1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = 440 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 Known2.isNonZero()) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Refine Known set if the pointer alignment is set by assume bundles. 674 if (V->getType()->isPointerTy()) { 675 if (RetainedKnowledge RK = getKnowledgeValidInContext( 676 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 677 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 678 } 679 } 680 681 // Note that the patterns below need to be kept in sync with the code 682 // in AssumptionCache::updateAffectedValues. 683 684 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 685 if (!AssumeVH) 686 continue; 687 CallInst *I = cast<CallInst>(AssumeVH); 688 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 689 "Got assumption for the wrong function!"); 690 if (Q.isExcluded(I)) 691 continue; 692 693 // Warning: This loop can end up being somewhat performance sensitive. 694 // We're running this loop for once for each value queried resulting in a 695 // runtime of ~O(#assumes * #values). 696 697 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 698 "must be an assume intrinsic"); 699 700 Value *Arg = I->getArgOperand(0); 701 702 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllOnes(); 705 return; 706 } 707 if (match(Arg, m_Not(m_Specific(V))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 assert(BitWidth == 1 && "assume operand is not i1?"); 710 Known.setAllZero(); 711 return; 712 } 713 714 // The remaining tests are all recursive, so bail out if we hit the limit. 715 if (Depth == MaxAnalysisRecursionDepth) 716 continue; 717 718 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 719 if (!Cmp) 720 continue; 721 722 // Note that ptrtoint may change the bitwidth. 723 Value *A, *B; 724 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 725 726 CmpInst::Predicate Pred; 727 uint64_t C; 728 switch (Cmp->getPredicate()) { 729 default: 730 break; 731 case ICmpInst::ICMP_EQ: 732 // assume(v = a) 733 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 Known.Zero |= RHSKnown.Zero; 738 Known.One |= RHSKnown.One; 739 // assume(v & b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 745 KnownBits MaskKnown = 746 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 748 // For those bits in the mask that are known to be one, we can propagate 749 // known bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 751 Known.One |= RHSKnown.One & MaskKnown.One; 752 // assume(~(v & b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 758 KnownBits MaskKnown = 759 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 761 // For those bits in the mask that are known to be one, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & MaskKnown.One; 764 Known.One |= RHSKnown.Zero & MaskKnown.One; 765 // assume(v | b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 // assume(~(v | b) = a) 779 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 780 m_Value(A))) && 781 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 782 KnownBits RHSKnown = 783 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 784 KnownBits BKnown = 785 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 786 787 // For those bits in B that are known to be zero, we can propagate 788 // inverted known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 // assume(v ^ b = a) 792 } else if (match(Cmp, 793 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 794 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 795 KnownBits RHSKnown = 796 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 797 KnownBits BKnown = 798 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 799 800 // For those bits in B that are known to be zero, we can propagate known 801 // bits from the RHS to V. For those bits in B that are known to be one, 802 // we can propagate inverted known bits from the RHS to V. 803 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 804 Known.One |= RHSKnown.One & BKnown.Zero; 805 Known.Zero |= RHSKnown.One & BKnown.One; 806 Known.One |= RHSKnown.Zero & BKnown.One; 807 // assume(~(v ^ b) = a) 808 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 809 m_Value(A))) && 810 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 811 KnownBits RHSKnown = 812 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 813 KnownBits BKnown = 814 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 815 816 // For those bits in B that are known to be zero, we can propagate 817 // inverted known bits from the RHS to V. For those bits in B that are 818 // known to be one, we can propagate known bits from the RHS to V. 819 Known.Zero |= RHSKnown.One & BKnown.Zero; 820 Known.One |= RHSKnown.Zero & BKnown.Zero; 821 Known.Zero |= RHSKnown.Zero & BKnown.One; 822 Known.One |= RHSKnown.One & BKnown.One; 823 // assume(v << c = a) 824 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 825 m_Value(A))) && 826 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 827 KnownBits RHSKnown = 828 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 829 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 RHSKnown.Zero.lshrInPlace(C); 833 Known.Zero |= RHSKnown.Zero; 834 RHSKnown.One.lshrInPlace(C); 835 Known.One |= RHSKnown.One; 836 // assume(~(v << c) = a) 837 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 838 m_Value(A))) && 839 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 840 KnownBits RHSKnown = 841 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 842 // For those bits in RHS that are known, we can propagate them inverted 843 // to known bits in V shifted to the right by C. 844 RHSKnown.One.lshrInPlace(C); 845 Known.Zero |= RHSKnown.One; 846 RHSKnown.Zero.lshrInPlace(C); 847 Known.One |= RHSKnown.Zero; 848 // assume(v >> c = a) 849 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 850 m_Value(A))) && 851 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 852 KnownBits RHSKnown = 853 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 854 // For those bits in RHS that are known, we can propagate them to known 855 // bits in V shifted to the right by C. 856 Known.Zero |= RHSKnown.Zero << C; 857 Known.One |= RHSKnown.One << C; 858 // assume(~(v >> c) = a) 859 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 860 m_Value(A))) && 861 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 862 KnownBits RHSKnown = 863 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 864 // For those bits in RHS that are known, we can propagate them inverted 865 // to known bits in V shifted to the right by C. 866 Known.Zero |= RHSKnown.One << C; 867 Known.One |= RHSKnown.Zero << C; 868 } 869 break; 870 case ICmpInst::ICMP_SGE: 871 // assume(v >=_s c) where c is non-negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNonNegative()) { 878 // We know that the sign bit is zero. 879 Known.makeNonNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SGT: 884 // assume(v >_s c) where c is at least -1. 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 891 // We know that the sign bit is zero. 892 Known.makeNonNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_SLE: 897 // assume(v <=_s c) where c is negative 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 902 903 if (RHSKnown.isNegative()) { 904 // We know that the sign bit is one. 905 Known.makeNegative(); 906 } 907 } 908 break; 909 case ICmpInst::ICMP_SLT: 910 // assume(v <_s c) where c is non-positive 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 917 // We know that the sign bit is one. 918 Known.makeNegative(); 919 } 920 } 921 break; 922 case ICmpInst::ICMP_ULE: 923 // assume(v <=_u c) 924 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 929 // Whatever high bits in c are zero are known to be zero. 930 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 931 } 932 break; 933 case ICmpInst::ICMP_ULT: 934 // assume(v <_u c) 935 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 936 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 937 KnownBits RHSKnown = 938 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 939 940 // If the RHS is known zero, then this assumption must be wrong (nothing 941 // is unsigned less than zero). Signal a conflict and get out of here. 942 if (RHSKnown.isZero()) { 943 Known.Zero.setAllBits(); 944 Known.One.setAllBits(); 945 break; 946 } 947 948 // Whatever high bits in c are zero are known to be zero (if c is a power 949 // of 2, then one more). 950 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 951 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 952 else 953 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 954 } 955 break; 956 } 957 } 958 959 // If assumptions conflict with each other or previous known bits, then we 960 // have a logical fallacy. It's possible that the assumption is not reachable, 961 // so this isn't a real bug. On the other hand, the program may have undefined 962 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 963 // clear out the known bits, try to warn the user, and hope for the best. 964 if (Known.Zero.intersects(Known.One)) { 965 Known.resetAll(); 966 967 if (Q.ORE) 968 Q.ORE->emit([&]() { 969 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 970 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 971 CxtI) 972 << "Detected conflicting code assumptions. Program may " 973 "have undefined behavior, or compiler may have " 974 "internal error."; 975 }); 976 } 977 } 978 979 /// Compute known bits from a shift operator, including those with a 980 /// non-constant shift amount. Known is the output of this function. Known2 is a 981 /// pre-allocated temporary with the same bit width as Known and on return 982 /// contains the known bit of the shift value source. KF is an 983 /// operator-specific function that, given the known-bits and a shift amount, 984 /// compute the implied known-bits of the shift operator's result respectively 985 /// for that shift amount. The results from calling KF are conservatively 986 /// combined for all permitted shift amounts. 987 static void computeKnownBitsFromShiftOperator( 988 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 989 KnownBits &Known2, unsigned Depth, const Query &Q, 990 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 991 unsigned BitWidth = Known.getBitWidth(); 992 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 993 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 994 995 if (Known.isConstant()) { 996 Known = KF(Known2, Known); 997 998 // If the known bits conflict, this must be an overflowing left shift, so 999 // the shift result is poison. We can return anything we want. Choose 0 for 1000 // the best folding opportunity. 1001 if (Known.hasConflict()) 1002 Known.setAllZero(); 1003 1004 return; 1005 } 1006 1007 // If the shift amount could be greater than or equal to the bit-width of the 1008 // LHS, the value could be poison, but bail out because the check below is 1009 // expensive. 1010 // TODO: Should we just carry on? 1011 if (Known.getMaxValue().uge(BitWidth)) { 1012 Known.resetAll(); 1013 return; 1014 } 1015 1016 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1017 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1018 // limit value (which implies all bits are known). 1019 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1020 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1021 1022 // It would be more-clearly correct to use the two temporaries for this 1023 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1024 Known.resetAll(); 1025 1026 // If we know the shifter operand is nonzero, we can sometimes infer more 1027 // known bits. However this is expensive to compute, so be lazy about it and 1028 // only compute it when absolutely necessary. 1029 Optional<bool> ShifterOperandIsNonZero; 1030 1031 // Early exit if we can't constrain any well-defined shift amount. 1032 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1033 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1034 ShifterOperandIsNonZero = 1035 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1036 if (!*ShifterOperandIsNonZero) 1037 return; 1038 } 1039 1040 Known.Zero.setAllBits(); 1041 Known.One.setAllBits(); 1042 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1043 // Combine the shifted known input bits only for those shift amounts 1044 // compatible with its known constraints. 1045 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1046 continue; 1047 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1048 continue; 1049 // If we know the shifter is nonzero, we may be able to infer more known 1050 // bits. This check is sunk down as far as possible to avoid the expensive 1051 // call to isKnownNonZero if the cheaper checks above fail. 1052 if (ShiftAmt == 0) { 1053 if (!ShifterOperandIsNonZero.hasValue()) 1054 ShifterOperandIsNonZero = 1055 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1056 if (*ShifterOperandIsNonZero) 1057 continue; 1058 } 1059 1060 Known = KnownBits::commonBits( 1061 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1062 } 1063 1064 // If the known bits conflict, the result is poison. Return a 0 and hope the 1065 // caller can further optimize that. 1066 if (Known.hasConflict()) 1067 Known.setAllZero(); 1068 } 1069 1070 static void computeKnownBitsFromOperator(const Operator *I, 1071 const APInt &DemandedElts, 1072 KnownBits &Known, unsigned Depth, 1073 const Query &Q) { 1074 unsigned BitWidth = Known.getBitWidth(); 1075 1076 KnownBits Known2(BitWidth); 1077 switch (I->getOpcode()) { 1078 default: break; 1079 case Instruction::Load: 1080 if (MDNode *MD = 1081 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1082 computeKnownBitsFromRangeMetadata(*MD, Known); 1083 break; 1084 case Instruction::And: { 1085 // If either the LHS or the RHS are Zero, the result is zero. 1086 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1087 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1088 1089 Known &= Known2; 1090 1091 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1092 // here we handle the more general case of adding any odd number by 1093 // matching the form add(x, add(x, y)) where y is odd. 1094 // TODO: This could be generalized to clearing any bit set in y where the 1095 // following bit is known to be unset in y. 1096 Value *X = nullptr, *Y = nullptr; 1097 if (!Known.Zero[0] && !Known.One[0] && 1098 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1099 Known2.resetAll(); 1100 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1101 if (Known2.countMinTrailingOnes() > 0) 1102 Known.Zero.setBit(0); 1103 } 1104 break; 1105 } 1106 case Instruction::Or: 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known |= Known2; 1111 break; 1112 case Instruction::Xor: 1113 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1114 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1115 1116 Known ^= Known2; 1117 break; 1118 case Instruction::Mul: { 1119 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1120 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1121 Known, Known2, Depth, Q); 1122 break; 1123 } 1124 case Instruction::UDiv: { 1125 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1126 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1127 Known = KnownBits::udiv(Known, Known2); 1128 break; 1129 } 1130 case Instruction::Select: { 1131 const Value *LHS = nullptr, *RHS = nullptr; 1132 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1133 if (SelectPatternResult::isMinOrMax(SPF)) { 1134 computeKnownBits(RHS, Known, Depth + 1, Q); 1135 computeKnownBits(LHS, Known2, Depth + 1, Q); 1136 switch (SPF) { 1137 default: 1138 llvm_unreachable("Unhandled select pattern flavor!"); 1139 case SPF_SMAX: 1140 Known = KnownBits::smax(Known, Known2); 1141 break; 1142 case SPF_SMIN: 1143 Known = KnownBits::smin(Known, Known2); 1144 break; 1145 case SPF_UMAX: 1146 Known = KnownBits::umax(Known, Known2); 1147 break; 1148 case SPF_UMIN: 1149 Known = KnownBits::umin(Known, Known2); 1150 break; 1151 } 1152 break; 1153 } 1154 1155 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1157 1158 // Only known if known in both the LHS and RHS. 1159 Known = KnownBits::commonBits(Known, Known2); 1160 1161 if (SPF == SPF_ABS) { 1162 // RHS from matchSelectPattern returns the negation part of abs pattern. 1163 // If the negate has an NSW flag we can assume the sign bit of the result 1164 // will be 0 because that makes abs(INT_MIN) undefined. 1165 if (match(RHS, m_Neg(m_Specific(LHS))) && 1166 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1167 Known.Zero.setSignBit(); 1168 } 1169 1170 break; 1171 } 1172 case Instruction::FPTrunc: 1173 case Instruction::FPExt: 1174 case Instruction::FPToUI: 1175 case Instruction::FPToSI: 1176 case Instruction::SIToFP: 1177 case Instruction::UIToFP: 1178 break; // Can't work with floating point. 1179 case Instruction::PtrToInt: 1180 case Instruction::IntToPtr: 1181 // Fall through and handle them the same as zext/trunc. 1182 LLVM_FALLTHROUGH; 1183 case Instruction::ZExt: 1184 case Instruction::Trunc: { 1185 Type *SrcTy = I->getOperand(0)->getType(); 1186 1187 unsigned SrcBitWidth; 1188 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1189 // which fall through here. 1190 Type *ScalarTy = SrcTy->getScalarType(); 1191 SrcBitWidth = ScalarTy->isPointerTy() ? 1192 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1193 Q.DL.getTypeSizeInBits(ScalarTy); 1194 1195 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1196 Known = Known.anyextOrTrunc(SrcBitWidth); 1197 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1198 Known = Known.zextOrTrunc(BitWidth); 1199 break; 1200 } 1201 case Instruction::BitCast: { 1202 Type *SrcTy = I->getOperand(0)->getType(); 1203 if (SrcTy->isIntOrPtrTy() && 1204 // TODO: For now, not handling conversions like: 1205 // (bitcast i64 %x to <2 x i32>) 1206 !I->getType()->isVectorTy()) { 1207 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1208 break; 1209 } 1210 break; 1211 } 1212 case Instruction::SExt: { 1213 // Compute the bits in the result that are not present in the input. 1214 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1215 1216 Known = Known.trunc(SrcBitWidth); 1217 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1218 // If the sign bit of the input is known set or clear, then we know the 1219 // top bits of the result. 1220 Known = Known.sext(BitWidth); 1221 break; 1222 } 1223 case Instruction::Shl: { 1224 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1225 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1226 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1227 // If this shift has "nsw" keyword, then the result is either a poison 1228 // value or has the same sign bit as the first operand. 1229 if (NSW) { 1230 if (KnownVal.Zero.isSignBitSet()) 1231 Result.Zero.setSignBit(); 1232 if (KnownVal.One.isSignBitSet()) 1233 Result.One.setSignBit(); 1234 } 1235 return Result; 1236 }; 1237 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1238 KF); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 break; 1248 } 1249 case Instruction::AShr: { 1250 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1251 return KnownBits::ashr(KnownVal, KnownAmt); 1252 }; 1253 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1254 KF); 1255 break; 1256 } 1257 case Instruction::Sub: { 1258 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1259 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1260 DemandedElts, Known, Known2, Depth, Q); 1261 break; 1262 } 1263 case Instruction::Add: { 1264 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1265 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1266 DemandedElts, Known, Known2, Depth, Q); 1267 break; 1268 } 1269 case Instruction::SRem: 1270 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1271 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1272 Known = KnownBits::srem(Known, Known2); 1273 break; 1274 1275 case Instruction::URem: 1276 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1277 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1278 Known = KnownBits::urem(Known, Known2); 1279 break; 1280 case Instruction::Alloca: 1281 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1282 break; 1283 case Instruction::GetElementPtr: { 1284 // Analyze all of the subscripts of this getelementptr instruction 1285 // to determine if we can prove known low zero bits. 1286 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1287 // Accumulate the constant indices in a separate variable 1288 // to minimize the number of calls to computeForAddSub. 1289 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1290 1291 gep_type_iterator GTI = gep_type_begin(I); 1292 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1293 // TrailZ can only become smaller, short-circuit if we hit zero. 1294 if (Known.isUnknown()) 1295 break; 1296 1297 Value *Index = I->getOperand(i); 1298 1299 // Handle case when index is zero. 1300 Constant *CIndex = dyn_cast<Constant>(Index); 1301 if (CIndex && CIndex->isZeroValue()) 1302 continue; 1303 1304 if (StructType *STy = GTI.getStructTypeOrNull()) { 1305 // Handle struct member offset arithmetic. 1306 1307 assert(CIndex && 1308 "Access to structure field must be known at compile time"); 1309 1310 if (CIndex->getType()->isVectorTy()) 1311 Index = CIndex->getSplatValue(); 1312 1313 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1314 const StructLayout *SL = Q.DL.getStructLayout(STy); 1315 uint64_t Offset = SL->getElementOffset(Idx); 1316 AccConstIndices += Offset; 1317 continue; 1318 } 1319 1320 // Handle array index arithmetic. 1321 Type *IndexedTy = GTI.getIndexedType(); 1322 if (!IndexedTy->isSized()) { 1323 Known.resetAll(); 1324 break; 1325 } 1326 1327 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1328 KnownBits IndexBits(IndexBitWidth); 1329 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1330 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1331 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1332 KnownBits ScalingFactor(IndexBitWidth); 1333 // Multiply by current sizeof type. 1334 // &A[i] == A + i * sizeof(*A[i]). 1335 if (IndexTypeSize.isScalable()) { 1336 // For scalable types the only thing we know about sizeof is 1337 // that this is a multiple of the minimum size. 1338 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1339 } else if (IndexBits.isConstant()) { 1340 APInt IndexConst = IndexBits.getConstant(); 1341 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1342 IndexConst *= ScalingFactor; 1343 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1344 continue; 1345 } else { 1346 ScalingFactor.Zero = ~TypeSizeInBytes; 1347 ScalingFactor.One = TypeSizeInBytes; 1348 } 1349 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1350 1351 // If the offsets have a different width from the pointer, according 1352 // to the language reference we need to sign-extend or truncate them 1353 // to the width of the pointer. 1354 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1355 1356 // Note that inbounds does *not* guarantee nsw for the addition, as only 1357 // the offset is signed, while the base address is unsigned. 1358 Known = KnownBits::computeForAddSub( 1359 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1360 } 1361 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1362 KnownBits Index(BitWidth); 1363 Index.Zero = ~AccConstIndices; 1364 Index.One = AccConstIndices; 1365 Known = KnownBits::computeForAddSub( 1366 /*Add=*/true, /*NSW=*/false, Known, Index); 1367 } 1368 break; 1369 } 1370 case Instruction::PHI: { 1371 const PHINode *P = cast<PHINode>(I); 1372 // Handle the case of a simple two-predecessor recurrence PHI. 1373 // There's a lot more that could theoretically be done here, but 1374 // this is sufficient to catch some interesting cases. 1375 if (P->getNumIncomingValues() == 2) { 1376 for (unsigned i = 0; i != 2; ++i) { 1377 Value *L = P->getIncomingValue(i); 1378 Value *R = P->getIncomingValue(!i); 1379 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1380 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1381 Operator *LU = dyn_cast<Operator>(L); 1382 if (!LU) 1383 continue; 1384 unsigned Opcode = LU->getOpcode(); 1385 // Check for operations that have the property that if 1386 // both their operands have low zero bits, the result 1387 // will have low zero bits. 1388 if (Opcode == Instruction::Add || 1389 Opcode == Instruction::Sub || 1390 Opcode == Instruction::And || 1391 Opcode == Instruction::Or || 1392 Opcode == Instruction::Mul) { 1393 Value *LL = LU->getOperand(0); 1394 Value *LR = LU->getOperand(1); 1395 // Find a recurrence. 1396 if (LL == I) 1397 L = LR; 1398 else if (LR == I) 1399 L = LL; 1400 else 1401 continue; // Check for recurrence with L and R flipped. 1402 1403 // Change the context instruction to the "edge" that flows into the 1404 // phi. This is important because that is where the value is actually 1405 // "evaluated" even though it is used later somewhere else. (see also 1406 // D69571). 1407 Query RecQ = Q; 1408 1409 // Ok, we have a PHI of the form L op= R. Check for low 1410 // zero bits. 1411 RecQ.CxtI = RInst; 1412 computeKnownBits(R, Known2, Depth + 1, RecQ); 1413 1414 // We need to take the minimum number of known bits 1415 KnownBits Known3(BitWidth); 1416 RecQ.CxtI = LInst; 1417 computeKnownBits(L, Known3, Depth + 1, RecQ); 1418 1419 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1420 Known3.countMinTrailingZeros())); 1421 1422 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1423 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1424 // If initial value of recurrence is nonnegative, and we are adding 1425 // a nonnegative number with nsw, the result can only be nonnegative 1426 // or poison value regardless of the number of times we execute the 1427 // add in phi recurrence. If initial value is negative and we are 1428 // adding a negative number with nsw, the result can only be 1429 // negative or poison value. Similar arguments apply to sub and mul. 1430 // 1431 // (add non-negative, non-negative) --> non-negative 1432 // (add negative, negative) --> negative 1433 if (Opcode == Instruction::Add) { 1434 if (Known2.isNonNegative() && Known3.isNonNegative()) 1435 Known.makeNonNegative(); 1436 else if (Known2.isNegative() && Known3.isNegative()) 1437 Known.makeNegative(); 1438 } 1439 1440 // (sub nsw non-negative, negative) --> non-negative 1441 // (sub nsw negative, non-negative) --> negative 1442 else if (Opcode == Instruction::Sub && LL == I) { 1443 if (Known2.isNonNegative() && Known3.isNegative()) 1444 Known.makeNonNegative(); 1445 else if (Known2.isNegative() && Known3.isNonNegative()) 1446 Known.makeNegative(); 1447 } 1448 1449 // (mul nsw non-negative, non-negative) --> non-negative 1450 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1451 Known3.isNonNegative()) 1452 Known.makeNonNegative(); 1453 } 1454 1455 break; 1456 } 1457 } 1458 } 1459 1460 // Unreachable blocks may have zero-operand PHI nodes. 