1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/InstructionSimplify.h" 18 #include "llvm/Analysis/MemoryBuiltins.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/GetElementPtrTypeIterator.h" 23 #include "llvm/IR/GlobalAlias.h" 24 #include "llvm/IR/GlobalVariable.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/LLVMContext.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/MathExtras.h" 32 #include <cstring> 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 const unsigned MaxDepth = 6; 37 38 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 39 /// unknown returns 0). For vector types, returns the element type's bitwidth. 40 static unsigned getBitWidth(Type *Ty, const DataLayout *TD) { 41 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 42 return BitWidth; 43 44 return TD ? TD->getPointerTypeSizeInBits(Ty) : 0; 45 } 46 47 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 48 APInt &KnownZero, APInt &KnownOne, 49 APInt &KnownZero2, APInt &KnownOne2, 50 const DataLayout *TD, unsigned Depth) { 51 if (!Add) { 52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 53 // We know that the top bits of C-X are clear if X contains less bits 54 // than C (i.e. no wrap-around can happen). For example, 20-X is 55 // positive if we can prove that X is >= 0 and < 16. 56 if (!CLHS->getValue().isNegative()) { 57 unsigned BitWidth = KnownZero.getBitWidth(); 58 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 59 // NLZ can't be BitWidth with no sign bit 60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 61 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 62 63 // If all of the MaskV bits are known to be zero, then we know the 64 // output top bits are zero, because we now know that the output is 65 // from [0-C]. 66 if ((KnownZero2 & MaskV) == MaskV) { 67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 68 // Top bits known zero. 69 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 70 } 71 } 72 } 73 } 74 75 unsigned BitWidth = KnownZero.getBitWidth(); 76 77 // If one of the operands has trailing zeros, then the bits that the 78 // other operand has in those bit positions will be preserved in the 79 // result. For an add, this works with either operand. For a subtract, 80 // this only works if the known zeros are in the right operand. 81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 82 llvm::ComputeMaskedBits(Op0, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 assert((LHSKnownZero & LHSKnownOne) == 0 && 84 "Bits known to be one AND zero?"); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::ComputeMaskedBits(Op1, KnownZero2, KnownOne2, TD, Depth+1); 88 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 90 91 // Determine which operand has more trailing zeros, and use that 92 // many bits from the other operand. 93 if (LHSKnownZeroOut > RHSKnownZeroOut) { 94 if (Add) { 95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 96 KnownZero |= KnownZero2 & Mask; 97 KnownOne |= KnownOne2 & Mask; 98 } else { 99 // If the known zeros are in the left operand for a subtract, 100 // fall back to the minimum known zeros in both operands. 101 KnownZero |= APInt::getLowBitsSet(BitWidth, 102 std::min(LHSKnownZeroOut, 103 RHSKnownZeroOut)); 104 } 105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 107 KnownZero |= LHSKnownZero & Mask; 108 KnownOne |= LHSKnownOne & Mask; 109 } 110 111 // Are we still trying to solve for the sign bit? 112 if (!KnownZero.isNegative() && !KnownOne.isNegative()) { 113 if (NSW) { 114 if (Add) { 115 // Adding two positive numbers can't wrap into negative 116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 117 KnownZero |= APInt::getSignBit(BitWidth); 118 // and adding two negative numbers can't wrap into positive. 119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 120 KnownOne |= APInt::getSignBit(BitWidth); 121 } else { 122 // Subtracting a negative number from a positive one can't wrap 123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 124 KnownZero |= APInt::getSignBit(BitWidth); 125 // neither can subtracting a positive number from a negative one. 126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 127 KnownOne |= APInt::getSignBit(BitWidth); 128 } 129 } 130 } 131 } 132 133 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 134 APInt &KnownZero, APInt &KnownOne, 135 APInt &KnownZero2, APInt &KnownOne2, 136 const DataLayout *TD, unsigned Depth) { 137 unsigned BitWidth = KnownZero.getBitWidth(); 138 ComputeMaskedBits(Op1, KnownZero, KnownOne, TD, Depth+1); 139 ComputeMaskedBits(Op0, KnownZero2, KnownOne2, TD, Depth+1); 140 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 141 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 142 143 bool isKnownNegative = false; 144 bool isKnownNonNegative = false; 145 // If the multiplication is known not to overflow, compute the sign bit. 146 if (NSW) { 147 if (Op0 == Op1) { 148 // The product of a number with itself is non-negative. 149 isKnownNonNegative = true; 150 } else { 151 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 152 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 153 bool isKnownNegativeOp1 = KnownOne.isNegative(); 154 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 155 // The product of two numbers with the same sign is non-negative. 156 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 157 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 158 // The product of a negative number and a non-negative number is either 159 // negative or zero. 160 if (!isKnownNonNegative) 161 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 162 isKnownNonZero(Op0, TD, Depth)) || 163 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 164 isKnownNonZero(Op1, TD, Depth)); 165 } 166 } 167 168 // If low bits are zero in either operand, output low known-0 bits. 169 // Also compute a conserative estimate for high known-0 bits. 170 // More trickiness is possible, but this is sufficient for the 171 // interesting case of alignment computation. 172 KnownOne.clearAllBits(); 173 unsigned TrailZ = KnownZero.countTrailingOnes() + 174 KnownZero2.countTrailingOnes(); 175 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 176 KnownZero2.countLeadingOnes(), 177 BitWidth) - BitWidth; 178 179 TrailZ = std::min(TrailZ, BitWidth); 180 LeadZ = std::min(LeadZ, BitWidth); 181 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 182 APInt::getHighBitsSet(BitWidth, LeadZ); 183 184 // Only make use of no-wrap flags if we failed to compute the sign bit 185 // directly. This matters if the multiplication always overflows, in 186 // which case we prefer to follow the result of the direct computation, 187 // though as the program is invoking undefined behaviour we can choose 188 // whatever we like here. 189 if (isKnownNonNegative && !KnownOne.isNegative()) 190 KnownZero.setBit(BitWidth - 1); 191 else if (isKnownNegative && !KnownZero.isNegative()) 192 KnownOne.setBit(BitWidth - 1); 193 } 194 195 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, APInt &KnownZero) { 196 unsigned BitWidth = KnownZero.getBitWidth(); 197 unsigned NumRanges = Ranges.getNumOperands() / 2; 198 assert(NumRanges >= 1); 199 200 // Use the high end of the ranges to find leading zeros. 201 unsigned MinLeadingZeros = BitWidth; 202 for (unsigned i = 0; i < NumRanges; ++i) { 203 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 204 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 205 ConstantRange Range(Lower->getValue(), Upper->getValue()); 206 if (Range.isWrappedSet()) 207 MinLeadingZeros = 0; // -1 has no zeros 208 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 209 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 210 } 211 212 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 213 } 214 /// ComputeMaskedBits - Determine which of the bits are known to be either zero 215 /// or one and return them in the KnownZero/KnownOne bit sets. 216 /// 217 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 218 /// we cannot optimize based on the assumption that it is zero without changing 219 /// it to be an explicit zero. If we don't change it to zero, other code could 220 /// optimized based on the contradictory assumption that it is non-zero. 221 /// Because instcombine aggressively folds operations with undef args anyway, 222 /// this won't lose us code quality. 223 /// 224 /// This function is defined on values with integer type, values with pointer 225 /// type (but only if TD is non-null), and vectors of integers. In the case 226 /// where V is a vector, known zero, and known one values are the 227 /// same width as the vector element, and the bit is set only if it is true 228 /// for all of the elements in the vector. 229 void llvm::ComputeMaskedBits(Value *V, APInt &KnownZero, APInt &KnownOne, 230 const DataLayout *TD, unsigned Depth) { 231 assert(V && "No Value?"); 232 assert(Depth <= MaxDepth && "Limit Search Depth"); 233 unsigned BitWidth = KnownZero.getBitWidth(); 234 235 assert((V->getType()->isIntOrIntVectorTy() || 236 V->getType()->getScalarType()->isPointerTy()) && 237 "Not integer or pointer type!"); 238 assert((!TD || 239 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 240 (!V->getType()->isIntOrIntVectorTy() || 241 V->getType()->getScalarSizeInBits() == BitWidth) && 242 KnownZero.getBitWidth() == BitWidth && 243 KnownOne.getBitWidth() == BitWidth && 244 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 245 246 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 247 // We know all of the bits for a constant! 248 KnownOne = CI->getValue(); 249 KnownZero = ~KnownOne; 250 return; 251 } 252 // Null and aggregate-zero are all-zeros. 