1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// If true, it is safe to use metadata during simplification. 113 InstrInfoQuery IIQ; 114 115 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 116 const DominatorTree *DT, bool UseInstrInfo, 117 OptimizationRemarkEmitter *ORE = nullptr) 118 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 119 }; 120 121 } // end anonymous namespace 122 123 // Given the provided Value and, potentially, a context instruction, return 124 // the preferred context instruction (if any). 125 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 126 // If we've been provided with a context instruction, then use that (provided 127 // it has been inserted). 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 // If the value is really an already-inserted instruction, then use that. 132 CxtI = dyn_cast<Instruction>(V); 133 if (CxtI && CxtI->getParent()) 134 return CxtI; 135 136 return nullptr; 137 } 138 139 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 140 // If we've been provided with a context instruction, then use that (provided 141 // it has been inserted). 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 // If the value is really an already-inserted instruction, then use that. 146 CxtI = dyn_cast<Instruction>(V1); 147 if (CxtI && CxtI->getParent()) 148 return CxtI; 149 150 CxtI = dyn_cast<Instruction>(V2); 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 return nullptr; 155 } 156 157 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 158 const APInt &DemandedElts, 159 APInt &DemandedLHS, APInt &DemandedRHS) { 160 // The length of scalable vectors is unknown at compile time, thus we 161 // cannot check their values 162 if (isa<ScalableVectorType>(Shuf->getType())) 163 return false; 164 165 int NumElts = 166 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 167 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 168 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 169 if (DemandedElts.isNullValue()) 170 return true; 171 // Simple case of a shuffle with zeroinitializer. 172 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 173 DemandedLHS.setBit(0); 174 return true; 175 } 176 for (int i = 0; i != NumMaskElts; ++i) { 177 if (!DemandedElts[i]) 178 continue; 179 int M = Shuf->getMaskValue(i); 180 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 181 182 // For undef elements, we don't know anything about the common state of 183 // the shuffle result. 184 if (M == -1) 185 return false; 186 if (M < NumElts) 187 DemandedLHS.setBit(M % NumElts); 188 else 189 DemandedRHS.setBit(M % NumElts); 190 } 191 192 return true; 193 } 194 195 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 196 KnownBits &Known, unsigned Depth, const Query &Q); 197 198 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 199 const Query &Q) { 200 // FIXME: We currently have no way to represent the DemandedElts of a scalable 201 // vector 202 if (isa<ScalableVectorType>(V->getType())) { 203 Known.resetAll(); 204 return; 205 } 206 207 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 208 APInt DemandedElts = 209 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 210 computeKnownBits(V, DemandedElts, Known, Depth, Q); 211 } 212 213 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 214 const DataLayout &DL, unsigned Depth, 215 AssumptionCache *AC, const Instruction *CxtI, 216 const DominatorTree *DT, 217 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 218 ::computeKnownBits(V, Known, Depth, 219 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 220 } 221 222 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 223 KnownBits &Known, const DataLayout &DL, 224 unsigned Depth, AssumptionCache *AC, 225 const Instruction *CxtI, const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, DemandedElts, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 232 unsigned Depth, const Query &Q); 233 234 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 235 const Query &Q); 236 237 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 238 unsigned Depth, AssumptionCache *AC, 239 const Instruction *CxtI, 240 const DominatorTree *DT, 241 OptimizationRemarkEmitter *ORE, 242 bool UseInstrInfo) { 243 return ::computeKnownBits( 244 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 const DataLayout &DL, unsigned Depth, 249 AssumptionCache *AC, const Instruction *CxtI, 250 const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, 252 bool UseInstrInfo) { 253 return ::computeKnownBits( 254 V, DemandedElts, Depth, 255 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 259 const DataLayout &DL, AssumptionCache *AC, 260 const Instruction *CxtI, const DominatorTree *DT, 261 bool UseInstrInfo) { 262 assert(LHS->getType() == RHS->getType() && 263 "LHS and RHS should have the same type"); 264 assert(LHS->getType()->isIntOrIntVectorTy() && 265 "LHS and RHS should be integers"); 266 // Look for an inverted mask: (X & ~M) op (Y & M). 267 Value *M; 268 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 269 match(RHS, m_c_And(m_Specific(M), m_Value()))) 270 return true; 271 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 272 match(LHS, m_c_And(m_Specific(M), m_Value()))) 273 return true; 274 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 275 KnownBits LHSKnown(IT->getBitWidth()); 276 KnownBits RHSKnown(IT->getBitWidth()); 277 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 278 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 279 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 280 } 281 282 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 283 for (const User *U : CxtI->users()) { 284 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 285 if (IC->isEquality()) 286 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 287 if (C->isNullValue()) 288 continue; 289 return false; 290 } 291 return true; 292 } 293 294 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 295 const Query &Q); 296 297 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 298 bool OrZero, unsigned Depth, 299 AssumptionCache *AC, const Instruction *CxtI, 300 const DominatorTree *DT, bool UseInstrInfo) { 301 return ::isKnownToBeAPowerOfTwo( 302 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 303 } 304 305 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 306 unsigned Depth, const Query &Q); 307 308 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 309 310 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 311 AssumptionCache *AC, const Instruction *CxtI, 312 const DominatorTree *DT, bool UseInstrInfo) { 313 return ::isKnownNonZero(V, Depth, 314 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 315 } 316 317 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 318 unsigned Depth, AssumptionCache *AC, 319 const Instruction *CxtI, const DominatorTree *DT, 320 bool UseInstrInfo) { 321 KnownBits Known = 322 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 323 return Known.isNonNegative(); 324 } 325 326 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 327 AssumptionCache *AC, const Instruction *CxtI, 328 const DominatorTree *DT, bool UseInstrInfo) { 329 if (auto *CI = dyn_cast<ConstantInt>(V)) 330 return CI->getValue().isStrictlyPositive(); 331 332 // TODO: We'd doing two recursive queries here. We should factor this such 333 // that only a single query is needed. 334 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 335 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 336 } 337 338 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 339 AssumptionCache *AC, const Instruction *CxtI, 340 const DominatorTree *DT, bool UseInstrInfo) { 341 KnownBits Known = 342 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 343 return Known.isNegative(); 344 } 345 346 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 347 const Query &Q); 348 349 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 350 const DataLayout &DL, AssumptionCache *AC, 351 const Instruction *CxtI, const DominatorTree *DT, 352 bool UseInstrInfo) { 353 return ::isKnownNonEqual(V1, V2, 0, 354 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 355 UseInstrInfo, /*ORE=*/nullptr)); 356 } 357 358 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 359 const Query &Q); 360 361 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 362 const DataLayout &DL, unsigned Depth, 363 AssumptionCache *AC, const Instruction *CxtI, 364 const DominatorTree *DT, bool UseInstrInfo) { 365 return ::MaskedValueIsZero( 366 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 367 } 368 369 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 370 unsigned Depth, const Query &Q); 371 372 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 373 const Query &Q) { 374 // FIXME: We currently have no way to represent the DemandedElts of a scalable 375 // vector 376 if (isa<ScalableVectorType>(V->getType())) 377 return 1; 378 379 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 380 APInt DemandedElts = 381 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 382 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 383 } 384 385 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 386 unsigned Depth, AssumptionCache *AC, 387 const Instruction *CxtI, 388 const DominatorTree *DT, bool UseInstrInfo) { 389 return ::ComputeNumSignBits( 390 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 391 } 392 393 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 394 bool NSW, const APInt &DemandedElts, 395 KnownBits &KnownOut, KnownBits &Known2, 396 unsigned Depth, const Query &Q) { 397 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 398 399 // If one operand is unknown and we have no nowrap information, 400 // the result will be unknown independently of the second operand. 401 if (KnownOut.isUnknown() && !NSW) 402 return; 403 404 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 405 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 406 } 407 408 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 409 const APInt &DemandedElts, KnownBits &Known, 410 KnownBits &Known2, unsigned Depth, 411 const Query &Q) { 412 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 413 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 414 415 bool isKnownNegative = false; 416 bool isKnownNonNegative = false; 417 // If the multiplication is known not to overflow, compute the sign bit. 418 if (NSW) { 419 if (Op0 == Op1) { 420 // The product of a number with itself is non-negative. 421 isKnownNonNegative = true; 422 } else { 423 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 424 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 425 bool isKnownNegativeOp1 = Known.isNegative(); 426 bool isKnownNegativeOp0 = Known2.isNegative(); 427 // The product of two numbers with the same sign is non-negative. 428 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 429 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 430 // The product of a negative number and a non-negative number is either 431 // negative or zero. 432 if (!isKnownNonNegative) 433 isKnownNegative = 434 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 435 Known2.isNonZero()) || 436 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 437 } 438 } 439 440 Known = KnownBits::mul(Known, Known2); 441 442 // Only make use of no-wrap flags if we failed to compute the sign bit 443 // directly. This matters if the multiplication always overflows, in 444 // which case we prefer to follow the result of the direct computation, 445 // though as the program is invoking undefined behaviour we can choose 446 // whatever we like here. 447 if (isKnownNonNegative && !Known.isNegative()) 448 Known.makeNonNegative(); 449 else if (isKnownNegative && !Known.isNonNegative()) 450 Known.makeNegative(); 451 } 452 453 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 454 KnownBits &Known) { 455 unsigned BitWidth = Known.getBitWidth(); 456 unsigned NumRanges = Ranges.getNumOperands() / 2; 457 assert(NumRanges >= 1); 458 459 Known.Zero.setAllBits(); 460 Known.One.setAllBits(); 461 462 for (unsigned i = 0; i < NumRanges; ++i) { 463 ConstantInt *Lower = 464 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 465 ConstantInt *Upper = 466 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 467 ConstantRange Range(Lower->getValue(), Upper->getValue()); 468 469 // The first CommonPrefixBits of all values in Range are equal. 470 unsigned CommonPrefixBits = 471 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 472 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 473 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 474 Known.One &= UnsignedMax & Mask; 475 Known.Zero &= ~UnsignedMax & Mask; 476 } 477 } 478 479 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 480 SmallVector<const Value *, 16> WorkSet(1, I); 481 SmallPtrSet<const Value *, 32> Visited; 482 SmallPtrSet<const Value *, 16> EphValues; 483 484 // The instruction defining an assumption's condition itself is always 485 // considered ephemeral to that assumption (even if it has other 486 // non-ephemeral users). See r246696's test case for an example. 487 if (is_contained(I->operands(), E)) 488 return true; 489 490 while (!WorkSet.empty()) { 491 const Value *V = WorkSet.pop_back_val(); 492 if (!Visited.insert(V).second) 493 continue; 494 495 // If all uses of this value are ephemeral, then so is this value. 496 if (llvm::all_of(V->users(), [&](const User *U) { 497 return EphValues.count(U); 498 })) { 499 if (V == E) 500 return true; 501 502 if (V == I || isSafeToSpeculativelyExecute(V)) { 503 EphValues.insert(V); 504 if (const User *U = dyn_cast<User>(V)) 505 append_range(WorkSet, U->operands()); 506 } 507 } 508 } 509 510 return false; 511 } 512 513 // Is this an intrinsic that cannot be speculated but also cannot trap? 514 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 515 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 516 return CI->isAssumeLikeIntrinsic(); 517 518 return false; 519 } 520 521 bool llvm::isValidAssumeForContext(const Instruction *Inv, 522 const Instruction *CxtI, 523 const DominatorTree *DT) { 524 // There are two restrictions on the use of an assume: 525 // 1. The assume must dominate the context (or the control flow must 526 // reach the assume whenever it reaches the context). 527 // 2. The context must not be in the assume's set of ephemeral values 528 // (otherwise we will use the assume to prove that the condition 529 // feeding the assume is trivially true, thus causing the removal of 530 // the assume). 531 532 if (Inv->getParent() == CxtI->getParent()) { 533 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 534 // in the BB. 535 if (Inv->comesBefore(CxtI)) 536 return true; 537 538 // Don't let an assume affect itself - this would cause the problems 539 // `isEphemeralValueOf` is trying to prevent, and it would also make 540 // the loop below go out of bounds. 541 if (Inv == CxtI) 542 return false; 543 544 // The context comes first, but they're both in the same block. 545 // Make sure there is nothing in between that might interrupt 546 // the control flow, not even CxtI itself. 547 // We limit the scan distance between the assume and its context instruction 548 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 549 // it can be adjusted if needed (could be turned into a cl::opt). 550 unsigned ScanLimit = 15; 551 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 552 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 553 return false; 554 555 return !isEphemeralValueOf(Inv, CxtI); 556 } 557 558 // Inv and CxtI are in different blocks. 559 if (DT) { 560 if (DT->dominates(Inv, CxtI)) 561 return true; 562 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 563 // We don't have a DT, but this trivially dominates. 564 return true; 565 } 566 567 return false; 568 } 569 570 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 571 // v u> y implies v != 0. 572 if (Pred == ICmpInst::ICMP_UGT) 573 return true; 574 575 // Special-case v != 0 to also handle v != null. 576 if (Pred == ICmpInst::ICMP_NE) 577 return match(RHS, m_Zero()); 578 579 // All other predicates - rely on generic ConstantRange handling. 580 const APInt *C; 581 if (!match(RHS, m_APInt(C))) 582 return false; 583 584 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 585 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 586 } 587 588 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 589 // Use of assumptions is context-sensitive. If we don't have a context, we 590 // cannot use them! 591 if (!Q.AC || !Q.CxtI) 592 return false; 593 594 if (Q.CxtI && V->getType()->isPointerTy()) { 595 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 596 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 597 V->getType()->getPointerAddressSpace())) 598 AttrKinds.push_back(Attribute::Dereferenceable); 599 600 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 601 return true; 602 } 603 604 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 605 if (!AssumeVH) 606 continue; 607 CallInst *I = cast<CallInst>(AssumeVH); 608 assert(I->getFunction() == Q.CxtI->getFunction() && 609 "Got assumption for the wrong function!"); 610 611 // Warning: This loop can end up being somewhat performance sensitive. 612 // We're running this loop for once for each value queried resulting in a 613 // runtime of ~O(#assumes * #values). 614 615 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 616 "must be an assume intrinsic"); 617 618 Value *RHS; 619 CmpInst::Predicate Pred; 620 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 621 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 622 return false; 623 624 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 625 return true; 626 } 627 628 return false; 629 } 630 631 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 632 unsigned Depth, const Query &Q) { 633 // Use of assumptions is context-sensitive. If we don't have a context, we 634 // cannot use them! 635 if (!Q.AC || !Q.CxtI) 636 return; 637 638 unsigned BitWidth = Known.getBitWidth(); 639 640 // Refine Known set if the pointer alignment is set by assume bundles. 641 if (V->getType()->isPointerTy()) { 642 if (RetainedKnowledge RK = getKnowledgeValidInContext( 643 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 644 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 645 } 646 } 647 648 // Note that the patterns below need to be kept in sync with the code 649 // in AssumptionCache::updateAffectedValues. 650 651 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 652 if (!AssumeVH) 653 continue; 654 CallInst *I = cast<CallInst>(AssumeVH); 655 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 656 "Got assumption for the wrong function!"); 657 658 // Warning: This loop can end up being somewhat performance sensitive. 659 // We're running this loop for once for each value queried resulting in a 660 // runtime of ~O(#assumes * #values). 661 662 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 663 "must be an assume intrinsic"); 664 665 Value *Arg = I->getArgOperand(0); 666 667 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 668 assert(BitWidth == 1 && "assume operand is not i1?"); 669 Known.setAllOnes(); 670 return; 671 } 672 if (match(Arg, m_Not(m_Specific(V))) && 673 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 674 assert(BitWidth == 1 && "assume operand is not i1?"); 675 Known.setAllZero(); 676 return; 677 } 678 679 // The remaining tests are all recursive, so bail out if we hit the limit. 680 if (Depth == MaxAnalysisRecursionDepth) 681 continue; 682 683 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 684 if (!Cmp) 685 continue; 686 687 // We are attempting to compute known bits for the operands of an assume. 688 // Do not try to use other assumptions for those recursive calls because 689 // that can lead to mutual recursion and a compile-time explosion. 690 // An example of the mutual recursion: computeKnownBits can call 691 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 692 // and so on. 693 Query QueryNoAC = Q; 694 QueryNoAC.AC = nullptr; 695 696 // Note that ptrtoint may change the bitwidth. 697 Value *A, *B; 698 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 699 700 CmpInst::Predicate Pred; 701 uint64_t C; 702 switch (Cmp->getPredicate()) { 703 default: 704 break; 705 case ICmpInst::ICMP_EQ: 706 // assume(v = a) 707 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 708 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 709 KnownBits RHSKnown = 710 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 711 Known.Zero |= RHSKnown.Zero; 712 Known.One |= RHSKnown.One; 713 // assume(v & b = a) 714 } else if (match(Cmp, 715 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 716 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 717 KnownBits RHSKnown = 718 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 719 KnownBits MaskKnown = 720 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 721 722 // For those bits in the mask that are known to be one, we can propagate 723 // known bits from the RHS to V. 724 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 725 Known.One |= RHSKnown.One & MaskKnown.One; 726 // assume(~(v & b) = a) 727 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 728 m_Value(A))) && 729 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 730 KnownBits RHSKnown = 731 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 732 KnownBits MaskKnown = 733 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 734 735 // For those bits in the mask that are known to be one, we can propagate 736 // inverted known bits from the RHS to V. 737 Known.Zero |= RHSKnown.One & MaskKnown.One; 738 Known.One |= RHSKnown.Zero & MaskKnown.One; 739 // assume(v | b = a) 740 } else if (match(Cmp, 741 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 743 KnownBits RHSKnown = 744 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 745 KnownBits BKnown = 746 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 747 748 // For those bits in B that are known to be zero, we can propagate known 749 // bits from the RHS to V. 750 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 751 Known.One |= RHSKnown.One & BKnown.Zero; 752 // assume(~(v | b) = a) 753 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 754 m_Value(A))) && 755 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 756 KnownBits RHSKnown = 757 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 758 KnownBits BKnown = 759 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 760 761 // For those bits in B that are known to be zero, we can propagate 762 // inverted known bits from the RHS to V. 763 Known.Zero |= RHSKnown.One & BKnown.Zero; 764 Known.One |= RHSKnown.Zero & BKnown.Zero; 765 // assume(v ^ b = a) 766 } else if (match(Cmp, 767 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 768 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 769 KnownBits RHSKnown = 770 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 771 KnownBits BKnown = 772 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 773 774 // For those bits in B that are known to be zero, we can propagate known 775 // bits from the RHS to V. For those bits in B that are known to be one, 776 // we can propagate inverted known bits from the RHS to V. 777 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 778 Known.One |= RHSKnown.One & BKnown.Zero; 779 Known.Zero |= RHSKnown.One & BKnown.One; 780 Known.One |= RHSKnown.Zero & BKnown.One; 781 // assume(~(v ^ b) = a) 782 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 783 m_Value(A))) && 784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 785 KnownBits RHSKnown = 786 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 787 KnownBits BKnown = 788 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 789 790 // For those bits in B that are known to be zero, we can propagate 791 // inverted known bits from the RHS to V. For those bits in B that are 792 // known to be one, we can propagate known bits from the RHS to V. 793 Known.Zero |= RHSKnown.One & BKnown.Zero; 794 Known.One |= RHSKnown.Zero & BKnown.Zero; 795 Known.Zero |= RHSKnown.Zero & BKnown.One; 796 Known.One |= RHSKnown.One & BKnown.One; 797 // assume(v << c = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 803 804 // For those bits in RHS that are known, we can propagate them to known 805 // bits in V shifted to the right by C. 806 RHSKnown.Zero.lshrInPlace(C); 807 Known.Zero |= RHSKnown.Zero; 808 RHSKnown.One.lshrInPlace(C); 809 Known.One |= RHSKnown.One; 810 // assume(~(v << c) = a) 811 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 812 m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 814 KnownBits RHSKnown = 815 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 816 // For those bits in RHS that are known, we can propagate them inverted 817 // to known bits in V shifted to the right by C. 818 RHSKnown.One.lshrInPlace(C); 819 Known.Zero |= RHSKnown.One; 820 RHSKnown.Zero.lshrInPlace(C); 821 Known.One |= RHSKnown.Zero; 822 // assume(v >> c = a) 823 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 824 m_Value(A))) && 825 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 826 KnownBits RHSKnown = 827 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 828 // For those bits in RHS that are known, we can propagate them to known 829 // bits in V shifted to the right by C. 830 Known.Zero |= RHSKnown.Zero << C; 831 Known.One |= RHSKnown.One << C; 832 // assume(~(v >> c) = a) 833 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 834 m_Value(A))) && 835 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 836 KnownBits RHSKnown = 837 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 838 // For those bits in RHS that are known, we can propagate them inverted 839 // to known bits in V shifted to the right by C. 840 Known.Zero |= RHSKnown.One << C; 841 Known.One |= RHSKnown.Zero << C; 842 } 843 break; 844 case ICmpInst::ICMP_SGE: 845 // assume(v >=_s c) where c is non-negative 846 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 847 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 848 KnownBits RHSKnown = 849 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 850 851 if (RHSKnown.isNonNegative()) { 852 // We know that the sign bit is zero. 853 Known.makeNonNegative(); 854 } 855 } 856 break; 857 case ICmpInst::ICMP_SGT: 858 // assume(v >_s c) where c is at least -1. 859 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 860 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 861 KnownBits RHSKnown = 862 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 863 864 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 865 // We know that the sign bit is zero. 866 Known.makeNonNegative(); 867 } 868 } 869 break; 870 case ICmpInst::ICMP_SLE: 871 // assume(v <=_s c) where c is negative 872 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 873 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 874 KnownBits RHSKnown = 875 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 876 877 if (RHSKnown.isNegative()) { 878 // We know that the sign bit is one. 879 Known.makeNegative(); 880 } 881 } 882 break; 883 case ICmpInst::ICMP_SLT: 884 // assume(v <_s c) where c is non-positive 885 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 886 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 887 KnownBits RHSKnown = 888 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 889 890 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 891 // We know that the sign bit is one. 892 Known.makeNegative(); 893 } 894 } 895 break; 896 case ICmpInst::ICMP_ULE: 897 // assume(v <=_u c) 898 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 899 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 900 KnownBits RHSKnown = 901 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 902 903 // Whatever high bits in c are zero are known to be zero. 904 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 905 } 906 break; 907 case ICmpInst::ICMP_ULT: 908 // assume(v <_u c) 909 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 910 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 911 KnownBits RHSKnown = 912 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 913 914 // If the RHS is known zero, then this assumption must be wrong (nothing 915 // is unsigned less than zero). Signal a conflict and get out of here. 916 if (RHSKnown.isZero()) { 917 Known.Zero.setAllBits(); 918 Known.One.setAllBits(); 919 break; 920 } 921 922 // Whatever high bits in c are zero are known to be zero (if c is a power 923 // of 2, then one more). 924 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 925 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 926 else 927 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 928 } 929 break; 930 } 931 } 932 933 // If assumptions conflict with each other or previous known bits, then we 934 // have a logical fallacy. It's possible that the assumption is not reachable, 935 // so this isn't a real bug. On the other hand, the program may have undefined 936 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 937 // clear out the known bits, try to warn the user, and hope for the best. 938 if (Known.Zero.intersects(Known.One)) { 939 Known.resetAll(); 940 941 if (Q.ORE) 942 Q.ORE->emit([&]() { 943 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 944 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 945 CxtI) 946 << "Detected conflicting code assumptions. Program may " 947 "have undefined behavior, or compiler may have " 948 "internal error."; 949 }); 950 } 951 } 952 953 /// Compute known bits from a shift operator, including those with a 954 /// non-constant shift amount. Known is the output of this function. Known2 is a 955 /// pre-allocated temporary with the same bit width as Known and on return 956 /// contains the known bit of the shift value source. KF is an 957 /// operator-specific function that, given the known-bits and a shift amount, 958 /// compute the implied known-bits of the shift operator's result respectively 959 /// for that shift amount. The results from calling KF are conservatively 960 /// combined for all permitted shift amounts. 961 static void computeKnownBitsFromShiftOperator( 962 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 963 KnownBits &Known2, unsigned Depth, const Query &Q, 964 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 965 unsigned BitWidth = Known.getBitWidth(); 966 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 967 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 968 969 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 970 // BitWidth > 64 and any upper bits are known, we'll end up returning the 971 // limit value (which implies all bits are known). 972 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 973 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 974 bool ShiftAmtIsConstant = Known.isConstant(); 975 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 976 977 if (ShiftAmtIsConstant) { 978 Known = KF(Known2, Known); 979 980 // If the known bits conflict, this must be an overflowing left shift, so 981 // the shift result is poison. We can return anything we want. Choose 0 for 982 // the best folding opportunity. 