1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 194 KnownBits LHSKnown(IT->getBitWidth()); 195 KnownBits RHSKnown(IT->getBitWidth()); 196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 199 } 200 201 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 202 for (const User *U : CxtI->users()) { 203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 204 if (IC->isEquality()) 205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 206 if (C->isNullValue()) 207 continue; 208 return false; 209 } 210 return true; 211 } 212 213 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 214 const Query &Q); 215 216 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 217 bool OrZero, 218 unsigned Depth, AssumptionCache *AC, 219 const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 222 Query(DL, AC, safeCxtI(V, CxtI), DT)); 223 } 224 225 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 226 227 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 234 unsigned Depth, 235 AssumptionCache *AC, const Instruction *CxtI, 236 const DominatorTree *DT) { 237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 238 return Known.isNonNegative(); 239 } 240 241 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 242 AssumptionCache *AC, const Instruction *CxtI, 243 const DominatorTree *DT) { 244 if (auto *CI = dyn_cast<ConstantInt>(V)) 245 return CI->getValue().isStrictlyPositive(); 246 247 // TODO: We'd doing two recursive queries here. We should factor this such 248 // that only a single query is needed. 249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 251 } 252 253 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 254 AssumptionCache *AC, const Instruction *CxtI, 255 const DominatorTree *DT) { 256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 257 return Known.isNegative(); 258 } 259 260 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 261 262 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 263 const DataLayout &DL, 264 AssumptionCache *AC, const Instruction *CxtI, 265 const DominatorTree *DT) { 266 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 267 safeCxtI(V1, safeCxtI(V2, CxtI)), 268 DT)); 269 } 270 271 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 272 const Query &Q); 273 274 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 275 const DataLayout &DL, 276 unsigned Depth, AssumptionCache *AC, 277 const Instruction *CxtI, const DominatorTree *DT) { 278 return ::MaskedValueIsZero(V, Mask, Depth, 279 Query(DL, AC, safeCxtI(V, CxtI), DT)); 280 } 281 282 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 283 const Query &Q); 284 285 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 286 unsigned Depth, AssumptionCache *AC, 287 const Instruction *CxtI, 288 const DominatorTree *DT) { 289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 290 } 291 292 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 293 bool NSW, 294 KnownBits &KnownOut, KnownBits &Known2, 295 unsigned Depth, const Query &Q) { 296 unsigned BitWidth = KnownOut.getBitWidth(); 297 298 // If an initial sequence of bits in the result is not needed, the 299 // corresponding bits in the operands are not needed. 300 KnownBits LHSKnown(BitWidth); 301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 302 computeKnownBits(Op1, Known2, Depth + 1, Q); 303 304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 305 } 306 307 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 308 KnownBits &Known, KnownBits &Known2, 309 unsigned Depth, const Query &Q) { 310 unsigned BitWidth = Known.getBitWidth(); 311 computeKnownBits(Op1, Known, Depth + 1, Q); 312 computeKnownBits(Op0, Known2, Depth + 1, Q); 313 314 bool isKnownNegative = false; 315 bool isKnownNonNegative = false; 316 // If the multiplication is known not to overflow, compute the sign bit. 317 if (NSW) { 318 if (Op0 == Op1) { 319 // The product of a number with itself is non-negative. 320 isKnownNonNegative = true; 321 } else { 322 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 323 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 324 bool isKnownNegativeOp1 = Known.isNegative(); 325 bool isKnownNegativeOp0 = Known2.isNegative(); 326 // The product of two numbers with the same sign is non-negative. 