253 if (isa<ConstantPointerNull>(V) || 254 isa<ConstantAggregateZero>(V)) { 255 KnownOne.clearAllBits(); 256 KnownZero = APInt::getAllOnesValue(BitWidth); 257 return; 258 } 259 // Handle a constant vector by taking the intersection of the known bits of 260 // each element. There is no real need to handle ConstantVector here, because 261 // we don't handle undef in any particularly useful way. 262 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 263 // We know that CDS must be a vector of integers. Take the intersection of 264 // each element. 265 KnownZero.setAllBits(); KnownOne.setAllBits(); 266 APInt Elt(KnownZero.getBitWidth(), 0); 267 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 268 Elt = CDS->getElementAsInteger(i); 269 KnownZero &= ~Elt; 270 KnownOne &= Elt; 271 } 272 return; 273 } 274 275 // The address of an aligned GlobalValue has trailing zeros. 276 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 277 unsigned Align = GV->getAlignment(); 278 if (Align == 0 && TD) { 279 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 280 Type *ObjectType = GVar->getType()->getElementType(); 281 if (ObjectType->isSized()) { 282 // If the object is defined in the current Module, we'll be giving 283 // it the preferred alignment. Otherwise, we have to assume that it 284 // may only have the minimum ABI alignment. 285 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 286 Align = TD->getPreferredAlignment(GVar); 287 else 288 Align = TD->getABITypeAlignment(ObjectType); 289 } 290 } 291 } 292 if (Align > 0) 293 KnownZero = APInt::getLowBitsSet(BitWidth, 294 countTrailingZeros(Align)); 295 else 296 KnownZero.clearAllBits(); 297 KnownOne.clearAllBits(); 298 return; 299 } 300 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 301 // the bits of its aliasee. 302 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 303 if (GA->mayBeOverridden()) { 304 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 305 } else { 306 ComputeMaskedBits(GA->getAliasee(), KnownZero, KnownOne, TD, Depth+1); 307 } 308 return; 309 } 310 311 if (Argument *A = dyn_cast<Argument>(V)) { 312 unsigned Align = 0; 313 314 if (A->hasByValOrInAllocaAttr()) { 315 // Get alignment information off byval/inalloca arguments if specified in 316 // the IR. 317 Align = A->getParamAlignment(); 318 } else if (TD && A->hasStructRetAttr()) { 319 // An sret parameter has at least the ABI alignment of the return type. 320 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 321 if (EltTy->isSized()) 322 Align = TD->getABITypeAlignment(EltTy); 323 } 324 325 if (Align) 326 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 327 return; 328 } 329 330 // Start out not knowing anything. 331 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 332 333 if (Depth == MaxDepth) 334 return; // Limit search depth. 335 336 Operator *I = dyn_cast<Operator>(V); 337 if (!I) return; 338 339 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 340 switch (I->getOpcode()) { 341 default: break; 342 case Instruction::Load: 343 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 344 computeMaskedBitsLoad(*MD, KnownZero); 345 return; 346 case Instruction::And: { 347 // If either the LHS or the RHS are Zero, the result is zero. 348 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 349 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 350 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 351 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 352 353 // Output known-1 bits are only known if set in both the LHS & RHS. 354 KnownOne &= KnownOne2; 355 // Output known-0 are known to be clear if zero in either the LHS | RHS. 356 KnownZero |= KnownZero2; 357 return; 358 } 359 case Instruction::Or: { 360 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 361 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 362 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 363 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 364 365 // Output known-0 bits are only known if clear in both the LHS & RHS. 366 KnownZero &= KnownZero2; 367 // Output known-1 are known to be set if set in either the LHS | RHS. 368 KnownOne |= KnownOne2; 369 return; 370 } 371 case Instruction::Xor: { 372 ComputeMaskedBits(I->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 373 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 374 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 375 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 376 377 // Output known-0 bits are known if clear or set in both the LHS & RHS. 378 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 379 // Output known-1 are known to be set if set in only one of the LHS, RHS. 380 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 381 KnownZero = KnownZeroOut; 382 return; 383 } 384 case Instruction::Mul: { 385 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 386 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 387 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, Depth); 388 break; 389 } 390 case Instruction::UDiv: { 391 // For the purposes of computing leading zeros we can conservatively 392 // treat a udiv as a logical right shift by the power of 2 known to 393 // be less than the denominator. 394 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 395 unsigned LeadZ = KnownZero2.countLeadingOnes(); 396 397 KnownOne2.clearAllBits(); 398 KnownZero2.clearAllBits(); 399 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 400 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 401 if (RHSUnknownLeadingOnes != BitWidth) 402 LeadZ = std::min(BitWidth, 403 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 404 405 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 406 return; 407 } 408 case Instruction::Select: 409 ComputeMaskedBits(I->getOperand(2), KnownZero, KnownOne, TD, Depth+1); 410 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, 411 Depth+1); 412 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 413 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 414 415 // Only known if known in both the LHS and RHS. 416 KnownOne &= KnownOne2; 417 KnownZero &= KnownZero2; 418 return; 419 case Instruction::FPTrunc: 420 case Instruction::FPExt: 421 case Instruction::FPToUI: 422 case Instruction::FPToSI: 423 case Instruction::SIToFP: 424 case Instruction::UIToFP: 425 return; // Can't work with floating point. 426 case Instruction::PtrToInt: 427 case Instruction::IntToPtr: 428 // We can't handle these if we don't know the pointer size. 429 if (!TD) return; 430 // FALL THROUGH and handle them the same as zext/trunc. 431 case Instruction::ZExt: 432 case Instruction::Trunc: { 433 Type *SrcTy = I->getOperand(0)->getType(); 434 435 unsigned SrcBitWidth; 436 // Note that we handle pointer operands here because of inttoptr/ptrtoint 437 // which fall through here. 438 if(TD) { 439 SrcBitWidth = TD->getTypeSizeInBits(SrcTy->getScalarType()); 440 } else { 441 SrcBitWidth = SrcTy->getScalarSizeInBits(); 442 if (!SrcBitWidth) return; 443 } 444 445 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 446 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 447 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 448 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 449 KnownZero = KnownZero.zextOrTrunc(BitWidth); 450 KnownOne = KnownOne.zextOrTrunc(BitWidth); 451 // Any top bits are known to be zero. 452 if (BitWidth > SrcBitWidth) 453 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 454 return; 455 } 456 case Instruction::BitCast: { 457 Type *SrcTy = I->getOperand(0)->getType(); 458 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 459 // TODO: For now, not handling conversions like: 460 // (bitcast i64 %x to <2 x i32>) 461 !I->getType()->isVectorTy()) { 462 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 463 return; 464 } 465 break; 466 } 467 case Instruction::SExt: { 468 // Compute the bits in the result that are not present in the input. 469 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 470 471 KnownZero = KnownZero.trunc(SrcBitWidth); 472 KnownOne = KnownOne.trunc(SrcBitWidth); 473 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 474 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 475 KnownZero = KnownZero.zext(BitWidth); 476 KnownOne = KnownOne.zext(BitWidth); 477 478 // If the sign bit of the input is known set or clear, then we know the 479 // top bits of the result. 480 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 481 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 482 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 483 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 484 return; 485 } 486 case Instruction::Shl: 487 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 488 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 489 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 490 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 491 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 492 KnownZero <<= ShiftAmt; 493 KnownOne <<= ShiftAmt; 494 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 495 return; 496 } 497 break; 498 case Instruction::LShr: 499 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 500 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 501 // Compute the new bits that are at the top now. 502 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 503 504 // Unsigned shift right. 