1461 if (P->getNumIncomingValues() == 0) 1462 break; 1463 1464 // Otherwise take the unions of the known bit sets of the operands, 1465 // taking conservative care to avoid excessive recursion. 1466 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1467 // Skip if every incoming value references to ourself. 1468 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1469 break; 1470 1471 Known.Zero.setAllBits(); 1472 Known.One.setAllBits(); 1473 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1474 Value *IncValue = P->getIncomingValue(u); 1475 // Skip direct self references. 1476 if (IncValue == P) continue; 1477 1478 // Change the context instruction to the "edge" that flows into the 1479 // phi. This is important because that is where the value is actually 1480 // "evaluated" even though it is used later somewhere else. (see also 1481 // D69571). 1482 Query RecQ = Q; 1483 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1484 1485 Known2 = KnownBits(BitWidth); 1486 // Recurse, but cap the recursion to one level, because we don't 1487 // want to waste time spinning around in loops. 1488 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1489 Known = KnownBits::commonBits(Known, Known2); 1490 // If all bits have been ruled out, there's no need to check 1491 // more operands. 1492 if (Known.isUnknown()) 1493 break; 1494 } 1495 } 1496 break; 1497 } 1498 case Instruction::Call: 1499 case Instruction::Invoke: 1500 // If range metadata is attached to this call, set known bits from that, 1501 // and then intersect with known bits based on other properties of the 1502 // function. 1503 if (MDNode *MD = 1504 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1505 computeKnownBitsFromRangeMetadata(*MD, Known); 1506 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1507 computeKnownBits(RV, Known2, Depth + 1, Q); 1508 Known.Zero |= Known2.Zero; 1509 Known.One |= Known2.One; 1510 } 1511 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1512 switch (II->getIntrinsicID()) { 1513 default: break; 1514 case Intrinsic::abs: { 1515 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1516 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1517 Known = Known2.abs(IntMinIsPoison); 1518 break; 1519 } 1520 case Intrinsic::bitreverse: 1521 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1522 Known.Zero |= Known2.Zero.reverseBits(); 1523 Known.One |= Known2.One.reverseBits(); 1524 break; 1525 case Intrinsic::bswap: 1526 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1527 Known.Zero |= Known2.Zero.byteSwap(); 1528 Known.One |= Known2.One.byteSwap(); 1529 break; 1530 case Intrinsic::ctlz: { 1531 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1532 // If we have a known 1, its position is our upper bound. 1533 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1534 // If this call is undefined for 0, the result will be less than 2^n. 1535 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1536 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1537 unsigned LowBits = Log2_32(PossibleLZ)+1; 1538 Known.Zero.setBitsFrom(LowBits); 1539 break; 1540 } 1541 case Intrinsic::cttz: { 1542 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1543 // If we have a known 1, its position is our upper bound. 1544 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1545 // If this call is undefined for 0, the result will be less than 2^n. 1546 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1547 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1548 unsigned LowBits = Log2_32(PossibleTZ)+1; 1549 Known.Zero.setBitsFrom(LowBits); 1550 break; 1551 } 1552 case Intrinsic::ctpop: { 1553 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1554 // We can bound the space the count needs. Also, bits known to be zero 1555 // can't contribute to the population. 1556 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1557 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1558 Known.Zero.setBitsFrom(LowBits); 1559 // TODO: we could bound KnownOne using the lower bound on the number 1560 // of bits which might be set provided by popcnt KnownOne2. 1561 break; 1562 } 1563 case Intrinsic::fshr: 1564 case Intrinsic::fshl: { 1565 const APInt *SA; 1566 if (!match(I->getOperand(2), m_APInt(SA))) 1567 break; 1568 1569 // Normalize to funnel shift left. 1570 uint64_t ShiftAmt = SA->urem(BitWidth); 1571 if (II->getIntrinsicID() == Intrinsic::fshr) 1572 ShiftAmt = BitWidth - ShiftAmt; 1573 1574 KnownBits Known3(BitWidth); 1575 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1576 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1577 1578 Known.Zero = 1579 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1580 Known.One = 1581 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1582 break; 1583 } 1584 case Intrinsic::uadd_sat: 1585 case Intrinsic::usub_sat: { 1586 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1587 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1588 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1589 1590 // Add: Leading ones of either operand are preserved. 1591 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1592 // as leading zeros in the result. 1593 unsigned LeadingKnown; 1594 if (IsAdd) 1595 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1596 Known2.countMinLeadingOnes()); 1597 else 1598 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1599 Known2.countMinLeadingOnes()); 1600 1601 Known = KnownBits::computeForAddSub( 1602 IsAdd, /* NSW */ false, Known, Known2); 1603 1604 // We select between the operation result and all-ones/zero 1605 // respectively, so we can preserve known ones/zeros. 1606 if (IsAdd) { 1607 Known.One.setHighBits(LeadingKnown); 1608 Known.Zero.clearAllBits(); 1609 } else { 1610 Known.Zero.setHighBits(LeadingKnown); 1611 Known.One.clearAllBits(); 1612 } 1613 break; 1614 } 1615 case Intrinsic::umin: 1616 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1617 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1618 Known = KnownBits::umin(Known, Known2); 1619 break; 1620 case Intrinsic::umax: 1621 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1623 Known = KnownBits::umax(Known, Known2); 1624 break; 1625 case Intrinsic::smin: 1626 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1627 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1628 Known = KnownBits::smin(Known, Known2); 1629 break; 1630 case Intrinsic::smax: 1631 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1632 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1633 Known = KnownBits::smax(Known, Known2); 1634 break; 1635 case Intrinsic::x86_sse42_crc32_64_64: 1636 Known.Zero.setBitsFrom(32); 1637 break; 1638 } 1639 } 1640 break; 1641 case Instruction::ShuffleVector: { 1642 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1643 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1644 if (!Shuf) { 1645 Known.resetAll(); 1646 return; 1647 } 1648 // For undef elements, we don't know anything about the common state of 1649 // the shuffle result. 1650 APInt DemandedLHS, DemandedRHS; 1651 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1652 Known.resetAll(); 1653 return; 1654 } 1655 Known.One.setAllBits(); 1656 Known.Zero.setAllBits(); 1657 if (!!DemandedLHS) { 1658 const Value *LHS = Shuf->getOperand(0); 1659 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1660 // If we don't know any bits, early out. 1661 if (Known.isUnknown()) 1662 break; 1663 } 1664 if (!!DemandedRHS) { 1665 const Value *RHS = Shuf->getOperand(1); 1666 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1667 Known = KnownBits::commonBits(Known, Known2); 1668 } 1669 break; 1670 } 1671 case Instruction::InsertElement: { 1672 const Value *Vec = I->getOperand(0); 1673 const Value *Elt = I->getOperand(1); 1674 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1675 // Early out if the index is non-constant or out-of-range. 1676 unsigned NumElts = DemandedElts.getBitWidth(); 1677 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1678 Known.resetAll(); 1679 return; 1680 } 1681 Known.One.setAllBits(); 1682 Known.Zero.setAllBits(); 1683 unsigned EltIdx = CIdx->getZExtValue(); 1684 // Do we demand the inserted element? 1685 if (DemandedElts[EltIdx]) { 1686 computeKnownBits(Elt, Known, Depth + 1, Q); 1687 // If we don't know any bits, early out. 1688 if (Known.isUnknown()) 1689 break; 1690 } 1691 // We don't need the base vector element that has been inserted. 1692 APInt DemandedVecElts = DemandedElts; 1693 DemandedVecElts.clearBit(EltIdx); 1694 if (!!DemandedVecElts) { 1695 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1696 Known = KnownBits::commonBits(Known, Known2); 1697 } 1698 break; 1699 } 1700 case Instruction::ExtractElement: { 1701 // Look through extract element. If the index is non-constant or 1702 // out-of-range demand all elements, otherwise just the extracted element. 1703 const Value *Vec = I->getOperand(0); 1704 const Value *Idx = I->getOperand(1); 1705 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1706 if (isa<ScalableVectorType>(Vec->getType())) { 1707 // FIXME: there's probably *something* we can do with scalable vectors 1708 Known.resetAll(); 1709 break; 1710 } 1711 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1712 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1713 if (CIdx && CIdx->getValue().ult(NumElts)) 1714 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1715 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1716 break; 1717 } 1718 case Instruction::ExtractValue: 1719 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1720 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1721 if (EVI->getNumIndices() != 1) break; 1722 if (EVI->getIndices()[0] == 0) { 1723 switch (II->getIntrinsicID()) { 1724 default: break; 1725 case Intrinsic::uadd_with_overflow: 1726 case Intrinsic::sadd_with_overflow: 1727 computeKnownBitsAddSub(true, II->getArgOperand(0), 1728 II->getArgOperand(1), false, DemandedElts, 1729 Known, Known2, Depth, Q); 1730 break; 1731 case Intrinsic::usub_with_overflow: 1732 case Intrinsic::ssub_with_overflow: 1733 computeKnownBitsAddSub(false, II->getArgOperand(0), 1734 II->getArgOperand(1), false, DemandedElts, 1735 Known, Known2, Depth, Q); 1736 break; 1737 case Intrinsic::umul_with_overflow: 1738 case Intrinsic::smul_with_overflow: 1739 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1740 DemandedElts, Known, Known2, Depth, Q); 1741 break; 1742 } 1743 } 1744 } 1745 break; 1746 case Instruction::Freeze: 1747 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1748 Depth + 1)) 1749 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1750 break; 1751 } 1752 } 1753 1754 /// Determine which bits of V are known to be either zero or one and return 1755 /// them. 1756 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1757 unsigned Depth, const Query &Q) { 1758 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1759 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1760 return Known; 1761 } 1762 1763 /// Determine which bits of V are known to be either zero or one and return 1764 /// them. 1765 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1766 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1767 computeKnownBits(V, Known, Depth, Q); 1768 return Known; 1769 } 1770 1771 /// Determine which bits of V are known to be either zero or one and return 1772 /// them in the Known bit set. 1773 /// 1774 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1775 /// we cannot optimize based on the assumption that it is zero without changing 1776 /// it to be an explicit zero. If we don't change it to zero, other code could 1777 /// optimized based on the contradictory assumption that it is non-zero. 1778 /// Because instcombine aggressively folds operations with undef args anyway, 1779 /// this won't lose us code quality. 1780 /// 1781 /// This function is defined on values with integer type, values with pointer 1782 /// type, and vectors of integers. In the case 1783 /// where V is a vector, known zero, and known one values are the 1784 /// same width as the vector element, and the bit is set only if it is true 1785 /// for all of the demanded elements in the vector specified by DemandedElts. 1786 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1787 KnownBits &Known, unsigned Depth, const Query &Q) { 1788 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1789 // No demanded elts or V is a scalable vector, better to assume we don't 1790 // know anything. 1791 Known.resetAll(); 1792 return; 1793 } 1794 1795 assert(V && "No Value?"); 1796 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1797 1798 #ifndef NDEBUG 1799 Type *Ty = V->getType(); 1800 unsigned BitWidth = Known.getBitWidth(); 1801 1802 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1803 "Not integer or pointer type!"); 1804 1805 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1806 assert( 1807 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1808 "DemandedElt width should equal the fixed vector number of elements"); 1809 } else { 1810 assert(DemandedElts == APInt(1, 1) && 1811 "DemandedElt width should be 1 for scalars"); 1812 } 1813 1814 Type *ScalarTy = Ty->getScalarType(); 1815 if (ScalarTy->isPointerTy()) { 1816 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1817 "V and Known should have same BitWidth"); 1818 } else { 1819 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1820 "V and Known should have same BitWidth"); 1821 } 1822 #endif 1823 1824 const APInt *C; 1825 if (match(V, m_APInt(C))) { 1826 // We know all of the bits for a scalar constant or a splat vector constant! 1827 Known.One = *C; 1828 Known.Zero = ~Known.One; 1829 return; 1830 } 1831 // Null and aggregate-zero are all-zeros. 1832 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1833 Known.setAllZero(); 1834 return; 1835 } 1836 // Handle a constant vector by taking the intersection of the known bits of 1837 // each element. 1838 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1839 // We know that CDV must be a vector of integers. Take the intersection of 1840 // each element. 1841 Known.Zero.setAllBits(); Known.One.setAllBits(); 1842 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1843 if (!DemandedElts[i]) 1844 continue; 1845 APInt Elt = CDV->getElementAsAPInt(i); 1846 Known.Zero &= ~Elt; 1847 Known.One &= Elt; 1848 } 1849 return; 1850 } 1851 1852 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1853 // We know that CV must be a vector of integers. Take the intersection of 1854 // each element. 1855 Known.Zero.setAllBits(); Known.One.setAllBits(); 1856 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1857 if (!DemandedElts[i]) 1858 continue; 1859 Constant *Element = CV->getAggregateElement(i); 1860 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1861 if (!ElementCI) { 1862 Known.resetAll(); 1863 return; 1864 } 1865 const APInt &Elt = ElementCI->getValue(); 1866 Known.Zero &= ~Elt; 1867 Known.One &= Elt; 1868 } 1869 return; 1870 } 1871 1872 // Start out not knowing anything. 1873 Known.resetAll(); 1874 1875 // We can't imply anything about undefs. 1876 if (isa<UndefValue>(V)) 1877 return; 1878 1879 // There's no point in looking through other users of ConstantData for 1880 // assumptions. Confirm that we've handled them all. 1881 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1882 1883 // All recursive calls that increase depth must come after this. 1884 if (Depth == MaxAnalysisRecursionDepth) 1885 return; 1886 1887 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1888 // the bits of its aliasee. 1889 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1890 if (!GA->isInterposable()) 1891 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1892 return; 1893 } 1894 1895 if (const Operator *I = dyn_cast<Operator>(V)) 1896 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1897 1898 // Aligned pointers have trailing zeros - refine Known.Zero set 1899 if (isa<PointerType>(V->getType())) { 1900 Align Alignment = V->getPointerAlignment(Q.DL); 1901 Known.Zero.setLowBits(Log2(Alignment)); 1902 } 1903 1904 // computeKnownBitsFromAssume strictly refines Known. 1905 // Therefore, we run them after computeKnownBitsFromOperator. 1906 1907 // Check whether a nearby assume intrinsic can determine some known bits. 1908 computeKnownBitsFromAssume(V, Known, Depth, Q); 1909 1910 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1911 } 1912 1913 /// Return true if the given value is known to have exactly one 1914 /// bit set when defined. For vectors return true if every element is known to 1915 /// be a power of two when defined. Supports values with integer or pointer 1916 /// types and vectors of integers. 1917 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1918 const Query &Q) { 1919 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1920 1921 // Attempt to match against constants. 1922 if (OrZero && match(V, m_Power2OrZero())) 1923 return true; 1924 if (match(V, m_Power2())) 1925 return true; 1926 1927 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1928 // it is shifted off the end then the result is undefined. 1929 if (match(V, m_Shl(m_One(), m_Value()))) 1930 return true; 1931 1932 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1933 // the bottom. If it is shifted off the bottom then the result is undefined. 1934 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1935 return true; 1936 1937 // The remaining tests are all recursive, so bail out if we hit the limit. 1938 if (Depth++ == MaxAnalysisRecursionDepth) 1939 return false; 1940 1941 Value *X = nullptr, *Y = nullptr; 1942 // A shift left or a logical shift right of a power of two is a power of two 1943 // or zero. 1944 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1945 match(V, m_LShr(m_Value(X), m_Value())))) 1946 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1947 1948 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1949 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1950 1951 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1952 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1953 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1954 1955 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1956 // A power of two and'd with anything is a power of two or zero. 1957 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1958 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1959 return true; 1960 // X & (-X) is always a power of two or zero. 1961 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1962 return true; 1963 return false; 1964 } 1965 1966 // Adding a power-of-two or zero to the same power-of-two or zero yields 1967 // either the original power-of-two, a larger power-of-two or zero. 1968 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1969 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1970 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1971 Q.IIQ.hasNoSignedWrap(VOBO)) { 1972 if (match(X, m_And(m_Specific(Y), m_Value())) || 1973 match(X, m_And(m_Value(), m_Specific(Y)))) 1974 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1975 return true; 1976 if (match(Y, m_And(m_Specific(X), m_Value())) || 1977 match(Y, m_And(m_Value(), m_Specific(X)))) 1978 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1979 return true; 1980 1981 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1982 KnownBits LHSBits(BitWidth); 1983 computeKnownBits(X, LHSBits, Depth, Q); 1984 1985 KnownBits RHSBits(BitWidth); 1986 computeKnownBits(Y, RHSBits, Depth, Q); 1987 // If i8 V is a power of two or zero: 1988 // ZeroBits: 1 1 1 0 1 1 1 1 1989 // ~ZeroBits: 0 0 0 1 0 0 0 0 1990 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1991 // If OrZero isn't set, we cannot give back a zero result. 1992 // Make sure either the LHS or RHS has a bit set. 1993 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1994 return true; 1995 } 1996 } 1997 1998 // An exact divide or right shift can only shift off zero bits, so the result 1999 // is a power of two only if the first operand is a power of two and not 2000 // copying a sign bit (sdiv int_min, 2). 2001 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2002 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2003 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2004 Depth, Q); 2005 } 2006 2007 return false; 2008 } 2009 2010 /// Test whether a GEP's result is known to be non-null. 2011 /// 2012 /// Uses properties inherent in a GEP to try to determine whether it is known 2013 /// to be non-null. 2014 /// 2015 /// Currently this routine does not support vector GEPs. 2016 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2017 const Query &Q) { 2018 const Function *F = nullptr; 2019 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2020 F = I->getFunction(); 2021 2022 if (!GEP->isInBounds() || 2023 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2024 return false; 2025 2026 // FIXME: Support vector-GEPs. 2027 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2028 2029 // If the base pointer is non-null, we cannot walk to a null address with an 2030 // inbounds GEP in address space zero. 2031 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2032 return true; 2033 2034 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2035 // If so, then the GEP cannot produce a null pointer, as doing so would 2036 // inherently violate the inbounds contract within address space zero. 2037 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2038 GTI != GTE; ++GTI) { 2039 // Struct types are easy -- they must always be indexed by a constant. 2040 if (StructType *STy = GTI.getStructTypeOrNull()) { 2041 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2042 unsigned ElementIdx = OpC->getZExtValue(); 2043 const StructLayout *SL = Q.DL.getStructLayout(STy); 2044 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2045 if (ElementOffset > 0) 2046 return true; 2047 continue; 2048 } 2049 2050 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2051 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2052 continue; 2053 2054 // Fast path the constant operand case both for efficiency and so we don't 2055 // increment Depth when just zipping down an all-constant GEP. 2056 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2057 if (!OpC->isZero()) 2058 return true; 2059 continue; 2060 } 2061 2062 // We post-increment Depth here because while isKnownNonZero increments it 2063 // as well, when we pop back up that increment won't persist. We don't want 2064 // to recurse 10k times just because we have 10k GEP operands. We don't 2065 // bail completely out because we want to handle constant GEPs regardless 2066 // of depth. 2067 if (Depth++ >= MaxAnalysisRecursionDepth) 2068 continue; 2069 2070 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2071 return true; 2072 } 2073 2074 return false; 2075 } 2076 2077 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2078 const Instruction *CtxI, 2079 const DominatorTree *DT) { 2080 if (isa<Constant>(V)) 2081 return false; 2082 2083 if (!CtxI || !DT) 2084 return false; 2085 2086 unsigned NumUsesExplored = 0; 2087 for (auto *U : V->users()) { 2088 // Avoid massive lists 2089 if (NumUsesExplored >= DomConditionsMaxUses) 2090 break; 2091 NumUsesExplored++; 2092 2093 // If the value is used as an argument to a call or invoke, then argument 2094 // attributes may provide an answer about null-ness. 2095 if (const auto *CB = dyn_cast<CallBase>(U)) 2096 if (auto *CalledFunc = CB->getCalledFunction()) 2097 for (const Argument &Arg : CalledFunc->args()) 2098 if (CB->getArgOperand(Arg.getArgNo()) == V && 2099 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2100 return true; 2101 2102 // If the value is used as a load/store, then the pointer must be non null. 2103 if (V == getLoadStorePointerOperand(U)) { 2104 const Instruction *I = cast<Instruction>(U); 2105 if (!NullPointerIsDefined(I->getFunction(), 2106 V->getType()->getPointerAddressSpace()) && 2107 DT->dominates(I, CtxI)) 2108 return true; 2109 } 2110 2111 // Consider only compare instructions uniquely controlling a branch 2112 CmpInst::Predicate Pred; 2113 if (!match(const_cast<User *>(U), 2114 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2115 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2116 continue; 2117 2118 SmallVector<const User *, 4> WorkList; 2119 SmallPtrSet<const User *, 4> Visited; 2120 for (auto *CmpU : U->users()) { 2121 assert(WorkList.empty() && "Should be!"); 2122 if (Visited.insert(CmpU).second) 2123 WorkList.push_back(CmpU); 2124 2125 while (!WorkList.empty()) { 2126 auto *Curr = WorkList.pop_back_val(); 2127 2128 // If a user is an AND, add all its users to the work list. We only 2129 // propagate "pred != null" condition through AND because it is only 2130 // correct to assume that all conditions of AND are met in true branch. 2131 // TODO: Support similar logic of OR and EQ predicate? 2132 if (Pred == ICmpInst::ICMP_NE) 2133 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2134 if (BO->getOpcode() == Instruction::And) { 2135 for (auto *BOU : BO->users()) 2136 if (Visited.insert(BOU).second) 2137 WorkList.push_back(BOU); 2138 continue; 2139 } 2140 2141 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2142 assert(BI->isConditional() && "uses a comparison!"); 2143 2144 BasicBlock *NonNullSuccessor = 2145 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2146 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2147 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2148 return true; 2149 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2150 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2151 return true; 2152 } 2153 } 2154 } 2155 } 2156 2157 return false; 2158 } 2159 2160 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2161 /// ensure that the value it's attached to is never Value? 'RangeType' is 2162 /// is the type of the value described by the range. 