1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/ConstantRange.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/IntrinsicInst.h" 30 #include "llvm/IR/LLVMContext.h" 31 #include "llvm/IR/Metadata.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/MathExtras.h" 36 #include <cstring> 37 using namespace llvm; 38 using namespace llvm::PatternMatch; 39 40 const unsigned MaxDepth = 6; 41 42 /// Enable an experimental feature to leverage information about dominating 43 /// conditions to compute known bits. The individual options below control how 44 /// hard we search. The defaults are choosen to be fairly aggressive. If you 45 /// run into compile time problems when testing, scale them back and report 46 /// your findings. 47 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 48 cl::Hidden, cl::init(false)); 49 50 // This is expensive, so we only do it for the top level query value. 51 // (TODO: evaluate cost vs profit, consider higher thresholds) 52 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 53 cl::Hidden, cl::init(1)); 54 55 /// How many dominating blocks should be scanned looking for dominating 56 /// conditions? 57 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 58 cl::Hidden, 59 cl::init(20000)); 60 61 // Controls the number of uses of the value searched for possible 62 // dominating comparisons. 63 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 64 cl::Hidden, cl::init(2000)); 65 66 // If true, don't consider only compares whose only use is a branch. 67 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 68 cl::Hidden, cl::init(false)); 69 70 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 71 /// 0). For vector types, returns the element type's bitwidth. 72 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 73 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 74 return BitWidth; 75 76 return DL.getPointerTypeSizeInBits(Ty); 77 } 78 79 // Many of these functions have internal versions that take an assumption 80 // exclusion set. This is because of the potential for mutual recursion to 81 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 82 // classic case of this is assume(x = y), which will attempt to determine 83 // bits in x from bits in y, which will attempt to determine bits in y from 84 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 85 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 86 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 87 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 88 89 namespace { 90 // Simplifying using an assume can only be done in a particular control-flow 91 // context (the context instruction provides that context). If an assume and 92 // the context instruction are not in the same block then the DT helps in 93 // figuring out if we can use it. 94 struct Query { 95 ExclInvsSet ExclInvs; 96 AssumptionCache *AC; 97 const Instruction *CxtI; 98 const DominatorTree *DT; 99 100 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 101 const DominatorTree *DT = nullptr) 102 : AC(AC), CxtI(CxtI), DT(DT) {} 103 104 Query(const Query &Q, const Value *NewExcl) 105 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 106 ExclInvs.insert(NewExcl); 107 } 108 }; 109 } // end anonymous namespace 110 111 // Given the provided Value and, potentially, a context instruction, return 112 // the preferred context instruction (if any). 113 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 114 // If we've been provided with a context instruction, then use that (provided 115 // it has been inserted). 116 if (CxtI && CxtI->getParent()) 117 return CxtI; 118 119 // If the value is really an already-inserted instruction, then use that. 120 CxtI = dyn_cast<Instruction>(V); 121 if (CxtI && CxtI->getParent()) 122 return CxtI; 123 124 return nullptr; 125 } 126 127 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 128 const DataLayout &DL, unsigned Depth, 129 const Query &Q); 130 131 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 132 const DataLayout &DL, unsigned Depth, 133 AssumptionCache *AC, const Instruction *CxtI, 134 const DominatorTree *DT) { 135 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 136 Query(AC, safeCxtI(V, CxtI), DT)); 137 } 138 139 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 140 const DataLayout &DL, unsigned Depth, 141 const Query &Q); 142 143 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 144 const DataLayout &DL, unsigned Depth, 145 AssumptionCache *AC, const Instruction *CxtI, 146 const DominatorTree *DT) { 147 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 148 Query(AC, safeCxtI(V, CxtI), DT)); 149 } 150 151 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 152 const Query &Q, const DataLayout &DL); 153 154 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 155 unsigned Depth, AssumptionCache *AC, 156 const Instruction *CxtI, 157 const DominatorTree *DT) { 158 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 159 Query(AC, safeCxtI(V, CxtI), DT), DL); 160 } 161 162 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 163 const Query &Q); 164 165 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 169 } 170 171 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 172 unsigned Depth, const Query &Q); 173 174 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 175 unsigned Depth, AssumptionCache *AC, 176 const Instruction *CxtI, const DominatorTree *DT) { 177 return ::MaskedValueIsZero(V, Mask, DL, Depth, 178 Query(AC, safeCxtI(V, CxtI), DT)); 179 } 180 181 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 182 unsigned Depth, const Query &Q); 183 184 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 185 unsigned Depth, AssumptionCache *AC, 186 const Instruction *CxtI, 187 const DominatorTree *DT) { 188 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 189 } 190 191 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 192 APInt &KnownZero, APInt &KnownOne, 193 APInt &KnownZero2, APInt &KnownOne2, 194 const DataLayout &DL, unsigned Depth, 195 const Query &Q) { 196 if (!Add) { 197 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 198 // We know that the top bits of C-X are clear if X contains less bits 199 // than C (i.e. no wrap-around can happen). For example, 20-X is 200 // positive if we can prove that X is >= 0 and < 16. 201 if (!CLHS->getValue().isNegative()) { 202 unsigned BitWidth = KnownZero.getBitWidth(); 203 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 204 // NLZ can't be BitWidth with no sign bit 205 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 206 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 207 208 // If all of the MaskV bits are known to be zero, then we know the 209 // output top bits are zero, because we now know that the output is 210 // from [0-C]. 211 if ((KnownZero2 & MaskV) == MaskV) { 212 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 213 // Top bits known zero. 214 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 215 } 216 } 217 } 218 } 219 220 unsigned BitWidth = KnownZero.getBitWidth(); 221 222 // If an initial sequence of bits in the result is not needed, the 223 // corresponding bits in the operands are not needed. 224 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 225 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 226 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 227 228 // Carry in a 1 for a subtract, rather than a 0. 229 APInt CarryIn(BitWidth, 0); 230 if (!Add) { 231 // Sum = LHS + ~RHS + 1 232 std::swap(KnownZero2, KnownOne2); 233 CarryIn.setBit(0); 234 } 235 236 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 237 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 238 239 // Compute known bits of the carry. 240 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 241 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 242 243 // Compute set of known bits (where all three relevant bits are known). 244 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 245 APInt RHSKnown = KnownZero2 | KnownOne2; 246 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 247 APInt Known = LHSKnown & RHSKnown & CarryKnown; 248 249 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 250 "known bits of sum differ"); 251 252 // Compute known bits of the result. 253 KnownZero = ~PossibleSumOne & Known; 254 KnownOne = PossibleSumOne & Known; 255 256 // Are we still trying to solve for the sign bit? 257 if (!Known.isNegative()) { 258 if (NSW) { 259 // Adding two non-negative numbers, or subtracting a negative number from 260 // a non-negative one, can't wrap into negative. 261 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 262 KnownZero |= APInt::getSignBit(BitWidth); 263 // Adding two negative numbers, or subtracting a non-negative number from 264 // a negative one, can't wrap into non-negative. 265 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 266 KnownOne |= APInt::getSignBit(BitWidth); 267 } 268 } 269 } 270 271 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 272 APInt &KnownZero, APInt &KnownOne, 273 APInt &KnownZero2, APInt &KnownOne2, 274 const DataLayout &DL, unsigned Depth, 275 const Query &Q) { 276 unsigned BitWidth = KnownZero.getBitWidth(); 277 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 278 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 279 280 bool isKnownNegative = false; 281 bool isKnownNonNegative = false; 282 // If the multiplication is known not to overflow, compute the sign bit. 283 if (NSW) { 284 if (Op0 == Op1) { 285 // The product of a number with itself is non-negative. 286 isKnownNonNegative = true; 287 } else { 288 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 289 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 290 bool isKnownNegativeOp1 = KnownOne.isNegative(); 291 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 292 // The product of two numbers with the same sign is non-negative. 293 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 294 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 295 // The product of a negative number and a non-negative number is either 296 // negative or zero. 297 if (!isKnownNonNegative) 298 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 299 isKnownNonZero(Op0, DL, Depth, Q)) || 300 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 301 isKnownNonZero(Op1, DL, Depth, Q)); 302 } 303 } 304 305 // If low bits are zero in either operand, output low known-0 bits. 306 // Also compute a conserative estimate for high known-0 bits. 307 // More trickiness is possible, but this is sufficient for the 308 // interesting case of alignment computation. 309 KnownOne.clearAllBits(); 310 unsigned TrailZ = KnownZero.countTrailingOnes() + 311 KnownZero2.countTrailingOnes(); 312 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 313 KnownZero2.countLeadingOnes(), 314 BitWidth) - BitWidth; 315 316 TrailZ = std::min(TrailZ, BitWidth); 317 LeadZ = std::min(LeadZ, BitWidth); 318 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 319 APInt::getHighBitsSet(BitWidth, LeadZ); 320 321 // Only make use of no-wrap flags if we failed to compute the sign bit 322 // directly. This matters if the multiplication always overflows, in 323 // which case we prefer to follow the result of the direct computation, 324 // though as the program is invoking undefined behaviour we can choose 325 // whatever we like here. 326 if (isKnownNonNegative && !KnownOne.isNegative()) 327 KnownZero.setBit(BitWidth - 1); 328 else if (isKnownNegative && !KnownZero.isNegative()) 329 KnownOne.setBit(BitWidth - 1); 330 } 331 332 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 333 APInt &KnownZero) { 334 unsigned BitWidth = KnownZero.getBitWidth(); 335 unsigned NumRanges = Ranges.getNumOperands() / 2; 336 assert(NumRanges >= 1); 337 338 // Use the high end of the ranges to find leading zeros. 339 unsigned MinLeadingZeros = BitWidth; 340 for (unsigned i = 0; i < NumRanges; ++i) { 341 ConstantInt *Lower = 342 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 343 ConstantInt *Upper = 344 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 345 ConstantRange Range(Lower->getValue(), Upper->getValue()); 346 if (Range.isWrappedSet()) 347 MinLeadingZeros = 0; // -1 has no zeros 348 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 349 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 350 } 351 352 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 353 } 354 355 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 356 SmallVector<const Value *, 16> WorkSet(1, I); 357 SmallPtrSet<const Value *, 32> Visited; 358 SmallPtrSet<const Value *, 16> EphValues; 359 360 while (!WorkSet.empty()) { 361 const Value *V = WorkSet.pop_back_val(); 362 if (!Visited.insert(V).second) 363 continue; 364 365 // If all uses of this value are ephemeral, then so is this value. 366 bool FoundNEUse = false; 367 for (const User *I : V->users()) 368 if (!EphValues.count(I)) { 369 FoundNEUse = true; 370 break; 371 } 372 373 if (!FoundNEUse) { 374 if (V == E) 375 return true; 376 377 EphValues.insert(V); 378 if (const User *U = dyn_cast<User>(V)) 379 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 380 J != JE; ++J) { 381 if (isSafeToSpeculativelyExecute(*J)) 382 WorkSet.push_back(*J); 383 } 384 } 385 } 386 387 return false; 388 } 389 390 // Is this an intrinsic that cannot be speculated but also cannot trap? 391 static bool isAssumeLikeIntrinsic(const Instruction *I) { 392 if (const CallInst *CI = dyn_cast<CallInst>(I)) 393 if (Function *F = CI->getCalledFunction()) 394 switch (F->getIntrinsicID()) { 395 default: break; 396 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 397 case Intrinsic::assume: 398 case Intrinsic::dbg_declare: 399 case Intrinsic::dbg_value: 400 case Intrinsic::invariant_start: 401 case Intrinsic::invariant_end: 402 case Intrinsic::lifetime_start: 403 case Intrinsic::lifetime_end: 404 case Intrinsic::objectsize: 405 case Intrinsic::ptr_annotation: 406 case Intrinsic::var_annotation: 407 return true; 408 } 409 410 return false; 411 } 412 413 static bool isValidAssumeForContext(Value *V, const Query &Q) { 414 Instruction *Inv = cast<Instruction>(V); 415 416 // There are two restrictions on the use of an assume: 417 // 1. The assume must dominate the context (or the control flow must 418 // reach the assume whenever it reaches the context). 