983 if (Known.hasConflict()) 984 Known.setAllZero(); 985 986 return; 987 } 988 989 // If the shift amount could be greater than or equal to the bit-width of the 990 // LHS, the value could be poison, but bail out because the check below is 991 // expensive. 992 // TODO: Should we just carry on? 993 if (MaxShiftAmtIsOutOfRange) { 994 Known.resetAll(); 995 return; 996 } 997 998 // It would be more-clearly correct to use the two temporaries for this 999 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1000 Known.resetAll(); 1001 1002 // If we know the shifter operand is nonzero, we can sometimes infer more 1003 // known bits. However this is expensive to compute, so be lazy about it and 1004 // only compute it when absolutely necessary. 1005 Optional<bool> ShifterOperandIsNonZero; 1006 1007 // Early exit if we can't constrain any well-defined shift amount. 1008 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1009 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1010 ShifterOperandIsNonZero = 1011 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1012 if (!*ShifterOperandIsNonZero) 1013 return; 1014 } 1015 1016 Known.Zero.setAllBits(); 1017 Known.One.setAllBits(); 1018 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1019 // Combine the shifted known input bits only for those shift amounts 1020 // compatible with its known constraints. 1021 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1022 continue; 1023 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1024 continue; 1025 // If we know the shifter is nonzero, we may be able to infer more known 1026 // bits. This check is sunk down as far as possible to avoid the expensive 1027 // call to isKnownNonZero if the cheaper checks above fail. 1028 if (ShiftAmt == 0) { 1029 if (!ShifterOperandIsNonZero.hasValue()) 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (*ShifterOperandIsNonZero) 1033 continue; 1034 } 1035 1036 Known = KnownBits::commonBits( 1037 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1038 } 1039 1040 // If the known bits conflict, the result is poison. Return a 0 and hope the 1041 // caller can further optimize that. 1042 if (Known.hasConflict()) 1043 Known.setAllZero(); 1044 } 1045 1046 static void computeKnownBitsFromOperator(const Operator *I, 1047 const APInt &DemandedElts, 1048 KnownBits &Known, unsigned Depth, 1049 const Query &Q) { 1050 unsigned BitWidth = Known.getBitWidth(); 1051 1052 KnownBits Known2(BitWidth); 1053 switch (I->getOpcode()) { 1054 default: break; 1055 case Instruction::Load: 1056 if (MDNode *MD = 1057 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1058 computeKnownBitsFromRangeMetadata(*MD, Known); 1059 break; 1060 case Instruction::And: { 1061 // If either the LHS or the RHS are Zero, the result is zero. 1062 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1063 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1064 1065 Known &= Known2; 1066 1067 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1068 // here we handle the more general case of adding any odd number by 1069 // matching the form add(x, add(x, y)) where y is odd. 1070 // TODO: This could be generalized to clearing any bit set in y where the 1071 // following bit is known to be unset in y. 1072 Value *X = nullptr, *Y = nullptr; 1073 if (!Known.Zero[0] && !Known.One[0] && 1074 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1075 Known2.resetAll(); 1076 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1077 if (Known2.countMinTrailingOnes() > 0) 1078 Known.Zero.setBit(0); 1079 } 1080 break; 1081 } 1082 case Instruction::Or: 1083 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1085 1086 Known |= Known2; 1087 break; 1088 case Instruction::Xor: 1089 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1090 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1091 1092 Known ^= Known2; 1093 break; 1094 case Instruction::Mul: { 1095 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1096 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1097 Known, Known2, Depth, Q); 1098 break; 1099 } 1100 case Instruction::UDiv: { 1101 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1102 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1103 Known = KnownBits::udiv(Known, Known2); 1104 break; 1105 } 1106 case Instruction::Select: { 1107 const Value *LHS = nullptr, *RHS = nullptr; 1108 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1109 if (SelectPatternResult::isMinOrMax(SPF)) { 1110 computeKnownBits(RHS, Known, Depth + 1, Q); 1111 computeKnownBits(LHS, Known2, Depth + 1, Q); 1112 switch (SPF) { 1113 default: 1114 llvm_unreachable("Unhandled select pattern flavor!"); 1115 case SPF_SMAX: 1116 Known = KnownBits::smax(Known, Known2); 1117 break; 1118 case SPF_SMIN: 1119 Known = KnownBits::smin(Known, Known2); 1120 break; 1121 case SPF_UMAX: 1122 Known = KnownBits::umax(Known, Known2); 1123 break; 1124 case SPF_UMIN: 1125 Known = KnownBits::umin(Known, Known2); 1126 break; 1127 } 1128 break; 1129 } 1130 1131 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1132 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1133 1134 // Only known if known in both the LHS and RHS. 1135 Known = KnownBits::commonBits(Known, Known2); 1136 1137 if (SPF == SPF_ABS) { 1138 // RHS from matchSelectPattern returns the negation part of abs pattern. 1139 // If the negate has an NSW flag we can assume the sign bit of the result 1140 // will be 0 because that makes abs(INT_MIN) undefined. 1141 if (match(RHS, m_Neg(m_Specific(LHS))) && 1142 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1143 Known.Zero.setSignBit(); 1144 } 1145 1146 break; 1147 } 1148 case Instruction::FPTrunc: 1149 case Instruction::FPExt: 1150 case Instruction::FPToUI: 1151 case Instruction::FPToSI: 1152 case Instruction::SIToFP: 1153 case Instruction::UIToFP: 1154 break; // Can't work with floating point. 1155 case Instruction::PtrToInt: 1156 case Instruction::IntToPtr: 1157 // Fall through and handle them the same as zext/trunc. 1158 LLVM_FALLTHROUGH; 1159 case Instruction::ZExt: 1160 case Instruction::Trunc: { 1161 Type *SrcTy = I->getOperand(0)->getType(); 1162 1163 unsigned SrcBitWidth; 1164 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1165 // which fall through here. 1166 Type *ScalarTy = SrcTy->getScalarType(); 1167 SrcBitWidth = ScalarTy->isPointerTy() ? 1168 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1169 Q.DL.getTypeSizeInBits(ScalarTy); 1170 1171 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1172 Known = Known.anyextOrTrunc(SrcBitWidth); 1173 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1174 Known = Known.zextOrTrunc(BitWidth); 1175 break; 1176 } 1177 case Instruction::BitCast: { 1178 Type *SrcTy = I->getOperand(0)->getType(); 1179 if (SrcTy->isIntOrPtrTy() && 1180 // TODO: For now, not handling conversions like: 1181 // (bitcast i64 %x to <2 x i32>) 1182 !I->getType()->isVectorTy()) { 1183 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1184 break; 1185 } 1186 1187 // Handle cast from vector integer type to scalar or vector integer. 1188 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1189 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1190 !I->getType()->isIntOrIntVectorTy()) 1191 break; 1192 1193 // Look through a cast from narrow vector elements to wider type. 1194 // Examples: v4i32 -> v2i64, v3i8 -> v24 1195 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1196 if (BitWidth % SubBitWidth == 0) { 1197 // Known bits are automatically intersected across demanded elements of a 1198 // vector. So for example, if a bit is computed as known zero, it must be 1199 // zero across all demanded elements of the vector. 1200 // 1201 // For this bitcast, each demanded element of the output is sub-divided 1202 // across a set of smaller vector elements in the source vector. To get 1203 // the known bits for an entire element of the output, compute the known 1204 // bits for each sub-element sequentially. This is done by shifting the 1205 // one-set-bit demanded elements parameter across the sub-elements for 1206 // consecutive calls to computeKnownBits. We are using the demanded 1207 // elements parameter as a mask operator. 1208 // 1209 // The known bits of each sub-element are then inserted into place 1210 // (dependent on endian) to form the full result of known bits. 1211 unsigned NumElts = DemandedElts.getBitWidth(); 1212 unsigned SubScale = BitWidth / SubBitWidth; 1213 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1214 for (unsigned i = 0; i != NumElts; ++i) { 1215 if (DemandedElts[i]) 1216 SubDemandedElts.setBit(i * SubScale); 1217 } 1218 1219 KnownBits KnownSrc(SubBitWidth); 1220 for (unsigned i = 0; i != SubScale; ++i) { 1221 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1222 Depth + 1, Q); 1223 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1224 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1225 } 1226 } 1227 break; 1228 } 1229 case Instruction::SExt: { 1230 // Compute the bits in the result that are not present in the input. 1231 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1232 1233 Known = Known.trunc(SrcBitWidth); 1234 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1235 // If the sign bit of the input is known set or clear, then we know the 1236 // top bits of the result. 1237 Known = Known.sext(BitWidth); 1238 break; 1239 } 1240 case Instruction::Shl: { 1241 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1242 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1244 // If this shift has "nsw" keyword, then the result is either a poison 1245 // value or has the same sign bit as the first operand. 1246 if (NSW) { 1247 if (KnownVal.Zero.isSignBitSet()) 1248 Result.Zero.setSignBit(); 1249 if (KnownVal.One.isSignBitSet()) 1250 Result.One.setSignBit(); 1251 } 1252 return Result; 1253 }; 1254 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1255 KF); 1256 // Trailing zeros of a right-shifted constant never decrease. 1257 const APInt *C; 1258 if (match(I->getOperand(0), m_APInt(C))) 1259 Known.Zero.setLowBits(C->countTrailingZeros()); 1260 break; 1261 } 1262 case Instruction::LShr: { 1263 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1264 return KnownBits::lshr(KnownVal, KnownAmt); 1265 }; 1266 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1267 KF); 1268 // Leading zeros of a left-shifted constant never decrease. 1269 const APInt *C; 1270 if (match(I->getOperand(0), m_APInt(C))) 1271 Known.Zero.setHighBits(C->countLeadingZeros()); 1272 break; 1273 } 1274 case Instruction::AShr: { 1275 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1276 return KnownBits::ashr(KnownVal, KnownAmt); 1277 }; 1278 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1279 KF); 1280 break; 1281 } 1282 case Instruction::Sub: { 1283 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1284 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1285 DemandedElts, Known, Known2, Depth, Q); 1286 break; 1287 } 1288 case Instruction::Add: { 1289 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1290 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1291 DemandedElts, Known, Known2, Depth, Q); 1292 break; 1293 } 1294 case Instruction::SRem: 1295 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1296 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1297 Known = KnownBits::srem(Known, Known2); 1298 break; 1299 1300 case Instruction::URem: 1301 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1302 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1303 Known = KnownBits::urem(Known, Known2); 1304 break; 1305 case Instruction::Alloca: 1306 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1307 break; 1308 case Instruction::GetElementPtr: { 1309 // Analyze all of the subscripts of this getelementptr instruction 1310 // to determine if we can prove known low zero bits. 1311 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1312 // Accumulate the constant indices in a separate variable 1313 // to minimize the number of calls to computeForAddSub. 1314 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1315 1316 gep_type_iterator GTI = gep_type_begin(I); 1317 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1318 // TrailZ can only become smaller, short-circuit if we hit zero. 1319 if (Known.isUnknown()) 1320 break; 1321 1322 Value *Index = I->getOperand(i); 1323 1324 // Handle case when index is zero. 1325 Constant *CIndex = dyn_cast<Constant>(Index); 1326 if (CIndex && CIndex->isZeroValue()) 1327 continue; 1328 1329 if (StructType *STy = GTI.getStructTypeOrNull()) { 1330 // Handle struct member offset arithmetic. 1331 1332 assert(CIndex && 1333 "Access to structure field must be known at compile time"); 1334 1335 if (CIndex->getType()->isVectorTy()) 1336 Index = CIndex->getSplatValue(); 1337 1338 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1339 const StructLayout *SL = Q.DL.getStructLayout(STy); 1340 uint64_t Offset = SL->getElementOffset(Idx); 1341 AccConstIndices += Offset; 1342 continue; 1343 } 1344 1345 // Handle array index arithmetic. 1346 Type *IndexedTy = GTI.getIndexedType(); 1347 if (!IndexedTy->isSized()) { 1348 Known.resetAll(); 1349 break; 1350 } 1351 1352 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1353 KnownBits IndexBits(IndexBitWidth); 1354 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1355 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1356 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1357 KnownBits ScalingFactor(IndexBitWidth); 1358 // Multiply by current sizeof type. 1359 // &A[i] == A + i * sizeof(*A[i]). 1360 if (IndexTypeSize.isScalable()) { 1361 // For scalable types the only thing we know about sizeof is 1362 // that this is a multiple of the minimum size. 1363 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1364 } else if (IndexBits.isConstant()) { 1365 APInt IndexConst = IndexBits.getConstant(); 1366 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1367 IndexConst *= ScalingFactor; 1368 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1369 continue; 1370 } else { 1371 ScalingFactor = 1372 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1373 } 1374 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1375 1376 // If the offsets have a different width from the pointer, according 1377 // to the language reference we need to sign-extend or truncate them 1378 // to the width of the pointer. 1379 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1380 1381 // Note that inbounds does *not* guarantee nsw for the addition, as only 1382 // the offset is signed, while the base address is unsigned. 1383 Known = KnownBits::computeForAddSub( 1384 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1385 } 1386 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1387 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1388 Known = KnownBits::computeForAddSub( 1389 /*Add=*/true, /*NSW=*/false, Known, Index); 1390 } 1391 break; 1392 } 1393 case Instruction::PHI: { 1394 const PHINode *P = cast<PHINode>(I); 1395 BinaryOperator *BO = nullptr; 1396 Value *R = nullptr, *L = nullptr; 1397 if (matchSimpleRecurrence(P, BO, R, L)) { 1398 // Handle the case of a simple two-predecessor recurrence PHI. 1399 // There's a lot more that could theoretically be done here, but 1400 // this is sufficient to catch some interesting cases. 1401 unsigned Opcode = BO->getOpcode(); 1402 1403 // If this is a shift recurrence, we know the bits being shifted in. 1404 // We can combine that with information about the start value of the 1405 // recurrence to conclude facts about the result. 1406 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1407 Opcode == Instruction::Shl) && 1408 BO->getOperand(0) == I) { 1409 1410 // We have matched a recurrence of the form: 1411 // %iv = [R, %entry], [%iv.next, %backedge] 1412 // %iv.next = shift_op %iv, L 1413 1414 // Recurse with the phi context to avoid concern about whether facts 1415 // inferred hold at original context instruction. TODO: It may be 1416 // correct to use the original context. IF warranted, explore and 1417 // add sufficient tests to cover. 1418 Query RecQ = Q; 1419 RecQ.CxtI = P; 1420 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1421 switch (Opcode) { 1422 case Instruction::Shl: 1423 // A shl recurrence will only increase the tailing zeros 1424 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1425 break; 1426 case Instruction::LShr: 1427 // A lshr recurrence will preserve the leading zeros of the 1428 // start value 1429 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1430 break; 1431 case Instruction::AShr: 1432 // An ashr recurrence will extend the initial sign bit 1433 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1434 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1435 break; 1436 }; 1437 } 1438 1439 // Check for operations that have the property that if 1440 // both their operands have low zero bits, the result 1441 // will have low zero bits. 1442 if (Opcode == Instruction::Add || 1443 Opcode == Instruction::Sub || 1444 Opcode == Instruction::And || 1445 Opcode == Instruction::Or || 1446 Opcode == Instruction::Mul) { 1447 // Change the context instruction to the "edge" that flows into the 1448 // phi. This is important because that is where the value is actually 1449 // "evaluated" even though it is used later somewhere else. (see also 1450 // D69571). 1451 Query RecQ = Q; 1452 1453 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1454 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1455 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1456 1457 // Ok, we have a PHI of the form L op= R. Check for low 1458 // zero bits. 1459 RecQ.CxtI = RInst; 1460 computeKnownBits(R, Known2, Depth + 1, RecQ); 1461 1462 // We need to take the minimum number of known bits 1463 KnownBits Known3(BitWidth); 1464 RecQ.CxtI = LInst; 1465 computeKnownBits(L, Known3, Depth + 1, RecQ); 1466 1467 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1468 Known3.countMinTrailingZeros())); 1469 1470 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1471 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1472 // If initial value of recurrence is nonnegative, and we are adding 1473 // a nonnegative number with nsw, the result can only be nonnegative 1474 // or poison value regardless of the number of times we execute the 1475 // add in phi recurrence. If initial value is negative and we are 1476 // adding a negative number with nsw, the result can only be 1477 // negative or poison value. Similar arguments apply to sub and mul. 1478 // 1479 // (add non-negative, non-negative) --> non-negative 1480 // (add negative, negative) --> negative 1481 if (Opcode == Instruction::Add) { 1482 if (Known2.isNonNegative() && Known3.isNonNegative()) 1483 Known.makeNonNegative(); 1484 else if (Known2.isNegative() && Known3.isNegative()) 1485 Known.makeNegative(); 1486 } 1487 1488 // (sub nsw non-negative, negative) --> non-negative 1489 // (sub nsw negative, non-negative) --> negative 1490 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1491 if (Known2.isNonNegative() && Known3.isNegative()) 1492 Known.makeNonNegative(); 1493 else if (Known2.isNegative() && Known3.isNonNegative()) 1494 Known.makeNegative(); 1495 } 1496 1497 // (mul nsw non-negative, non-negative) --> non-negative 1498 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1499 Known3.isNonNegative()) 1500 Known.makeNonNegative(); 1501 } 1502 1503 break; 1504 } 1505 } 1506 1507 // Unreachable blocks may have zero-operand PHI nodes. 1508 if (P->getNumIncomingValues() == 0) 1509 break; 1510 1511 // Otherwise take the unions of the known bit sets of the operands, 1512 // taking conservative care to avoid excessive recursion. 1513 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1514 // Skip if every incoming value references to ourself. 1515 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1516 break; 1517 1518 Known.Zero.setAllBits(); 1519 Known.One.setAllBits(); 1520 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1521 Value *IncValue = P->getIncomingValue(u); 1522 // Skip direct self references. 1523 if (IncValue == P) continue; 1524 1525 // Change the context instruction to the "edge" that flows into the 1526 // phi. This is important because that is where the value is actually 1527 // "evaluated" even though it is used later somewhere else. (see also 1528 // D69571). 1529 Query RecQ = Q; 1530 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1531 1532 Known2 = KnownBits(BitWidth); 1533 // Recurse, but cap the recursion to one level, because we don't 1534 // want to waste time spinning around in loops. 1535 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1536 Known = KnownBits::commonBits(Known, Known2); 1537 // If all bits have been ruled out, there's no need to check 1538 // more operands. 1539 if (Known.isUnknown()) 1540 break; 1541 } 1542 } 1543 break; 1544 } 1545 case Instruction::Call: 1546 case Instruction::Invoke: 1547 // If range metadata is attached to this call, set known bits from that, 1548 // and then intersect with known bits based on other properties of the 1549 // function. 1550 if (MDNode *MD = 1551 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1552 computeKnownBitsFromRangeMetadata(*MD, Known); 1553 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1554 computeKnownBits(RV, Known2, Depth + 1, Q); 1555 Known.Zero |= Known2.Zero; 1556 Known.One |= Known2.One; 1557 } 1558 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1559 switch (II->getIntrinsicID()) { 1560 default: break; 1561 case Intrinsic::abs: { 1562 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1563 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1564 Known = Known2.abs(IntMinIsPoison); 1565 break; 1566 } 1567 case Intrinsic::bitreverse: 1568 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1569 Known.Zero |= Known2.Zero.reverseBits(); 1570 Known.One |= Known2.One.reverseBits(); 1571 break; 1572 case Intrinsic::bswap: 1573 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1574 Known.Zero |= Known2.Zero.byteSwap(); 1575 Known.One |= Known2.One.byteSwap(); 1576 break; 1577 case Intrinsic::ctlz: { 1578 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1579 // If we have a known 1, its position is our upper bound. 1580 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1581 // If this call is undefined for 0, the result will be less than 2^n. 1582 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1583 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1584 unsigned LowBits = Log2_32(PossibleLZ)+1; 1585 Known.Zero.setBitsFrom(LowBits); 1586 break; 1587 } 1588 case Intrinsic::cttz: { 1589 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1590 // If we have a known 1, its position is our upper bound. 1591 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1592 // If this call is undefined for 0, the result will be less than 2^n. 1593 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1594 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1595 unsigned LowBits = Log2_32(PossibleTZ)+1; 1596 Known.Zero.setBitsFrom(LowBits); 1597 break; 1598 } 1599 case Intrinsic::ctpop: { 1600 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1601 // We can bound the space the count needs. Also, bits known to be zero 1602 // can't contribute to the population. 1603 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1604 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1605 Known.Zero.setBitsFrom(LowBits); 1606 // TODO: we could bound KnownOne using the lower bound on the number 1607 // of bits which might be set provided by popcnt KnownOne2. 1608 break; 1609 } 1610 case Intrinsic::fshr: 1611 case Intrinsic::fshl: { 1612 const APInt *SA; 1613 if (!match(I->getOperand(2), m_APInt(SA))) 1614 break; 1615 1616 // Normalize to funnel shift left. 1617 uint64_t ShiftAmt = SA->urem(BitWidth); 1618 if (II->getIntrinsicID() == Intrinsic::fshr) 1619 ShiftAmt = BitWidth - ShiftAmt; 1620 1621 KnownBits Known3(BitWidth); 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1624 1625 Known.Zero = 1626 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1627 Known.One = 1628 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1629 break; 1630 } 1631 case Intrinsic::uadd_sat: 1632 case Intrinsic::usub_sat: { 1633 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1634 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1635 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1636 1637 // Add: Leading ones of either operand are preserved. 1638 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1639 // as leading zeros in the result. 1640 unsigned LeadingKnown; 1641 if (IsAdd) 1642 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1643 Known2.countMinLeadingOnes()); 1644 else 1645 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1646 Known2.countMinLeadingOnes()); 1647 1648 Known = KnownBits::computeForAddSub( 1649 IsAdd, /* NSW */ false, Known, Known2); 1650 1651 // We select between the operation result and all-ones/zero 1652 // respectively, so we can preserve known ones/zeros. 1653 if (IsAdd) { 1654 Known.One.setHighBits(LeadingKnown); 1655 Known.Zero.clearAllBits(); 1656 } else { 1657 Known.Zero.setHighBits(LeadingKnown); 1658 Known.One.clearAllBits(); 1659 } 1660 break; 1661 } 1662 case Intrinsic::umin: 1663 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1664 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1665 Known = KnownBits::umin(Known, Known2); 1666 break; 1667 case Intrinsic::umax: 1668 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1669 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1670 Known = KnownBits::umax(Known, Known2); 1671 break; 1672 case Intrinsic::smin: 1673 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1674 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1675 Known = KnownBits::smin(Known, Known2); 1676 break; 1677 case Intrinsic::smax: 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 Known = KnownBits::smax(Known, Known2); 1681 break; 1682 case Intrinsic::x86_sse42_crc32_64_64: 1683 Known.Zero.setBitsFrom(32); 1684 break; 1685 case Intrinsic::riscv_vsetvli: 1686 case Intrinsic::riscv_vsetvlimax: 1687 // Assume that VL output is positive and would fit in an int32_t. 1688 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1689 if (BitWidth >= 32) 1690 Known.Zero.setBitsFrom(31); 1691 break; 1692 case Intrinsic::vscale: { 1693 if (!II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1694 break; 1695 1696 auto VScaleRange = II->getFunction() 1697 ->getFnAttribute(Attribute::VScaleRange) 1698 .getVScaleRangeArgs(); 1699 1700 if (VScaleRange.second == 0) 1701 break; 1702 1703 // If vscale min = max then we know the exact value at compile time 1704 // and hence we know the exact bits. 1705 if (VScaleRange.first == VScaleRange.second) { 1706 Known.One = VScaleRange.first; 1707 Known.Zero = VScaleRange.first; 1708 Known.Zero.flipAllBits(); 1709 break; 1710 } 1711 1712 unsigned FirstZeroHighBit = 32 - countLeadingZeros(VScaleRange.second); 1713 if (FirstZeroHighBit < BitWidth) 1714 Known.Zero.setBitsFrom(FirstZeroHighBit); 1715 1716 break; 1717 } 1718 } 1719 } 1720 break; 1721 case Instruction::ShuffleVector: { 1722 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1723 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1724 if (!Shuf) { 1725 Known.resetAll(); 1726 return; 1727 } 1728 // For undef elements, we don't know anything about the common state of 1729 // the shuffle result. 1730 APInt DemandedLHS, DemandedRHS; 1731 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1732 Known.resetAll(); 1733 return; 1734 } 1735 Known.One.setAllBits(); 1736 Known.Zero.setAllBits(); 1737 if (!!DemandedLHS) { 1738 const Value *LHS = Shuf->getOperand(0); 1739 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1740 // If we don't know any bits, early out. 1741 if (Known.isUnknown()) 1742 break; 1743 } 1744 if (!!DemandedRHS) { 1745 const Value *RHS = Shuf->getOperand(1); 1746 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1747 Known = KnownBits::commonBits(Known, Known2); 1748 } 1749 break; 1750 } 1751 case Instruction::InsertElement: { 1752 const Value *Vec = I->getOperand(0); 1753 const Value *Elt = I->getOperand(1); 1754 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1755 // Early out if the index is non-constant or out-of-range. 1756 unsigned NumElts = DemandedElts.getBitWidth(); 1757 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1758 Known.resetAll(); 1759 return; 1760 } 1761 Known.One.setAllBits(); 1762 Known.Zero.setAllBits(); 1763 unsigned EltIdx = CIdx->getZExtValue(); 1764 // Do we demand the inserted element? 1765 if (DemandedElts[EltIdx]) { 1766 computeKnownBits(Elt, Known, Depth + 1, Q); 1767 // If we don't know any bits, early out. 1768 if (Known.isUnknown()) 1769 break; 1770 } 1771 // We don't need the base vector element that has been inserted. 1772 APInt DemandedVecElts = DemandedElts; 1773 DemandedVecElts.clearBit(EltIdx); 1774 if (!!DemandedVecElts) { 1775 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1776 Known = KnownBits::commonBits(Known, Known2); 1777 } 1778 break; 1779 } 1780 case Instruction::ExtractElement: { 1781 // Look through extract element. If the index is non-constant or 1782 // out-of-range demand all elements, otherwise just the extracted element. 1783 const Value *Vec = I->getOperand(0); 1784 const Value *Idx = I->getOperand(1); 1785 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1786 if (isa<ScalableVectorType>(Vec->getType())) { 1787 // FIXME: there's probably *something* we can do with scalable vectors 1788 Known.resetAll(); 1789 break; 1790 } 1791 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1792 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1793 if (CIdx && CIdx->getValue().ult(NumElts)) 1794 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1795 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1796 break; 1797 } 1798 case Instruction::ExtractValue: 1799 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1800 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1801 if (EVI->getNumIndices() != 1) break; 1802 if (EVI->getIndices()[0] == 0) { 1803 switch (II->getIntrinsicID()) { 1804 default: break; 1805 case Intrinsic::uadd_with_overflow: 1806 case Intrinsic::sadd_with_overflow: 1807 computeKnownBitsAddSub(true, II->getArgOperand(0), 1808 II->getArgOperand(1), false, DemandedElts, 1809 Known, Known2, Depth, Q); 1810 break; 1811 case Intrinsic::usub_with_overflow: 1812 case Intrinsic::ssub_with_overflow: 1813 computeKnownBitsAddSub(false, II->getArgOperand(0), 1814 II->getArgOperand(1), false, DemandedElts, 1815 Known, Known2, Depth, Q); 1816 break; 1817 case Intrinsic::umul_with_overflow: 1818 case Intrinsic::smul_with_overflow: 1819 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1820 DemandedElts, Known, Known2, Depth, Q); 1821 break; 1822 } 1823 } 1824 } 1825 break; 1826 case Instruction::Freeze: 1827 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1828 Depth + 1)) 1829 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1830 break; 1831 } 1832 } 1833 1834 /// Determine which bits of V are known to be either zero or one and return 1835 /// them. 1836 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1837 unsigned Depth, const Query &Q) { 1838 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1839 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1840 return Known; 1841 } 1842 1843 /// Determine which bits of V are known to be either zero or one and return 1844 /// them. 1845 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1846 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1847 computeKnownBits(V, Known, Depth, Q); 1848 return Known; 1849 } 1850 1851 /// Determine which bits of V are known to be either zero or one and return 1852 /// them in the Known bit set. 1853 /// 1854 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1855 /// we cannot optimize based on the assumption that it is zero without changing 1856 /// it to be an explicit zero. If we don't change it to zero, other code could 1857 /// optimized based on the contradictory assumption that it is non-zero. 1858 /// Because instcombine aggressively folds operations with undef args anyway, 1859 /// this won't lose us code quality. 