 3332 if (F->isIntrinsic()) 3333 return F->getIntrinsicID(); 3334 3335 // We are going to infer semantics of a library function based on mapping it 3336 // to an LLVM intrinsic. Check that the library function is available from 3337 // this callbase and in this environment. 3338 LibFunc Func; 3339 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3340 !CB.onlyReadsMemory()) 3341 return Intrinsic::not_intrinsic; 3342 3343 switch (Func) { 3344 default: 3345 break; 3346 case LibFunc_sin: 3347 case LibFunc_sinf: 3348 case LibFunc_sinl: 3349 return Intrinsic::sin; 3350 case LibFunc_cos: 3351 case LibFunc_cosf: 3352 case LibFunc_cosl: 3353 return Intrinsic::cos; 3354 case LibFunc_exp: 3355 case LibFunc_expf: 3356 case LibFunc_expl: 3357 return Intrinsic::exp; 3358 case LibFunc_exp2: 3359 case LibFunc_exp2f: 3360 case LibFunc_exp2l: 3361 return Intrinsic::exp2; 3362 case LibFunc_log: 3363 case LibFunc_logf: 3364 case LibFunc_logl: 3365 return Intrinsic::log; 3366 case LibFunc_log10: 3367 case LibFunc_log10f: 3368 case LibFunc_log10l: 3369 return Intrinsic::log10; 3370 case LibFunc_log2: 3371 case LibFunc_log2f: 3372 case LibFunc_log2l: 3373 return Intrinsic::log2; 3374 case LibFunc_fabs: 3375 case LibFunc_fabsf: 3376 case LibFunc_fabsl: 3377 return Intrinsic::fabs; 3378 case LibFunc_fmin: 3379 case LibFunc_fminf: 3380 case LibFunc_fminl: 3381 return Intrinsic::minnum; 3382 case LibFunc_fmax: 3383 case LibFunc_fmaxf: 3384 case LibFunc_fmaxl: 3385 return Intrinsic::maxnum; 3386 case LibFunc_copysign: 3387 case LibFunc_copysignf: 3388 case LibFunc_copysignl: 3389 return Intrinsic::copysign; 3390 case LibFunc_floor: 3391 case LibFunc_floorf: 3392 case LibFunc_floorl: 3393 return Intrinsic::floor; 3394 case LibFunc_ceil: 3395 case LibFunc_ceilf: 3396 case LibFunc_ceill: 3397 return Intrinsic::ceil; 3398 case LibFunc_trunc: 3399 case LibFunc_truncf: 3400 case LibFunc_truncl: 3401 return Intrinsic::trunc; 3402 case LibFunc_rint: 3403 case LibFunc_rintf: 3404 case LibFunc_rintl: 3405 return Intrinsic::rint; 3406 case LibFunc_nearbyint: 3407 case LibFunc_nearbyintf: 3408 case LibFunc_nearbyintl: 3409 return Intrinsic::nearbyint; 3410 case LibFunc_round: 3411 case LibFunc_roundf: 3412 case LibFunc_roundl: 3413 return Intrinsic::round; 3414 case LibFunc_roundeven: 3415 case LibFunc_roundevenf: 3416 case LibFunc_roundevenl: 3417 return Intrinsic::roundeven; 3418 case LibFunc_pow: 3419 case LibFunc_powf: 3420 case LibFunc_powl: 3421 return Intrinsic::pow; 3422 case LibFunc_sqrt: 3423 case LibFunc_sqrtf: 3424 case LibFunc_sqrtl: 3425 return Intrinsic::sqrt; 3426 } 3427 3428 return Intrinsic::not_intrinsic; 3429 } 3430 3431 /// Return true if we can prove that the specified FP value is never equal to 3432 /// -0.0. 3433 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3434 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3435 /// the same as +0.0 in floating-point ops. 3436 /// 3437 /// NOTE: this function will need to be revisited when we support non-default 3438 /// rounding modes! 3439 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3440 unsigned Depth) { 3441 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3442 return !CFP->getValueAPF().isNegZero(); 3443 3444 if (Depth == MaxAnalysisRecursionDepth) 3445 return false; 3446 3447 auto *Op = dyn_cast<Operator>(V); 3448 if (!Op) 3449 return false; 3450 3451 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3452 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3453 return true; 3454 3455 // sitofp and uitofp turn into +0.0 for zero. 3456 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3457 return true; 3458 3459 if (auto *Call = dyn_cast<CallInst>(Op)) { 3460 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3461 switch (IID) { 3462 default: 3463 break; 3464 // sqrt(-0.0) = -0.0, no other negative results are possible. 3465 case Intrinsic::sqrt: 3466 case Intrinsic::canonicalize: 3467 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3468 // fabs(x) != -0.0 3469 case Intrinsic::fabs: 3470 return true; 3471 } 3472 } 3473 3474 return false; 3475 } 3476 3477 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3478 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3479 /// bit despite comparing equal. 3480 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3481 const TargetLibraryInfo *TLI, 3482 bool SignBitOnly, 3483 unsigned Depth) { 3484 // TODO: This function does not do the right thing when SignBitOnly is true 3485 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3486 // which flips the sign bits of NaNs. See 3487 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3488 3489 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3490 return !CFP->getValueAPF().isNegative() || 3491 (!SignBitOnly && CFP->getValueAPF().isZero()); 3492 } 3493 3494 // Handle vector of constants. 3495 if (auto *CV = dyn_cast<Constant>(V)) { 3496 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3497 unsigned NumElts = CVFVTy->getNumElements(); 3498 for (unsigned i = 0; i != NumElts; ++i) { 3499 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3500 if (!CFP) 3501 return false; 3502 if (CFP->getValueAPF().isNegative() && 3503 (SignBitOnly || !CFP->getValueAPF().isZero())) 3504 return false; 3505 } 3506 3507 // All non-negative ConstantFPs. 3508 return true; 3509 } 3510 } 3511 3512 if (Depth == MaxAnalysisRecursionDepth) 3513 return false; 3514 3515 const Operator *I = dyn_cast<Operator>(V); 3516 if (!I) 3517 return false; 3518 3519 switch (I->getOpcode()) { 3520 default: 3521 break; 3522 // Unsigned integers are always nonnegative. 3523 case Instruction::UIToFP: 3524 return true; 3525 case Instruction::FMul: 3526 case Instruction::FDiv: 3527 // X * X is always non-negative or a NaN. 3528 // X / X is always exactly 1.0 or a NaN. 3529 if (I->getOperand(0) == I->getOperand(1) && 3530 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3531 return true; 3532 3533 LLVM_FALLTHROUGH; 3534 case Instruction::FAdd: 3535 case Instruction::FRem: 3536 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3537 Depth + 1) && 3538 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3539 Depth + 1); 3540 case Instruction::Select: 3541 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3542 Depth + 1) && 3543 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3544 Depth + 1); 3545 case Instruction::FPExt: 3546 case Instruction::FPTrunc: 3547 // Widening/narrowing never change sign. 3548 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3549 Depth + 1); 3550 case Instruction::ExtractElement: 3551 // Look through extract element. At the moment we keep this simple and skip 3552 // tracking the specific element. But at least we might find information 3553 // valid for all elements of the vector. 3554 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3555 Depth + 1); 3556 case Instruction::Call: 3557 const auto *CI = cast<CallInst>(I); 3558 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3559 switch (IID) { 3560 default: 3561 break; 3562 case Intrinsic::maxnum: { 3563 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3564 auto isPositiveNum = [&](Value *V) { 3565 if (SignBitOnly) { 3566 // With SignBitOnly, this is tricky because the result of 3567 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3568 // a constant strictly greater than 0.0. 3569 const APFloat *C; 3570 return match(V, m_APFloat(C)) && 3571 *C > APFloat::getZero(C->getSemantics()); 3572 } 3573 3574 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3575 // maxnum can't be ordered-less-than-zero. 3576 return isKnownNeverNaN(V, TLI) && 3577 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3578 }; 3579 3580 // TODO: This could be improved. We could also check that neither operand 3581 // has its sign bit set (and at least 1 is not-NAN?). 3582 return isPositiveNum(V0) || isPositiveNum(V1); 3583 } 3584 3585 case Intrinsic::maximum: 3586 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3587 Depth + 1) || 3588 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3589 Depth + 1); 3590 case Intrinsic::minnum: 3591 case Intrinsic::minimum: 3592 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3593 Depth + 1) && 3594 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3595 Depth + 1); 3596 case Intrinsic::exp: 3597 case Intrinsic::exp2: 3598 case Intrinsic::fabs: 3599 return true; 3600 3601 case Intrinsic::sqrt: 3602 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3603 if (!SignBitOnly) 3604 return true; 3605 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3606 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3607 3608 case Intrinsic::powi: 3609 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3610 // powi(x,n) is non-negative if n is even. 3611 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3612 return true; 3613 } 3614 // TODO: This is not correct. Given that exp is an integer, here are the 3615 // ways that pow can return a negative value: 3616 // 3617 // pow(x, exp) --> negative if exp is odd and x is negative. 3618 // pow(-0, exp) --> -inf if exp is negative odd. 3619 // pow(-0, exp) --> -0 if exp is positive odd. 3620 // pow(-inf, exp) --> -0 if exp is negative odd. 3621 // pow(-inf, exp) --> -inf if exp is positive odd. 3622 // 3623 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3624 // but we must return false if x == -0. Unfortunately we do not currently 3625 // have a way of expressing this constraint. See details in 3626 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3627 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3628 Depth + 1); 3629 3630 case Intrinsic::fma: 3631 case Intrinsic::fmuladd: 3632 // x*x+y is non-negative if y is non-negative. 3633 return I->getOperand(0) == I->getOperand(1) && 3634 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3635 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3636 Depth + 1); 3637 } 3638 break; 3639 } 3640 return false; 3641 } 3642 3643 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3644 const TargetLibraryInfo *TLI) { 3645 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3646 } 3647 3648 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3649 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3650 } 3651 3652 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3653 unsigned Depth) { 3654 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3655 3656 // If we're told that infinities won't happen, assume they won't. 3657 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3658 if (FPMathOp->hasNoInfs()) 3659 return true; 3660 3661 // Handle scalar constants. 3662 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3663 return !CFP->isInfinity(); 3664 3665 if (Depth == MaxAnalysisRecursionDepth) 3666 return false; 3667 3668 if (auto *Inst = dyn_cast<Instruction>(V)) { 3669 switch (Inst->getOpcode()) { 3670 case Instruction::Select: { 3671 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3672 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3673 } 3674 case Instruction::SIToFP: 3675 case Instruction::UIToFP: { 3676 // Get width of largest magnitude integer (remove a bit if signed). 3677 // This still works for a signed minimum value because the largest FP 3678 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3679 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3680 if (Inst->getOpcode() == Instruction::SIToFP) 3681 --IntSize; 3682 3683 // If the exponent of the largest finite FP value can hold the largest 3684 // integer, the result of the cast must be finite. 3685 Type *FPTy = Inst->getType()->getScalarType(); 3686 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3687 } 3688 default: 3689 break; 3690 } 3691 } 3692 3693 // try to handle fixed width vector constants 3694 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3695 if (VFVTy && isa<Constant>(V)) { 3696 // For vectors, verify that each element is not infinity. 3697 unsigned NumElts = VFVTy->getNumElements(); 3698 for (unsigned i = 0; i != NumElts; ++i) { 3699 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3700 if (!Elt) 3701 return false; 3702 if (isa<UndefValue>(Elt)) 3703 continue; 3704 auto *CElt = dyn_cast<ConstantFP>(Elt); 3705 if (!CElt || CElt->isInfinity()) 3706 return false; 3707 } 3708 // All elements were confirmed non-infinity or undefined. 3709 return true; 3710 } 3711 3712 // was not able to prove that V never contains infinity 3713 return false; 3714 } 3715 3716 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3717 unsigned Depth) { 3718 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3719 3720 // If we're told that NaNs won't happen, assume they won't. 3721 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3722 if (FPMathOp->hasNoNaNs()) 3723 return true; 3724 3725 // Handle scalar constants. 3726 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3727 return !CFP->isNaN(); 3728 3729 if (Depth == MaxAnalysisRecursionDepth) 3730 return false; 3731 3732 if (auto *Inst = dyn_cast<Instruction>(V)) { 3733 switch (Inst->getOpcode()) { 3734 case Instruction::FAdd: 3735 case Instruction::FSub: 3736 // Adding positive and negative infinity produces NaN. 3737 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3738 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3739 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3740 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3741 3742 case Instruction::FMul: 3743 // Zero multiplied with infinity produces NaN. 3744 // FIXME: If neither side can be zero fmul never produces NaN. 3745 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3746 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3747 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3748 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3749 3750 case Instruction::FDiv: 3751 case Instruction::FRem: 3752 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3753 return false; 3754 3755 case Instruction::Select: { 3756 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3757 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3758 } 3759 case Instruction::SIToFP: 3760 case Instruction::UIToFP: 3761 return true; 3762 case Instruction::FPTrunc: 3763 case Instruction::FPExt: 3764 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3765 default: 3766 break; 3767 } 3768 } 3769 3770 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3771 switch (II->getIntrinsicID()) { 3772 case Intrinsic::canonicalize: 3773 case Intrinsic::fabs: 3774 case Intrinsic::copysign: 3775 case Intrinsic::exp: 3776 case Intrinsic::exp2: 3777 case Intrinsic::floor: 3778 case Intrinsic::ceil: 3779 case Intrinsic::trunc: 3780 case Intrinsic::rint: 3781 case Intrinsic::nearbyint: 3782 case Intrinsic::round: 3783 case Intrinsic::roundeven: 3784 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3785 case Intrinsic::sqrt: 3786 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3787 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3788 case Intrinsic::minnum: 3789 case Intrinsic::maxnum: 3790 // If either operand is not NaN, the result is not NaN. 3791 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3792 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3793 default: 3794 return false; 3795 } 3796 } 3797 3798 // Try to handle fixed width vector constants 3799 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3800 if (VFVTy && isa<Constant>(V)) { 3801 // For vectors, verify that each element is not NaN. 3802 unsigned NumElts = VFVTy->getNumElements(); 3803 for (unsigned i = 0; i != NumElts; ++i) { 3804 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3805 if (!Elt) 3806 return false; 3807 if (isa<UndefValue>(Elt)) 3808 continue; 3809 auto *CElt = dyn_cast<ConstantFP>(Elt); 3810 if (!CElt || CElt->isNaN()) 3811 return false; 3812 } 3813 // All elements were confirmed not-NaN or undefined. 3814 return true; 3815 } 3816 3817 // Was not able to prove that V never contains NaN 3818 return false; 3819 } 3820 3821 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3822 3823 // All byte-wide stores are splatable, even of arbitrary variables. 3824 if (V->getType()->isIntegerTy(8)) 3825 return V; 3826 3827 LLVMContext &Ctx = V->getContext(); 3828 3829 // Undef don't care. 3830 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3831 if (isa<UndefValue>(V)) 3832 return UndefInt8; 3833 3834 // Return Undef for zero-sized type. 3835 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3836 return UndefInt8; 3837 3838 Constant *C = dyn_cast<Constant>(V); 3839 if (!C) { 3840 // Conceptually, we could handle things like: 3841 // %a = zext i8 %X to i16 3842 // %b = shl i16 %a, 8 3843 // %c = or i16 %a, %b 3844 // but until there is an example that actually needs this, it doesn't seem 3845 // worth worrying about. 