505 ComputeMaskedBits(I->getOperand(0), KnownZero,KnownOne, TD, Depth+1); 506 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 507 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 508 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 509 // high bits known zero. 510 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 511 return; 512 } 513 break; 514 case Instruction::AShr: 515 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 516 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 517 // Compute the new bits that are at the top now. 518 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 519 520 // Signed shift right. 521 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 522 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 523 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 524 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 525 526 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 527 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 528 KnownZero |= HighBits; 529 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 530 KnownOne |= HighBits; 531 return; 532 } 533 break; 534 case Instruction::Sub: { 535 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 536 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 537 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 538 Depth); 539 break; 540 } 541 case Instruction::Add: { 542 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 543 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 544 KnownZero, KnownOne, KnownZero2, KnownOne2, TD, 545 Depth); 546 break; 547 } 548 case Instruction::SRem: 549 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 550 APInt RA = Rem->getValue().abs(); 551 if (RA.isPowerOf2()) { 552 APInt LowBits = RA - 1; 553 ComputeMaskedBits(I->getOperand(0), KnownZero2, KnownOne2, TD, Depth+1); 554 555 // The low bits of the first operand are unchanged by the srem. 556 KnownZero = KnownZero2 & LowBits; 557 KnownOne = KnownOne2 & LowBits; 558 559 // If the first operand is non-negative or has all low bits zero, then 560 // the upper bits are all zero. 561 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 562 KnownZero |= ~LowBits; 563 564 // If the first operand is negative and not all low bits are zero, then 565 // the upper bits are all one. 566 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 567 KnownOne |= ~LowBits; 568 569 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 570 } 571 } 572 573 // The sign bit is the LHS's sign bit, except when the result of the 574 // remainder is zero. 575 if (KnownZero.isNonNegative()) { 576 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 577 ComputeMaskedBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, TD, 578 Depth+1); 579 // If it's known zero, our sign bit is also zero. 580 if (LHSKnownZero.isNegative()) 581 KnownZero.setBit(BitWidth - 1); 582 } 583 584 break; 585 case Instruction::URem: { 586 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 587 APInt RA = Rem->getValue(); 588 if (RA.isPowerOf2()) { 589 APInt LowBits = (RA - 1); 590 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, 591 Depth+1); 592 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 593 KnownZero |= ~LowBits; 594 KnownOne &= LowBits; 595 break; 596 } 597 } 598 599 // Since the result is less than or equal to either operand, any leading 600 // zero bits in either operand must also exist in the result. 601 ComputeMaskedBits(I->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 602 ComputeMaskedBits(I->getOperand(1), KnownZero2, KnownOne2, TD, Depth+1); 603 604 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 605 KnownZero2.countLeadingOnes()); 606 KnownOne.clearAllBits(); 607 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 608 break; 609 } 610 611 case Instruction::Alloca: { 612 AllocaInst *AI = cast<AllocaInst>(V); 613 unsigned Align = AI->getAlignment(); 614 if (Align == 0 && TD) 615 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 616 617 if (Align > 0) 618 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 619 break; 620 } 621 case Instruction::GetElementPtr: { 622 // Analyze all of the subscripts of this getelementptr instruction 623 // to determine if we can prove known low zero bits. 624 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 625 ComputeMaskedBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, TD, 626 Depth+1); 627 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 628 629 gep_type_iterator GTI = gep_type_begin(I); 630 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 631 Value *Index = I->getOperand(i); 632 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 633 // Handle struct member offset arithmetic. 634 if (!TD) 635 return; 636 637 // Handle case when index is vector zeroinitializer 638 Constant *CIndex = cast<Constant>(Index); 639 if (CIndex->isZeroValue()) 640 continue; 641 642 if (CIndex->getType()->isVectorTy()) 643 Index = CIndex->getSplatValue(); 644 645 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 646 const StructLayout *SL = TD->getStructLayout(STy); 647 uint64_t Offset = SL->getElementOffset(Idx); 648 TrailZ = std::min<unsigned>(TrailZ, 649 countTrailingZeros(Offset)); 650 } else { 651 // Handle array index arithmetic. 652 Type *IndexedTy = GTI.getIndexedType(); 653 if (!IndexedTy->isSized()) return; 654 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 655 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 656 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 657 ComputeMaskedBits(Index, LocalKnownZero, LocalKnownOne, TD, Depth+1); 658 TrailZ = std::min(TrailZ, 659 unsigned(countTrailingZeros(TypeSize) + 660 LocalKnownZero.countTrailingOnes())); 661 } 662 } 663 664 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 665 break; 666 } 667 case Instruction::PHI: { 668 PHINode *P = cast<PHINode>(I); 669 // Handle the case of a simple two-predecessor recurrence PHI. 670 // There's a lot more that could theoretically be done here, but 671 // this is sufficient to catch some interesting cases. 672 if (P->getNumIncomingValues() == 2) { 673 for (unsigned i = 0; i != 2; ++i) { 674 Value *L = P->getIncomingValue(i); 675 Value *R = P->getIncomingValue(!i); 676 Operator *LU = dyn_cast<Operator>(L); 677 if (!LU) 678 continue; 679 unsigned Opcode = LU->getOpcode(); 680 // Check for operations that have the property that if 681 // both their operands have low zero bits, the result 682 // will have low zero bits. 683 if (Opcode == Instruction::Add || 684 Opcode == Instruction::Sub || 685 Opcode == Instruction::And || 686 Opcode == Instruction::Or || 687 Opcode == Instruction::Mul) { 688 Value *LL = LU->getOperand(0); 689 Value *LR = LU->getOperand(1); 690 // Find a recurrence. 691 if (LL == I) 692 L = LR; 693 else if (LR == I) 694 L = LL; 695 else 696 break; 697 // Ok, we have a PHI of the form L op= R. Check for low 698 // zero bits. 699 ComputeMaskedBits(R, KnownZero2, KnownOne2, TD, Depth+1); 700 701 // We need to take the minimum number of known bits 702 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 703 ComputeMaskedBits(L, KnownZero3, KnownOne3, TD, Depth+1); 704 705 KnownZero = APInt::getLowBitsSet(BitWidth, 706 std::min(KnownZero2.countTrailingOnes(), 707 KnownZero3.countTrailingOnes())); 708 break; 709 } 710 } 711 } 712 713 // Unreachable blocks may have zero-operand PHI nodes. 714 if (P->getNumIncomingValues() == 0) 715 return; 716 717 // Otherwise take the unions of the known bit sets of the operands, 718 // taking conservative care to avoid excessive recursion. 719 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 720 // Skip if every incoming value references to ourself. 721 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 722 break; 723 724 KnownZero = APInt::getAllOnesValue(BitWidth); 725 KnownOne = APInt::getAllOnesValue(BitWidth); 726 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 727 // Skip direct self references. 728 if (P->getIncomingValue(i) == P) continue; 729 730 KnownZero2 = APInt(BitWidth, 0); 731 KnownOne2 = APInt(BitWidth, 0); 732 // Recurse, but cap the recursion to one level, because we don't 733 // want to waste time spinning around in loops. 734 ComputeMaskedBits(P->getIncomingValue(i), KnownZero2, KnownOne2, TD, 735 MaxDepth-1); 736 KnownZero &= KnownZero2; 737 KnownOne &= KnownOne2; 738 // If all bits have been ruled out, there's no need to check 739 // more operands. 740 if (!KnownZero && !KnownOne) 741 break; 742 } 743 } 744 break; 745 } 746 case Instruction::Call: 747 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 748 switch (II->getIntrinsicID()) { 749 default: break; 750 case Intrinsic::ctlz: 751 case Intrinsic::cttz: { 752 unsigned LowBits = Log2_32(BitWidth)+1; 753 // If this call is undefined for 0, the result will be less than 2^n. 754 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 755 LowBits -= 1; 756 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 757 break; 758 } 759 case Intrinsic::ctpop: { 760 unsigned LowBits = Log2_32(BitWidth)+1; 761 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 762 break; 763 } 764 case Intrinsic::x86_sse42_crc32_64_64: 765 KnownZero = APInt::getHighBitsSet(64, 32); 766 break; 767 } 768 } 769 break; 770 case Instruction::ExtractValue: 771 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 772 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 773 if (EVI->getNumIndices() != 1) break; 774 if (EVI->getIndices()[0] == 0) { 775 switch (II->getIntrinsicID()) { 776 default: break; 777 case Intrinsic::uadd_with_overflow: 778 case Intrinsic::sadd_with_overflow: 779 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 780 II->getArgOperand(1), false, KnownZero, 781 KnownOne, KnownZero2, KnownOne2, TD, Depth); 782 break; 783 case Intrinsic::usub_with_overflow: 784 case Intrinsic::ssub_with_overflow: 785 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 786 II->getArgOperand(1), false, KnownZero, 787 KnownOne, KnownZero2, KnownOne2, TD, Depth); 788 break; 789 case Intrinsic::umul_with_overflow: 790 case Intrinsic::smul_with_overflow: 791 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 792 false, KnownZero, KnownOne, 793 KnownZero2, KnownOne2, TD, Depth); 794 break; 795 } 796 } 797 } 798 } 799 } 800 801 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 802 /// one. Convenience wrapper around ComputeMaskedBits. 