1860 /// 1861 /// This function is defined on values with integer type, values with pointer 1862 /// type, and vectors of integers. In the case 1863 /// where V is a vector, known zero, and known one values are the 1864 /// same width as the vector element, and the bit is set only if it is true 1865 /// for all of the demanded elements in the vector specified by DemandedElts. 1866 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1867 KnownBits &Known, unsigned Depth, const Query &Q) { 1868 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1869 // No demanded elts or V is a scalable vector, better to assume we don't 1870 // know anything. 1871 Known.resetAll(); 1872 return; 1873 } 1874 1875 assert(V && "No Value?"); 1876 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1877 1878 #ifndef NDEBUG 1879 Type *Ty = V->getType(); 1880 unsigned BitWidth = Known.getBitWidth(); 1881 1882 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1883 "Not integer or pointer type!"); 1884 1885 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1886 assert( 1887 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1888 "DemandedElt width should equal the fixed vector number of elements"); 1889 } else { 1890 assert(DemandedElts == APInt(1, 1) && 1891 "DemandedElt width should be 1 for scalars"); 1892 } 1893 1894 Type *ScalarTy = Ty->getScalarType(); 1895 if (ScalarTy->isPointerTy()) { 1896 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1897 "V and Known should have same BitWidth"); 1898 } else { 1899 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1900 "V and Known should have same BitWidth"); 1901 } 1902 #endif 1903 1904 const APInt *C; 1905 if (match(V, m_APInt(C))) { 1906 // We know all of the bits for a scalar constant or a splat vector constant! 1907 Known = KnownBits::makeConstant(*C); 1908 return; 1909 } 1910 // Null and aggregate-zero are all-zeros. 1911 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1912 Known.setAllZero(); 1913 return; 1914 } 1915 // Handle a constant vector by taking the intersection of the known bits of 1916 // each element. 1917 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1918 // We know that CDV must be a vector of integers. Take the intersection of 1919 // each element. 1920 Known.Zero.setAllBits(); Known.One.setAllBits(); 1921 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1922 if (!DemandedElts[i]) 1923 continue; 1924 APInt Elt = CDV->getElementAsAPInt(i); 1925 Known.Zero &= ~Elt; 1926 Known.One &= Elt; 1927 } 1928 return; 1929 } 1930 1931 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1932 // We know that CV must be a vector of integers. Take the intersection of 1933 // each element. 1934 Known.Zero.setAllBits(); Known.One.setAllBits(); 1935 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1936 if (!DemandedElts[i]) 1937 continue; 1938 Constant *Element = CV->getAggregateElement(i); 1939 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1940 if (!ElementCI) { 1941 Known.resetAll(); 1942 return; 1943 } 1944 const APInt &Elt = ElementCI->getValue(); 1945 Known.Zero &= ~Elt; 1946 Known.One &= Elt; 1947 } 1948 return; 1949 } 1950 1951 // Start out not knowing anything. 1952 Known.resetAll(); 1953 1954 // We can't imply anything about undefs. 1955 if (isa<UndefValue>(V)) 1956 return; 1957 1958 // There's no point in looking through other users of ConstantData for 1959 // assumptions. Confirm that we've handled them all. 1960 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1961 1962 // All recursive calls that increase depth must come after this. 1963 if (Depth == MaxAnalysisRecursionDepth) 1964 return; 1965 1966 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1967 // the bits of its aliasee. 1968 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1969 if (!GA->isInterposable()) 1970 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1971 return; 1972 } 1973 1974 if (const Operator *I = dyn_cast<Operator>(V)) 1975 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1976 1977 // Aligned pointers have trailing zeros - refine Known.Zero set 1978 if (isa<PointerType>(V->getType())) { 1979 Align Alignment = V->getPointerAlignment(Q.DL); 1980 Known.Zero.setLowBits(Log2(Alignment)); 1981 } 1982 1983 // computeKnownBitsFromAssume strictly refines Known. 1984 // Therefore, we run them after computeKnownBitsFromOperator. 1985 1986 // Check whether a nearby assume intrinsic can determine some known bits. 1987 computeKnownBitsFromAssume(V, Known, Depth, Q); 1988 1989 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1990 } 1991 1992 /// Return true if the given value is known to have exactly one 1993 /// bit set when defined. For vectors return true if every element is known to 1994 /// be a power of two when defined. Supports values with integer or pointer 1995 /// types and vectors of integers. 1996 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1997 const Query &Q) { 1998 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1999 2000 // Attempt to match against constants. 2001 if (OrZero && match(V, m_Power2OrZero())) 2002 return true; 2003 if (match(V, m_Power2())) 2004 return true; 2005 2006 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2007 // it is shifted off the end then the result is undefined. 2008 if (match(V, m_Shl(m_One(), m_Value()))) 2009 return true; 2010 2011 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2012 // the bottom. If it is shifted off the bottom then the result is undefined. 2013 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2014 return true; 2015 2016 // The remaining tests are all recursive, so bail out if we hit the limit. 2017 if (Depth++ == MaxAnalysisRecursionDepth) 2018 return false; 2019 2020 Value *X = nullptr, *Y = nullptr; 2021 // A shift left or a logical shift right of a power of two is a power of two 2022 // or zero. 2023 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2024 match(V, m_LShr(m_Value(X), m_Value())))) 2025 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2026 2027 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2028 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2029 2030 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2031 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2032 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2033 2034 // Peek through min/max. 2035 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2036 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2037 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2038 } 2039 2040 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2041 // A power of two and'd with anything is a power of two or zero. 2042 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2043 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2044 return true; 2045 // X & (-X) is always a power of two or zero. 2046 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2047 return true; 2048 return false; 2049 } 2050 2051 // Adding a power-of-two or zero to the same power-of-two or zero yields 2052 // either the original power-of-two, a larger power-of-two or zero. 2053 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2054 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2055 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2056 Q.IIQ.hasNoSignedWrap(VOBO)) { 2057 if (match(X, m_And(m_Specific(Y), m_Value())) || 2058 match(X, m_And(m_Value(), m_Specific(Y)))) 2059 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2060 return true; 2061 if (match(Y, m_And(m_Specific(X), m_Value())) || 2062 match(Y, m_And(m_Value(), m_Specific(X)))) 2063 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2064 return true; 2065 2066 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2067 KnownBits LHSBits(BitWidth); 2068 computeKnownBits(X, LHSBits, Depth, Q); 2069 2070 KnownBits RHSBits(BitWidth); 2071 computeKnownBits(Y, RHSBits, Depth, Q); 2072 // If i8 V is a power of two or zero: 2073 // ZeroBits: 1 1 1 0 1 1 1 1 2074 // ~ZeroBits: 0 0 0 1 0 0 0 0 2075 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2076 // If OrZero isn't set, we cannot give back a zero result. 2077 // Make sure either the LHS or RHS has a bit set. 2078 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2079 return true; 2080 } 2081 } 2082 2083 // An exact divide or right shift can only shift off zero bits, so the result 2084 // is a power of two only if the first operand is a power of two and not 2085 // copying a sign bit (sdiv int_min, 2). 2086 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2087 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2088 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2089 Depth, Q); 2090 } 2091 2092 return false; 2093 } 2094 2095 /// Test whether a GEP's result is known to be non-null. 2096 /// 2097 /// Uses properties inherent in a GEP to try to determine whether it is known 2098 /// to be non-null. 2099 /// 2100 /// Currently this routine does not support vector GEPs. 2101 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2102 const Query &Q) { 2103 const Function *F = nullptr; 2104 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2105 F = I->getFunction(); 2106 2107 if (!GEP->isInBounds() || 2108 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2109 return false; 2110 2111 // FIXME: Support vector-GEPs. 2112 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2113 2114 // If the base pointer is non-null, we cannot walk to a null address with an 2115 // inbounds GEP in address space zero. 2116 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2117 return true; 2118 2119 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2120 // If so, then the GEP cannot produce a null pointer, as doing so would 2121 // inherently violate the inbounds contract within address space zero. 2122 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2123 GTI != GTE; ++GTI) { 2124 // Struct types are easy -- they must always be indexed by a constant. 2125 if (StructType *STy = GTI.getStructTypeOrNull()) { 2126 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2127 unsigned ElementIdx = OpC->getZExtValue(); 2128 const StructLayout *SL = Q.DL.getStructLayout(STy); 2129 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2130 if (ElementOffset > 0) 2131 return true; 2132 continue; 2133 } 2134 2135 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2136 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2137 continue; 2138 2139 // Fast path the constant operand case both for efficiency and so we don't 2140 // increment Depth when just zipping down an all-constant GEP. 2141 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2142 if (!OpC->isZero()) 2143 return true; 2144 continue; 2145 } 2146 2147 // We post-increment Depth here because while isKnownNonZero increments it 2148 // as well, when we pop back up that increment won't persist. We don't want 2149 // to recurse 10k times just because we have 10k GEP operands. We don't 2150 // bail completely out because we want to handle constant GEPs regardless 2151 // of depth. 2152 if (Depth++ >= MaxAnalysisRecursionDepth) 2153 continue; 2154 2155 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2156 return true; 2157 } 2158 2159 return false; 2160 } 2161 2162 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2163 const Instruction *CtxI, 2164 const DominatorTree *DT) { 2165 if (isa<Constant>(V)) 2166 return false; 2167 2168 if (!CtxI || !DT) 2169 return false; 2170 2171 unsigned NumUsesExplored = 0; 2172 for (auto *U : V->users()) { 2173 // Avoid massive lists 2174 if (NumUsesExplored >= DomConditionsMaxUses) 2175 break; 2176 NumUsesExplored++; 2177 2178 // If the value is used as an argument to a call or invoke, then argument 2179 // attributes may provide an answer about null-ness. 2180 if (const auto *CB = dyn_cast<CallBase>(U)) 2181 if (auto *CalledFunc = CB->getCalledFunction()) 2182 for (const Argument &Arg : CalledFunc->args()) 2183 if (CB->getArgOperand(Arg.getArgNo()) == V && 2184 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2185 DT->dominates(CB, CtxI)) 2186 return true; 2187 2188 // If the value is used as a load/store, then the pointer must be non null. 2189 if (V == getLoadStorePointerOperand(U)) { 2190 const Instruction *I = cast<Instruction>(U); 2191 if (!NullPointerIsDefined(I->getFunction(), 2192 V->getType()->getPointerAddressSpace()) && 2193 DT->dominates(I, CtxI)) 2194 return true; 2195 } 2196 2197 // Consider only compare instructions uniquely controlling a branch 2198 Value *RHS; 2199 CmpInst::Predicate Pred; 2200 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2201 continue; 2202 2203 bool NonNullIfTrue; 2204 if (cmpExcludesZero(Pred, RHS)) 2205 NonNullIfTrue = true; 2206 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2207 NonNullIfTrue = false; 2208 else 2209 continue; 2210 2211 SmallVector<const User *, 4> WorkList; 2212 SmallPtrSet<const User *, 4> Visited; 2213 for (auto *CmpU : U->users()) { 2214 assert(WorkList.empty() && "Should be!"); 2215 if (Visited.insert(CmpU).second) 2216 WorkList.push_back(CmpU); 2217 2218 while (!WorkList.empty()) { 2219 auto *Curr = WorkList.pop_back_val(); 2220 2221 // If a user is an AND, add all its users to the work list. We only 2222 // propagate "pred != null" condition through AND because it is only 2223 // correct to assume that all conditions of AND are met in true branch. 2224 // TODO: Support similar logic of OR and EQ predicate? 2225 if (NonNullIfTrue) 2226 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2227 for (auto *CurrU : Curr->users()) 2228 if (Visited.insert(CurrU).second) 2229 WorkList.push_back(CurrU); 2230 continue; 2231 } 2232 2233 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2234 assert(BI->isConditional() && "uses a comparison!"); 2235 2236 BasicBlock *NonNullSuccessor = 2237 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2238 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2239 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2240 return true; 2241 } else if (NonNullIfTrue && isGuard(Curr) && 2242 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2243 return true; 2244 } 2245 } 2246 } 2247 } 2248 2249 return false; 2250 } 2251 2252 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2253 /// ensure that the value it's attached to is never Value? 'RangeType' is 2254 /// is the type of the value described by the range. 2255 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2256 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2257 assert(NumRanges >= 1); 2258 for (unsigned i = 0; i < NumRanges; ++i) { 2259 ConstantInt *Lower = 2260 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2261 ConstantInt *Upper = 2262 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2263 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2264 if (Range.contains(Value)) 2265 return false; 2266 } 2267 return true; 2268 } 2269 2270 /// Try to detect a recurrence that monotonically increases/decreases from a 2271 /// non-zero starting value. These are common as induction variables. 2272 static bool isNonZeroRecurrence(const PHINode *PN) { 2273 BinaryOperator *BO = nullptr; 2274 Value *Start = nullptr, *Step = nullptr; 2275 const APInt *StartC, *StepC; 2276 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2277 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2278 return false; 2279 2280 switch (BO->getOpcode()) { 2281 case Instruction::Add: 2282 // Starting from non-zero and stepping away from zero can never wrap back 2283 // to zero. 2284 return BO->hasNoUnsignedWrap() || 2285 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2286 StartC->isNegative() == StepC->isNegative()); 2287 case Instruction::Mul: 2288 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2289 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2290 case Instruction::Shl: 2291 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2292 case Instruction::AShr: 2293 case Instruction::LShr: 2294 return BO->isExact(); 2295 default: 2296 return false; 2297 } 2298 } 2299 2300 /// Return true if the given value is known to be non-zero when defined. For 2301 /// vectors, return true if every demanded element is known to be non-zero when 2302 /// defined. For pointers, if the context instruction and dominator tree are 2303 /// specified, perform context-sensitive analysis and return true if the 2304 /// pointer couldn't possibly be null at the specified instruction. 2305 /// Supports values with integer or pointer type and vectors of integers. 2306 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2307 const Query &Q) { 2308 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2309 // vector 2310 if (isa<ScalableVectorType>(V->getType())) 2311 return false; 2312 2313 if (auto *C = dyn_cast<Constant>(V)) { 2314 if (C->isNullValue()) 2315 return false; 2316 if (isa<ConstantInt>(C)) 2317 // Must be non-zero due to null test above. 2318 return true; 2319 2320 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2321 // See the comment for IntToPtr/PtrToInt instructions below. 2322 if (CE->getOpcode() == Instruction::IntToPtr || 2323 CE->getOpcode() == Instruction::PtrToInt) 2324 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2325 .getFixedSize() <= 2326 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2327 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2328 } 2329 2330 // For constant vectors, check that all elements are undefined or known 2331 // non-zero to determine that the whole vector is known non-zero. 2332 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2333 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2334 if (!DemandedElts[i]) 2335 continue; 2336 Constant *Elt = C->getAggregateElement(i); 2337 if (!Elt || Elt->isNullValue()) 2338 return false; 2339 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2340 return false; 2341 } 2342 return true; 2343 } 2344 2345 // A global variable in address space 0 is non null unless extern weak 2346 // or an absolute symbol reference. Other address spaces may have null as a 2347 // valid address for a global, so we can't assume anything. 2348 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2349 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2350 GV->getType()->getAddressSpace() == 0) 2351 return true; 2352 } else 2353 return false; 2354 } 2355 2356 if (auto *I = dyn_cast<Instruction>(V)) { 2357 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2358 // If the possible ranges don't contain zero, then the value is 2359 // definitely non-zero. 2360 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2361 const APInt ZeroValue(Ty->getBitWidth(), 0); 2362 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2363 return true; 2364 } 2365 } 2366 } 2367 2368 if (isKnownNonZeroFromAssume(V, Q)) 2369 return true; 2370 2371 // Some of the tests below are recursive, so bail out if we hit the limit. 2372 if (Depth++ >= MaxAnalysisRecursionDepth) 2373 return false; 2374 2375 // Check for pointer simplifications. 2376 2377 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2378 // Alloca never returns null, malloc might. 2379 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2380 return true; 2381 2382 // A byval, inalloca may not be null in a non-default addres space. A 2383 // nonnull argument is assumed never 0. 2384 if (const Argument *A = dyn_cast<Argument>(V)) { 2385 if (((A->hasPassPointeeByValueCopyAttr() && 2386 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2387 A->hasNonNullAttr())) 2388 return true; 2389 } 2390 2391 // A Load tagged with nonnull metadata is never null. 2392 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2393 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2394 return true; 2395 2396 if (const auto *Call = dyn_cast<CallBase>(V)) { 2397 if (Call->isReturnNonNull()) 2398 return true; 2399 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2400 return isKnownNonZero(RP, Depth, Q); 2401 } 2402 } 2403 2404 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2405 return true; 2406 2407 // Check for recursive pointer simplifications. 2408 if (V->getType()->isPointerTy()) { 2409 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2410 // do not alter the value, or at least not the nullness property of the 2411 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2412 // 2413 // Note that we have to take special care to avoid looking through 2414 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2415 // as casts that can alter the value, e.g., AddrSpaceCasts. 2416 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2417 return isGEPKnownNonNull(GEP, Depth, Q); 2418 2419 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2420 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2421 2422 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2423 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2424 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2425 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2426 } 2427 2428 // Similar to int2ptr above, we can look through ptr2int here if the cast 2429 // is a no-op or an extend and not a truncate. 2430 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2431 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2432 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2433 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2434 2435 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2436 2437 // X | Y != 0 if X != 0 or Y != 0. 2438 Value *X = nullptr, *Y = nullptr; 2439 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2440 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2441 isKnownNonZero(Y, DemandedElts, Depth, Q); 2442 2443 // ext X != 0 if X != 0. 2444 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2445 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2446 2447 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2448 // if the lowest bit is shifted off the end. 2449 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2450 // shl nuw can't remove any non-zero bits. 2451 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2452 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2453 return isKnownNonZero(X, Depth, Q); 2454 2455 KnownBits Known(BitWidth); 2456 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2457 if (Known.One[0]) 2458 return true; 2459 } 2460 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2461 // defined if the sign bit is shifted off the end. 2462 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2463 // shr exact can only shift out zero bits. 2464 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2465 if (BO->isExact()) 2466 return isKnownNonZero(X, Depth, Q); 2467 2468 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2469 if (Known.isNegative()) 2470 return true; 2471 2472 // If the shifter operand is a constant, and all of the bits shifted 2473 // out are known to be zero, and X is known non-zero then at least one 2474 // non-zero bit must remain. 2475 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2476 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2477 // Is there a known one in the portion not shifted out? 2478 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2479 return true; 2480 // Are all the bits to be shifted out known zero? 2481 if (Known.countMinTrailingZeros() >= ShiftVal) 2482 return isKnownNonZero(X, DemandedElts, Depth, Q); 2483 } 2484 } 2485 // div exact can only produce a zero if the dividend is zero. 2486 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 // X + Y. 2490 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2491 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2492 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2493 2494 // If X and Y are both non-negative (as signed values) then their sum is not 2495 // zero unless both X and Y are zero. 2496 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2497 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2498 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2499 return true; 2500 2501 // If X and Y are both negative (as signed values) then their sum is not 2502 // zero unless both X and Y equal INT_MIN. 2503 if (XKnown.isNegative() && YKnown.isNegative()) { 2504 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2505 // The sign bit of X is set. If some other bit is set then X is not equal 2506 // to INT_MIN. 2507 if (XKnown.One.intersects(Mask)) 2508 return true; 2509 // The sign bit of Y is set. If some other bit is set then Y is not equal 2510 // to INT_MIN. 2511 if (YKnown.One.intersects(Mask)) 2512 return true; 2513 } 2514 2515 // The sum of a non-negative number and a power of two is not zero. 2516 if (XKnown.isNonNegative() && 2517 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2518 return true; 2519 if (YKnown.isNonNegative() && 2520 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2521 return true; 2522 } 2523 // X * Y. 2524 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2525 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2526 // If X and Y are non-zero then so is X * Y as long as the multiplication 2527 // does not overflow. 2528 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2529 isKnownNonZero(X, DemandedElts, Depth, Q) && 2530 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2531 return true; 2532 } 2533 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2534 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2535 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2536 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2537 return true; 2538 } 2539 // PHI 2540 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2541 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2542 return true; 2543 2544 // Check if all incoming values are non-zero using recursion. 2545 Query RecQ = Q; 2546 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2547 return llvm::all_of(PN->operands(), [&](const Use &U) { 2548 if (U.get() == PN) 2549 return true; 2550 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2551 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2552 }); 2553 } 2554 // ExtractElement 2555 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2556 const Value *Vec = EEI->getVectorOperand(); 2557 const Value *Idx = EEI->getIndexOperand(); 2558 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2559 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2560 unsigned NumElts = VecTy->getNumElements(); 2561 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2562 if (CIdx && CIdx->getValue().ult(NumElts)) 2563 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2564 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2565 } 2566 } 2567 // Freeze 2568 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2569 auto *Op = FI->getOperand(0); 2570 if (isKnownNonZero(Op, Depth, Q) && 2571 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2572 return true; 2573 } 2574 2575 KnownBits Known(BitWidth); 2576 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2577 return Known.One != 0; 2578 } 2579 2580 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2581 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2582 // vector 2583 if (isa<ScalableVectorType>(V->getType())) 2584 return false; 2585 2586 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2587 APInt DemandedElts = 2588 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2589 return isKnownNonZero(V, DemandedElts, Depth, Q); 2590 } 2591 2592 /// If the pair of operators are the same invertible function, return the 2593 /// the operands of the function corresponding to each input. Otherwise, 2594 /// return None. An invertible function is one that is 1-to-1 and maps 2595 /// every input value to exactly one output value. This is equivalent to 2596 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2597 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2598 static Optional<std::pair<Value*, Value*>> 2599 getInvertibleOperands(const Operator *Op1, 2600 const Operator *Op2) { 2601 if (Op1->getOpcode() != Op2->getOpcode()) 2602 return None; 2603 2604 auto getOperands = [&](unsigned OpNum) -> auto { 2605 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2606 }; 2607 2608 switch (Op1->getOpcode()) { 2609 default: 2610 break; 2611 case Instruction::Add: 2612 case Instruction::Sub: 2613 if (Op1->getOperand(0) == Op2->getOperand(0)) 2614 return getOperands(1); 2615 if (Op1->getOperand(1) == Op2->getOperand(1)) 2616 return getOperands(0); 2617 break; 2618 case Instruction::Mul: { 2619 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2620 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2621 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2622 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2623 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2624 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2625 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2626 break; 2627 2628 // Assume operand order has been canonicalized 2629 if (Op1->getOperand(1) == Op2->getOperand(1) && 2630 isa<ConstantInt>(Op1->getOperand(1)) && 2631 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2632 return getOperands(0); 2633 break; 2634 } 2635 case Instruction::Shl: { 2636 // Same as multiplies, with the difference that we don't need to check 2637 // for a non-zero multiply. Shifts always multiply by non-zero. 2638 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2639 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2640 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2641 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2642 break; 2643 2644 if (Op1->getOperand(1) == Op2->getOperand(1)) 2645 return getOperands(0); 2646 break; 2647 } 2648 case Instruction::AShr: 2649 case Instruction::LShr: { 2650 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2651 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2652 if (!PEO1->isExact() || !PEO2->isExact()) 2653 break; 2654 2655 if (Op1->getOperand(1) == Op2->getOperand(1)) 2656 return getOperands(0); 2657 break; 2658 } 2659 case Instruction::SExt: 2660 case Instruction::ZExt: 2661 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2662 return getOperands(0); 2663 break; 2664 case Instruction::PHI: { 2665 const PHINode *PN1 = cast<PHINode>(Op1); 2666 const PHINode *PN2 = cast<PHINode>(Op2); 2667 2668 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2669 // are a single invertible function of the start values? Note that repeated 2670 // application of an invertible function is also invertible 2671 BinaryOperator *BO1 = nullptr; 2672 Value *Start1 = nullptr, *Step1 = nullptr; 2673 BinaryOperator *BO2 = nullptr; 2674 Value *Start2 = nullptr, *Step2 = nullptr; 2675 if (PN1->getParent() != PN2->getParent() || 2676 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2677 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2678 break; 2679 2680 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2681 cast<Operator>(BO2)); 2682 if (!Values) 2683 break; 2684 2685 // We have to be careful of mutually defined recurrences here. Ex: 2686 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2687 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2688 // The invertibility of these is complicated, and not worth reasoning 2689 // about (yet?). 