3846 return nullptr; 3847 } 3848 3849 // Handle 'null' ConstantArrayZero etc. 3850 if (C->isNullValue()) 3851 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3852 3853 // Constant floating-point values can be handled as integer values if the 3854 // corresponding integer value is "byteable". An important case is 0.0. 3855 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3856 Type *Ty = nullptr; 3857 if (CFP->getType()->isHalfTy()) 3858 Ty = Type::getInt16Ty(Ctx); 3859 else if (CFP->getType()->isFloatTy()) 3860 Ty = Type::getInt32Ty(Ctx); 3861 else if (CFP->getType()->isDoubleTy()) 3862 Ty = Type::getInt64Ty(Ctx); 3863 // Don't handle long double formats, which have strange constraints. 3864 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3865 : nullptr; 3866 } 3867 3868 // We can handle constant integers that are multiple of 8 bits. 3869 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3870 if (CI->getBitWidth() % 8 == 0) { 3871 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3872 if (!CI->getValue().isSplat(8)) 3873 return nullptr; 3874 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3875 } 3876 } 3877 3878 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3879 if (CE->getOpcode() == Instruction::IntToPtr) { 3880 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3881 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3882 return isBytewiseValue( 3883 ConstantExpr::getIntegerCast(CE->getOperand(0), 3884 Type::getIntNTy(Ctx, BitWidth), false), 3885 DL); 3886 } 3887 } 3888 } 3889 3890 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3891 if (LHS == RHS) 3892 return LHS; 3893 if (!LHS || !RHS) 3894 return nullptr; 3895 if (LHS == UndefInt8) 3896 return RHS; 3897 if (RHS == UndefInt8) 3898 return LHS; 3899 return nullptr; 3900 }; 3901 3902 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3903 Value *Val = UndefInt8; 3904 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3905 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3906 return nullptr; 3907 return Val; 3908 } 3909 3910 if (isa<ConstantAggregate>(C)) { 3911 Value *Val = UndefInt8; 3912 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3913 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3914 return nullptr; 3915 return Val; 3916 } 3917 3918 // Don't try to handle the handful of other constants. 3919 return nullptr; 3920 } 3921 3922 // This is the recursive version of BuildSubAggregate. It takes a few different 3923 // arguments. Idxs is the index within the nested struct From that we are 3924 // looking at now (which is of type IndexedType). IdxSkip is the number of 3925 // indices from Idxs that should be left out when inserting into the resulting 3926 // struct. To is the result struct built so far, new insertvalue instructions 3927 // build on that. 3928 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3929 SmallVectorImpl<unsigned> &Idxs, 3930 unsigned IdxSkip, 3931 Instruction *InsertBefore) { 3932 StructType *STy = dyn_cast<StructType>(IndexedType); 3933 if (STy) { 3934 // Save the original To argument so we can modify it 3935 Value *OrigTo = To; 3936 // General case, the type indexed by Idxs is a struct 3937 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3938 // Process each struct element recursively 3939 Idxs.push_back(i); 3940 Value *PrevTo = To; 3941 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3942 InsertBefore); 3943 Idxs.pop_back(); 3944 if (!To) { 3945 // Couldn't find any inserted value for this index? Cleanup 3946 while (PrevTo != OrigTo) { 3947 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3948 PrevTo = Del->getAggregateOperand(); 3949 Del->eraseFromParent(); 3950 } 3951 // Stop processing elements 3952 break; 3953 } 3954 } 3955 // If we successfully found a value for each of our subaggregates 3956 if (To) 3957 return To; 3958 } 3959 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3960 // the struct's elements had a value that was inserted directly. In the latter 3961 // case, perhaps we can't determine each of the subelements individually, but 3962 // we might be able to find the complete struct somewhere. 3963 3964 // Find the value that is at that particular spot 3965 Value *V = FindInsertedValue(From, Idxs); 3966 3967 if (!V) 3968 return nullptr; 3969 3970 // Insert the value in the new (sub) aggregate 3971 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3972 "tmp", InsertBefore); 3973 } 3974 3975 // This helper takes a nested struct and extracts a part of it (which is again a 3976 // struct) into a new value. For example, given the struct: 3977 // { a, { b, { c, d }, e } } 3978 // and the indices "1, 1" this returns 3979 // { c, d }. 3980 // 3981 // It does this by inserting an insertvalue for each element in the resulting 3982 // struct, as opposed to just inserting a single struct. This will only work if 3983 // each of the elements of the substruct are known (ie, inserted into From by an 3984 // insertvalue instruction somewhere). 3985 // 3986 // All inserted insertvalue instructions are inserted before InsertBefore 3987 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3988 Instruction *InsertBefore) { 3989 assert(InsertBefore && "Must have someplace to insert!"); 3990 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3991 idx_range); 3992 Value *To = UndefValue::get(IndexedType); 3993 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3994 unsigned IdxSkip = Idxs.size(); 3995 3996 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3997 } 3998 3999 /// Given an aggregate and a sequence of indices, see if the scalar value 4000 /// indexed is already around as a register, for example if it was inserted 4001 /// directly into the aggregate. 4002 /// 4003 /// If InsertBefore is not null, this function will duplicate (modified) 4004 /// insertvalues when a part of a nested struct is extracted. 4005 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4006 Instruction *InsertBefore) { 4007 // Nothing to index? Just return V then (this is useful at the end of our 4008 // recursion). 4009 if (idx_range.empty()) 4010 return V; 4011 // We have indices, so V should have an indexable type. 4012 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4013 "Not looking at a struct or array?"); 4014 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4015 "Invalid indices for type?"); 4016 4017 if (Constant *C = dyn_cast<Constant>(V)) { 4018 C = C->getAggregateElement(idx_range[0]); 4019 if (!C) return nullptr; 4020 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4021 } 4022 4023 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4024 // Loop the indices for the insertvalue instruction in parallel with the 4025 // requested indices 4026 const unsigned *req_idx = idx_range.begin(); 4027 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4028 i != e; ++i, ++req_idx) { 4029 if (req_idx == idx_range.end()) { 4030 // We can't handle this without inserting insertvalues 4031 if (!InsertBefore) 4032 return nullptr; 4033 4034 // The requested index identifies a part of a nested aggregate. Handle 4035 // this specially. For example, 4036 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4037 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4038 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4039 // This can be changed into 4040 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4041 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4042 // which allows the unused 0,0 element from the nested struct to be 4043 // removed. 4044 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4045 InsertBefore); 4046 } 4047 4048 // This insert value inserts something else than what we are looking for. 4049 // See if the (aggregate) value inserted into has the value we are 4050 // looking for, then. 4051 if (*req_idx != *i) 4052 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4053 InsertBefore); 4054 } 4055 // If we end up here, the indices of the insertvalue match with those 4056 // requested (though possibly only partially). Now we recursively look at 4057 // the inserted value, passing any remaining indices. 4058 return FindInsertedValue(I->getInsertedValueOperand(), 4059 makeArrayRef(req_idx, idx_range.end()), 4060 InsertBefore); 4061 } 4062 4063 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4064 // If we're extracting a value from an aggregate that was extracted from 4065 // something else, we can extract from that something else directly instead. 4066 // However, we will need to chain I's indices with the requested indices. 4067 4068 // Calculate the number of indices required 4069 unsigned size = I->getNumIndices() + idx_range.size(); 4070 // Allocate some space to put the new indices in 4071 SmallVector<unsigned, 5> Idxs; 4072 Idxs.reserve(size); 4073 // Add indices from the extract value instruction 4074 Idxs.append(I->idx_begin(), I->idx_end()); 4075 4076 // Add requested indices 4077 Idxs.append(idx_range.begin(), idx_range.end()); 4078 4079 assert(Idxs.size() == size 4080 && "Number of indices added not correct?"); 4081 4082 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4083 } 4084 // Otherwise, we don't know (such as, extracting from a function return value 4085 // or load instruction) 4086 return nullptr; 4087 } 4088 4089 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4090 unsigned CharSize) { 4091 // Make sure the GEP has exactly three arguments. 4092 if (GEP->getNumOperands() != 3) 4093 return false; 4094 4095 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4096 // CharSize. 4097 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4098 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4099 return false; 4100 4101 // Check to make sure that the first operand of the GEP is an integer and 4102 // has value 0 so that we are sure we're indexing into the initializer. 4103 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4104 if (!FirstIdx || !FirstIdx->isZero()) 4105 return false; 4106 4107 return true; 4108 } 4109 4110 bool llvm::getConstantDataArrayInfo(const Value *V, 4111 ConstantDataArraySlice &Slice, 4112 unsigned ElementSize, uint64_t Offset) { 4113 assert(V); 4114 4115 // Look through bitcast instructions and geps. 4116 V = V->stripPointerCasts(); 4117 4118 // If the value is a GEP instruction or constant expression, treat it as an 4119 // offset. 4120 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4121 // The GEP operator should be based on a pointer to string constant, and is 4122 // indexing into the string constant. 4123 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4124 return false; 4125 4126 // If the second index isn't a ConstantInt, then this is a variable index 4127 // into the array. If this occurs, we can't say anything meaningful about 4128 // the string. 4129 uint64_t StartIdx = 0; 4130 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4131 StartIdx = CI->getZExtValue(); 4132 else 4133 return false; 4134 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4135 StartIdx + Offset); 4136 } 4137 4138 // The GEP instruction, constant or instruction, must reference a global 4139 // variable that is a constant and is initialized. The referenced constant 4140 // initializer is the array that we'll use for optimization. 4141 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4142 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4143 return false; 4144 4145 const ConstantDataArray *Array; 4146 ArrayType *ArrayTy; 4147 if (GV->getInitializer()->isNullValue()) { 4148 Type *GVTy = GV->getValueType(); 4149 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4150 // A zeroinitializer for the array; there is no ConstantDataArray. 4151 Array = nullptr; 4152 } else { 4153 const DataLayout &DL = GV->getParent()->getDataLayout(); 4154 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4155 uint64_t Length = SizeInBytes / (ElementSize / 8); 4156 if (Length <= Offset) 4157 return false; 4158 4159 Slice.Array = nullptr; 4160 Slice.Offset = 0; 4161 Slice.Length = Length - Offset; 4162 return true; 4163 } 4164 } else { 4165 // This must be a ConstantDataArray. 4166 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4167 if (!Array) 4168 return false; 4169 ArrayTy = Array->getType(); 4170 } 4171 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4172 return false; 4173 4174 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4175 if (Offset > NumElts) 4176 return false; 4177 4178 Slice.Array = Array; 4179 Slice.Offset = Offset; 4180 Slice.Length = NumElts - Offset; 4181 return true; 4182 } 4183 4184 /// This function computes the length of a null-terminated C string pointed to 4185 /// by V. If successful, it returns true and returns the string in Str. 4186 /// If unsuccessful, it returns false. 4187 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4188 uint64_t Offset, bool TrimAtNul) { 4189 ConstantDataArraySlice Slice; 4190 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4191 return false; 4192 4193 if (Slice.Array == nullptr) { 4194 if (TrimAtNul) { 4195 Str = StringRef(); 4196 return true; 4197 } 4198 if (Slice.Length == 1) { 4199 Str = StringRef("", 1); 4200 return true; 4201 } 4202 // We cannot instantiate a StringRef as we do not have an appropriate string 4203 // of 0s at hand. 4204 return false; 4205 } 4206 4207 // Start out with the entire array in the StringRef. 4208 Str = Slice.Array->getAsString(); 4209 // Skip over 'offset' bytes. 4210 Str = Str.substr(Slice.Offset); 4211 4212 if (TrimAtNul) { 4213 // Trim off the \0 and anything after it. If the array is not nul 4214 // terminated, we just return the whole end of string. The client may know 4215 // some other way that the string is length-bound. 4216 Str = Str.substr(0, Str.find('\0')); 4217 } 4218 return true; 4219 } 4220 4221 // These next two are very similar to the above, but also look through PHI 4222 // nodes. 4223 // TODO: See if we can integrate these two together. 4224 4225 /// If we can compute the length of the string pointed to by 4226 /// the specified pointer, return 'len+1'. If we can't, return 0. 4227 static uint64_t GetStringLengthH(const Value *V, 4228 SmallPtrSetImpl<const PHINode*> &PHIs, 4229 unsigned CharSize) { 4230 // Look through noop bitcast instructions. 4231 V = V->stripPointerCasts(); 4232 4233 // If this is a PHI node, there are two cases: either we have already seen it 4234 // or we haven't. 4235 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4236 if (!PHIs.insert(PN).second) 4237 return ~0ULL; // already in the set. 4238 4239 // If it was new, see if all the input strings are the same length. 4240 uint64_t LenSoFar = ~0ULL; 4241 for (Value *IncValue : PN->incoming_values()) { 4242 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4243 if (Len == 0) return 0; // Unknown length -> unknown. 4244 4245 if (Len == ~0ULL) continue; 4246 4247 if (Len != LenSoFar && LenSoFar != ~0ULL) 4248 return 0; // Disagree -> unknown. 4249 LenSoFar = Len; 4250 } 4251 4252 // Success, all agree. 4253 return LenSoFar; 4254 } 4255 4256 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4257 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4258 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4259 if (Len1 == 0) return 0; 4260 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4261 if (Len2 == 0) return 0; 4262 if (Len1 == ~0ULL) return Len2; 4263 if (Len2 == ~0ULL) return Len1; 4264 if (Len1 != Len2) return 0; 4265 return Len1; 4266 } 4267 4268 // Otherwise, see if we can read the string. 4269 ConstantDataArraySlice Slice; 4270 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4271 return 0; 4272 4273 if (Slice.Array == nullptr) 4274 return 1; 4275 4276 // Search for nul characters 4277 unsigned NullIndex = 0; 4278 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4279 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4280 break; 4281 } 4282 4283 return NullIndex + 1; 4284 } 4285 4286 /// If we can compute the length of the string pointed to by 4287 /// the specified pointer, return 'len+1'. If we can't, return 0. 