2163 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2164 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2165 assert(NumRanges >= 1); 2166 for (unsigned i = 0; i < NumRanges; ++i) { 2167 ConstantInt *Lower = 2168 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2169 ConstantInt *Upper = 2170 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2171 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2172 if (Range.contains(Value)) 2173 return false; 2174 } 2175 return true; 2176 } 2177 2178 /// Return true if the given value is known to be non-zero when defined. For 2179 /// vectors, return true if every demanded element is known to be non-zero when 2180 /// defined. For pointers, if the context instruction and dominator tree are 2181 /// specified, perform context-sensitive analysis and return true if the 2182 /// pointer couldn't possibly be null at the specified instruction. 2183 /// Supports values with integer or pointer type and vectors of integers. 2184 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2185 const Query &Q) { 2186 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2187 // vector 2188 if (isa<ScalableVectorType>(V->getType())) 2189 return false; 2190 2191 if (auto *C = dyn_cast<Constant>(V)) { 2192 if (C->isNullValue()) 2193 return false; 2194 if (isa<ConstantInt>(C)) 2195 // Must be non-zero due to null test above. 2196 return true; 2197 2198 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2199 // See the comment for IntToPtr/PtrToInt instructions below. 2200 if (CE->getOpcode() == Instruction::IntToPtr || 2201 CE->getOpcode() == Instruction::PtrToInt) 2202 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2203 .getFixedSize() <= 2204 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2205 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2206 } 2207 2208 // For constant vectors, check that all elements are undefined or known 2209 // non-zero to determine that the whole vector is known non-zero. 2210 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2211 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2212 if (!DemandedElts[i]) 2213 continue; 2214 Constant *Elt = C->getAggregateElement(i); 2215 if (!Elt || Elt->isNullValue()) 2216 return false; 2217 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2218 return false; 2219 } 2220 return true; 2221 } 2222 2223 // A global variable in address space 0 is non null unless extern weak 2224 // or an absolute symbol reference. Other address spaces may have null as a 2225 // valid address for a global, so we can't assume anything. 2226 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2227 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2228 GV->getType()->getAddressSpace() == 0) 2229 return true; 2230 } else 2231 return false; 2232 } 2233 2234 if (auto *I = dyn_cast<Instruction>(V)) { 2235 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2236 // If the possible ranges don't contain zero, then the value is 2237 // definitely non-zero. 2238 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2239 const APInt ZeroValue(Ty->getBitWidth(), 0); 2240 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2241 return true; 2242 } 2243 } 2244 } 2245 2246 if (isKnownNonZeroFromAssume(V, Q)) 2247 return true; 2248 2249 // Some of the tests below are recursive, so bail out if we hit the limit. 2250 if (Depth++ >= MaxAnalysisRecursionDepth) 2251 return false; 2252 2253 // Check for pointer simplifications. 2254 2255 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2256 // Alloca never returns null, malloc might. 2257 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2258 return true; 2259 2260 // A byval, inalloca may not be null in a non-default addres space. A 2261 // nonnull argument is assumed never 0. 2262 if (const Argument *A = dyn_cast<Argument>(V)) { 2263 if (((A->hasPassPointeeByValueCopyAttr() && 2264 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2265 A->hasNonNullAttr())) 2266 return true; 2267 } 2268 2269 // A Load tagged with nonnull metadata is never null. 2270 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2271 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2272 return true; 2273 2274 if (const auto *Call = dyn_cast<CallBase>(V)) { 2275 if (Call->isReturnNonNull()) 2276 return true; 2277 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2278 return isKnownNonZero(RP, Depth, Q); 2279 } 2280 } 2281 2282 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2283 return true; 2284 2285 // Check for recursive pointer simplifications. 2286 if (V->getType()->isPointerTy()) { 2287 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2288 // do not alter the value, or at least not the nullness property of the 2289 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2290 // 2291 // Note that we have to take special care to avoid looking through 2292 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2293 // as casts that can alter the value, e.g., AddrSpaceCasts. 2294 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2295 return isGEPKnownNonNull(GEP, Depth, Q); 2296 2297 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2298 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2299 2300 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2301 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2302 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2303 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2304 } 2305 2306 // Similar to int2ptr above, we can look through ptr2int here if the cast 2307 // is a no-op or an extend and not a truncate. 2308 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2309 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2310 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2311 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2312 2313 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2314 2315 // X | Y != 0 if X != 0 or Y != 0. 2316 Value *X = nullptr, *Y = nullptr; 2317 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2318 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2319 isKnownNonZero(Y, DemandedElts, Depth, Q); 2320 2321 // ext X != 0 if X != 0. 2322 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2323 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2324 2325 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2326 // if the lowest bit is shifted off the end. 2327 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2328 // shl nuw can't remove any non-zero bits. 2329 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2330 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2331 return isKnownNonZero(X, Depth, Q); 2332 2333 KnownBits Known(BitWidth); 2334 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2335 if (Known.One[0]) 2336 return true; 2337 } 2338 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2339 // defined if the sign bit is shifted off the end. 2340 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2341 // shr exact can only shift out zero bits. 2342 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2343 if (BO->isExact()) 2344 return isKnownNonZero(X, Depth, Q); 2345 2346 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2347 if (Known.isNegative()) 2348 return true; 2349 2350 // If the shifter operand is a constant, and all of the bits shifted 2351 // out are known to be zero, and X is known non-zero then at least one 2352 // non-zero bit must remain. 2353 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2354 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2355 // Is there a known one in the portion not shifted out? 2356 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2357 return true; 2358 // Are all the bits to be shifted out known zero? 2359 if (Known.countMinTrailingZeros() >= ShiftVal) 2360 return isKnownNonZero(X, DemandedElts, Depth, Q); 2361 } 2362 } 2363 // div exact can only produce a zero if the dividend is zero. 2364 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2365 return isKnownNonZero(X, DemandedElts, Depth, Q); 2366 } 2367 // X + Y. 2368 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2369 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2370 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2371 2372 // If X and Y are both non-negative (as signed values) then their sum is not 2373 // zero unless both X and Y are zero. 2374 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2375 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2376 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2377 return true; 2378 2379 // If X and Y are both negative (as signed values) then their sum is not 2380 // zero unless both X and Y equal INT_MIN. 2381 if (XKnown.isNegative() && YKnown.isNegative()) { 2382 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2383 // The sign bit of X is set. If some other bit is set then X is not equal 2384 // to INT_MIN. 2385 if (XKnown.One.intersects(Mask)) 2386 return true; 2387 // The sign bit of Y is set. If some other bit is set then Y is not equal 2388 // to INT_MIN. 2389 if (YKnown.One.intersects(Mask)) 2390 return true; 2391 } 2392 2393 // The sum of a non-negative number and a power of two is not zero. 2394 if (XKnown.isNonNegative() && 2395 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2396 return true; 2397 if (YKnown.isNonNegative() && 2398 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2399 return true; 2400 } 2401 // X * Y. 2402 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2403 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2404 // If X and Y are non-zero then so is X * Y as long as the multiplication 2405 // does not overflow. 2406 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2407 isKnownNonZero(X, DemandedElts, Depth, Q) && 2408 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2409 return true; 2410 } 2411 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2412 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2413 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2414 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2415 return true; 2416 } 2417 // PHI 2418 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2419 // Try and detect a recurrence that monotonically increases from a 2420 // starting value, as these are common as induction variables. 2421 if (PN->getNumIncomingValues() == 2) { 2422 Value *Start = PN->getIncomingValue(0); 2423 Value *Induction = PN->getIncomingValue(1); 2424 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2425 std::swap(Start, Induction); 2426 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2427 if (!C->isZero() && !C->isNegative()) { 2428 ConstantInt *X; 2429 if (Q.IIQ.UseInstrInfo && 2430 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2431 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2432 !X->isNegative()) 2433 return true; 2434 } 2435 } 2436 } 2437 // Check if all incoming values are non-zero using recursion. 2438 Query RecQ = Q; 2439 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2440 return llvm::all_of(PN->operands(), [&](const Use &U) { 2441 if (U.get() == PN) 2442 return true; 2443 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2444 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2445 }); 2446 } 2447 // ExtractElement 2448 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2449 const Value *Vec = EEI->getVectorOperand(); 2450 const Value *Idx = EEI->getIndexOperand(); 2451 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2452 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2453 unsigned NumElts = VecTy->getNumElements(); 2454 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2455 if (CIdx && CIdx->getValue().ult(NumElts)) 2456 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2457 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2458 } 2459 } 2460 // Freeze 2461 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2462 auto *Op = FI->getOperand(0); 2463 if (isKnownNonZero(Op, Depth, Q) && 2464 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2465 return true; 2466 } 2467 2468 KnownBits Known(BitWidth); 2469 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2470 return Known.One != 0; 2471 } 2472 2473 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2474 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2475 // vector 2476 if (isa<ScalableVectorType>(V->getType())) 2477 return false; 2478 2479 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2480 APInt DemandedElts = 2481 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2482 return isKnownNonZero(V, DemandedElts, Depth, Q); 2483 } 2484 2485 /// Return true if V2 == V1 + X, where X is known non-zero. 2486 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2487 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2488 if (!BO || BO->getOpcode() != Instruction::Add) 2489 return false; 2490 Value *Op = nullptr; 2491 if (V2 == BO->getOperand(0)) 2492 Op = BO->getOperand(1); 2493 else if (V2 == BO->getOperand(1)) 2494 Op = BO->getOperand(0); 2495 else 2496 return false; 2497 return isKnownNonZero(Op, 0, Q); 2498 } 2499 2500 /// Return true if it is known that V1 != V2. 2501 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2502 if (V1 == V2) 2503 return false; 2504 if (V1->getType() != V2->getType()) 2505 // We can't look through casts yet. 2506 return false; 2507 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2508 return true; 2509 2510 if (V1->getType()->isIntOrIntVectorTy()) { 2511 // Are any known bits in V1 contradictory to known bits in V2? If V1 2512 // has a known zero where V2 has a known one, they must not be equal. 2513 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2514 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2515 2516 if (Known1.Zero.intersects(Known2.One) || 2517 Known2.Zero.intersects(Known1.One)) 2518 return true; 2519 } 2520 return false; 2521 } 2522 2523 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2524 /// simplify operations downstream. Mask is known to be zero for bits that V 2525 /// cannot have. 2526 /// 2527 /// This function is defined on values with integer type, values with pointer 2528 /// type, and vectors of integers. In the case 2529 /// where V is a vector, the mask, known zero, and known one values are the 2530 /// same width as the vector element, and the bit is set only if it is true 2531 /// for all of the elements in the vector. 2532 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2533 const Query &Q) { 2534 KnownBits Known(Mask.getBitWidth()); 2535 computeKnownBits(V, Known, Depth, Q); 2536 return Mask.isSubsetOf(Known.Zero); 2537 } 2538 2539 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2540 // Returns the input and lower/upper bounds. 2541 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2542 const APInt *&CLow, const APInt *&CHigh) { 2543 assert(isa<Operator>(Select) && 2544 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2545 "Input should be a Select!"); 2546 2547 const Value *LHS = nullptr, *RHS = nullptr; 2548 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2549 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2550 return false; 2551 2552 if (!match(RHS, m_APInt(CLow))) 2553 return false; 2554 2555 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2556 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2557 if (getInverseMinMaxFlavor(SPF) != SPF2) 2558 return false; 2559 2560 if (!match(RHS2, m_APInt(CHigh))) 2561 return false; 2562 2563 if (SPF == SPF_SMIN) 2564 std::swap(CLow, CHigh); 2565 2566 In = LHS2; 2567 return CLow->sle(*CHigh); 2568 } 2569 2570 /// For vector constants, loop over the elements and find the constant with the 2571 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2572 /// or if any element was not analyzed; otherwise, return the count for the 2573 /// element with the minimum number of sign bits. 2574 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2575 const APInt &DemandedElts, 2576 unsigned TyBits) { 2577 const auto *CV = dyn_cast<Constant>(V); 2578 if (!CV || !isa<FixedVectorType>(CV->getType())) 2579 return 0; 2580 2581 unsigned MinSignBits = TyBits; 2582 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2583 for (unsigned i = 0; i != NumElts; ++i) { 2584 if (!DemandedElts[i]) 2585 continue; 2586 // If we find a non-ConstantInt, bail out. 2587 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2588 if (!Elt) 2589 return 0; 2590 2591 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2592 } 2593 2594 return MinSignBits; 2595 } 2596 2597 static unsigned ComputeNumSignBitsImpl(const Value *V, 2598 const APInt &DemandedElts, 2599 unsigned Depth, const Query &Q); 2600 2601 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2602 unsigned Depth, const Query &Q) { 2603 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2604 assert(Result > 0 && "At least one sign bit needs to be present!"); 2605 return Result; 2606 } 2607 2608 /// Return the number of times the sign bit of the register is replicated into 2609 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2610 /// (itself), but other cases can give us information. For example, immediately 2611 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2612 /// other, so we return 3. For vectors, return the number of sign bits for the 2613 /// vector element with the minimum number of known sign bits of the demanded 2614 /// elements in the vector specified by DemandedElts. 2615 static unsigned ComputeNumSignBitsImpl(const Value *V, 2616 const APInt &DemandedElts, 2617 unsigned Depth, const Query &Q) { 2618 Type *Ty = V->getType(); 2619 2620 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2621 // vector 2622 if (isa<ScalableVectorType>(Ty)) 2623 return 1; 2624 2625 #ifndef NDEBUG 2626 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2627 2628 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2629 assert( 2630 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2631 "DemandedElt width should equal the fixed vector number of elements"); 2632 } else { 2633 assert(DemandedElts == APInt(1, 1) && 2634 "DemandedElt width should be 1 for scalars"); 2635 } 2636 #endif 2637 2638 // We return the minimum number of sign bits that are guaranteed to be present 2639 // in V, so for undef we have to conservatively return 1. We don't have the 2640 // same behavior for poison though -- that's a FIXME today. 2641 2642 Type *ScalarTy = Ty->getScalarType(); 2643 unsigned TyBits = ScalarTy->isPointerTy() ? 2644 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2645 Q.DL.getTypeSizeInBits(ScalarTy); 2646 2647 unsigned Tmp, Tmp2; 2648 unsigned FirstAnswer = 1; 2649 2650 // Note that ConstantInt is handled by the general computeKnownBits case 2651 // below. 2652 2653 if (Depth == MaxAnalysisRecursionDepth) 2654 return 1; 2655 2656 if (auto *U = dyn_cast<Operator>(V)) { 2657 switch (Operator::getOpcode(V)) { 2658 default: break; 2659 case Instruction::SExt: 2660 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2661 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2662 2663 case Instruction::SDiv: { 2664 const APInt *Denominator; 2665 // sdiv X, C -> adds log(C) sign bits. 2666 if (match(U->getOperand(1), m_APInt(Denominator))) { 2667 2668 // Ignore non-positive denominator. 2669 if (!Denominator->isStrictlyPositive()) 2670 break; 2671 2672 // Calculate the incoming numerator bits. 2673 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2674 2675 // Add floor(log(C)) bits to the numerator bits. 2676 return std::min(TyBits, NumBits + Denominator->logBase2()); 2677 } 2678 break; 2679 } 2680 2681 case Instruction::SRem: { 2682 const APInt *Denominator; 2683 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2684 // positive constant. This let us put a lower bound on the number of sign 2685 // bits. 2686 if (match(U->getOperand(1), m_APInt(Denominator))) { 2687 2688 // Ignore non-positive denominator. 2689 if (!Denominator->isStrictlyPositive()) 2690 break; 2691 2692 // Calculate the incoming numerator bits. SRem by a positive constant 2693 // can't lower the number of sign bits. 2694 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2695 2696 // Calculate the leading sign bit constraints by examining the 2697 // denominator. Given that the denominator is positive, there are two 2698 // cases: 2699 // 2700 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2701 // (1 << ceilLogBase2(C)). 2702 // 2703 // 2. the numerator is negative. Then the result range is (-C,0] and 2704 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2705 // 2706 // Thus a lower bound on the number of sign bits is `TyBits - 2707 // ceilLogBase2(C)`. 2708 2709 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2710 return std::max(NumrBits, ResBits); 2711 } 2712 break; 2713 } 2714 2715 case Instruction::AShr: { 2716 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2717 // ashr X, C -> adds C sign bits. Vectors too. 2718 const APInt *ShAmt; 2719 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2720 if (ShAmt->uge(TyBits)) 2721 break; // Bad shift. 2722 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2723 Tmp += ShAmtLimited; 2724 if (Tmp > TyBits) Tmp = TyBits; 2725 } 2726 return Tmp; 2727 } 2728 case Instruction::Shl: { 2729 const APInt *ShAmt; 2730 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2731 // shl destroys sign bits. 2732 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2733 if (ShAmt->uge(TyBits) || // Bad shift. 2734 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2735 Tmp2 = ShAmt->getZExtValue(); 2736 return Tmp - Tmp2; 2737 } 2738 break; 2739 } 2740 case Instruction::And: 2741 case Instruction::Or: 2742 case Instruction::Xor: // NOT is handled here. 2743 // Logical binary ops preserve the number of sign bits at the worst. 2744 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2745 if (Tmp != 1) { 2746 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2747 FirstAnswer = std::min(Tmp, Tmp2); 2748 // We computed what we know about the sign bits as our first 2749 // answer. Now proceed to the generic code that uses 2750 // computeKnownBits, and pick whichever answer is better. 2751 } 2752 break; 2753 2754 case Instruction::Select: { 2755 // If we have a clamp pattern, we know that the number of sign bits will 2756 // be the minimum of the clamp min/max range. 2757 const Value *X; 2758 const APInt *CLow, *CHigh; 2759 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2760 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2761 2762 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2763 if (Tmp == 1) break; 2764 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2765 return std::min(Tmp, Tmp2); 2766 } 2767 2768 case Instruction::Add: 2769 // Add can have at most one carry bit. Thus we know that the output 2770 // is, at worst, one more bit than the inputs. 2771 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2772 if (Tmp == 1) break; 2773 2774 // Special case decrementing a value (ADD X, -1): 2775 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2776 if (CRHS->isAllOnesValue()) { 2777 KnownBits Known(TyBits); 2778 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2779 2780 // If the input is known to be 0 or 1, the output is 0/-1, which is 2781 // all sign bits set. 2782 if ((Known.Zero | 1).isAllOnesValue()) 2783 return TyBits; 2784 2785 // If we are subtracting one from a positive number, there is no carry 2786 // out of the result. 2787 if (Known.isNonNegative()) 2788 return Tmp; 2789 } 2790 2791 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2792 if (Tmp2 == 1) break; 2793 return std::min(Tmp, Tmp2) - 1; 2794 2795 case Instruction::Sub: 2796 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2797 if (Tmp2 == 1) break; 2798 2799 // Handle NEG. 2800 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2801 if (CLHS->isNullValue()) { 2802 KnownBits Known(TyBits); 2803 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2804 // If the input is known to be 0 or 1, the output is 0/-1, which is 2805 // all sign bits set. 2806 if ((Known.Zero | 1).isAllOnesValue()) 2807 return TyBits; 2808 2809 // If the input is known to be positive (the sign bit is known clear), 2810 // the output of the NEG has the same number of sign bits as the 2811 // input. 2812 if (Known.isNonNegative()) 2813 return Tmp2; 2814 2815 // Otherwise, we treat this like a SUB. 2816 } 2817 2818 // Sub can have at most one carry bit. Thus we know that the output 2819 // is, at worst, one more bit than the inputs. 2820 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2821 if (Tmp == 1) break; 2822 return std::min(Tmp, Tmp2) - 1; 2823 2824 case Instruction::Mul: { 2825 // The output of the Mul can be at most twice the valid bits in the 2826 // inputs. 2827 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (SignBitsOp0 == 1) break; 2829 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2830 if (SignBitsOp1 == 1) break; 2831 unsigned OutValidBits = 2832 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2833 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2834 } 2835 2836 case Instruction::PHI: { 2837 const PHINode *PN = cast<PHINode>(U); 2838 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2839 // Don't analyze large in-degree PHIs. 2840 if (NumIncomingValues > 4) break; 2841 // Unreachable blocks may have zero-operand PHI nodes. 2842 if (NumIncomingValues == 0) break; 2843 2844 // Take the minimum of all incoming values. This can't infinitely loop 2845 // because of our depth threshold. 2846 Query RecQ = Q; 2847 Tmp = TyBits; 2848 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2849 if (Tmp == 1) return Tmp; 2850 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2851 Tmp = std::min( 2852 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2853 } 2854 return Tmp; 2855 } 2856 2857 case Instruction::Trunc: 2858 // FIXME: it's tricky to do anything useful for this, but it is an 2859 // important case for targets like X86. 2860 break; 2861 2862 case Instruction::ExtractElement: 2863 // Look through extract element. At the moment we keep this simple and 2864 // skip tracking the specific element. But at least we might find 2865 // information valid for all elements of the vector (for example if vector 2866 // is sign extended, shifted, etc). 2867 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2868 2869 case Instruction::ShuffleVector: { 2870 // Collect the minimum number of sign bits that are shared by every vector 2871 // element referenced by the shuffle. 2872 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2873 if (!Shuf) { 2874 // FIXME: Add support for shufflevector constant expressions. 2875 return 1; 2876 } 2877 APInt DemandedLHS, DemandedRHS; 2878 // For undef elements, we don't know anything about the common state of 2879 // the shuffle result. 