803 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 804 const DataLayout *TD, unsigned Depth) { 805 unsigned BitWidth = getBitWidth(V->getType(), TD); 806 if (!BitWidth) { 807 KnownZero = false; 808 KnownOne = false; 809 return; 810 } 811 APInt ZeroBits(BitWidth, 0); 812 APInt OneBits(BitWidth, 0); 813 ComputeMaskedBits(V, ZeroBits, OneBits, TD, Depth); 814 KnownOne = OneBits[BitWidth - 1]; 815 KnownZero = ZeroBits[BitWidth - 1]; 816 } 817 818 /// isKnownToBeAPowerOfTwo - Return true if the given value is known to have exactly one 819 /// bit set when defined. For vectors return true if every element is known to 820 /// be a power of two when defined. Supports values with integer or pointer 821 /// types and vectors of integers. 822 bool llvm::isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth) { 823 if (Constant *C = dyn_cast<Constant>(V)) { 824 if (C->isNullValue()) 825 return OrZero; 826 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 827 return CI->getValue().isPowerOf2(); 828 // TODO: Handle vector constants. 829 } 830 831 // 1 << X is clearly a power of two if the one is not shifted off the end. If 832 // it is shifted off the end then the result is undefined. 833 if (match(V, m_Shl(m_One(), m_Value()))) 834 return true; 835 836 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 837 // bottom. If it is shifted off the bottom then the result is undefined. 838 if (match(V, m_LShr(m_SignBit(), m_Value()))) 839 return true; 840 841 // The remaining tests are all recursive, so bail out if we hit the limit. 842 if (Depth++ == MaxDepth) 843 return false; 844 845 Value *X = 0, *Y = 0; 846 // A shift of a power of two is a power of two or zero. 847 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 848 match(V, m_Shr(m_Value(X), m_Value())))) 849 return isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth); 850 851 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 852 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth); 853 854 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 855 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth) && 856 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth); 857 858 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 859 // A power of two and'd with anything is a power of two or zero. 860 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/true, Depth) || 861 isKnownToBeAPowerOfTwo(Y, /*OrZero*/true, Depth)) 862 return true; 863 // X & (-X) is always a power of two or zero. 864 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 865 return true; 866 return false; 867 } 868 869 // Adding a power-of-two or zero to the same power-of-two or zero yields 870 // either the original power-of-two, a larger power-of-two or zero. 871 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 872 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 873 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 874 if (match(X, m_And(m_Specific(Y), m_Value())) || 875 match(X, m_And(m_Value(), m_Specific(Y)))) 876 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth)) 877 return true; 878 if (match(Y, m_And(m_Specific(X), m_Value())) || 879 match(Y, m_And(m_Value(), m_Specific(X)))) 880 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth)) 881 return true; 882 883 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 884 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 885 ComputeMaskedBits(X, LHSZeroBits, LHSOneBits, 0, Depth); 886 887 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 888 ComputeMaskedBits(Y, RHSZeroBits, RHSOneBits, 0, Depth); 889 // If i8 V is a power of two or zero: 890 // ZeroBits: 1 1 1 0 1 1 1 1 891 // ~ZeroBits: 0 0 0 1 0 0 0 0 892 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 893 // If OrZero isn't set, we cannot give back a zero result. 894 // Make sure either the LHS or RHS has a bit set. 895 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 896 return true; 897 } 898 } 899 900 // An exact divide or right shift can only shift off zero bits, so the result 901 // is a power of two only if the first operand is a power of two and not 902 // copying a sign bit (sdiv int_min, 2). 903 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 904 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 905 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, Depth); 906 } 907 908 return false; 909 } 910 911 /// \brief Test whether a GEP's result is known to be non-null. 912 /// 913 /// Uses properties inherent in a GEP to try to determine whether it is known 914 /// to be non-null. 915 /// 916 /// Currently this routine does not support vector GEPs. 917 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout *DL, 918 unsigned Depth) { 919 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 920 return false; 921 922 // FIXME: Support vector-GEPs. 923 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 924 925 // If the base pointer is non-null, we cannot walk to a null address with an 926 // inbounds GEP in address space zero. 927 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth)) 928 return true; 929 930 // Past this, if we don't have DataLayout, we can't do much. 931 if (!DL) 932 return false; 933 934 // Walk the GEP operands and see if any operand introduces a non-zero offset. 935 // If so, then the GEP cannot produce a null pointer, as doing so would 936 // inherently violate the inbounds contract within address space zero. 937 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 938 GTI != GTE; ++GTI) { 939 // Struct types are easy -- they must always be indexed by a constant. 940 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 941 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 942 unsigned ElementIdx = OpC->getZExtValue(); 943 const StructLayout *SL = DL->getStructLayout(STy); 944 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 945 if (ElementOffset > 0) 946 return true; 947 continue; 948 } 949 950 // If we have a zero-sized type, the index doesn't matter. Keep looping. 951 if (DL->getTypeAllocSize(GTI.getIndexedType()) == 0) 952 continue; 953 954 // Fast path the constant operand case both for efficiency and so we don't 955 // increment Depth when just zipping down an all-constant GEP. 956 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 957 if (!OpC->isZero()) 958 return true; 959 continue; 960 } 961 962 // We post-increment Depth here because while isKnownNonZero increments it 963 // as well, when we pop back up that increment won't persist. We don't want 964 // to recurse 10k times just because we have 10k GEP operands. We don't 965 // bail completely out because we want to handle constant GEPs regardless 966 // of depth. 967 if (Depth++ >= MaxDepth) 968 continue; 969 970 if (isKnownNonZero(GTI.getOperand(), DL, Depth)) 971 return true; 972 } 973 974 return false; 975 } 976 977 /// isKnownNonZero - Return true if the given value is known to be non-zero 978 /// when defined. For vectors return true if every element is known to be 979 /// non-zero when defined. Supports values with integer or pointer type and 980 /// vectors of integers. 981 bool llvm::isKnownNonZero(Value *V, const DataLayout *TD, unsigned Depth) { 982 if (Constant *C = dyn_cast<Constant>(V)) { 983 if (C->isNullValue()) 984 return false; 985 if (isa<ConstantInt>(C)) 986 // Must be non-zero due to null test above. 987 return true; 988 // TODO: Handle vectors 989 return false; 990 } 991 992 // The remaining tests are all recursive, so bail out if we hit the limit. 993 if (Depth++ >= MaxDepth) 994 return false; 995 996 // Check for pointer simplifications. 997 if (V->getType()->isPointerTy()) { 998 if (isKnownNonNull(V)) 999 return true; 1000 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1001 if (isGEPKnownNonNull(GEP, TD, Depth)) 1002 return true; 1003 } 1004 1005 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), TD); 1006 1007 // X | Y != 0 if X != 0 or Y != 0. 1008 Value *X = 0, *Y = 0; 1009 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1010 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 1011 1012 // ext X != 0 if X != 0. 