4288 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4289 if (!V->getType()->isPointerTy()) 4290 return 0; 4291 4292 SmallPtrSet<const PHINode*, 32> PHIs; 4293 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4294 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4295 // an empty string as a length. 4296 return Len == ~0ULL ? 1 : Len; 4297 } 4298 4299 const Value * 4300 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4301 bool MustPreserveNullness) { 4302 assert(Call && 4303 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4304 if (const Value *RV = Call->getReturnedArgOperand()) 4305 return RV; 4306 // This can be used only as a aliasing property. 4307 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4308 Call, MustPreserveNullness)) 4309 return Call->getArgOperand(0); 4310 return nullptr; 4311 } 4312 4313 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4314 const CallBase *Call, bool MustPreserveNullness) { 4315 switch (Call->getIntrinsicID()) { 4316 case Intrinsic::launder_invariant_group: 4317 case Intrinsic::strip_invariant_group: 4318 case Intrinsic::aarch64_irg: 4319 case Intrinsic::aarch64_tagp: 4320 return true; 4321 case Intrinsic::ptrmask: 4322 return !MustPreserveNullness; 4323 default: 4324 return false; 4325 } 4326 } 4327 4328 /// \p PN defines a loop-variant pointer to an object. Check if the 4329 /// previous iteration of the loop was referring to the same object as \p PN. 4330 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4331 const LoopInfo *LI) { 4332 // Find the loop-defined value. 4333 Loop *L = LI->getLoopFor(PN->getParent()); 4334 if (PN->getNumIncomingValues() != 2) 4335 return true; 4336 4337 // Find the value from previous iteration. 4338 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4339 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4340 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4341 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4342 return true; 4343 4344 // If a new pointer is loaded in the loop, the pointer references a different 4345 // object in every iteration. E.g.: 4346 // for (i) 4347 // int *p = a[i]; 4348 // ... 4349 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4350 if (!L->isLoopInvariant(Load->getPointerOperand())) 4351 return false; 4352 return true; 4353 } 4354 4355 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4356 if (!V->getType()->isPointerTy()) 4357 return V; 4358 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4359 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4360 V = GEP->getPointerOperand(); 4361 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4362 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4363 V = cast<Operator>(V)->getOperand(0); 4364 if (!V->getType()->isPointerTy()) 4365 return V; 4366 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4367 if (GA->isInterposable()) 4368 return V; 4369 V = GA->getAliasee(); 4370 } else { 4371 if (auto *PHI = dyn_cast<PHINode>(V)) { 4372 // Look through single-arg phi nodes created by LCSSA. 4373 if (PHI->getNumIncomingValues() == 1) { 4374 V = PHI->getIncomingValue(0); 4375 continue; 4376 } 4377 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4378 // CaptureTracking can know about special capturing properties of some 4379 // intrinsics like launder.invariant.group, that can't be expressed with 4380 // the attributes, but have properties like returning aliasing pointer. 4381 // Because some analysis may assume that nocaptured pointer is not 4382 // returned from some special intrinsic (because function would have to 4383 // be marked with returns attribute), it is crucial to use this function 4384 // because it should be in sync with CaptureTracking. Not using it may 4385 // cause weird miscompilations where 2 aliasing pointers are assumed to 4386 // noalias. 4387 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4388 V = RP; 4389 continue; 4390 } 4391 } 4392 4393 return V; 4394 } 4395 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4396 } 4397 return V; 4398 } 4399 4400 void llvm::getUnderlyingObjects(const Value *V, 4401 SmallVectorImpl<const Value *> &Objects, 4402 LoopInfo *LI, unsigned MaxLookup) { 4403 SmallPtrSet<const Value *, 4> Visited; 4404 SmallVector<const Value *, 4> Worklist; 4405 Worklist.push_back(V); 4406 do { 4407 const Value *P = Worklist.pop_back_val(); 4408 P = getUnderlyingObject(P, MaxLookup); 4409 4410 if (!Visited.insert(P).second) 4411 continue; 4412 4413 if (auto *SI = dyn_cast<SelectInst>(P)) { 4414 Worklist.push_back(SI->getTrueValue()); 4415 Worklist.push_back(SI->getFalseValue()); 4416 continue; 4417 } 4418 4419 if (auto *PN = dyn_cast<PHINode>(P)) { 4420 // If this PHI changes the underlying object in every iteration of the 4421 // loop, don't look through it. Consider: 4422 // int **A; 4423 // for (i) { 4424 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4425 // Curr = A[i]; 4426 // *Prev, *Curr; 4427 // 4428 // Prev is tracking Curr one iteration behind so they refer to different 4429 // underlying objects. 4430 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4431 isSameUnderlyingObjectInLoop(PN, LI)) 4432 append_range(Worklist, PN->incoming_values()); 4433 continue; 4434 } 4435 4436 Objects.push_back(P); 4437 } while (!Worklist.empty()); 4438 } 4439 4440 /// This is the function that does the work of looking through basic 4441 /// ptrtoint+arithmetic+inttoptr sequences. 4442 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4443 do { 4444 if (const Operator *U = dyn_cast<Operator>(V)) { 4445 // If we find a ptrtoint, we can transfer control back to the 4446 // regular getUnderlyingObjectFromInt. 4447 if (U->getOpcode() == Instruction::PtrToInt) 4448 return U->getOperand(0); 4449 // If we find an add of a constant, a multiplied value, or a phi, it's 4450 // likely that the other operand will lead us to the base 4451 // object. We don't have to worry about the case where the 4452 // object address is somehow being computed by the multiply, 4453 // because our callers only care when the result is an 4454 // identifiable object. 4455 if (U->getOpcode() != Instruction::Add || 4456 (!isa<ConstantInt>(U->getOperand(1)) && 4457 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4458 !isa<PHINode>(U->getOperand(1)))) 4459 return V; 4460 V = U->getOperand(0); 4461 } else { 4462 return V; 4463 } 4464 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4465 } while (true); 4466 } 4467 4468 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4469 /// ptrtoint+arithmetic+inttoptr sequences. 4470 /// It returns false if unidentified object is found in getUnderlyingObjects. 4471 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4472 SmallVectorImpl<Value *> &Objects) { 4473 SmallPtrSet<const Value *, 16> Visited; 4474 SmallVector<const Value *, 4> Working(1, V); 4475 do { 4476 V = Working.pop_back_val(); 4477 4478 SmallVector<const Value *, 4> Objs; 4479 getUnderlyingObjects(V, Objs); 4480 4481 for (const Value *V : Objs) { 4482 if (!Visited.insert(V).second) 4483 continue; 4484 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4485 const Value *O = 4486 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4487 if (O->getType()->isPointerTy()) { 4488 Working.push_back(O); 4489 continue; 4490 } 4491 } 4492 // If getUnderlyingObjects fails to find an identifiable object, 4493 // getUnderlyingObjectsForCodeGen also fails for safety. 4494 if (!isIdentifiedObject(V)) { 4495 Objects.clear(); 4496 return false; 4497 } 4498 Objects.push_back(const_cast<Value *>(V)); 4499 } 4500 } while (!Working.empty()); 4501 return true; 4502 } 4503 4504 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4505 AllocaInst *Result = nullptr; 4506 SmallPtrSet<Value *, 4> Visited; 4507 SmallVector<Value *, 4> Worklist; 4508 4509 auto AddWork = [&](Value *V) { 4510 if (Visited.insert(V).second) 4511 Worklist.push_back(V); 4512 }; 4513 4514 AddWork(V); 4515 do { 4516 V = Worklist.pop_back_val(); 4517 assert(Visited.count(V)); 4518 4519 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4520 if (Result && Result != AI) 4521 return nullptr; 4522 Result = AI; 4523 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4524 AddWork(CI->getOperand(0)); 4525 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4526 for (Value *IncValue : PN->incoming_values()) 4527 AddWork(IncValue); 4528 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4529 AddWork(SI->getTrueValue()); 4530 AddWork(SI->getFalseValue()); 4531 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4532 if (OffsetZero && !GEP->hasAllZeroIndices()) 4533 return nullptr; 4534 AddWork(GEP->getPointerOperand()); 4535 } else { 4536 return nullptr; 4537 } 4538 } while (!Worklist.empty()); 4539 4540 return Result; 4541 } 4542 4543 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4544 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4545 for (const User *U : V->users()) { 4546 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4547 if (!II) 4548 return false; 4549 4550 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4551 continue; 4552 4553 if (AllowDroppable && II->isDroppable()) 4554 continue; 4555 4556 return false; 4557 } 4558 return true; 4559 } 4560 4561 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4562 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4563 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4564 } 4565 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4566 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4567 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4568 } 4569 4570 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4571 if (!LI.isUnordered()) 4572 return true; 4573 const Function &F = *LI.getFunction(); 4574 // Speculative load may create a race that did not exist in the source. 4575 return F.hasFnAttribute(Attribute::SanitizeThread) || 4576 // Speculative load may load data from dirty regions. 4577 F.hasFnAttribute(Attribute::SanitizeAddress) || 4578 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4579 } 4580 4581 4582 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4583 const Instruction *CtxI, 4584 const DominatorTree *DT, 4585 const TargetLibraryInfo *TLI) { 4586 const Operator *Inst = dyn_cast<Operator>(V); 4587 if (!Inst) 4588 return false; 4589 4590 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4591 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4592 if (C->canTrap()) 4593 return false; 4594 4595 switch (Inst->getOpcode()) { 4596 default: 4597 return true; 4598 case Instruction::UDiv: 4599 case Instruction::URem: { 4600 // x / y is undefined if y == 0. 4601 const APInt *V; 4602 if (match(Inst->getOperand(1), m_APInt(V))) 4603 return *V != 0; 4604 return false; 4605 } 4606 case Instruction::SDiv: 4607 case Instruction::SRem: { 4608 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4609 const APInt *Numerator, *Denominator; 4610 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4611 return false; 4612 // We cannot hoist this division if the denominator is 0. 4613 if (*Denominator == 0) 4614 return false; 4615 // It's safe to hoist if the denominator is not 0 or -1. 4616 if (!Denominator->isAllOnesValue()) 4617 return true; 4618 // At this point we know that the denominator is -1. It is safe to hoist as 4619 // long we know that the numerator is not INT_MIN. 4620 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4621 return !Numerator->isMinSignedValue(); 4622 // The numerator *might* be MinSignedValue. 4623 return false; 4624 } 4625 case Instruction::Load: { 4626 const LoadInst *LI = cast<LoadInst>(Inst); 4627 if (mustSuppressSpeculation(*LI)) 4628 return false; 4629 const DataLayout &DL = LI->getModule()->getDataLayout(); 4630 return isDereferenceableAndAlignedPointer( 4631 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4632 DL, CtxI, DT, TLI); 4633 } 4634 case Instruction::Call: { 4635 auto *CI = cast<const CallInst>(Inst); 4636 const Function *Callee = CI->getCalledFunction(); 4637 4638 // The called function could have undefined behavior or side-effects, even 4639 // if marked readnone nounwind. 4640 return Callee && Callee->isSpeculatable(); 4641 } 4642 case Instruction::VAArg: 4643 case Instruction::Alloca: 4644 case Instruction::Invoke: 4645 case Instruction::CallBr: 4646 case Instruction::PHI: 4647 case Instruction::Store: 4648 case Instruction::Ret: 4649 case Instruction::Br: 4650 case Instruction::IndirectBr: 4651 case Instruction::Switch: 4652 case Instruction::Unreachable: 4653 case Instruction::Fence: 4654 case Instruction::AtomicRMW: 4655 case Instruction::AtomicCmpXchg: 4656 case Instruction::LandingPad: 4657 case Instruction::Resume: 4658 case Instruction::CatchSwitch: 4659 case Instruction::CatchPad: 4660 case Instruction::CatchRet: 4661 case Instruction::CleanupPad: 4662 case Instruction::CleanupRet: 4663 return false; // Misc instructions which have effects 4664 } 4665 } 4666 4667 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4668 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4669 } 4670 4671 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4672 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4673 switch (OR) { 4674 case ConstantRange::OverflowResult::MayOverflow: 4675 return OverflowResult::MayOverflow; 4676 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4677 return OverflowResult::AlwaysOverflowsLow; 4678 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4679 return OverflowResult::AlwaysOverflowsHigh; 4680 case ConstantRange::OverflowResult::NeverOverflows: 4681 return OverflowResult::NeverOverflows; 4682 } 4683 llvm_unreachable("Unknown OverflowResult"); 4684 } 4685 4686 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4687 static ConstantRange computeConstantRangeIncludingKnownBits( 4688 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4689 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4690 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4691 KnownBits Known = computeKnownBits( 4692 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4693 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4694 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4695 ConstantRange::PreferredRangeType RangeType = 4696 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4697 return CR1.intersectWith(CR2, RangeType); 4698 } 4699 4700 OverflowResult llvm::computeOverflowForUnsignedMul( 4701 const Value *LHS, const Value *RHS, const DataLayout &DL, 4702 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4703 bool UseInstrInfo) { 4704 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4705 nullptr, UseInstrInfo); 4706 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4707 nullptr, UseInstrInfo); 4708 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4709 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4710 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4711 } 4712 4713 OverflowResult 4714 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4715 const DataLayout &DL, AssumptionCache *AC, 4716 const Instruction *CxtI, 4717 const DominatorTree *DT, bool UseInstrInfo) { 4718 // Multiplying n * m significant bits yields a result of n + m significant 4719 // bits. If the total number of significant bits does not exceed the 4720 // result bit width (minus 1), there is no overflow. 4721 // This means if we have enough leading sign bits in the operands 4722 // we can guarantee that the result does not overflow. 4723 // Ref: "Hacker's Delight" by Henry Warren 4724 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4725 4726 // Note that underestimating the number of sign bits gives a more 4727 // conservative answer. 4728 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4729 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4730 4731 // First handle the easy case: if we have enough sign bits there's 4732 // definitely no overflow. 4733 if (SignBits > BitWidth + 1) 4734 return OverflowResult::NeverOverflows; 4735 4736 // There are two ambiguous cases where there can be no overflow: 4737 // SignBits == BitWidth + 1 and 4738 // SignBits == BitWidth 4739 // The second case is difficult to check, therefore we only handle the 4740 // first case. 4741 if (SignBits == BitWidth + 1) { 4742 // It overflows only when both arguments are negative and the true 4743 // product is exactly the minimum negative number. 4744 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4745 // For simplicity we just check if at least one side is not negative. 