419 // 2. The context must not be in the assume's set of ephemeral values 420 // (otherwise we will use the assume to prove that the condition 421 // feeding the assume is trivially true, thus causing the removal of 422 // the assume). 423 424 if (Q.DT) { 425 if (Q.DT->dominates(Inv, Q.CxtI)) { 426 return true; 427 } else if (Inv->getParent() == Q.CxtI->getParent()) { 428 // The context comes first, but they're both in the same block. Make sure 429 // there is nothing in between that might interrupt the control flow. 430 for (BasicBlock::const_iterator I = 431 std::next(BasicBlock::const_iterator(Q.CxtI)), 432 IE(Inv); I != IE; ++I) 433 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 434 return false; 435 436 return !isEphemeralValueOf(Inv, Q.CxtI); 437 } 438 439 return false; 440 } 441 442 // When we don't have a DT, we do a limited search... 443 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 444 return true; 445 } else if (Inv->getParent() == Q.CxtI->getParent()) { 446 // Search forward from the assume until we reach the context (or the end 447 // of the block); the common case is that the assume will come first. 448 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 449 IE = Inv->getParent()->end(); I != IE; ++I) 450 if (I == Q.CxtI) 451 return true; 452 453 // The context must come first... 454 for (BasicBlock::const_iterator I = 455 std::next(BasicBlock::const_iterator(Q.CxtI)), 456 IE(Inv); I != IE; ++I) 457 if (!isSafeToSpeculativelyExecute(I) && !isAssumeLikeIntrinsic(I)) 458 return false; 459 460 return !isEphemeralValueOf(Inv, Q.CxtI); 461 } 462 463 return false; 464 } 465 466 bool llvm::isValidAssumeForContext(const Instruction *I, 467 const Instruction *CxtI, 468 const DominatorTree *DT) { 469 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 470 Query(nullptr, CxtI, DT)); 471 } 472 473 template<typename LHS, typename RHS> 474 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 475 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 476 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 477 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 478 } 479 480 template<typename LHS, typename RHS> 481 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 482 BinaryOp_match<RHS, LHS, Instruction::And>> 483 m_c_And(const LHS &L, const RHS &R) { 484 return m_CombineOr(m_And(L, R), m_And(R, L)); 485 } 486 487 template<typename LHS, typename RHS> 488 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 489 BinaryOp_match<RHS, LHS, Instruction::Or>> 490 m_c_Or(const LHS &L, const RHS &R) { 491 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 492 } 493 494 template<typename LHS, typename RHS> 495 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 496 BinaryOp_match<RHS, LHS, Instruction::Xor>> 497 m_c_Xor(const LHS &L, const RHS &R) { 498 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 499 } 500 501 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 502 /// true (at the context instruction.) This is mostly a utility function for 503 /// the prototype dominating conditions reasoning below. 504 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 505 APInt &KnownZero, 506 APInt &KnownOne, 507 const DataLayout &DL, 508 unsigned Depth, const Query &Q) { 509 Value *LHS = Cmp->getOperand(0); 510 Value *RHS = Cmp->getOperand(1); 511 // TODO: We could potentially be more aggressive here. This would be worth 512 // evaluating. If we can, explore commoning this code with the assume 513 // handling logic. 514 if (LHS != V && RHS != V) 515 return; 516 517 const unsigned BitWidth = KnownZero.getBitWidth(); 518 519 switch (Cmp->getPredicate()) { 520 default: 521 // We know nothing from this condition 522 break; 523 // TODO: implement unsigned bound from below (known one bits) 524 // TODO: common condition check implementations with assumes 525 // TODO: implement other patterns from assume (e.g. V & B == A) 526 case ICmpInst::ICMP_SGT: 527 if (LHS == V) { 528 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 529 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 530 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 531 // We know that the sign bit is zero. 532 KnownZero |= APInt::getSignBit(BitWidth); 533 } 534 } 535 break; 536 case ICmpInst::ICMP_EQ: 537 if (LHS == V) 538 computeKnownBits(RHS, KnownZero, KnownOne, DL, Depth + 1, Q); 539 else if (RHS == V) 540 computeKnownBits(LHS, KnownZero, KnownOne, DL, Depth + 1, Q); 541 else 542 llvm_unreachable("missing use?"); 543 break; 544 case ICmpInst::ICMP_ULE: 545 if (LHS == V) { 546 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 547 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 548 // The known zero bits carry over 549 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 550 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 551 } 552 break; 553 case ICmpInst::ICMP_ULT: 554 if (LHS == V) { 555 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 556 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 557 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 558 // power of 2, then one more). 559 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 560 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 561 SignBits++; 562 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 563 } 564 break; 565 }; 566 } 567 568 /// Compute known bits in 'V' from conditions which are known to be true along 569 /// all paths leading to the context instruction. In particular, look for 570 /// cases where one branch of an interesting condition dominates the context 571 /// instruction. This does not do general dataflow. 572 /// NOTE: This code is EXPERIMENTAL and currently off by default. 573 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 574 APInt &KnownOne, 575 const DataLayout &DL, 576 unsigned Depth, 577 const Query &Q) { 578 // Need both the dominator tree and the query location to do anything useful 579 if (!Q.DT || !Q.CxtI) 580 return; 581 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 582 583 // Avoid useless work 584 if (auto VI = dyn_cast<Instruction>(V)) 585 if (VI->getParent() == Cxt->getParent()) 586 return; 587 588 // Note: We currently implement two options. It's not clear which of these 589 // will survive long term, we need data for that. 590 // Option 1 - Try walking the dominator tree looking for conditions which 591 // might apply. This works well for local conditions (loop guards, etc..), 592 // but not as well for things far from the context instruction (presuming a 593 // low max blocks explored). If we can set an high enough limit, this would 594 // be all we need. 595 // Option 2 - We restrict out search to those conditions which are uses of 596 // the value we're interested in. This is independent of dom structure, 597 // but is slightly less powerful without looking through lots of use chains. 598 // It does handle conditions far from the context instruction (e.g. early 599 // function exits on entry) really well though. 600 601 // Option 1 - Search the dom tree 602 unsigned NumBlocksExplored = 0; 603 BasicBlock *Current = Cxt->getParent(); 604 while (true) { 605 // Stop searching if we've gone too far up the chain 606 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 607 break; 608 NumBlocksExplored++; 609 610 if (!Q.DT->getNode(Current)->getIDom()) 611 break; 612 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 613 if (!Current) 614 // found function entry 615 break; 616 617 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 618 if (!BI || BI->isUnconditional()) 619 continue; 620 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 621 if (!Cmp) 622 continue; 623 624 // We're looking for conditions that are guaranteed to hold at the context 625 // instruction. Finding a condition where one path dominates the context 626 // isn't enough because both the true and false cases could merge before 627 // the context instruction we're actually interested in. Instead, we need 628 // to ensure that the taken *edge* dominates the context instruction. 629 BasicBlock *BB0 = BI->getSuccessor(0); 630 BasicBlockEdge Edge(BI->getParent(), BB0); 631 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 632 continue; 633 634 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 635 Q); 636 } 637 638 // Option 2 - Search the other uses of V 639 unsigned NumUsesExplored = 0; 640 for (auto U : V->users()) { 641 // Avoid massive lists 642 if (NumUsesExplored >= DomConditionsMaxUses) 643 break; 644 NumUsesExplored++; 645 // Consider only compare instructions uniquely controlling a branch 646 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 647 if (!Cmp) 648 continue; 649 650 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 651 continue; 652 653 for (auto *CmpU : Cmp->users()) { 654 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 655 if (!BI || BI->isUnconditional()) 656 continue; 657 // We're looking for conditions that are guaranteed to hold at the 658 // context instruction. Finding a condition where one path dominates 659 // the context isn't enough because both the true and false cases could 660 // merge before the context instruction we're actually interested in. 661 // Instead, we need to ensure that the taken *edge* dominates the context 662 // instruction. 663 BasicBlock *BB0 = BI->getSuccessor(0); 664 BasicBlockEdge Edge(BI->getParent(), BB0); 665 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 666 continue; 667 668 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 669 Q); 670 } 671 } 672 } 673 674 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 675 APInt &KnownOne, const DataLayout &DL, 676 unsigned Depth, const Query &Q) { 677 // Use of assumptions is context-sensitive. If we don't have a context, we 678 // cannot use them! 679 if (!Q.AC || !Q.CxtI) 680 return; 681 682 unsigned BitWidth = KnownZero.getBitWidth(); 683 684 for (auto &AssumeVH : Q.AC->assumptions()) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.ExclInvs.count(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensetive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(isa<IntrinsicInst>(I) && 698 dyn_cast<IntrinsicInst>(I)->getIntrinsicID() == Intrinsic::assume && 699 "must be an assume intrinsic"); 700 701 Value *Arg = I->getArgOperand(0); 702 703 if (Arg == V && isValidAssumeForContext(I, Q)) { 704 assert(BitWidth == 1 && "assume operand is not i1?"); 705 KnownZero.clearAllBits(); 706 KnownOne.setAllBits(); 707 return; 708 } 709 710 // The remaining tests are all recursive, so bail out if we hit the limit. 711 if (Depth == MaxDepth) 712 continue; 713 714 Value *A, *B; 715 auto m_V = m_CombineOr(m_Specific(V), 716 m_CombineOr(m_PtrToInt(m_Specific(V)), 717 m_BitCast(m_Specific(V)))); 718 719 CmpInst::Predicate Pred; 720 ConstantInt *C; 721 // assume(v = a) 722 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 723 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 724 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 725 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 726 KnownZero |= RHSKnownZero; 727 KnownOne |= RHSKnownOne; 728 // assume(v & b = a) 729 } else if (match(Arg, 730 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 731 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 732 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 733 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 734 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 735 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 736 737 // For those bits in the mask that are known to be one, we can propagate 738 // known bits from the RHS to V. 739 KnownZero |= RHSKnownZero & MaskKnownOne; 740 KnownOne |= RHSKnownOne & MaskKnownOne; 741 // assume(~(v & b) = a) 742 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 743 m_Value(A))) && 744 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 745 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 746 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 747 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 748 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 749 750 // For those bits in the mask that are known to be one, we can propagate 751 // inverted known bits from the RHS to V. 752 KnownZero |= RHSKnownOne & MaskKnownOne; 753 KnownOne |= RHSKnownZero & MaskKnownOne; 754 // assume(v | b = a) 755 } else if (match(Arg, 756 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 757 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 758 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 759 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 760 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 761 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 762 763 // For those bits in B that are known to be zero, we can propagate known 764 // bits from the RHS to V. 765 KnownZero |= RHSKnownZero & BKnownZero; 766 KnownOne |= RHSKnownOne & BKnownZero; 767 // assume(~(v | b) = a) 768 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 769 m_Value(A))) && 770 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 771 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 772 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 773 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 774 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 775 776 // For those bits in B that are known to be zero, we can propagate 777 // inverted known bits from the RHS to V. 778 KnownZero |= RHSKnownOne & BKnownZero; 779 KnownOne |= RHSKnownZero & BKnownZero; 780 // assume(v ^ b = a) 781 } else