2690 if (Values->first != PN1 || Values->second != PN2) 2691 break; 2692 2693 return std::make_pair(Start1, Start2); 2694 } 2695 } 2696 return None; 2697 } 2698 2699 /// Return true if V2 == V1 + X, where X is known non-zero. 2700 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2701 const Query &Q) { 2702 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2703 if (!BO || BO->getOpcode() != Instruction::Add) 2704 return false; 2705 Value *Op = nullptr; 2706 if (V2 == BO->getOperand(0)) 2707 Op = BO->getOperand(1); 2708 else if (V2 == BO->getOperand(1)) 2709 Op = BO->getOperand(0); 2710 else 2711 return false; 2712 return isKnownNonZero(Op, Depth + 1, Q); 2713 } 2714 2715 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2716 /// the multiplication is nuw or nsw. 2717 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2718 const Query &Q) { 2719 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2720 const APInt *C; 2721 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2722 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2723 !C->isNullValue() && !C->isOneValue() && 2724 isKnownNonZero(V1, Depth + 1, Q); 2725 } 2726 return false; 2727 } 2728 2729 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2730 /// the shift is nuw or nsw. 2731 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2732 const Query &Q) { 2733 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2734 const APInt *C; 2735 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2736 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2737 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2738 } 2739 return false; 2740 } 2741 2742 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2743 unsigned Depth, const Query &Q) { 2744 // Check two PHIs are in same block. 2745 if (PN1->getParent() != PN2->getParent()) 2746 return false; 2747 2748 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2749 bool UsedFullRecursion = false; 2750 for (const BasicBlock *IncomBB : PN1->blocks()) { 2751 if (!VisitedBBs.insert(IncomBB).second) 2752 continue; // Don't reprocess blocks that we have dealt with already. 2753 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2754 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2755 const APInt *C1, *C2; 2756 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2757 continue; 2758 2759 // Only one pair of phi operands is allowed for full recursion. 2760 if (UsedFullRecursion) 2761 return false; 2762 2763 Query RecQ = Q; 2764 RecQ.CxtI = IncomBB->getTerminator(); 2765 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2766 return false; 2767 UsedFullRecursion = true; 2768 } 2769 return true; 2770 } 2771 2772 /// Return true if it is known that V1 != V2. 2773 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2774 const Query &Q) { 2775 if (V1 == V2) 2776 return false; 2777 if (V1->getType() != V2->getType()) 2778 // We can't look through casts yet. 2779 return false; 2780 2781 if (Depth >= MaxAnalysisRecursionDepth) 2782 return false; 2783 2784 // See if we can recurse through (exactly one of) our operands. This 2785 // requires our operation be 1-to-1 and map every input value to exactly 2786 // one output value. Such an operation is invertible. 2787 auto *O1 = dyn_cast<Operator>(V1); 2788 auto *O2 = dyn_cast<Operator>(V2); 2789 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2790 if (auto Values = getInvertibleOperands(O1, O2)) 2791 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2792 2793 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2794 const PHINode *PN2 = cast<PHINode>(V2); 2795 // FIXME: This is missing a generalization to handle the case where one is 2796 // a PHI and another one isn't. 2797 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2798 return true; 2799 }; 2800 } 2801 2802 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2803 return true; 2804 2805 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2806 return true; 2807 2808 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2809 return true; 2810 2811 if (V1->getType()->isIntOrIntVectorTy()) { 2812 // Are any known bits in V1 contradictory to known bits in V2? If V1 2813 // has a known zero where V2 has a known one, they must not be equal. 2814 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2815 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2816 2817 if (Known1.Zero.intersects(Known2.One) || 2818 Known2.Zero.intersects(Known1.One)) 2819 return true; 2820 } 2821 return false; 2822 } 2823 2824 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2825 /// simplify operations downstream. Mask is known to be zero for bits that V 2826 /// cannot have. 2827 /// 2828 /// This function is defined on values with integer type, values with pointer 2829 /// type, and vectors of integers. In the case 2830 /// where V is a vector, the mask, known zero, and known one values are the 2831 /// same width as the vector element, and the bit is set only if it is true 2832 /// for all of the elements in the vector. 2833 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2834 const Query &Q) { 2835 KnownBits Known(Mask.getBitWidth()); 2836 computeKnownBits(V, Known, Depth, Q); 2837 return Mask.isSubsetOf(Known.Zero); 2838 } 2839 2840 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2841 // Returns the input and lower/upper bounds. 2842 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2843 const APInt *&CLow, const APInt *&CHigh) { 2844 assert(isa<Operator>(Select) && 2845 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2846 "Input should be a Select!"); 2847 2848 const Value *LHS = nullptr, *RHS = nullptr; 2849 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2850 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2851 return false; 2852 2853 if (!match(RHS, m_APInt(CLow))) 2854 return false; 2855 2856 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2857 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2858 if (getInverseMinMaxFlavor(SPF) != SPF2) 2859 return false; 2860 2861 if (!match(RHS2, m_APInt(CHigh))) 2862 return false; 2863 2864 if (SPF == SPF_SMIN) 2865 std::swap(CLow, CHigh); 2866 2867 In = LHS2; 2868 return CLow->sle(*CHigh); 2869 } 2870 2871 /// For vector constants, loop over the elements and find the constant with the 2872 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2873 /// or if any element was not analyzed; otherwise, return the count for the 2874 /// element with the minimum number of sign bits. 2875 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2876 const APInt &DemandedElts, 2877 unsigned TyBits) { 2878 const auto *CV = dyn_cast<Constant>(V); 2879 if (!CV || !isa<FixedVectorType>(CV->getType())) 2880 return 0; 2881 2882 unsigned MinSignBits = TyBits; 2883 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2884 for (unsigned i = 0; i != NumElts; ++i) { 2885 if (!DemandedElts[i]) 2886 continue; 2887 // If we find a non-ConstantInt, bail out. 2888 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2889 if (!Elt) 2890 return 0; 2891 2892 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2893 } 2894 2895 return MinSignBits; 2896 } 2897 2898 static unsigned ComputeNumSignBitsImpl(const Value *V, 2899 const APInt &DemandedElts, 2900 unsigned Depth, const Query &Q); 2901 2902 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2903 unsigned Depth, const Query &Q) { 2904 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2905 assert(Result > 0 && "At least one sign bit needs to be present!"); 2906 return Result; 2907 } 2908 2909 /// Return the number of times the sign bit of the register is replicated into 2910 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2911 /// (itself), but other cases can give us information. For example, immediately 2912 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2913 /// other, so we return 3. For vectors, return the number of sign bits for the 2914 /// vector element with the minimum number of known sign bits of the demanded 2915 /// elements in the vector specified by DemandedElts. 2916 static unsigned ComputeNumSignBitsImpl(const Value *V, 2917 const APInt &DemandedElts, 2918 unsigned Depth, const Query &Q) { 2919 Type *Ty = V->getType(); 2920 2921 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2922 // vector 2923 if (isa<ScalableVectorType>(Ty)) 2924 return 1; 2925 2926 #ifndef NDEBUG 2927 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2928 2929 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2930 assert( 2931 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2932 "DemandedElt width should equal the fixed vector number of elements"); 2933 } else { 2934 assert(DemandedElts == APInt(1, 1) && 2935 "DemandedElt width should be 1 for scalars"); 2936 } 2937 #endif 2938 2939 // We return the minimum number of sign bits that are guaranteed to be present 2940 // in V, so for undef we have to conservatively return 1. We don't have the 2941 // same behavior for poison though -- that's a FIXME today. 2942 2943 Type *ScalarTy = Ty->getScalarType(); 2944 unsigned TyBits = ScalarTy->isPointerTy() ? 2945 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2946 Q.DL.getTypeSizeInBits(ScalarTy); 2947 2948 unsigned Tmp, Tmp2; 2949 unsigned FirstAnswer = 1; 2950 2951 // Note that ConstantInt is handled by the general computeKnownBits case 2952 // below. 2953 2954 if (Depth == MaxAnalysisRecursionDepth) 2955 return 1; 2956 2957 if (auto *U = dyn_cast<Operator>(V)) { 2958 switch (Operator::getOpcode(V)) { 2959 default: break; 2960 case Instruction::SExt: 2961 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2962 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2963 2964 case Instruction::SDiv: { 2965 const APInt *Denominator; 2966 // sdiv X, C -> adds log(C) sign bits. 2967 if (match(U->getOperand(1), m_APInt(Denominator))) { 2968 2969 // Ignore non-positive denominator. 2970 if (!Denominator->isStrictlyPositive()) 2971 break; 2972 2973 // Calculate the incoming numerator bits. 2974 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2975 2976 // Add floor(log(C)) bits to the numerator bits. 2977 return std::min(TyBits, NumBits + Denominator->logBase2()); 2978 } 2979 break; 2980 } 2981 2982 case Instruction::SRem: { 2983 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2984 2985 const APInt *Denominator; 2986 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2987 // positive constant. This let us put a lower bound on the number of sign 2988 // bits. 2989 if (match(U->getOperand(1), m_APInt(Denominator))) { 2990 2991 // Ignore non-positive denominator. 2992 if (Denominator->isStrictlyPositive()) { 2993 // Calculate the leading sign bit constraints by examining the 2994 // denominator. Given that the denominator is positive, there are two 2995 // cases: 2996 // 2997 // 1. The numerator is positive. The result range is [0,C) and 2998 // [0,C) u< (1 << ceilLogBase2(C)). 2999 // 3000 // 2. The numerator is negative. Then the result range is (-C,0] and 3001 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3002 // 3003 // Thus a lower bound on the number of sign bits is `TyBits - 3004 // ceilLogBase2(C)`. 3005 3006 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3007 Tmp = std::max(Tmp, ResBits); 3008 } 3009 } 3010 return Tmp; 3011 } 3012 3013 case Instruction::AShr: { 3014 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3015 // ashr X, C -> adds C sign bits. Vectors too. 3016 const APInt *ShAmt; 3017 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3018 if (ShAmt->uge(TyBits)) 3019 break; // Bad shift. 3020 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3021 Tmp += ShAmtLimited; 3022 if (Tmp > TyBits) Tmp = TyBits; 3023 } 3024 return Tmp; 3025 } 3026 case Instruction::Shl: { 3027 const APInt *ShAmt; 3028 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3029 // shl destroys sign bits. 3030 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3031 if (ShAmt->uge(TyBits) || // Bad shift. 3032 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3033 Tmp2 = ShAmt->getZExtValue(); 3034 return Tmp - Tmp2; 3035 } 3036 break; 3037 } 3038 case Instruction::And: 3039 case Instruction::Or: 3040 case Instruction::Xor: // NOT is handled here. 3041 // Logical binary ops preserve the number of sign bits at the worst. 3042 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3043 if (Tmp != 1) { 3044 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3045 FirstAnswer = std::min(Tmp, Tmp2); 3046 // We computed what we know about the sign bits as our first 3047 // answer. Now proceed to the generic code that uses 3048 // computeKnownBits, and pick whichever answer is better. 3049 } 3050 break; 3051 3052 case Instruction::Select: { 3053 // If we have a clamp pattern, we know that the number of sign bits will 3054 // be the minimum of the clamp min/max range. 3055 const Value *X; 3056 const APInt *CLow, *CHigh; 3057 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3058 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3059 3060 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3061 if (Tmp == 1) break; 3062 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3063 return std::min(Tmp, Tmp2); 3064 } 3065 3066 case Instruction::Add: 3067 // Add can have at most one carry bit. Thus we know that the output 3068 // is, at worst, one more bit than the inputs. 3069 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3070 if (Tmp == 1) break; 3071 3072 // Special case decrementing a value (ADD X, -1): 3073 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3074 if (CRHS->isAllOnesValue()) { 3075 KnownBits Known(TyBits); 3076 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3077 3078 // If the input is known to be 0 or 1, the output is 0/-1, which is 3079 // all sign bits set. 3080 if ((Known.Zero | 1).isAllOnesValue()) 3081 return TyBits; 3082 3083 // If we are subtracting one from a positive number, there is no carry 3084 // out of the result. 3085 if (Known.isNonNegative()) 3086 return Tmp; 3087 } 3088 3089 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3090 if (Tmp2 == 1) break; 3091 return std::min(Tmp, Tmp2) - 1; 3092 3093 case Instruction::Sub: 3094 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3095 if (Tmp2 == 1) break; 3096 3097 // Handle NEG. 3098 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3099 if (CLHS->isNullValue()) { 3100 KnownBits Known(TyBits); 3101 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3102 // If the input is known to be 0 or 1, the output is 0/-1, which is 3103 // all sign bits set. 3104 if ((Known.Zero | 1).isAllOnesValue()) 3105 return TyBits; 3106 3107 // If the input is known to be positive (the sign bit is known clear), 3108 // the output of the NEG has the same number of sign bits as the 3109 // input. 3110 if (Known.isNonNegative()) 3111 return Tmp2; 3112 3113 // Otherwise, we treat this like a SUB. 3114 } 3115 3116 // Sub can have at most one carry bit. Thus we know that the output 3117 // is, at worst, one more bit than the inputs. 3118 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3119 if (Tmp == 1) break; 3120 return std::min(Tmp, Tmp2) - 1; 3121 3122 case Instruction::Mul: { 3123 // The output of the Mul can be at most twice the valid bits in the 3124 // inputs. 3125 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3126 if (SignBitsOp0 == 1) break; 3127 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3128 if (SignBitsOp1 == 1) break; 3129 unsigned OutValidBits = 3130 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3131 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3132 } 3133 3134 case Instruction::PHI: { 3135 const PHINode *PN = cast<PHINode>(U); 3136 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3137 // Don't analyze large in-degree PHIs. 3138 if (NumIncomingValues > 4) break; 3139 // Unreachable blocks may have zero-operand PHI nodes. 3140 if (NumIncomingValues == 0) break; 3141 3142 // Take the minimum of all incoming values. This can't infinitely loop 3143 // because of our depth threshold. 3144 Query RecQ = Q; 3145 Tmp = TyBits; 3146 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3147 if (Tmp == 1) return Tmp; 3148 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3149 Tmp = std::min( 3150 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3151 } 3152 return Tmp; 3153 } 3154 3155 case Instruction::Trunc: 3156 // FIXME: it's tricky to do anything useful for this, but it is an 3157 // important case for targets like X86. 3158 break; 3159 3160 case Instruction::ExtractElement: 3161 // Look through extract element. At the moment we keep this simple and 3162 // skip tracking the specific element. But at least we might find 3163 // information valid for all elements of the vector (for example if vector 3164 // is sign extended, shifted, etc). 3165 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3166 3167 case Instruction::ShuffleVector: { 3168 // Collect the minimum number of sign bits that are shared by every vector 3169 // element referenced by the shuffle. 3170 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3171 if (!Shuf) { 3172 // FIXME: Add support for shufflevector constant expressions. 3173 return 1; 3174 } 3175 APInt DemandedLHS, DemandedRHS; 3176 // For undef elements, we don't know anything about the common state of 3177 // the shuffle result. 3178 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3179 return 1; 3180 Tmp = std::numeric_limits<unsigned>::max(); 3181 if (!!DemandedLHS) { 3182 const Value *LHS = Shuf->getOperand(0); 3183 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3184 } 3185 // If we don't know anything, early out and try computeKnownBits 3186 // fall-back. 3187 if (Tmp == 1) 3188 break; 3189 if (!!DemandedRHS) { 3190 const Value *RHS = Shuf->getOperand(1); 3191 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3192 Tmp = std::min(Tmp, Tmp2); 3193 } 3194 // If we don't know anything, early out and try computeKnownBits 3195 // fall-back. 3196 if (Tmp == 1) 3197 break; 3198 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3199 return Tmp; 3200 } 3201 case Instruction::Call: { 3202 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3203 switch (II->getIntrinsicID()) { 3204 default: break; 3205 case Intrinsic::abs: 3206 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3207 if (Tmp == 1) break; 3208 3209 // Absolute value reduces number of sign bits by at most 1. 3210 return Tmp - 1; 3211 } 3212 } 3213 } 3214 } 3215 } 3216 3217 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3218 // use this information. 3219 3220 // If we can examine all elements of a vector constant successfully, we're 3221 // done (we can't do any better than that). If not, keep trying. 3222 if (unsigned VecSignBits = 3223 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3224 return VecSignBits; 3225 3226 KnownBits Known(TyBits); 3227 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3228 3229 // If we know that the sign bit is either zero or one, determine the number of 3230 // identical bits in the top of the input value. 3231 return std::max(FirstAnswer, Known.countMinSignBits()); 3232 } 3233 3234 /// This function computes the integer multiple of Base that equals V. 3235 /// If successful, it returns true and returns the multiple in 3236 /// Multiple. If unsuccessful, it returns false. It looks 3237 /// through SExt instructions only if LookThroughSExt is true. 3238 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3239 bool LookThroughSExt, unsigned Depth) { 3240 assert(V && "No Value?"); 3241 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3242 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3243 3244 Type *T = V->getType(); 3245 3246 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3247 3248 if (Base == 0) 3249 return false; 3250 3251 if (Base == 1) { 3252 Multiple = V; 3253 return true; 3254 } 3255 3256 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3257 Constant *BaseVal = ConstantInt::get(T, Base); 3258 if (CO && CO == BaseVal) { 3259 // Multiple is 1. 3260 Multiple = ConstantInt::get(T, 1); 3261 return true; 3262 } 3263 3264 if (CI && CI->getZExtValue() % Base == 0) { 3265 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3266 return true; 3267 } 3268 3269 if (Depth == MaxAnalysisRecursionDepth) return false; 3270 3271 Operator *I = dyn_cast<Operator>(V); 3272 if (!I) return false; 3273 3274 switch (I->getOpcode()) { 3275 default: break; 3276 case Instruction::SExt: 3277 if (!LookThroughSExt) return false; 3278 // otherwise fall through to ZExt 3279 LLVM_FALLTHROUGH; 3280 case Instruction::ZExt: 3281 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3282 LookThroughSExt, Depth+1); 3283 case Instruction::Shl: 3284 case Instruction::Mul: { 3285 Value *Op0 = I->getOperand(0); 3286 Value *Op1 = I->getOperand(1); 3287 3288 if (I->getOpcode() == Instruction::Shl) { 3289 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3290 if (!Op1CI) return false; 3291 // Turn Op0 << Op1 into Op0 * 2^Op1 3292 APInt Op1Int = Op1CI->getValue(); 3293 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3294 APInt API(Op1Int.getBitWidth(), 0); 3295 API.setBit(BitToSet); 3296 Op1 = ConstantInt::get(V->getContext(), API); 3297 } 3298 3299 Value *Mul0 = nullptr; 3300 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3301 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3302 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3303 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3304 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3305 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3306 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3307 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3308 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3309 3310 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3311 Multiple = ConstantExpr::getMul(MulC, Op1C); 3312 return true; 3313 } 3314 3315 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3316 if (Mul0CI->getValue() == 1) { 3317 // V == Base * Op1, so return Op1 3318 Multiple = Op1; 3319 return true; 3320 } 3321 } 3322 3323 Value *Mul1 = nullptr; 3324 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3325 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3326 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3327 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3328 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3329 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3330 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3331 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3332 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3333 3334 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3335 Multiple = ConstantExpr::getMul(MulC, Op0C); 3336 return true; 3337 } 3338 3339 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3340 if (Mul1CI->getValue() == 1) { 3341 // V == Base * Op0, so return Op0 3342 Multiple = Op0; 3343 return true; 3344 } 3345 } 3346 } 3347 } 3348 3349 // We could not determine if V is a multiple of Base. 3350 return false; 3351 } 3352 3353 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3354 const TargetLibraryInfo *TLI) { 3355 const Function *F = CB.getCalledFunction(); 3356 if (!F) 3357 return Intrinsic::not_intrinsic; 3358 3359 if (F->isIntrinsic()) 3360 return F->getIntrinsicID(); 3361 3362 // We are going to infer semantics of a library function based on mapping it 3363 // to an LLVM intrinsic. Check that the library function is available from 3364 // this callbase and in this environment. 3365 LibFunc Func; 3366 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3367 !CB.onlyReadsMemory()) 3368 return Intrinsic::not_intrinsic; 3369 3370 switch (Func) { 3371 default: 3372 break; 3373 case LibFunc_sin: 3374 case LibFunc_sinf: 3375 case LibFunc_sinl: 3376 return Intrinsic::sin; 3377 case LibFunc_cos: 3378 case LibFunc_cosf: 3379 case LibFunc_cosl: 3380 return Intrinsic::cos; 3381 case LibFunc_exp: 3382 case LibFunc_expf: 3383 case LibFunc_expl: 3384 return Intrinsic::exp; 3385 case LibFunc_exp2: 3386 case LibFunc_exp2f: 3387 case LibFunc_exp2l: 3388 return Intrinsic::exp2; 3389 case LibFunc_log: 3390 case LibFunc_logf: 3391 case LibFunc_logl: 3392 return Intrinsic::log; 3393 case LibFunc_log10: 3394 case LibFunc_log10f: 3395 case LibFunc_log10l: 3396 return Intrinsic::log10; 3397 case LibFunc_log2: 3398 case LibFunc_log2f: 3399 case LibFunc_log2l: 3400 return Intrinsic::log2; 3401 case LibFunc_fabs: 3402 case LibFunc_fabsf: 3403 case LibFunc_fabsl: 3404 return Intrinsic::fabs; 3405 case LibFunc_fmin: 3406 case LibFunc_fminf: 3407 case LibFunc_fminl: 3408 return Intrinsic::minnum; 3409 case LibFunc_fmax: 3410 case LibFunc_fmaxf: 3411 case LibFunc_fmaxl: 3412 return Intrinsic::maxnum; 3413 case LibFunc_copysign: 3414 case LibFunc_copysignf: 3415 case LibFunc_copysignl: 3416 return Intrinsic::copysign; 3417 case LibFunc_floor: 3418 case LibFunc_floorf: 3419 case LibFunc_floorl: 3420 return Intrinsic::floor; 3421 case LibFunc_ceil: 3422 case LibFunc_ceilf: 3423 case LibFunc_ceill: 3424 return Intrinsic::ceil; 3425 case LibFunc_trunc: 3426 case LibFunc_truncf: 3427 case LibFunc_truncl: 3428 return Intrinsic::trunc; 3429 case LibFunc_rint: 3430 case LibFunc_rintf: 3431 case LibFunc_rintl: 3432 return Intrinsic::rint; 3433 case LibFunc_nearbyint: 3434 case LibFunc_nearbyintf: 3435 case LibFunc_nearbyintl: 3436 return Intrinsic::nearbyint; 3437 case LibFunc_round: 3438 case LibFunc_roundf: 3439 case LibFunc_roundl: 3440 return Intrinsic::round; 3441 case LibFunc_roundeven: 3442 case LibFunc_roundevenf: 3443 case LibFunc_roundevenl: 3444 return Intrinsic::roundeven; 3445 case LibFunc_pow: 3446 case LibFunc_powf: 3447 case LibFunc_powl: 3448 return Intrinsic::pow; 3449 case LibFunc_sqrt: 3450 case LibFunc_sqrtf: 3451 case LibFunc_sqrtl: 3452 return Intrinsic::sqrt; 3453 } 3454 3455 return Intrinsic::not_intrinsic; 3456 } 3457 3458 /// Return true if we can prove that the specified FP value is never equal to 3459 /// -0.0. 3460 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3461 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3462 /// the same as +0.0 in floating-point ops. 3463 /// 3464 /// NOTE: this function will need to be revisited when we support non-default 3465 /// rounding modes! 3466 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3467 unsigned Depth) { 3468 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3469 return !CFP->getValueAPF().isNegZero(); 3470 3471 if (Depth == MaxAnalysisRecursionDepth) 3472 return false; 3473 3474 auto *Op = dyn_cast<Operator>(V); 3475 if (!Op) 3476 return false; 3477 3478 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3479 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3480 return true; 3481 3482 // sitofp and uitofp turn into +0.0 for zero. 3483 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3484 return true; 3485 3486 if (auto *Call = dyn_cast<CallInst>(Op)) { 3487 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3488 switch (IID) { 3489 default: 3490 break; 3491 // sqrt(-0.0) = -0.0, no other negative results are possible. 3492 case Intrinsic::sqrt: 3493 case Intrinsic::canonicalize: 3494 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3495 // fabs(x) != -0.0 3496 case Intrinsic::fabs: 3497 return true; 3498 } 3499 } 3500 3501 return false; 3502 } 3503 3504 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3505 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3506 /// bit despite comparing equal. 3507 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3508 const TargetLibraryInfo *TLI, 3509 bool SignBitOnly, 3510 unsigned Depth) { 3511 // TODO: This function does not do the right thing when SignBitOnly is true 3512 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3513 // which flips the sign bits of NaNs. See 3514 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3515 3516 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3517 return !CFP->getValueAPF().isNegative() || 3518 (!SignBitOnly && CFP->getValueAPF().isZero()); 3519 } 3520 3521 // Handle vector of constants. 3522 if (auto *CV = dyn_cast<Constant>(V)) { 3523 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3524 unsigned NumElts = CVFVTy->getNumElements(); 3525 for (unsigned i = 0; i != NumElts; ++i) { 3526 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3527 if (!CFP) 3528 return false; 3529 if (CFP->getValueAPF().isNegative() && 3530 (SignBitOnly || !CFP->getValueAPF().isZero())) 3531 return false; 3532 } 3533 3534 // All non-negative ConstantFPs. 3535 return true; 3536 } 3537 } 3538 3539 if (Depth == MaxAnalysisRecursionDepth) 3540 return false; 3541 3542 const Operator *I = dyn_cast<Operator>(V); 3543 if (!I) 3544 return false; 3545 3546 switch (I->getOpcode()) { 3547 default: 3548 break; 3549 // Unsigned integers are always nonnegative. 3550 case Instruction::UIToFP: 3551 return true; 3552 case Instruction::FMul: 3553 case Instruction::FDiv: 3554 // X * X is always non-negative or a NaN. 3555 // X / X is always exactly 1.0 or a NaN. 3556 if (I->getOperand(0) == I->getOperand(1) && 3557 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3558 return true; 3559 3560 LLVM_FALLTHROUGH; 3561 case Instruction::FAdd: 3562 case Instruction::FRem: 3563 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3564 Depth + 1) && 3565 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3566 Depth + 1); 3567 case Instruction::Select: 3568 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3569 Depth + 1) && 3570 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3571 Depth + 1); 3572 case Instruction::FPExt: 3573 case Instruction::FPTrunc: 3574 // Widening/narrowing never change sign. 3575 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3576 Depth + 1); 3577 case Instruction::ExtractElement: 3578 // Look through extract element. At the moment we keep this simple and skip 3579 // tracking the specific element. But at least we might find information 3580 // valid for all elements of the vector. 3581 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3582 Depth + 1); 3583 case Instruction::Call: 3584 const auto *CI = cast<CallInst>(I); 3585 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3586 switch (IID) { 3587 default: 3588 break; 3589 case Intrinsic::maxnum: { 3590 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3591 auto isPositiveNum = [&](Value *V) { 3592 if (SignBitOnly) { 3593 // With SignBitOnly, this is tricky because the result of 3594 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3595 // a constant strictly greater than 0.0. 