4746 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4747 nullptr, UseInstrInfo); 4748 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4749 nullptr, UseInstrInfo); 4750 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4751 return OverflowResult::NeverOverflows; 4752 } 4753 return OverflowResult::MayOverflow; 4754 } 4755 4756 OverflowResult llvm::computeOverflowForUnsignedAdd( 4757 const Value *LHS, const Value *RHS, const DataLayout &DL, 4758 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4759 bool UseInstrInfo) { 4760 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4761 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4762 nullptr, UseInstrInfo); 4763 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4764 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4765 nullptr, UseInstrInfo); 4766 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4767 } 4768 4769 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4770 const Value *RHS, 4771 const AddOperator *Add, 4772 const DataLayout &DL, 4773 AssumptionCache *AC, 4774 const Instruction *CxtI, 4775 const DominatorTree *DT) { 4776 if (Add && Add->hasNoSignedWrap()) { 4777 return OverflowResult::NeverOverflows; 4778 } 4779 4780 // If LHS and RHS each have at least two sign bits, the addition will look 4781 // like 4782 // 4783 // XX..... + 4784 // YY..... 4785 // 4786 // If the carry into the most significant position is 0, X and Y can't both 4787 // be 1 and therefore the carry out of the addition is also 0. 4788 // 4789 // If the carry into the most significant position is 1, X and Y can't both 4790 // be 0 and therefore the carry out of the addition is also 1. 4791 // 4792 // Since the carry into the most significant position is always equal to 4793 // the carry out of the addition, there is no signed overflow. 4794 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4795 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4796 return OverflowResult::NeverOverflows; 4797 4798 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4799 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4800 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4801 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4802 OverflowResult OR = 4803 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4804 if (OR != OverflowResult::MayOverflow) 4805 return OR; 4806 4807 // The remaining code needs Add to be available. Early returns if not so. 4808 if (!Add) 4809 return OverflowResult::MayOverflow; 4810 4811 // If the sign of Add is the same as at least one of the operands, this add 4812 // CANNOT overflow. If this can be determined from the known bits of the 4813 // operands the above signedAddMayOverflow() check will have already done so. 4814 // The only other way to improve on the known bits is from an assumption, so 4815 // call computeKnownBitsFromAssume() directly. 4816 bool LHSOrRHSKnownNonNegative = 4817 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4818 bool LHSOrRHSKnownNegative = 4819 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4820 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4821 KnownBits AddKnown(LHSRange.getBitWidth()); 4822 computeKnownBitsFromAssume( 4823 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4824 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4825 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4826 return OverflowResult::NeverOverflows; 4827 } 4828 4829 return OverflowResult::MayOverflow; 4830 } 4831 4832 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4833 const Value *RHS, 4834 const DataLayout &DL, 4835 AssumptionCache *AC, 4836 const Instruction *CxtI, 4837 const DominatorTree *DT) { 4838 // Checking for conditions implied by dominating conditions may be expensive. 4839 // Limit it to usub_with_overflow calls for now. 4840 if (match(CxtI, 4841 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4842 if (auto C = 4843 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4844 if (*C) 4845 return OverflowResult::NeverOverflows; 4846 return OverflowResult::AlwaysOverflowsLow; 4847 } 4848 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4849 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4850 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4851 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4852 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4853 } 4854 4855 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4856 const Value *RHS, 4857 const DataLayout &DL, 4858 AssumptionCache *AC, 4859 const Instruction *CxtI, 4860 const DominatorTree *DT) { 4861 // If LHS and RHS each have at least two sign bits, the subtraction 4862 // cannot overflow. 4863 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4864 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4865 return OverflowResult::NeverOverflows; 4866 4867 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4868 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4869 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4870 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4871 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4872 } 4873 4874 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4875 const DominatorTree &DT) { 4876 SmallVector<const BranchInst *, 2> GuardingBranches; 4877 SmallVector<const ExtractValueInst *, 2> Results; 4878 4879 for (const User *U : WO->users()) { 4880 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4881 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4882 4883 if (EVI->getIndices()[0] == 0) 4884 Results.push_back(EVI); 4885 else { 4886 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4887 4888 for (const auto *U : EVI->users()) 4889 if (const auto *B = dyn_cast<BranchInst>(U)) { 4890 assert(B->isConditional() && "How else is it using an i1?"); 4891 GuardingBranches.push_back(B); 4892 } 4893 } 4894 } else { 4895 // We are using the aggregate directly in a way we don't want to analyze 4896 // here (storing it to a global, say). 4897 return false; 4898 } 4899 } 4900 4901 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4902 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4903 if (!NoWrapEdge.isSingleEdge()) 4904 return false; 4905 4906 // Check if all users of the add are provably no-wrap. 4907 for (const auto *Result : Results) { 4908 // If the extractvalue itself is not executed on overflow, the we don't 4909 // need to check each use separately, since domination is transitive. 4910 if (DT.dominates(NoWrapEdge, Result->getParent())) 4911 continue; 4912 4913 for (auto &RU : Result->uses()) 4914 if (!DT.dominates(NoWrapEdge, RU)) 4915 return false; 4916 } 4917 4918 return true; 4919 }; 4920 4921 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4922 } 4923 4924 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4925 // See whether I has flags that may create poison 4926 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4927 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4928 return true; 4929 } 4930 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4931 if (ExactOp->isExact()) 4932 return true; 4933 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4934 auto FMF = FP->getFastMathFlags(); 4935 if (FMF.noNaNs() || FMF.noInfs()) 4936 return true; 4937 } 4938 4939 unsigned Opcode = Op->getOpcode(); 4940 4941 // Check whether opcode is a poison/undef-generating operation 4942 switch (Opcode) { 4943 case Instruction::Shl: 4944 case Instruction::AShr: 4945 case Instruction::LShr: { 4946 // Shifts return poison if shiftwidth is larger than the bitwidth. 4947 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4948 SmallVector<Constant *, 4> ShiftAmounts; 4949 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4950 unsigned NumElts = FVTy->getNumElements(); 4951 for (unsigned i = 0; i < NumElts; ++i) 4952 ShiftAmounts.push_back(C->getAggregateElement(i)); 4953 } else if (isa<ScalableVectorType>(C->getType())) 4954 return true; // Can't tell, just return true to be safe 4955 else 4956 ShiftAmounts.push_back(C); 4957 4958 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4959 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4960 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4961 }); 4962 return !Safe; 4963 } 4964 return true; 4965 } 4966 case Instruction::FPToSI: 4967 case Instruction::FPToUI: 4968 // fptosi/ui yields poison if the resulting value does not fit in the 4969 // destination type. 4970 return true; 4971 case Instruction::Call: 4972 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4973 switch (II->getIntrinsicID()) { 4974 // TODO: Add more intrinsics. 4975 case Intrinsic::ctpop: 4976 case Intrinsic::sadd_with_overflow: 4977 case Intrinsic::ssub_with_overflow: 4978 case Intrinsic::smul_with_overflow: 4979 case Intrinsic::uadd_with_overflow: 4980 case Intrinsic::usub_with_overflow: 4981 case Intrinsic::umul_with_overflow: 4982 return false; 4983 } 4984 } 4985 LLVM_FALLTHROUGH; 4986 case Instruction::CallBr: 4987 case Instruction::Invoke: { 4988 const auto *CB = cast<CallBase>(Op); 4989 return !CB->hasRetAttr(Attribute::NoUndef); 4990 } 4991 case Instruction::InsertElement: 4992 case Instruction::ExtractElement: { 4993 // If index exceeds the length of the vector, it returns poison 4994 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4995 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4996 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4997 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4998 return true; 4999 return false; 5000 } 5001 case Instruction::ShuffleVector: { 5002 // shufflevector may return undef. 5003 if (PoisonOnly) 5004 return false; 5005 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5006 ? cast<ConstantExpr>(Op)->getShuffleMask() 5007 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5008 return is_contained(Mask, UndefMaskElem); 5009 } 5010 case Instruction::FNeg: 5011 case Instruction::PHI: 5012 case Instruction::Select: 5013 case Instruction::URem: 5014 case Instruction::SRem: 5015 case Instruction::ExtractValue: 5016 case Instruction::InsertValue: 5017 case Instruction::Freeze: 5018 case Instruction::ICmp: 5019 case Instruction::FCmp: 5020 return false; 5021 case Instruction::GetElementPtr: { 5022 const auto *GEP = cast<GEPOperator>(Op); 5023 return GEP->isInBounds(); 5024 } 5025 default: { 5026 const auto *CE = dyn_cast<ConstantExpr>(Op); 5027 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5028 return false; 5029 else if (Instruction::isBinaryOp(Opcode)) 5030 return false; 5031 // Be conservative and return true. 5032 return true; 5033 } 5034 } 5035 } 5036 5037 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 5038 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 5039 } 5040 5041 bool llvm::canCreatePoison(const Operator *Op) { 5042 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 5043 } 5044 5045 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5046 const Value *V, unsigned Depth) { 5047 if (ValAssumedPoison == V) 5048 return true; 5049 5050 const unsigned MaxDepth = 2; 5051 if (Depth >= MaxDepth) 5052 return false; 5053 5054 if (const auto *I = dyn_cast<Instruction>(V)) { 5055 if (propagatesPoison(cast<Operator>(I))) 5056 return any_of(I->operands(), [=](const Value *Op) { 5057 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5058 }); 5059 5060 // 'select ValAssumedPoison, _, _' is poison. 5061 if (const auto *SI = dyn_cast<SelectInst>(I)) 5062 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5063 Depth + 1); 5064 // V = extractvalue V0, idx 5065 // V2 = extractvalue V0, idx2 5066 // V0's elements are all poison or not. (e.g., add_with_overflow) 5067 const WithOverflowInst *II; 5068 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5069 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5070 llvm::is_contained(II->arg_operands(), ValAssumedPoison))) 5071 return true; 5072 } 5073 return false; 5074 } 5075 5076 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5077 unsigned Depth) { 5078 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5079 return true; 5080 5081 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5082 return true; 5083 5084 const unsigned MaxDepth = 2; 5085 if (Depth >= MaxDepth) 5086 return false; 5087 5088 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5089 if (I && !canCreatePoison(cast<Operator>(I))) { 5090 return all_of(I->operands(), [=](const Value *Op) { 5091 return impliesPoison(Op, V, Depth + 1); 5092 }); 5093 } 5094 return false; 5095 } 5096 5097 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5098 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5099 } 5100 5101 static bool programUndefinedIfUndefOrPoison(const Value *V, 5102 bool PoisonOnly); 5103 5104 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5105 AssumptionCache *AC, 5106 const Instruction *CtxI, 5107 const DominatorTree *DT, 5108 unsigned Depth, bool PoisonOnly) { 5109 if (Depth >= MaxAnalysisRecursionDepth) 5110 return false; 5111 5112 if (isa<MetadataAsValue>(V)) 5113 return false; 5114 5115 if (const auto *A = dyn_cast<Argument>(V)) { 5116 if (A->hasAttribute(Attribute::NoUndef)) 5117 return true; 5118 } 5119 5120 if (auto *C = dyn_cast<Constant>(V)) { 5121 if (isa<UndefValue>(C)) 5122 return PoisonOnly && !isa<PoisonValue>(C); 5123 5124 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5125 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5126 return true; 5127 5128 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5129 return (PoisonOnly ? !C->containsPoisonElement() 5130 : !C->containsUndefOrPoisonElement()) && 5131 !C->containsConstantExpression(); 5132 } 5133 5134 // Strip cast operations from a pointer value. 5135 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5136 // inbounds with zero offset. To guarantee that the result isn't poison, the 5137 // stripped pointer is checked as it has to be pointing into an allocated 5138 // object or be null `null` to ensure `inbounds` getelement pointers with a 5139 // zero offset could not produce poison. 5140 // It can strip off addrspacecast that do not change bit representation as 5141 // well. We believe that such addrspacecast is equivalent to no-op. 5142 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5143 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5144 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5145 return true; 5146 5147 auto OpCheck = [&](const Value *V) { 5148 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5149 PoisonOnly); 5150 }; 5151 5152 if (auto *Opr = dyn_cast<Operator>(V)) { 5153 // If the value is a freeze instruction, then it can never 5154 // be undef or poison. 5155 if (isa<FreezeInst>(V)) 5156 return true; 5157 5158 if (const auto *CB = dyn_cast<CallBase>(V)) { 5159 if (CB->hasRetAttr(Attribute::NoUndef)) 5160 return true; 5161 } 5162 5163 if (const auto *PN = dyn_cast<PHINode>(V)) { 5164 unsigned Num = PN->getNumIncomingValues(); 5165 bool IsWellDefined = true; 5166 for (unsigned i = 0; i < Num; ++i) { 5167 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5168 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5169 DT, Depth + 1, PoisonOnly)) { 5170 IsWellDefined = false; 5171 break; 5172 } 5173 } 5174 if (IsWellDefined) 5175 return true; 5176 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5177 return true; 5178 } 5179 5180 if (auto *I = dyn_cast<LoadInst>(V)) 5181 if (I->getMetadata(LLVMContext::MD_noundef)) 5182 return true; 5183 5184 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5185 return true; 5186 5187 // CxtI may be null or a cloned instruction. 5188 if (!CtxI || !CtxI->getParent() || !DT) 5189 return false; 5190 5191 auto *DNode = DT->getNode(CtxI->getParent()); 5192 if (!DNode) 5193 // Unreachable block 5194 return false; 5195 5196 // If V is used as a branch condition before reaching CtxI, V cannot be 5197 // undef or poison. 