1013 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1014 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 1015 1016 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1017 // if the lowest bit is shifted off the end. 1018 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1019 // shl nuw can't remove any non-zero bits. 1020 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1021 if (BO->hasNoUnsignedWrap()) 1022 return isKnownNonZero(X, TD, Depth); 1023 1024 APInt KnownZero(BitWidth, 0); 1025 APInt KnownOne(BitWidth, 0); 1026 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 1027 if (KnownOne[0]) 1028 return true; 1029 } 1030 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1031 // defined if the sign bit is shifted off the end. 1032 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1033 // shr exact can only shift out zero bits. 1034 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1035 if (BO->isExact()) 1036 return isKnownNonZero(X, TD, Depth); 1037 1038 bool XKnownNonNegative, XKnownNegative; 1039 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1040 if (XKnownNegative) 1041 return true; 1042 } 1043 // div exact can only produce a zero if the dividend is zero. 1044 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1045 return isKnownNonZero(X, TD, Depth); 1046 } 1047 // X + Y. 1048 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1049 bool XKnownNonNegative, XKnownNegative; 1050 bool YKnownNonNegative, YKnownNegative; 1051 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 1052 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 1053 1054 // If X and Y are both non-negative (as signed values) then their sum is not 1055 // zero unless both X and Y are zero. 1056 if (XKnownNonNegative && YKnownNonNegative) 1057 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 1058 return true; 1059 1060 // If X and Y are both negative (as signed values) then their sum is not 1061 // zero unless both X and Y equal INT_MIN. 1062 if (BitWidth && XKnownNegative && YKnownNegative) { 1063 APInt KnownZero(BitWidth, 0); 1064 APInt KnownOne(BitWidth, 0); 1065 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1066 // The sign bit of X is set. If some other bit is set then X is not equal 1067 // to INT_MIN. 1068 ComputeMaskedBits(X, KnownZero, KnownOne, TD, Depth); 1069 if ((KnownOne & Mask) != 0) 1070 return true; 1071 // The sign bit of Y is set. If some other bit is set then Y is not equal 1072 // to INT_MIN. 1073 ComputeMaskedBits(Y, KnownZero, KnownOne, TD, Depth); 1074 if ((KnownOne & Mask) != 0) 1075 return true; 1076 } 1077 1078 // The sum of a non-negative number and a power of two is not zero. 1079 if (XKnownNonNegative && isKnownToBeAPowerOfTwo(Y, /*OrZero*/false, Depth)) 1080 return true; 1081 if (YKnownNonNegative && isKnownToBeAPowerOfTwo(X, /*OrZero*/false, Depth)) 1082 return true; 1083 } 1084 // X * Y. 1085 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1086 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1087 // If X and Y are non-zero then so is X * Y as long as the multiplication 1088 // does not overflow. 1089 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1090 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1091 return true; 1092 } 1093 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1094 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1095 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1096 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1097 return true; 1098 } 1099 1100 if (!BitWidth) return false; 1101 APInt KnownZero(BitWidth, 0); 1102 APInt KnownOne(BitWidth, 0); 1103 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1104 return KnownOne != 0; 1105 } 1106 1107 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1108 /// this predicate to simplify operations downstream. Mask is known to be zero 1109 /// for bits that V cannot have. 1110 /// 1111 /// This function is defined on values with integer type, values with pointer 1112 /// type (but only if TD is non-null), and vectors of integers. In the case 1113 /// where V is a vector, the mask, known zero, and known one values are the 1114 /// same width as the vector element, and the bit is set only if it is true 1115 /// for all of the elements in the vector. 1116 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1117 const DataLayout *TD, unsigned Depth) { 1118 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1119 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1120 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1121 return (KnownZero & Mask) == Mask; 1122 } 1123 1124 1125 1126 /// ComputeNumSignBits - Return the number of times the sign bit of the 1127 /// register is replicated into the other bits. We know that at least 1 bit 1128 /// is always equal to the sign bit (itself), but other cases can give us 1129 /// information. For example, immediately after an "ashr X, 2", we know that 1130 /// the top 3 bits are all equal to each other, so we return 3. 1131 /// 1132 /// 'Op' must have a scalar integer type. 1133 /// 1134 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout *TD, 1135 unsigned Depth) { 1136 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1137 "ComputeNumSignBits requires a DataLayout object to operate " 1138 "on non-integer values!"); 1139 Type *Ty = V->getType(); 1140 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1141 Ty->getScalarSizeInBits(); 1142 unsigned Tmp, Tmp2; 1143 unsigned FirstAnswer = 1; 1144 1145 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1146 // below. 1147 1148 if (Depth == 6) 1149 return 1; // Limit search depth. 1150 1151 Operator *U = dyn_cast<Operator>(V); 1152 switch (Operator::getOpcode(V)) { 1153 default: break; 1154 case Instruction::SExt: 1155 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1156 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1157 1158 case Instruction::AShr: { 1159 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1160 // ashr X, C -> adds C sign bits. Vectors too. 1161 const APInt *ShAmt; 1162 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1163 Tmp += ShAmt->getZExtValue(); 1164 if (Tmp > TyBits) Tmp = TyBits; 1165 } 1166 return Tmp; 1167 } 1168 case Instruction::Shl: { 1169 const APInt *ShAmt; 1170 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1171 // shl destroys sign bits. 1172 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1173 Tmp2 = ShAmt->getZExtValue(); 1174 if (Tmp2 >= TyBits || // Bad shift. 1175 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1176 return Tmp - Tmp2; 1177 } 1178 break; 1179 } 1180 case Instruction::And: 1181 case Instruction::Or: 1182 case Instruction::Xor: // NOT is handled here. 1183 // Logical binary ops preserve the number of sign bits at the worst. 1184 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1185 if (Tmp != 1) { 1186 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1187 FirstAnswer = std::min(Tmp, Tmp2); 1188 // We computed what we know about the sign bits as our first 1189 // answer. Now proceed to the generic code that uses 1190 // ComputeMaskedBits, and pick whichever answer is better. 1191 } 1192 break; 1193 1194 case Instruction::Select: 1195 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1196 if (Tmp == 1) return 1; // Early out. 1197 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1198 return std::min(Tmp, Tmp2); 1199 1200 case Instruction::Add: 1201 // Add can have at most one carry bit. Thus we know that the output 1202 // is, at worst, one more bit than the inputs. 1203 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1204 if (Tmp == 1) return 1; // Early out. 1205 1206 // Special case decrementing a value (ADD X, -1): 1207 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1208 if (CRHS->isAllOnesValue()) { 1209 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1210 ComputeMaskedBits(U->getOperand(0), KnownZero, KnownOne, TD, Depth+1); 1211 1212 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1213 // sign bits set. 1214 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1215 return TyBits; 1216 1217 // If we are subtracting one from a positive number, there is no carry 1218 // out of the result. 1219 if (KnownZero.isNegative()) 1220 return Tmp; 1221 } 1222 1223 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1224 if (Tmp2 == 1) return 1; 1225 return std::min(Tmp, Tmp2)-1; 1226 1227 case Instruction::Sub: 1228 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1229 if (Tmp2 == 1) return 1; 1230 1231 // Handle NEG. 1232 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1233 if (CLHS->isNullValue()) { 1234 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1235 ComputeMaskedBits(U->getOperand(1), KnownZero, KnownOne, TD, Depth+1); 1236 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1237 // sign bits set. 1238 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 1239 return TyBits; 1240 1241 // If the input is known to be positive (the sign bit is known clear), 1242 // the output of the NEG has the same number of sign bits as the input. 1243 if (KnownZero.isNegative()) 1244 return Tmp2; 1245 1246 // Otherwise, we treat this like a SUB. 1247 } 1248 1249 // Sub can have at most one carry bit. Thus we know that the output 1250 // is, at worst, one more bit than the inputs. 1251 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1252 if (Tmp == 1) return 1; // Early out. 1253 return std::min(Tmp, Tmp2)-1; 1254 1255 case Instruction::PHI: { 1256 PHINode *PN = cast<PHINode>(U); 1257 // Don't analyze large in-degree PHIs. 1258 if (PN->getNumIncomingValues() > 4) break; 1259 1260 // Take the minimum of all incoming values. This can't infinitely loop 1261 // because of our depth threshold. 1262 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1263 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1264 if (Tmp == 1) return Tmp; 1265 Tmp = std::min(Tmp, 1266 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1267 } 1268 return Tmp; 1269 } 1270 1271 case Instruction::Trunc: 1272 // FIXME: it's tricky to do anything useful for this, but it is an important 1273 // case for targets like X86. 1274 break; 1275 } 1276 1277 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1278 // use this information. 1279 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1280 APInt Mask; 1281 ComputeMaskedBits(V, KnownZero, KnownOne, TD, Depth); 1282 1283 if (KnownZero.isNegative()) { // sign bit is 0 1284 Mask = KnownZero; 1285 } else if (KnownOne.isNegative()) { // sign bit is 1; 1286 Mask = KnownOne; 1287 } else { 1288 // Nothing known. 