2880 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2881 return 1; 2882 Tmp = std::numeric_limits<unsigned>::max(); 2883 if (!!DemandedLHS) { 2884 const Value *LHS = Shuf->getOperand(0); 2885 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2886 } 2887 // If we don't know anything, early out and try computeKnownBits 2888 // fall-back. 2889 if (Tmp == 1) 2890 break; 2891 if (!!DemandedRHS) { 2892 const Value *RHS = Shuf->getOperand(1); 2893 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2894 Tmp = std::min(Tmp, Tmp2); 2895 } 2896 // If we don't know anything, early out and try computeKnownBits 2897 // fall-back. 2898 if (Tmp == 1) 2899 break; 2900 assert(Tmp <= Ty->getScalarSizeInBits() && 2901 "Failed to determine minimum sign bits"); 2902 return Tmp; 2903 } 2904 case Instruction::Call: { 2905 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2906 switch (II->getIntrinsicID()) { 2907 default: break; 2908 case Intrinsic::abs: 2909 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2910 if (Tmp == 1) break; 2911 2912 // Absolute value reduces number of sign bits by at most 1. 2913 return Tmp - 1; 2914 } 2915 } 2916 } 2917 } 2918 } 2919 2920 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2921 // use this information. 2922 2923 // If we can examine all elements of a vector constant successfully, we're 2924 // done (we can't do any better than that). If not, keep trying. 2925 if (unsigned VecSignBits = 2926 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2927 return VecSignBits; 2928 2929 KnownBits Known(TyBits); 2930 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2931 2932 // If we know that the sign bit is either zero or one, determine the number of 2933 // identical bits in the top of the input value. 2934 return std::max(FirstAnswer, Known.countMinSignBits()); 2935 } 2936 2937 /// This function computes the integer multiple of Base that equals V. 2938 /// If successful, it returns true and returns the multiple in 2939 /// Multiple. If unsuccessful, it returns false. It looks 2940 /// through SExt instructions only if LookThroughSExt is true. 2941 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2942 bool LookThroughSExt, unsigned Depth) { 2943 assert(V && "No Value?"); 2944 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2945 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2946 2947 Type *T = V->getType(); 2948 2949 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2950 2951 if (Base == 0) 2952 return false; 2953 2954 if (Base == 1) { 2955 Multiple = V; 2956 return true; 2957 } 2958 2959 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2960 Constant *BaseVal = ConstantInt::get(T, Base); 2961 if (CO && CO == BaseVal) { 2962 // Multiple is 1. 2963 Multiple = ConstantInt::get(T, 1); 2964 return true; 2965 } 2966 2967 if (CI && CI->getZExtValue() % Base == 0) { 2968 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2969 return true; 2970 } 2971 2972 if (Depth == MaxAnalysisRecursionDepth) return false; 2973 2974 Operator *I = dyn_cast<Operator>(V); 2975 if (!I) return false; 2976 2977 switch (I->getOpcode()) { 2978 default: break; 2979 case Instruction::SExt: 2980 if (!LookThroughSExt) return false; 2981 // otherwise fall through to ZExt 2982 LLVM_FALLTHROUGH; 2983 case Instruction::ZExt: 2984 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2985 LookThroughSExt, Depth+1); 2986 case Instruction::Shl: 2987 case Instruction::Mul: { 2988 Value *Op0 = I->getOperand(0); 2989 Value *Op1 = I->getOperand(1); 2990 2991 if (I->getOpcode() == Instruction::Shl) { 2992 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2993 if (!Op1CI) return false; 2994 // Turn Op0 << Op1 into Op0 * 2^Op1 2995 APInt Op1Int = Op1CI->getValue(); 2996 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2997 APInt API(Op1Int.getBitWidth(), 0); 2998 API.setBit(BitToSet); 2999 Op1 = ConstantInt::get(V->getContext(), API); 3000 } 3001 3002 Value *Mul0 = nullptr; 3003 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3004 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3005 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3006 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3007 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3008 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3009 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3010 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3011 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3012 3013 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3014 Multiple = ConstantExpr::getMul(MulC, Op1C); 3015 return true; 3016 } 3017 3018 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3019 if (Mul0CI->getValue() == 1) { 3020 // V == Base * Op1, so return Op1 3021 Multiple = Op1; 3022 return true; 3023 } 3024 } 3025 3026 Value *Mul1 = nullptr; 3027 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3028 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3029 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3030 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3031 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3032 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3033 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3034 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3035 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3036 3037 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3038 Multiple = ConstantExpr::getMul(MulC, Op0C); 3039 return true; 3040 } 3041 3042 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3043 if (Mul1CI->getValue() == 1) { 3044 // V == Base * Op0, so return Op0 3045 Multiple = Op0; 3046 return true; 3047 } 3048 } 3049 } 3050 } 3051 3052 // We could not determine if V is a multiple of Base. 3053 return false; 3054 } 3055 3056 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3057 const TargetLibraryInfo *TLI) { 3058 const Function *F = CB.getCalledFunction(); 3059 if (!F) 3060 return Intrinsic::not_intrinsic; 3061 3062 if (F->isIntrinsic()) 3063 return F->getIntrinsicID(); 3064 3065 // We are going to infer semantics of a library function based on mapping it 3066 // to an LLVM intrinsic. Check that the library function is available from 3067 // this callbase and in this environment. 3068 LibFunc Func; 3069 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3070 !CB.onlyReadsMemory()) 3071 return Intrinsic::not_intrinsic; 3072 3073 switch (Func) { 3074 default: 3075 break; 3076 case LibFunc_sin: 3077 case LibFunc_sinf: 3078 case LibFunc_sinl: 3079 return Intrinsic::sin; 3080 case LibFunc_cos: 3081 case LibFunc_cosf: 3082 case LibFunc_cosl: 3083 return Intrinsic::cos; 3084 case LibFunc_exp: 3085 case LibFunc_expf: 3086 case LibFunc_expl: 3087 return Intrinsic::exp; 3088 case LibFunc_exp2: 3089 case LibFunc_exp2f: 3090 case LibFunc_exp2l: 3091 return Intrinsic::exp2; 3092 case LibFunc_log: 3093 case LibFunc_logf: 3094 case LibFunc_logl: 3095 return Intrinsic::log; 3096 case LibFunc_log10: 3097 case LibFunc_log10f: 3098 case LibFunc_log10l: 3099 return Intrinsic::log10; 3100 case LibFunc_log2: 3101 case LibFunc_log2f: 3102 case LibFunc_log2l: 3103 return Intrinsic::log2; 3104 case LibFunc_fabs: 3105 case LibFunc_fabsf: 3106 case LibFunc_fabsl: 3107 return Intrinsic::fabs; 3108 case LibFunc_fmin: 3109 case LibFunc_fminf: 3110 case LibFunc_fminl: 3111 return Intrinsic::minnum; 3112 case LibFunc_fmax: 3113 case LibFunc_fmaxf: 3114 case LibFunc_fmaxl: 3115 return Intrinsic::maxnum; 3116 case LibFunc_copysign: 3117 case LibFunc_copysignf: 3118 case LibFunc_copysignl: 3119 return Intrinsic::copysign; 3120 case LibFunc_floor: 3121 case LibFunc_floorf: 3122 case LibFunc_floorl: 3123 return Intrinsic::floor; 3124 case LibFunc_ceil: 3125 case LibFunc_ceilf: 3126 case LibFunc_ceill: 3127 return Intrinsic::ceil; 3128 case LibFunc_trunc: 3129 case LibFunc_truncf: 3130 case LibFunc_truncl: 3131 return Intrinsic::trunc; 3132 case LibFunc_rint: 3133 case LibFunc_rintf: 3134 case LibFunc_rintl: 3135 return Intrinsic::rint; 3136 case LibFunc_nearbyint: 3137 case LibFunc_nearbyintf: 3138 case LibFunc_nearbyintl: 3139 return Intrinsic::nearbyint; 3140 case LibFunc_round: 3141 case LibFunc_roundf: 3142 case LibFunc_roundl: 3143 return Intrinsic::round; 3144 case LibFunc_roundeven: 3145 case LibFunc_roundevenf: 3146 case LibFunc_roundevenl: 3147 return Intrinsic::roundeven; 3148 case LibFunc_pow: 3149 case LibFunc_powf: 3150 case LibFunc_powl: 3151 return Intrinsic::pow; 3152 case LibFunc_sqrt: 3153 case LibFunc_sqrtf: 3154 case LibFunc_sqrtl: 3155 return Intrinsic::sqrt; 3156 } 3157 3158 return Intrinsic::not_intrinsic; 3159 } 3160 3161 /// Return true if we can prove that the specified FP value is never equal to 3162 /// -0.0. 3163 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3164 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3165 /// the same as +0.0 in floating-point ops. 3166 /// 3167 /// NOTE: this function will need to be revisited when we support non-default 3168 /// rounding modes! 3169 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3170 unsigned Depth) { 3171 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3172 return !CFP->getValueAPF().isNegZero(); 3173 3174 if (Depth == MaxAnalysisRecursionDepth) 3175 return false; 3176 3177 auto *Op = dyn_cast<Operator>(V); 3178 if (!Op) 3179 return false; 3180 3181 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3182 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3183 return true; 3184 3185 // sitofp and uitofp turn into +0.0 for zero. 3186 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3187 return true; 3188 3189 if (auto *Call = dyn_cast<CallInst>(Op)) { 3190 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3191 switch (IID) { 3192 default: 3193 break; 3194 // sqrt(-0.0) = -0.0, no other negative results are possible. 3195 case Intrinsic::sqrt: 3196 case Intrinsic::canonicalize: 3197 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3198 // fabs(x) != -0.0 3199 case Intrinsic::fabs: 3200 return true; 3201 } 3202 } 3203 3204 return false; 3205 } 3206 3207 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3208 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3209 /// bit despite comparing equal. 3210 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3211 const TargetLibraryInfo *TLI, 3212 bool SignBitOnly, 3213 unsigned Depth) { 3214 // TODO: This function does not do the right thing when SignBitOnly is true 3215 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3216 // which flips the sign bits of NaNs. See 3217 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3218 3219 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3220 return !CFP->getValueAPF().isNegative() || 3221 (!SignBitOnly && CFP->getValueAPF().isZero()); 3222 } 3223 3224 // Handle vector of constants. 3225 if (auto *CV = dyn_cast<Constant>(V)) { 3226 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3227 unsigned NumElts = CVFVTy->getNumElements(); 3228 for (unsigned i = 0; i != NumElts; ++i) { 3229 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3230 if (!CFP) 3231 return false; 3232 if (CFP->getValueAPF().isNegative() && 3233 (SignBitOnly || !CFP->getValueAPF().isZero())) 3234 return false; 3235 } 3236 3237 // All non-negative ConstantFPs. 3238 return true; 3239 } 3240 } 3241 3242 if (Depth == MaxAnalysisRecursionDepth) 3243 return false; 3244 3245 const Operator *I = dyn_cast<Operator>(V); 3246 if (!I) 3247 return false; 3248 3249 switch (I->getOpcode()) { 3250 default: 3251 break; 3252 // Unsigned integers are always nonnegative. 3253 case Instruction::UIToFP: 3254 return true; 3255 case Instruction::FMul: 3256 case Instruction::FDiv: 3257 // X * X is always non-negative or a NaN. 3258 // X / X is always exactly 1.0 or a NaN. 3259 if (I->getOperand(0) == I->getOperand(1) && 3260 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3261 return true; 3262 3263 LLVM_FALLTHROUGH; 3264 case Instruction::FAdd: 3265 case Instruction::FRem: 3266 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3267 Depth + 1) && 3268 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3269 Depth + 1); 3270 case Instruction::Select: 3271 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3272 Depth + 1) && 3273 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3274 Depth + 1); 3275 case Instruction::FPExt: 3276 case Instruction::FPTrunc: 3277 // Widening/narrowing never change sign. 3278 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3279 Depth + 1); 3280 case Instruction::ExtractElement: 3281 // Look through extract element. At the moment we keep this simple and skip 3282 // tracking the specific element. But at least we might find information 3283 // valid for all elements of the vector. 3284 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3285 Depth + 1); 3286 case Instruction::Call: 3287 const auto *CI = cast<CallInst>(I); 3288 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3289 switch (IID) { 3290 default: 3291 break; 3292 case Intrinsic::maxnum: { 3293 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3294 auto isPositiveNum = [&](Value *V) { 3295 if (SignBitOnly) { 3296 // With SignBitOnly, this is tricky because the result of 3297 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3298 // a constant strictly greater than 0.0. 3299 const APFloat *C; 3300 return match(V, m_APFloat(C)) && 3301 *C > APFloat::getZero(C->getSemantics()); 3302 } 3303 3304 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3305 // maxnum can't be ordered-less-than-zero. 3306 return isKnownNeverNaN(V, TLI) && 3307 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3308 }; 3309 3310 // TODO: This could be improved. We could also check that neither operand 3311 // has its sign bit set (and at least 1 is not-NAN?). 3312 return isPositiveNum(V0) || isPositiveNum(V1); 3313 } 3314 3315 case Intrinsic::maximum: 3316 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3317 Depth + 1) || 3318 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3319 Depth + 1); 3320 case Intrinsic::minnum: 3321 case Intrinsic::minimum: 3322 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3323 Depth + 1) && 3324 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Intrinsic::exp: 3327 case Intrinsic::exp2: 3328 case Intrinsic::fabs: 3329 return true; 3330 3331 case Intrinsic::sqrt: 3332 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3333 if (!SignBitOnly) 3334 return true; 3335 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3336 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3337 3338 case Intrinsic::powi: 3339 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3340 // powi(x,n) is non-negative if n is even. 3341 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3342 return true; 3343 } 3344 // TODO: This is not correct. Given that exp is an integer, here are the 3345 // ways that pow can return a negative value: 3346 // 3347 // pow(x, exp) --> negative if exp is odd and x is negative. 3348 // pow(-0, exp) --> -inf if exp is negative odd. 3349 // pow(-0, exp) --> -0 if exp is positive odd. 3350 // pow(-inf, exp) --> -0 if exp is negative odd. 3351 // pow(-inf, exp) --> -inf if exp is positive odd. 3352 // 3353 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3354 // but we must return false if x == -0. Unfortunately we do not currently 3355 // have a way of expressing this constraint. See details in 3356 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3357 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3358 Depth + 1); 3359 3360 case Intrinsic::fma: 3361 case Intrinsic::fmuladd: 3362 // x*x+y is non-negative if y is non-negative. 3363 return I->getOperand(0) == I->getOperand(1) && 3364 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3365 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3366 Depth + 1); 3367 } 3368 break; 3369 } 3370 return false; 3371 } 3372 3373 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3374 const TargetLibraryInfo *TLI) { 3375 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3376 } 3377 3378 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3379 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3380 } 3381 3382 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3383 unsigned Depth) { 3384 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3385 3386 // If we're told that infinities won't happen, assume they won't. 3387 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3388 if (FPMathOp->hasNoInfs()) 3389 return true; 3390 3391 // Handle scalar constants. 3392 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3393 return !CFP->isInfinity(); 3394 3395 if (Depth == MaxAnalysisRecursionDepth) 3396 return false; 3397 3398 if (auto *Inst = dyn_cast<Instruction>(V)) { 3399 switch (Inst->getOpcode()) { 3400 case Instruction::Select: { 3401 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3402 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3403 } 3404 case Instruction::SIToFP: 3405 case Instruction::UIToFP: { 3406 // Get width of largest magnitude integer (remove a bit if signed). 3407 // This still works for a signed minimum value because the largest FP 3408 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3409 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3410 if (Inst->getOpcode() == Instruction::SIToFP) 3411 --IntSize; 3412 3413 // If the exponent of the largest finite FP value can hold the largest 3414 // integer, the result of the cast must be finite. 3415 Type *FPTy = Inst->getType()->getScalarType(); 3416 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3417 } 3418 default: 3419 break; 3420 } 3421 } 3422 3423 // try to handle fixed width vector constants 3424 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3425 if (VFVTy && isa<Constant>(V)) { 3426 // For vectors, verify that each element is not infinity. 3427 unsigned NumElts = VFVTy->getNumElements(); 3428 for (unsigned i = 0; i != NumElts; ++i) { 3429 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3430 if (!Elt) 3431 return false; 3432 if (isa<UndefValue>(Elt)) 3433 continue; 3434 auto *CElt = dyn_cast<ConstantFP>(Elt); 3435 if (!CElt || CElt->isInfinity()) 3436 return false; 3437 } 3438 // All elements were confirmed non-infinity or undefined. 3439 return true; 3440 } 3441 3442 // was not able to prove that V never contains infinity 3443 return false; 3444 } 3445 3446 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3447 unsigned Depth) { 3448 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3449 3450 // If we're told that NaNs won't happen, assume they won't. 3451 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3452 if (FPMathOp->hasNoNaNs()) 3453 return true; 3454 3455 // Handle scalar constants. 3456 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3457 return !CFP->isNaN(); 3458 3459 if (Depth == MaxAnalysisRecursionDepth) 3460 return false; 3461 3462 if (auto *Inst = dyn_cast<Instruction>(V)) { 3463 switch (Inst->getOpcode()) { 3464 case Instruction::FAdd: 3465 case Instruction::FSub: 3466 // Adding positive and negative infinity produces NaN. 3467 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3468 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3469 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3470 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3471 3472 case Instruction::FMul: 3473 // Zero multiplied with infinity produces NaN. 3474 // FIXME: If neither side can be zero fmul never produces NaN. 3475 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3476 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3477 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3478 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3479 3480 case Instruction::FDiv: 3481 case Instruction::FRem: 3482 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3483 return false; 3484 3485 case Instruction::Select: { 3486 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3487 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3488 } 3489 case Instruction::SIToFP: 3490 case Instruction::UIToFP: 3491 return true; 3492 case Instruction::FPTrunc: 3493 case Instruction::FPExt: 3494 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3495 default: 3496 break; 3497 } 3498 } 3499 3500 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3501 switch (II->getIntrinsicID()) { 3502 case Intrinsic::canonicalize: 3503 case Intrinsic::fabs: 3504 case Intrinsic::copysign: 3505 case Intrinsic::exp: 3506 case Intrinsic::exp2: 3507 case Intrinsic::floor: 3508 case Intrinsic::ceil: 3509 case Intrinsic::trunc: 3510 case Intrinsic::rint: 3511 case Intrinsic::nearbyint: 3512 case Intrinsic::round: 3513 case Intrinsic::roundeven: 3514 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3515 case Intrinsic::sqrt: 3516 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3517 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3518 case Intrinsic::minnum: 3519 case Intrinsic::maxnum: 3520 // If either operand is not NaN, the result is not NaN. 3521 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3522 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3523 default: 3524 return false; 3525 } 3526 } 3527 3528 // Try to handle fixed width vector constants 3529 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3530 if (VFVTy && isa<Constant>(V)) { 3531 // For vectors, verify that each element is not NaN. 3532 unsigned NumElts = VFVTy->getNumElements(); 3533 for (unsigned i = 0; i != NumElts; ++i) { 3534 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3535 if (!Elt) 3536 return false; 3537 if (isa<UndefValue>(Elt)) 3538 continue; 3539 auto *CElt = dyn_cast<ConstantFP>(Elt); 3540 if (!CElt || CElt->isNaN()) 3541 return false; 3542 } 3543 // All elements were confirmed not-NaN or undefined. 3544 return true; 3545 } 3546 3547 // Was not able to prove that V never contains NaN 3548 return false; 3549 } 3550 3551 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3552 3553 // All byte-wide stores are splatable, even of arbitrary variables. 3554 if (V->getType()->isIntegerTy(8)) 3555 return V; 3556 3557 LLVMContext &Ctx = V->getContext(); 3558 3559 // Undef don't care. 3560 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3561 if (isa<UndefValue>(V)) 3562 return UndefInt8; 3563 3564 // Return Undef for zero-sized type. 3565 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3566 return UndefInt8; 3567 3568 Constant *C = dyn_cast<Constant>(V); 3569 if (!C) { 3570 // Conceptually, we could handle things like: 3571 // %a = zext i8 %X to i16 3572 // %b = shl i16 %a, 8 3573 // %c = or i16 %a, %b 3574 // but until there is an example that actually needs this, it doesn't seem 3575 // worth worrying about. 3576 return nullptr; 3577 } 3578 3579 // Handle 'null' ConstantArrayZero etc. 3580 if (C->isNullValue()) 3581 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3582 3583 // Constant floating-point values can be handled as integer values if the 3584 // corresponding integer value is "byteable". An important case is 0.0. 3585 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3586 Type *Ty = nullptr; 3587 if (CFP->getType()->isHalfTy()) 3588 Ty = Type::getInt16Ty(Ctx); 3589 else if (CFP->getType()->isFloatTy()) 3590 Ty = Type::getInt32Ty(Ctx); 3591 else if (CFP->getType()->isDoubleTy()) 3592 Ty = Type::getInt64Ty(Ctx); 3593 // Don't handle long double formats, which have strange constraints. 3594 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3595 : nullptr; 3596 } 3597 3598 // We can handle constant integers that are multiple of 8 bits. 3599 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3600 if (CI->getBitWidth() % 8 == 0) { 3601 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3602 if (!CI->getValue().isSplat(8)) 3603 return nullptr; 3604 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3605 } 3606 } 3607 3608 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3609 if (CE->getOpcode() == Instruction::IntToPtr) { 3610 auto PS = DL.getPointerSizeInBits( 3611 cast<PointerType>(CE->getType())->getAddressSpace()); 3612 return isBytewiseValue( 3613 ConstantExpr::getIntegerCast(CE->getOperand(0), 3614 Type::getIntNTy(Ctx, PS), false), 3615 DL); 3616 } 3617 } 3618 3619 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3620 if (LHS == RHS) 3621 return LHS; 3622 if (!LHS || !RHS) 3623 return nullptr; 3624 if (LHS == UndefInt8) 3625 return RHS; 3626 if (RHS == UndefInt8) 3627 return LHS; 3628 return nullptr; 3629 }; 3630 3631 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3632 Value *Val = UndefInt8; 3633 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3634 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3635 return nullptr; 3636 return Val; 3637 } 3638 3639 if (isa<ConstantAggregate>(C)) { 3640 Value *Val = UndefInt8; 3641 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3642 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3643 return nullptr; 3644 return Val; 3645 } 3646 3647 // Don't try to handle the handful of other constants. 3648 return nullptr; 3649 } 3650 3651 // This is the recursive version of BuildSubAggregate. It takes a few different 3652 // arguments. Idxs is the index within the nested struct From that we are 3653 // looking at now (which is of type IndexedType). IdxSkip is the number of 3654 // indices from Idxs that should be left out when inserting into the resulting 3655 // struct. To is the result struct built so far, new insertvalue instructions 3656 // build on that. 3657 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3658 SmallVectorImpl<unsigned> &Idxs, 3659 unsigned IdxSkip, 3660 Instruction *InsertBefore) { 3661 StructType *STy = dyn_cast<StructType>(IndexedType); 3662 if (STy) { 3663 // Save the original To argument so we can modify it 3664 Value *OrigTo = To; 3665 // General case, the type indexed by Idxs is a struct 3666 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3667 // Process each struct element recursively 3668 Idxs.push_back(i); 3669 Value *PrevTo = To; 3670 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3671 InsertBefore); 3672 Idxs.pop_back(); 3673 if (!To) { 3674 // Couldn't find any inserted value for this index? Cleanup 3675 while (PrevTo != OrigTo) { 3676 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3677 PrevTo = Del->getAggregateOperand(); 3678 Del->eraseFromParent(); 3679 } 3680 // Stop processing elements 3681 break; 3682 } 3683 } 3684 // If we successfully found a value for each of our subaggregates 3685 if (To) 3686 return To; 3687 } 3688 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3689 // the struct's elements had a value that was inserted directly. In the latter 3690 // case, perhaps we can't determine each of the subelements individually, but 3691 // we might be able to find the complete struct somewhere. 