if (match(Arg, 782 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 783 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 784 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 785 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 786 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 787 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 788 789 // For those bits in B that are known to be zero, we can propagate known 790 // bits from the RHS to V. For those bits in B that are known to be one, 791 // we can propagate inverted known bits from the RHS to V. 792 KnownZero |= RHSKnownZero & BKnownZero; 793 KnownOne |= RHSKnownOne & BKnownZero; 794 KnownZero |= RHSKnownOne & BKnownOne; 795 KnownOne |= RHSKnownZero & BKnownOne; 796 // assume(~(v ^ b) = a) 797 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 798 m_Value(A))) && 799 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 800 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 801 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 802 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 803 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. For those bits in B that are 807 // known to be one, we can propagate known bits from the RHS to V. 808 KnownZero |= RHSKnownOne & BKnownZero; 809 KnownOne |= RHSKnownZero & BKnownZero; 810 KnownZero |= RHSKnownZero & BKnownOne; 811 KnownOne |= RHSKnownOne & BKnownOne; 812 // assume(v << c = a) 813 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 814 m_Value(A))) && 815 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 816 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 817 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 818 // For those bits in RHS that are known, we can propagate them to known 819 // bits in V shifted to the right by C. 820 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 821 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 822 // assume(~(v << c) = a) 823 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 824 m_Value(A))) && 825 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 826 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 827 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 828 // For those bits in RHS that are known, we can propagate them inverted 829 // to known bits in V shifted to the right by C. 830 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 831 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 832 // assume(v >> c = a) 833 } else if (match(Arg, 834 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 835 m_AShr(m_V, m_ConstantInt(C))), 836 m_Value(A))) && 837 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 838 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 839 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 840 // For those bits in RHS that are known, we can propagate them to known 841 // bits in V shifted to the right by C. 842 KnownZero |= RHSKnownZero << C->getZExtValue(); 843 KnownOne |= RHSKnownOne << C->getZExtValue(); 844 // assume(~(v >> c) = a) 845 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 846 m_LShr(m_V, m_ConstantInt(C)), 847 m_AShr(m_V, m_ConstantInt(C)))), 848 m_Value(A))) && 849 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 850 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 851 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 852 // For those bits in RHS that are known, we can propagate them inverted 853 // to known bits in V shifted to the right by C. 854 KnownZero |= RHSKnownOne << C->getZExtValue(); 855 KnownOne |= RHSKnownZero << C->getZExtValue(); 856 // assume(v >=_s c) where c is non-negative 857 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 858 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 859 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 860 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 861 862 if (RHSKnownZero.isNegative()) { 863 // We know that the sign bit is zero. 864 KnownZero |= APInt::getSignBit(BitWidth); 865 } 866 // assume(v >_s c) where c is at least -1. 867 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 868 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 869 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 870 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 871 872 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 873 // We know that the sign bit is zero. 874 KnownZero |= APInt::getSignBit(BitWidth); 875 } 876 // assume(v <=_s c) where c is negative 877 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 878 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 879 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 880 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 881 882 if (RHSKnownOne.isNegative()) { 883 // We know that the sign bit is one. 884 KnownOne |= APInt::getSignBit(BitWidth); 885 } 886 // assume(v <_s c) where c is non-positive 887 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 888 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 889 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 890 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 891 892 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 893 // We know that the sign bit is one. 894 KnownOne |= APInt::getSignBit(BitWidth); 895 } 896 // assume(v <=_u c) 897 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 898 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 899 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 900 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 901 902 // Whatever high bits in c are zero are known to be zero. 903 KnownZero |= 904 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 905 // assume(v <_u c) 906 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 907 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 908 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 909 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 910 911 // Whatever high bits in c are zero are known to be zero (if c is a power 912 // of 2, then one more). 913 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 914 KnownZero |= 915 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 916 else 917 KnownZero |= 918 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 919 } 920 } 921 } 922 923 /// Determine which bits of V are known to be either zero or one and return 924 /// them in the KnownZero/KnownOne bit sets. 925 /// 926 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 927 /// we cannot optimize based on the assumption that it is zero without changing 928 /// it to be an explicit zero. If we don't change it to zero, other code could 929 /// optimized based on the contradictory assumption that it is non-zero. 930 /// Because instcombine aggressively folds operations with undef args anyway, 931 /// this won't lose us code quality. 932 /// 933 /// This function is defined on values with integer type, values with pointer 934 /// type, and vectors of integers. In the case 935 /// where V is a vector, known zero, and known one values are the 936 /// same width as the vector element, and the bit is set only if it is true 937 /// for all of the elements in the vector. 938 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 939 const DataLayout &DL, unsigned Depth, const Query &Q) { 940 assert(V && "No Value?"); 941 assert(Depth <= MaxDepth && "Limit Search Depth"); 942 unsigned BitWidth = KnownZero.getBitWidth(); 943 944 assert((V->getType()->isIntOrIntVectorTy() || 945 V->getType()->getScalarType()->isPointerTy()) && 946 "Not integer or pointer type!"); 947 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 948 (!V->getType()->isIntOrIntVectorTy() || 949 V->getType()->getScalarSizeInBits() == BitWidth) && 950 KnownZero.getBitWidth() == BitWidth && 951 KnownOne.getBitWidth() == BitWidth && 952 "V, KnownOne and KnownZero should have same BitWidth"); 953 954 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 955 // We know all of the bits for a constant! 956 KnownOne = CI->getValue(); 957 KnownZero = ~KnownOne; 958 return; 959 } 960 // Null and aggregate-zero are all-zeros. 961 if (isa<ConstantPointerNull>(V) || 962 isa<ConstantAggregateZero>(V)) { 963 KnownOne.clearAllBits(); 964 KnownZero = APInt::getAllOnesValue(BitWidth); 965 return; 966 } 967 // Handle a constant vector by taking the intersection of the known bits of 968 // each element. There is no real need to handle ConstantVector here, because 969 // we don't handle undef in any particularly useful way. 970 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 971 // We know that CDS must be a vector of integers. Take the intersection of 972 // each element. 973 KnownZero.setAllBits(); KnownOne.setAllBits(); 974 APInt Elt(KnownZero.getBitWidth(), 0); 975 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 976 Elt = CDS->getElementAsInteger(i); 977 KnownZero &= ~Elt; 978 KnownOne &= Elt; 979 } 980 return; 981 } 982 983 // The address of an aligned GlobalValue has trailing zeros. 984 if (auto *GO = dyn_cast<GlobalObject>(V)) { 985 unsigned Align = GO->getAlignment(); 986 if (Align == 0) { 987 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 988 Type *ObjectType = GVar->getType()->getElementType(); 989 if (ObjectType->isSized()) { 990 // If the object is defined in the current Module, we'll be giving 991 // it the preferred alignment. Otherwise, we have to assume that it 992 // may only have the minimum ABI alignment. 993 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 994 Align = DL.getPreferredAlignment(GVar); 995 else 996 Align = DL.getABITypeAlignment(ObjectType); 997 } 998 } 999 } 1000 if (Align > 0) 1001 KnownZero = APInt::getLowBitsSet(BitWidth, 1002 countTrailingZeros(Align)); 1003 else 1004 KnownZero.clearAllBits(); 1005 KnownOne.clearAllBits(); 1006 return; 1007 } 1008 1009 if (Argument *A = dyn_cast<Argument>(V)) { 1010 unsigned Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1011 1012 if (!Align && A->hasStructRetAttr()) { 1013 // An sret parameter has at least the ABI alignment of the return type. 1014 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1015 if (EltTy->isSized()) 1016 Align = DL.getABITypeAlignment(EltTy); 1017 } 1018 1019 if (Align) 1020 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1021 else 1022 KnownZero.clearAllBits(); 1023 KnownOne.clearAllBits(); 1024 1025 // Don't give up yet... there might be an assumption that provides more 1026 // information... 1027 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1028 1029 // Or a dominating condition for that matter 1030 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1031 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, 1032 Depth, Q); 1033 return; 1034 } 1035 1036 // Start out not knowing anything. 1037 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1038 1039 // Limit search depth. 1040 // All recursive calls that increase depth must come after this. 1041 if (Depth == MaxDepth) 1042 return; 1043 1044 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1045 // the bits of its aliasee. 1046 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1047 if (!GA->mayBeOverridden()) 1048 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1049 return; 1050 } 1051 1052 // Check whether a nearby assume intrinsic can determine some known bits. 1053 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1054 1055 // Check whether there's a dominating condition which implies something about 1056 // this value at the given context. 1057 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1058 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1059 Q); 1060 1061 Operator *I = dyn_cast<Operator>(V); 1062 if (!I) return; 1063 1064 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 1065 switch (I->getOpcode()) { 1066 default: break; 1067 case Instruction::Load: 1068 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 1069 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1070 break; 1071 case Instruction::And: { 1072 // If either the LHS or the RHS are Zero, the result is zero. 1073 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1074 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1075 1076 // Output known-1 bits are only known if set in both the LHS & RHS. 1077 KnownOne &= KnownOne2; 1078 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1079 KnownZero |= KnownZero2; 1080 break; 1081 } 1082 case Instruction::Or: { 1083 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1085 1086 // Output known-0 bits are only known if clear in both the LHS & RHS. 1087 KnownZero &= KnownZero2; 1088 // Output known-1 are known to be set if set in either the LHS | RHS. 1089 KnownOne |= KnownOne2; 1090 break; 1091 } 1092 case Instruction::Xor: { 1093 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1094 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1095 1096 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1097 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1098 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1099 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1100 KnownZero = KnownZeroOut; 1101 break; 1102 } 1103 case Instruction::Mul: { 1104 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1105 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1106 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1107 break; 1108 } 1109 case Instruction::UDiv: { 1110 // For the purposes of computing leading zeros we can conservatively 1111 // treat a udiv as a logical right shift by the power of 2 known to 1112 // be less than the denominator. 