3596 const APFloat *C; 3597 return match(V, m_APFloat(C)) && 3598 *C > APFloat::getZero(C->getSemantics()); 3599 } 3600 3601 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3602 // maxnum can't be ordered-less-than-zero. 3603 return isKnownNeverNaN(V, TLI) && 3604 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3605 }; 3606 3607 // TODO: This could be improved. We could also check that neither operand 3608 // has its sign bit set (and at least 1 is not-NAN?). 3609 return isPositiveNum(V0) || isPositiveNum(V1); 3610 } 3611 3612 case Intrinsic::maximum: 3613 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3614 Depth + 1) || 3615 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3616 Depth + 1); 3617 case Intrinsic::minnum: 3618 case Intrinsic::minimum: 3619 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3620 Depth + 1) && 3621 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3622 Depth + 1); 3623 case Intrinsic::exp: 3624 case Intrinsic::exp2: 3625 case Intrinsic::fabs: 3626 return true; 3627 3628 case Intrinsic::sqrt: 3629 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3630 if (!SignBitOnly) 3631 return true; 3632 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3633 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3634 3635 case Intrinsic::powi: 3636 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3637 // powi(x,n) is non-negative if n is even. 3638 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3639 return true; 3640 } 3641 // TODO: This is not correct. Given that exp is an integer, here are the 3642 // ways that pow can return a negative value: 3643 // 3644 // pow(x, exp) --> negative if exp is odd and x is negative. 3645 // pow(-0, exp) --> -inf if exp is negative odd. 3646 // pow(-0, exp) --> -0 if exp is positive odd. 3647 // pow(-inf, exp) --> -0 if exp is negative odd. 3648 // pow(-inf, exp) --> -inf if exp is positive odd. 3649 // 3650 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3651 // but we must return false if x == -0. Unfortunately we do not currently 3652 // have a way of expressing this constraint. See details in 3653 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3654 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3655 Depth + 1); 3656 3657 case Intrinsic::fma: 3658 case Intrinsic::fmuladd: 3659 // x*x+y is non-negative if y is non-negative. 3660 return I->getOperand(0) == I->getOperand(1) && 3661 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3662 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3663 Depth + 1); 3664 } 3665 break; 3666 } 3667 return false; 3668 } 3669 3670 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3671 const TargetLibraryInfo *TLI) { 3672 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3673 } 3674 3675 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3676 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3677 } 3678 3679 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3680 unsigned Depth) { 3681 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3682 3683 // If we're told that infinities won't happen, assume they won't. 3684 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3685 if (FPMathOp->hasNoInfs()) 3686 return true; 3687 3688 // Handle scalar constants. 3689 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3690 return !CFP->isInfinity(); 3691 3692 if (Depth == MaxAnalysisRecursionDepth) 3693 return false; 3694 3695 if (auto *Inst = dyn_cast<Instruction>(V)) { 3696 switch (Inst->getOpcode()) { 3697 case Instruction::Select: { 3698 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3699 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3700 } 3701 case Instruction::SIToFP: 3702 case Instruction::UIToFP: { 3703 // Get width of largest magnitude integer (remove a bit if signed). 3704 // This still works for a signed minimum value because the largest FP 3705 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3706 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3707 if (Inst->getOpcode() == Instruction::SIToFP) 3708 --IntSize; 3709 3710 // If the exponent of the largest finite FP value can hold the largest 3711 // integer, the result of the cast must be finite. 3712 Type *FPTy = Inst->getType()->getScalarType(); 3713 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3714 } 3715 default: 3716 break; 3717 } 3718 } 3719 3720 // try to handle fixed width vector constants 3721 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3722 if (VFVTy && isa<Constant>(V)) { 3723 // For vectors, verify that each element is not infinity. 3724 unsigned NumElts = VFVTy->getNumElements(); 3725 for (unsigned i = 0; i != NumElts; ++i) { 3726 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3727 if (!Elt) 3728 return false; 3729 if (isa<UndefValue>(Elt)) 3730 continue; 3731 auto *CElt = dyn_cast<ConstantFP>(Elt); 3732 if (!CElt || CElt->isInfinity()) 3733 return false; 3734 } 3735 // All elements were confirmed non-infinity or undefined. 3736 return true; 3737 } 3738 3739 // was not able to prove that V never contains infinity 3740 return false; 3741 } 3742 3743 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3744 unsigned Depth) { 3745 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3746 3747 // If we're told that NaNs won't happen, assume they won't. 3748 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3749 if (FPMathOp->hasNoNaNs()) 3750 return true; 3751 3752 // Handle scalar constants. 3753 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3754 return !CFP->isNaN(); 3755 3756 if (Depth == MaxAnalysisRecursionDepth) 3757 return false; 3758 3759 if (auto *Inst = dyn_cast<Instruction>(V)) { 3760 switch (Inst->getOpcode()) { 3761 case Instruction::FAdd: 3762 case Instruction::FSub: 3763 // Adding positive and negative infinity produces NaN. 3764 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3765 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3766 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3767 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3768 3769 case Instruction::FMul: 3770 // Zero multiplied with infinity produces NaN. 3771 // FIXME: If neither side can be zero fmul never produces NaN. 3772 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3773 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3774 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3775 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3776 3777 case Instruction::FDiv: 3778 case Instruction::FRem: 3779 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3780 return false; 3781 3782 case Instruction::Select: { 3783 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3784 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3785 } 3786 case Instruction::SIToFP: 3787 case Instruction::UIToFP: 3788 return true; 3789 case Instruction::FPTrunc: 3790 case Instruction::FPExt: 3791 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3792 default: 3793 break; 3794 } 3795 } 3796 3797 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3798 switch (II->getIntrinsicID()) { 3799 case Intrinsic::canonicalize: 3800 case Intrinsic::fabs: 3801 case Intrinsic::copysign: 3802 case Intrinsic::exp: 3803 case Intrinsic::exp2: 3804 case Intrinsic::floor: 3805 case Intrinsic::ceil: 3806 case Intrinsic::trunc: 3807 case Intrinsic::rint: 3808 case Intrinsic::nearbyint: 3809 case Intrinsic::round: 3810 case Intrinsic::roundeven: 3811 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3812 case Intrinsic::sqrt: 3813 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3814 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3815 case Intrinsic::minnum: 3816 case Intrinsic::maxnum: 3817 // If either operand is not NaN, the result is not NaN. 3818 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3819 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3820 default: 3821 return false; 3822 } 3823 } 3824 3825 // Try to handle fixed width vector constants 3826 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3827 if (VFVTy && isa<Constant>(V)) { 3828 // For vectors, verify that each element is not NaN. 3829 unsigned NumElts = VFVTy->getNumElements(); 3830 for (unsigned i = 0; i != NumElts; ++i) { 3831 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3832 if (!Elt) 3833 return false; 3834 if (isa<UndefValue>(Elt)) 3835 continue; 3836 auto *CElt = dyn_cast<ConstantFP>(Elt); 3837 if (!CElt || CElt->isNaN()) 3838 return false; 3839 } 3840 // All elements were confirmed not-NaN or undefined. 3841 return true; 3842 } 3843 3844 // Was not able to prove that V never contains NaN 3845 return false; 3846 } 3847 3848 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3849 3850 // All byte-wide stores are splatable, even of arbitrary variables. 3851 if (V->getType()->isIntegerTy(8)) 3852 return V; 3853 3854 LLVMContext &Ctx = V->getContext(); 3855 3856 // Undef don't care. 3857 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3858 if (isa<UndefValue>(V)) 3859 return UndefInt8; 3860 3861 // Return Undef for zero-sized type. 3862 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3863 return UndefInt8; 3864 3865 Constant *C = dyn_cast<Constant>(V); 3866 if (!C) { 3867 // Conceptually, we could handle things like: 3868 // %a = zext i8 %X to i16 3869 // %b = shl i16 %a, 8 3870 // %c = or i16 %a, %b 3871 // but until there is an example that actually needs this, it doesn't seem 3872 // worth worrying about. 3873 return nullptr; 3874 } 3875 3876 // Handle 'null' ConstantArrayZero etc. 3877 if (C->isNullValue()) 3878 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3879 3880 // Constant floating-point values can be handled as integer values if the 3881 // corresponding integer value is "byteable". An important case is 0.0. 3882 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3883 Type *Ty = nullptr; 3884 if (CFP->getType()->isHalfTy()) 3885 Ty = Type::getInt16Ty(Ctx); 3886 else if (CFP->getType()->isFloatTy()) 3887 Ty = Type::getInt32Ty(Ctx); 3888 else if (CFP->getType()->isDoubleTy()) 3889 Ty = Type::getInt64Ty(Ctx); 3890 // Don't handle long double formats, which have strange constraints. 3891 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3892 : nullptr; 3893 } 3894 3895 // We can handle constant integers that are multiple of 8 bits. 3896 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3897 if (CI->getBitWidth() % 8 == 0) { 3898 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3899 if (!CI->getValue().isSplat(8)) 3900 return nullptr; 3901 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3902 } 3903 } 3904 3905 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3906 if (CE->getOpcode() == Instruction::IntToPtr) { 3907 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3908 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3909 return isBytewiseValue( 3910 ConstantExpr::getIntegerCast(CE->getOperand(0), 3911 Type::getIntNTy(Ctx, BitWidth), false), 3912 DL); 3913 } 3914 } 3915 } 3916 3917 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3918 if (LHS == RHS) 3919 return LHS; 3920 if (!LHS || !RHS) 3921 return nullptr; 3922 if (LHS == UndefInt8) 3923 return RHS; 3924 if (RHS == UndefInt8) 3925 return LHS; 3926 return nullptr; 3927 }; 3928 3929 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3930 Value *Val = UndefInt8; 3931 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3932 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3933 return nullptr; 3934 return Val; 3935 } 3936 3937 if (isa<ConstantAggregate>(C)) { 3938 Value *Val = UndefInt8; 3939 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3940 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3941 return nullptr; 3942 return Val; 3943 } 3944 3945 // Don't try to handle the handful of other constants. 3946 return nullptr; 3947 } 3948 3949 // This is the recursive version of BuildSubAggregate. It takes a few different 3950 // arguments. Idxs is the index within the nested struct From that we are 3951 // looking at now (which is of type IndexedType). IdxSkip is the number of 3952 // indices from Idxs that should be left out when inserting into the resulting 3953 // struct. To is the result struct built so far, new insertvalue instructions 3954 // build on that. 3955 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3956 SmallVectorImpl<unsigned> &Idxs, 3957 unsigned IdxSkip, 3958 Instruction *InsertBefore) { 3959 StructType *STy = dyn_cast<StructType>(IndexedType); 3960 if (STy) { 3961 // Save the original To argument so we can modify it 3962 Value *OrigTo = To; 3963 // General case, the type indexed by Idxs is a struct 3964 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3965 // Process each struct element recursively 3966 Idxs.push_back(i); 3967 Value *PrevTo = To; 3968 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3969 InsertBefore); 3970 Idxs.pop_back(); 3971 if (!To) { 3972 // Couldn't find any inserted value for this index? Cleanup 3973 while (PrevTo != OrigTo) { 3974 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3975 PrevTo = Del->getAggregateOperand(); 3976 Del->eraseFromParent(); 3977 } 3978 // Stop processing elements 3979 break; 3980 } 3981 } 3982 // If we successfully found a value for each of our subaggregates 3983 if (To) 3984 return To; 3985 } 3986 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3987 // the struct's elements had a value that was inserted directly. In the latter 3988 // case, perhaps we can't determine each of the subelements individually, but 3989 // we might be able to find the complete struct somewhere. 3990 3991 // Find the value that is at that particular spot 3992 Value *V = FindInsertedValue(From, Idxs); 3993 3994 if (!V) 3995 return nullptr; 3996 3997 // Insert the value in the new (sub) aggregate 3998 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3999 "tmp", InsertBefore); 4000 } 4001 4002 // This helper takes a nested struct and extracts a part of it (which is again a 4003 // struct) into a new value. For example, given the struct: 4004 // { a, { b, { c, d }, e } } 4005 // and the indices "1, 1" this returns 4006 // { c, d }. 4007 // 4008 // It does this by inserting an insertvalue for each element in the resulting 4009 // struct, as opposed to just inserting a single struct. This will only work if 4010 // each of the elements of the substruct are known (ie, inserted into From by an 4011 // insertvalue instruction somewhere). 4012 // 4013 // All inserted insertvalue instructions are inserted before InsertBefore 4014 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4015 Instruction *InsertBefore) { 4016 assert(InsertBefore && "Must have someplace to insert!"); 4017 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4018 idx_range); 4019 Value *To = UndefValue::get(IndexedType); 4020 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4021 unsigned IdxSkip = Idxs.size(); 4022 4023 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4024 } 4025 4026 /// Given an aggregate and a sequence of indices, see if the scalar value 4027 /// indexed is already around as a register, for example if it was inserted 4028 /// directly into the aggregate. 4029 /// 4030 /// If InsertBefore is not null, this function will duplicate (modified) 4031 /// insertvalues when a part of a nested struct is extracted. 4032 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4033 Instruction *InsertBefore) { 4034 // Nothing to index? Just return V then (this is useful at the end of our 4035 // recursion). 4036 if (idx_range.empty()) 4037 return V; 4038 // We have indices, so V should have an indexable type. 4039 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4040 "Not looking at a struct or array?"); 4041 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4042 "Invalid indices for type?"); 4043 4044 if (Constant *C = dyn_cast<Constant>(V)) { 4045 C = C->getAggregateElement(idx_range[0]); 4046 if (!C) return nullptr; 4047 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4048 } 4049 4050 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4051 // Loop the indices for the insertvalue instruction in parallel with the 4052 // requested indices 4053 const unsigned *req_idx = idx_range.begin(); 4054 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4055 i != e; ++i, ++req_idx) { 4056 if (req_idx == idx_range.end()) { 4057 // We can't handle this without inserting insertvalues 4058 if (!InsertBefore) 4059 return nullptr; 4060 4061 // The requested index identifies a part of a nested aggregate. Handle 4062 // this specially. For example, 4063 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4064 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4065 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4066 // This can be changed into 4067 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4068 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4069 // which allows the unused 0,0 element from the nested struct to be 4070 // removed. 4071 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4072 InsertBefore); 4073 } 4074 4075 // This insert value inserts something else than what we are looking for. 4076 // See if the (aggregate) value inserted into has the value we are 4077 // looking for, then. 4078 if (*req_idx != *i) 4079 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4080 InsertBefore); 4081 } 4082 // If we end up here, the indices of the insertvalue match with those 4083 // requested (though possibly only partially). Now we recursively look at 4084 // the inserted value, passing any remaining indices. 4085 return FindInsertedValue(I->getInsertedValueOperand(), 4086 makeArrayRef(req_idx, idx_range.end()), 4087 InsertBefore); 4088 } 4089 4090 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4091 // If we're extracting a value from an aggregate that was extracted from 4092 // something else, we can extract from that something else directly instead. 4093 // However, we will need to chain I's indices with the requested indices. 4094 4095 // Calculate the number of indices required 4096 unsigned size = I->getNumIndices() + idx_range.size(); 4097 // Allocate some space to put the new indices in 4098 SmallVector<unsigned, 5> Idxs; 4099 Idxs.reserve(size); 4100 // Add indices from the extract value instruction 4101 Idxs.append(I->idx_begin(), I->idx_end()); 4102 4103 // Add requested indices 4104 Idxs.append(idx_range.begin(), idx_range.end()); 4105 4106 assert(Idxs.size() == size 4107 && "Number of indices added not correct?"); 4108 4109 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4110 } 4111 // Otherwise, we don't know (such as, extracting from a function return value 4112 // or load instruction) 4113 return nullptr; 4114 } 4115 4116 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4117 unsigned CharSize) { 4118 // Make sure the GEP has exactly three arguments. 4119 if (GEP->getNumOperands() != 3) 4120 return false; 4121 4122 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4123 // CharSize. 4124 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4125 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4126 return false; 4127 4128 // Check to make sure that the first operand of the GEP is an integer and 4129 // has value 0 so that we are sure we're indexing into the initializer. 4130 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4131 if (!FirstIdx || !FirstIdx->isZero()) 4132 return false; 4133 4134 return true; 4135 } 4136 4137 bool llvm::getConstantDataArrayInfo(const Value *V, 4138 ConstantDataArraySlice &Slice, 4139 unsigned ElementSize, uint64_t Offset) { 4140 assert(V); 4141 4142 // Look through bitcast instructions and geps. 4143 V = V->stripPointerCasts(); 4144 4145 // If the value is a GEP instruction or constant expression, treat it as an 4146 // offset. 4147 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4148 // The GEP operator should be based on a pointer to string constant, and is 4149 // indexing into the string constant. 4150 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4151 return false; 4152 4153 // If the second index isn't a ConstantInt, then this is a variable index 4154 // into the array. If this occurs, we can't say anything meaningful about 4155 // the string. 4156 uint64_t StartIdx = 0; 4157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4158 StartIdx = CI->getZExtValue(); 4159 else 4160 return false; 4161 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4162 StartIdx + Offset); 4163 } 4164 4165 // The GEP instruction, constant or instruction, must reference a global 4166 // variable that is a constant and is initialized. The referenced constant 4167 // initializer is the array that we'll use for optimization. 4168 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4169 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4170 return false; 4171 4172 const ConstantDataArray *Array; 4173 ArrayType *ArrayTy; 4174 if (GV->getInitializer()->isNullValue()) { 4175 Type *GVTy = GV->getValueType(); 4176 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4177 // A zeroinitializer for the array; there is no ConstantDataArray. 4178 Array = nullptr; 4179 } else { 4180 const DataLayout &DL = GV->getParent()->getDataLayout(); 4181 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4182 uint64_t Length = SizeInBytes / (ElementSize / 8); 4183 if (Length <= Offset) 4184 return false; 4185 4186 Slice.Array = nullptr; 4187 Slice.Offset = 0; 4188 Slice.Length = Length - Offset; 4189 return true; 4190 } 4191 } else { 4192 // This must be a ConstantDataArray. 4193 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4194 if (!Array) 4195 return false; 4196 ArrayTy = Array->getType(); 4197 } 4198 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4199 return false; 4200 4201 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4202 if (Offset > NumElts) 4203 return false; 4204 4205 Slice.Array = Array; 4206 Slice.Offset = Offset; 4207 Slice.Length = NumElts - Offset; 4208 return true; 4209 } 4210 4211 /// This function computes the length of a null-terminated C string pointed to 4212 /// by V. If successful, it returns true and returns the string in Str. 4213 /// If unsuccessful, it returns false. 4214 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4215 uint64_t Offset, bool TrimAtNul) { 4216 ConstantDataArraySlice Slice; 4217 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4218 return false; 4219 4220 if (Slice.Array == nullptr) { 4221 if (TrimAtNul) { 4222 Str = StringRef(); 4223 return true; 4224 } 4225 if (Slice.Length == 1) { 4226 Str = StringRef("", 1); 4227 return true; 4228 } 4229 // We cannot instantiate a StringRef as we do not have an appropriate string 4230 // of 0s at hand. 4231 return false; 4232 } 4233 4234 // Start out with the entire array in the StringRef. 4235 Str = Slice.Array->getAsString(); 4236 // Skip over 'offset' bytes. 4237 Str = Str.substr(Slice.Offset); 4238 4239 if (TrimAtNul) { 4240 // Trim off the \0 and anything after it. If the array is not nul 4241 // terminated, we just return the whole end of string. The client may know 4242 // some other way that the string is length-bound. 4243 Str = Str.substr(0, Str.find('\0')); 4244 } 4245 return true; 4246 } 4247 4248 // These next two are very similar to the above, but also look through PHI 4249 // nodes. 4250 // TODO: See if we can integrate these two together. 4251 4252 /// If we can compute the length of the string pointed to by 4253 /// the specified pointer, return 'len+1'. If we can't, return 0. 4254 static uint64_t GetStringLengthH(const Value *V, 4255 SmallPtrSetImpl<const PHINode*> &PHIs, 4256 unsigned CharSize) { 4257 // Look through noop bitcast instructions. 4258 V = V->stripPointerCasts(); 4259 4260 // If this is a PHI node, there are two cases: either we have already seen it 4261 // or we haven't. 4262 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4263 if (!PHIs.insert(PN).second) 4264 return ~0ULL; // already in the set. 4265 4266 // If it was new, see if all the input strings are the same length. 4267 uint64_t LenSoFar = ~0ULL; 4268 for (Value *IncValue : PN->incoming_values()) { 4269 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4270 if (Len == 0) return 0; // Unknown length -> unknown. 4271 4272 if (Len == ~0ULL) continue; 4273 4274 if (Len != LenSoFar && LenSoFar != ~0ULL) 4275 return 0; // Disagree -> unknown. 4276 LenSoFar = Len; 4277 } 4278 4279 // Success, all agree. 4280 return LenSoFar; 4281 } 4282 4283 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4284 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4285 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4286 if (Len1 == 0) return 0; 4287 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4288 if (Len2 == 0) return 0; 4289 if (Len1 == ~0ULL) return Len2; 4290 if (Len2 == ~0ULL) return Len1; 4291 if (Len1 != Len2) return 0; 4292 return Len1; 4293 } 4294 4295 // Otherwise, see if we can read the string. 4296 ConstantDataArraySlice Slice; 4297 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4298 return 0; 4299 4300 if (Slice.Array == nullptr) 4301 return 1; 4302 4303 // Search for nul characters 4304 unsigned NullIndex = 0; 4305 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4306 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4307 break; 4308 } 4309 4310 return NullIndex + 1; 4311 } 4312 4313 /// If we can compute the length of the string pointed to by 4314 /// the specified pointer, return 'len+1'. If we can't, return 0. 4315 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4316 if (!V->getType()->isPointerTy()) 4317 return 0; 4318 4319 SmallPtrSet<const PHINode*, 32> PHIs; 4320 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4321 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4322 // an empty string as a length. 4323 return Len == ~0ULL ? 1 : Len; 4324 } 4325 4326 const Value * 4327 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4328 bool MustPreserveNullness) { 4329 assert(Call && 4330 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4331 if (const Value *RV = Call->getReturnedArgOperand()) 4332 return RV; 4333 // This can be used only as a aliasing property. 4334 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4335 Call, MustPreserveNullness)) 4336 return Call->getArgOperand(0); 4337 return nullptr; 4338 } 4339 4340 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4341 const CallBase *Call, bool MustPreserveNullness) { 4342 switch (Call->getIntrinsicID()) { 4343 case Intrinsic::launder_invariant_group: 4344 case Intrinsic::strip_invariant_group: 4345 case Intrinsic::aarch64_irg: 4346 case Intrinsic::aarch64_tagp: 4347 return true; 4348 case Intrinsic::ptrmask: 4349 return !MustPreserveNullness; 4350 default: 4351 return false; 4352 } 4353 } 4354 4355 /// \p PN defines a loop-variant pointer to an object. Check if the 4356 /// previous iteration of the loop was referring to the same object as \p PN. 4357 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4358 const LoopInfo *LI) { 4359 // Find the loop-defined value. 4360 Loop *L = LI->getLoopFor(PN->getParent()); 4361 if (PN->getNumIncomingValues() != 2) 4362 return true; 4363 4364 // Find the value from previous iteration. 4365 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4366 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4367 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4368 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4369 return true; 4370 4371 // If a new pointer is loaded in the loop, the pointer references a different 4372 // object in every iteration. E.g.: 4373 // for (i) 4374 // int *p = a[i]; 4375 // ... 4376 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4377 if (!L->isLoopInvariant(Load->getPointerOperand())) 4378 return false; 4379 return true; 4380 } 4381 4382 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4383 if (!V->getType()->isPointerTy()) 4384 return V; 4385 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4386 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4387 V = GEP->getPointerOperand(); 4388 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4389 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4390 V = cast<Operator>(V)->getOperand(0); 4391 if (!V->getType()->isPointerTy()) 4392 return V; 4393 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4394 if (GA->isInterposable()) 4395 return V; 4396 V = GA->getAliasee(); 4397 } else { 4398 if (auto *PHI = dyn_cast<PHINode>(V)) { 4399 // Look through single-arg phi nodes created by LCSSA. 4400 if (PHI->getNumIncomingValues() == 1) { 4401 V = PHI->getIncomingValue(0); 4402 continue; 4403 } 4404 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4405 // CaptureTracking can know about special capturing properties of some 4406 // intrinsics like launder.invariant.group, that can't be expressed with 4407 // the attributes, but have properties like returning aliasing pointer. 4408 // Because some analysis may assume that nocaptured pointer is not 4409 // returned from some special intrinsic (because function would have to 4410 // be marked with returns attribute), it is crucial to use this function 4411 // because it should be in sync with CaptureTracking. Not using it may 4412 // cause weird miscompilations where 2 aliasing pointers are assumed to 4413 // noalias. 4414 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4415 V = RP; 4416 continue; 4417 } 4418 } 4419 4420 return V; 4421 } 4422 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4423 } 4424 return V; 4425 } 4426 4427 void llvm::getUnderlyingObjects(const Value *V, 4428 SmallVectorImpl<const Value *> &Objects, 4429 LoopInfo *LI, unsigned MaxLookup) { 4430 SmallPtrSet<const Value *, 4> Visited; 4431 SmallVector<const Value *, 4> Worklist; 4432 Worklist.push_back(V); 4433 do { 4434 const Value *P = Worklist.pop_back_val(); 4435 P = getUnderlyingObject(P, MaxLookup); 4436 4437 if (!Visited.insert(P).second) 4438 continue; 4439 4440 if (auto *SI = dyn_cast<SelectInst>(P)) { 4441 Worklist.push_back(SI->getTrueValue()); 4442 Worklist.push_back(SI->getFalseValue()); 4443 continue; 4444 } 4445 4446 if (auto *PN = dyn_cast<PHINode>(P)) { 4447 // If this PHI changes the underlying object in every iteration of the 4448 // loop, don't look through it. Consider: 4449 // int **A; 4450 // for (i) { 4451 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4452 // Curr = A[i]; 4453 // *Prev, *Curr; 4454 // 4455 // Prev is tracking Curr one iteration behind so they refer to different 4456 // underlying objects. 4457 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4458 isSameUnderlyingObjectInLoop(PN, LI)) 4459 append_range(Worklist, PN->incoming_values()); 4460 continue; 4461 } 4462 4463 Objects.push_back(P); 4464 } while (!Worklist.empty()); 4465 } 4466 4467 /// This is the function that does the work of looking through basic 4468 /// ptrtoint+arithmetic+inttoptr sequences. 4469 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4470 do { 4471 if (const Operator *U = dyn_cast<Operator>(V)) { 4472 // If we find a ptrtoint, we can transfer control back to the 4473 // regular getUnderlyingObjectFromInt. 