3692 3693 // Find the value that is at that particular spot 3694 Value *V = FindInsertedValue(From, Idxs); 3695 3696 if (!V) 3697 return nullptr; 3698 3699 // Insert the value in the new (sub) aggregate 3700 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3701 "tmp", InsertBefore); 3702 } 3703 3704 // This helper takes a nested struct and extracts a part of it (which is again a 3705 // struct) into a new value. For example, given the struct: 3706 // { a, { b, { c, d }, e } } 3707 // and the indices "1, 1" this returns 3708 // { c, d }. 3709 // 3710 // It does this by inserting an insertvalue for each element in the resulting 3711 // struct, as opposed to just inserting a single struct. This will only work if 3712 // each of the elements of the substruct are known (ie, inserted into From by an 3713 // insertvalue instruction somewhere). 3714 // 3715 // All inserted insertvalue instructions are inserted before InsertBefore 3716 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3717 Instruction *InsertBefore) { 3718 assert(InsertBefore && "Must have someplace to insert!"); 3719 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3720 idx_range); 3721 Value *To = UndefValue::get(IndexedType); 3722 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3723 unsigned IdxSkip = Idxs.size(); 3724 3725 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3726 } 3727 3728 /// Given an aggregate and a sequence of indices, see if the scalar value 3729 /// indexed is already around as a register, for example if it was inserted 3730 /// directly into the aggregate. 3731 /// 3732 /// If InsertBefore is not null, this function will duplicate (modified) 3733 /// insertvalues when a part of a nested struct is extracted. 3734 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3735 Instruction *InsertBefore) { 3736 // Nothing to index? Just return V then (this is useful at the end of our 3737 // recursion). 3738 if (idx_range.empty()) 3739 return V; 3740 // We have indices, so V should have an indexable type. 3741 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3742 "Not looking at a struct or array?"); 3743 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3744 "Invalid indices for type?"); 3745 3746 if (Constant *C = dyn_cast<Constant>(V)) { 3747 C = C->getAggregateElement(idx_range[0]); 3748 if (!C) return nullptr; 3749 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3750 } 3751 3752 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3753 // Loop the indices for the insertvalue instruction in parallel with the 3754 // requested indices 3755 const unsigned *req_idx = idx_range.begin(); 3756 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3757 i != e; ++i, ++req_idx) { 3758 if (req_idx == idx_range.end()) { 3759 // We can't handle this without inserting insertvalues 3760 if (!InsertBefore) 3761 return nullptr; 3762 3763 // The requested index identifies a part of a nested aggregate. Handle 3764 // this specially. For example, 3765 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3766 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3767 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3768 // This can be changed into 3769 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3770 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3771 // which allows the unused 0,0 element from the nested struct to be 3772 // removed. 3773 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3774 InsertBefore); 3775 } 3776 3777 // This insert value inserts something else than what we are looking for. 3778 // See if the (aggregate) value inserted into has the value we are 3779 // looking for, then. 3780 if (*req_idx != *i) 3781 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3782 InsertBefore); 3783 } 3784 // If we end up here, the indices of the insertvalue match with those 3785 // requested (though possibly only partially). Now we recursively look at 3786 // the inserted value, passing any remaining indices. 3787 return FindInsertedValue(I->getInsertedValueOperand(), 3788 makeArrayRef(req_idx, idx_range.end()), 3789 InsertBefore); 3790 } 3791 3792 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3793 // If we're extracting a value from an aggregate that was extracted from 3794 // something else, we can extract from that something else directly instead. 3795 // However, we will need to chain I's indices with the requested indices. 3796 3797 // Calculate the number of indices required 3798 unsigned size = I->getNumIndices() + idx_range.size(); 3799 // Allocate some space to put the new indices in 3800 SmallVector<unsigned, 5> Idxs; 3801 Idxs.reserve(size); 3802 // Add indices from the extract value instruction 3803 Idxs.append(I->idx_begin(), I->idx_end()); 3804 3805 // Add requested indices 3806 Idxs.append(idx_range.begin(), idx_range.end()); 3807 3808 assert(Idxs.size() == size 3809 && "Number of indices added not correct?"); 3810 3811 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3812 } 3813 // Otherwise, we don't know (such as, extracting from a function return value 3814 // or load instruction) 3815 return nullptr; 3816 } 3817 3818 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3819 unsigned CharSize) { 3820 // Make sure the GEP has exactly three arguments. 3821 if (GEP->getNumOperands() != 3) 3822 return false; 3823 3824 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3825 // CharSize. 3826 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3827 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3828 return false; 3829 3830 // Check to make sure that the first operand of the GEP is an integer and 3831 // has value 0 so that we are sure we're indexing into the initializer. 3832 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3833 if (!FirstIdx || !FirstIdx->isZero()) 3834 return false; 3835 3836 return true; 3837 } 3838 3839 bool llvm::getConstantDataArrayInfo(const Value *V, 3840 ConstantDataArraySlice &Slice, 3841 unsigned ElementSize, uint64_t Offset) { 3842 assert(V); 3843 3844 // Look through bitcast instructions and geps. 3845 V = V->stripPointerCasts(); 3846 3847 // If the value is a GEP instruction or constant expression, treat it as an 3848 // offset. 3849 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3850 // The GEP operator should be based on a pointer to string constant, and is 3851 // indexing into the string constant. 3852 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3853 return false; 3854 3855 // If the second index isn't a ConstantInt, then this is a variable index 3856 // into the array. If this occurs, we can't say anything meaningful about 3857 // the string. 3858 uint64_t StartIdx = 0; 3859 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3860 StartIdx = CI->getZExtValue(); 3861 else 3862 return false; 3863 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3864 StartIdx + Offset); 3865 } 3866 3867 // The GEP instruction, constant or instruction, must reference a global 3868 // variable that is a constant and is initialized. The referenced constant 3869 // initializer is the array that we'll use for optimization. 3870 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3871 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3872 return false; 3873 3874 const ConstantDataArray *Array; 3875 ArrayType *ArrayTy; 3876 if (GV->getInitializer()->isNullValue()) { 3877 Type *GVTy = GV->getValueType(); 3878 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3879 // A zeroinitializer for the array; there is no ConstantDataArray. 3880 Array = nullptr; 3881 } else { 3882 const DataLayout &DL = GV->getParent()->getDataLayout(); 3883 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3884 uint64_t Length = SizeInBytes / (ElementSize / 8); 3885 if (Length <= Offset) 3886 return false; 3887 3888 Slice.Array = nullptr; 3889 Slice.Offset = 0; 3890 Slice.Length = Length - Offset; 3891 return true; 3892 } 3893 } else { 3894 // This must be a ConstantDataArray. 3895 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3896 if (!Array) 3897 return false; 3898 ArrayTy = Array->getType(); 3899 } 3900 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3901 return false; 3902 3903 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3904 if (Offset > NumElts) 3905 return false; 3906 3907 Slice.Array = Array; 3908 Slice.Offset = Offset; 3909 Slice.Length = NumElts - Offset; 3910 return true; 3911 } 3912 3913 /// This function computes the length of a null-terminated C string pointed to 3914 /// by V. If successful, it returns true and returns the string in Str. 3915 /// If unsuccessful, it returns false. 3916 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3917 uint64_t Offset, bool TrimAtNul) { 3918 ConstantDataArraySlice Slice; 3919 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3920 return false; 3921 3922 if (Slice.Array == nullptr) { 3923 if (TrimAtNul) { 3924 Str = StringRef(); 3925 return true; 3926 } 3927 if (Slice.Length == 1) { 3928 Str = StringRef("", 1); 3929 return true; 3930 } 3931 // We cannot instantiate a StringRef as we do not have an appropriate string 3932 // of 0s at hand. 3933 return false; 3934 } 3935 3936 // Start out with the entire array in the StringRef. 3937 Str = Slice.Array->getAsString(); 3938 // Skip over 'offset' bytes. 3939 Str = Str.substr(Slice.Offset); 3940 3941 if (TrimAtNul) { 3942 // Trim off the \0 and anything after it. If the array is not nul 3943 // terminated, we just return the whole end of string. The client may know 3944 // some other way that the string is length-bound. 3945 Str = Str.substr(0, Str.find('\0')); 3946 } 3947 return true; 3948 } 3949 3950 // These next two are very similar to the above, but also look through PHI 3951 // nodes. 3952 // TODO: See if we can integrate these two together. 3953 3954 /// If we can compute the length of the string pointed to by 3955 /// the specified pointer, return 'len+1'. If we can't, return 0. 3956 static uint64_t GetStringLengthH(const Value *V, 3957 SmallPtrSetImpl<const PHINode*> &PHIs, 3958 unsigned CharSize) { 3959 // Look through noop bitcast instructions. 3960 V = V->stripPointerCasts(); 3961 3962 // If this is a PHI node, there are two cases: either we have already seen it 3963 // or we haven't. 3964 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3965 if (!PHIs.insert(PN).second) 3966 return ~0ULL; // already in the set. 3967 3968 // If it was new, see if all the input strings are the same length. 3969 uint64_t LenSoFar = ~0ULL; 3970 for (Value *IncValue : PN->incoming_values()) { 3971 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3972 if (Len == 0) return 0; // Unknown length -> unknown. 3973 3974 if (Len == ~0ULL) continue; 3975 3976 if (Len != LenSoFar && LenSoFar != ~0ULL) 3977 return 0; // Disagree -> unknown. 3978 LenSoFar = Len; 3979 } 3980 3981 // Success, all agree. 3982 return LenSoFar; 3983 } 3984 3985 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3986 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3987 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3988 if (Len1 == 0) return 0; 3989 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3990 if (Len2 == 0) return 0; 3991 if (Len1 == ~0ULL) return Len2; 3992 if (Len2 == ~0ULL) return Len1; 3993 if (Len1 != Len2) return 0; 3994 return Len1; 3995 } 3996 3997 // Otherwise, see if we can read the string. 3998 ConstantDataArraySlice Slice; 3999 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4000 return 0; 4001 4002 if (Slice.Array == nullptr) 4003 return 1; 4004 4005 // Search for nul characters 4006 unsigned NullIndex = 0; 4007 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4008 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4009 break; 4010 } 4011 4012 return NullIndex + 1; 4013 } 4014 4015 /// If we can compute the length of the string pointed to by 4016 /// the specified pointer, return 'len+1'. If we can't, return 0. 4017 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4018 if (!V->getType()->isPointerTy()) 4019 return 0; 4020 4021 SmallPtrSet<const PHINode*, 32> PHIs; 4022 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4023 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4024 // an empty string as a length. 4025 return Len == ~0ULL ? 1 : Len; 4026 } 4027 4028 const Value * 4029 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4030 bool MustPreserveNullness) { 4031 assert(Call && 4032 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4033 if (const Value *RV = Call->getReturnedArgOperand()) 4034 return RV; 4035 // This can be used only as a aliasing property. 4036 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4037 Call, MustPreserveNullness)) 4038 return Call->getArgOperand(0); 4039 return nullptr; 4040 } 4041 4042 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4043 const CallBase *Call, bool MustPreserveNullness) { 4044 switch (Call->getIntrinsicID()) { 4045 case Intrinsic::launder_invariant_group: 4046 case Intrinsic::strip_invariant_group: 4047 case Intrinsic::aarch64_irg: 4048 case Intrinsic::aarch64_tagp: 4049 return true; 4050 case Intrinsic::ptrmask: 4051 return !MustPreserveNullness; 4052 default: 4053 return false; 4054 } 4055 } 4056 4057 /// \p PN defines a loop-variant pointer to an object. Check if the 4058 /// previous iteration of the loop was referring to the same object as \p PN. 4059 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4060 const LoopInfo *LI) { 4061 // Find the loop-defined value. 4062 Loop *L = LI->getLoopFor(PN->getParent()); 4063 if (PN->getNumIncomingValues() != 2) 4064 return true; 4065 4066 // Find the value from previous iteration. 4067 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4068 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4069 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4070 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4071 return true; 4072 4073 // If a new pointer is loaded in the loop, the pointer references a different 4074 // object in every iteration. E.g.: 4075 // for (i) 4076 // int *p = a[i]; 4077 // ... 4078 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4079 if (!L->isLoopInvariant(Load->getPointerOperand())) 4080 return false; 4081 return true; 4082 } 4083 4084 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4085 if (!V->getType()->isPointerTy()) 4086 return V; 4087 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4088 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4089 V = GEP->getPointerOperand(); 4090 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4091 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4092 V = cast<Operator>(V)->getOperand(0); 4093 if (!V->getType()->isPointerTy()) 4094 return V; 4095 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4096 if (GA->isInterposable()) 4097 return V; 4098 V = GA->getAliasee(); 4099 } else { 4100 if (auto *PHI = dyn_cast<PHINode>(V)) { 4101 // Look through single-arg phi nodes created by LCSSA. 4102 if (PHI->getNumIncomingValues() == 1) { 4103 V = PHI->getIncomingValue(0); 4104 continue; 4105 } 4106 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4107 // CaptureTracking can know about special capturing properties of some 4108 // intrinsics like launder.invariant.group, that can't be expressed with 4109 // the attributes, but have properties like returning aliasing pointer. 4110 // Because some analysis may assume that nocaptured pointer is not 4111 // returned from some special intrinsic (because function would have to 4112 // be marked with returns attribute), it is crucial to use this function 4113 // because it should be in sync with CaptureTracking. Not using it may 4114 // cause weird miscompilations where 2 aliasing pointers are assumed to 4115 // noalias. 4116 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4117 V = RP; 4118 continue; 4119 } 4120 } 4121 4122 return V; 4123 } 4124 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4125 } 4126 return V; 4127 } 4128 4129 void llvm::getUnderlyingObjects(const Value *V, 4130 SmallVectorImpl<const Value *> &Objects, 4131 LoopInfo *LI, unsigned MaxLookup) { 4132 SmallPtrSet<const Value *, 4> Visited; 4133 SmallVector<const Value *, 4> Worklist; 4134 Worklist.push_back(V); 4135 do { 4136 const Value *P = Worklist.pop_back_val(); 4137 P = getUnderlyingObject(P, MaxLookup); 4138 4139 if (!Visited.insert(P).second) 4140 continue; 4141 4142 if (auto *SI = dyn_cast<SelectInst>(P)) { 4143 Worklist.push_back(SI->getTrueValue()); 4144 Worklist.push_back(SI->getFalseValue()); 4145 continue; 4146 } 4147 4148 if (auto *PN = dyn_cast<PHINode>(P)) { 4149 // If this PHI changes the underlying object in every iteration of the 4150 // loop, don't look through it. Consider: 4151 // int **A; 4152 // for (i) { 4153 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4154 // Curr = A[i]; 4155 // *Prev, *Curr; 4156 // 4157 // Prev is tracking Curr one iteration behind so they refer to different 4158 // underlying objects. 4159 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4160 isSameUnderlyingObjectInLoop(PN, LI)) 4161 for (Value *IncValue : PN->incoming_values()) 4162 Worklist.push_back(IncValue); 4163 continue; 4164 } 4165 4166 Objects.push_back(P); 4167 } while (!Worklist.empty()); 4168 } 4169 4170 /// This is the function that does the work of looking through basic 4171 /// ptrtoint+arithmetic+inttoptr sequences. 4172 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4173 do { 4174 if (const Operator *U = dyn_cast<Operator>(V)) { 4175 // If we find a ptrtoint, we can transfer control back to the 4176 // regular getUnderlyingObjectFromInt. 4177 if (U->getOpcode() == Instruction::PtrToInt) 4178 return U->getOperand(0); 4179 // If we find an add of a constant, a multiplied value, or a phi, it's 4180 // likely that the other operand will lead us to the base 4181 // object. We don't have to worry about the case where the 4182 // object address is somehow being computed by the multiply, 4183 // because our callers only care when the result is an 4184 // identifiable object. 4185 if (U->getOpcode() != Instruction::Add || 4186 (!isa<ConstantInt>(U->getOperand(1)) && 4187 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4188 !isa<PHINode>(U->getOperand(1)))) 4189 return V; 4190 V = U->getOperand(0); 4191 } else { 4192 return V; 4193 } 4194 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4195 } while (true); 4196 } 4197 4198 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4199 /// ptrtoint+arithmetic+inttoptr sequences. 4200 /// It returns false if unidentified object is found in getUnderlyingObjects. 4201 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4202 SmallVectorImpl<Value *> &Objects) { 4203 SmallPtrSet<const Value *, 16> Visited; 4204 SmallVector<const Value *, 4> Working(1, V); 4205 do { 4206 V = Working.pop_back_val(); 4207 4208 SmallVector<const Value *, 4> Objs; 4209 getUnderlyingObjects(V, Objs); 4210 4211 for (const Value *V : Objs) { 4212 if (!Visited.insert(V).second) 4213 continue; 4214 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4215 const Value *O = 4216 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4217 if (O->getType()->isPointerTy()) { 4218 Working.push_back(O); 4219 continue; 4220 } 4221 } 4222 // If getUnderlyingObjects fails to find an identifiable object, 4223 // getUnderlyingObjectsForCodeGen also fails for safety. 4224 if (!isIdentifiedObject(V)) { 4225 Objects.clear(); 4226 return false; 4227 } 4228 Objects.push_back(const_cast<Value *>(V)); 4229 } 4230 } while (!Working.empty()); 4231 return true; 4232 } 4233 4234 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4235 AllocaInst *Result = nullptr; 4236 SmallPtrSet<Value *, 4> Visited; 4237 SmallVector<Value *, 4> Worklist; 4238 4239 auto AddWork = [&](Value *V) { 4240 if (Visited.insert(V).second) 4241 Worklist.push_back(V); 4242 }; 4243 4244 AddWork(V); 4245 do { 4246 V = Worklist.pop_back_val(); 4247 assert(Visited.count(V)); 4248 4249 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4250 if (Result && Result != AI) 4251 return nullptr; 4252 Result = AI; 4253 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4254 AddWork(CI->getOperand(0)); 4255 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4256 for (Value *IncValue : PN->incoming_values()) 4257 AddWork(IncValue); 4258 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4259 AddWork(SI->getTrueValue()); 4260 AddWork(SI->getFalseValue()); 4261 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4262 if (OffsetZero && !GEP->hasAllZeroIndices()) 4263 return nullptr; 4264 AddWork(GEP->getPointerOperand()); 4265 } else { 4266 return nullptr; 4267 } 4268 } while (!Worklist.empty()); 4269 4270 return Result; 4271 } 4272 4273 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4274 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4275 for (const User *U : V->users()) { 4276 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4277 if (!II) 4278 return false; 4279 4280 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4281 continue; 4282 4283 if (AllowDroppable && II->isDroppable()) 4284 continue; 4285 4286 return false; 4287 } 4288 return true; 4289 } 4290 4291 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4292 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4293 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4294 } 4295 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4296 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4297 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4298 } 4299 4300 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4301 if (!LI.isUnordered()) 4302 return true; 4303 const Function &F = *LI.getFunction(); 4304 // Speculative load may create a race that did not exist in the source. 4305 return F.hasFnAttribute(Attribute::SanitizeThread) || 4306 // Speculative load may load data from dirty regions. 4307 F.hasFnAttribute(Attribute::SanitizeAddress) || 4308 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4309 } 4310 4311 4312 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4313 const Instruction *CtxI, 4314 const DominatorTree *DT) { 4315 const Operator *Inst = dyn_cast<Operator>(V); 4316 if (!Inst) 4317 return false; 4318 4319 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4320 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4321 if (C->canTrap()) 4322 return false; 4323 4324 switch (Inst->getOpcode()) { 4325 default: 4326 return true; 4327 case Instruction::UDiv: 4328 case Instruction::URem: { 4329 // x / y is undefined if y == 0. 4330 const APInt *V; 4331 if (match(Inst->getOperand(1), m_APInt(V))) 4332 return *V != 0; 4333 return false; 4334 } 4335 case Instruction::SDiv: 4336 case Instruction::SRem: { 4337 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4338 const APInt *Numerator, *Denominator; 4339 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4340 return false; 4341 // We cannot hoist this division if the denominator is 0. 4342 if (*Denominator == 0) 4343 return false; 4344 // It's safe to hoist if the denominator is not 0 or -1. 4345 if (*Denominator != -1) 4346 return true; 4347 // At this point we know that the denominator is -1. It is safe to hoist as 4348 // long we know that the numerator is not INT_MIN. 4349 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4350 return !Numerator->isMinSignedValue(); 4351 // The numerator *might* be MinSignedValue. 4352 return false; 4353 } 4354 case Instruction::Load: { 4355 const LoadInst *LI = cast<LoadInst>(Inst); 4356 if (mustSuppressSpeculation(*LI)) 4357 return false; 4358 const DataLayout &DL = LI->getModule()->getDataLayout(); 4359 return isDereferenceableAndAlignedPointer( 4360 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4361 DL, CtxI, DT); 4362 } 4363 case Instruction::Call: { 4364 auto *CI = cast<const CallInst>(Inst); 4365 const Function *Callee = CI->getCalledFunction(); 4366 4367 // The called function could have undefined behavior or side-effects, even 4368 // if marked readnone nounwind. 4369 return Callee && Callee->isSpeculatable(); 4370 } 4371 case Instruction::VAArg: 4372 case Instruction::Alloca: 4373 case Instruction::Invoke: 4374 case Instruction::CallBr: 4375 case Instruction::PHI: 4376 case Instruction::Store: 4377 case Instruction::Ret: 4378 case Instruction::Br: 4379 case Instruction::IndirectBr: 4380 case Instruction::Switch: 4381 case Instruction::Unreachable: 4382 case Instruction::Fence: 4383 case Instruction::AtomicRMW: 4384 case Instruction::AtomicCmpXchg: 4385 case Instruction::LandingPad: 4386 case Instruction::Resume: 4387 case Instruction::CatchSwitch: 4388 case Instruction::CatchPad: 4389 case Instruction::CatchRet: 4390 case Instruction::CleanupPad: 4391 case Instruction::CleanupRet: 4392 return false; // Misc instructions which have effects 4393 } 4394 } 4395 4396 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4397 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4398 } 4399 4400 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4401 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4402 switch (OR) { 4403 case ConstantRange::OverflowResult::MayOverflow: 4404 return OverflowResult::MayOverflow; 4405 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4406 return OverflowResult::AlwaysOverflowsLow; 4407 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4408 return OverflowResult::AlwaysOverflowsHigh; 4409 case ConstantRange::OverflowResult::NeverOverflows: 4410 return OverflowResult::NeverOverflows; 4411 } 4412 llvm_unreachable("Unknown OverflowResult"); 4413 } 4414 4415 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4416 static ConstantRange computeConstantRangeIncludingKnownBits( 4417 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4418 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4419 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4420 KnownBits Known = computeKnownBits( 4421 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4422 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4423 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4424 ConstantRange::PreferredRangeType RangeType = 4425 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4426 return CR1.intersectWith(CR2, RangeType); 4427 } 4428 4429 OverflowResult llvm::computeOverflowForUnsignedMul( 4430 const Value *LHS, const Value *RHS, const DataLayout &DL, 4431 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4432 bool UseInstrInfo) { 4433 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4434 nullptr, UseInstrInfo); 4435 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4436 nullptr, UseInstrInfo); 4437 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4438 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4439 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4440 } 4441 4442 OverflowResult 4443 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4444 const DataLayout &DL, AssumptionCache *AC, 4445 const Instruction *CxtI, 4446 const DominatorTree *DT, bool UseInstrInfo) { 4447 // Multiplying n * m significant bits yields a result of n + m significant 4448 // bits. If the total number of significant bits does not exceed the 4449 // result bit width (minus 1), there is no overflow. 