1113 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1114 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1115 1116 KnownOne2.clearAllBits(); 1117 KnownZero2.clearAllBits(); 1118 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1119 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1120 if (RHSUnknownLeadingOnes != BitWidth) 1121 LeadZ = std::min(BitWidth, 1122 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1123 1124 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1125 break; 1126 } 1127 case Instruction::Select: 1128 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1129 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1130 1131 // Only known if known in both the LHS and RHS. 1132 KnownOne &= KnownOne2; 1133 KnownZero &= KnownZero2; 1134 break; 1135 case Instruction::FPTrunc: 1136 case Instruction::FPExt: 1137 case Instruction::FPToUI: 1138 case Instruction::FPToSI: 1139 case Instruction::SIToFP: 1140 case Instruction::UIToFP: 1141 break; // Can't work with floating point. 1142 case Instruction::PtrToInt: 1143 case Instruction::IntToPtr: 1144 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1145 // FALL THROUGH and handle them the same as zext/trunc. 1146 case Instruction::ZExt: 1147 case Instruction::Trunc: { 1148 Type *SrcTy = I->getOperand(0)->getType(); 1149 1150 unsigned SrcBitWidth; 1151 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1152 // which fall through here. 1153 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1154 1155 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1156 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1157 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1158 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1159 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1160 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1161 // Any top bits are known to be zero. 1162 if (BitWidth > SrcBitWidth) 1163 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1164 break; 1165 } 1166 case Instruction::BitCast: { 1167 Type *SrcTy = I->getOperand(0)->getType(); 1168 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1169 // TODO: For now, not handling conversions like: 1170 // (bitcast i64 %x to <2 x i32>) 1171 !I->getType()->isVectorTy()) { 1172 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1173 break; 1174 } 1175 break; 1176 } 1177 case Instruction::SExt: { 1178 // Compute the bits in the result that are not present in the input. 1179 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1180 1181 KnownZero = KnownZero.trunc(SrcBitWidth); 1182 KnownOne = KnownOne.trunc(SrcBitWidth); 1183 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1184 KnownZero = KnownZero.zext(BitWidth); 1185 KnownOne = KnownOne.zext(BitWidth); 1186 1187 // If the sign bit of the input is known set or clear, then we know the 1188 // top bits of the result. 1189 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1190 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1191 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1192 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1193 break; 1194 } 1195 case Instruction::Shl: 1196 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1197 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1198 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1199 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1200 KnownZero <<= ShiftAmt; 1201 KnownOne <<= ShiftAmt; 1202 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1203 } 1204 break; 1205 case Instruction::LShr: 1206 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1207 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1208 // Compute the new bits that are at the top now. 1209 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1210 1211 // Unsigned shift right. 1212 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1213 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1214 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1215 // high bits known zero. 1216 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1217 } 1218 break; 1219 case Instruction::AShr: 1220 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1221 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1222 // Compute the new bits that are at the top now. 1223 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1224 1225 // Signed shift right. 1226 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1227 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1228 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1229 1230 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1231 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1232 KnownZero |= HighBits; 1233 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1234 KnownOne |= HighBits; 1235 } 1236 break; 1237 case Instruction::Sub: { 1238 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1239 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1240 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1241 Depth, Q); 1242 break; 1243 } 1244 case Instruction::Add: { 1245 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1246 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1247 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1248 Depth, Q); 1249 break; 1250 } 1251 case Instruction::SRem: 1252 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1253 APInt RA = Rem->getValue().abs(); 1254 if (RA.isPowerOf2()) { 1255 APInt LowBits = RA - 1; 1256 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1257 Q); 1258 1259 // The low bits of the first operand are unchanged by the srem. 1260 KnownZero = KnownZero2 & LowBits; 1261 KnownOne = KnownOne2 & LowBits; 1262 1263 // If the first operand is non-negative or has all low bits zero, then 1264 // the upper bits are all zero. 1265 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1266 KnownZero |= ~LowBits; 1267 1268 // If the first operand is negative and not all low bits are zero, then 1269 // the upper bits are all one. 1270 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1271 KnownOne |= ~LowBits; 1272 1273 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1274 } 1275 } 1276 1277 // The sign bit is the LHS's sign bit, except when the result of the 1278 // remainder is zero. 1279 if (KnownZero.isNonNegative()) { 1280 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1281 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1282 Depth + 1, Q); 1283 // If it's known zero, our sign bit is also zero. 1284 if (LHSKnownZero.isNegative()) 1285 KnownZero.setBit(BitWidth - 1); 1286 } 1287 1288 break; 1289 case Instruction::URem: { 1290 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1291 APInt RA = Rem->getValue(); 1292 if (RA.isPowerOf2()) { 1293 APInt LowBits = (RA - 1); 1294 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1295 Q); 1296 KnownZero |= ~LowBits; 1297 KnownOne &= LowBits; 1298 break; 1299 } 1300 } 1301 1302 // Since the result is less than or equal to either operand, any leading 1303 // zero bits in either operand must also exist in the result. 1304 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1305 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1306 1307 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1308 KnownZero2.countLeadingOnes()); 1309 KnownOne.clearAllBits(); 1310 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1311 break; 1312 } 1313 1314 case Instruction::Alloca: { 1315 AllocaInst *AI = cast<AllocaInst>(V); 1316 unsigned Align = AI->getAlignment(); 1317 if (Align == 0) 1318 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1319 1320 if (Align > 0) 1321 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1322 break; 1323 } 1324 case Instruction::GetElementPtr: { 1325 // Analyze all of the subscripts of this getelementptr instruction 1326 // to determine if we can prove known low zero bits. 1327 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1328 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1329 Depth + 1, Q); 1330 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1331 1332 gep_type_iterator GTI = gep_type_begin(I); 1333 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1334 Value *Index = I->getOperand(i); 1335 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1336 // Handle struct member offset arithmetic. 1337 1338 // Handle case when index is vector zeroinitializer 1339 Constant *CIndex = cast<Constant>(Index); 1340 if (CIndex->isZeroValue()) 1341 continue; 1342 1343 if (CIndex->getType()->isVectorTy()) 1344 Index = CIndex->getSplatValue(); 1345 1346 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1347 const StructLayout *SL = DL.getStructLayout(STy); 1348 uint64_t Offset = SL->getElementOffset(Idx); 1349 TrailZ = std::min<unsigned>(TrailZ, 1350 countTrailingZeros(Offset)); 1351 } else { 1352 // Handle array index arithmetic. 1353 Type *IndexedTy = GTI.getIndexedType(); 1354 if (!IndexedTy->isSized()) { 1355 TrailZ = 0; 1356 break; 1357 } 1358 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1359 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1360 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1361 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1362 Q); 1363 TrailZ = std::min(TrailZ, 1364 unsigned(countTrailingZeros(TypeSize) + 1365 LocalKnownZero.countTrailingOnes())); 1366 } 1367 } 1368 1369 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 PHINode *P = cast<PHINode>(I); 1374 // Handle the case of a simple two-predecessor recurrence PHI. 1375 // There's a lot more that could theoretically be done here, but 1376 // this is sufficient to catch some interesting cases. 1377 if (P->getNumIncomingValues() == 2) { 1378 for (unsigned i = 0; i != 2; ++i) { 1379 Value *L = P->getIncomingValue(i); 1380 Value *R = P->getIncomingValue(!i); 1381 Operator *LU = dyn_cast<Operator>(L); 1382 if (!LU) 1383 continue; 1384 unsigned Opcode = LU->getOpcode(); 1385 // Check for operations that have the property that if 1386 // both their operands have low zero bits, the result 1387 // will have low zero bits. 1388 if (Opcode == Instruction::Add || 1389 Opcode == Instruction::Sub || 1390 Opcode == Instruction::And || 1391 Opcode == Instruction::Or || 1392 Opcode == Instruction::Mul) { 1393 Value *LL = LU->getOperand(0); 1394 Value *LR = LU->getOperand(1); 1395 // Find a recurrence. 1396 if (LL == I) 1397 L = LR; 1398 else if (LR == I) 1399 L = LL; 1400 else 1401 break; 1402 // Ok, we have a PHI of the form L op= R. Check for low 1403 // zero bits. 1404 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1405 1406 // We need to take the minimum number of known bits 1407 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1408 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1409 1410 KnownZero = APInt::getLowBitsSet(BitWidth, 1411 std::min(KnownZero2.countTrailingOnes(), 1412 KnownZero3.countTrailingOnes())); 1413 break; 1414 } 1415 } 1416 } 1417 1418 // Unreachable blocks may have zero-operand PHI nodes. 1419 if (P->getNumIncomingValues() == 0) 1420 break; 1421 1422 // Otherwise take the unions of the known bit sets of the operands, 1423 // taking conservative care to avoid excessive recursion. 1424 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1425 // Skip if every incoming value references to ourself. 1426 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1427 break; 1428 1429 KnownZero = APInt::getAllOnesValue(BitWidth); 1430 KnownOne = APInt::getAllOnesValue(BitWidth); 1431 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 1432 // Skip direct self references. 1433 if (P->getIncomingValue(i) == P) continue; 1434 1435 KnownZero2 = APInt(BitWidth, 0); 1436 KnownOne2 = APInt(BitWidth, 0); 1437 // Recurse, but cap the recursion to one level, because we don't 1438 // want to waste time spinning around in loops. 1439 computeKnownBits(P->getIncomingValue(i), KnownZero2, KnownOne2, DL, 1440 MaxDepth - 1, Q); 1441 KnownZero &= KnownZero2; 1442 KnownOne &= KnownOne2; 1443 // If all bits have been ruled out, there's no need to check 1444 // more operands. 1445 if (!KnownZero && !KnownOne) 1446 break; 1447 } 1448 } 1449 break; 1450 } 1451 case Instruction::Call: 1452 case Instruction::Invoke: 1453 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1454 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1455 // If a range metadata is attached to this IntrinsicInst, intersect the 1456 // explicit range specified by the metadata and the implicit range of 1457 // the intrinsic. 1458 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1459 switch (II->getIntrinsicID()) { 1460 default: break; 1461 case Intrinsic::ctlz: 1462 case Intrinsic::cttz: { 1463 unsigned LowBits = Log2_32(BitWidth)+1; 1464 // If this call is undefined for 0, the result will be less than 2^n. 1465 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1466 LowBits -= 1; 1467 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1468 break; 1469 } 1470 case Intrinsic::ctpop: { 1471 unsigned LowBits = Log2_32(BitWidth)+1; 1472 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1473 break; 1474 } 1475 case Intrinsic::x86_sse42_crc32_64_64: 1476 KnownZero |= APInt::getHighBitsSet(64, 32); 1477 break; 1478 } 1479 } 1480 break; 1481 case Instruction::ExtractValue: 1482 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1483 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1484 if (EVI->getNumIndices() != 1) break; 1485 if (EVI->getIndices()[0] == 0) { 1486 switch (II->getIntrinsicID()) { 1487 default: break; 1488 case Intrinsic::uadd_with_overflow: 1489 case Intrinsic::sadd_with_overflow: 1490 computeKnownBitsAddSub(true, II->getArgOperand(0), 1491 II->getArgOperand(1), false, KnownZero, 1492 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1493 break; 1494 case Intrinsic::usub_with_overflow: 1495 case Intrinsic::ssub_with_overflow: 1496 computeKnownBitsAddSub(false, II->getArgOperand(0), 1497 II->getArgOperand(1), false, KnownZero, 1498 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1499 break; 1500 case Intrinsic::umul_with_overflow: 1501 case Intrinsic::smul_with_overflow: 1502 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1503 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1504 Depth, Q); 1505 break; 1506 } 1507 } 1508 } 1509 } 1510 1511 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1512 } 1513 1514 /// Determine whether the sign bit is known to be zero or one. 1515 /// Convenience wrapper around computeKnownBits. 