5198 // br V, BB1, BB2 5199 // BB1: 5200 // CtxI ; V cannot be undef or poison here 5201 auto *Dominator = DNode->getIDom(); 5202 while (Dominator) { 5203 auto *TI = Dominator->getBlock()->getTerminator(); 5204 5205 Value *Cond = nullptr; 5206 if (auto BI = dyn_cast<BranchInst>(TI)) { 5207 if (BI->isConditional()) 5208 Cond = BI->getCondition(); 5209 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5210 Cond = SI->getCondition(); 5211 } 5212 5213 if (Cond) { 5214 if (Cond == V) 5215 return true; 5216 else if (PoisonOnly && isa<Operator>(Cond)) { 5217 // For poison, we can analyze further 5218 auto *Opr = cast<Operator>(Cond); 5219 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5220 return true; 5221 } 5222 } 5223 5224 Dominator = Dominator->getIDom(); 5225 } 5226 5227 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5228 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5229 return true; 5230 5231 return false; 5232 } 5233 5234 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5235 const Instruction *CtxI, 5236 const DominatorTree *DT, 5237 unsigned Depth) { 5238 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5239 } 5240 5241 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5242 const Instruction *CtxI, 5243 const DominatorTree *DT, unsigned Depth) { 5244 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5245 } 5246 5247 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5248 const DataLayout &DL, 5249 AssumptionCache *AC, 5250 const Instruction *CxtI, 5251 const DominatorTree *DT) { 5252 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5253 Add, DL, AC, CxtI, DT); 5254 } 5255 5256 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5257 const Value *RHS, 5258 const DataLayout &DL, 5259 AssumptionCache *AC, 5260 const Instruction *CxtI, 5261 const DominatorTree *DT) { 5262 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5263 } 5264 5265 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5266 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5267 // of time because it's possible for another thread to interfere with it for an 5268 // arbitrary length of time, but programs aren't allowed to rely on that. 5269 5270 // If there is no successor, then execution can't transfer to it. 5271 if (isa<ReturnInst>(I)) 5272 return false; 5273 if (isa<UnreachableInst>(I)) 5274 return false; 5275 5276 // An instruction that returns without throwing must transfer control flow 5277 // to a successor. 5278 return !I->mayThrow() && I->willReturn(); 5279 } 5280 5281 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5282 // TODO: This is slightly conservative for invoke instruction since exiting 5283 // via an exception *is* normal control for them. 5284 for (const Instruction &I : *BB) 5285 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5286 return false; 5287 return true; 5288 } 5289 5290 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5291 const Loop *L) { 5292 // The loop header is guaranteed to be executed for every iteration. 5293 // 5294 // FIXME: Relax this constraint to cover all basic blocks that are 5295 // guaranteed to be executed at every iteration. 5296 if (I->getParent() != L->getHeader()) return false; 5297 5298 for (const Instruction &LI : *L->getHeader()) { 5299 if (&LI == I) return true; 5300 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5301 } 5302 llvm_unreachable("Instruction not contained in its own parent basic block."); 5303 } 5304 5305 bool llvm::propagatesPoison(const Operator *I) { 5306 switch (I->getOpcode()) { 5307 case Instruction::Freeze: 5308 case Instruction::Select: 5309 case Instruction::PHI: 5310 case Instruction::Invoke: 5311 return false; 5312 case Instruction::Call: 5313 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5314 switch (II->getIntrinsicID()) { 5315 // TODO: Add more intrinsics. 5316 case Intrinsic::sadd_with_overflow: 5317 case Intrinsic::ssub_with_overflow: 5318 case Intrinsic::smul_with_overflow: 5319 case Intrinsic::uadd_with_overflow: 5320 case Intrinsic::usub_with_overflow: 5321 case Intrinsic::umul_with_overflow: 5322 // If an input is a vector containing a poison element, the 5323 // two output vectors (calculated results, overflow bits)' 5324 // corresponding lanes are poison. 5325 return true; 5326 case Intrinsic::ctpop: 5327 return true; 5328 } 5329 } 5330 return false; 5331 case Instruction::ICmp: 5332 case Instruction::FCmp: 5333 case Instruction::GetElementPtr: 5334 return true; 5335 default: 5336 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5337 return true; 5338 5339 // Be conservative and return false. 5340 return false; 5341 } 5342 } 5343 5344 void llvm::getGuaranteedWellDefinedOps( 5345 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5346 switch (I->getOpcode()) { 5347 case Instruction::Store: 5348 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5349 break; 5350 5351 case Instruction::Load: 5352 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5353 break; 5354 5355 // Since dereferenceable attribute imply noundef, atomic operations 5356 // also implicitly have noundef pointers too 5357 case Instruction::AtomicCmpXchg: 5358 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5359 break; 5360 5361 case Instruction::AtomicRMW: 5362 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5363 break; 5364 5365 case Instruction::Call: 5366 case Instruction::Invoke: { 5367 const CallBase *CB = cast<CallBase>(I); 5368 if (CB->isIndirectCall()) 5369 Operands.insert(CB->getCalledOperand()); 5370 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5371 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5372 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5373 Operands.insert(CB->getArgOperand(i)); 5374 } 5375 break; 5376 } 5377 5378 default: 5379 break; 5380 } 5381 } 5382 5383 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5384 SmallPtrSetImpl<const Value *> &Operands) { 5385 getGuaranteedWellDefinedOps(I, Operands); 5386 switch (I->getOpcode()) { 5387 // Divisors of these operations are allowed to be partially undef. 5388 case Instruction::UDiv: 5389 case Instruction::SDiv: 5390 case Instruction::URem: 5391 case Instruction::SRem: 5392 Operands.insert(I->getOperand(1)); 5393 break; 5394 5395 default: 5396 break; 5397 } 5398 } 5399 5400 bool llvm::mustTriggerUB(const Instruction *I, 5401 const SmallSet<const Value *, 16>& KnownPoison) { 5402 SmallPtrSet<const Value *, 4> NonPoisonOps; 5403 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5404 5405 for (const auto *V : NonPoisonOps) 5406 if (KnownPoison.count(V)) 5407 return true; 5408 5409 return false; 5410 } 5411 5412 static bool programUndefinedIfUndefOrPoison(const Value *V, 5413 bool PoisonOnly) { 5414 // We currently only look for uses of values within the same basic 5415 // block, as that makes it easier to guarantee that the uses will be 5416 // executed given that Inst is executed. 5417 // 5418 // FIXME: Expand this to consider uses beyond the same basic block. To do 5419 // this, look out for the distinction between post-dominance and strong 5420 // post-dominance. 5421 const BasicBlock *BB = nullptr; 5422 BasicBlock::const_iterator Begin; 5423 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5424 BB = Inst->getParent(); 5425 Begin = Inst->getIterator(); 5426 Begin++; 5427 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5428 BB = &Arg->getParent()->getEntryBlock(); 5429 Begin = BB->begin(); 5430 } else { 5431 return false; 5432 } 5433 5434 // Limit number of instructions we look at, to avoid scanning through large 5435 // blocks. The current limit is chosen arbitrarily. 5436 unsigned ScanLimit = 32; 5437 BasicBlock::const_iterator End = BB->end(); 5438 5439 if (!PoisonOnly) { 5440 // Since undef does not propagate eagerly, be conservative & just check 5441 // whether a value is directly passed to an instruction that must take 5442 // well-defined operands. 5443 5444 for (auto &I : make_range(Begin, End)) { 5445 if (isa<DbgInfoIntrinsic>(I)) 5446 continue; 5447 if (--ScanLimit == 0) 5448 break; 5449 5450 SmallPtrSet<const Value *, 4> WellDefinedOps; 5451 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5452 if (WellDefinedOps.contains(V)) 5453 return true; 5454 5455 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5456 break; 5457 } 5458 return false; 5459 } 5460 5461 // Set of instructions that we have proved will yield poison if Inst 5462 // does. 5463 SmallSet<const Value *, 16> YieldsPoison; 5464 SmallSet<const BasicBlock *, 4> Visited; 5465 5466 YieldsPoison.insert(V); 5467 auto Propagate = [&](const User *User) { 5468 if (propagatesPoison(cast<Operator>(User))) 5469 YieldsPoison.insert(User); 5470 }; 5471 for_each(V->users(), Propagate); 5472 Visited.insert(BB); 5473 5474 while (true) { 5475 for (auto &I : make_range(Begin, End)) { 5476 if (isa<DbgInfoIntrinsic>(I)) 5477 continue; 5478 if (--ScanLimit == 0) 5479 return false; 5480 if (mustTriggerUB(&I, YieldsPoison)) 5481 return true; 5482 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5483 return false; 5484 5485 // Mark poison that propagates from I through uses of I. 5486 if (YieldsPoison.count(&I)) 5487 for_each(I.users(), Propagate); 5488 } 5489 5490 BB = BB->getSingleSuccessor(); 5491 if (!BB || !Visited.insert(BB).second) 5492 break; 5493 5494 Begin = BB->getFirstNonPHI()->getIterator(); 5495 End = BB->end(); 5496 } 5497 return false; 5498 } 5499 5500 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5501 return ::programUndefinedIfUndefOrPoison(Inst, false); 5502 } 5503 5504 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5505 return ::programUndefinedIfUndefOrPoison(Inst, true); 5506 } 5507 5508 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5509 if (FMF.noNaNs()) 5510 return true; 5511 5512 if (auto *C = dyn_cast<ConstantFP>(V)) 5513 return !C->isNaN(); 5514 5515 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5516 if (!C->getElementType()->isFloatingPointTy()) 5517 return false; 5518 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5519 if (C->getElementAsAPFloat(I).isNaN()) 5520 return false; 5521 } 5522 return true; 5523 } 5524 5525 if (isa<ConstantAggregateZero>(V)) 5526 return true; 5527 5528 return false; 5529 } 5530 5531 static bool isKnownNonZero(const Value *V) { 5532 if (auto *C = dyn_cast<ConstantFP>(V)) 5533 return !C->isZero(); 5534 5535 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5536 if (!C->getElementType()->isFloatingPointTy()) 5537 return false; 5538 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5539 if (C->getElementAsAPFloat(I).isZero()) 5540 return false; 5541 } 5542 return true; 5543 } 5544 5545 return false; 5546 } 5547 5548 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5549 /// Given non-min/max outer cmp/select from the clamp pattern this 5550 /// function recognizes if it can be substitued by a "canonical" min/max 5551 /// pattern. 5552 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5553 Value *CmpLHS, Value *CmpRHS, 5554 Value *TrueVal, Value *FalseVal, 5555 Value *&LHS, Value *&RHS) { 5556 // Try to match 5557 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5558 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5559 // and return description of the outer Max/Min. 5560 5561 // First, check if select has inverse order: 5562 if (CmpRHS == FalseVal) { 5563 std::swap(TrueVal, FalseVal); 5564 Pred = CmpInst::getInversePredicate(Pred); 5565 } 5566 5567 // Assume success now. If there's no match, callers should not use these anyway. 5568 LHS = TrueVal; 5569 RHS = FalseVal; 5570 5571 const APFloat *FC1; 5572 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5573 return {SPF_UNKNOWN, SPNB_NA, false}; 5574 5575 const APFloat *FC2; 5576 switch (Pred) { 5577 case CmpInst::FCMP_OLT: 5578 case CmpInst::FCMP_OLE: 5579 case CmpInst::FCMP_ULT: 5580 case CmpInst::FCMP_ULE: 5581 if (match(FalseVal, 5582 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5583 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5584 *FC1 < *FC2) 5585 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5586 break; 5587 case CmpInst::FCMP_OGT: 5588 case CmpInst::FCMP_OGE: 5589 case CmpInst::FCMP_UGT: 5590 case CmpInst::FCMP_UGE: 5591 if (match(FalseVal, 5592 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5593 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5594 *FC1 > *FC2) 5595 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5596 break; 5597 default: 5598 break; 5599 } 5600 5601 return {SPF_UNKNOWN, SPNB_NA, false}; 5602 } 5603 5604 /// Recognize variations of: 5605 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5606 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5607 Value *CmpLHS, Value *CmpRHS, 5608 Value *TrueVal, Value *FalseVal) { 5609 // Swap the select operands and predicate to match the patterns below. 5610 if (CmpRHS != TrueVal) { 5611 Pred = ICmpInst::getSwappedPredicate(Pred); 5612 std::swap(TrueVal, FalseVal); 5613 } 5614 const APInt *C1; 5615 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5616 const APInt *C2; 5617 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5618 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5619 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5620 return {SPF_SMAX, SPNB_NA, false}; 5621 5622 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5623 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5624 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5625 return {SPF_SMIN, SPNB_NA, false}; 5626 5627 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5628 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5629 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5630 return {SPF_UMAX, SPNB_NA, false}; 5631 5632 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5633 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5634 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5635 return {SPF_UMIN, SPNB_NA, false}; 5636 } 5637 return {SPF_UNKNOWN, SPNB_NA, false}; 5638 } 5639 5640 /// Recognize variations of: 5641 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5642 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5643 Value *CmpLHS, Value *CmpRHS, 5644 Value *TVal, Value *FVal, 5645 unsigned Depth) { 5646 // TODO: Allow FP min/max with nnan/nsz. 5647 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5648 5649 Value *A = nullptr, *B = nullptr; 5650 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5651 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5652 return {SPF_UNKNOWN, SPNB_NA, false}; 5653 5654 Value *C = nullptr, *D = nullptr; 5655 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5656 if (L.Flavor != R.Flavor) 5657 return {SPF_UNKNOWN, SPNB_NA, false}; 5658 5659 // We have something like: x Pred y ? min(a, b) : min(c, d). 5660 // Try to match the compare to the min/max operations of the select operands. 5661 // First, make sure we have the right compare predicate. 5662 switch (L.Flavor) { 5663 case SPF_SMIN: 5664 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5665 Pred = ICmpInst::getSwappedPredicate(Pred); 5666 std::swap(CmpLHS, CmpRHS); 5667 } 5668 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5669 break; 5670 return {SPF_UNKNOWN, SPNB_NA, false}; 5671 case SPF_SMAX: 5672 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5673 Pred = ICmpInst::getSwappedPredicate(Pred); 5674 std::swap(CmpLHS, CmpRHS); 5675 } 5676 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5677 break; 5678 return {SPF_UNKNOWN, SPNB_NA, false}; 5679 case SPF_UMIN: 5680 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5681 Pred = ICmpInst::getSwappedPredicate(Pred); 5682 std::swap(CmpLHS, CmpRHS); 5683 } 5684 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5685 break; 5686 return {SPF_UNKNOWN, SPNB_NA, false}; 5687 case SPF_UMAX: 5688 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5689 Pred = ICmpInst::getSwappedPredicate(Pred); 5690 std::swap(CmpLHS, CmpRHS); 5691 } 5692 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5693 break; 5694 return {SPF_UNKNOWN, SPNB_NA, false}; 5695 default: 5696 return {SPF_UNKNOWN, SPNB_NA, false}; 5697 } 5698 5699 // If there is a common operand in the already matched min/max and the other 5700 // min/max operands match the compare operands (either directly or inverted), 5701 // then this is min/max of the same flavor. 5702 5703 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5704 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5705 if (D == B) { 5706 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5707 match(A, m_Not(m_Specific(CmpRHS))))) 5708 return {L.Flavor, SPNB_NA, false}; 5709 } 5710 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5711 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5712 if (C == B) { 5713 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5714 match(A, m_Not(m_Specific(CmpRHS))))) 5715 return {L.Flavor, SPNB_NA, false}; 5716 } 5717 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5718 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5719 if (D == A) { 5720 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5721 match(B, m_Not(m_Specific(CmpRHS))))) 5722 return {L.Flavor, SPNB_NA, false}; 5723 } 5724 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5725 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5726 if (C == A) { 5727 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5728 match(B, m_Not(m_Specific(CmpRHS))))) 5729 return {L.Flavor, SPNB_NA, false}; 5730 } 5731 5732 return {SPF_UNKNOWN, SPNB_NA, false}; 5733 } 5734 5735 /// If the input value is the result of a 'not' op, constant integer, or vector 5736 /// splat of a constant integer, return the bitwise-not source value. 