4450 // This means if we have enough leading sign bits in the operands 4451 // we can guarantee that the result does not overflow. 4452 // Ref: "Hacker's Delight" by Henry Warren 4453 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4454 4455 // Note that underestimating the number of sign bits gives a more 4456 // conservative answer. 4457 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4458 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4459 4460 // First handle the easy case: if we have enough sign bits there's 4461 // definitely no overflow. 4462 if (SignBits > BitWidth + 1) 4463 return OverflowResult::NeverOverflows; 4464 4465 // There are two ambiguous cases where there can be no overflow: 4466 // SignBits == BitWidth + 1 and 4467 // SignBits == BitWidth 4468 // The second case is difficult to check, therefore we only handle the 4469 // first case. 4470 if (SignBits == BitWidth + 1) { 4471 // It overflows only when both arguments are negative and the true 4472 // product is exactly the minimum negative number. 4473 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4474 // For simplicity we just check if at least one side is not negative. 4475 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4476 nullptr, UseInstrInfo); 4477 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4478 nullptr, UseInstrInfo); 4479 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4480 return OverflowResult::NeverOverflows; 4481 } 4482 return OverflowResult::MayOverflow; 4483 } 4484 4485 OverflowResult llvm::computeOverflowForUnsignedAdd( 4486 const Value *LHS, const Value *RHS, const DataLayout &DL, 4487 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4488 bool UseInstrInfo) { 4489 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4490 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4491 nullptr, UseInstrInfo); 4492 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4493 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4494 nullptr, UseInstrInfo); 4495 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4496 } 4497 4498 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4499 const Value *RHS, 4500 const AddOperator *Add, 4501 const DataLayout &DL, 4502 AssumptionCache *AC, 4503 const Instruction *CxtI, 4504 const DominatorTree *DT) { 4505 if (Add && Add->hasNoSignedWrap()) { 4506 return OverflowResult::NeverOverflows; 4507 } 4508 4509 // If LHS and RHS each have at least two sign bits, the addition will look 4510 // like 4511 // 4512 // XX..... + 4513 // YY..... 4514 // 4515 // If the carry into the most significant position is 0, X and Y can't both 4516 // be 1 and therefore the carry out of the addition is also 0. 4517 // 4518 // If the carry into the most significant position is 1, X and Y can't both 4519 // be 0 and therefore the carry out of the addition is also 1. 4520 // 4521 // Since the carry into the most significant position is always equal to 4522 // the carry out of the addition, there is no signed overflow. 4523 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4524 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4525 return OverflowResult::NeverOverflows; 4526 4527 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4528 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4529 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4530 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4531 OverflowResult OR = 4532 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4533 if (OR != OverflowResult::MayOverflow) 4534 return OR; 4535 4536 // The remaining code needs Add to be available. Early returns if not so. 4537 if (!Add) 4538 return OverflowResult::MayOverflow; 4539 4540 // If the sign of Add is the same as at least one of the operands, this add 4541 // CANNOT overflow. If this can be determined from the known bits of the 4542 // operands the above signedAddMayOverflow() check will have already done so. 4543 // The only other way to improve on the known bits is from an assumption, so 4544 // call computeKnownBitsFromAssume() directly. 4545 bool LHSOrRHSKnownNonNegative = 4546 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4547 bool LHSOrRHSKnownNegative = 4548 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4549 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4550 KnownBits AddKnown(LHSRange.getBitWidth()); 4551 computeKnownBitsFromAssume( 4552 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4553 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4554 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4555 return OverflowResult::NeverOverflows; 4556 } 4557 4558 return OverflowResult::MayOverflow; 4559 } 4560 4561 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4562 const Value *RHS, 4563 const DataLayout &DL, 4564 AssumptionCache *AC, 4565 const Instruction *CxtI, 4566 const DominatorTree *DT) { 4567 // Checking for conditions implied by dominating conditions may be expensive. 4568 // Limit it to usub_with_overflow calls for now. 4569 if (match(CxtI, 4570 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4571 if (auto C = 4572 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4573 if (*C) 4574 return OverflowResult::NeverOverflows; 4575 return OverflowResult::AlwaysOverflowsLow; 4576 } 4577 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4578 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4579 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4580 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4581 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4582 } 4583 4584 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4585 const Value *RHS, 4586 const DataLayout &DL, 4587 AssumptionCache *AC, 4588 const Instruction *CxtI, 4589 const DominatorTree *DT) { 4590 // If LHS and RHS each have at least two sign bits, the subtraction 4591 // cannot overflow. 4592 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4593 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4594 return OverflowResult::NeverOverflows; 4595 4596 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4597 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4598 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4599 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4600 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4601 } 4602 4603 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4604 const DominatorTree &DT) { 4605 SmallVector<const BranchInst *, 2> GuardingBranches; 4606 SmallVector<const ExtractValueInst *, 2> Results; 4607 4608 for (const User *U : WO->users()) { 4609 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4610 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4611 4612 if (EVI->getIndices()[0] == 0) 4613 Results.push_back(EVI); 4614 else { 4615 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4616 4617 for (const auto *U : EVI->users()) 4618 if (const auto *B = dyn_cast<BranchInst>(U)) { 4619 assert(B->isConditional() && "How else is it using an i1?"); 4620 GuardingBranches.push_back(B); 4621 } 4622 } 4623 } else { 4624 // We are using the aggregate directly in a way we don't want to analyze 4625 // here (storing it to a global, say). 4626 return false; 4627 } 4628 } 4629 4630 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4631 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4632 if (!NoWrapEdge.isSingleEdge()) 4633 return false; 4634 4635 // Check if all users of the add are provably no-wrap. 4636 for (const auto *Result : Results) { 4637 // If the extractvalue itself is not executed on overflow, the we don't 4638 // need to check each use separately, since domination is transitive. 4639 if (DT.dominates(NoWrapEdge, Result->getParent())) 4640 continue; 4641 4642 for (auto &RU : Result->uses()) 4643 if (!DT.dominates(NoWrapEdge, RU)) 4644 return false; 4645 } 4646 4647 return true; 4648 }; 4649 4650 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4651 } 4652 4653 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4654 // See whether I has flags that may create poison 4655 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4656 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4657 return true; 4658 } 4659 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4660 if (ExactOp->isExact()) 4661 return true; 4662 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4663 auto FMF = FP->getFastMathFlags(); 4664 if (FMF.noNaNs() || FMF.noInfs()) 4665 return true; 4666 } 4667 4668 unsigned Opcode = Op->getOpcode(); 4669 4670 // Check whether opcode is a poison/undef-generating operation 4671 switch (Opcode) { 4672 case Instruction::Shl: 4673 case Instruction::AShr: 4674 case Instruction::LShr: { 4675 // Shifts return poison if shiftwidth is larger than the bitwidth. 4676 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4677 SmallVector<Constant *, 4> ShiftAmounts; 4678 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4679 unsigned NumElts = FVTy->getNumElements(); 4680 for (unsigned i = 0; i < NumElts; ++i) 4681 ShiftAmounts.push_back(C->getAggregateElement(i)); 4682 } else if (isa<ScalableVectorType>(C->getType())) 4683 return true; // Can't tell, just return true to be safe 4684 else 4685 ShiftAmounts.push_back(C); 4686 4687 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4688 auto *CI = dyn_cast<ConstantInt>(C); 4689 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4690 }); 4691 return !Safe; 4692 } 4693 return true; 4694 } 4695 case Instruction::FPToSI: 4696 case Instruction::FPToUI: 4697 // fptosi/ui yields poison if the resulting value does not fit in the 4698 // destination type. 4699 return true; 4700 case Instruction::Call: 4701 case Instruction::CallBr: 4702 case Instruction::Invoke: { 4703 const auto *CB = cast<CallBase>(Op); 4704 return !CB->hasRetAttr(Attribute::NoUndef); 4705 } 4706 case Instruction::InsertElement: 4707 case Instruction::ExtractElement: { 4708 // If index exceeds the length of the vector, it returns poison 4709 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4710 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4711 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4712 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4713 return true; 4714 return false; 4715 } 4716 case Instruction::ShuffleVector: { 4717 // shufflevector may return undef. 4718 if (PoisonOnly) 4719 return false; 4720 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4721 ? cast<ConstantExpr>(Op)->getShuffleMask() 4722 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4723 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4724 } 4725 case Instruction::FNeg: 4726 case Instruction::PHI: 4727 case Instruction::Select: 4728 case Instruction::URem: 4729 case Instruction::SRem: 4730 case Instruction::ExtractValue: 4731 case Instruction::InsertValue: 4732 case Instruction::Freeze: 4733 case Instruction::ICmp: 4734 case Instruction::FCmp: 4735 return false; 4736 case Instruction::GetElementPtr: { 4737 const auto *GEP = cast<GEPOperator>(Op); 4738 return GEP->isInBounds(); 4739 } 4740 default: { 4741 const auto *CE = dyn_cast<ConstantExpr>(Op); 4742 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4743 return false; 4744 else if (Instruction::isBinaryOp(Opcode)) 4745 return false; 4746 // Be conservative and return true. 4747 return true; 4748 } 4749 } 4750 } 4751 4752 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4753 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4754 } 4755 4756 bool llvm::canCreatePoison(const Operator *Op) { 4757 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4758 } 4759 4760 static bool programUndefinedIfUndefOrPoison(const Value *V, 4761 bool PoisonOnly); 4762 4763 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4764 AssumptionCache *AC, 4765 const Instruction *CtxI, 4766 const DominatorTree *DT, 4767 unsigned Depth, bool PoisonOnly) { 4768 if (Depth >= MaxAnalysisRecursionDepth) 4769 return false; 4770 4771 if (isa<MetadataAsValue>(V)) 4772 return false; 4773 4774 if (const auto *A = dyn_cast<Argument>(V)) { 4775 if (A->hasAttribute(Attribute::NoUndef)) 4776 return true; 4777 } 4778 4779 if (auto *C = dyn_cast<Constant>(V)) { 4780 if (isa<UndefValue>(C)) 4781 return PoisonOnly; 4782 4783 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4784 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4785 return true; 4786 4787 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4788 return (PoisonOnly || !C->containsUndefElement()) && 4789 !C->containsConstantExpression(); 4790 } 4791 4792 // Strip cast operations from a pointer value. 4793 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4794 // inbounds with zero offset. To guarantee that the result isn't poison, the 4795 // stripped pointer is checked as it has to be pointing into an allocated 4796 // object or be null `null` to ensure `inbounds` getelement pointers with a 4797 // zero offset could not produce poison. 4798 // It can strip off addrspacecast that do not change bit representation as 4799 // well. We believe that such addrspacecast is equivalent to no-op. 4800 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4801 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4802 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4803 return true; 4804 4805 auto OpCheck = [&](const Value *V) { 4806 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4807 PoisonOnly); 4808 }; 4809 4810 if (auto *Opr = dyn_cast<Operator>(V)) { 4811 // If the value is a freeze instruction, then it can never 4812 // be undef or poison. 4813 if (isa<FreezeInst>(V)) 4814 return true; 4815 4816 if (const auto *CB = dyn_cast<CallBase>(V)) { 4817 if (CB->hasRetAttr(Attribute::NoUndef)) 4818 return true; 4819 } 4820 4821 if (const auto *PN = dyn_cast<PHINode>(V)) { 4822 unsigned Num = PN->getNumIncomingValues(); 4823 bool IsWellDefined = true; 4824 for (unsigned i = 0; i < Num; ++i) { 4825 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4826 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4827 DT, Depth + 1, PoisonOnly)) { 4828 IsWellDefined = false; 4829 break; 4830 } 4831 } 4832 if (IsWellDefined) 4833 return true; 4834 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4835 return true; 4836 } 4837 4838 if (auto *I = dyn_cast<LoadInst>(V)) 4839 if (I->getMetadata(LLVMContext::MD_noundef)) 4840 return true; 4841 4842 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4843 return true; 4844 4845 // CxtI may be null or a cloned instruction. 4846 if (!CtxI || !CtxI->getParent() || !DT) 4847 return false; 4848 4849 auto *DNode = DT->getNode(CtxI->getParent()); 4850 if (!DNode) 4851 // Unreachable block 4852 return false; 4853 4854 // If V is used as a branch condition before reaching CtxI, V cannot be 4855 // undef or poison. 4856 // br V, BB1, BB2 4857 // BB1: 4858 // CtxI ; V cannot be undef or poison here 4859 auto *Dominator = DNode->getIDom(); 4860 while (Dominator) { 4861 auto *TI = Dominator->getBlock()->getTerminator(); 4862 4863 Value *Cond = nullptr; 4864 if (auto BI = dyn_cast<BranchInst>(TI)) { 4865 if (BI->isConditional()) 4866 Cond = BI->getCondition(); 4867 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4868 Cond = SI->getCondition(); 4869 } 4870 4871 if (Cond) { 4872 if (Cond == V) 4873 return true; 4874 else if (PoisonOnly && isa<Operator>(Cond)) { 4875 // For poison, we can analyze further 4876 auto *Opr = cast<Operator>(Cond); 4877 if (propagatesPoison(Opr) && 4878 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4879 return true; 4880 } 4881 } 4882 4883 Dominator = Dominator->getIDom(); 4884 } 4885 4886 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4887 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4888 return true; 4889 4890 return false; 4891 } 4892 4893 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4894 const Instruction *CtxI, 4895 const DominatorTree *DT, 4896 unsigned Depth) { 4897 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4898 } 4899 4900 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4901 const Instruction *CtxI, 4902 const DominatorTree *DT, unsigned Depth) { 4903 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4904 } 4905 4906 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4907 const DataLayout &DL, 4908 AssumptionCache *AC, 4909 const Instruction *CxtI, 4910 const DominatorTree *DT) { 4911 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4912 Add, DL, AC, CxtI, DT); 4913 } 4914 4915 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4916 const Value *RHS, 4917 const DataLayout &DL, 4918 AssumptionCache *AC, 4919 const Instruction *CxtI, 4920 const DominatorTree *DT) { 4921 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4922 } 4923 4924 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4925 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4926 // of time because it's possible for another thread to interfere with it for an 4927 // arbitrary length of time, but programs aren't allowed to rely on that. 4928 4929 // If there is no successor, then execution can't transfer to it. 4930 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4931 return !CRI->unwindsToCaller(); 4932 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4933 return !CatchSwitch->unwindsToCaller(); 4934 if (isa<ResumeInst>(I)) 4935 return false; 4936 if (isa<ReturnInst>(I)) 4937 return false; 4938 if (isa<UnreachableInst>(I)) 4939 return false; 4940 4941 // Calls can throw, or contain an infinite loop, or kill the process. 4942 if (const auto *CB = dyn_cast<CallBase>(I)) { 4943 // Call sites that throw have implicit non-local control flow. 4944 if (!CB->doesNotThrow()) 4945 return false; 4946 4947 // A function which doens't throw and has "willreturn" attribute will 4948 // always return. 4949 if (CB->hasFnAttr(Attribute::WillReturn)) 4950 return true; 4951 4952 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4953 // etc. and thus not return. However, LLVM already assumes that 4954 // 4955 // - Thread exiting actions are modeled as writes to memory invisible to 4956 // the program. 4957 // 4958 // - Loops that don't have side effects (side effects are volatile/atomic 4959 // stores and IO) always terminate (see http://llvm.org/PR965). 4960 // Furthermore IO itself is also modeled as writes to memory invisible to 4961 // the program. 4962 // 4963 // We rely on those assumptions here, and use the memory effects of the call 4964 // target as a proxy for checking that it always returns. 4965 4966 // FIXME: This isn't aggressive enough; a call which only writes to a global 4967 // is guaranteed to return. 4968 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 4969 } 4970 4971 // Other instructions return normally. 4972 return true; 4973 } 4974 4975 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4976 // TODO: This is slightly conservative for invoke instruction since exiting 4977 // via an exception *is* normal control for them. 4978 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4979 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4980 return false; 4981 return true; 4982 } 4983 4984 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4985 const Loop *L) { 4986 // The loop header is guaranteed to be executed for every iteration. 4987 // 4988 // FIXME: Relax this constraint to cover all basic blocks that are 4989 // guaranteed to be executed at every iteration. 4990 if (I->getParent() != L->getHeader()) return false; 4991 4992 for (const Instruction &LI : *L->getHeader()) { 4993 if (&LI == I) return true; 4994 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4995 } 4996 llvm_unreachable("Instruction not contained in its own parent basic block."); 4997 } 4998 4999 bool llvm::propagatesPoison(const Operator *I) { 5000 switch (I->getOpcode()) { 5001 case Instruction::Freeze: 5002 case Instruction::Select: 5003 case Instruction::PHI: 5004 case Instruction::Call: 5005 case Instruction::Invoke: 5006 return false; 5007 case Instruction::ICmp: 5008 case Instruction::FCmp: 5009 case Instruction::GetElementPtr: 5010 return true; 5011 default: 5012 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5013 return true; 5014 5015 // Be conservative and return false. 5016 return false; 5017 } 5018 } 5019 5020 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5021 SmallPtrSetImpl<const Value *> &Operands) { 5022 switch (I->getOpcode()) { 5023 case Instruction::Store: 5024 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5025 break; 5026 5027 case Instruction::Load: 5028 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5029 break; 5030 5031 case Instruction::AtomicCmpXchg: 5032 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5033 break; 5034 5035 case Instruction::AtomicRMW: 5036 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5037 break; 5038 5039 case Instruction::UDiv: 5040 case Instruction::SDiv: 5041 case Instruction::URem: 5042 case Instruction::SRem: 5043 Operands.insert(I->getOperand(1)); 5044 break; 5045 5046 case Instruction::Call: 5047 case Instruction::Invoke: { 5048 const CallBase *CB = cast<CallBase>(I); 5049 if (CB->isIndirectCall()) 5050 Operands.insert(CB->getCalledOperand()); 5051 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5052 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5053 Operands.insert(CB->getArgOperand(i)); 5054 } 5055 break; 5056 } 5057 5058 default: 5059 break; 5060 } 5061 } 5062 5063 bool llvm::mustTriggerUB(const Instruction *I, 5064 const SmallSet<const Value *, 16>& KnownPoison) { 5065 SmallPtrSet<const Value *, 4> NonPoisonOps; 5066 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5067 5068 for (const auto *V : NonPoisonOps) 5069 if (KnownPoison.count(V)) 5070 return true; 5071 5072 return false; 5073 } 5074 5075 static bool programUndefinedIfUndefOrPoison(const Value *V, 5076 bool PoisonOnly) { 5077 // We currently only look for uses of values within the same basic 5078 // block, as that makes it easier to guarantee that the uses will be 5079 // executed given that Inst is executed. 5080 // 5081 // FIXME: Expand this to consider uses beyond the same basic block. To do 5082 // this, look out for the distinction between post-dominance and strong 5083 // post-dominance. 5084 const BasicBlock *BB = nullptr; 5085 BasicBlock::const_iterator Begin; 5086 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5087 BB = Inst->getParent(); 5088 Begin = Inst->getIterator(); 5089 Begin++; 5090 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5091 BB = &Arg->getParent()->getEntryBlock(); 5092 Begin = BB->begin(); 5093 } else { 5094 return false; 5095 } 5096 5097 BasicBlock::const_iterator End = BB->end(); 5098 5099 if (!PoisonOnly) { 5100 // Be conservative & just check whether a value is passed to a noundef 5101 // argument. 5102 // Instructions that raise UB with a poison operand are well-defined 5103 // or have unclear semantics when the input is partially undef. 5104 // For example, 'udiv x, (undef | 1)' isn't UB. 5105 5106 for (auto &I : make_range(Begin, End)) { 5107 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5108 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5109 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5110 CB->getArgOperand(i) == V) 5111 return true; 5112 } 5113 } 5114 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5115 break; 5116 } 5117 return false; 5118 } 5119 5120 // Set of instructions that we have proved will yield poison if Inst 5121 // does. 5122 SmallSet<const Value *, 16> YieldsPoison; 5123 SmallSet<const BasicBlock *, 4> Visited; 5124 5125 YieldsPoison.insert(V); 5126 auto Propagate = [&](const User *User) { 5127 if (propagatesPoison(cast<Operator>(User))) 5128 YieldsPoison.insert(User); 5129 }; 5130 for_each(V->users(), Propagate); 5131 Visited.insert(BB); 5132 5133 unsigned Iter = 0; 5134 while (Iter++ < MaxAnalysisRecursionDepth) { 5135 for (auto &I : make_range(Begin, End)) { 5136 if (mustTriggerUB(&I, YieldsPoison)) 5137 return true; 5138 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5139 return false; 5140 5141 // Mark poison that propagates from I through uses of I. 5142 if (YieldsPoison.count(&I)) 5143 for_each(I.users(), Propagate); 5144 } 5145 5146 if (auto *NextBB = BB->getSingleSuccessor()) { 5147 if (Visited.insert(NextBB).second) { 5148 BB = NextBB; 5149 Begin = BB->getFirstNonPHI()->getIterator(); 5150 End = BB->end(); 5151 continue; 5152 } 5153 } 5154 5155 break; 5156 } 5157 return false; 5158 } 5159 5160 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5161 return ::programUndefinedIfUndefOrPoison(Inst, false); 5162 } 5163 5164 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5165 return ::programUndefinedIfUndefOrPoison(Inst, true); 5166 } 5167 5168 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5169 if (FMF.noNaNs()) 5170 return true; 5171 5172 if (auto *C = dyn_cast<ConstantFP>(V)) 5173 return !C->isNaN(); 5174 5175 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5176 if (!C->getElementType()->isFloatingPointTy()) 5177 return false; 5178 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5179 if (C->getElementAsAPFloat(I).isNaN()) 5180 return false; 5181 } 5182 return true; 5183 } 5184 5185 if (isa<ConstantAggregateZero>(V)) 5186 return true; 5187 5188 return false; 5189 } 5190 5191 static bool isKnownNonZero(const Value *V) { 5192 if (auto *C = dyn_cast<ConstantFP>(V)) 5193 return !C->isZero(); 5194 5195 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5196 if (!C->getElementType()->isFloatingPointTy()) 5197 return false; 5198 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5199 if (C->getElementAsAPFloat(I).isZero()) 5200 return false; 5201 } 5202 return true; 5203 } 5204 5205 return false; 5206 } 5207 5208 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5209 /// Given non-min/max outer cmp/select from the clamp pattern this 5210 /// function recognizes if it can be substitued by a "canonical" min/max 5211 /// pattern. 