1516 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1517 const DataLayout &DL, unsigned Depth, const Query &Q) { 1518 unsigned BitWidth = getBitWidth(V->getType(), DL); 1519 if (!BitWidth) { 1520 KnownZero = false; 1521 KnownOne = false; 1522 return; 1523 } 1524 APInt ZeroBits(BitWidth, 0); 1525 APInt OneBits(BitWidth, 0); 1526 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1527 KnownOne = OneBits[BitWidth - 1]; 1528 KnownZero = ZeroBits[BitWidth - 1]; 1529 } 1530 1531 /// Return true if the given value is known to have exactly one 1532 /// bit set when defined. For vectors return true if every element is known to 1533 /// be a power of two when defined. Supports values with integer or pointer 1534 /// types and vectors of integers. 1535 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1536 const Query &Q, const DataLayout &DL) { 1537 if (Constant *C = dyn_cast<Constant>(V)) { 1538 if (C->isNullValue()) 1539 return OrZero; 1540 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1541 return CI->getValue().isPowerOf2(); 1542 // TODO: Handle vector constants. 1543 } 1544 1545 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1546 // it is shifted off the end then the result is undefined. 1547 if (match(V, m_Shl(m_One(), m_Value()))) 1548 return true; 1549 1550 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1551 // bottom. If it is shifted off the bottom then the result is undefined. 1552 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1553 return true; 1554 1555 // The remaining tests are all recursive, so bail out if we hit the limit. 1556 if (Depth++ == MaxDepth) 1557 return false; 1558 1559 Value *X = nullptr, *Y = nullptr; 1560 // A shift of a power of two is a power of two or zero. 1561 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1562 match(V, m_Shr(m_Value(X), m_Value())))) 1563 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1564 1565 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1566 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1567 1568 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1569 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1570 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1571 1572 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1573 // A power of two and'd with anything is a power of two or zero. 1574 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1575 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1576 return true; 1577 // X & (-X) is always a power of two or zero. 1578 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1579 return true; 1580 return false; 1581 } 1582 1583 // Adding a power-of-two or zero to the same power-of-two or zero yields 1584 // either the original power-of-two, a larger power-of-two or zero. 1585 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1586 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1587 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1588 if (match(X, m_And(m_Specific(Y), m_Value())) || 1589 match(X, m_And(m_Value(), m_Specific(Y)))) 1590 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1591 return true; 1592 if (match(Y, m_And(m_Specific(X), m_Value())) || 1593 match(Y, m_And(m_Value(), m_Specific(X)))) 1594 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1595 return true; 1596 1597 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1598 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1599 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1600 1601 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1602 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1603 // If i8 V is a power of two or zero: 1604 // ZeroBits: 1 1 1 0 1 1 1 1 1605 // ~ZeroBits: 0 0 0 1 0 0 0 0 1606 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1607 // If OrZero isn't set, we cannot give back a zero result. 1608 // Make sure either the LHS or RHS has a bit set. 1609 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1610 return true; 1611 } 1612 } 1613 1614 // An exact divide or right shift can only shift off zero bits, so the result 1615 // is a power of two only if the first operand is a power of two and not 1616 // copying a sign bit (sdiv int_min, 2). 1617 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1618 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1619 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1620 Depth, Q, DL); 1621 } 1622 1623 return false; 1624 } 1625 1626 /// \brief Test whether a GEP's result is known to be non-null. 1627 /// 1628 /// Uses properties inherent in a GEP to try to determine whether it is known 1629 /// to be non-null. 1630 /// 1631 /// Currently this routine does not support vector GEPs. 1632 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1633 unsigned Depth, const Query &Q) { 1634 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1635 return false; 1636 1637 // FIXME: Support vector-GEPs. 1638 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1639 1640 // If the base pointer is non-null, we cannot walk to a null address with an 1641 // inbounds GEP in address space zero. 1642 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1643 return true; 1644 1645 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1646 // If so, then the GEP cannot produce a null pointer, as doing so would 1647 // inherently violate the inbounds contract within address space zero. 1648 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1649 GTI != GTE; ++GTI) { 1650 // Struct types are easy -- they must always be indexed by a constant. 1651 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1652 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1653 unsigned ElementIdx = OpC->getZExtValue(); 1654 const StructLayout *SL = DL.getStructLayout(STy); 1655 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1656 if (ElementOffset > 0) 1657 return true; 1658 continue; 1659 } 1660 1661 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1662 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1663 continue; 1664 1665 // Fast path the constant operand case both for efficiency and so we don't 1666 // increment Depth when just zipping down an all-constant GEP. 1667 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1668 if (!OpC->isZero()) 1669 return true; 1670 continue; 1671 } 1672 1673 // We post-increment Depth here because while isKnownNonZero increments it 1674 // as well, when we pop back up that increment won't persist. We don't want 1675 // to recurse 10k times just because we have 10k GEP operands. We don't 1676 // bail completely out because we want to handle constant GEPs regardless 1677 // of depth. 1678 if (Depth++ >= MaxDepth) 1679 continue; 1680 1681 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1682 return true; 1683 } 1684 1685 return false; 1686 } 1687 1688 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1689 /// ensure that the value it's attached to is never Value? 'RangeType' is 1690 /// is the type of the value described by the range. 1691 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1692 const APInt& Value) { 1693 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1694 assert(NumRanges >= 1); 1695 for (unsigned i = 0; i < NumRanges; ++i) { 1696 ConstantInt *Lower = 1697 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1698 ConstantInt *Upper = 1699 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1700 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1701 if (Range.contains(Value)) 1702 return false; 1703 } 1704 return true; 1705 } 1706 1707 /// Return true if the given value is known to be non-zero when defined. 1708 /// For vectors return true if every element is known to be non-zero when 1709 /// defined. Supports values with integer or pointer type and vectors of 1710 /// integers. 1711 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1712 const Query &Q) { 1713 if (Constant *C = dyn_cast<Constant>(V)) { 1714 if (C->isNullValue()) 1715 return false; 1716 if (isa<ConstantInt>(C)) 1717 // Must be non-zero due to null test above. 1718 return true; 1719 // TODO: Handle vectors 1720 return false; 1721 } 1722 1723 if (Instruction* I = dyn_cast<Instruction>(V)) { 1724 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1725 // If the possible ranges don't contain zero, then the value is 1726 // definitely non-zero. 1727 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1728 const APInt ZeroValue(Ty->getBitWidth(), 0); 1729 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1730 return true; 1731 } 1732 } 1733 } 1734 1735 // The remaining tests are all recursive, so bail out if we hit the limit. 1736 if (Depth++ >= MaxDepth) 1737 return false; 1738 1739 // Check for pointer simplifications. 1740 if (V->getType()->isPointerTy()) { 1741 if (isKnownNonNull(V)) 1742 return true; 1743 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1744 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1745 return true; 1746 } 1747 1748 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1749 1750 // X | Y != 0 if X != 0 or Y != 0. 1751 Value *X = nullptr, *Y = nullptr; 1752 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1753 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1754 1755 // ext X != 0 if X != 0. 1756 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1757 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1758 1759 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1760 // if the lowest bit is shifted off the end. 1761 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1762 // shl nuw can't remove any non-zero bits. 1763 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1764 if (BO->hasNoUnsignedWrap()) 1765 return isKnownNonZero(X, DL, Depth, Q); 1766 1767 APInt KnownZero(BitWidth, 0); 1768 APInt KnownOne(BitWidth, 0); 1769 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1770 if (KnownOne[0]) 1771 return true; 1772 } 1773 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1774 // defined if the sign bit is shifted off the end. 1775 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1776 // shr exact can only shift out zero bits. 1777 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1778 if (BO->isExact()) 1779 return isKnownNonZero(X, DL, Depth, Q); 1780 1781 bool XKnownNonNegative, XKnownNegative; 1782 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1783 if (XKnownNegative) 1784 return true; 1785 } 1786 // div exact can only produce a zero if the dividend is zero. 1787 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1788 return isKnownNonZero(X, DL, Depth, Q); 1789 } 1790 // X + Y. 1791 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1792 bool XKnownNonNegative, XKnownNegative; 1793 bool YKnownNonNegative, YKnownNegative; 1794 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1795 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1796 1797 // If X and Y are both non-negative (as signed values) then their sum is not 1798 // zero unless both X and Y are zero. 1799 if (XKnownNonNegative && YKnownNonNegative) 1800 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1801 return true; 1802 1803 // If X and Y are both negative (as signed values) then their sum is not 1804 // zero unless both X and Y equal INT_MIN. 1805 if (BitWidth && XKnownNegative && YKnownNegative) { 1806 APInt KnownZero(BitWidth, 0); 1807 APInt KnownOne(BitWidth, 0); 1808 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1809 // The sign bit of X is set. If some other bit is set then X is not equal 1810 // to INT_MIN. 1811 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1812 if ((KnownOne & Mask) != 0) 1813 return true; 1814 // The sign bit of Y is set. If some other bit is set then Y is not equal 1815 // to INT_MIN. 1816 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1817 if ((KnownOne & Mask) != 0) 1818 return true; 1819 } 1820 1821 // The sum of a non-negative number and a power of two is not zero. 1822 if (XKnownNonNegative && 1823 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1824 return true; 1825 if (YKnownNonNegative && 1826 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1827 return true; 1828 } 1829 // X * Y. 1830 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1831 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1832 // If X and Y are non-zero then so is X * Y as long as the multiplication 1833 // does not overflow. 1834 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1835 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1836 return true; 1837 } 1838 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1839 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1840 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1841 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1842 return true; 1843 } 1844 1845 if (!BitWidth) return false; 1846 APInt KnownZero(BitWidth, 0); 1847 APInt KnownOne(BitWidth, 0); 1848 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1849 return KnownOne != 0; 1850 } 1851 1852 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 1853 /// simplify operations downstream. Mask is known to be zero for bits that V 1854 /// cannot have. 1855 /// 1856 /// This function is defined on values with integer type, values with pointer 1857 /// type, and vectors of integers. In the case 1858 /// where V is a vector, the mask, known zero, and known one values are the 1859 /// same width as the vector element, and the bit is set only if it is true 1860 /// for all of the elements in the vector. 