327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 329 // The product of a negative number and a non-negative number is either 330 // negative or zero. 331 if (!isKnownNonNegative) 332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 333 isKnownNonZero(Op0, Depth, Q)) || 334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 335 isKnownNonZero(Op1, Depth, Q)); 336 } 337 } 338 339 assert(!Known.hasConflict() && !Known2.hasConflict()); 340 // Compute a conservative estimate for high known-0 bits. 341 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 342 Known2.countMinLeadingZeros(), 343 BitWidth) - BitWidth; 344 LeadZ = std::min(LeadZ, BitWidth); 345 346 // The result of the bottom bits of an integer multiply can be 347 // inferred by looking at the bottom bits of both operands and 348 // multiplying them together. 349 // We can infer at least the minimum number of known trailing bits 350 // of both operands. Depending on number of trailing zeros, we can 351 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 352 // a and b are divisible by m and n respectively. 353 // We then calculate how many of those bits are inferrable and set 354 // the output. For example, the i8 mul: 355 // a = XXXX1100 (12) 356 // b = XXXX1110 (14) 357 // We know the bottom 3 bits are zero since the first can be divided by 358 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 359 // Applying the multiplication to the trimmed arguments gets: 360 // XX11 (3) 361 // X111 (7) 362 // ------- 363 // XX11 364 // XX11 365 // XX11 366 // XX11 367 // ------- 368 // XXXXX01 369 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 370 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 371 // The proof for this can be described as: 372 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 373 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 374 // umin(countTrailingZeros(C2), C6) + 375 // umin(C5 - umin(countTrailingZeros(C1), C5), 376 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 377 // %aa = shl i8 %a, C5 378 // %bb = shl i8 %b, C6 379 // %aaa = or i8 %aa, C1 380 // %bbb = or i8 %bb, C2 381 // %mul = mul i8 %aaa, %bbb 382 // %mask = and i8 %mul, C7 383 // => 384 // %mask = i8 ((C1*C2)&C7) 385 // Where C5, C6 describe the known bits of %a, %b 386 // C1, C2 describe the known bottom bits of %a, %b. 387 // C7 describes the mask of the known bits of the result. 388 APInt Bottom0 = Known.One; 389 APInt Bottom1 = Known2.One; 390 391 // How many times we'd be able to divide each argument by 2 (shr by 1). 392 // This gives us the number of trailing zeros on the multiplication result. 393 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 394 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 395 unsigned TrailZero0 = Known.countMinTrailingZeros(); 396 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 397 unsigned TrailZ = TrailZero0 + TrailZero1; 398 399 // Figure out the fewest known-bits operand. 400 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 401 TrailBitsKnown1 - TrailZero1); 402 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 403 404 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 405 Bottom1.getLoBits(TrailBitsKnown1); 406 407 Known.resetAll(); 408 Known.Zero.setHighBits(LeadZ); 409 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 410 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 411 412 // Only make use of no-wrap flags if we failed to compute the sign bit 413 // directly. This matters if the multiplication always overflows, in 414 // which case we prefer to follow the result of the direct computation, 415 // though as the program is invoking undefined behaviour we can choose 416 // whatever we like here. 417 if (isKnownNonNegative && !Known.isNegative()) 418 Known.makeNonNegative(); 419 else if (isKnownNegative && !Known.isNonNegative()) 420 Known.makeNegative(); 421 } 422 423 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 424 KnownBits &Known) { 425 unsigned BitWidth = Known.getBitWidth(); 426 unsigned NumRanges = Ranges.getNumOperands() / 2; 427 assert(NumRanges >= 1); 428 429 Known.Zero.setAllBits(); 430 Known.One.setAllBits(); 431 432 for (unsigned i = 0; i < NumRanges; ++i) { 433 ConstantInt *Lower = 434 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 435 ConstantInt *Upper = 436 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 437 ConstantRange Range(Lower->getValue(), Upper->getValue()); 438 439 // The first CommonPrefixBits of all values in Range are equal. 440 unsigned CommonPrefixBits = 441 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 442 443 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 444 Known.One &= Range.getUnsignedMax() & Mask; 445 Known.Zero &= ~Range.getUnsignedMax() & Mask; 446 } 447 } 448 449 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 450 SmallVector<const Value *, 16> WorkSet(1, I); 451 SmallPtrSet<const Value *, 32> Visited; 452 SmallPtrSet<const Value *, 16> EphValues; 453 454 // The instruction defining an assumption's condition itself is always 455 // considered ephemeral to that assumption (even if it has other 456 // non-ephemeral users). See r246696's test case for an example. 