5737 /// TODO: This could be extended to handle non-splat vector integer constants. 5738 static Value *getNotValue(Value *V) { 5739 Value *NotV; 5740 if (match(V, m_Not(m_Value(NotV)))) 5741 return NotV; 5742 5743 const APInt *C; 5744 if (match(V, m_APInt(C))) 5745 return ConstantInt::get(V->getType(), ~(*C)); 5746 5747 return nullptr; 5748 } 5749 5750 /// Match non-obvious integer minimum and maximum sequences. 5751 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5752 Value *CmpLHS, Value *CmpRHS, 5753 Value *TrueVal, Value *FalseVal, 5754 Value *&LHS, Value *&RHS, 5755 unsigned Depth) { 5756 // Assume success. If there's no match, callers should not use these anyway. 5757 LHS = TrueVal; 5758 RHS = FalseVal; 5759 5760 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5761 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5762 return SPR; 5763 5764 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5765 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5766 return SPR; 5767 5768 // Look through 'not' ops to find disguised min/max. 5769 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5770 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5771 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5772 switch (Pred) { 5773 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5774 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5775 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5776 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5777 default: break; 5778 } 5779 } 5780 5781 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5782 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5783 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5784 switch (Pred) { 5785 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5786 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5787 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5788 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5789 default: break; 5790 } 5791 } 5792 5793 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5794 return {SPF_UNKNOWN, SPNB_NA, false}; 5795 5796 // Z = X -nsw Y 5797 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5798 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5799 if (match(TrueVal, m_Zero()) && 5800 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5801 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5802 5803 // Z = X -nsw Y 5804 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5805 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5806 if (match(FalseVal, m_Zero()) && 5807 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5808 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5809 5810 const APInt *C1; 5811 if (!match(CmpRHS, m_APInt(C1))) 5812 return {SPF_UNKNOWN, SPNB_NA, false}; 5813 5814 // An unsigned min/max can be written with a signed compare. 5815 const APInt *C2; 5816 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5817 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5818 // Is the sign bit set? 5819 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5820 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5821 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5822 C2->isMaxSignedValue()) 5823 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5824 5825 // Is the sign bit clear? 5826 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5827 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5828 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5829 C2->isMinSignedValue()) 5830 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5831 } 5832 5833 return {SPF_UNKNOWN, SPNB_NA, false}; 5834 } 5835 5836 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5837 assert(X && Y && "Invalid operand"); 5838 5839 // X = sub (0, Y) || X = sub nsw (0, Y) 5840 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5841 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5842 return true; 5843 5844 // Y = sub (0, X) || Y = sub nsw (0, X) 5845 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5846 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5847 return true; 5848 5849 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5850 Value *A, *B; 5851 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5852 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5853 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5854 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5855 } 5856 5857 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5858 FastMathFlags FMF, 5859 Value *CmpLHS, Value *CmpRHS, 5860 Value *TrueVal, Value *FalseVal, 5861 Value *&LHS, Value *&RHS, 5862 unsigned Depth) { 5863 if (CmpInst::isFPPredicate(Pred)) { 5864 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5865 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5866 // purpose of identifying min/max. Disregard vector constants with undefined 5867 // elements because those can not be back-propagated for analysis. 5868 Value *OutputZeroVal = nullptr; 5869 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5870 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5871 OutputZeroVal = TrueVal; 5872 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5873 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5874 OutputZeroVal = FalseVal; 5875 5876 if (OutputZeroVal) { 5877 if (match(CmpLHS, m_AnyZeroFP())) 5878 CmpLHS = OutputZeroVal; 5879 if (match(CmpRHS, m_AnyZeroFP())) 5880 CmpRHS = OutputZeroVal; 5881 } 5882 } 5883 5884 LHS = CmpLHS; 5885 RHS = CmpRHS; 5886 5887 // Signed zero may return inconsistent results between implementations. 5888 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5889 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5890 // Therefore, we behave conservatively and only proceed if at least one of the 5891 // operands is known to not be zero or if we don't care about signed zero. 5892 switch (Pred) { 5893 default: break; 5894 // FIXME: Include OGT/OLT/UGT/ULT. 5895 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5896 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5897 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5898 !isKnownNonZero(CmpRHS)) 5899 return {SPF_UNKNOWN, SPNB_NA, false}; 5900 } 5901 5902 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5903 bool Ordered = false; 5904 5905 // When given one NaN and one non-NaN input: 5906 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5907 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5908 // ordered comparison fails), which could be NaN or non-NaN. 5909 // so here we discover exactly what NaN behavior is required/accepted. 5910 if (CmpInst::isFPPredicate(Pred)) { 5911 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5912 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5913 5914 if (LHSSafe && RHSSafe) { 5915 // Both operands are known non-NaN. 5916 NaNBehavior = SPNB_RETURNS_ANY; 5917 } else if (CmpInst::isOrdered(Pred)) { 5918 // An ordered comparison will return false when given a NaN, so it 5919 // returns the RHS. 5920 Ordered = true; 5921 if (LHSSafe) 5922 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5923 NaNBehavior = SPNB_RETURNS_NAN; 5924 else if (RHSSafe) 5925 NaNBehavior = SPNB_RETURNS_OTHER; 5926 else 5927 // Completely unsafe. 5928 return {SPF_UNKNOWN, SPNB_NA, false}; 5929 } else { 5930 Ordered = false; 5931 // An unordered comparison will return true when given a NaN, so it 5932 // returns the LHS. 5933 if (LHSSafe) 5934 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5935 NaNBehavior = SPNB_RETURNS_OTHER; 5936 else if (RHSSafe) 5937 NaNBehavior = SPNB_RETURNS_NAN; 5938 else 5939 // Completely unsafe. 5940 return {SPF_UNKNOWN, SPNB_NA, false}; 5941 } 5942 } 5943 5944 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5945 std::swap(CmpLHS, CmpRHS); 5946 Pred = CmpInst::getSwappedPredicate(Pred); 5947 if (NaNBehavior == SPNB_RETURNS_NAN) 5948 NaNBehavior = SPNB_RETURNS_OTHER; 5949 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5950 NaNBehavior = SPNB_RETURNS_NAN; 5951 Ordered = !Ordered; 5952 } 5953 5954 // ([if]cmp X, Y) ? X : Y 5955 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5956 switch (Pred) { 5957 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5958 case ICmpInst::ICMP_UGT: 5959 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5960 case ICmpInst::ICMP_SGT: 5961 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5962 case ICmpInst::ICMP_ULT: 5963 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5964 case ICmpInst::ICMP_SLT: 5965 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5966 case FCmpInst::FCMP_UGT: 5967 case FCmpInst::FCMP_UGE: 5968 case FCmpInst::FCMP_OGT: 5969 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5970 case FCmpInst::FCMP_ULT: 5971 case FCmpInst::FCMP_ULE: 5972 case FCmpInst::FCMP_OLT: 5973 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5974 } 5975 } 5976 5977 if (isKnownNegation(TrueVal, FalseVal)) { 5978 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5979 // match against either LHS or sext(LHS). 5980 auto MaybeSExtCmpLHS = 5981 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5982 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5983 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5984 if (match(TrueVal, MaybeSExtCmpLHS)) { 5985 // Set the return values. If the compare uses the negated value (-X >s 0), 5986 // swap the return values because the negated value is always 'RHS'. 5987 LHS = TrueVal; 5988 RHS = FalseVal; 5989 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5990 std::swap(LHS, RHS); 5991 5992 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5993 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5994 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5995 return {SPF_ABS, SPNB_NA, false}; 5996 5997 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5998 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5999 return {SPF_ABS, SPNB_NA, false}; 6000 6001 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6002 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6003 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6004 return {SPF_NABS, SPNB_NA, false}; 6005 } 6006 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6007 // Set the return values. If the compare uses the negated value (-X >s 0), 6008 // swap the return values because the negated value is always 'RHS'. 6009 LHS = FalseVal; 6010 RHS = TrueVal; 6011 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6012 std::swap(LHS, RHS); 6013 6014 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6015 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6016 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6017 return {SPF_NABS, SPNB_NA, false}; 6018 6019 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6020 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6021 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6022 return {SPF_ABS, SPNB_NA, false}; 6023 } 6024 } 6025 6026 if (CmpInst::isIntPredicate(Pred)) 6027 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6028 6029 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6030 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6031 // semantics than minNum. Be conservative in such case. 6032 if (NaNBehavior != SPNB_RETURNS_ANY || 6033 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6034 !isKnownNonZero(CmpRHS))) 6035 return {SPF_UNKNOWN, SPNB_NA, false}; 6036 6037 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6038 } 6039 6040 /// Helps to match a select pattern in case of a type mismatch. 6041 /// 6042 /// The function processes the case when type of true and false values of a 6043 /// select instruction differs from type of the cmp instruction operands because 6044 /// of a cast instruction. The function checks if it is legal to move the cast 6045 /// operation after "select". If yes, it returns the new second value of 6046 /// "select" (with the assumption that cast is moved): 6047 /// 1. As operand of cast instruction when both values of "select" are same cast 6048 /// instructions. 6049 /// 2. As restored constant (by applying reverse cast operation) when the first 6050 /// value of the "select" is a cast operation and the second value is a 6051 /// constant. 6052 /// NOTE: We return only the new second value because the first value could be 6053 /// accessed as operand of cast instruction. 6054 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6055 Instruction::CastOps *CastOp) { 6056 auto *Cast1 = dyn_cast<CastInst>(V1); 6057 if (!Cast1) 6058 return nullptr; 6059 6060 *CastOp = Cast1->getOpcode(); 6061 Type *SrcTy = Cast1->getSrcTy(); 6062 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6063 // If V1 and V2 are both the same cast from the same type, look through V1. 6064 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6065 return Cast2->getOperand(0); 6066 return nullptr; 6067 } 6068 6069 auto *C = dyn_cast<Constant>(V2); 6070 if (!C) 6071 return nullptr; 6072 6073 Constant *CastedTo = nullptr; 6074 switch (*CastOp) { 6075 case Instruction::ZExt: 6076 if (CmpI->isUnsigned()) 6077 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6078 break; 6079 case Instruction::SExt: 6080 if (CmpI->isSigned()) 6081 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6082 break; 6083 case Instruction::Trunc: 6084 Constant *CmpConst; 6085 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6086 CmpConst->getType() == SrcTy) { 6087 // Here we have the following case: 6088 // 6089 // %cond = cmp iN %x, CmpConst 6090 // %tr = trunc iN %x to iK 6091 // %narrowsel = select i1 %cond, iK %t, iK C 6092 // 6093 // We can always move trunc after select operation: 6094 // 6095 // %cond = cmp iN %x, CmpConst 6096 // %widesel = select i1 %cond, iN %x, iN CmpConst 6097 // %tr = trunc iN %widesel to iK 6098 // 6099 // Note that C could be extended in any way because we don't care about 6100 // upper bits after truncation. It can't be abs pattern, because it would 6101 // look like: 6102 // 6103 // select i1 %cond, x, -x. 6104 // 6105 // So only min/max pattern could be matched. Such match requires widened C 6106 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6107 // CmpConst == C is checked below. 6108 CastedTo = CmpConst; 6109 } else { 6110 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6111 } 6112 break; 6113 case Instruction::FPTrunc: 6114 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6115 break; 6116 case Instruction::FPExt: 6117 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6118 break; 6119 case Instruction::FPToUI: 6120 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6121 break; 6122 case Instruction::FPToSI: 6123 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6124 break; 6125 case Instruction::UIToFP: 6126 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6127 break; 6128 case Instruction::SIToFP: 6129 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6130 break; 6131 default: 6132 break; 6133 } 6134 6135 if (!CastedTo) 6136 return nullptr; 6137 6138 // Make sure the cast doesn't lose any information. 6139 Constant *CastedBack = 6140 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6141 if (CastedBack != C) 6142 return nullptr; 6143 6144 return CastedTo; 6145 } 6146 6147 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6148 Instruction::CastOps *CastOp, 6149 unsigned Depth) { 6150 if (Depth >= MaxAnalysisRecursionDepth) 6151 return {SPF_UNKNOWN, SPNB_NA, false}; 6152 6153 SelectInst *SI = dyn_cast<SelectInst>(V); 6154 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6155 6156 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6157 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6158 6159 Value *TrueVal = SI->getTrueValue(); 6160 Value *FalseVal = SI->getFalseValue(); 6161 6162 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6163 CastOp, Depth); 6164 } 6165 6166 SelectPatternResult llvm::matchDecomposedSelectPattern( 6167 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6168 Instruction::CastOps *CastOp, unsigned Depth) { 6169 CmpInst::Predicate Pred = CmpI->getPredicate(); 6170 Value *CmpLHS = CmpI->getOperand(0); 6171 Value *CmpRHS = CmpI->getOperand(1); 6172 FastMathFlags FMF; 6173 if (isa<FPMathOperator>(CmpI)) 6174 FMF = CmpI->getFastMathFlags(); 6175 6176 // Bail out early. 