4474 if (U->getOpcode() == Instruction::PtrToInt) 4475 return U->getOperand(0); 4476 // If we find an add of a constant, a multiplied value, or a phi, it's 4477 // likely that the other operand will lead us to the base 4478 // object. We don't have to worry about the case where the 4479 // object address is somehow being computed by the multiply, 4480 // because our callers only care when the result is an 4481 // identifiable object. 4482 if (U->getOpcode() != Instruction::Add || 4483 (!isa<ConstantInt>(U->getOperand(1)) && 4484 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4485 !isa<PHINode>(U->getOperand(1)))) 4486 return V; 4487 V = U->getOperand(0); 4488 } else { 4489 return V; 4490 } 4491 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4492 } while (true); 4493 } 4494 4495 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4496 /// ptrtoint+arithmetic+inttoptr sequences. 4497 /// It returns false if unidentified object is found in getUnderlyingObjects. 4498 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4499 SmallVectorImpl<Value *> &Objects) { 4500 SmallPtrSet<const Value *, 16> Visited; 4501 SmallVector<const Value *, 4> Working(1, V); 4502 do { 4503 V = Working.pop_back_val(); 4504 4505 SmallVector<const Value *, 4> Objs; 4506 getUnderlyingObjects(V, Objs); 4507 4508 for (const Value *V : Objs) { 4509 if (!Visited.insert(V).second) 4510 continue; 4511 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4512 const Value *O = 4513 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4514 if (O->getType()->isPointerTy()) { 4515 Working.push_back(O); 4516 continue; 4517 } 4518 } 4519 // If getUnderlyingObjects fails to find an identifiable object, 4520 // getUnderlyingObjectsForCodeGen also fails for safety. 4521 if (!isIdentifiedObject(V)) { 4522 Objects.clear(); 4523 return false; 4524 } 4525 Objects.push_back(const_cast<Value *>(V)); 4526 } 4527 } while (!Working.empty()); 4528 return true; 4529 } 4530 4531 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4532 AllocaInst *Result = nullptr; 4533 SmallPtrSet<Value *, 4> Visited; 4534 SmallVector<Value *, 4> Worklist; 4535 4536 auto AddWork = [&](Value *V) { 4537 if (Visited.insert(V).second) 4538 Worklist.push_back(V); 4539 }; 4540 4541 AddWork(V); 4542 do { 4543 V = Worklist.pop_back_val(); 4544 assert(Visited.count(V)); 4545 4546 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4547 if (Result && Result != AI) 4548 return nullptr; 4549 Result = AI; 4550 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4551 AddWork(CI->getOperand(0)); 4552 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4553 for (Value *IncValue : PN->incoming_values()) 4554 AddWork(IncValue); 4555 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4556 AddWork(SI->getTrueValue()); 4557 AddWork(SI->getFalseValue()); 4558 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4559 if (OffsetZero && !GEP->hasAllZeroIndices()) 4560 return nullptr; 4561 AddWork(GEP->getPointerOperand()); 4562 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4563 Value *Returned = CB->getReturnedArgOperand(); 4564 if (Returned) 4565 AddWork(Returned); 4566 else 4567 return nullptr; 4568 } else { 4569 return nullptr; 4570 } 4571 } while (!Worklist.empty()); 4572 4573 return Result; 4574 } 4575 4576 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4577 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4578 for (const User *U : V->users()) { 4579 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4580 if (!II) 4581 return false; 4582 4583 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4584 continue; 4585 4586 if (AllowDroppable && II->isDroppable()) 4587 continue; 4588 4589 return false; 4590 } 4591 return true; 4592 } 4593 4594 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4595 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4596 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4597 } 4598 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4599 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4600 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4601 } 4602 4603 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4604 if (!LI.isUnordered()) 4605 return true; 4606 const Function &F = *LI.getFunction(); 4607 // Speculative load may create a race that did not exist in the source. 4608 return F.hasFnAttribute(Attribute::SanitizeThread) || 4609 // Speculative load may load data from dirty regions. 4610 F.hasFnAttribute(Attribute::SanitizeAddress) || 4611 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4612 } 4613 4614 4615 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4616 const Instruction *CtxI, 4617 const DominatorTree *DT, 4618 const TargetLibraryInfo *TLI) { 4619 const Operator *Inst = dyn_cast<Operator>(V); 4620 if (!Inst) 4621 return false; 4622 4623 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4624 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4625 if (C->canTrap()) 4626 return false; 4627 4628 switch (Inst->getOpcode()) { 4629 default: 4630 return true; 4631 case Instruction::UDiv: 4632 case Instruction::URem: { 4633 // x / y is undefined if y == 0. 4634 const APInt *V; 4635 if (match(Inst->getOperand(1), m_APInt(V))) 4636 return *V != 0; 4637 return false; 4638 } 4639 case Instruction::SDiv: 4640 case Instruction::SRem: { 4641 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4642 const APInt *Numerator, *Denominator; 4643 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4644 return false; 4645 // We cannot hoist this division if the denominator is 0. 4646 if (*Denominator == 0) 4647 return false; 4648 // It's safe to hoist if the denominator is not 0 or -1. 4649 if (!Denominator->isAllOnesValue()) 4650 return true; 4651 // At this point we know that the denominator is -1. It is safe to hoist as 4652 // long we know that the numerator is not INT_MIN. 4653 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4654 return !Numerator->isMinSignedValue(); 4655 // The numerator *might* be MinSignedValue. 4656 return false; 4657 } 4658 case Instruction::Load: { 4659 const LoadInst *LI = cast<LoadInst>(Inst); 4660 if (mustSuppressSpeculation(*LI)) 4661 return false; 4662 const DataLayout &DL = LI->getModule()->getDataLayout(); 4663 return isDereferenceableAndAlignedPointer( 4664 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4665 DL, CtxI, DT, TLI); 4666 } 4667 case Instruction::Call: { 4668 auto *CI = cast<const CallInst>(Inst); 4669 const Function *Callee = CI->getCalledFunction(); 4670 4671 // The called function could have undefined behavior or side-effects, even 4672 // if marked readnone nounwind. 4673 return Callee && Callee->isSpeculatable(); 4674 } 4675 case Instruction::VAArg: 4676 case Instruction::Alloca: 4677 case Instruction::Invoke: 4678 case Instruction::CallBr: 4679 case Instruction::PHI: 4680 case Instruction::Store: 4681 case Instruction::Ret: 4682 case Instruction::Br: 4683 case Instruction::IndirectBr: 4684 case Instruction::Switch: 4685 case Instruction::Unreachable: 4686 case Instruction::Fence: 4687 case Instruction::AtomicRMW: 4688 case Instruction::AtomicCmpXchg: 4689 case Instruction::LandingPad: 4690 case Instruction::Resume: 4691 case Instruction::CatchSwitch: 4692 case Instruction::CatchPad: 4693 case Instruction::CatchRet: 4694 case Instruction::CleanupPad: 4695 case Instruction::CleanupRet: 4696 return false; // Misc instructions which have effects 4697 } 4698 } 4699 4700 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4701 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4702 } 4703 4704 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4705 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4706 switch (OR) { 4707 case ConstantRange::OverflowResult::MayOverflow: 4708 return OverflowResult::MayOverflow; 4709 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4710 return OverflowResult::AlwaysOverflowsLow; 4711 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4712 return OverflowResult::AlwaysOverflowsHigh; 4713 case ConstantRange::OverflowResult::NeverOverflows: 4714 return OverflowResult::NeverOverflows; 4715 } 4716 llvm_unreachable("Unknown OverflowResult"); 4717 } 4718 4719 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4720 static ConstantRange computeConstantRangeIncludingKnownBits( 4721 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4722 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4723 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4724 KnownBits Known = computeKnownBits( 4725 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4726 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4727 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4728 ConstantRange::PreferredRangeType RangeType = 4729 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4730 return CR1.intersectWith(CR2, RangeType); 4731 } 4732 4733 OverflowResult llvm::computeOverflowForUnsignedMul( 4734 const Value *LHS, const Value *RHS, const DataLayout &DL, 4735 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4736 bool UseInstrInfo) { 4737 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4738 nullptr, UseInstrInfo); 4739 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4740 nullptr, UseInstrInfo); 4741 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4742 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4743 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4744 } 4745 4746 OverflowResult 4747 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4748 const DataLayout &DL, AssumptionCache *AC, 4749 const Instruction *CxtI, 4750 const DominatorTree *DT, bool UseInstrInfo) { 4751 // Multiplying n * m significant bits yields a result of n + m significant 4752 // bits. If the total number of significant bits does not exceed the 4753 // result bit width (minus 1), there is no overflow. 4754 // This means if we have enough leading sign bits in the operands 4755 // we can guarantee that the result does not overflow. 4756 // Ref: "Hacker's Delight" by Henry Warren 4757 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4758 4759 // Note that underestimating the number of sign bits gives a more 4760 // conservative answer. 4761 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4762 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4763 4764 // First handle the easy case: if we have enough sign bits there's 4765 // definitely no overflow. 4766 if (SignBits > BitWidth + 1) 4767 return OverflowResult::NeverOverflows; 4768 4769 // There are two ambiguous cases where there can be no overflow: 4770 // SignBits == BitWidth + 1 and 4771 // SignBits == BitWidth 4772 // The second case is difficult to check, therefore we only handle the 4773 // first case. 4774 if (SignBits == BitWidth + 1) { 4775 // It overflows only when both arguments are negative and the true 4776 // product is exactly the minimum negative number. 4777 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4778 // For simplicity we just check if at least one side is not negative. 4779 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4780 nullptr, UseInstrInfo); 4781 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4782 nullptr, UseInstrInfo); 4783 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4784 return OverflowResult::NeverOverflows; 4785 } 4786 return OverflowResult::MayOverflow; 4787 } 4788 4789 OverflowResult llvm::computeOverflowForUnsignedAdd( 4790 const Value *LHS, const Value *RHS, const DataLayout &DL, 4791 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4792 bool UseInstrInfo) { 4793 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4794 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4795 nullptr, UseInstrInfo); 4796 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4797 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4798 nullptr, UseInstrInfo); 4799 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4800 } 4801 4802 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4803 const Value *RHS, 4804 const AddOperator *Add, 4805 const DataLayout &DL, 4806 AssumptionCache *AC, 4807 const Instruction *CxtI, 4808 const DominatorTree *DT) { 4809 if (Add && Add->hasNoSignedWrap()) { 4810 return OverflowResult::NeverOverflows; 4811 } 4812 4813 // If LHS and RHS each have at least two sign bits, the addition will look 4814 // like 4815 // 4816 // XX..... + 4817 // YY..... 4818 // 4819 // If the carry into the most significant position is 0, X and Y can't both 4820 // be 1 and therefore the carry out of the addition is also 0. 4821 // 4822 // If the carry into the most significant position is 1, X and Y can't both 4823 // be 0 and therefore the carry out of the addition is also 1. 4824 // 4825 // Since the carry into the most significant position is always equal to 4826 // the carry out of the addition, there is no signed overflow. 4827 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4828 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4829 return OverflowResult::NeverOverflows; 4830 4831 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4832 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4833 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4834 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4835 OverflowResult OR = 4836 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4837 if (OR != OverflowResult::MayOverflow) 4838 return OR; 4839 4840 // The remaining code needs Add to be available. Early returns if not so. 4841 if (!Add) 4842 return OverflowResult::MayOverflow; 4843 4844 // If the sign of Add is the same as at least one of the operands, this add 4845 // CANNOT overflow. If this can be determined from the known bits of the 4846 // operands the above signedAddMayOverflow() check will have already done so. 4847 // The only other way to improve on the known bits is from an assumption, so 4848 // call computeKnownBitsFromAssume() directly. 4849 bool LHSOrRHSKnownNonNegative = 4850 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4851 bool LHSOrRHSKnownNegative = 4852 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4853 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4854 KnownBits AddKnown(LHSRange.getBitWidth()); 4855 computeKnownBitsFromAssume( 4856 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4857 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4858 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4859 return OverflowResult::NeverOverflows; 4860 } 4861 4862 return OverflowResult::MayOverflow; 4863 } 4864 4865 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4866 const Value *RHS, 4867 const DataLayout &DL, 4868 AssumptionCache *AC, 4869 const Instruction *CxtI, 4870 const DominatorTree *DT) { 4871 // Checking for conditions implied by dominating conditions may be expensive. 4872 // Limit it to usub_with_overflow calls for now. 4873 if (match(CxtI, 4874 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4875 if (auto C = 4876 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4877 if (*C) 4878 return OverflowResult::NeverOverflows; 4879 return OverflowResult::AlwaysOverflowsLow; 4880 } 4881 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4882 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4883 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4884 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4885 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4886 } 4887 4888 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4889 const Value *RHS, 4890 const DataLayout &DL, 4891 AssumptionCache *AC, 4892 const Instruction *CxtI, 4893 const DominatorTree *DT) { 4894 // If LHS and RHS each have at least two sign bits, the subtraction 4895 // cannot overflow. 4896 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4897 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4898 return OverflowResult::NeverOverflows; 4899 4900 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4901 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4902 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4903 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4904 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4905 } 4906 4907 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4908 const DominatorTree &DT) { 4909 SmallVector<const BranchInst *, 2> GuardingBranches; 4910 SmallVector<const ExtractValueInst *, 2> Results; 4911 4912 for (const User *U : WO->users()) { 4913 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4914 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4915 4916 if (EVI->getIndices()[0] == 0) 4917 Results.push_back(EVI); 4918 else { 4919 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4920 4921 for (const auto *U : EVI->users()) 4922 if (const auto *B = dyn_cast<BranchInst>(U)) { 4923 assert(B->isConditional() && "How else is it using an i1?"); 4924 GuardingBranches.push_back(B); 4925 } 4926 } 4927 } else { 4928 // We are using the aggregate directly in a way we don't want to analyze 4929 // here (storing it to a global, say). 4930 return false; 4931 } 4932 } 4933 4934 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4935 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4936 if (!NoWrapEdge.isSingleEdge()) 4937 return false; 4938 4939 // Check if all users of the add are provably no-wrap. 4940 for (const auto *Result : Results) { 4941 // If the extractvalue itself is not executed on overflow, the we don't 4942 // need to check each use separately, since domination is transitive. 4943 if (DT.dominates(NoWrapEdge, Result->getParent())) 4944 continue; 4945 4946 for (auto &RU : Result->uses()) 4947 if (!DT.dominates(NoWrapEdge, RU)) 4948 return false; 4949 } 4950 4951 return true; 4952 }; 4953 4954 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4955 } 4956 4957 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4958 // See whether I has flags that may create poison 4959 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4960 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4961 return true; 4962 } 4963 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4964 if (ExactOp->isExact()) 4965 return true; 4966 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4967 auto FMF = FP->getFastMathFlags(); 4968 if (FMF.noNaNs() || FMF.noInfs()) 4969 return true; 4970 } 4971 4972 unsigned Opcode = Op->getOpcode(); 4973 4974 // Check whether opcode is a poison/undef-generating operation 4975 switch (Opcode) { 4976 case Instruction::Shl: 4977 case Instruction::AShr: 4978 case Instruction::LShr: { 4979 // Shifts return poison if shiftwidth is larger than the bitwidth. 4980 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4981 SmallVector<Constant *, 4> ShiftAmounts; 4982 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4983 unsigned NumElts = FVTy->getNumElements(); 4984 for (unsigned i = 0; i < NumElts; ++i) 4985 ShiftAmounts.push_back(C->getAggregateElement(i)); 4986 } else if (isa<ScalableVectorType>(C->getType())) 4987 return true; // Can't tell, just return true to be safe 4988 else 4989 ShiftAmounts.push_back(C); 4990 4991 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4992 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4993 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4994 }); 4995 return !Safe; 4996 } 4997 return true; 4998 } 4999 case Instruction::FPToSI: 5000 case Instruction::FPToUI: 5001 // fptosi/ui yields poison if the resulting value does not fit in the 5002 // destination type. 5003 return true; 5004 case Instruction::Call: 5005 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5006 switch (II->getIntrinsicID()) { 5007 // TODO: Add more intrinsics. 5008 case Intrinsic::ctpop: 5009 case Intrinsic::sadd_with_overflow: 5010 case Intrinsic::ssub_with_overflow: 5011 case Intrinsic::smul_with_overflow: 5012 case Intrinsic::uadd_with_overflow: 5013 case Intrinsic::usub_with_overflow: 5014 case Intrinsic::umul_with_overflow: 5015 return false; 5016 } 5017 } 5018 LLVM_FALLTHROUGH; 5019 case Instruction::CallBr: 5020 case Instruction::Invoke: { 5021 const auto *CB = cast<CallBase>(Op); 5022 return !CB->hasRetAttr(Attribute::NoUndef); 5023 } 5024 case Instruction::InsertElement: 5025 case Instruction::ExtractElement: { 5026 // If index exceeds the length of the vector, it returns poison 5027 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5028 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5029 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5030 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5031 return true; 5032 return false; 5033 } 5034 case Instruction::ShuffleVector: { 5035 // shufflevector may return undef. 5036 if (PoisonOnly) 5037 return false; 5038 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5039 ? cast<ConstantExpr>(Op)->getShuffleMask() 5040 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5041 return is_contained(Mask, UndefMaskElem); 5042 } 5043 case Instruction::FNeg: 5044 case Instruction::PHI: 5045 case Instruction::Select: 5046 case Instruction::URem: 5047 case Instruction::SRem: 5048 case Instruction::ExtractValue: 5049 case Instruction::InsertValue: 5050 case Instruction::Freeze: 5051 case Instruction::ICmp: 5052 case Instruction::FCmp: 5053 return false; 5054 case Instruction::GetElementPtr: { 5055 const auto *GEP = cast<GEPOperator>(Op); 5056 return GEP->isInBounds(); 5057 } 5058 default: { 5059 const auto *CE = dyn_cast<ConstantExpr>(Op); 5060 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5061 return false; 5062 else if (Instruction::isBinaryOp(Opcode)) 5063 return false; 5064 // Be conservative and return true. 5065 return true; 5066 } 5067 } 5068 } 5069 5070 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 5071 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 5072 } 5073 5074 bool llvm::canCreatePoison(const Operator *Op) { 5075 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 5076 } 5077 5078 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5079 const Value *V, unsigned Depth) { 5080 if (ValAssumedPoison == V) 5081 return true; 5082 5083 const unsigned MaxDepth = 2; 5084 if (Depth >= MaxDepth) 5085 return false; 5086 5087 if (const auto *I = dyn_cast<Instruction>(V)) { 5088 if (propagatesPoison(cast<Operator>(I))) 5089 return any_of(I->operands(), [=](const Value *Op) { 5090 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5091 }); 5092 5093 // 'select ValAssumedPoison, _, _' is poison. 5094 if (const auto *SI = dyn_cast<SelectInst>(I)) 5095 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5096 Depth + 1); 5097 // V = extractvalue V0, idx 5098 // V2 = extractvalue V0, idx2 5099 // V0's elements are all poison or not. (e.g., add_with_overflow) 5100 const WithOverflowInst *II; 5101 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5102 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5103 llvm::is_contained(II->arg_operands(), ValAssumedPoison))) 5104 return true; 5105 } 5106 return false; 5107 } 5108 5109 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5110 unsigned Depth) { 5111 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5112 return true; 5113 5114 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5115 return true; 5116 5117 const unsigned MaxDepth = 2; 5118 if (Depth >= MaxDepth) 5119 return false; 5120 5121 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5122 if (I && !canCreatePoison(cast<Operator>(I))) { 5123 return all_of(I->operands(), [=](const Value *Op) { 5124 return impliesPoison(Op, V, Depth + 1); 5125 }); 5126 } 5127 return false; 5128 } 5129 5130 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5131 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5132 } 5133 5134 static bool programUndefinedIfUndefOrPoison(const Value *V, 5135 bool PoisonOnly); 5136 5137 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5138 AssumptionCache *AC, 5139 const Instruction *CtxI, 5140 const DominatorTree *DT, 5141 unsigned Depth, bool PoisonOnly) { 5142 if (Depth >= MaxAnalysisRecursionDepth) 5143 return false; 5144 5145 if (isa<MetadataAsValue>(V)) 5146 return false; 5147 5148 if (const auto *A = dyn_cast<Argument>(V)) { 5149 if (A->hasAttribute(Attribute::NoUndef)) 5150 return true; 5151 } 5152 5153 if (auto *C = dyn_cast<Constant>(V)) { 5154 if (isa<UndefValue>(C)) 5155 return PoisonOnly && !isa<PoisonValue>(C); 5156 5157 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5158 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5159 return true; 5160 5161 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5162 return (PoisonOnly ? !C->containsPoisonElement() 5163 : !C->containsUndefOrPoisonElement()) && 5164 !C->containsConstantExpression(); 5165 } 5166 5167 // Strip cast operations from a pointer value. 5168 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5169 // inbounds with zero offset. To guarantee that the result isn't poison, the 5170 // stripped pointer is checked as it has to be pointing into an allocated 5171 // object or be null `null` to ensure `inbounds` getelement pointers with a 5172 // zero offset could not produce poison. 5173 // It can strip off addrspacecast that do not change bit representation as 5174 // well. We believe that such addrspacecast is equivalent to no-op. 5175 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5176 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5177 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5178 return true; 5179 5180 auto OpCheck = [&](const Value *V) { 5181 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5182 PoisonOnly); 5183 }; 5184 5185 if (auto *Opr = dyn_cast<Operator>(V)) { 5186 // If the value is a freeze instruction, then it can never 5187 // be undef or poison. 5188 if (isa<FreezeInst>(V)) 5189 return true; 5190 5191 if (const auto *CB = dyn_cast<CallBase>(V)) { 5192 if (CB->hasRetAttr(Attribute::NoUndef)) 5193 return true; 5194 } 5195 5196 if (const auto *PN = dyn_cast<PHINode>(V)) { 5197 unsigned Num = PN->getNumIncomingValues(); 5198 bool IsWellDefined = true; 5199 for (unsigned i = 0; i < Num; ++i) { 5200 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5201 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5202 DT, Depth + 1, PoisonOnly)) { 5203 IsWellDefined = false; 5204 break; 5205 } 5206 } 5207 if (IsWellDefined) 5208 return true; 5209 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5210 return true; 5211 } 5212 5213 if (auto *I = dyn_cast<LoadInst>(V)) 5214 if (I->getMetadata(LLVMContext::MD_noundef)) 5215 return true; 5216 5217 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5218 return true; 5219 5220 // CxtI may be null or a cloned instruction. 5221 if (!CtxI || !CtxI->getParent() || !DT) 5222 return false; 5223 5224 auto *DNode = DT->getNode(CtxI->getParent()); 5225 if (!DNode) 5226 // Unreachable block 5227 return false; 5228 5229 // If V is used as a branch condition before reaching CtxI, V cannot be 5230 // undef or poison. 5231 // br V, BB1, BB2 5232 // BB1: 5233 // CtxI ; V cannot be undef or poison here 5234 auto *Dominator = DNode->getIDom(); 5235 while (Dominator) { 5236 auto *TI = Dominator->getBlock()->getTerminator(); 5237 5238 Value *Cond = nullptr; 5239 if (auto BI = dyn_cast<BranchInst>(TI)) { 5240 if (BI->isConditional()) 5241 Cond = BI->getCondition(); 5242 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5243 Cond = SI->getCondition(); 5244 } 5245 5246 if (Cond) { 5247 if (Cond == V) 5248 return true; 5249 else if (PoisonOnly && isa<Operator>(Cond)) { 5250 // For poison, we can analyze further 5251 auto *Opr = cast<Operator>(Cond); 5252 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5253 return true; 5254 } 5255 } 5256 5257 Dominator = Dominator->getIDom(); 5258 } 5259 5260 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5261 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5262 return true; 5263 5264 return false; 5265 } 5266 5267 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5268 const Instruction *CtxI, 5269 const DominatorTree *DT, 5270 unsigned Depth) { 5271 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5272 } 5273 5274 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5275 const Instruction *CtxI, 5276 const DominatorTree *DT, unsigned Depth) { 5277 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5278 } 5279 5280 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5281 const DataLayout &DL, 5282 AssumptionCache *AC, 5283 const Instruction *CxtI, 5284 const DominatorTree *DT) { 5285 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5286 Add, DL, AC, CxtI, DT); 5287 } 5288 5289 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5290 const Value *RHS, 5291 const DataLayout &DL, 5292 AssumptionCache *AC, 5293 const Instruction *CxtI, 5294 const DominatorTree *DT) { 5295 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5296 } 5297 5298 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5299 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5300 // of time because it's possible for another thread to interfere with it for an 5301 // arbitrary length of time, but programs aren't allowed to rely on that. 5302 5303 // If there is no successor, then execution can't transfer to it. 5304 if (isa<ReturnInst>(I)) 5305 return false; 5306 if (isa<UnreachableInst>(I)) 5307 return false; 5308 5309 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5310 // Instruction::willReturn. 5311 // 5312 // FIXME: Move this check into Instruction::willReturn. 5313 if (isa<CatchPadInst>(I)) { 5314 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5315 default: 5316 // A catchpad may invoke exception object constructors and such, which 5317 // in some languages can be arbitrary code, so be conservative by default. 5318 return false; 5319 case EHPersonality::CoreCLR: 5320 // For CoreCLR, it just involves a type test. 5321 return true; 5322 } 5323 } 5324 5325 // An instruction that returns without throwing must transfer control flow 5326 // to a successor. 5327 return !I->mayThrow() && I->willReturn(); 5328 } 5329 5330 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5331 // TODO: This is slightly conservative for invoke instruction since exiting 5332 // via an exception *is* normal control for them. 5333 for (const Instruction &I : *BB) 5334 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5335 return false; 5336 return true; 5337 } 5338 5339 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5340 const Loop *L) { 5341 // The loop header is guaranteed to be executed for every iteration. 5342 // 5343 // FIXME: Relax this constraint to cover all basic blocks that are 5344 // guaranteed to be executed at every iteration. 5345 if (I->getParent() != L->getHeader()) return false; 5346 5347 for (const Instruction &LI : *L->getHeader()) { 5348 if (&LI == I) return true; 5349 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5350 } 5351 llvm_unreachable("Instruction not contained in its own parent basic block."); 5352 } 5353 5354 bool llvm::propagatesPoison(const Operator *I) { 5355 switch (I->getOpcode()) { 5356 case Instruction::Freeze: 5357 case Instruction::Select: 5358 case Instruction::PHI: 5359 case Instruction::Invoke: 5360 return false; 5361 case Instruction::Call: 5362 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5363 switch (II->getIntrinsicID()) { 5364 // TODO: Add more intrinsics. 