457 if (is_contained(I->operands(), E)) 458 return true; 459 460 while (!WorkSet.empty()) { 461 const Value *V = WorkSet.pop_back_val(); 462 if (!Visited.insert(V).second) 463 continue; 464 465 // If all uses of this value are ephemeral, then so is this value. 466 if (llvm::all_of(V->users(), [&](const User *U) { 467 return EphValues.count(U); 468 })) { 469 if (V == E) 470 return true; 471 472 if (V == I || isSafeToSpeculativelyExecute(V)) { 473 EphValues.insert(V); 474 if (const User *U = dyn_cast<User>(V)) 475 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 476 J != JE; ++J) 477 WorkSet.push_back(*J); 478 } 479 } 480 } 481 482 return false; 483 } 484 485 // Is this an intrinsic that cannot be speculated but also cannot trap? 486 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 487 if (const CallInst *CI = dyn_cast<CallInst>(I)) 488 if (Function *F = CI->getCalledFunction()) 489 switch (F->getIntrinsicID()) { 490 default: break; 491 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 492 case Intrinsic::assume: 493 case Intrinsic::sideeffect: 494 case Intrinsic::dbg_declare: 495 case Intrinsic::dbg_value: 496 case Intrinsic::invariant_start: 497 case Intrinsic::invariant_end: 498 case Intrinsic::lifetime_start: 499 case Intrinsic::lifetime_end: 500 case Intrinsic::objectsize: 501 case Intrinsic::ptr_annotation: 502 case Intrinsic::var_annotation: 503 return true; 504 } 505 506 return false; 507 } 508 509 bool llvm::isValidAssumeForContext(const Instruction *Inv, 510 const Instruction *CxtI, 511 const DominatorTree *DT) { 512 // There are two restrictions on the use of an assume: 513 // 1. The assume must dominate the context (or the control flow must 514 // reach the assume whenever it reaches the context). 515 // 2. The context must not be in the assume's set of ephemeral values 516 // (otherwise we will use the assume to prove that the condition 517 // feeding the assume is trivially true, thus causing the removal of 518 // the assume). 519 520 if (DT) { 521 if (DT->dominates(Inv, CxtI)) 522 return true; 523 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 524 // We don't have a DT, but this trivially dominates. 525 return true; 526 } 527 528 // With or without a DT, the only remaining case we will check is if the 529 // instructions are in the same BB. Give up if that is not the case. 530 if (Inv->getParent() != CxtI->getParent()) 531 return false; 532 533 // If we have a dom tree, then we now know that the assume doesn't dominate 534 // the other instruction. If we don't have a dom tree then we can check if 535 // the assume is first in the BB. 536 if (!DT) { 537 // Search forward from the assume until we reach the context (or the end 538 // of the block); the common case is that the assume will come first. 539 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 540 IE = Inv->getParent()->end(); I != IE; ++I) 541 if (&*I == CxtI) 542 return true; 543 } 544 545 // The context comes first, but they're both in the same block. Make sure 546 // there is nothing in between that might interrupt the control flow. 547 for (BasicBlock::const_iterator I = 548 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 549 I != IE; ++I) 550 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 551 return false; 552 553 return !isEphemeralValueOf(Inv, CxtI); 554 } 555 556 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 557 unsigned Depth, const Query &Q) { 558 // Use of assumptions is context-sensitive. If we don't have a context, we 559 // cannot use them! 560 if (!Q.AC || !Q.CxtI) 561 return; 562 563 unsigned BitWidth = Known.getBitWidth(); 564 565 // Note that the patterns below need to be kept in sync with the code 566 // in AssumptionCache::updateAffectedValues. 567 568 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 569 if (!AssumeVH) 570 continue; 571 CallInst *I = cast<CallInst>(AssumeVH); 572 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 573 "Got assumption for the wrong function!"); 574 if (Q.isExcluded(I)) 575 continue; 576 577 // Warning: This loop can end up being somewhat performance sensitive. 578 // We're running this loop for once for each value queried resulting in a 579 // runtime of ~O(#assumes * #values). 