1289 return FirstAnswer; 1290 } 1291 1292 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1293 // the number of identical bits in the top of the input value. 1294 Mask = ~Mask; 1295 Mask <<= Mask.getBitWidth()-TyBits; 1296 // Return # leading zeros. We use 'min' here in case Val was zero before 1297 // shifting. We don't want to return '64' as for an i32 "0". 1298 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1299 } 1300 1301 /// ComputeMultiple - This function computes the integer multiple of Base that 1302 /// equals V. If successful, it returns true and returns the multiple in 1303 /// Multiple. If unsuccessful, it returns false. It looks 1304 /// through SExt instructions only if LookThroughSExt is true. 1305 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1306 bool LookThroughSExt, unsigned Depth) { 1307 const unsigned MaxDepth = 6; 1308 1309 assert(V && "No Value?"); 1310 assert(Depth <= MaxDepth && "Limit Search Depth"); 1311 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1312 1313 Type *T = V->getType(); 1314 1315 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1316 1317 if (Base == 0) 1318 return false; 1319 1320 if (Base == 1) { 1321 Multiple = V; 1322 return true; 1323 } 1324 1325 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1326 Constant *BaseVal = ConstantInt::get(T, Base); 1327 if (CO && CO == BaseVal) { 1328 // Multiple is 1. 1329 Multiple = ConstantInt::get(T, 1); 1330 return true; 1331 } 1332 1333 if (CI && CI->getZExtValue() % Base == 0) { 1334 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1335 return true; 1336 } 1337 1338 if (Depth == MaxDepth) return false; // Limit search depth. 1339 1340 Operator *I = dyn_cast<Operator>(V); 1341 if (!I) return false; 1342 1343 switch (I->getOpcode()) { 1344 default: break; 1345 case Instruction::SExt: 1346 if (!LookThroughSExt) return false; 1347 // otherwise fall through to ZExt 1348 case Instruction::ZExt: 1349 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1350 LookThroughSExt, Depth+1); 1351 case Instruction::Shl: 1352 case Instruction::Mul: { 1353 Value *Op0 = I->getOperand(0); 1354 Value *Op1 = I->getOperand(1); 1355 1356 if (I->getOpcode() == Instruction::Shl) { 1357 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1358 if (!Op1CI) return false; 1359 // Turn Op0 << Op1 into Op0 * 2^Op1 1360 APInt Op1Int = Op1CI->getValue(); 1361 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1362 APInt API(Op1Int.getBitWidth(), 0); 1363 API.setBit(BitToSet); 1364 Op1 = ConstantInt::get(V->getContext(), API); 1365 } 1366 1367 Value *Mul0 = NULL; 1368 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1369 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1370 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1371 if (Op1C->getType()->getPrimitiveSizeInBits() < 1372 MulC->getType()->getPrimitiveSizeInBits()) 1373 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1374 if (Op1C->getType()->getPrimitiveSizeInBits() > 1375 MulC->getType()->getPrimitiveSizeInBits()) 1376 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1377 1378 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1379 Multiple = ConstantExpr::getMul(MulC, Op1C); 1380 return true; 1381 } 1382 1383 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1384 if (Mul0CI->getValue() == 1) { 1385 // V == Base * Op1, so return Op1 1386 Multiple = Op1; 1387 return true; 1388 } 1389 } 1390 1391 Value *Mul1 = NULL; 1392 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1393 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1394 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1395 if (Op0C->getType()->getPrimitiveSizeInBits() < 1396 MulC->getType()->getPrimitiveSizeInBits()) 1397 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1398 if (Op0C->getType()->getPrimitiveSizeInBits() > 1399 MulC->getType()->getPrimitiveSizeInBits()) 1400 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1401 1402 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1403 Multiple = ConstantExpr::getMul(MulC, Op0C); 1404 return true; 1405 } 1406 1407 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1408 if (Mul1CI->getValue() == 1) { 1409 // V == Base * Op0, so return Op0 1410 Multiple = Op0; 1411 return true; 1412 } 1413 } 1414 } 1415 } 1416 1417 // We could not determine if V is a multiple of Base. 1418 return false; 1419 } 1420 1421 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1422 /// value is never equal to -0.0. 1423 /// 1424 /// NOTE: this function will need to be revisited when we support non-default 1425 /// rounding modes! 1426 /// 1427 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1428 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1429 return !CFP->getValueAPF().isNegZero(); 1430 1431 if (Depth == 6) 1432 return 1; // Limit search depth. 1433 1434 const Operator *I = dyn_cast<Operator>(V); 1435 if (I == 0) return false; 1436 1437 // Check if the nsz fast-math flag is set 1438 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 1439 if (FPO->hasNoSignedZeros()) 1440 return true; 1441 1442 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1443 if (I->getOpcode() == Instruction::FAdd) 1444 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 1445 if (CFP->isNullValue()) 1446 return true; 1447 1448 // sitofp and uitofp turn into +0.0 for zero. 1449 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1450 return true; 1451 1452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1453 // sqrt(-0.0) = -0.0, no other negative results are possible. 1454 if (II->getIntrinsicID() == Intrinsic::sqrt) 1455 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1456 1457 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1458 if (const Function *F = CI->getCalledFunction()) { 1459 if (F->isDeclaration()) { 1460 // abs(x) != -0.0 1461 if (F->getName() == "abs") return true; 1462 // fabs[lf](x) != -0.0 1463 if (F->getName() == "fabs") return true; 1464 if (F->getName() == "fabsf") return true; 1465 if (F->getName() == "fabsl") return true; 1466 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1467 F->getName() == "sqrtl") 1468 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1469 } 1470 } 1471 1472 return false; 1473 } 1474 1475 /// isBytewiseValue - If the specified value can be set by repeating the same 1476 /// byte in memory, return the i8 value that it is represented with. This is 1477 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1478 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1479 /// byte store (e.g. i16 0x1234), return null. 1480 Value *llvm::isBytewiseValue(Value *V) { 1481 // All byte-wide stores are splatable, even of arbitrary variables. 1482 if (V->getType()->isIntegerTy(8)) return V; 1483 1484 // Handle 'null' ConstantArrayZero etc. 1485 if (Constant *C = dyn_cast<Constant>(V)) 1486 if (C->isNullValue()) 1487 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1488 1489 // Constant float and double values can be handled as integer values if the 1490 // corresponding integer value is "byteable". An important case is 0.0. 1491 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1492 if (CFP->getType()->isFloatTy()) 1493 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1494 if (CFP->getType()->isDoubleTy()) 1495 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1496 // Don't handle long double formats, which have strange constraints. 1497 } 1498 1499 // We can handle constant integers that are power of two in size and a 1500 // multiple of 8 bits. 1501 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1502 unsigned Width = CI->getBitWidth(); 1503 if (isPowerOf2_32(Width) && Width > 8) { 1504 // We can handle this value if the recursive binary decomposition is the 1505 // same at all levels. 1506 APInt Val = CI->getValue(); 1507 APInt Val2; 1508 while (Val.getBitWidth() != 8) { 1509 unsigned NextWidth = Val.getBitWidth()/2; 1510 Val2 = Val.lshr(NextWidth); 1511 Val2 = Val2.trunc(Val.getBitWidth()/2); 1512 Val = Val.trunc(Val.getBitWidth()/2); 1513 1514 // If the top/bottom halves aren't the same, reject it. 1515 if (Val != Val2) 1516 return 0; 1517 } 1518 return ConstantInt::get(V->getContext(), Val); 1519 } 1520 } 1521 1522 // A ConstantDataArray/Vector is splatable if all its members are equal and 1523 // also splatable. 1524 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1525 Value *Elt = CA->getElementAsConstant(0); 1526 Value *Val = isBytewiseValue(Elt); 1527 if (!Val) 1528 return 0; 1529 1530 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1531 if (CA->getElementAsConstant(I) != Elt) 1532 return 0; 1533 1534 return Val; 1535 } 1536 1537 // Conceptually, we could handle things like: 1538 // %a = zext i8 %X to i16 1539 // %b = shl i16 %a, 8 1540 // %c = or i16 %a, %b 1541 // but until there is an example that actually needs this, it doesn't seem 1542 // worth worrying about. 