1861 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 1862 unsigned Depth, const Query &Q) { 1863 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1864 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1865 return (KnownZero & Mask) == Mask; 1866 } 1867 1868 1869 1870 /// Return the number of times the sign bit of the register is replicated into 1871 /// the other bits. We know that at least 1 bit is always equal to the sign bit 1872 /// (itself), but other cases can give us information. For example, immediately 1873 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 1874 /// other, so we return 3. 1875 /// 1876 /// 'Op' must have a scalar integer type. 1877 /// 1878 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 1879 const Query &Q) { 1880 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 1881 unsigned Tmp, Tmp2; 1882 unsigned FirstAnswer = 1; 1883 1884 // Note that ConstantInt is handled by the general computeKnownBits case 1885 // below. 1886 1887 if (Depth == 6) 1888 return 1; // Limit search depth. 1889 1890 Operator *U = dyn_cast<Operator>(V); 1891 switch (Operator::getOpcode(V)) { 1892 default: break; 1893 case Instruction::SExt: 1894 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1895 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 1896 1897 case Instruction::SDiv: { 1898 const APInt *Denominator; 1899 // sdiv X, C -> adds log(C) sign bits. 1900 if (match(U->getOperand(1), m_APInt(Denominator))) { 1901 1902 // Ignore non-positive denominator. 1903 if (!Denominator->isStrictlyPositive()) 1904 break; 1905 1906 // Calculate the incoming numerator bits. 1907 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1908 1909 // Add floor(log(C)) bits to the numerator bits. 1910 return std::min(TyBits, NumBits + Denominator->logBase2()); 1911 } 1912 break; 1913 } 1914 1915 case Instruction::SRem: { 1916 const APInt *Denominator; 1917 // srem X, C -> we know that the result is within [-C+1,C) when C is a 1918 // positive constant. This let us put a lower bound on the number of sign 1919 // bits. 1920 if (match(U->getOperand(1), m_APInt(Denominator))) { 1921 1922 // Ignore non-positive denominator. 1923 if (!Denominator->isStrictlyPositive()) 1924 break; 1925 1926 // Calculate the incoming numerator bits. SRem by a positive constant 1927 // can't lower the number of sign bits. 1928 unsigned NumrBits = 1929 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1930 1931 // Calculate the leading sign bit constraints by examining the 1932 // denominator. Given that the denominator is positive, there are two 1933 // cases: 1934 // 1935 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 1936 // (1 << ceilLogBase2(C)). 1937 // 1938 // 2. the numerator is negative. Then the result range is (-C,0] and 1939 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 1940 // 1941 // Thus a lower bound on the number of sign bits is `TyBits - 1942 // ceilLogBase2(C)`. 1943 1944 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 1945 return std::max(NumrBits, ResBits); 1946 } 1947 break; 1948 } 1949 1950 case Instruction::AShr: { 1951 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1952 // ashr X, C -> adds C sign bits. Vectors too. 1953 const APInt *ShAmt; 1954 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1955 Tmp += ShAmt->getZExtValue(); 1956 if (Tmp > TyBits) Tmp = TyBits; 1957 } 1958 return Tmp; 1959 } 1960 case Instruction::Shl: { 1961 const APInt *ShAmt; 1962 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1963 // shl destroys sign bits. 1964 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1965 Tmp2 = ShAmt->getZExtValue(); 1966 if (Tmp2 >= TyBits || // Bad shift. 1967 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1968 return Tmp - Tmp2; 1969 } 1970 break; 1971 } 1972 case Instruction::And: 1973 case Instruction::Or: 1974 case Instruction::Xor: // NOT is handled here. 1975 // Logical binary ops preserve the number of sign bits at the worst. 1976 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1977 if (Tmp != 1) { 1978 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 1979 FirstAnswer = std::min(Tmp, Tmp2); 1980 // We computed what we know about the sign bits as our first 1981 // answer. Now proceed to the generic code that uses 1982 // computeKnownBits, and pick whichever answer is better. 1983 } 1984 break; 1985 1986 case Instruction::Select: 1987 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 1988 if (Tmp == 1) return 1; // Early out. 1989 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 1990 return std::min(Tmp, Tmp2); 1991 1992 case Instruction::Add: 1993 // Add can have at most one carry bit. Thus we know that the output 1994 // is, at worst, one more bit than the inputs. 1995 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 1996 if (Tmp == 1) return 1; // Early out. 1997 1998 // Special case decrementing a value (ADD X, -1): 1999 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2000 if (CRHS->isAllOnesValue()) { 2001 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2002 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2003 Q); 2004 2005 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2006 // sign bits set. 2007 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2008 return TyBits; 2009 2010 // If we are subtracting one from a positive number, there is no carry 2011 // out of the result. 2012 if (KnownZero.isNegative()) 2013 return Tmp; 2014 } 2015 2016 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2017 if (Tmp2 == 1) return 1; 2018 return std::min(Tmp, Tmp2)-1; 2019 2020 case Instruction::Sub: 2021 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2022 if (Tmp2 == 1) return 1; 2023 2024 // Handle NEG. 2025 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2026 if (CLHS->isNullValue()) { 2027 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2028 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2029 Q); 2030 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2031 // sign bits set. 2032 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2033 return TyBits; 2034 2035 // If the input is known to be positive (the sign bit is known clear), 2036 // the output of the NEG has the same number of sign bits as the input. 2037 if (KnownZero.isNegative()) 2038 return Tmp2; 2039 2040 // Otherwise, we treat this like a SUB. 2041 } 2042 2043 // Sub can have at most one carry bit. Thus we know that the output 2044 // is, at worst, one more bit than the inputs. 2045 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2046 if (Tmp == 1) return 1; // Early out. 2047 return std::min(Tmp, Tmp2)-1; 2048 2049 case Instruction::PHI: { 2050 PHINode *PN = cast<PHINode>(U); 2051 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2052 // Don't analyze large in-degree PHIs. 2053 if (NumIncomingValues > 4) break; 2054 // Unreachable blocks may have zero-operand PHI nodes. 2055 if (NumIncomingValues == 0) break; 2056 2057 // Take the minimum of all incoming values. This can't infinitely loop 2058 // because of our depth threshold. 2059 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2060 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2061 if (Tmp == 1) return Tmp; 2062 Tmp = std::min( 2063 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2064 } 2065 return Tmp; 2066 } 2067 2068 case Instruction::Trunc: 2069 // FIXME: it's tricky to do anything useful for this, but it is an important 2070 // case for targets like X86. 2071 break; 2072 } 2073 2074 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2075 // use this information. 2076 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2077 APInt Mask; 2078 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2079 2080 if (KnownZero.isNegative()) { // sign bit is 0 2081 Mask = KnownZero; 2082 } else if (KnownOne.isNegative()) { // sign bit is 1; 2083 Mask = KnownOne; 2084 } else { 2085 // Nothing known. 2086 return FirstAnswer; 2087 } 2088 2089 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2090 // the number of identical bits in the top of the input value. 2091 Mask = ~Mask; 2092 Mask <<= Mask.getBitWidth()-TyBits; 2093 // Return # leading zeros. We use 'min' here in case Val was zero before 2094 // shifting. We don't want to return '64' as for an i32 "0". 2095 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2096 } 2097 2098 /// This function computes the integer multiple of Base that equals V. 2099 /// If successful, it returns true and returns the multiple in 2100 /// Multiple. If unsuccessful, it returns false. It looks 2101 /// through SExt instructions only if LookThroughSExt is true. 2102 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2103 bool LookThroughSExt, unsigned Depth) { 2104 const unsigned MaxDepth = 6; 2105 2106 assert(V && "No Value?"); 2107 assert(Depth <= MaxDepth && "Limit Search Depth"); 2108 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2109 2110 Type *T = V->getType(); 2111 2112 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2113 2114 if (Base == 0) 2115 return false; 2116 2117 if (Base == 1) { 2118 Multiple = V; 2119 return true; 2120 } 2121 2122 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2123 Constant *BaseVal = ConstantInt::get(T, Base); 2124 if (CO && CO == BaseVal) { 2125 // Multiple is 1. 2126 Multiple = ConstantInt::get(T, 1); 2127 return true; 2128 } 2129 2130 if (CI && CI->getZExtValue() % Base == 0) { 2131 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2132 return true; 2133 } 2134 2135 if (Depth == MaxDepth) return false; // Limit search depth. 2136 2137 Operator *I = dyn_cast<Operator>(V); 2138 if (!I) return false; 2139 2140 switch (I->getOpcode()) { 2141 default: break; 2142 case Instruction::SExt: 2143 if (!LookThroughSExt) return false; 2144 // otherwise fall through to ZExt 2145 case Instruction::ZExt: 2146 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2147 LookThroughSExt, Depth+1); 2148 case Instruction::Shl: 2149 case Instruction::Mul: { 2150 Value *Op0 = I->getOperand(0); 2151 Value *Op1 = I->getOperand(1); 2152 2153 if (I->getOpcode() == Instruction::Shl) { 2154 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2155 if (!Op1CI) return false; 2156 // Turn Op0 << Op1 into Op0 * 2^Op1 2157 APInt Op1Int = Op1CI->getValue(); 2158 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2159 APInt API(Op1Int.getBitWidth(), 0); 2160 API.setBit(BitToSet); 2161 Op1 = ConstantInt::get(V->getContext(), API); 2162 } 2163 2164 Value *Mul0 = nullptr; 2165 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2166 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2167 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2168 if (Op1C->getType()->getPrimitiveSizeInBits() < 2169 MulC->getType()->getPrimitiveSizeInBits()) 2170 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2171 if (Op1C->getType()->getPrimitiveSizeInBits() > 2172 MulC->getType()->getPrimitiveSizeInBits()) 2173 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2174 2175 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2176 Multiple = ConstantExpr::getMul(MulC, Op1C); 2177 return true; 2178 } 2179 2180 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2181 if (Mul0CI->getValue() == 1) { 2182 // V == Base * Op1, so return Op1 2183 Multiple = Op1; 2184 return true; 2185 } 2186 } 2187 2188 Value *Mul1 = nullptr; 2189 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2190 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2191 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2192 if (Op0C->getType()->getPrimitiveSizeInBits() < 2193 MulC->getType()->getPrimitiveSizeInBits()) 2194 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2195 if (Op0C->getType()->getPrimitiveSizeInBits() > 2196 MulC->getType()->getPrimitiveSizeInBits()) 2197 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2198 2199 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2200 Multiple = ConstantExpr::getMul(MulC, Op0C); 2201 return true; 2202 } 2203 2204 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2205 if (Mul1CI->getValue() == 1) { 2206 // V == Base * Op0, so return Op0 2207 Multiple = Op0; 2208 return true; 2209 } 2210 } 2211 } 2212 } 2213 2214 // We could not determine if V is a multiple of Base. 2215 return false; 2216 } 2217 2218 /// Return true if we can prove that the specified FP value is never equal to 2219 /// -0.0. 2220 /// 2221 /// NOTE: this function will need to be revisited when we support non-default 2222 /// rounding modes! 2223 /// 2224 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2225 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2226 return !CFP->getValueAPF().isNegZero(); 2227 2228 // FIXME: Magic number! At the least, this should be given a name because it's 2229 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2230 // expose it as a parameter, so it can be used for testing / experimenting. 2231 if (Depth == 6) 2232 return false; // Limit search depth. 2233 2234 const Operator *I = dyn_cast<Operator>(V); 2235 if (!I) return false; 2236 2237 // Check if the nsz fast-math flag is set 2238 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2239 if (FPO->hasNoSignedZeros()) 2240 return true; 2241 2242 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2243 if (I->getOpcode() == Instruction::FAdd) 2244 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2245 if (CFP->isNullValue()) 2246 return true; 2247 2248 // sitofp and uitofp turn into +0.0 for zero. 2249 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2250 return true; 2251 2252 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2253 // sqrt(-0.0) = -0.0, no other negative results are possible. 