5212 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5213 Value *CmpLHS, Value *CmpRHS, 5214 Value *TrueVal, Value *FalseVal, 5215 Value *&LHS, Value *&RHS) { 5216 // Try to match 5217 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5218 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5219 // and return description of the outer Max/Min. 5220 5221 // First, check if select has inverse order: 5222 if (CmpRHS == FalseVal) { 5223 std::swap(TrueVal, FalseVal); 5224 Pred = CmpInst::getInversePredicate(Pred); 5225 } 5226 5227 // Assume success now. If there's no match, callers should not use these anyway. 5228 LHS = TrueVal; 5229 RHS = FalseVal; 5230 5231 const APFloat *FC1; 5232 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5233 return {SPF_UNKNOWN, SPNB_NA, false}; 5234 5235 const APFloat *FC2; 5236 switch (Pred) { 5237 case CmpInst::FCMP_OLT: 5238 case CmpInst::FCMP_OLE: 5239 case CmpInst::FCMP_ULT: 5240 case CmpInst::FCMP_ULE: 5241 if (match(FalseVal, 5242 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5243 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5244 *FC1 < *FC2) 5245 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5246 break; 5247 case CmpInst::FCMP_OGT: 5248 case CmpInst::FCMP_OGE: 5249 case CmpInst::FCMP_UGT: 5250 case CmpInst::FCMP_UGE: 5251 if (match(FalseVal, 5252 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5253 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5254 *FC1 > *FC2) 5255 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5256 break; 5257 default: 5258 break; 5259 } 5260 5261 return {SPF_UNKNOWN, SPNB_NA, false}; 5262 } 5263 5264 /// Recognize variations of: 5265 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5266 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5267 Value *CmpLHS, Value *CmpRHS, 5268 Value *TrueVal, Value *FalseVal) { 5269 // Swap the select operands and predicate to match the patterns below. 5270 if (CmpRHS != TrueVal) { 5271 Pred = ICmpInst::getSwappedPredicate(Pred); 5272 std::swap(TrueVal, FalseVal); 5273 } 5274 const APInt *C1; 5275 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5276 const APInt *C2; 5277 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5278 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5279 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5280 return {SPF_SMAX, SPNB_NA, false}; 5281 5282 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5283 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5284 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5285 return {SPF_SMIN, SPNB_NA, false}; 5286 5287 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5288 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5289 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5290 return {SPF_UMAX, SPNB_NA, false}; 5291 5292 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5293 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5294 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5295 return {SPF_UMIN, SPNB_NA, false}; 5296 } 5297 return {SPF_UNKNOWN, SPNB_NA, false}; 5298 } 5299 5300 /// Recognize variations of: 5301 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5302 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5303 Value *CmpLHS, Value *CmpRHS, 5304 Value *TVal, Value *FVal, 5305 unsigned Depth) { 5306 // TODO: Allow FP min/max with nnan/nsz. 5307 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5308 5309 Value *A = nullptr, *B = nullptr; 5310 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5311 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5312 return {SPF_UNKNOWN, SPNB_NA, false}; 5313 5314 Value *C = nullptr, *D = nullptr; 5315 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5316 if (L.Flavor != R.Flavor) 5317 return {SPF_UNKNOWN, SPNB_NA, false}; 5318 5319 // We have something like: x Pred y ? min(a, b) : min(c, d). 5320 // Try to match the compare to the min/max operations of the select operands. 5321 // First, make sure we have the right compare predicate. 5322 switch (L.Flavor) { 5323 case SPF_SMIN: 5324 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5325 Pred = ICmpInst::getSwappedPredicate(Pred); 5326 std::swap(CmpLHS, CmpRHS); 5327 } 5328 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5329 break; 5330 return {SPF_UNKNOWN, SPNB_NA, false}; 5331 case SPF_SMAX: 5332 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5333 Pred = ICmpInst::getSwappedPredicate(Pred); 5334 std::swap(CmpLHS, CmpRHS); 5335 } 5336 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5337 break; 5338 return {SPF_UNKNOWN, SPNB_NA, false}; 5339 case SPF_UMIN: 5340 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5341 Pred = ICmpInst::getSwappedPredicate(Pred); 5342 std::swap(CmpLHS, CmpRHS); 5343 } 5344 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5345 break; 5346 return {SPF_UNKNOWN, SPNB_NA, false}; 5347 case SPF_UMAX: 5348 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5349 Pred = ICmpInst::getSwappedPredicate(Pred); 5350 std::swap(CmpLHS, CmpRHS); 5351 } 5352 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5353 break; 5354 return {SPF_UNKNOWN, SPNB_NA, false}; 5355 default: 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 } 5358 5359 // If there is a common operand in the already matched min/max and the other 5360 // min/max operands match the compare operands (either directly or inverted), 5361 // then this is min/max of the same flavor. 5362 5363 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5364 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5365 if (D == B) { 5366 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5367 match(A, m_Not(m_Specific(CmpRHS))))) 5368 return {L.Flavor, SPNB_NA, false}; 5369 } 5370 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5371 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5372 if (C == B) { 5373 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5374 match(A, m_Not(m_Specific(CmpRHS))))) 5375 return {L.Flavor, SPNB_NA, false}; 5376 } 5377 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5378 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5379 if (D == A) { 5380 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5381 match(B, m_Not(m_Specific(CmpRHS))))) 5382 return {L.Flavor, SPNB_NA, false}; 5383 } 5384 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5385 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5386 if (C == A) { 5387 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5388 match(B, m_Not(m_Specific(CmpRHS))))) 5389 return {L.Flavor, SPNB_NA, false}; 5390 } 5391 5392 return {SPF_UNKNOWN, SPNB_NA, false}; 5393 } 5394 5395 /// If the input value is the result of a 'not' op, constant integer, or vector 5396 /// splat of a constant integer, return the bitwise-not source value. 5397 /// TODO: This could be extended to handle non-splat vector integer constants. 5398 static Value *getNotValue(Value *V) { 5399 Value *NotV; 5400 if (match(V, m_Not(m_Value(NotV)))) 5401 return NotV; 5402 5403 const APInt *C; 5404 if (match(V, m_APInt(C))) 5405 return ConstantInt::get(V->getType(), ~(*C)); 5406 5407 return nullptr; 5408 } 5409 5410 /// Match non-obvious integer minimum and maximum sequences. 5411 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5412 Value *CmpLHS, Value *CmpRHS, 5413 Value *TrueVal, Value *FalseVal, 5414 Value *&LHS, Value *&RHS, 5415 unsigned Depth) { 5416 // Assume success. If there's no match, callers should not use these anyway. 5417 LHS = TrueVal; 5418 RHS = FalseVal; 5419 5420 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5421 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5422 return SPR; 5423 5424 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5425 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5426 return SPR; 5427 5428 // Look through 'not' ops to find disguised min/max. 5429 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5430 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5431 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5432 switch (Pred) { 5433 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5434 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5435 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5436 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5437 default: break; 5438 } 5439 } 5440 5441 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5442 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5443 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5444 switch (Pred) { 5445 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5446 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5447 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5448 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5449 default: break; 5450 } 5451 } 5452 5453 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5454 return {SPF_UNKNOWN, SPNB_NA, false}; 5455 5456 // Z = X -nsw Y 5457 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5458 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5459 if (match(TrueVal, m_Zero()) && 5460 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5461 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5462 5463 // Z = X -nsw Y 5464 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5465 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5466 if (match(FalseVal, m_Zero()) && 5467 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5468 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5469 5470 const APInt *C1; 5471 if (!match(CmpRHS, m_APInt(C1))) 5472 return {SPF_UNKNOWN, SPNB_NA, false}; 5473 5474 // An unsigned min/max can be written with a signed compare. 5475 const APInt *C2; 5476 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5477 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5478 // Is the sign bit set? 5479 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5480 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5481 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5482 C2->isMaxSignedValue()) 5483 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5484 5485 // Is the sign bit clear? 5486 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5487 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5488 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5489 C2->isMinSignedValue()) 5490 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5491 } 5492 5493 return {SPF_UNKNOWN, SPNB_NA, false}; 5494 } 5495 5496 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5497 assert(X && Y && "Invalid operand"); 5498 5499 // X = sub (0, Y) || X = sub nsw (0, Y) 5500 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5501 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5502 return true; 5503 5504 // Y = sub (0, X) || Y = sub nsw (0, X) 5505 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5506 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5507 return true; 5508 5509 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5510 Value *A, *B; 5511 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5512 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5513 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5514 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5515 } 5516 5517 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5518 FastMathFlags FMF, 5519 Value *CmpLHS, Value *CmpRHS, 5520 Value *TrueVal, Value *FalseVal, 5521 Value *&LHS, Value *&RHS, 5522 unsigned Depth) { 5523 if (CmpInst::isFPPredicate(Pred)) { 5524 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5525 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5526 // purpose of identifying min/max. Disregard vector constants with undefined 5527 // elements because those can not be back-propagated for analysis. 5528 Value *OutputZeroVal = nullptr; 5529 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5530 !cast<Constant>(TrueVal)->containsUndefElement()) 5531 OutputZeroVal = TrueVal; 5532 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5533 !cast<Constant>(FalseVal)->containsUndefElement()) 5534 OutputZeroVal = FalseVal; 5535 5536 if (OutputZeroVal) { 5537 if (match(CmpLHS, m_AnyZeroFP())) 5538 CmpLHS = OutputZeroVal; 5539 if (match(CmpRHS, m_AnyZeroFP())) 5540 CmpRHS = OutputZeroVal; 5541 } 5542 } 5543 5544 LHS = CmpLHS; 5545 RHS = CmpRHS; 5546 5547 // Signed zero may return inconsistent results between implementations. 5548 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5549 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5550 // Therefore, we behave conservatively and only proceed if at least one of the 5551 // operands is known to not be zero or if we don't care about signed zero. 5552 switch (Pred) { 5553 default: break; 5554 // FIXME: Include OGT/OLT/UGT/ULT. 5555 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5556 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5557 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5558 !isKnownNonZero(CmpRHS)) 5559 return {SPF_UNKNOWN, SPNB_NA, false}; 5560 } 5561 5562 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5563 bool Ordered = false; 5564 5565 // When given one NaN and one non-NaN input: 5566 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5567 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5568 // ordered comparison fails), which could be NaN or non-NaN. 5569 // so here we discover exactly what NaN behavior is required/accepted. 5570 if (CmpInst::isFPPredicate(Pred)) { 5571 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5572 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5573 5574 if (LHSSafe && RHSSafe) { 5575 // Both operands are known non-NaN. 5576 NaNBehavior = SPNB_RETURNS_ANY; 5577 } else if (CmpInst::isOrdered(Pred)) { 5578 // An ordered comparison will return false when given a NaN, so it 5579 // returns the RHS. 5580 Ordered = true; 5581 if (LHSSafe) 5582 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5583 NaNBehavior = SPNB_RETURNS_NAN; 5584 else if (RHSSafe) 5585 NaNBehavior = SPNB_RETURNS_OTHER; 5586 else 5587 // Completely unsafe. 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 } else { 5590 Ordered = false; 5591 // An unordered comparison will return true when given a NaN, so it 5592 // returns the LHS. 5593 if (LHSSafe) 5594 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5595 NaNBehavior = SPNB_RETURNS_OTHER; 5596 else if (RHSSafe) 5597 NaNBehavior = SPNB_RETURNS_NAN; 5598 else 5599 // Completely unsafe. 5600 return {SPF_UNKNOWN, SPNB_NA, false}; 5601 } 5602 } 5603 5604 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5605 std::swap(CmpLHS, CmpRHS); 5606 Pred = CmpInst::getSwappedPredicate(Pred); 5607 if (NaNBehavior == SPNB_RETURNS_NAN) 5608 NaNBehavior = SPNB_RETURNS_OTHER; 5609 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5610 NaNBehavior = SPNB_RETURNS_NAN; 5611 Ordered = !Ordered; 5612 } 5613 5614 // ([if]cmp X, Y) ? X : Y 5615 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5616 switch (Pred) { 5617 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5618 case ICmpInst::ICMP_UGT: 5619 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5620 case ICmpInst::ICMP_SGT: 5621 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5622 case ICmpInst::ICMP_ULT: 5623 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5624 case ICmpInst::ICMP_SLT: 5625 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5626 case FCmpInst::FCMP_UGT: 5627 case FCmpInst::FCMP_UGE: 5628 case FCmpInst::FCMP_OGT: 5629 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5630 case FCmpInst::FCMP_ULT: 5631 case FCmpInst::FCMP_ULE: 5632 case FCmpInst::FCMP_OLT: 5633 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5634 } 5635 } 5636 5637 if (isKnownNegation(TrueVal, FalseVal)) { 5638 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5639 // match against either LHS or sext(LHS). 5640 auto MaybeSExtCmpLHS = 5641 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5642 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5643 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5644 if (match(TrueVal, MaybeSExtCmpLHS)) { 5645 // Set the return values. If the compare uses the negated value (-X >s 0), 5646 // swap the return values because the negated value is always 'RHS'. 5647 LHS = TrueVal; 5648 RHS = FalseVal; 5649 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5650 std::swap(LHS, RHS); 5651 5652 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5653 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5654 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5655 return {SPF_ABS, SPNB_NA, false}; 5656 5657 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5658 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5659 return {SPF_ABS, SPNB_NA, false}; 5660 5661 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5662 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5663 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5664 return {SPF_NABS, SPNB_NA, false}; 5665 } 5666 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5667 // Set the return values. If the compare uses the negated value (-X >s 0), 5668 // swap the return values because the negated value is always 'RHS'. 5669 LHS = FalseVal; 5670 RHS = TrueVal; 5671 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5672 std::swap(LHS, RHS); 5673 5674 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5675 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5676 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5677 return {SPF_NABS, SPNB_NA, false}; 5678 5679 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5680 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5681 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5682 return {SPF_ABS, SPNB_NA, false}; 5683 } 5684 } 5685 5686 if (CmpInst::isIntPredicate(Pred)) 5687 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5688 5689 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5690 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5691 // semantics than minNum. Be conservative in such case. 5692 if (NaNBehavior != SPNB_RETURNS_ANY || 5693 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5694 !isKnownNonZero(CmpRHS))) 5695 return {SPF_UNKNOWN, SPNB_NA, false}; 5696 5697 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5698 } 5699 5700 /// Helps to match a select pattern in case of a type mismatch. 5701 /// 5702 /// The function processes the case when type of true and false values of a 5703 /// select instruction differs from type of the cmp instruction operands because 5704 /// of a cast instruction. The function checks if it is legal to move the cast 5705 /// operation after "select". If yes, it returns the new second value of 5706 /// "select" (with the assumption that cast is moved): 5707 /// 1. As operand of cast instruction when both values of "select" are same cast 5708 /// instructions. 5709 /// 2. As restored constant (by applying reverse cast operation) when the first 5710 /// value of the "select" is a cast operation and the second value is a 5711 /// constant. 5712 /// NOTE: We return only the new second value because the first value could be 5713 /// accessed as operand of cast instruction. 5714 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5715 Instruction::CastOps *CastOp) { 5716 auto *Cast1 = dyn_cast<CastInst>(V1); 5717 if (!Cast1) 5718 return nullptr; 5719 5720 *CastOp = Cast1->getOpcode(); 5721 Type *SrcTy = Cast1->getSrcTy(); 5722 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5723 // If V1 and V2 are both the same cast from the same type, look through V1. 5724 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5725 return Cast2->getOperand(0); 5726 return nullptr; 5727 } 5728 5729 auto *C = dyn_cast<Constant>(V2); 5730 if (!C) 5731 return nullptr; 5732 5733 Constant *CastedTo = nullptr; 5734 switch (*CastOp) { 5735 case Instruction::ZExt: 5736 if (CmpI->isUnsigned()) 5737 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5738 break; 5739 case Instruction::SExt: 5740 if (CmpI->isSigned()) 5741 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5742 break; 5743 case Instruction::Trunc: 5744 Constant *CmpConst; 5745 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5746 CmpConst->getType() == SrcTy) { 5747 // Here we have the following case: 5748 // 5749 // %cond = cmp iN %x, CmpConst 5750 // %tr = trunc iN %x to iK 5751 // %narrowsel = select i1 %cond, iK %t, iK C 5752 // 5753 // We can always move trunc after select operation: 5754 // 5755 // %cond = cmp iN %x, CmpConst 5756 // %widesel = select i1 %cond, iN %x, iN CmpConst 5757 // %tr = trunc iN %widesel to iK 5758 // 5759 // Note that C could be extended in any way because we don't care about 5760 // upper bits after truncation. It can't be abs pattern, because it would 5761 // look like: 5762 // 5763 // select i1 %cond, x, -x. 5764 // 5765 // So only min/max pattern could be matched. Such match requires widened C 5766 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5767 // CmpConst == C is checked below. 5768 CastedTo = CmpConst; 5769 } else { 5770 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5771 } 5772 break; 5773 case Instruction::FPTrunc: 5774 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5775 break; 5776 case Instruction::FPExt: 5777 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5778 break; 5779 case Instruction::FPToUI: 5780 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5781 break; 5782 case Instruction::FPToSI: 5783 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5784 break; 5785 case Instruction::UIToFP: 5786 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5787 break; 5788 case Instruction::SIToFP: 5789 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5790 break; 5791 default: 5792 break; 5793 } 5794 5795 if (!CastedTo) 5796 return nullptr; 5797 5798 // Make sure the cast doesn't lose any information. 5799 Constant *CastedBack = 5800 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5801 if (CastedBack != C) 5802 return nullptr; 5803 5804 return CastedTo; 5805 } 5806 5807 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5808 Instruction::CastOps *CastOp, 5809 unsigned Depth) { 5810 if (Depth >= MaxAnalysisRecursionDepth) 5811 return {SPF_UNKNOWN, SPNB_NA, false}; 5812 5813 SelectInst *SI = dyn_cast<SelectInst>(V); 5814 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5815 5816 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5817 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5818 5819 Value *TrueVal = SI->getTrueValue(); 5820 Value *FalseVal = SI->getFalseValue(); 5821 5822 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5823 CastOp, Depth); 5824 } 5825 5826 SelectPatternResult llvm::matchDecomposedSelectPattern( 5827 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5828 Instruction::CastOps *CastOp, unsigned Depth) { 5829 CmpInst::Predicate Pred = CmpI->getPredicate(); 5830 Value *CmpLHS = CmpI->getOperand(0); 5831 Value *CmpRHS = CmpI->getOperand(1); 5832 FastMathFlags FMF; 5833 if (isa<FPMathOperator>(CmpI)) 5834 FMF = CmpI->getFastMathFlags(); 5835 5836 // Bail out early. 5837 if (CmpI->isEquality()) 5838 return {SPF_UNKNOWN, SPNB_NA, false}; 5839 5840 // Deal with type mismatches. 5841 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5842 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5843 // If this is a potential fmin/fmax with a cast to integer, then ignore 5844 // -0.0 because there is no corresponding integer value. 5845 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5846 FMF.setNoSignedZeros(); 5847 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5848 cast<CastInst>(TrueVal)->getOperand(0), C, 5849 LHS, RHS, Depth); 5850 } 5851 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5852 // If this is a potential fmin/fmax with a cast to integer, then ignore 5853 // -0.0 because there is no corresponding integer value. 5854 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5855 FMF.setNoSignedZeros(); 5856 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5857 C, cast<CastInst>(FalseVal)->getOperand(0), 5858 LHS, RHS, Depth); 5859 } 5860 } 5861 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5862 LHS, RHS, Depth); 5863 } 5864 5865 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5866 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5867 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5868 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5869 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5870 if (SPF == SPF_FMINNUM) 5871 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5872 if (SPF == SPF_FMAXNUM) 5873 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5874 llvm_unreachable("unhandled!"); 5875 } 5876 5877 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5878 if (SPF == SPF_SMIN) return SPF_SMAX; 5879 if (SPF == SPF_UMIN) return SPF_UMAX; 5880 if (SPF == SPF_SMAX) return SPF_SMIN; 5881 if (SPF == SPF_UMAX) return SPF_UMIN; 5882 llvm_unreachable("unhandled!"); 5883 } 5884 5885 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5886 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5887 } 5888 5889 std::pair<Intrinsic::ID, bool> 5890 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5891 // Check if VL contains select instructions that can be folded into a min/max 5892 // vector intrinsic and return the intrinsic if it is possible. 