1543 return 0; 1544 } 1545 1546 1547 // This is the recursive version of BuildSubAggregate. It takes a few different 1548 // arguments. Idxs is the index within the nested struct From that we are 1549 // looking at now (which is of type IndexedType). IdxSkip is the number of 1550 // indices from Idxs that should be left out when inserting into the resulting 1551 // struct. To is the result struct built so far, new insertvalue instructions 1552 // build on that. 1553 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1554 SmallVectorImpl<unsigned> &Idxs, 1555 unsigned IdxSkip, 1556 Instruction *InsertBefore) { 1557 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 1558 if (STy) { 1559 // Save the original To argument so we can modify it 1560 Value *OrigTo = To; 1561 // General case, the type indexed by Idxs is a struct 1562 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1563 // Process each struct element recursively 1564 Idxs.push_back(i); 1565 Value *PrevTo = To; 1566 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1567 InsertBefore); 1568 Idxs.pop_back(); 1569 if (!To) { 1570 // Couldn't find any inserted value for this index? Cleanup 1571 while (PrevTo != OrigTo) { 1572 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1573 PrevTo = Del->getAggregateOperand(); 1574 Del->eraseFromParent(); 1575 } 1576 // Stop processing elements 1577 break; 1578 } 1579 } 1580 // If we successfully found a value for each of our subaggregates 1581 if (To) 1582 return To; 1583 } 1584 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1585 // the struct's elements had a value that was inserted directly. In the latter 1586 // case, perhaps we can't determine each of the subelements individually, but 1587 // we might be able to find the complete struct somewhere. 1588 1589 // Find the value that is at that particular spot 1590 Value *V = FindInsertedValue(From, Idxs); 1591 1592 if (!V) 1593 return NULL; 1594 1595 // Insert the value in the new (sub) aggregrate 1596 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1597 "tmp", InsertBefore); 1598 } 1599 1600 // This helper takes a nested struct and extracts a part of it (which is again a 1601 // struct) into a new value. For example, given the struct: 1602 // { a, { b, { c, d }, e } } 1603 // and the indices "1, 1" this returns 1604 // { c, d }. 1605 // 1606 // It does this by inserting an insertvalue for each element in the resulting 1607 // struct, as opposed to just inserting a single struct. This will only work if 1608 // each of the elements of the substruct are known (ie, inserted into From by an 1609 // insertvalue instruction somewhere). 1610 // 1611 // All inserted insertvalue instructions are inserted before InsertBefore 1612 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1613 Instruction *InsertBefore) { 1614 assert(InsertBefore && "Must have someplace to insert!"); 1615 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1616 idx_range); 1617 Value *To = UndefValue::get(IndexedType); 1618 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1619 unsigned IdxSkip = Idxs.size(); 1620 1621 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1622 } 1623 1624 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1625 /// the scalar value indexed is already around as a register, for example if it 1626 /// were inserted directly into the aggregrate. 1627 /// 1628 /// If InsertBefore is not null, this function will duplicate (modified) 1629 /// insertvalues when a part of a nested struct is extracted. 1630 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1631 Instruction *InsertBefore) { 1632 // Nothing to index? Just return V then (this is useful at the end of our 1633 // recursion). 1634 if (idx_range.empty()) 1635 return V; 1636 // We have indices, so V should have an indexable type. 1637 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1638 "Not looking at a struct or array?"); 1639 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1640 "Invalid indices for type?"); 1641 1642 if (Constant *C = dyn_cast<Constant>(V)) { 1643 C = C->getAggregateElement(idx_range[0]); 1644 if (C == 0) return 0; 1645 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1646 } 1647 1648 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1649 // Loop the indices for the insertvalue instruction in parallel with the 1650 // requested indices 1651 const unsigned *req_idx = idx_range.begin(); 1652 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1653 i != e; ++i, ++req_idx) { 1654 if (req_idx == idx_range.end()) { 1655 // We can't handle this without inserting insertvalues 1656 if (!InsertBefore) 1657 return 0; 1658 1659 // The requested index identifies a part of a nested aggregate. Handle 1660 // this specially. For example, 1661 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1662 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1663 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1664 // This can be changed into 1665 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1666 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1667 // which allows the unused 0,0 element from the nested struct to be 1668 // removed. 1669 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1670 InsertBefore); 1671 } 1672 1673 // This insert value inserts something else than what we are looking for. 1674 // See if the (aggregrate) value inserted into has the value we are 1675 // looking for, then. 1676 if (*req_idx != *i) 1677 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1678 InsertBefore); 1679 } 1680 // If we end up here, the indices of the insertvalue match with those 1681 // requested (though possibly only partially). Now we recursively look at 1682 // the inserted value, passing any remaining indices. 1683 return FindInsertedValue(I->getInsertedValueOperand(), 1684 makeArrayRef(req_idx, idx_range.end()), 1685 InsertBefore); 1686 } 1687 1688 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1689 // If we're extracting a value from an aggregrate that was extracted from 1690 // something else, we can extract from that something else directly instead. 1691 // However, we will need to chain I's indices with the requested indices. 1692 1693 // Calculate the number of indices required 1694 unsigned size = I->getNumIndices() + idx_range.size(); 1695 // Allocate some space to put the new indices in 1696 SmallVector<unsigned, 5> Idxs; 1697 Idxs.reserve(size); 1698 // Add indices from the extract value instruction 1699 Idxs.append(I->idx_begin(), I->idx_end()); 1700 1701 // Add requested indices 1702 Idxs.append(idx_range.begin(), idx_range.end()); 1703 1704 assert(Idxs.size() == size 1705 && "Number of indices added not correct?"); 1706 1707 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1708 } 1709 // Otherwise, we don't know (such as, extracting from a function return value 1710 // or load instruction) 1711 return 0; 1712 } 1713 1714 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1715 /// it can be expressed as a base pointer plus a constant offset. Return the 1716 /// base and offset to the caller. 1717 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1718 const DataLayout *DL) { 1719 // Without DataLayout, conservatively assume 64-bit offsets, which is 1720 // the widest we support. 1721 unsigned BitWidth = DL ? DL->getPointerTypeSizeInBits(Ptr->getType()) : 64; 1722 APInt ByteOffset(BitWidth, 0); 1723 while (1) { 1724 if (Ptr->getType()->isVectorTy()) 1725 break; 1726 1727 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 1728 if (DL) { 1729 APInt GEPOffset(BitWidth, 0); 1730 if (!GEP->accumulateConstantOffset(*DL, GEPOffset)) 1731 break; 1732 1733 ByteOffset += GEPOffset; 1734 } 1735 1736 Ptr = GEP->getPointerOperand(); 1737 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast) { 1738 Ptr = cast<Operator>(Ptr)->getOperand(0); 1739 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 1740 if (GA->mayBeOverridden()) 1741 break; 1742 Ptr = GA->getAliasee(); 1743 } else { 1744 break; 1745 } 1746 } 1747 Offset = ByteOffset.getSExtValue(); 1748 return Ptr; 1749 } 1750 1751 1752 /// getConstantStringInfo - This function computes the length of a 1753 /// null-terminated C string pointed to by V. If successful, it returns true 1754 /// and returns the string in Str. If unsuccessful, it returns false. 1755 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1756 uint64_t Offset, bool TrimAtNul) { 1757 assert(V); 1758 1759 // Look through bitcast instructions and geps. 1760 V = V->stripPointerCasts(); 1761 1762 // If the value is a GEP instructionor constant expression, treat it as an 1763 // offset. 1764 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1765 // Make sure the GEP has exactly three arguments. 1766 if (GEP->getNumOperands() != 3) 1767 return false; 1768 1769 // Make sure the index-ee is a pointer to array of i8. 1770 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1771 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1772 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1773 return false; 1774 1775 // Check to make sure that the first operand of the GEP is an integer and 1776 // has value 0 so that we are sure we're indexing into the initializer. 1777 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1778 if (FirstIdx == 0 || !FirstIdx->isZero()) 1779 return false; 1780 1781 // If the second index isn't a ConstantInt, then this is a variable index 1782 // into the array. If this occurs, we can't say anything meaningful about 1783 // the string. 1784 uint64_t StartIdx = 0; 1785 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1786 StartIdx = CI->getZExtValue(); 1787 else 1788 return false; 1789 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1790 } 1791 1792 // The GEP instruction, constant or instruction, must reference a global 1793 // variable that is a constant and is initialized. The referenced constant 1794 // initializer is the array that we'll use for optimization. 