6177 if (CmpI->isEquality()) 6178 return {SPF_UNKNOWN, SPNB_NA, false}; 6179 6180 // Deal with type mismatches. 6181 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6182 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6183 // If this is a potential fmin/fmax with a cast to integer, then ignore 6184 // -0.0 because there is no corresponding integer value. 6185 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6186 FMF.setNoSignedZeros(); 6187 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6188 cast<CastInst>(TrueVal)->getOperand(0), C, 6189 LHS, RHS, Depth); 6190 } 6191 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6192 // If this is a potential fmin/fmax with a cast to integer, then ignore 6193 // -0.0 because there is no corresponding integer value. 6194 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6195 FMF.setNoSignedZeros(); 6196 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6197 C, cast<CastInst>(FalseVal)->getOperand(0), 6198 LHS, RHS, Depth); 6199 } 6200 } 6201 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6202 LHS, RHS, Depth); 6203 } 6204 6205 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6206 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6207 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6208 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6209 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6210 if (SPF == SPF_FMINNUM) 6211 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6212 if (SPF == SPF_FMAXNUM) 6213 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6214 llvm_unreachable("unhandled!"); 6215 } 6216 6217 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6218 if (SPF == SPF_SMIN) return SPF_SMAX; 6219 if (SPF == SPF_UMIN) return SPF_UMAX; 6220 if (SPF == SPF_SMAX) return SPF_SMIN; 6221 if (SPF == SPF_UMAX) return SPF_UMIN; 6222 llvm_unreachable("unhandled!"); 6223 } 6224 6225 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6226 switch (MinMaxID) { 6227 case Intrinsic::smax: return Intrinsic::smin; 6228 case Intrinsic::smin: return Intrinsic::smax; 6229 case Intrinsic::umax: return Intrinsic::umin; 6230 case Intrinsic::umin: return Intrinsic::umax; 6231 default: llvm_unreachable("Unexpected intrinsic"); 6232 } 6233 } 6234 6235 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6236 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6237 } 6238 6239 std::pair<Intrinsic::ID, bool> 6240 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6241 // Check if VL contains select instructions that can be folded into a min/max 6242 // vector intrinsic and return the intrinsic if it is possible. 6243 // TODO: Support floating point min/max. 6244 bool AllCmpSingleUse = true; 6245 SelectPatternResult SelectPattern; 6246 SelectPattern.Flavor = SPF_UNKNOWN; 6247 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6248 Value *LHS, *RHS; 6249 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6250 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6251 CurrentPattern.Flavor == SPF_FMINNUM || 6252 CurrentPattern.Flavor == SPF_FMAXNUM || 6253 !I->getType()->isIntOrIntVectorTy()) 6254 return false; 6255 if (SelectPattern.Flavor != SPF_UNKNOWN && 6256 SelectPattern.Flavor != CurrentPattern.Flavor) 6257 return false; 6258 SelectPattern = CurrentPattern; 6259 AllCmpSingleUse &= 6260 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6261 return true; 6262 })) { 6263 switch (SelectPattern.Flavor) { 6264 case SPF_SMIN: 6265 return {Intrinsic::smin, AllCmpSingleUse}; 6266 case SPF_UMIN: 6267 return {Intrinsic::umin, AllCmpSingleUse}; 6268 case SPF_SMAX: 6269 return {Intrinsic::smax, AllCmpSingleUse}; 6270 case SPF_UMAX: 6271 return {Intrinsic::umax, AllCmpSingleUse}; 6272 default: 6273 llvm_unreachable("unexpected select pattern flavor"); 6274 } 6275 } 6276 return {Intrinsic::not_intrinsic, false}; 6277 } 6278 6279 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6280 Value *&Start, Value *&Step) { 6281 // Handle the case of a simple two-predecessor recurrence PHI. 6282 // There's a lot more that could theoretically be done here, but 6283 // this is sufficient to catch some interesting cases. 6284 if (P->getNumIncomingValues() != 2) 6285 return false; 6286 6287 for (unsigned i = 0; i != 2; ++i) { 6288 Value *L = P->getIncomingValue(i); 6289 Value *R = P->getIncomingValue(!i); 6290 Operator *LU = dyn_cast<Operator>(L); 6291 if (!LU) 6292 continue; 6293 unsigned Opcode = LU->getOpcode(); 6294 6295 switch (Opcode) { 6296 default: 6297 continue; 6298 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6299 case Instruction::LShr: 6300 case Instruction::AShr: 6301 case Instruction::Shl: 6302 case Instruction::Add: 6303 case Instruction::Sub: 6304 case Instruction::And: 6305 case Instruction::Or: 6306 case Instruction::Mul: { 6307 Value *LL = LU->getOperand(0); 6308 Value *LR = LU->getOperand(1); 6309 // Find a recurrence. 6310 if (LL == P) 6311 L = LR; 6312 else if (LR == P) 6313 L = LL; 6314 else 6315 continue; // Check for recurrence with L and R flipped. 6316 6317 break; // Match! 6318 } 6319 }; 6320 6321 // We have matched a recurrence of the form: 6322 // %iv = [R, %entry], [%iv.next, %backedge] 6323 // %iv.next = binop %iv, L 6324 // OR 6325 // %iv = [R, %entry], [%iv.next, %backedge] 6326 // %iv.next = binop L, %iv 6327 BO = cast<BinaryOperator>(LU); 6328 Start = R; 6329 Step = L; 6330 return true; 6331 } 6332 return false; 6333 } 6334 6335 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6336 Value *&Start, Value *&Step) { 6337 BinaryOperator *BO = nullptr; 6338 P = dyn_cast<PHINode>(I->getOperand(0)); 6339 if (!P) 6340 P = dyn_cast<PHINode>(I->getOperand(1)); 6341 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6342 } 6343 6344 /// Return true if "icmp Pred LHS RHS" is always true. 6345 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6346 const Value *RHS, const DataLayout &DL, 6347 unsigned Depth) { 6348 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6349 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6350 return true; 6351 6352 switch (Pred) { 6353 default: 6354 return false; 6355 6356 case CmpInst::ICMP_SLE: { 6357 const APInt *C; 6358 6359 // LHS s<= LHS +_{nsw} C if C >= 0 6360 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6361 return !C->isNegative(); 6362 return false; 6363 } 6364 6365 case CmpInst::ICMP_ULE: { 6366 const APInt *C; 6367 6368 // LHS u<= LHS +_{nuw} C for any C 6369 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6370 return true; 6371 6372 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6373 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6374 const Value *&X, 6375 const APInt *&CA, const APInt *&CB) { 6376 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6377 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6378 return true; 6379 6380 // If X & C == 0 then (X | C) == X +_{nuw} C 6381 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6382 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6383 KnownBits Known(CA->getBitWidth()); 6384 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6385 /*CxtI*/ nullptr, /*DT*/ nullptr); 6386 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6387 return true; 6388 } 6389 6390 return false; 6391 }; 6392 6393 const Value *X; 6394 const APInt *CLHS, *CRHS; 6395 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6396 return CLHS->ule(*CRHS); 6397 6398 return false; 6399 } 6400 } 6401 } 6402 6403 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6404 /// ALHS ARHS" is true. Otherwise, return None. 6405 static Optional<bool> 6406 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6407 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6408 const DataLayout &DL, unsigned Depth) { 6409 switch (Pred) { 6410 default: 6411 return None; 6412 6413 case CmpInst::ICMP_SLT: 6414 case CmpInst::ICMP_SLE: 6415 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6416 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6417 return true; 6418 return None; 6419 6420 case CmpInst::ICMP_ULT: 6421 case CmpInst::ICMP_ULE: 6422 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6423 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6424 return true; 6425 return None; 6426 } 6427 } 6428 6429 /// Return true if the operands of the two compares match. IsSwappedOps is true 6430 /// when the operands match, but are swapped. 6431 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6432 const Value *BLHS, const Value *BRHS, 6433 bool &IsSwappedOps) { 6434 6435 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6436 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6437 return IsMatchingOps || IsSwappedOps; 6438 } 6439 6440 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6441 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6442 /// Otherwise, return None if we can't infer anything. 6443 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6444 CmpInst::Predicate BPred, 6445 bool AreSwappedOps) { 6446 // Canonicalize the predicate as if the operands were not commuted. 6447 if (AreSwappedOps) 6448 BPred = ICmpInst::getSwappedPredicate(BPred); 6449 6450 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6451 return true; 6452 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6453 return false; 6454 6455 return None; 6456 } 6457 6458 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6459 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6460 /// Otherwise, return None if we can't infer anything. 6461 static Optional<bool> 6462 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6463 const ConstantInt *C1, 6464 CmpInst::Predicate BPred, 6465 const ConstantInt *C2) { 6466 ConstantRange DomCR = 6467 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6468 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6469 ConstantRange Intersection = DomCR.intersectWith(CR); 6470 ConstantRange Difference = DomCR.difference(CR); 6471 if (Intersection.isEmptySet()) 6472 return false; 6473 if (Difference.isEmptySet()) 6474 return true; 6475 return None; 6476 } 6477 6478 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6479 /// false. Otherwise, return None if we can't infer anything. 6480 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6481 CmpInst::Predicate BPred, 6482 const Value *BLHS, const Value *BRHS, 6483 const DataLayout &DL, bool LHSIsTrue, 6484 unsigned Depth) { 6485 Value *ALHS = LHS->getOperand(0); 6486 Value *ARHS = LHS->getOperand(1); 6487 6488 // The rest of the logic assumes the LHS condition is true. If that's not the 6489 // case, invert the predicate to make it so. 6490 CmpInst::Predicate APred = 6491 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6492 6493 // Can we infer anything when the two compares have matching operands? 6494 bool AreSwappedOps; 6495 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6496 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6497 APred, BPred, AreSwappedOps)) 6498 return Implication; 6499 // No amount of additional analysis will infer the second condition, so 6500 // early exit. 6501 return None; 6502 } 6503 6504 // Can we infer anything when the LHS operands match and the RHS operands are 6505 // constants (not necessarily matching)? 6506 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6507 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6508 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6509 return Implication; 6510 // No amount of additional analysis will infer the second condition, so 6511 // early exit. 6512 return None; 6513 } 6514 6515 if (APred == BPred) 6516 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6517 return None; 6518 } 6519 6520 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6521 /// false. Otherwise, return None if we can't infer anything. We expect the 6522 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6523 static Optional<bool> 6524 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6525 const Value *RHSOp0, const Value *RHSOp1, 6526 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6527 // The LHS must be an 'or', 'and', or a 'select' instruction. 6528 assert((LHS->getOpcode() == Instruction::And || 6529 LHS->getOpcode() == Instruction::Or || 6530 LHS->getOpcode() == Instruction::Select) && 6531 "Expected LHS to be 'and', 'or', or 'select'."); 6532 6533 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6534 6535 // If the result of an 'or' is false, then we know both legs of the 'or' are 6536 // false. Similarly, if the result of an 'and' is true, then we know both 6537 // legs of the 'and' are true. 6538 const Value *ALHS, *ARHS; 6539 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6540 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6541 // FIXME: Make this non-recursion. 6542 if (Optional<bool> Implication = isImpliedCondition( 6543 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6544 return Implication; 6545 if (Optional<bool> Implication = isImpliedCondition( 6546 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6547 return Implication; 6548 return None; 6549 } 6550 return None; 6551 } 6552 6553 Optional<bool> 6554 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6555 const Value *RHSOp0, const Value *RHSOp1, 6556 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6557 // Bail out when we hit the limit. 6558 if (Depth == MaxAnalysisRecursionDepth) 6559 return None; 6560 6561 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6562 // example. 6563 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6564 return None; 6565 6566 Type *OpTy = LHS->getType(); 6567 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6568 6569 // FIXME: Extending the code below to handle vectors. 6570 if (OpTy->isVectorTy()) 6571 return None; 6572 6573 assert(OpTy->isIntegerTy(1) && "implied by above"); 6574 6575 // Both LHS and RHS are icmps. 6576 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6577 if (LHSCmp) 6578 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6579 Depth); 6580 6581 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6582 /// the RHS to be an icmp. 6583 /// FIXME: Add support for and/or/select on the RHS. 6584 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6585 if ((LHSI->getOpcode() == Instruction::And || 6586 LHSI->getOpcode() == Instruction::Or || 6587 LHSI->getOpcode() == Instruction::Select)) 6588 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6589 Depth); 6590 } 6591 return None; 6592 } 6593 6594 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6595 const DataLayout &DL, bool LHSIsTrue, 6596 unsigned Depth) { 6597 // LHS ==> RHS by definition 6598 if (LHS == RHS) 6599 return LHSIsTrue; 6600 6601 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6602 if (RHSCmp) 6603 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6604 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6605 LHSIsTrue, Depth); 6606 return None; 6607 } 6608 6609 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6610 // condition dominating ContextI or nullptr, if no condition is found. 6611 static std::pair<Value *, bool> 6612 getDomPredecessorCondition(const Instruction *ContextI) { 6613 if (!ContextI || !ContextI->getParent()) 6614 return {nullptr, false}; 6615 6616 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6617 // dominator tree (eg, from a SimplifyQuery) instead? 6618 const BasicBlock *ContextBB = ContextI->getParent(); 6619 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6620 if (!PredBB) 6621 return {nullptr, false}; 6622 6623 // We need a conditional branch in the predecessor. 6624 Value *PredCond; 6625 BasicBlock *TrueBB, *FalseBB; 6626 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6627 return {nullptr, false}; 6628 6629 // The branch should get simplified. Don't bother simplifying this condition. 