2254 if (II->getIntrinsicID() == Intrinsic::sqrt) 2255 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2256 2257 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2258 if (const Function *F = CI->getCalledFunction()) { 2259 if (F->isDeclaration()) { 2260 // abs(x) != -0.0 2261 if (F->getName() == "abs") return true; 2262 // fabs[lf](x) != -0.0 2263 if (F->getName() == "fabs") return true; 2264 if (F->getName() == "fabsf") return true; 2265 if (F->getName() == "fabsl") return true; 2266 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2267 F->getName() == "sqrtl") 2268 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2269 } 2270 } 2271 2272 return false; 2273 } 2274 2275 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2276 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2277 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2278 2279 // FIXME: Magic number! At the least, this should be given a name because it's 2280 // used similarly in CannotBeNegativeZero(). A better fix may be to 2281 // expose it as a parameter, so it can be used for testing / experimenting. 2282 if (Depth == 6) 2283 return false; // Limit search depth. 2284 2285 const Operator *I = dyn_cast<Operator>(V); 2286 if (!I) return false; 2287 2288 switch (I->getOpcode()) { 2289 default: break; 2290 case Instruction::FMul: 2291 // x*x is always non-negative or a NaN. 2292 if (I->getOperand(0) == I->getOperand(1)) 2293 return true; 2294 // Fall through 2295 case Instruction::FAdd: 2296 case Instruction::FDiv: 2297 case Instruction::FRem: 2298 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2299 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2300 case Instruction::FPExt: 2301 case Instruction::FPTrunc: 2302 // Widening/narrowing never change sign. 2303 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2304 case Instruction::Call: 2305 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2306 switch (II->getIntrinsicID()) { 2307 default: break; 2308 case Intrinsic::exp: 2309 case Intrinsic::exp2: 2310 case Intrinsic::fabs: 2311 case Intrinsic::sqrt: 2312 return true; 2313 case Intrinsic::powi: 2314 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2315 // powi(x,n) is non-negative if n is even. 2316 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2317 return true; 2318 } 2319 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2320 case Intrinsic::fma: 2321 case Intrinsic::fmuladd: 2322 // x*x+y is non-negative if y is non-negative. 2323 return I->getOperand(0) == I->getOperand(1) && 2324 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2325 } 2326 break; 2327 } 2328 return false; 2329 } 2330 2331 /// If the specified value can be set by repeating the same byte in memory, 2332 /// return the i8 value that it is represented with. This is 2333 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2334 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2335 /// byte store (e.g. i16 0x1234), return null. 2336 Value *llvm::isBytewiseValue(Value *V) { 2337 // All byte-wide stores are splatable, even of arbitrary variables. 2338 if (V->getType()->isIntegerTy(8)) return V; 2339 2340 // Handle 'null' ConstantArrayZero etc. 2341 if (Constant *C = dyn_cast<Constant>(V)) 2342 if (C->isNullValue()) 2343 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2344 2345 // Constant float and double values can be handled as integer values if the 2346 // corresponding integer value is "byteable". An important case is 0.0. 2347 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2348 if (CFP->getType()->isFloatTy()) 2349 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2350 if (CFP->getType()->isDoubleTy()) 2351 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2352 // Don't handle long double formats, which have strange constraints. 2353 } 2354 2355 // We can handle constant integers that are multiple of 8 bits. 2356 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2357 if (CI->getBitWidth() % 8 == 0) { 2358 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2359 2360 if (!CI->getValue().isSplat(8)) 2361 return nullptr; 2362 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2363 } 2364 } 2365 2366 // A ConstantDataArray/Vector is splatable if all its members are equal and 2367 // also splatable. 2368 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2369 Value *Elt = CA->getElementAsConstant(0); 2370 Value *Val = isBytewiseValue(Elt); 2371 if (!Val) 2372 return nullptr; 2373 2374 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2375 if (CA->getElementAsConstant(I) != Elt) 2376 return nullptr; 2377 2378 return Val; 2379 } 2380 2381 // Conceptually, we could handle things like: 2382 // %a = zext i8 %X to i16 2383 // %b = shl i16 %a, 8 2384 // %c = or i16 %a, %b 2385 // but until there is an example that actually needs this, it doesn't seem 2386 // worth worrying about. 2387 return nullptr; 2388 } 2389 2390 2391 // This is the recursive version of BuildSubAggregate. It takes a few different 2392 // arguments. Idxs is the index within the nested struct From that we are 2393 // looking at now (which is of type IndexedType). IdxSkip is the number of 2394 // indices from Idxs that should be left out when inserting into the resulting 2395 // struct. To is the result struct built so far, new insertvalue instructions 2396 // build on that. 2397 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2398 SmallVectorImpl<unsigned> &Idxs, 2399 unsigned IdxSkip, 2400 Instruction *InsertBefore) { 2401 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2402 if (STy) { 2403 // Save the original To argument so we can modify it 2404 Value *OrigTo = To; 2405 // General case, the type indexed by Idxs is a struct 2406 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2407 // Process each struct element recursively 2408 Idxs.push_back(i); 2409 Value *PrevTo = To; 2410 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2411 InsertBefore); 2412 Idxs.pop_back(); 2413 if (!To) { 2414 // Couldn't find any inserted value for this index? Cleanup 2415 while (PrevTo != OrigTo) { 2416 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2417 PrevTo = Del->getAggregateOperand(); 2418 Del->eraseFromParent(); 2419 } 2420 // Stop processing elements 2421 break; 2422 } 2423 } 2424 // If we successfully found a value for each of our subaggregates 2425 if (To) 2426 return To; 2427 } 2428 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2429 // the struct's elements had a value that was inserted directly. In the latter 2430 // case, perhaps we can't determine each of the subelements individually, but 2431 // we might be able to find the complete struct somewhere. 2432 2433 // Find the value that is at that particular spot 2434 Value *V = FindInsertedValue(From, Idxs); 2435 2436 if (!V) 2437 return nullptr; 2438 2439 // Insert the value in the new (sub) aggregrate 2440 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2441 "tmp", InsertBefore); 2442 } 2443 2444 // This helper takes a nested struct and extracts a part of it (which is again a 2445 // struct) into a new value. For example, given the struct: 2446 // { a, { b, { c, d }, e } } 2447 // and the indices "1, 1" this returns 2448 // { c, d }. 2449 // 2450 // It does this by inserting an insertvalue for each element in the resulting 2451 // struct, as opposed to just inserting a single struct. This will only work if 2452 // each of the elements of the substruct are known (ie, inserted into From by an 2453 // insertvalue instruction somewhere). 2454 // 2455 // All inserted insertvalue instructions are inserted before InsertBefore 2456 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2457 Instruction *InsertBefore) { 2458 assert(InsertBefore && "Must have someplace to insert!"); 2459 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2460 idx_range); 2461 Value *To = UndefValue::get(IndexedType); 2462 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2463 unsigned IdxSkip = Idxs.size(); 2464 2465 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2466 } 2467 2468 /// Given an aggregrate and an sequence of indices, see if 2469 /// the scalar value indexed is already around as a register, for example if it 2470 /// were inserted directly into the aggregrate. 2471 /// 2472 /// If InsertBefore is not null, this function will duplicate (modified) 2473 /// insertvalues when a part of a nested struct is extracted. 2474 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2475 Instruction *InsertBefore) { 2476 // Nothing to index? Just return V then (this is useful at the end of our 2477 // recursion). 2478 if (idx_range.empty()) 2479 return V; 2480 // We have indices, so V should have an indexable type. 2481 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2482 "Not looking at a struct or array?"); 2483 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2484 "Invalid indices for type?"); 2485 2486 if (Constant *C = dyn_cast<Constant>(V)) { 2487 C = C->getAggregateElement(idx_range[0]); 2488 if (!C) return nullptr; 2489 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2490 } 2491 2492 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2493 // Loop the indices for the insertvalue instruction in parallel with the 2494 // requested indices 2495 const unsigned *req_idx = idx_range.begin(); 2496 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2497 i != e; ++i, ++req_idx) { 2498 if (req_idx == idx_range.end()) { 2499 // We can't handle this without inserting insertvalues 2500 if (!InsertBefore) 2501 return nullptr; 2502 2503 // The requested index identifies a part of a nested aggregate. Handle 2504 // this specially. For example, 2505 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2506 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2507 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2508 // This can be changed into 2509 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2510 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2511 // which allows the unused 0,0 element from the nested struct to be 2512 // removed. 2513 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2514 InsertBefore); 2515 } 2516 2517 // This insert value inserts something else than what we are looking for. 2518 // See if the (aggregrate) value inserted into has the value we are 2519 // looking for, then. 2520 if (*req_idx != *i) 2521 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2522 InsertBefore); 2523 } 2524 // If we end up here, the indices of the insertvalue match with those 2525 // requested (though possibly only partially). Now we recursively look at 2526 // the inserted value, passing any remaining indices. 2527 return FindInsertedValue(I->getInsertedValueOperand(), 2528 makeArrayRef(req_idx, idx_range.end()), 2529 InsertBefore); 2530 } 2531 2532 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2533 // If we're extracting a value from an aggregrate that was extracted from 2534 // something else, we can extract from that something else directly instead. 2535 // However, we will need to chain I's indices with the requested indices. 2536 2537 // Calculate the number of indices required 2538 unsigned size = I->getNumIndices() + idx_range.size(); 2539 // Allocate some space to put the new indices in 2540 SmallVector<unsigned, 5> Idxs; 2541 Idxs.reserve(size); 2542 // Add indices from the extract value instruction 2543 Idxs.append(I->idx_begin(), I->idx_end()); 2544 2545 // Add requested indices 2546 Idxs.append(idx_range.begin(), idx_range.end()); 2547 2548 assert(Idxs.size() == size 2549 && "Number of indices added not correct?"); 2550 2551 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2552 } 2553 // Otherwise, we don't know (such as, extracting from a function return value 2554 // or load instruction) 2555 return nullptr; 2556 } 2557 2558 /// Analyze the specified pointer to see if it can be expressed as a base 2559 /// pointer plus a constant offset. Return the base and offset to the caller. 2560 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2561 const DataLayout &DL) { 2562 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2563 APInt ByteOffset(BitWidth, 0); 2564 while (1) { 2565 if (Ptr->getType()->isVectorTy()) 2566 break; 2567 2568 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2569 APInt GEPOffset(BitWidth, 0); 2570 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2571 break; 2572 2573 ByteOffset += GEPOffset; 2574 2575 Ptr = GEP->getPointerOperand(); 2576 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2577 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2578 Ptr = cast<Operator>(Ptr)->getOperand(0); 2579 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2580 if (GA->mayBeOverridden()) 2581 break; 2582 Ptr = GA->getAliasee(); 2583 } else { 2584 break; 2585 } 2586 } 2587 Offset = ByteOffset.getSExtValue(); 2588 return Ptr; 2589 } 2590 2591 2592 /// This function computes the length of a null-terminated C string pointed to 2593 /// by V. If successful, it returns true and returns the string in Str. 2594 /// If unsuccessful, it returns false. 2595 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2596 uint64_t Offset, bool TrimAtNul) { 2597 assert(V); 2598 2599 // Look through bitcast instructions and geps. 2600 V = V->stripPointerCasts(); 2601 2602 // If the value is a GEP instruction or constant expression, treat it as an 2603 // offset. 2604 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2605 // Make sure the GEP has exactly three arguments. 2606 if (GEP->getNumOperands() != 3) 2607 return false; 2608 2609 // Make sure the index-ee is a pointer to array of i8. 2610 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2611 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2612 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2613 return false; 2614 2615 // Check to make sure that the first operand of the GEP is an integer and 2616 // has value 0 so that we are sure we're indexing into the initializer. 2617 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2618 if (!FirstIdx || !FirstIdx->isZero()) 2619 return false; 2620 2621 // If the second index isn't a ConstantInt, then this is a variable index 2622 // into the array. If this occurs, we can't say anything meaningful about 2623 // the string. 