5893 // TODO: Support floating point min/max. 5894 bool AllCmpSingleUse = true; 5895 SelectPatternResult SelectPattern; 5896 SelectPattern.Flavor = SPF_UNKNOWN; 5897 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5898 Value *LHS, *RHS; 5899 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5900 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5901 CurrentPattern.Flavor == SPF_FMINNUM || 5902 CurrentPattern.Flavor == SPF_FMAXNUM || 5903 !I->getType()->isIntOrIntVectorTy()) 5904 return false; 5905 if (SelectPattern.Flavor != SPF_UNKNOWN && 5906 SelectPattern.Flavor != CurrentPattern.Flavor) 5907 return false; 5908 SelectPattern = CurrentPattern; 5909 AllCmpSingleUse &= 5910 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5911 return true; 5912 })) { 5913 switch (SelectPattern.Flavor) { 5914 case SPF_SMIN: 5915 return {Intrinsic::smin, AllCmpSingleUse}; 5916 case SPF_UMIN: 5917 return {Intrinsic::umin, AllCmpSingleUse}; 5918 case SPF_SMAX: 5919 return {Intrinsic::smax, AllCmpSingleUse}; 5920 case SPF_UMAX: 5921 return {Intrinsic::umax, AllCmpSingleUse}; 5922 default: 5923 llvm_unreachable("unexpected select pattern flavor"); 5924 } 5925 } 5926 return {Intrinsic::not_intrinsic, false}; 5927 } 5928 5929 /// Return true if "icmp Pred LHS RHS" is always true. 5930 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5931 const Value *RHS, const DataLayout &DL, 5932 unsigned Depth) { 5933 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5934 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5935 return true; 5936 5937 switch (Pred) { 5938 default: 5939 return false; 5940 5941 case CmpInst::ICMP_SLE: { 5942 const APInt *C; 5943 5944 // LHS s<= LHS +_{nsw} C if C >= 0 5945 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5946 return !C->isNegative(); 5947 return false; 5948 } 5949 5950 case CmpInst::ICMP_ULE: { 5951 const APInt *C; 5952 5953 // LHS u<= LHS +_{nuw} C for any C 5954 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5955 return true; 5956 5957 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5958 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5959 const Value *&X, 5960 const APInt *&CA, const APInt *&CB) { 5961 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5962 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5963 return true; 5964 5965 // If X & C == 0 then (X | C) == X +_{nuw} C 5966 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5967 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5968 KnownBits Known(CA->getBitWidth()); 5969 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5970 /*CxtI*/ nullptr, /*DT*/ nullptr); 5971 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5972 return true; 5973 } 5974 5975 return false; 5976 }; 5977 5978 const Value *X; 5979 const APInt *CLHS, *CRHS; 5980 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5981 return CLHS->ule(*CRHS); 5982 5983 return false; 5984 } 5985 } 5986 } 5987 5988 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5989 /// ALHS ARHS" is true. Otherwise, return None. 5990 static Optional<bool> 5991 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5992 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5993 const DataLayout &DL, unsigned Depth) { 5994 switch (Pred) { 5995 default: 5996 return None; 5997 5998 case CmpInst::ICMP_SLT: 5999 case CmpInst::ICMP_SLE: 6000 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6001 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6002 return true; 6003 return None; 6004 6005 case CmpInst::ICMP_ULT: 6006 case CmpInst::ICMP_ULE: 6007 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6008 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6009 return true; 6010 return None; 6011 } 6012 } 6013 6014 /// Return true if the operands of the two compares match. IsSwappedOps is true 6015 /// when the operands match, but are swapped. 6016 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6017 const Value *BLHS, const Value *BRHS, 6018 bool &IsSwappedOps) { 6019 6020 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6021 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6022 return IsMatchingOps || IsSwappedOps; 6023 } 6024 6025 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6026 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6027 /// Otherwise, return None if we can't infer anything. 6028 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6029 CmpInst::Predicate BPred, 6030 bool AreSwappedOps) { 6031 // Canonicalize the predicate as if the operands were not commuted. 6032 if (AreSwappedOps) 6033 BPred = ICmpInst::getSwappedPredicate(BPred); 6034 6035 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6036 return true; 6037 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6038 return false; 6039 6040 return None; 6041 } 6042 6043 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6044 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6045 /// Otherwise, return None if we can't infer anything. 6046 static Optional<bool> 6047 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6048 const ConstantInt *C1, 6049 CmpInst::Predicate BPred, 6050 const ConstantInt *C2) { 6051 ConstantRange DomCR = 6052 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6053 ConstantRange CR = 6054 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6055 ConstantRange Intersection = DomCR.intersectWith(CR); 6056 ConstantRange Difference = DomCR.difference(CR); 6057 if (Intersection.isEmptySet()) 6058 return false; 6059 if (Difference.isEmptySet()) 6060 return true; 6061 return None; 6062 } 6063 6064 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6065 /// false. Otherwise, return None if we can't infer anything. 6066 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6067 CmpInst::Predicate BPred, 6068 const Value *BLHS, const Value *BRHS, 6069 const DataLayout &DL, bool LHSIsTrue, 6070 unsigned Depth) { 6071 Value *ALHS = LHS->getOperand(0); 6072 Value *ARHS = LHS->getOperand(1); 6073 6074 // The rest of the logic assumes the LHS condition is true. If that's not the 6075 // case, invert the predicate to make it so. 6076 CmpInst::Predicate APred = 6077 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6078 6079 // Can we infer anything when the two compares have matching operands? 6080 bool AreSwappedOps; 6081 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6082 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6083 APred, BPred, AreSwappedOps)) 6084 return Implication; 6085 // No amount of additional analysis will infer the second condition, so 6086 // early exit. 6087 return None; 6088 } 6089 6090 // Can we infer anything when the LHS operands match and the RHS operands are 6091 // constants (not necessarily matching)? 6092 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6093 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6094 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6095 return Implication; 6096 // No amount of additional analysis will infer the second condition, so 6097 // early exit. 6098 return None; 6099 } 6100 6101 if (APred == BPred) 6102 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6103 return None; 6104 } 6105 6106 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6107 /// false. Otherwise, return None if we can't infer anything. We expect the 6108 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6109 static Optional<bool> 6110 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6111 const Value *RHSOp0, const Value *RHSOp1, 6112 6113 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6114 // The LHS must be an 'or' or an 'and' instruction. 6115 assert((LHS->getOpcode() == Instruction::And || 6116 LHS->getOpcode() == Instruction::Or) && 6117 "Expected LHS to be 'and' or 'or'."); 6118 6119 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6120 6121 // If the result of an 'or' is false, then we know both legs of the 'or' are 6122 // false. Similarly, if the result of an 'and' is true, then we know both 6123 // legs of the 'and' are true. 6124 Value *ALHS, *ARHS; 6125 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6126 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6127 // FIXME: Make this non-recursion. 6128 if (Optional<bool> Implication = isImpliedCondition( 6129 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6130 return Implication; 6131 if (Optional<bool> Implication = isImpliedCondition( 6132 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6133 return Implication; 6134 return None; 6135 } 6136 return None; 6137 } 6138 6139 Optional<bool> 6140 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6141 const Value *RHSOp0, const Value *RHSOp1, 6142 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6143 // Bail out when we hit the limit. 6144 if (Depth == MaxAnalysisRecursionDepth) 6145 return None; 6146 6147 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6148 // example. 6149 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6150 return None; 6151 6152 Type *OpTy = LHS->getType(); 6153 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6154 6155 // FIXME: Extending the code below to handle vectors. 6156 if (OpTy->isVectorTy()) 6157 return None; 6158 6159 assert(OpTy->isIntegerTy(1) && "implied by above"); 6160 6161 // Both LHS and RHS are icmps. 6162 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6163 if (LHSCmp) 6164 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6165 Depth); 6166 6167 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6168 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6169 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6170 if (LHSBO) { 6171 if ((LHSBO->getOpcode() == Instruction::And || 6172 LHSBO->getOpcode() == Instruction::Or)) 6173 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6174 Depth); 6175 } 6176 return None; 6177 } 6178 6179 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6180 const DataLayout &DL, bool LHSIsTrue, 6181 unsigned Depth) { 6182 // LHS ==> RHS by definition 6183 if (LHS == RHS) 6184 return LHSIsTrue; 6185 6186 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6187 if (RHSCmp) 6188 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6189 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6190 LHSIsTrue, Depth); 6191 return None; 6192 } 6193 6194 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6195 // condition dominating ContextI or nullptr, if no condition is found. 6196 static std::pair<Value *, bool> 6197 getDomPredecessorCondition(const Instruction *ContextI) { 6198 if (!ContextI || !ContextI->getParent()) 6199 return {nullptr, false}; 6200 6201 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6202 // dominator tree (eg, from a SimplifyQuery) instead? 6203 const BasicBlock *ContextBB = ContextI->getParent(); 6204 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6205 if (!PredBB) 6206 return {nullptr, false}; 6207 6208 // We need a conditional branch in the predecessor. 6209 Value *PredCond; 6210 BasicBlock *TrueBB, *FalseBB; 6211 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6212 return {nullptr, false}; 6213 6214 // The branch should get simplified. Don't bother simplifying this condition. 6215 if (TrueBB == FalseBB) 6216 return {nullptr, false}; 6217 6218 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6219 "Predecessor block does not point to successor?"); 6220 6221 // Is this condition implied by the predecessor condition? 6222 return {PredCond, TrueBB == ContextBB}; 6223 } 6224 6225 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6226 const Instruction *ContextI, 6227 const DataLayout &DL) { 6228 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6229 auto PredCond = getDomPredecessorCondition(ContextI); 6230 if (PredCond.first) 6231 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6232 return None; 6233 } 6234 6235 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6236 const Value *LHS, const Value *RHS, 6237 const Instruction *ContextI, 6238 const DataLayout &DL) { 6239 auto PredCond = getDomPredecessorCondition(ContextI); 6240 if (PredCond.first) 6241 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6242 PredCond.second); 6243 return None; 6244 } 6245 6246 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6247 APInt &Upper, const InstrInfoQuery &IIQ) { 6248 unsigned Width = Lower.getBitWidth(); 6249 const APInt *C; 6250 switch (BO.getOpcode()) { 6251 case Instruction::Add: 6252 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6253 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6254 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6255 // 'add nuw x, C' produces [C, UINT_MAX]. 6256 Lower = *C; 6257 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6258 if (C->isNegative()) { 6259 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6260 Lower = APInt::getSignedMinValue(Width); 6261 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6262 } else { 6263 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6264 Lower = APInt::getSignedMinValue(Width) + *C; 6265 Upper = APInt::getSignedMaxValue(Width) + 1; 6266 } 6267 } 6268 } 6269 break; 6270 6271 case Instruction::And: 6272 if (match(BO.getOperand(1), m_APInt(C))) 6273 // 'and x, C' produces [0, C]. 6274 Upper = *C + 1; 6275 break; 6276 6277 case Instruction::Or: 6278 if (match(BO.getOperand(1), m_APInt(C))) 6279 // 'or x, C' produces [C, UINT_MAX]. 6280 Lower = *C; 6281 break; 6282 6283 case Instruction::AShr: 6284 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6285 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6286 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6287 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6288 } else if (match(BO.getOperand(0), m_APInt(C))) { 6289 unsigned ShiftAmount = Width - 1; 6290 if (!C->isNullValue() && IIQ.isExact(&BO)) 6291 ShiftAmount = C->countTrailingZeros(); 6292 if (C->isNegative()) { 6293 // 'ashr C, x' produces [C, C >> (Width-1)] 6294 Lower = *C; 6295 Upper = C->ashr(ShiftAmount) + 1; 6296 } else { 6297 // 'ashr C, x' produces [C >> (Width-1), C] 6298 Lower = C->ashr(ShiftAmount); 6299 Upper = *C + 1; 6300 } 6301 } 6302 break; 6303 6304 case Instruction::LShr: 6305 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6306 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6307 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6308 } else if (match(BO.getOperand(0), m_APInt(C))) { 6309 // 'lshr C, x' produces [C >> (Width-1), C]. 6310 unsigned ShiftAmount = Width - 1; 6311 if (!C->isNullValue() && IIQ.isExact(&BO)) 6312 ShiftAmount = C->countTrailingZeros(); 6313 Lower = C->lshr(ShiftAmount); 6314 Upper = *C + 1; 6315 } 6316 break; 6317 6318 case Instruction::Shl: 6319 if (match(BO.getOperand(0), m_APInt(C))) { 6320 if (IIQ.hasNoUnsignedWrap(&BO)) { 6321 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6322 Lower = *C; 6323 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6324 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6325 if (C->isNegative()) { 6326 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6327 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6328 Lower = C->shl(ShiftAmount); 6329 Upper = *C + 1; 6330 } else { 6331 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6332 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6333 Lower = *C; 6334 Upper = C->shl(ShiftAmount) + 1; 6335 } 6336 } 6337 } 6338 break; 6339 6340 case Instruction::SDiv: 6341 if (match(BO.getOperand(1), m_APInt(C))) { 6342 APInt IntMin = APInt::getSignedMinValue(Width); 6343 APInt IntMax = APInt::getSignedMaxValue(Width); 6344 if (C->isAllOnesValue()) { 6345 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6346 // where C != -1 and C != 0 and C != 1 6347 Lower = IntMin + 1; 6348 Upper = IntMax + 1; 6349 } else if (C->countLeadingZeros() < Width - 1) { 6350 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6351 // where C != -1 and C != 0 and C != 1 6352 Lower = IntMin.sdiv(*C); 6353 Upper = IntMax.sdiv(*C); 6354 if (Lower.sgt(Upper)) 6355 std::swap(Lower, Upper); 6356 Upper = Upper + 1; 6357 assert(Upper != Lower && "Upper part of range has wrapped!"); 6358 } 6359 } else if (match(BO.getOperand(0), m_APInt(C))) { 6360 if (C->isMinSignedValue()) { 6361 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6362 Lower = *C; 6363 Upper = Lower.lshr(1) + 1; 6364 } else { 6365 // 'sdiv C, x' produces [-|C|, |C|]. 6366 Upper = C->abs() + 1; 6367 Lower = (-Upper) + 1; 6368 } 6369 } 6370 break; 6371 6372 case Instruction::UDiv: 6373 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6374 // 'udiv x, C' produces [0, UINT_MAX / C]. 6375 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6376 } else if (match(BO.getOperand(0), m_APInt(C))) { 6377 // 'udiv C, x' produces [0, C]. 6378 Upper = *C + 1; 6379 } 6380 break; 6381 6382 case Instruction::SRem: 6383 if (match(BO.getOperand(1), m_APInt(C))) { 6384 // 'srem x, C' produces (-|C|, |C|). 6385 Upper = C->abs(); 6386 Lower = (-Upper) + 1; 6387 } 6388 break; 6389 6390 case Instruction::URem: 6391 if (match(BO.getOperand(1), m_APInt(C))) 6392 // 'urem x, C' produces [0, C). 6393 Upper = *C; 6394 break; 6395 6396 default: 6397 break; 6398 } 6399 } 6400 6401 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6402 APInt &Upper) { 6403 unsigned Width = Lower.getBitWidth(); 6404 const APInt *C; 6405 switch (II.getIntrinsicID()) { 6406 case Intrinsic::ctpop: 6407 case Intrinsic::ctlz: 6408 case Intrinsic::cttz: 6409 // Maximum of set/clear bits is the bit width. 6410 assert(Lower == 0 && "Expected lower bound to be zero"); 6411 Upper = Width + 1; 6412 break; 6413 case Intrinsic::uadd_sat: 6414 // uadd.sat(x, C) produces [C, UINT_MAX]. 6415 if (match(II.getOperand(0), m_APInt(C)) || 6416 match(II.getOperand(1), m_APInt(C))) 6417 Lower = *C; 6418 break; 6419 case Intrinsic::sadd_sat: 6420 if (match(II.getOperand(0), m_APInt(C)) || 6421 match(II.getOperand(1), m_APInt(C))) { 6422 if (C->isNegative()) { 6423 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6424 Lower = APInt::getSignedMinValue(Width); 6425 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6426 } else { 6427 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6428 Lower = APInt::getSignedMinValue(Width) + *C; 6429 Upper = APInt::getSignedMaxValue(Width) + 1; 6430 } 6431 } 6432 break; 6433 case Intrinsic::usub_sat: 6434 // usub.sat(C, x) produces [0, C]. 6435 if (match(II.getOperand(0), m_APInt(C))) 6436 Upper = *C + 1; 6437 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6438 else if (match(II.getOperand(1), m_APInt(C))) 6439 Upper = APInt::getMaxValue(Width) - *C + 1; 6440 break; 6441 case Intrinsic::ssub_sat: 6442 if (match(II.getOperand(0), m_APInt(C))) { 6443 if (C->isNegative()) { 6444 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6445 Lower = APInt::getSignedMinValue(Width); 6446 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6447 } else { 6448 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6449 Lower = *C - APInt::getSignedMaxValue(Width); 6450 Upper = APInt::getSignedMaxValue(Width) + 1; 6451 } 6452 } else if (match(II.getOperand(1), m_APInt(C))) { 6453 if (C->isNegative()) { 6454 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6455 Lower = APInt::getSignedMinValue(Width) - *C; 6456 Upper = APInt::getSignedMaxValue(Width) + 1; 6457 } else { 6458 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6459 Lower = APInt::getSignedMinValue(Width); 6460 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6461 } 6462 } 6463 break; 6464 case Intrinsic::umin: 6465 case Intrinsic::umax: 6466 case Intrinsic::smin: 6467 case Intrinsic::smax: 6468 if (!match(II.getOperand(0), m_APInt(C)) && 6469 !match(II.getOperand(1), m_APInt(C))) 6470 break; 6471 6472 switch (II.getIntrinsicID()) { 6473 case Intrinsic::umin: 6474 Upper = *C + 1; 6475 break; 6476 case Intrinsic::umax: 6477 Lower = *C; 6478 break; 6479 case Intrinsic::smin: 6480 Lower = APInt::getSignedMinValue(Width); 6481 Upper = *C + 1; 6482 break; 6483 case Intrinsic::smax: 6484 Lower = *C; 6485 Upper = APInt::getSignedMaxValue(Width) + 1; 6486 break; 6487 default: 6488 llvm_unreachable("Must be min/max intrinsic"); 6489 } 6490 break; 6491 case Intrinsic::abs: 6492 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6493 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6494 if (match(II.getOperand(1), m_One())) 6495 Upper = APInt::getSignedMaxValue(Width) + 1; 6496 else 6497 Upper = APInt::getSignedMinValue(Width) + 1; 6498 break; 6499 default: 6500 break; 6501 } 6502 } 6503 6504 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6505 APInt &Upper, const InstrInfoQuery &IIQ) { 6506 const Value *LHS = nullptr, *RHS = nullptr; 6507 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6508 if (R.Flavor == SPF_UNKNOWN) 6509 return; 6510 6511 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6512 6513 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6514 // If the negation part of the abs (in RHS) has the NSW flag, 6515 // then the result of abs(X) is [0..SIGNED_MAX], 6516 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6517 Lower = APInt::getNullValue(BitWidth); 6518 if (match(RHS, m_Neg(m_Specific(LHS))) && 6519 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6520 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6521 else 6522 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6523 return; 6524 } 6525 6526 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6527 // The result of -abs(X) is <= 0. 6528 Lower = APInt::getSignedMinValue(BitWidth); 6529 Upper = APInt(BitWidth, 1); 6530 return; 6531 } 6532 6533 const APInt *C; 6534 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6535 return; 6536 6537 switch (R.Flavor) { 6538 case SPF_UMIN: 6539 Upper = *C + 1; 6540 break; 6541 case SPF_UMAX: 6542 Lower = *C; 6543 break; 6544 case SPF_SMIN: 6545 Lower = APInt::getSignedMinValue(BitWidth); 6546 Upper = *C + 1; 6547 break; 6548 case SPF_SMAX: 6549 Lower = *C; 6550 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6551 break; 6552 default: 6553 break; 6554 } 6555 } 6556 6557 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6558 AssumptionCache *AC, 6559 const Instruction *CtxI, 6560 unsigned Depth) { 6561 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6562 6563 if (Depth == MaxAnalysisRecursionDepth) 6564 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6565 6566 const APInt *C; 6567 if (match(V, m_APInt(C))) 6568 return ConstantRange(*C); 6569 6570 InstrInfoQuery IIQ(UseInstrInfo); 6571 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6572 APInt Lower = APInt(BitWidth, 0); 6573 APInt Upper = APInt(BitWidth, 0); 6574 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6575 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6576 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6577 setLimitsForIntrinsic(*II, Lower, Upper); 6578 else if (auto *SI = dyn_cast<SelectInst>(V)) 6579 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6580 6581 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6582 6583 if (auto *I = dyn_cast<Instruction>(V)) 6584 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6585 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6586 6587 if (CtxI && AC) { 6588 // Try to restrict the range based on information from assumptions. 6589 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6590 if (!AssumeVH) 6591 continue; 6592 CallInst *I = cast<CallInst>(AssumeVH); 6593 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6594 "Got assumption for the wrong function!"); 6595 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6596 "must be an assume intrinsic"); 6597 6598 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6599 continue; 6600 Value *Arg = I->getArgOperand(0); 6601 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6602 // Currently we just use information from comparisons. 6603 if (!Cmp || Cmp->getOperand(0) != V) 6604 continue; 6605 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6606 AC, I, Depth + 1); 6607 CR = CR.intersectWith( 6608 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6609 } 6610 } 6611 6612 return CR; 6613 } 6614 6615 static Optional<int64_t> 6616 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6617 // Skip over the first indices. 6618 gep_type_iterator GTI = gep_type_begin(GEP); 6619 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6620 /*skip along*/; 6621 6622 // Compute the offset implied by the rest of the indices. 6623 int64_t Offset = 0; 6624 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6625 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6626 if (!OpC) 6627 return None; 6628 if (OpC->isZero()) 6629 continue; // No offset. 6630 6631 // Handle struct indices, which add their field offset to the pointer. 6632 if (StructType *STy = GTI.getStructTypeOrNull()) { 6633 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6634 continue; 6635 } 6636 6637 // Otherwise, we have a sequential type like an array or fixed-length 6638 // vector. Multiply the index by the ElementSize. 6639 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6640 if (Size.isScalable()) 6641 return None; 6642 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6643 } 6644 6645 return Offset; 6646 } 6647 6648 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6649 const DataLayout &DL) { 6650 Ptr1 = Ptr1->stripPointerCasts(); 6651 Ptr2 = Ptr2->stripPointerCasts(); 6652 6653 // Handle the trivial case first. 6654 if (Ptr1 == Ptr2) { 6655 return 0; 6656 } 6657 6658 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6659 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6660 6661 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6662 // as in "P" and "gep P, 1". 6663 // Also do this iteratively to handle the the following case: 6664 // Ptr_t1 = GEP Ptr1, c1 6665 // Ptr_t2 = GEP Ptr_t1, c2 6666 // Ptr2 = GEP Ptr_t2, c3 6667 // where we will return c1+c2+c3. 6668 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6669 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6670 // are the same, and return the difference between offsets. 6671 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6672 const Value *Ptr) -> Optional<int64_t> { 6673 const GEPOperator *GEP_T = GEP; 6674 int64_t OffsetVal = 0; 6675 bool HasSameBase = false; 6676 while (GEP_T) { 6677 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6678 if (!Offset) 6679 return None; 6680 OffsetVal += *Offset; 6681 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6682 if (Op0 == Ptr) { 6683 HasSameBase = true; 6684 break; 6685 } 6686 GEP_T = dyn_cast<GEPOperator>(Op0); 6687 } 6688 if (!HasSameBase) 6689 return None; 6690 return OffsetVal; 6691 }; 6692 6693 if (GEP1) { 6694 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6695 if (Offset) 6696 return -*Offset; 6697 } 6698 if (GEP2) { 6699 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6700 if (Offset) 6701 return Offset; 6702 } 6703 6704 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6705 // base. After that base, they may have some number of common (and 6706 // potentially variable) indices. After that they handle some constant 6707 // offset, which determines their offset from each other. At this point, we 6708 // handle no other case. 6709 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6710 return None; 6711 6712 // Skip any common indices and track the GEP types. 6713 unsigned Idx = 1; 6714 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6715 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6716 break; 6717 6718 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6719 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6720 if (!Offset1 || !Offset2) 6721 return None; 6722 return *Offset2 - *Offset1; 6723 } 6724