580 581 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 582 "must be an assume intrinsic"); 583 584 Value *Arg = I->getArgOperand(0); 585 586 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 587 assert(BitWidth == 1 && "assume operand is not i1?"); 588 Known.setAllOnes(); 589 return; 590 } 591 if (match(Arg, m_Not(m_Specific(V))) && 592 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 593 assert(BitWidth == 1 && "assume operand is not i1?"); 594 Known.setAllZero(); 595 return; 596 } 597 598 // The remaining tests are all recursive, so bail out if we hit the limit. 599 if (Depth == MaxDepth) 600 continue; 601 602 Value *A, *B; 603 auto m_V = m_CombineOr(m_Specific(V), 604 m_CombineOr(m_PtrToInt(m_Specific(V)), 605 m_BitCast(m_Specific(V)))); 606 607 CmpInst::Predicate Pred; 608 uint64_t C; 609 // assume(v = a) 610 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 611 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 KnownBits RHSKnown(BitWidth); 613 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 614 Known.Zero |= RHSKnown.Zero; 615 Known.One |= RHSKnown.One; 616 // assume(v & b = a) 617 } else if (match(Arg, 618 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 619 Pred == ICmpInst::ICMP_EQ && 620 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 KnownBits MaskKnown(BitWidth); 624 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 625 626 // For those bits in the mask that are known to be one, we can propagate 627 // known bits from the RHS to V. 628 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 629 Known.One |= RHSKnown.One & MaskKnown.One; 630 // assume(~(v & b) = a) 631 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 632 m_Value(A))) && 633 Pred == ICmpInst::ICMP_EQ && 634 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 635 KnownBits RHSKnown(BitWidth); 636 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 637 KnownBits MaskKnown(BitWidth); 638 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 639 640 // For those bits in the mask that are known to be one, we can propagate 641 // inverted known bits from the RHS to V. 642 Known.Zero |= RHSKnown.One & MaskKnown.One; 643 Known.One |= RHSKnown.Zero & MaskKnown.One; 644 // assume(v | b = a) 645 } else if (match(Arg, 646 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 647 Pred == ICmpInst::ICMP_EQ && 648 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 649 KnownBits RHSKnown(BitWidth); 650 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 651 KnownBits BKnown(BitWidth); 652 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 653 654 // For those bits in B that are known to be zero, we can propagate known 655 // bits from the RHS to V. 656 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 657 Known.One |= RHSKnown.One & BKnown.Zero; 658 // assume(~(v | b) = a) 659 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 660 m_Value(A))) && 661 Pred == ICmpInst::ICMP_EQ && 662 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 663 KnownBits RHSKnown(BitWidth); 664 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 665 KnownBits BKnown(BitWidth); 666 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 667 668 // For those bits in B that are known to be zero, we can propagate 669 // inverted known bits from the RHS to V. 670 Known.Zero |= RHSKnown.One & BKnown.Zero; 671 Known.One |= RHSKnown.Zero & BKnown.Zero; 672 // assume(v ^ b = a) 673 } else if (match(Arg, 674 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 675 Pred == ICmpInst::ICMP_EQ && 676 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 677 KnownBits RHSKnown(BitWidth); 678 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 679 KnownBits BKnown(BitWidth); 680 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 681 682 // For those bits in B that are known to be zero, we can propagate known 683 // bits from the RHS to V. For those bits in B that are known to be one, 684 // we can propagate inverted known bits from the RHS to V. 685 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 686 Known.One |= RHSKnown.One & BKnown.Zero; 687 Known.Zero |= RHSKnown.One & BKnown.One; 688 Known.One |= RHSKnown.Zero & BKnown.One; 689 // assume(~(v ^ b) = a) 690 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 691 m_Value(A))) && 692 Pred == ICmpInst::ICMP_EQ && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 KnownBits RHSKnown(BitWidth); 695 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 696 KnownBits BKnown(BitWidth); 697 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 698 699 // For those bits in B that are known to be zero, we can propagate 700 // inverted known bits from the RHS to V. For those bits in B that are 701 // known to be one, we can propagate known bits from the RHS to V. 702 Known.Zero |= RHSKnown.One & BKnown.Zero; 703 Known.One |= RHSKnown.Zero & BKnown.Zero; 704 Known.Zero |= RHSKnown.Zero & BKnown.One; 705 Known.One |= RHSKnown.One & BKnown.One; 706 // assume(v << c = a) 707 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 708 m_Value(A))) && 709 Pred == ICmpInst::ICMP_EQ && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 711 C < BitWidth) { 712 KnownBits RHSKnown(BitWidth); 713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 714 // For those bits in RHS that are known, we can propagate them to known 715 // bits in V shifted to the right by C. 716 RHSKnown.Zero.lshrInPlace(C); 717 Known.Zero |= RHSKnown.Zero; 718 RHSKnown.One.lshrInPlace(C); 719 Known.One |= RHSKnown.One; 720 // assume(~(v << c) = a) 721 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 722 m_Value(A))) && 723 Pred == ICmpInst::ICMP_EQ && 724 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 725 C < BitWidth) { 726 KnownBits RHSKnown(BitWidth); 727 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 728 // For those bits in RHS that are known, we can propagate them inverted 729 // to known bits in V shifted to the right by C. 730 RHSKnown.One.lshrInPlace(C); 731 Known.Zero |= RHSKnown.One; 732 RHSKnown.Zero.lshrInPlace(C); 733 Known.One |= RHSKnown.Zero; 734 // assume(v >> c = a) 735 } else if (match(Arg, 736 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 737 m_Value(A))) && 738 Pred == ICmpInst::ICMP_EQ && 739 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 740 C < BitWidth) { 741 KnownBits RHSKnown(BitWidth); 742 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 743 // For those bits in RHS that are known, we can propagate them to known 744 // bits in V shifted to the right by C. 745 Known.Zero |= RHSKnown.Zero << C; 746 Known.One |= RHSKnown.One << C; 747 // assume(~(v >> c) = a) 748 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 749 m_Value(A))) && 750 Pred == ICmpInst::ICMP_EQ && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 752 C < BitWidth) { 753 KnownBits RHSKnown(BitWidth); 754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 755 // For those bits in RHS that are known, we can propagate them inverted 756 // to known bits in V shifted to the right by C. 757 Known.Zero |= RHSKnown.One << C; 758 Known.One |= RHSKnown.Zero << C; 759 // assume(v >=_s c) where c is non-negative 760 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 761 Pred == ICmpInst::ICMP_SGE && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown(BitWidth); 764 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 765 766 if (RHSKnown.isNonNegative()) { 767 // We know that the sign bit is zero. 768 Known.makeNonNegative(); 769 } 770 // assume(v >_s c) where c is at least -1. 771 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 772 Pred == ICmpInst::ICMP_SGT && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown(BitWidth); 775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 776 777 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 778 // We know that the sign bit is zero. 779 Known.makeNonNegative(); 780 } 781 // assume(v <=_s c) where c is negative 782 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 783 Pred == ICmpInst::ICMP_SLE && 784 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 785 KnownBits RHSKnown(BitWidth); 786 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 787 788 if (RHSKnown.isNegative()) { 789 // We know that the sign bit is one. 790 Known.makeNegative(); 791 } 792 // assume(v <_s c) where c is non-positive 793 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 794 Pred == ICmpInst::ICMP_SLT && 795 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 796 KnownBits RHSKnown(BitWidth); 797 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 798 799 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 800 // We know that the sign bit is one. 801 Known.makeNegative(); 802 } 803 // assume(v <=_u c) 804 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 805 Pred == ICmpInst::ICMP_ULE && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown(BitWidth); 808 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 809 810 // Whatever high bits in c are zero are known to be zero. 811 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 812 // assume(v <_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULT && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // If the RHS is known zero, then this assumption must be wrong (nothing 820 // is unsigned less than zero). Signal a conflict and get out of here. 821 if (RHSKnown.isZero()) { 822 Known.Zero.setAllBits(); 823 Known.One.setAllBits(); 824 break; 825 } 826 827 // Whatever high bits in c are zero are known to be zero (if c is a power 828 // of 2, then one more). 