6630 if (TrueBB == FalseBB) 6631 return {nullptr, false}; 6632 6633 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6634 "Predecessor block does not point to successor?"); 6635 6636 // Is this condition implied by the predecessor condition? 6637 return {PredCond, TrueBB == ContextBB}; 6638 } 6639 6640 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6641 const Instruction *ContextI, 6642 const DataLayout &DL) { 6643 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6644 auto PredCond = getDomPredecessorCondition(ContextI); 6645 if (PredCond.first) 6646 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6647 return None; 6648 } 6649 6650 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6651 const Value *LHS, const Value *RHS, 6652 const Instruction *ContextI, 6653 const DataLayout &DL) { 6654 auto PredCond = getDomPredecessorCondition(ContextI); 6655 if (PredCond.first) 6656 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6657 PredCond.second); 6658 return None; 6659 } 6660 6661 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6662 APInt &Upper, const InstrInfoQuery &IIQ) { 6663 unsigned Width = Lower.getBitWidth(); 6664 const APInt *C; 6665 switch (BO.getOpcode()) { 6666 case Instruction::Add: 6667 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6668 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6669 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6670 // 'add nuw x, C' produces [C, UINT_MAX]. 6671 Lower = *C; 6672 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6673 if (C->isNegative()) { 6674 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6675 Lower = APInt::getSignedMinValue(Width); 6676 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6677 } else { 6678 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6679 Lower = APInt::getSignedMinValue(Width) + *C; 6680 Upper = APInt::getSignedMaxValue(Width) + 1; 6681 } 6682 } 6683 } 6684 break; 6685 6686 case Instruction::And: 6687 if (match(BO.getOperand(1), m_APInt(C))) 6688 // 'and x, C' produces [0, C]. 6689 Upper = *C + 1; 6690 break; 6691 6692 case Instruction::Or: 6693 if (match(BO.getOperand(1), m_APInt(C))) 6694 // 'or x, C' produces [C, UINT_MAX]. 6695 Lower = *C; 6696 break; 6697 6698 case Instruction::AShr: 6699 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6700 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6701 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6702 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6703 } else if (match(BO.getOperand(0), m_APInt(C))) { 6704 unsigned ShiftAmount = Width - 1; 6705 if (!C->isNullValue() && IIQ.isExact(&BO)) 6706 ShiftAmount = C->countTrailingZeros(); 6707 if (C->isNegative()) { 6708 // 'ashr C, x' produces [C, C >> (Width-1)] 6709 Lower = *C; 6710 Upper = C->ashr(ShiftAmount) + 1; 6711 } else { 6712 // 'ashr C, x' produces [C >> (Width-1), C] 6713 Lower = C->ashr(ShiftAmount); 6714 Upper = *C + 1; 6715 } 6716 } 6717 break; 6718 6719 case Instruction::LShr: 6720 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6721 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6722 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6723 } else if (match(BO.getOperand(0), m_APInt(C))) { 6724 // 'lshr C, x' produces [C >> (Width-1), C]. 6725 unsigned ShiftAmount = Width - 1; 6726 if (!C->isNullValue() && IIQ.isExact(&BO)) 6727 ShiftAmount = C->countTrailingZeros(); 6728 Lower = C->lshr(ShiftAmount); 6729 Upper = *C + 1; 6730 } 6731 break; 6732 6733 case Instruction::Shl: 6734 if (match(BO.getOperand(0), m_APInt(C))) { 6735 if (IIQ.hasNoUnsignedWrap(&BO)) { 6736 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6737 Lower = *C; 6738 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6739 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6740 if (C->isNegative()) { 6741 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6742 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6743 Lower = C->shl(ShiftAmount); 6744 Upper = *C + 1; 6745 } else { 6746 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6747 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6748 Lower = *C; 6749 Upper = C->shl(ShiftAmount) + 1; 6750 } 6751 } 6752 } 6753 break; 6754 6755 case Instruction::SDiv: 6756 if (match(BO.getOperand(1), m_APInt(C))) { 6757 APInt IntMin = APInt::getSignedMinValue(Width); 6758 APInt IntMax = APInt::getSignedMaxValue(Width); 6759 if (C->isAllOnesValue()) { 6760 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6761 // where C != -1 and C != 0 and C != 1 6762 Lower = IntMin + 1; 6763 Upper = IntMax + 1; 6764 } else if (C->countLeadingZeros() < Width - 1) { 6765 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6766 // where C != -1 and C != 0 and C != 1 6767 Lower = IntMin.sdiv(*C); 6768 Upper = IntMax.sdiv(*C); 6769 if (Lower.sgt(Upper)) 6770 std::swap(Lower, Upper); 6771 Upper = Upper + 1; 6772 assert(Upper != Lower && "Upper part of range has wrapped!"); 6773 } 6774 } else if (match(BO.getOperand(0), m_APInt(C))) { 6775 if (C->isMinSignedValue()) { 6776 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6777 Lower = *C; 6778 Upper = Lower.lshr(1) + 1; 6779 } else { 6780 // 'sdiv C, x' produces [-|C|, |C|]. 6781 Upper = C->abs() + 1; 6782 Lower = (-Upper) + 1; 6783 } 6784 } 6785 break; 6786 6787 case Instruction::UDiv: 6788 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6789 // 'udiv x, C' produces [0, UINT_MAX / C]. 6790 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6791 } else if (match(BO.getOperand(0), m_APInt(C))) { 6792 // 'udiv C, x' produces [0, C]. 6793 Upper = *C + 1; 6794 } 6795 break; 6796 6797 case Instruction::SRem: 6798 if (match(BO.getOperand(1), m_APInt(C))) { 6799 // 'srem x, C' produces (-|C|, |C|). 6800 Upper = C->abs(); 6801 Lower = (-Upper) + 1; 6802 } 6803 break; 6804 6805 case Instruction::URem: 6806 if (match(BO.getOperand(1), m_APInt(C))) 6807 // 'urem x, C' produces [0, C). 6808 Upper = *C; 6809 break; 6810 6811 default: 6812 break; 6813 } 6814 } 6815 6816 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6817 APInt &Upper) { 6818 unsigned Width = Lower.getBitWidth(); 6819 const APInt *C; 6820 switch (II.getIntrinsicID()) { 6821 case Intrinsic::ctpop: 6822 case Intrinsic::ctlz: 6823 case Intrinsic::cttz: 6824 // Maximum of set/clear bits is the bit width. 6825 assert(Lower == 0 && "Expected lower bound to be zero"); 6826 Upper = Width + 1; 6827 break; 6828 case Intrinsic::uadd_sat: 6829 // uadd.sat(x, C) produces [C, UINT_MAX]. 6830 if (match(II.getOperand(0), m_APInt(C)) || 6831 match(II.getOperand(1), m_APInt(C))) 6832 Lower = *C; 6833 break; 6834 case Intrinsic::sadd_sat: 6835 if (match(II.getOperand(0), m_APInt(C)) || 6836 match(II.getOperand(1), m_APInt(C))) { 6837 if (C->isNegative()) { 6838 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6839 Lower = APInt::getSignedMinValue(Width); 6840 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6841 } else { 6842 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6843 Lower = APInt::getSignedMinValue(Width) + *C; 6844 Upper = APInt::getSignedMaxValue(Width) + 1; 6845 } 6846 } 6847 break; 6848 case Intrinsic::usub_sat: 6849 // usub.sat(C, x) produces [0, C]. 6850 if (match(II.getOperand(0), m_APInt(C))) 6851 Upper = *C + 1; 6852 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6853 else if (match(II.getOperand(1), m_APInt(C))) 6854 Upper = APInt::getMaxValue(Width) - *C + 1; 6855 break; 6856 case Intrinsic::ssub_sat: 6857 if (match(II.getOperand(0), m_APInt(C))) { 6858 if (C->isNegative()) { 6859 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6860 Lower = APInt::getSignedMinValue(Width); 6861 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6862 } else { 6863 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6864 Lower = *C - APInt::getSignedMaxValue(Width); 6865 Upper = APInt::getSignedMaxValue(Width) + 1; 6866 } 6867 } else if (match(II.getOperand(1), m_APInt(C))) { 6868 if (C->isNegative()) { 6869 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6870 Lower = APInt::getSignedMinValue(Width) - *C; 6871 Upper = APInt::getSignedMaxValue(Width) + 1; 6872 } else { 6873 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6874 Lower = APInt::getSignedMinValue(Width); 6875 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6876 } 6877 } 6878 break; 6879 case Intrinsic::umin: 6880 case Intrinsic::umax: 6881 case Intrinsic::smin: 6882 case Intrinsic::smax: 6883 if (!match(II.getOperand(0), m_APInt(C)) && 6884 !match(II.getOperand(1), m_APInt(C))) 6885 break; 6886 6887 switch (II.getIntrinsicID()) { 6888 case Intrinsic::umin: 6889 Upper = *C + 1; 6890 break; 6891 case Intrinsic::umax: 6892 Lower = *C; 6893 break; 6894 case Intrinsic::smin: 6895 Lower = APInt::getSignedMinValue(Width); 6896 Upper = *C + 1; 6897 break; 6898 case Intrinsic::smax: 6899 Lower = *C; 6900 Upper = APInt::getSignedMaxValue(Width) + 1; 6901 break; 6902 default: 6903 llvm_unreachable("Must be min/max intrinsic"); 6904 } 6905 break; 6906 case Intrinsic::abs: 6907 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6908 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6909 if (match(II.getOperand(1), m_One())) 6910 Upper = APInt::getSignedMaxValue(Width) + 1; 6911 else 6912 Upper = APInt::getSignedMinValue(Width) + 1; 6913 break; 6914 default: 6915 break; 6916 } 6917 } 6918 6919 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6920 APInt &Upper, const InstrInfoQuery &IIQ) { 6921 const Value *LHS = nullptr, *RHS = nullptr; 6922 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6923 if (R.Flavor == SPF_UNKNOWN) 6924 return; 6925 6926 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6927 6928 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6929 // If the negation part of the abs (in RHS) has the NSW flag, 6930 // then the result of abs(X) is [0..SIGNED_MAX], 6931 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6932 Lower = APInt::getNullValue(BitWidth); 6933 if (match(RHS, m_Neg(m_Specific(LHS))) && 6934 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6935 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6936 else 6937 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6938 return; 6939 } 6940 6941 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6942 // The result of -abs(X) is <= 0. 6943 Lower = APInt::getSignedMinValue(BitWidth); 6944 Upper = APInt(BitWidth, 1); 6945 return; 6946 } 6947 6948 const APInt *C; 6949 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6950 return; 6951 6952 switch (R.Flavor) { 6953 case SPF_UMIN: 6954 Upper = *C + 1; 6955 break; 6956 case SPF_UMAX: 6957 Lower = *C; 6958 break; 6959 case SPF_SMIN: 6960 Lower = APInt::getSignedMinValue(BitWidth); 6961 Upper = *C + 1; 6962 break; 6963 case SPF_SMAX: 6964 Lower = *C; 6965 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6966 break; 6967 default: 6968 break; 6969 } 6970 } 6971 6972 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6973 AssumptionCache *AC, 6974 const Instruction *CtxI, 6975 unsigned Depth) { 6976 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6977 6978 if (Depth == MaxAnalysisRecursionDepth) 6979 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6980 6981 const APInt *C; 6982 if (match(V, m_APInt(C))) 6983 return ConstantRange(*C); 6984 6985 InstrInfoQuery IIQ(UseInstrInfo); 6986 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6987 APInt Lower = APInt(BitWidth, 0); 6988 APInt Upper = APInt(BitWidth, 0); 6989 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6990 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6991 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6992 setLimitsForIntrinsic(*II, Lower, Upper); 6993 else if (auto *SI = dyn_cast<SelectInst>(V)) 6994 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6995 6996 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6997 6998 if (auto *I = dyn_cast<Instruction>(V)) 6999 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7000 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7001 7002 if (CtxI && AC) { 7003 // Try to restrict the range based on information from assumptions. 7004 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7005 if (!AssumeVH) 7006 continue; 7007 CallInst *I = cast<CallInst>(AssumeVH); 7008 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7009 "Got assumption for the wrong function!"); 7010 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7011 "must be an assume intrinsic"); 7012 7013 if (!isValidAssumeForContext(I, CtxI, nullptr)) 7014 continue; 7015 Value *Arg = I->getArgOperand(0); 7016 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7017 // Currently we just use information from comparisons. 7018 if (!Cmp || Cmp->getOperand(0) != V) 7019 continue; 7020 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 7021 AC, I, Depth + 1); 7022 CR = CR.intersectWith( 7023 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 7024 } 7025 } 7026 7027 return CR; 7028 } 7029 7030 static Optional<int64_t> 7031 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7032 // Skip over the first indices. 7033 gep_type_iterator GTI = gep_type_begin(GEP); 7034 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7035 /*skip along*/; 7036 7037 // Compute the offset implied by the rest of the indices. 7038 int64_t Offset = 0; 7039 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7040 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7041 if (!OpC) 7042 return None; 7043 if (OpC->isZero()) 7044 continue; // No offset. 7045 7046 // Handle struct indices, which add their field offset to the pointer. 7047 if (StructType *STy = GTI.getStructTypeOrNull()) { 7048 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7049 continue; 7050 } 7051 7052 // Otherwise, we have a sequential type like an array or fixed-length 7053 // vector. Multiply the index by the ElementSize. 7054 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7055 if (Size.isScalable()) 7056 return None; 7057 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7058 } 7059 7060 return Offset; 7061 } 7062 7063 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7064 const DataLayout &DL) { 7065 Ptr1 = Ptr1->stripPointerCasts(); 7066 Ptr2 = Ptr2->stripPointerCasts(); 7067 7068 // Handle the trivial case first. 7069 if (Ptr1 == Ptr2) { 7070 return 0; 7071 } 7072 7073 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7074 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7075 7076 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7077 // as in "P" and "gep P, 1". 7078 // Also do this iteratively to handle the the following case: 7079 // Ptr_t1 = GEP Ptr1, c1 7080 // Ptr_t2 = GEP Ptr_t1, c2 7081 // Ptr2 = GEP Ptr_t2, c3 7082 // where we will return c1+c2+c3. 7083 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7084 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7085 // are the same, and return the difference between offsets. 7086 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7087 const Value *Ptr) -> Optional<int64_t> { 7088 const GEPOperator *GEP_T = GEP; 7089 int64_t OffsetVal = 0; 7090 bool HasSameBase = false; 7091 while (GEP_T) { 7092 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7093 if (!Offset) 7094 return None; 7095 OffsetVal += *Offset; 7096 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7097 if (Op0 == Ptr) { 7098 HasSameBase = true; 7099 break; 7100 } 7101 GEP_T = dyn_cast<GEPOperator>(Op0); 7102 } 7103 if (!HasSameBase) 7104 return None; 7105 return OffsetVal; 7106 }; 7107 7108 if (GEP1) { 7109 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7110 if (Offset) 7111 return -*Offset; 7112 } 7113 if (GEP2) { 7114 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7115 if (Offset) 7116 return Offset; 7117 } 7118 7119 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7120 // base. After that base, they may have some number of common (and 7121 // potentially variable) indices. After that they handle some constant 7122 // offset, which determines their offset from each other. At this point, we 7123 // handle no other case. 7124 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7125 return None; 7126 7127 // Skip any common indices and track the GEP types. 7128 unsigned Idx = 1; 7129 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7130 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7131 break; 7132 7133 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7134 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7135 if (!Offset1 || !Offset2) 7136 return None; 7137 return *Offset2 - *Offset1; 7138 } 7139