2624 uint64_t StartIdx = 0; 2625 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2626 StartIdx = CI->getZExtValue(); 2627 else 2628 return false; 2629 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2630 TrimAtNul); 2631 } 2632 2633 // The GEP instruction, constant or instruction, must reference a global 2634 // variable that is a constant and is initialized. The referenced constant 2635 // initializer is the array that we'll use for optimization. 2636 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2637 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2638 return false; 2639 2640 // Handle the all-zeros case 2641 if (GV->getInitializer()->isNullValue()) { 2642 // This is a degenerate case. The initializer is constant zero so the 2643 // length of the string must be zero. 2644 Str = ""; 2645 return true; 2646 } 2647 2648 // Must be a Constant Array 2649 const ConstantDataArray *Array = 2650 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2651 if (!Array || !Array->isString()) 2652 return false; 2653 2654 // Get the number of elements in the array 2655 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2656 2657 // Start out with the entire array in the StringRef. 2658 Str = Array->getAsString(); 2659 2660 if (Offset > NumElts) 2661 return false; 2662 2663 // Skip over 'offset' bytes. 2664 Str = Str.substr(Offset); 2665 2666 if (TrimAtNul) { 2667 // Trim off the \0 and anything after it. If the array is not nul 2668 // terminated, we just return the whole end of string. The client may know 2669 // some other way that the string is length-bound. 2670 Str = Str.substr(0, Str.find('\0')); 2671 } 2672 return true; 2673 } 2674 2675 // These next two are very similar to the above, but also look through PHI 2676 // nodes. 2677 // TODO: See if we can integrate these two together. 2678 2679 /// If we can compute the length of the string pointed to by 2680 /// the specified pointer, return 'len+1'. If we can't, return 0. 2681 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2682 // Look through noop bitcast instructions. 2683 V = V->stripPointerCasts(); 2684 2685 // If this is a PHI node, there are two cases: either we have already seen it 2686 // or we haven't. 2687 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2688 if (!PHIs.insert(PN).second) 2689 return ~0ULL; // already in the set. 2690 2691 // If it was new, see if all the input strings are the same length. 2692 uint64_t LenSoFar = ~0ULL; 2693 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 2694 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 2695 if (Len == 0) return 0; // Unknown length -> unknown. 2696 2697 if (Len == ~0ULL) continue; 2698 2699 if (Len != LenSoFar && LenSoFar != ~0ULL) 2700 return 0; // Disagree -> unknown. 2701 LenSoFar = Len; 2702 } 2703 2704 // Success, all agree. 2705 return LenSoFar; 2706 } 2707 2708 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2709 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2710 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2711 if (Len1 == 0) return 0; 2712 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2713 if (Len2 == 0) return 0; 2714 if (Len1 == ~0ULL) return Len2; 2715 if (Len2 == ~0ULL) return Len1; 2716 if (Len1 != Len2) return 0; 2717 return Len1; 2718 } 2719 2720 // Otherwise, see if we can read the string. 2721 StringRef StrData; 2722 if (!getConstantStringInfo(V, StrData)) 2723 return 0; 2724 2725 return StrData.size()+1; 2726 } 2727 2728 /// If we can compute the length of the string pointed to by 2729 /// the specified pointer, return 'len+1'. If we can't, return 0. 2730 uint64_t llvm::GetStringLength(Value *V) { 2731 if (!V->getType()->isPointerTy()) return 0; 2732 2733 SmallPtrSet<PHINode*, 32> PHIs; 2734 uint64_t Len = GetStringLengthH(V, PHIs); 2735 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2736 // an empty string as a length. 2737 return Len == ~0ULL ? 1 : Len; 2738 } 2739 2740 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2741 unsigned MaxLookup) { 2742 if (!V->getType()->isPointerTy()) 2743 return V; 2744 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2745 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2746 V = GEP->getPointerOperand(); 2747 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2748 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2749 V = cast<Operator>(V)->getOperand(0); 2750 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2751 if (GA->mayBeOverridden()) 2752 return V; 2753 V = GA->getAliasee(); 2754 } else { 2755 // See if InstructionSimplify knows any relevant tricks. 2756 if (Instruction *I = dyn_cast<Instruction>(V)) 2757 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2758 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2759 V = Simplified; 2760 continue; 2761 } 2762 2763 return V; 2764 } 2765 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2766 } 2767 return V; 2768 } 2769 2770 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2771 const DataLayout &DL, unsigned MaxLookup) { 2772 SmallPtrSet<Value *, 4> Visited; 2773 SmallVector<Value *, 4> Worklist; 2774 Worklist.push_back(V); 2775 do { 2776 Value *P = Worklist.pop_back_val(); 2777 P = GetUnderlyingObject(P, DL, MaxLookup); 2778 2779 if (!Visited.insert(P).second) 2780 continue; 2781 2782 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2783 Worklist.push_back(SI->getTrueValue()); 2784 Worklist.push_back(SI->getFalseValue()); 2785 continue; 2786 } 2787 2788 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2789 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 2790 Worklist.push_back(PN->getIncomingValue(i)); 2791 continue; 2792 } 2793 2794 Objects.push_back(P); 2795 } while (!Worklist.empty()); 2796 } 2797 2798 /// Return true if the only users of this pointer are lifetime markers. 2799 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2800 for (const User *U : V->users()) { 2801 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2802 if (!II) return false; 2803 2804 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 2805 II->getIntrinsicID() != Intrinsic::lifetime_end) 2806 return false; 2807 } 2808 return true; 2809 } 2810 2811 bool llvm::isSafeToSpeculativelyExecute(const Value *V) { 2812 const Operator *Inst = dyn_cast<Operator>(V); 2813 if (!Inst) 2814 return false; 2815 2816 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 2817 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 2818 if (C->canTrap()) 2819 return false; 2820 2821 switch (Inst->getOpcode()) { 2822 default: 2823 return true; 2824 case Instruction::UDiv: 2825 case Instruction::URem: { 2826 // x / y is undefined if y == 0. 2827 const APInt *V; 2828 if (match(Inst->getOperand(1), m_APInt(V))) 2829 return *V != 0; 2830 return false; 2831 } 2832 case Instruction::SDiv: 2833 case Instruction::SRem: { 2834 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 2835 const APInt *Numerator, *Denominator; 2836 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 2837 return false; 2838 // We cannot hoist this division if the denominator is 0. 2839 if (*Denominator == 0) 2840 return false; 2841 // It's safe to hoist if the denominator is not 0 or -1. 2842 if (*Denominator != -1) 2843 return true; 2844 // At this point we know that the denominator is -1. It is safe to hoist as 2845 // long we know that the numerator is not INT_MIN. 2846 if (match(Inst->getOperand(0), m_APInt(Numerator))) 2847 return !Numerator->isMinSignedValue(); 2848 // The numerator *might* be MinSignedValue. 2849 return false; 2850 } 2851 case Instruction::Load: { 2852 const LoadInst *LI = cast<LoadInst>(Inst); 2853 if (!LI->isUnordered() || 2854 // Speculative load may create a race that did not exist in the source. 2855 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2856 return false; 2857 const DataLayout &DL = LI->getModule()->getDataLayout(); 2858 return LI->getPointerOperand()->isDereferenceablePointer(DL); 2859 } 2860 case Instruction::Call: { 2861 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2862 switch (II->getIntrinsicID()) { 2863 // These synthetic intrinsics have no side-effects and just mark 2864 // information about their operands. 2865 // FIXME: There are other no-op synthetic instructions that potentially 2866 // should be considered at least *safe* to speculate... 2867 case Intrinsic::dbg_declare: 2868 case Intrinsic::dbg_value: 2869 return true; 2870 2871 case Intrinsic::bswap: 2872 case Intrinsic::ctlz: 2873 case Intrinsic::ctpop: 2874 case Intrinsic::cttz: 2875 case Intrinsic::objectsize: 2876 case Intrinsic::sadd_with_overflow: 2877 case Intrinsic::smul_with_overflow: 2878 case Intrinsic::ssub_with_overflow: 2879 case Intrinsic::uadd_with_overflow: 2880 case Intrinsic::umul_with_overflow: 2881 case Intrinsic::usub_with_overflow: 2882 return true; 2883 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2884 // errno like libm sqrt would. 2885 case Intrinsic::sqrt: 2886 case Intrinsic::fma: 2887 case Intrinsic::fmuladd: 2888 case Intrinsic::fabs: 2889 case Intrinsic::minnum: 2890 case Intrinsic::maxnum: 2891 return true; 2892 // TODO: some fp intrinsics are marked as having the same error handling 2893 // as libm. They're safe to speculate when they won't error. 2894 // TODO: are convert_{from,to}_fp16 safe? 2895 // TODO: can we list target-specific intrinsics here? 2896 default: break; 2897 } 2898 } 2899 return false; // The called function could have undefined behavior or 2900 // side-effects, even if marked readnone nounwind. 2901 } 2902 case Instruction::VAArg: 2903 case Instruction::Alloca: 2904 case Instruction::Invoke: 2905 case Instruction::PHI: 2906 case Instruction::Store: 2907 case Instruction::Ret: 2908 case Instruction::Br: 2909 case Instruction::IndirectBr: 2910 case Instruction::Switch: 2911 case Instruction::Unreachable: 2912 case Instruction::Fence: 2913 case Instruction::LandingPad: 2914 case Instruction::AtomicRMW: 2915 case Instruction::AtomicCmpXchg: 2916 case Instruction::Resume: 2917 return false; // Misc instructions which have effects 2918 } 2919 } 2920 2921 /// Return true if we know that the specified value is never null. 2922 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2923 // Alloca never returns null, malloc might. 2924 if (isa<AllocaInst>(V)) return true; 2925 2926 // A byval, inalloca, or nonnull argument is never null. 2927 if (const Argument *A = dyn_cast<Argument>(V)) 2928 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 2929 2930 // Global values are not null unless extern weak. 2931 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2932 return !GV->hasExternalWeakLinkage(); 2933 2934 // A Load tagged w/nonnull metadata is never null. 2935 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2936 return LI->getMetadata(LLVMContext::MD_nonnull); 2937 2938 if (ImmutableCallSite CS = V) 2939 if (CS.isReturnNonNull()) 2940 return true; 2941 2942 // operator new never returns null. 2943 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2944 return true; 2945 2946 return false; 2947 } 2948 2949 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 2950 const DataLayout &DL, 2951 AssumptionCache *AC, 2952 const Instruction *CxtI, 2953 const DominatorTree *DT) { 2954 // Multiplying n * m significant bits yields a result of n + m significant 2955 // bits. If the total number of significant bits does not exceed the 2956 // result bit width (minus 1), there is no overflow. 2957 // This means if we have enough leading zero bits in the operands 2958 // we can guarantee that the result does not overflow. 2959 // Ref: "Hacker's Delight" by Henry Warren 2960 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 2961 APInt LHSKnownZero(BitWidth, 0); 2962 APInt LHSKnownOne(BitWidth, 0); 2963 APInt RHSKnownZero(BitWidth, 0); 2964 APInt RHSKnownOne(BitWidth, 0); 2965 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 2966 DT); 2967 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 2968 DT); 2969 // Note that underestimating the number of zero bits gives a more 2970 // conservative answer. 2971 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 2972 RHSKnownZero.countLeadingOnes(); 2973 // First handle the easy case: if we have enough zero bits there's 2974 // definitely no overflow. 2975 if (ZeroBits >= BitWidth) 2976 return OverflowResult::NeverOverflows; 2977 2978 // Get the largest possible values for each operand. 2979 APInt LHSMax = ~LHSKnownZero; 2980 APInt RHSMax = ~RHSKnownZero; 2981 2982 // We know the multiply operation doesn't overflow if the maximum values for 2983 // each operand will not overflow after we multiply them together. 2984 bool MaxOverflow; 2985 LHSMax.umul_ov(RHSMax, MaxOverflow); 2986 if (!MaxOverflow) 2987 return OverflowResult::NeverOverflows; 2988 2989 // We know it always overflows if multiplying the smallest possible values for 2990 // the operands also results in overflow. 2991 bool MinOverflow; 2992 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 2993 if (MinOverflow) 2994 return OverflowResult::AlwaysOverflows; 2995 2996 return OverflowResult::MayOverflow; 2997 } 2998 2999 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3000 const DataLayout &DL, 3001 AssumptionCache *AC, 3002 const Instruction *CxtI, 3003 const DominatorTree *DT) { 3004 bool LHSKnownNonNegative, LHSKnownNegative; 3005 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3006 AC, CxtI, DT); 3007 if (LHSKnownNonNegative || LHSKnownNegative) { 3008 bool RHSKnownNonNegative, RHSKnownNegative; 3009 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3010 AC, CxtI, DT); 3011 3012 if (LHSKnownNegative && RHSKnownNegative) { 3013 // The sign bit is set in both cases: this MUST overflow. 3014 // Create a simple add instruction, and insert it into the struct. 3015 return OverflowResult::AlwaysOverflows; 3016 } 3017 3018 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3019 // The sign bit is clear in both cases: this CANNOT overflow. 3020 // Create a simple add instruction, and insert it into the struct. 3021 return OverflowResult::NeverOverflows; 3022 } 3023 } 3024 3025 return OverflowResult::MayOverflow; 3026 } 3027