829 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 830 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 831 else 832 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 833 } 834 } 835 836 // If assumptions conflict with each other or previous known bits, then we 837 // have a logical fallacy. It's possible that the assumption is not reachable, 838 // so this isn't a real bug. On the other hand, the program may have undefined 839 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 840 // clear out the known bits, try to warn the user, and hope for the best. 841 if (Known.Zero.intersects(Known.One)) { 842 Known.resetAll(); 843 844 if (Q.ORE) 845 Q.ORE->emit([&]() { 846 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 847 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 848 CxtI) 849 << "Detected conflicting code assumptions. Program may " 850 "have undefined behavior, or compiler may have " 851 "internal error."; 852 }); 853 } 854 } 855 856 /// Compute known bits from a shift operator, including those with a 857 /// non-constant shift amount. Known is the output of this function. Known2 is a 858 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 859 /// operator-specific functions that, given the known-zero or known-one bits 860 /// respectively, and a shift amount, compute the implied known-zero or 861 /// known-one bits of the shift operator's result respectively for that shift 862 /// amount. The results from calling KZF and KOF are conservatively combined for 863 /// all permitted shift amounts. 864 static void computeKnownBitsFromShiftOperator( 865 const Operator *I, KnownBits &Known, KnownBits &Known2, 866 unsigned Depth, const Query &Q, 867 function_ref<APInt(const APInt &, unsigned)> KZF, 868 function_ref<APInt(const APInt &, unsigned)> KOF) { 869 unsigned BitWidth = Known.getBitWidth(); 870 871 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 872 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 873 874 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 875 Known.Zero = KZF(Known.Zero, ShiftAmt); 876 Known.One = KOF(Known.One, ShiftAmt); 877 // If the known bits conflict, this must be an overflowing left shift, so 878 // the shift result is poison. We can return anything we want. Choose 0 for 879 // the best folding opportunity. 880 if (Known.hasConflict()) 881 Known.setAllZero(); 882 883 return; 884 } 885 886 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 887 888 // If the shift amount could be greater than or equal to the bit-width of the 889 // LHS, the value could be poison, but bail out because the check below is 890 // expensive. TODO: Should we just carry on? 891 if ((~Known.Zero).uge(BitWidth)) { 892 Known.resetAll(); 893 return; 894 } 895 896 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 897 // BitWidth > 64 and any upper bits are known, we'll end up returning the 898 // limit value (which implies all bits are known). 899 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 900 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 901 902 // It would be more-clearly correct to use the two temporaries for this 903 // calculation. Reusing the APInts here to prevent unnecessary allocations. 904 Known.resetAll(); 905 906 // If we know the shifter operand is nonzero, we can sometimes infer more 907 // known bits. However this is expensive to compute, so be lazy about it and 908 // only compute it when absolutely necessary. 909 Optional<bool> ShifterOperandIsNonZero; 910 911 // Early exit if we can't constrain any well-defined shift amount. 912 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 913 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 914 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 915 if (!*ShifterOperandIsNonZero) 916 return; 917 } 918 919 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 920 921 Known.Zero.setAllBits(); 922 Known.One.setAllBits(); 923 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 924 // Combine the shifted known input bits only for those shift amounts 925 // compatible with its known constraints. 