1795 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1796 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1797 return false; 1798 1799 // Handle the all-zeros case 1800 if (GV->getInitializer()->isNullValue()) { 1801 // This is a degenerate case. The initializer is constant zero so the 1802 // length of the string must be zero. 1803 Str = ""; 1804 return true; 1805 } 1806 1807 // Must be a Constant Array 1808 const ConstantDataArray *Array = 1809 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1810 if (Array == 0 || !Array->isString()) 1811 return false; 1812 1813 // Get the number of elements in the array 1814 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1815 1816 // Start out with the entire array in the StringRef. 1817 Str = Array->getAsString(); 1818 1819 if (Offset > NumElts) 1820 return false; 1821 1822 // Skip over 'offset' bytes. 1823 Str = Str.substr(Offset); 1824 1825 if (TrimAtNul) { 1826 // Trim off the \0 and anything after it. If the array is not nul 1827 // terminated, we just return the whole end of string. The client may know 1828 // some other way that the string is length-bound. 1829 Str = Str.substr(0, Str.find('\0')); 1830 } 1831 return true; 1832 } 1833 1834 // These next two are very similar to the above, but also look through PHI 1835 // nodes. 1836 // TODO: See if we can integrate these two together. 1837 1838 /// GetStringLengthH - If we can compute the length of the string pointed to by 1839 /// the specified pointer, return 'len+1'. If we can't, return 0. 1840 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1841 // Look through noop bitcast instructions. 1842 V = V->stripPointerCasts(); 1843 1844 // If this is a PHI node, there are two cases: either we have already seen it 1845 // or we haven't. 1846 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1847 if (!PHIs.insert(PN)) 1848 return ~0ULL; // already in the set. 1849 1850 // If it was new, see if all the input strings are the same length. 1851 uint64_t LenSoFar = ~0ULL; 1852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1853 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1854 if (Len == 0) return 0; // Unknown length -> unknown. 1855 1856 if (Len == ~0ULL) continue; 1857 1858 if (Len != LenSoFar && LenSoFar != ~0ULL) 1859 return 0; // Disagree -> unknown. 1860 LenSoFar = Len; 1861 } 1862 1863 // Success, all agree. 1864 return LenSoFar; 1865 } 1866 1867 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1868 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1869 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1870 if (Len1 == 0) return 0; 1871 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1872 if (Len2 == 0) return 0; 1873 if (Len1 == ~0ULL) return Len2; 1874 if (Len2 == ~0ULL) return Len1; 1875 if (Len1 != Len2) return 0; 1876 return Len1; 1877 } 1878 1879 // Otherwise, see if we can read the string. 1880 StringRef StrData; 1881 if (!getConstantStringInfo(V, StrData)) 1882 return 0; 1883 1884 return StrData.size()+1; 1885 } 1886 1887 /// GetStringLength - If we can compute the length of the string pointed to by 1888 /// the specified pointer, return 'len+1'. If we can't, return 0. 1889 uint64_t llvm::GetStringLength(Value *V) { 1890 if (!V->getType()->isPointerTy()) return 0; 1891 1892 SmallPtrSet<PHINode*, 32> PHIs; 1893 uint64_t Len = GetStringLengthH(V, PHIs); 1894 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1895 // an empty string as a length. 1896 return Len == ~0ULL ? 1 : Len; 1897 } 1898 1899 Value * 1900 llvm::GetUnderlyingObject(Value *V, const DataLayout *TD, unsigned MaxLookup) { 1901 if (!V->getType()->isPointerTy()) 1902 return V; 1903 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1904 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1905 V = GEP->getPointerOperand(); 1906 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1907 V = cast<Operator>(V)->getOperand(0); 1908 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1909 if (GA->mayBeOverridden()) 1910 return V; 1911 V = GA->getAliasee(); 1912 } else { 1913 // See if InstructionSimplify knows any relevant tricks. 1914 if (Instruction *I = dyn_cast<Instruction>(V)) 1915 // TODO: Acquire a DominatorTree and use it. 1916 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1917 V = Simplified; 1918 continue; 1919 } 1920 1921 return V; 1922 } 1923 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1924 } 1925 return V; 1926 } 1927 1928 void 1929 llvm::GetUnderlyingObjects(Value *V, 1930 SmallVectorImpl<Value *> &Objects, 1931 const DataLayout *TD, 1932 unsigned MaxLookup) { 1933 SmallPtrSet<Value *, 4> Visited; 1934 SmallVector<Value *, 4> Worklist; 1935 Worklist.push_back(V); 1936 do { 1937 Value *P = Worklist.pop_back_val(); 1938 P = GetUnderlyingObject(P, TD, MaxLookup); 1939 1940 if (!Visited.insert(P)) 1941 continue; 1942 1943 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 1944 Worklist.push_back(SI->getTrueValue()); 1945 Worklist.push_back(SI->getFalseValue()); 1946 continue; 1947 } 1948 1949 if (PHINode *PN = dyn_cast<PHINode>(P)) { 1950 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1951 Worklist.push_back(PN->getIncomingValue(i)); 1952 continue; 1953 } 1954 1955 Objects.push_back(P); 1956 } while (!Worklist.empty()); 1957 } 1958 1959 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1960 /// are lifetime markers. 1961 /// 1962 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1963 for (const User *U : V->users()) { 1964 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 1965 if (!II) return false; 1966 1967 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1968 II->getIntrinsicID() != Intrinsic::lifetime_end) 1969 return false; 1970 } 1971 return true; 1972 } 1973 1974 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1975 const DataLayout *TD) { 1976 const Operator *Inst = dyn_cast<Operator>(V); 1977 if (!Inst) 1978 return false; 1979 1980 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1981 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1982 if (C->canTrap()) 1983 return false; 1984 1985 switch (Inst->getOpcode()) { 1986 default: 1987 return true; 1988 case Instruction::UDiv: 1989 case Instruction::URem: 1990 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1991 return isKnownNonZero(Inst->getOperand(1), TD); 1992 case Instruction::SDiv: 1993 case Instruction::SRem: { 1994 Value *Op = Inst->getOperand(1); 1995 // x / y is undefined if y == 0 1996 if (!isKnownNonZero(Op, TD)) 1997 return false; 1998 // x / y might be undefined if y == -1 1999 unsigned BitWidth = getBitWidth(Op->getType(), TD); 2000 if (BitWidth == 0) 2001 return false; 2002 APInt KnownZero(BitWidth, 0); 2003 APInt KnownOne(BitWidth, 0); 2004 ComputeMaskedBits(Op, KnownZero, KnownOne, TD); 2005 return !!KnownZero; 2006 } 2007 case Instruction::Load: { 2008 const LoadInst *LI = cast<LoadInst>(Inst); 2009 if (!LI->isUnordered() || 2010 // Speculative load may create a race that did not exist in the source. 2011 LI->getParent()->getParent()->hasFnAttribute(Attribute::SanitizeThread)) 2012 return false; 2013 return LI->getPointerOperand()->isDereferenceablePointer(); 2014 } 2015 case Instruction::Call: { 2016 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 2017 switch (II->getIntrinsicID()) { 2018 // These synthetic intrinsics have no side-effects, and just mark 2019 // information about their operands. 2020 // FIXME: There are other no-op synthetic instructions that potentially 2021 // should be considered at least *safe* to speculate... 2022 case Intrinsic::dbg_declare: 2023 case Intrinsic::dbg_value: 2024 return true; 2025 2026 case Intrinsic::bswap: 2027 case Intrinsic::ctlz: 2028 case Intrinsic::ctpop: 2029 case Intrinsic::cttz: 2030 case Intrinsic::objectsize: 2031 case Intrinsic::sadd_with_overflow: 2032 case Intrinsic::smul_with_overflow: 2033 case Intrinsic::ssub_with_overflow: 2034 case Intrinsic::uadd_with_overflow: 2035 case Intrinsic::umul_with_overflow: 2036 case Intrinsic::usub_with_overflow: 2037 return true; 2038 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 2039 // errno like libm sqrt would. 2040 case Intrinsic::sqrt: 2041 case Intrinsic::fma: 2042 case Intrinsic::fmuladd: 2043 return true; 2044 // TODO: some fp intrinsics are marked as having the same error handling 2045 // as libm. They're safe to speculate when they won't error. 2046 // TODO: are convert_{from,to}_fp16 safe? 2047 // TODO: can we list target-specific intrinsics here? 2048 default: break; 2049 } 2050 } 2051 return false; // The called function could have undefined behavior or 2052 // side-effects, even if marked readnone nounwind. 2053 } 2054 case Instruction::VAArg: 2055 case Instruction::Alloca: 2056 case Instruction::Invoke: 2057 case Instruction::PHI: 2058 case Instruction::Store: 2059 case Instruction::Ret: 2060 case Instruction::Br: 2061 case Instruction::IndirectBr: 2062 case Instruction::Switch: 2063 case Instruction::Unreachable: 2064 case Instruction::Fence: 2065 case Instruction::LandingPad: 2066 case Instruction::AtomicRMW: 2067 case Instruction::AtomicCmpXchg: 2068 case Instruction::Resume: 2069 return false; // Misc instructions which have effects 2070 } 2071 } 2072 2073 /// isKnownNonNull - Return true if we know that the specified value is never 2074 /// null. 2075 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 2076 // Alloca never returns null, malloc might. 2077 if (isa<AllocaInst>(V)) return true; 2078 2079 // A byval or inalloca argument is never null. 2080 if (const Argument *A = dyn_cast<Argument>(V)) 2081 return A->hasByValOrInAllocaAttr(); 2082 2083 // Global values are not null unless extern weak. 2084 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2085 return !GV->hasExternalWeakLinkage(); 2086 2087 // operator new never returns null. 2088 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 2089 return true; 2090 2091 return false; 2092 } 2093