5365 case Intrinsic::sadd_with_overflow: 5366 case Intrinsic::ssub_with_overflow: 5367 case Intrinsic::smul_with_overflow: 5368 case Intrinsic::uadd_with_overflow: 5369 case Intrinsic::usub_with_overflow: 5370 case Intrinsic::umul_with_overflow: 5371 // If an input is a vector containing a poison element, the 5372 // two output vectors (calculated results, overflow bits)' 5373 // corresponding lanes are poison. 5374 return true; 5375 case Intrinsic::ctpop: 5376 return true; 5377 } 5378 } 5379 return false; 5380 case Instruction::ICmp: 5381 case Instruction::FCmp: 5382 case Instruction::GetElementPtr: 5383 return true; 5384 default: 5385 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5386 return true; 5387 5388 // Be conservative and return false. 5389 return false; 5390 } 5391 } 5392 5393 void llvm::getGuaranteedWellDefinedOps( 5394 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5395 switch (I->getOpcode()) { 5396 case Instruction::Store: 5397 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5398 break; 5399 5400 case Instruction::Load: 5401 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5402 break; 5403 5404 // Since dereferenceable attribute imply noundef, atomic operations 5405 // also implicitly have noundef pointers too 5406 case Instruction::AtomicCmpXchg: 5407 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5408 break; 5409 5410 case Instruction::AtomicRMW: 5411 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5412 break; 5413 5414 case Instruction::Call: 5415 case Instruction::Invoke: { 5416 const CallBase *CB = cast<CallBase>(I); 5417 if (CB->isIndirectCall()) 5418 Operands.insert(CB->getCalledOperand()); 5419 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5420 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5421 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5422 Operands.insert(CB->getArgOperand(i)); 5423 } 5424 break; 5425 } 5426 5427 default: 5428 break; 5429 } 5430 } 5431 5432 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5433 SmallPtrSetImpl<const Value *> &Operands) { 5434 getGuaranteedWellDefinedOps(I, Operands); 5435 switch (I->getOpcode()) { 5436 // Divisors of these operations are allowed to be partially undef. 5437 case Instruction::UDiv: 5438 case Instruction::SDiv: 5439 case Instruction::URem: 5440 case Instruction::SRem: 5441 Operands.insert(I->getOperand(1)); 5442 break; 5443 5444 default: 5445 break; 5446 } 5447 } 5448 5449 bool llvm::mustTriggerUB(const Instruction *I, 5450 const SmallSet<const Value *, 16>& KnownPoison) { 5451 SmallPtrSet<const Value *, 4> NonPoisonOps; 5452 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5453 5454 for (const auto *V : NonPoisonOps) 5455 if (KnownPoison.count(V)) 5456 return true; 5457 5458 return false; 5459 } 5460 5461 static bool programUndefinedIfUndefOrPoison(const Value *V, 5462 bool PoisonOnly) { 5463 // We currently only look for uses of values within the same basic 5464 // block, as that makes it easier to guarantee that the uses will be 5465 // executed given that Inst is executed. 5466 // 5467 // FIXME: Expand this to consider uses beyond the same basic block. To do 5468 // this, look out for the distinction between post-dominance and strong 5469 // post-dominance. 5470 const BasicBlock *BB = nullptr; 5471 BasicBlock::const_iterator Begin; 5472 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5473 BB = Inst->getParent(); 5474 Begin = Inst->getIterator(); 5475 Begin++; 5476 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5477 BB = &Arg->getParent()->getEntryBlock(); 5478 Begin = BB->begin(); 5479 } else { 5480 return false; 5481 } 5482 5483 // Limit number of instructions we look at, to avoid scanning through large 5484 // blocks. The current limit is chosen arbitrarily. 5485 unsigned ScanLimit = 32; 5486 BasicBlock::const_iterator End = BB->end(); 5487 5488 if (!PoisonOnly) { 5489 // Since undef does not propagate eagerly, be conservative & just check 5490 // whether a value is directly passed to an instruction that must take 5491 // well-defined operands. 5492 5493 for (auto &I : make_range(Begin, End)) { 5494 if (isa<DbgInfoIntrinsic>(I)) 5495 continue; 5496 if (--ScanLimit == 0) 5497 break; 5498 5499 SmallPtrSet<const Value *, 4> WellDefinedOps; 5500 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5501 if (WellDefinedOps.contains(V)) 5502 return true; 5503 5504 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5505 break; 5506 } 5507 return false; 5508 } 5509 5510 // Set of instructions that we have proved will yield poison if Inst 5511 // does. 5512 SmallSet<const Value *, 16> YieldsPoison; 5513 SmallSet<const BasicBlock *, 4> Visited; 5514 5515 YieldsPoison.insert(V); 5516 auto Propagate = [&](const User *User) { 5517 if (propagatesPoison(cast<Operator>(User))) 5518 YieldsPoison.insert(User); 5519 }; 5520 for_each(V->users(), Propagate); 5521 Visited.insert(BB); 5522 5523 while (true) { 5524 for (auto &I : make_range(Begin, End)) { 5525 if (isa<DbgInfoIntrinsic>(I)) 5526 continue; 5527 if (--ScanLimit == 0) 5528 return false; 5529 if (mustTriggerUB(&I, YieldsPoison)) 5530 return true; 5531 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5532 return false; 5533 5534 // Mark poison that propagates from I through uses of I. 5535 if (YieldsPoison.count(&I)) 5536 for_each(I.users(), Propagate); 5537 } 5538 5539 BB = BB->getSingleSuccessor(); 5540 if (!BB || !Visited.insert(BB).second) 5541 break; 5542 5543 Begin = BB->getFirstNonPHI()->getIterator(); 5544 End = BB->end(); 5545 } 5546 return false; 5547 } 5548 5549 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5550 return ::programUndefinedIfUndefOrPoison(Inst, false); 5551 } 5552 5553 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5554 return ::programUndefinedIfUndefOrPoison(Inst, true); 5555 } 5556 5557 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5558 if (FMF.noNaNs()) 5559 return true; 5560 5561 if (auto *C = dyn_cast<ConstantFP>(V)) 5562 return !C->isNaN(); 5563 5564 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5565 if (!C->getElementType()->isFloatingPointTy()) 5566 return false; 5567 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5568 if (C->getElementAsAPFloat(I).isNaN()) 5569 return false; 5570 } 5571 return true; 5572 } 5573 5574 if (isa<ConstantAggregateZero>(V)) 5575 return true; 5576 5577 return false; 5578 } 5579 5580 static bool isKnownNonZero(const Value *V) { 5581 if (auto *C = dyn_cast<ConstantFP>(V)) 5582 return !C->isZero(); 5583 5584 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5585 if (!C->getElementType()->isFloatingPointTy()) 5586 return false; 5587 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5588 if (C->getElementAsAPFloat(I).isZero()) 5589 return false; 5590 } 5591 return true; 5592 } 5593 5594 return false; 5595 } 5596 5597 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5598 /// Given non-min/max outer cmp/select from the clamp pattern this 5599 /// function recognizes if it can be substitued by a "canonical" min/max 5600 /// pattern. 5601 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5602 Value *CmpLHS, Value *CmpRHS, 5603 Value *TrueVal, Value *FalseVal, 5604 Value *&LHS, Value *&RHS) { 5605 // Try to match 5606 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5607 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5608 // and return description of the outer Max/Min. 5609 5610 // First, check if select has inverse order: 5611 if (CmpRHS == FalseVal) { 5612 std::swap(TrueVal, FalseVal); 5613 Pred = CmpInst::getInversePredicate(Pred); 5614 } 5615 5616 // Assume success now. If there's no match, callers should not use these anyway. 5617 LHS = TrueVal; 5618 RHS = FalseVal; 5619 5620 const APFloat *FC1; 5621 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5622 return {SPF_UNKNOWN, SPNB_NA, false}; 5623 5624 const APFloat *FC2; 5625 switch (Pred) { 5626 case CmpInst::FCMP_OLT: 5627 case CmpInst::FCMP_OLE: 5628 case CmpInst::FCMP_ULT: 5629 case CmpInst::FCMP_ULE: 5630 if (match(FalseVal, 5631 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5632 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5633 *FC1 < *FC2) 5634 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5635 break; 5636 case CmpInst::FCMP_OGT: 5637 case CmpInst::FCMP_OGE: 5638 case CmpInst::FCMP_UGT: 5639 case CmpInst::FCMP_UGE: 5640 if (match(FalseVal, 5641 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5642 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5643 *FC1 > *FC2) 5644 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5645 break; 5646 default: 5647 break; 5648 } 5649 5650 return {SPF_UNKNOWN, SPNB_NA, false}; 5651 } 5652 5653 /// Recognize variations of: 5654 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5655 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5656 Value *CmpLHS, Value *CmpRHS, 5657 Value *TrueVal, Value *FalseVal) { 5658 // Swap the select operands and predicate to match the patterns below. 5659 if (CmpRHS != TrueVal) { 5660 Pred = ICmpInst::getSwappedPredicate(Pred); 5661 std::swap(TrueVal, FalseVal); 5662 } 5663 const APInt *C1; 5664 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5665 const APInt *C2; 5666 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5667 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5668 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5669 return {SPF_SMAX, SPNB_NA, false}; 5670 5671 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5672 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5673 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5674 return {SPF_SMIN, SPNB_NA, false}; 5675 5676 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5677 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5678 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5679 return {SPF_UMAX, SPNB_NA, false}; 5680 5681 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5682 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5683 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5684 return {SPF_UMIN, SPNB_NA, false}; 5685 } 5686 return {SPF_UNKNOWN, SPNB_NA, false}; 5687 } 5688 5689 /// Recognize variations of: 5690 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5691 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5692 Value *CmpLHS, Value *CmpRHS, 5693 Value *TVal, Value *FVal, 5694 unsigned Depth) { 5695 // TODO: Allow FP min/max with nnan/nsz. 5696 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5697 5698 Value *A = nullptr, *B = nullptr; 5699 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5700 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5701 return {SPF_UNKNOWN, SPNB_NA, false}; 5702 5703 Value *C = nullptr, *D = nullptr; 5704 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5705 if (L.Flavor != R.Flavor) 5706 return {SPF_UNKNOWN, SPNB_NA, false}; 5707 5708 // We have something like: x Pred y ? min(a, b) : min(c, d). 5709 // Try to match the compare to the min/max operations of the select operands. 5710 // First, make sure we have the right compare predicate. 5711 switch (L.Flavor) { 5712 case SPF_SMIN: 5713 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5714 Pred = ICmpInst::getSwappedPredicate(Pred); 5715 std::swap(CmpLHS, CmpRHS); 5716 } 5717 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5718 break; 5719 return {SPF_UNKNOWN, SPNB_NA, false}; 5720 case SPF_SMAX: 5721 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5722 Pred = ICmpInst::getSwappedPredicate(Pred); 5723 std::swap(CmpLHS, CmpRHS); 5724 } 5725 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5726 break; 5727 return {SPF_UNKNOWN, SPNB_NA, false}; 5728 case SPF_UMIN: 5729 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5730 Pred = ICmpInst::getSwappedPredicate(Pred); 5731 std::swap(CmpLHS, CmpRHS); 5732 } 5733 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5734 break; 5735 return {SPF_UNKNOWN, SPNB_NA, false}; 5736 case SPF_UMAX: 5737 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5738 Pred = ICmpInst::getSwappedPredicate(Pred); 5739 std::swap(CmpLHS, CmpRHS); 5740 } 5741 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5742 break; 5743 return {SPF_UNKNOWN, SPNB_NA, false}; 5744 default: 5745 return {SPF_UNKNOWN, SPNB_NA, false}; 5746 } 5747 5748 // If there is a common operand in the already matched min/max and the other 5749 // min/max operands match the compare operands (either directly or inverted), 5750 // then this is min/max of the same flavor. 5751 5752 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5753 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5754 if (D == B) { 5755 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5756 match(A, m_Not(m_Specific(CmpRHS))))) 5757 return {L.Flavor, SPNB_NA, false}; 5758 } 5759 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5760 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5761 if (C == B) { 5762 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5763 match(A, m_Not(m_Specific(CmpRHS))))) 5764 return {L.Flavor, SPNB_NA, false}; 5765 } 5766 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5767 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5768 if (D == A) { 5769 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5770 match(B, m_Not(m_Specific(CmpRHS))))) 5771 return {L.Flavor, SPNB_NA, false}; 5772 } 5773 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5774 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5775 if (C == A) { 5776 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5777 match(B, m_Not(m_Specific(CmpRHS))))) 5778 return {L.Flavor, SPNB_NA, false}; 5779 } 5780 5781 return {SPF_UNKNOWN, SPNB_NA, false}; 5782 } 5783 5784 /// If the input value is the result of a 'not' op, constant integer, or vector 5785 /// splat of a constant integer, return the bitwise-not source value. 5786 /// TODO: This could be extended to handle non-splat vector integer constants. 5787 static Value *getNotValue(Value *V) { 5788 Value *NotV; 5789 if (match(V, m_Not(m_Value(NotV)))) 5790 return NotV; 5791 5792 const APInt *C; 5793 if (match(V, m_APInt(C))) 5794 return ConstantInt::get(V->getType(), ~(*C)); 5795 5796 return nullptr; 5797 } 5798 5799 /// Match non-obvious integer minimum and maximum sequences. 5800 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5801 Value *CmpLHS, Value *CmpRHS, 5802 Value *TrueVal, Value *FalseVal, 5803 Value *&LHS, Value *&RHS, 5804 unsigned Depth) { 5805 // Assume success. If there's no match, callers should not use these anyway. 5806 LHS = TrueVal; 5807 RHS = FalseVal; 5808 5809 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5810 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5811 return SPR; 5812 5813 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5814 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5815 return SPR; 5816 5817 // Look through 'not' ops to find disguised min/max. 5818 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5819 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5820 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5821 switch (Pred) { 5822 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5823 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5824 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5825 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5826 default: break; 5827 } 5828 } 5829 5830 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5831 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5832 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5833 switch (Pred) { 5834 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5835 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5836 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5837 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5838 default: break; 5839 } 5840 } 5841 5842 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5843 return {SPF_UNKNOWN, SPNB_NA, false}; 5844 5845 // Z = X -nsw Y 5846 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5847 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5848 if (match(TrueVal, m_Zero()) && 5849 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5850 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5851 5852 // Z = X -nsw Y 5853 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5854 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5855 if (match(FalseVal, m_Zero()) && 5856 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5857 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5858 5859 const APInt *C1; 5860 if (!match(CmpRHS, m_APInt(C1))) 5861 return {SPF_UNKNOWN, SPNB_NA, false}; 5862 5863 // An unsigned min/max can be written with a signed compare. 5864 const APInt *C2; 5865 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5866 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5867 // Is the sign bit set? 5868 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5869 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5870 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5871 C2->isMaxSignedValue()) 5872 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5873 5874 // Is the sign bit clear? 5875 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5876 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5877 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5878 C2->isMinSignedValue()) 5879 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5880 } 5881 5882 return {SPF_UNKNOWN, SPNB_NA, false}; 5883 } 5884 5885 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5886 assert(X && Y && "Invalid operand"); 5887 5888 // X = sub (0, Y) || X = sub nsw (0, Y) 5889 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5890 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5891 return true; 5892 5893 // Y = sub (0, X) || Y = sub nsw (0, X) 5894 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5895 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5896 return true; 5897 5898 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5899 Value *A, *B; 5900 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5901 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5902 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5903 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5904 } 5905 5906 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5907 FastMathFlags FMF, 5908 Value *CmpLHS, Value *CmpRHS, 5909 Value *TrueVal, Value *FalseVal, 5910 Value *&LHS, Value *&RHS, 5911 unsigned Depth) { 5912 if (CmpInst::isFPPredicate(Pred)) { 5913 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5914 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5915 // purpose of identifying min/max. Disregard vector constants with undefined 5916 // elements because those can not be back-propagated for analysis. 5917 Value *OutputZeroVal = nullptr; 5918 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5919 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5920 OutputZeroVal = TrueVal; 5921 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5922 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5923 OutputZeroVal = FalseVal; 5924 5925 if (OutputZeroVal) { 5926 if (match(CmpLHS, m_AnyZeroFP())) 5927 CmpLHS = OutputZeroVal; 5928 if (match(CmpRHS, m_AnyZeroFP())) 5929 CmpRHS = OutputZeroVal; 5930 } 5931 } 5932 5933 LHS = CmpLHS; 5934 RHS = CmpRHS; 5935 5936 // Signed zero may return inconsistent results between implementations. 5937 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5938 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5939 // Therefore, we behave conservatively and only proceed if at least one of the 5940 // operands is known to not be zero or if we don't care about signed zero. 5941 switch (Pred) { 5942 default: break; 5943 // FIXME: Include OGT/OLT/UGT/ULT. 5944 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5945 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5946 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5947 !isKnownNonZero(CmpRHS)) 5948 return {SPF_UNKNOWN, SPNB_NA, false}; 5949 } 5950 5951 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5952 bool Ordered = false; 5953 5954 // When given one NaN and one non-NaN input: 5955 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5956 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5957 // ordered comparison fails), which could be NaN or non-NaN. 5958 // so here we discover exactly what NaN behavior is required/accepted. 5959 if (CmpInst::isFPPredicate(Pred)) { 5960 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5961 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5962 5963 if (LHSSafe && RHSSafe) { 5964 // Both operands are known non-NaN. 5965 NaNBehavior = SPNB_RETURNS_ANY; 5966 } else if (CmpInst::isOrdered(Pred)) { 5967 // An ordered comparison will return false when given a NaN, so it 5968 // returns the RHS. 5969 Ordered = true; 5970 if (LHSSafe) 5971 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5972 NaNBehavior = SPNB_RETURNS_NAN; 5973 else if (RHSSafe) 5974 NaNBehavior = SPNB_RETURNS_OTHER; 5975 else 5976 // Completely unsafe. 5977 return {SPF_UNKNOWN, SPNB_NA, false}; 5978 } else { 5979 Ordered = false; 5980 // An unordered comparison will return true when given a NaN, so it 5981 // returns the LHS. 5982 if (LHSSafe) 5983 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5984 NaNBehavior = SPNB_RETURNS_OTHER; 5985 else if (RHSSafe) 5986 NaNBehavior = SPNB_RETURNS_NAN; 5987 else 5988 // Completely unsafe. 5989 return {SPF_UNKNOWN, SPNB_NA, false}; 5990 } 5991 } 5992 5993 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5994 std::swap(CmpLHS, CmpRHS); 5995 Pred = CmpInst::getSwappedPredicate(Pred); 5996 if (NaNBehavior == SPNB_RETURNS_NAN) 5997 NaNBehavior = SPNB_RETURNS_OTHER; 5998 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5999 NaNBehavior = SPNB_RETURNS_NAN; 6000 Ordered = !Ordered; 6001 } 6002 6003 // ([if]cmp X, Y) ? X : Y 6004 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6005 switch (Pred) { 6006 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6007 case ICmpInst::ICMP_UGT: 6008 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6009 case ICmpInst::ICMP_SGT: 6010 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6011 case ICmpInst::ICMP_ULT: 6012 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6013 case ICmpInst::ICMP_SLT: 6014 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6015 case FCmpInst::FCMP_UGT: 6016 case FCmpInst::FCMP_UGE: 6017 case FCmpInst::FCMP_OGT: 6018 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6019 case FCmpInst::FCMP_ULT: 6020 case FCmpInst::FCMP_ULE: 6021 case FCmpInst::FCMP_OLT: 6022 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6023 } 6024 } 6025 6026 if (isKnownNegation(TrueVal, FalseVal)) { 6027 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6028 // match against either LHS or sext(LHS). 6029 auto MaybeSExtCmpLHS = 6030 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6031 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6032 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6033 if (match(TrueVal, MaybeSExtCmpLHS)) { 6034 // Set the return values. If the compare uses the negated value (-X >s 0), 6035 // swap the return values because the negated value is always 'RHS'. 6036 LHS = TrueVal; 6037 RHS = FalseVal; 6038 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6039 std::swap(LHS, RHS); 6040 6041 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6042 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6043 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6044 return {SPF_ABS, SPNB_NA, false}; 6045 6046 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6047 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6048 return {SPF_ABS, SPNB_NA, false}; 6049 6050 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6051 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6052 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6053 return {SPF_NABS, SPNB_NA, false}; 6054 } 6055 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6056 // Set the return values. If the compare uses the negated value (-X >s 0), 6057 // swap the return values because the negated value is always 'RHS'. 6058 LHS = FalseVal; 6059 RHS = TrueVal; 6060 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6061 std::swap(LHS, RHS); 6062 6063 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6064 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6065 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6066 return {SPF_NABS, SPNB_NA, false}; 6067 6068 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6069 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6070 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6071 return {SPF_ABS, SPNB_NA, false}; 6072 } 6073 } 6074 6075 if (CmpInst::isIntPredicate(Pred)) 6076 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6077 6078 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6079 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6080 // semantics than minNum. Be conservative in such case. 6081 if (NaNBehavior != SPNB_RETURNS_ANY || 6082 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6083 !isKnownNonZero(CmpRHS))) 6084 return {SPF_UNKNOWN, SPNB_NA, false}; 6085 6086 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6087 } 6088 6089 /// Helps to match a select pattern in case of a type mismatch. 6090 /// 6091 /// The function processes the case when type of true and false values of a 6092 /// select instruction differs from type of the cmp instruction operands because 6093 /// of a cast instruction. The function checks if it is legal to move the cast 6094 /// operation after "select". If yes, it returns the new second value of 6095 /// "select" (with the assumption that cast is moved): 6096 /// 1. As operand of cast instruction when both values of "select" are same cast 6097 /// instructions. 6098 /// 2. As restored constant (by applying reverse cast operation) when the first 6099 /// value of the "select" is a cast operation and the second value is a 6100 /// constant. 6101 /// NOTE: We return only the new second value because the first value could be 6102 /// accessed as operand of cast instruction. 6103 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6104 Instruction::CastOps *CastOp) { 6105 auto *Cast1 = dyn_cast<CastInst>(V1); 6106 if (!Cast1) 6107 return nullptr; 6108 6109 *CastOp = Cast1->getOpcode(); 6110 Type *SrcTy = Cast1->getSrcTy(); 6111 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6112 // If V1 and V2 are both the same cast from the same type, look through V1. 6113 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6114 return Cast2->getOperand(0); 6115 return nullptr; 6116 } 6117 6118 auto *C = dyn_cast<Constant>(V2); 6119 if (!C) 6120 return nullptr; 6121 6122 Constant *CastedTo = nullptr; 6123 switch (*CastOp) { 6124 case Instruction::ZExt: 6125 if (CmpI->isUnsigned()) 6126 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6127 break; 6128 case Instruction::SExt: 6129 if (CmpI->isSigned()) 6130 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6131 break; 6132 case Instruction::Trunc: 6133 Constant *CmpConst; 6134 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6135 CmpConst->getType() == SrcTy) { 6136 // Here we have the following case: 6137 // 6138 // %cond = cmp iN %x, CmpConst 6139 // %tr = trunc iN %x to iK 6140 // %narrowsel = select i1 %cond, iK %t, iK C 6141 // 6142 // We can always move trunc after select operation: 6143 // 6144 // %cond = cmp iN %x, CmpConst 6145 // %widesel = select i1 %cond, iN %x, iN CmpConst 6146 // %tr = trunc iN %widesel to iK 6147 // 6148 // Note that C could be extended in any way because we don't care about 6149 // upper bits after truncation. It can't be abs pattern, because it would 6150 // look like: 6151 // 6152 // select i1 %cond, x, -x. 6153 // 6154 // So only min/max pattern could be matched. Such match requires widened C 6155 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6156 // CmpConst == C is checked below. 6157 CastedTo = CmpConst; 6158 } else { 6159 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6160 } 6161 break; 6162 case Instruction::FPTrunc: 6163 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6164 break; 6165 case Instruction::FPExt: 6166 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6167 break; 6168 case Instruction::FPToUI: 6169 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6170 break; 6171 case Instruction::FPToSI: 6172 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6173 break; 6174 case Instruction::UIToFP: 6175 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6176 break; 6177 case Instruction::SIToFP: 6178 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6179 break; 6180 default: 6181 break; 6182 } 6183 6184 if (!CastedTo) 6185 return nullptr; 6186 6187 // Make sure the cast doesn't lose any information. 6188 Constant *CastedBack = 6189 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6190 if (CastedBack != C) 6191 return nullptr; 6192 6193 return CastedTo; 6194 } 6195 6196 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6197 Instruction::CastOps *CastOp, 6198 unsigned Depth) { 6199 if (Depth >= MaxAnalysisRecursionDepth) 6200 return {SPF_UNKNOWN, SPNB_NA, false}; 6201 6202 SelectInst *SI = dyn_cast<SelectInst>(V); 6203 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6204 6205 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6206 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6207 6208 Value *TrueVal = SI->getTrueValue(); 6209 Value *FalseVal = SI->getFalseValue(); 6210 6211 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6212 CastOp, Depth); 6213 } 6214 6215 SelectPatternResult llvm::matchDecomposedSelectPattern( 6216 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6217 Instruction::CastOps *CastOp, unsigned Depth) { 6218 CmpInst::Predicate Pred = CmpI->getPredicate(); 6219 Value *CmpLHS = CmpI->getOperand(0); 6220 Value *CmpRHS = CmpI->getOperand(1); 6221 FastMathFlags FMF; 6222 if (isa<FPMathOperator>(CmpI)) 6223 FMF = CmpI->getFastMathFlags(); 6224 6225 // Bail out early. 6226 if (CmpI->isEquality()) 6227 return {SPF_UNKNOWN, SPNB_NA, false}; 6228 6229 // Deal with type mismatches. 6230 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6231 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6232 // If this is a potential fmin/fmax with a cast to integer, then ignore 6233 // -0.0 because there is no corresponding integer value. 6234 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6235 FMF.setNoSignedZeros(); 6236 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6237 cast<CastInst>(TrueVal)->getOperand(0), C, 6238 LHS, RHS, Depth); 6239 } 6240 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6241 // If this is a potential fmin/fmax with a cast to integer, then ignore 6242 // -0.0 because there is no corresponding integer value. 