926 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 927 continue; 928 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 929 continue; 930 // If we know the shifter is nonzero, we may be able to infer more known 931 // bits. This check is sunk down as far as possible to avoid the expensive 932 // call to isKnownNonZero if the cheaper checks above fail. 933 if (ShiftAmt == 0) { 934 if (!ShifterOperandIsNonZero.hasValue()) 935 ShifterOperandIsNonZero = 936 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 937 if (*ShifterOperandIsNonZero) 938 continue; 939 } 940 941 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 942 Known.One &= KOF(Known2.One, ShiftAmt); 943 } 944 945 // If the known bits conflict, the result is poison. Return a 0 and hope the 946 // caller can further optimize that. 947 if (Known.hasConflict()) 948 Known.setAllZero(); 949 } 950 951 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 952 unsigned Depth, const Query &Q) { 953 unsigned BitWidth = Known.getBitWidth(); 954 955 KnownBits Known2(Known); 956 switch (I->getOpcode()) { 957 default: break; 958 case Instruction::Load: 959 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 960 computeKnownBitsFromRangeMetadata(*MD, Known); 961 break; 962 case Instruction::And: { 963 // If either the LHS or the RHS are Zero, the result is zero. 964 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 965 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 966 967 // Output known-1 bits are only known if set in both the LHS & RHS. 968 Known.One &= Known2.One; 969 // Output known-0 are known to be clear if zero in either the LHS | RHS. 970 Known.Zero |= Known2.Zero; 971 972 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 973 // here we handle the more general case of adding any odd number by 974 // matching the form add(x, add(x, y)) where y is odd. 975 // TODO: This could be generalized to clearing any bit set in y where the 976 // following bit is known to be unset in y. 977 Value *Y = nullptr; 978 if (!Known.Zero[0] && !Known.One[0] && 979 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 980 m_Value(Y))) || 981 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 982 m_Value(Y))))) { 983 Known2.resetAll(); 984 computeKnownBits(Y, Known2, Depth + 1, Q); 985 if (Known2.countMinTrailingOnes() > 0) 986 Known.Zero.setBit(0); 987 } 988 break; 989 } 990 case Instruction::Or: 991 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 992 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 993 994 // Output known-0 bits are only known if clear in both the LHS & RHS. 995 Known.Zero &= Known2.Zero; 996 // Output known-1 are known to be set if set in either the LHS | RHS. 997 Known.One |= Known2.One; 998 break; 999 case Instruction::Xor: { 1000 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1001 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1002 1003 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1004 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1005 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1006 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1007 Known.Zero = std::move(KnownZeroOut); 1008 break; 1009 } 1010 case Instruction::Mul: { 1011 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1012 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1013 Known2, Depth, Q); 1014 break; 1015 } 1016 case Instruction::UDiv: { 1017 // For the purposes of computing leading zeros we can conservatively 1018 // treat a udiv as a logical right shift by the power of 2 known to 1019 // be less than the denominator. 1020 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1021 unsigned LeadZ = Known2.countMinLeadingZeros(); 1022 1023 Known2.resetAll(); 1024 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1025 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1026 if (RHSMaxLeadingZeros != BitWidth) 1027 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1028 1029 Known.Zero.setHighBits(LeadZ); 1030 break; 1031 } 1032 case Instruction::Select: { 1033 const Value *LHS, *RHS; 1034 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1035 if (SelectPatternResult::isMinOrMax(SPF)) { 1036 computeKnownBits(RHS, Known, Depth + 1, Q); 1037 computeKnownBits(LHS, Known2, Depth + 1, Q); 1038 } else { 1039 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1040 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1041 } 1042 1043 unsigned MaxHighOnes = 0; 1044 unsigned MaxHighZeros = 0; 1045 if (SPF == SPF_SMAX) { 1046 // If both sides are negative, the result is negative. 1047 if (Known.isNegative() && Known2.isNegative()) 1048 // We can derive a lower bound on the result by taking the max of the 1049 // leading one bits. 1050 MaxHighOnes = 1051 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1052 // If either side is non-negative, the result is non-negative. 1053 else if (Known.isNonNegative() || Known2.isNonNegative()) 1054 MaxHighZeros = 1; 1055 } else if (SPF == SPF_SMIN) { 1056 // If both sides are non-negative, the result is non-negative. 