6243 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6244 FMF.setNoSignedZeros(); 6245 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6246 C, cast<CastInst>(FalseVal)->getOperand(0), 6247 LHS, RHS, Depth); 6248 } 6249 } 6250 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6251 LHS, RHS, Depth); 6252 } 6253 6254 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6255 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6256 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6257 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6258 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6259 if (SPF == SPF_FMINNUM) 6260 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6261 if (SPF == SPF_FMAXNUM) 6262 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6263 llvm_unreachable("unhandled!"); 6264 } 6265 6266 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6267 if (SPF == SPF_SMIN) return SPF_SMAX; 6268 if (SPF == SPF_UMIN) return SPF_UMAX; 6269 if (SPF == SPF_SMAX) return SPF_SMIN; 6270 if (SPF == SPF_UMAX) return SPF_UMIN; 6271 llvm_unreachable("unhandled!"); 6272 } 6273 6274 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6275 switch (MinMaxID) { 6276 case Intrinsic::smax: return Intrinsic::smin; 6277 case Intrinsic::smin: return Intrinsic::smax; 6278 case Intrinsic::umax: return Intrinsic::umin; 6279 case Intrinsic::umin: return Intrinsic::umax; 6280 default: llvm_unreachable("Unexpected intrinsic"); 6281 } 6282 } 6283 6284 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6285 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6286 } 6287 6288 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6289 switch (SPF) { 6290 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6291 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6292 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6293 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6294 default: llvm_unreachable("Unexpected flavor"); 6295 } 6296 } 6297 6298 std::pair<Intrinsic::ID, bool> 6299 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6300 // Check if VL contains select instructions that can be folded into a min/max 6301 // vector intrinsic and return the intrinsic if it is possible. 6302 // TODO: Support floating point min/max. 6303 bool AllCmpSingleUse = true; 6304 SelectPatternResult SelectPattern; 6305 SelectPattern.Flavor = SPF_UNKNOWN; 6306 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6307 Value *LHS, *RHS; 6308 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6309 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6310 CurrentPattern.Flavor == SPF_FMINNUM || 6311 CurrentPattern.Flavor == SPF_FMAXNUM || 6312 !I->getType()->isIntOrIntVectorTy()) 6313 return false; 6314 if (SelectPattern.Flavor != SPF_UNKNOWN && 6315 SelectPattern.Flavor != CurrentPattern.Flavor) 6316 return false; 6317 SelectPattern = CurrentPattern; 6318 AllCmpSingleUse &= 6319 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6320 return true; 6321 })) { 6322 switch (SelectPattern.Flavor) { 6323 case SPF_SMIN: 6324 return {Intrinsic::smin, AllCmpSingleUse}; 6325 case SPF_UMIN: 6326 return {Intrinsic::umin, AllCmpSingleUse}; 6327 case SPF_SMAX: 6328 return {Intrinsic::smax, AllCmpSingleUse}; 6329 case SPF_UMAX: 6330 return {Intrinsic::umax, AllCmpSingleUse}; 6331 default: 6332 llvm_unreachable("unexpected select pattern flavor"); 6333 } 6334 } 6335 return {Intrinsic::not_intrinsic, false}; 6336 } 6337 6338 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6339 Value *&Start, Value *&Step) { 6340 // Handle the case of a simple two-predecessor recurrence PHI. 6341 // There's a lot more that could theoretically be done here, but 6342 // this is sufficient to catch some interesting cases. 6343 if (P->getNumIncomingValues() != 2) 6344 return false; 6345 6346 for (unsigned i = 0; i != 2; ++i) { 6347 Value *L = P->getIncomingValue(i); 6348 Value *R = P->getIncomingValue(!i); 6349 Operator *LU = dyn_cast<Operator>(L); 6350 if (!LU) 6351 continue; 6352 unsigned Opcode = LU->getOpcode(); 6353 6354 switch (Opcode) { 6355 default: 6356 continue; 6357 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6358 case Instruction::LShr: 6359 case Instruction::AShr: 6360 case Instruction::Shl: 6361 case Instruction::Add: 6362 case Instruction::Sub: 6363 case Instruction::And: 6364 case Instruction::Or: 6365 case Instruction::Mul: { 6366 Value *LL = LU->getOperand(0); 6367 Value *LR = LU->getOperand(1); 6368 // Find a recurrence. 6369 if (LL == P) 6370 L = LR; 6371 else if (LR == P) 6372 L = LL; 6373 else 6374 continue; // Check for recurrence with L and R flipped. 6375 6376 break; // Match! 6377 } 6378 }; 6379 6380 // We have matched a recurrence of the form: 6381 // %iv = [R, %entry], [%iv.next, %backedge] 6382 // %iv.next = binop %iv, L 6383 // OR 6384 // %iv = [R, %entry], [%iv.next, %backedge] 6385 // %iv.next = binop L, %iv 6386 BO = cast<BinaryOperator>(LU); 6387 Start = R; 6388 Step = L; 6389 return true; 6390 } 6391 return false; 6392 } 6393 6394 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6395 Value *&Start, Value *&Step) { 6396 BinaryOperator *BO = nullptr; 6397 P = dyn_cast<PHINode>(I->getOperand(0)); 6398 if (!P) 6399 P = dyn_cast<PHINode>(I->getOperand(1)); 6400 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6401 } 6402 6403 /// Return true if "icmp Pred LHS RHS" is always true. 6404 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6405 const Value *RHS, const DataLayout &DL, 6406 unsigned Depth) { 6407 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6408 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6409 return true; 6410 6411 switch (Pred) { 6412 default: 6413 return false; 6414 6415 case CmpInst::ICMP_SLE: { 6416 const APInt *C; 6417 6418 // LHS s<= LHS +_{nsw} C if C >= 0 6419 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6420 return !C->isNegative(); 6421 return false; 6422 } 6423 6424 case CmpInst::ICMP_ULE: { 6425 const APInt *C; 6426 6427 // LHS u<= LHS +_{nuw} C for any C 6428 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6429 return true; 6430 6431 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6432 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6433 const Value *&X, 6434 const APInt *&CA, const APInt *&CB) { 6435 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6436 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6437 return true; 6438 6439 // If X & C == 0 then (X | C) == X +_{nuw} C 6440 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6441 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6442 KnownBits Known(CA->getBitWidth()); 6443 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6444 /*CxtI*/ nullptr, /*DT*/ nullptr); 6445 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6446 return true; 6447 } 6448 6449 return false; 6450 }; 6451 6452 const Value *X; 6453 const APInt *CLHS, *CRHS; 6454 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6455 return CLHS->ule(*CRHS); 6456 6457 return false; 6458 } 6459 } 6460 } 6461 6462 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6463 /// ALHS ARHS" is true. Otherwise, return None. 6464 static Optional<bool> 6465 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6466 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6467 const DataLayout &DL, unsigned Depth) { 6468 switch (Pred) { 6469 default: 6470 return None; 6471 6472 case CmpInst::ICMP_SLT: 6473 case CmpInst::ICMP_SLE: 6474 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6475 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6476 return true; 6477 return None; 6478 6479 case CmpInst::ICMP_ULT: 6480 case CmpInst::ICMP_ULE: 6481 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6482 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6483 return true; 6484 return None; 6485 } 6486 } 6487 6488 /// Return true if the operands of the two compares match. IsSwappedOps is true 6489 /// when the operands match, but are swapped. 6490 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6491 const Value *BLHS, const Value *BRHS, 6492 bool &IsSwappedOps) { 6493 6494 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6495 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6496 return IsMatchingOps || IsSwappedOps; 6497 } 6498 6499 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6500 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6501 /// Otherwise, return None if we can't infer anything. 6502 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6503 CmpInst::Predicate BPred, 6504 bool AreSwappedOps) { 6505 // Canonicalize the predicate as if the operands were not commuted. 6506 if (AreSwappedOps) 6507 BPred = ICmpInst::getSwappedPredicate(BPred); 6508 6509 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6510 return true; 6511 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6512 return false; 6513 6514 return None; 6515 } 6516 6517 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6518 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6519 /// Otherwise, return None if we can't infer anything. 6520 static Optional<bool> 6521 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6522 const ConstantInt *C1, 6523 CmpInst::Predicate BPred, 6524 const ConstantInt *C2) { 6525 ConstantRange DomCR = 6526 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6527 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6528 ConstantRange Intersection = DomCR.intersectWith(CR); 6529 ConstantRange Difference = DomCR.difference(CR); 6530 if (Intersection.isEmptySet()) 6531 return false; 6532 if (Difference.isEmptySet()) 6533 return true; 6534 return None; 6535 } 6536 6537 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6538 /// false. Otherwise, return None if we can't infer anything. 6539 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6540 CmpInst::Predicate BPred, 6541 const Value *BLHS, const Value *BRHS, 6542 const DataLayout &DL, bool LHSIsTrue, 6543 unsigned Depth) { 6544 Value *ALHS = LHS->getOperand(0); 6545 Value *ARHS = LHS->getOperand(1); 6546 6547 // The rest of the logic assumes the LHS condition is true. If that's not the 6548 // case, invert the predicate to make it so. 6549 CmpInst::Predicate APred = 6550 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6551 6552 // Can we infer anything when the two compares have matching operands? 6553 bool AreSwappedOps; 6554 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6555 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6556 APred, BPred, AreSwappedOps)) 6557 return Implication; 6558 // No amount of additional analysis will infer the second condition, so 6559 // early exit. 6560 return None; 6561 } 6562 6563 // Can we infer anything when the LHS operands match and the RHS operands are 6564 // constants (not necessarily matching)? 6565 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6566 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6567 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6568 return Implication; 6569 // No amount of additional analysis will infer the second condition, so 6570 // early exit. 6571 return None; 6572 } 6573 6574 if (APred == BPred) 6575 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6576 return None; 6577 } 6578 6579 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6580 /// false. Otherwise, return None if we can't infer anything. We expect the 6581 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6582 static Optional<bool> 6583 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6584 const Value *RHSOp0, const Value *RHSOp1, 6585 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6586 // The LHS must be an 'or', 'and', or a 'select' instruction. 6587 assert((LHS->getOpcode() == Instruction::And || 6588 LHS->getOpcode() == Instruction::Or || 6589 LHS->getOpcode() == Instruction::Select) && 6590 "Expected LHS to be 'and', 'or', or 'select'."); 6591 6592 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6593 6594 // If the result of an 'or' is false, then we know both legs of the 'or' are 6595 // false. Similarly, if the result of an 'and' is true, then we know both 6596 // legs of the 'and' are true. 6597 const Value *ALHS, *ARHS; 6598 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6599 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6600 // FIXME: Make this non-recursion. 6601 if (Optional<bool> Implication = isImpliedCondition( 6602 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6603 return Implication; 6604 if (Optional<bool> Implication = isImpliedCondition( 6605 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6606 return Implication; 6607 return None; 6608 } 6609 return None; 6610 } 6611 6612 Optional<bool> 6613 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6614 const Value *RHSOp0, const Value *RHSOp1, 6615 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6616 // Bail out when we hit the limit. 6617 if (Depth == MaxAnalysisRecursionDepth) 6618 return None; 6619 6620 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6621 // example. 6622 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6623 return None; 6624 6625 Type *OpTy = LHS->getType(); 6626 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6627 6628 // FIXME: Extending the code below to handle vectors. 6629 if (OpTy->isVectorTy()) 6630 return None; 6631 6632 assert(OpTy->isIntegerTy(1) && "implied by above"); 6633 6634 // Both LHS and RHS are icmps. 6635 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6636 if (LHSCmp) 6637 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6638 Depth); 6639 6640 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6641 /// the RHS to be an icmp. 6642 /// FIXME: Add support for and/or/select on the RHS. 6643 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6644 if ((LHSI->getOpcode() == Instruction::And || 6645 LHSI->getOpcode() == Instruction::Or || 6646 LHSI->getOpcode() == Instruction::Select)) 6647 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6648 Depth); 6649 } 6650 return None; 6651 } 6652 6653 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6654 const DataLayout &DL, bool LHSIsTrue, 6655 unsigned Depth) { 6656 // LHS ==> RHS by definition 6657 if (LHS == RHS) 6658 return LHSIsTrue; 6659 6660 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6661 if (RHSCmp) 6662 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6663 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6664 LHSIsTrue, Depth); 6665 return None; 6666 } 6667 6668 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6669 // condition dominating ContextI or nullptr, if no condition is found. 6670 static std::pair<Value *, bool> 6671 getDomPredecessorCondition(const Instruction *ContextI) { 6672 if (!ContextI || !ContextI->getParent()) 6673 return {nullptr, false}; 6674 6675 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6676 // dominator tree (eg, from a SimplifyQuery) instead? 6677 const BasicBlock *ContextBB = ContextI->getParent(); 6678 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6679 if (!PredBB) 6680 return {nullptr, false}; 6681 6682 // We need a conditional branch in the predecessor. 6683 Value *PredCond; 6684 BasicBlock *TrueBB, *FalseBB; 6685 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6686 return {nullptr, false}; 6687 6688 // The branch should get simplified. Don't bother simplifying this condition. 6689 if (TrueBB == FalseBB) 6690 return {nullptr, false}; 6691 6692 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6693 "Predecessor block does not point to successor?"); 6694 6695 // Is this condition implied by the predecessor condition? 6696 return {PredCond, TrueBB == ContextBB}; 6697 } 6698 6699 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6700 const Instruction *ContextI, 6701 const DataLayout &DL) { 6702 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6703 auto PredCond = getDomPredecessorCondition(ContextI); 6704 if (PredCond.first) 6705 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6706 return None; 6707 } 6708 6709 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6710 const Value *LHS, const Value *RHS, 6711 const Instruction *ContextI, 6712 const DataLayout &DL) { 6713 auto PredCond = getDomPredecessorCondition(ContextI); 6714 if (PredCond.first) 6715 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6716 PredCond.second); 6717 return None; 6718 } 6719 6720 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6721 APInt &Upper, const InstrInfoQuery &IIQ) { 6722 unsigned Width = Lower.getBitWidth(); 6723 const APInt *C; 6724 switch (BO.getOpcode()) { 6725 case Instruction::Add: 6726 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6727 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6728 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6729 // 'add nuw x, C' produces [C, UINT_MAX]. 6730 Lower = *C; 6731 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6732 if (C->isNegative()) { 6733 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6734 Lower = APInt::getSignedMinValue(Width); 6735 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6736 } else { 6737 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6738 Lower = APInt::getSignedMinValue(Width) + *C; 6739 Upper = APInt::getSignedMaxValue(Width) + 1; 6740 } 6741 } 6742 } 6743 break; 6744 6745 case Instruction::And: 6746 if (match(BO.getOperand(1), m_APInt(C))) 6747 // 'and x, C' produces [0, C]. 6748 Upper = *C + 1; 6749 break; 6750 6751 case Instruction::Or: 6752 if (match(BO.getOperand(1), m_APInt(C))) 6753 // 'or x, C' produces [C, UINT_MAX]. 6754 Lower = *C; 6755 break; 6756 6757 case Instruction::AShr: 6758 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6759 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6760 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6761 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6762 } else if (match(BO.getOperand(0), m_APInt(C))) { 6763 unsigned ShiftAmount = Width - 1; 6764 if (!C->isNullValue() && IIQ.isExact(&BO)) 6765 ShiftAmount = C->countTrailingZeros(); 6766 if (C->isNegative()) { 6767 // 'ashr C, x' produces [C, C >> (Width-1)] 6768 Lower = *C; 6769 Upper = C->ashr(ShiftAmount) + 1; 6770 } else { 6771 // 'ashr C, x' produces [C >> (Width-1), C] 6772 Lower = C->ashr(ShiftAmount); 6773 Upper = *C + 1; 6774 } 6775 } 6776 break; 6777 6778 case Instruction::LShr: 6779 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6780 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6781 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6782 } else if (match(BO.getOperand(0), m_APInt(C))) { 6783 // 'lshr C, x' produces [C >> (Width-1), C]. 6784 unsigned ShiftAmount = Width - 1; 6785 if (!C->isNullValue() && IIQ.isExact(&BO)) 6786 ShiftAmount = C->countTrailingZeros(); 6787 Lower = C->lshr(ShiftAmount); 6788 Upper = *C + 1; 6789 } 6790 break; 6791 6792 case Instruction::Shl: 6793 if (match(BO.getOperand(0), m_APInt(C))) { 6794 if (IIQ.hasNoUnsignedWrap(&BO)) { 6795 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6796 Lower = *C; 6797 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6798 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6799 if (C->isNegative()) { 6800 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6801 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6802 Lower = C->shl(ShiftAmount); 6803 Upper = *C + 1; 6804 } else { 6805 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6806 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6807 Lower = *C; 6808 Upper = C->shl(ShiftAmount) + 1; 6809 } 6810 } 6811 } 6812 break; 6813 6814 case Instruction::SDiv: 6815 if (match(BO.getOperand(1), m_APInt(C))) { 6816 APInt IntMin = APInt::getSignedMinValue(Width); 6817 APInt IntMax = APInt::getSignedMaxValue(Width); 6818 if (C->isAllOnesValue()) { 6819 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6820 // where C != -1 and C != 0 and C != 1 6821 Lower = IntMin + 1; 6822 Upper = IntMax + 1; 6823 } else if (C->countLeadingZeros() < Width - 1) { 6824 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6825 // where C != -1 and C != 0 and C != 1 6826 Lower = IntMin.sdiv(*C); 6827 Upper = IntMax.sdiv(*C); 6828 if (Lower.sgt(Upper)) 6829 std::swap(Lower, Upper); 6830 Upper = Upper + 1; 6831 assert(Upper != Lower && "Upper part of range has wrapped!"); 6832 } 6833 } else if (match(BO.getOperand(0), m_APInt(C))) { 6834 if (C->isMinSignedValue()) { 6835 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6836 Lower = *C; 6837 Upper = Lower.lshr(1) + 1; 6838 } else { 6839 // 'sdiv C, x' produces [-|C|, |C|]. 6840 Upper = C->abs() + 1; 6841 Lower = (-Upper) + 1; 6842 } 6843 } 6844 break; 6845 6846 case Instruction::UDiv: 6847 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6848 // 'udiv x, C' produces [0, UINT_MAX / C]. 6849 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6850 } else if (match(BO.getOperand(0), m_APInt(C))) { 6851 // 'udiv C, x' produces [0, C]. 6852 Upper = *C + 1; 6853 } 6854 break; 6855 6856 case Instruction::SRem: 6857 if (match(BO.getOperand(1), m_APInt(C))) { 6858 // 'srem x, C' produces (-|C|, |C|). 6859 Upper = C->abs(); 6860 Lower = (-Upper) + 1; 6861 } 6862 break; 6863 6864 case Instruction::URem: 6865 if (match(BO.getOperand(1), m_APInt(C))) 6866 // 'urem x, C' produces [0, C). 6867 Upper = *C; 6868 break; 6869 6870 default: 6871 break; 6872 } 6873 } 6874 6875 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6876 APInt &Upper) { 6877 unsigned Width = Lower.getBitWidth(); 6878 const APInt *C; 6879 switch (II.getIntrinsicID()) { 6880 case Intrinsic::ctpop: 6881 case Intrinsic::ctlz: 6882 case Intrinsic::cttz: 6883 // Maximum of set/clear bits is the bit width. 6884 assert(Lower == 0 && "Expected lower bound to be zero"); 6885 Upper = Width + 1; 6886 break; 6887 case Intrinsic::uadd_sat: 6888 // uadd.sat(x, C) produces [C, UINT_MAX]. 6889 if (match(II.getOperand(0), m_APInt(C)) || 6890 match(II.getOperand(1), m_APInt(C))) 6891 Lower = *C; 6892 break; 6893 case Intrinsic::sadd_sat: 6894 if (match(II.getOperand(0), m_APInt(C)) || 6895 match(II.getOperand(1), m_APInt(C))) { 6896 if (C->isNegative()) { 6897 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6898 Lower = APInt::getSignedMinValue(Width); 6899 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6900 } else { 6901 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6902 Lower = APInt::getSignedMinValue(Width) + *C; 6903 Upper = APInt::getSignedMaxValue(Width) + 1; 6904 } 6905 } 6906 break; 6907 case Intrinsic::usub_sat: 6908 // usub.sat(C, x) produces [0, C]. 6909 if (match(II.getOperand(0), m_APInt(C))) 6910 Upper = *C + 1; 6911 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6912 else if (match(II.getOperand(1), m_APInt(C))) 6913 Upper = APInt::getMaxValue(Width) - *C + 1; 6914 break; 6915 case Intrinsic::ssub_sat: 6916 if (match(II.getOperand(0), m_APInt(C))) { 6917 if (C->isNegative()) { 6918 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6919 Lower = APInt::getSignedMinValue(Width); 6920 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6921 } else { 6922 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6923 Lower = *C - APInt::getSignedMaxValue(Width); 6924 Upper = APInt::getSignedMaxValue(Width) + 1; 6925 } 6926 } else if (match(II.getOperand(1), m_APInt(C))) { 6927 if (C->isNegative()) { 6928 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6929 Lower = APInt::getSignedMinValue(Width) - *C; 6930 Upper = APInt::getSignedMaxValue(Width) + 1; 6931 } else { 6932 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6933 Lower = APInt::getSignedMinValue(Width); 6934 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6935 } 6936 } 6937 break; 6938 case Intrinsic::umin: 6939 case Intrinsic::umax: 6940 case Intrinsic::smin: 6941 case Intrinsic::smax: 6942 if (!match(II.getOperand(0), m_APInt(C)) && 6943 !match(II.getOperand(1), m_APInt(C))) 6944 break; 6945 6946 switch (II.getIntrinsicID()) { 6947 case Intrinsic::umin: 6948 Upper = *C + 1; 6949 break; 6950 case Intrinsic::umax: 6951 Lower = *C; 6952 break; 6953 case Intrinsic::smin: 6954 Lower = APInt::getSignedMinValue(Width); 6955 Upper = *C + 1; 6956 break; 6957 case Intrinsic::smax: 6958 Lower = *C; 6959 Upper = APInt::getSignedMaxValue(Width) + 1; 6960 break; 6961 default: 6962 llvm_unreachable("Must be min/max intrinsic"); 6963 } 6964 break; 6965 case Intrinsic::abs: 6966 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6967 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6968 if (match(II.getOperand(1), m_One())) 6969 Upper = APInt::getSignedMaxValue(Width) + 1; 6970 else 6971 Upper = APInt::getSignedMinValue(Width) + 1; 6972 break; 6973 default: 6974 break; 6975 } 6976 } 6977 6978 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6979 APInt &Upper, const InstrInfoQuery &IIQ) { 6980 const Value *LHS = nullptr, *RHS = nullptr; 6981 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6982 if (R.Flavor == SPF_UNKNOWN) 6983 return; 6984 6985 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6986 6987 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6988 // If the negation part of the abs (in RHS) has the NSW flag, 6989 // then the result of abs(X) is [0..SIGNED_MAX], 6990 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6991 Lower = APInt::getZero(BitWidth); 6992 if (match(RHS, m_Neg(m_Specific(LHS))) && 6993 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6994 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6995 else 6996 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6997 return; 6998 } 6999 7000 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7001 // The result of -abs(X) is <= 0. 7002 Lower = APInt::getSignedMinValue(BitWidth); 7003 Upper = APInt(BitWidth, 1); 7004 return; 7005 } 7006 7007 const APInt *C; 7008 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7009 return; 7010 7011 switch (R.Flavor) { 7012 case SPF_UMIN: 7013 Upper = *C + 1; 7014 break; 7015 case SPF_UMAX: 7016 Lower = *C; 7017 break; 7018 case SPF_SMIN: 7019 Lower = APInt::getSignedMinValue(BitWidth); 7020 Upper = *C + 1; 7021 break; 7022 case SPF_SMAX: 7023 Lower = *C; 7024 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7025 break; 7026 default: 7027 break; 7028 } 7029 } 7030 7031 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 7032 AssumptionCache *AC, 7033 const Instruction *CtxI, 7034 const DominatorTree *DT, 7035 unsigned Depth) { 7036 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7037 7038 if (Depth == MaxAnalysisRecursionDepth) 7039 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7040 7041 const APInt *C; 7042 if (match(V, m_APInt(C))) 7043 return ConstantRange(*C); 7044 7045 InstrInfoQuery IIQ(UseInstrInfo); 7046 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7047 APInt Lower = APInt(BitWidth, 0); 7048 APInt Upper = APInt(BitWidth, 0); 7049 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7050 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 7051 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7052 setLimitsForIntrinsic(*II, Lower, Upper); 7053 else if (auto *SI = dyn_cast<SelectInst>(V)) 7054 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7055 7056 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7057 7058 if (auto *I = dyn_cast<Instruction>(V)) 7059 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7060 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7061 7062 if (CtxI && AC) { 7063 // Try to restrict the range based on information from assumptions. 7064 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7065 if (!AssumeVH) 7066 continue; 7067 CallInst *I = cast<CallInst>(AssumeVH); 7068 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7069 "Got assumption for the wrong function!"); 7070 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7071 "must be an assume intrinsic"); 7072 7073 if (!isValidAssumeForContext(I, CtxI, DT)) 7074 continue; 7075 Value *Arg = I->getArgOperand(0); 7076 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7077 // Currently we just use information from comparisons. 7078 if (!Cmp || Cmp->getOperand(0) != V) 7079 continue; 7080 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 7081 AC, I, DT, Depth + 1); 7082 CR = CR.intersectWith( 7083 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7084 } 7085 } 7086 7087 return CR; 7088 } 7089 7090 static Optional<int64_t> 7091 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7092 // Skip over the first indices. 7093 gep_type_iterator GTI = gep_type_begin(GEP); 7094 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7095 /*skip along*/; 7096 7097 // Compute the offset implied by the rest of the indices. 7098 int64_t Offset = 0; 7099 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7100 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7101 if (!OpC) 7102 return None; 7103 if (OpC->isZero()) 7104 continue; // No offset. 7105 7106 // Handle struct indices, which add their field offset to the pointer. 7107 if (StructType *STy = GTI.getStructTypeOrNull()) { 7108 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7109 continue; 7110 } 7111 7112 // Otherwise, we have a sequential type like an array or fixed-length 7113 // vector. Multiply the index by the ElementSize. 7114 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7115 if (Size.isScalable()) 7116 return None; 7117 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7118 } 7119 7120 return Offset; 7121 } 7122 7123 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7124 const DataLayout &DL) { 7125 Ptr1 = Ptr1->stripPointerCasts(); 7126 Ptr2 = Ptr2->stripPointerCasts(); 7127 7128 // Handle the trivial case first. 7129 if (Ptr1 == Ptr2) { 7130 return 0; 7131 } 7132 7133 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7134 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7135 7136 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7137 // as in "P" and "gep P, 1". 7138 // Also do this iteratively to handle the the following case: 7139 // Ptr_t1 = GEP Ptr1, c1 7140 // Ptr_t2 = GEP Ptr_t1, c2 7141 // Ptr2 = GEP Ptr_t2, c3 7142 // where we will return c1+c2+c3. 7143 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7144 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7145 // are the same, and return the difference between offsets. 7146 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7147 const Value *Ptr) -> Optional<int64_t> { 7148 const GEPOperator *GEP_T = GEP; 7149 int64_t OffsetVal = 0; 7150 bool HasSameBase = false; 7151 while (GEP_T) { 7152 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7153 if (!Offset) 7154 return None; 7155 OffsetVal += *Offset; 7156 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7157 if (Op0 == Ptr) { 7158 HasSameBase = true; 7159 break; 7160 } 7161 GEP_T = dyn_cast<GEPOperator>(Op0); 7162 } 7163 if (!HasSameBase) 7164 return None; 7165 return OffsetVal; 7166 }; 7167 7168 if (GEP1) { 7169 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7170 if (Offset) 7171 return -*Offset; 7172 } 7173 if (GEP2) { 7174 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7175 if (Offset) 7176 return Offset; 7177 } 7178 7179 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7180 // base. After that base, they may have some number of common (and 7181 // potentially variable) indices. After that they handle some constant 7182 // offset, which determines their offset from each other. At this point, we 7183 // handle no other case. 7184 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7185 return None; 7186 7187 // Skip any common indices and track the GEP types. 7188 unsigned Idx = 1; 7189 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7190 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7191 break; 7192 7193 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7194 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7195 if (!Offset1 || !Offset2) 7196 return None; 7197 return *Offset2 - *Offset1; 7198 } 7199