1057 if (Known.isNonNegative() && Known2.isNonNegative()) 1058 // We can derive an upper bound on the result by taking the max of the 1059 // leading zero bits. 1060 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1061 Known2.countMinLeadingZeros()); 1062 // If either side is negative, the result is negative. 1063 else if (Known.isNegative() || Known2.isNegative()) 1064 MaxHighOnes = 1; 1065 } else if (SPF == SPF_UMAX) { 1066 // We can derive a lower bound on the result by taking the max of the 1067 // leading one bits. 1068 MaxHighOnes = 1069 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1070 } else if (SPF == SPF_UMIN) { 1071 // We can derive an upper bound on the result by taking the max of the 1072 // leading zero bits. 1073 MaxHighZeros = 1074 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1075 } 1076 1077 // Only known if known in both the LHS and RHS. 1078 Known.One &= Known2.One; 1079 Known.Zero &= Known2.Zero; 1080 if (MaxHighOnes > 0) 1081 Known.One.setHighBits(MaxHighOnes); 1082 if (MaxHighZeros > 0) 1083 Known.Zero.setHighBits(MaxHighZeros); 1084 break; 1085 } 1086 case Instruction::FPTrunc: 1087 case Instruction::FPExt: 1088 case Instruction::FPToUI: 1089 case Instruction::FPToSI: 1090 case Instruction::SIToFP: 1091 case Instruction::UIToFP: 1092 break; // Can't work with floating point. 1093 case Instruction::PtrToInt: 1094 case Instruction::IntToPtr: 1095 // Fall through and handle them the same as zext/trunc. 1096 LLVM_FALLTHROUGH; 1097 case Instruction::ZExt: 1098 case Instruction::Trunc: { 1099 Type *SrcTy = I->getOperand(0)->getType(); 1100 1101 unsigned SrcBitWidth; 1102 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1103 // which fall through here. 1104 Type *ScalarTy = SrcTy->getScalarType(); 1105 SrcBitWidth = ScalarTy->isPointerTy() ? 1106 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1107 Q.DL.getTypeSizeInBits(ScalarTy); 1108 1109 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1110 Known = Known.zextOrTrunc(SrcBitWidth); 1111 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1112 Known = Known.zextOrTrunc(BitWidth); 1113 // Any top bits are known to be zero. 1114 if (BitWidth > SrcBitWidth) 1115 Known.Zero.setBitsFrom(SrcBitWidth); 1116 break; 1117 } 1118 case Instruction::BitCast: { 1119 Type *SrcTy = I->getOperand(0)->getType(); 1120 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1121 // TODO: For now, not handling conversions like: 1122 // (bitcast i64 %x to <2 x i32>) 1123 !I->getType()->isVectorTy()) { 1124 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1125 break; 1126 } 1127 break; 1128 } 1129 case Instruction::SExt: { 1130 // Compute the bits in the result that are not present in the input. 1131 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1132 1133 Known = Known.trunc(SrcBitWidth); 1134 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1135 // If the sign bit of the input is known set or clear, then we know the 1136 // top bits of the result. 1137 Known = Known.sext(BitWidth); 1138 break; 1139 } 1140 case Instruction::Shl: { 1141 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1142 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1143 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1144 APInt KZResult = KnownZero << ShiftAmt; 1145 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1146 // If this shift has "nsw" keyword, then the result is either a poison 1147 // value or has the same sign bit as the first operand. 1148 if (NSW && KnownZero.isSignBitSet()) 1149 KZResult.setSignBit(); 1150 return KZResult; 1151 }; 1152 1153 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1154 APInt KOResult = KnownOne << ShiftAmt; 1155 if (NSW && KnownOne.isSignBitSet()) 1156 KOResult.setSignBit(); 1157 return KOResult; 1158 }; 1159 1160 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1161 break; 1162 } 1163 case Instruction::LShr: { 1164 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1165 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1166 APInt KZResult = KnownZero.lshr(ShiftAmt); 1167 // High bits known zero. 1168 KZResult.setHighBits(ShiftAmt); 1169 return KZResult; 1170 }; 1171 1172 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1173 return KnownOne.lshr(ShiftAmt); 1174 }; 1175 1176 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1177 break; 1178 } 1179 case Instruction::AShr: { 1180 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1181 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1182 return KnownZero.ashr(ShiftAmt); 1183 }; 1184 1185 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1186 return KnownOne.ashr(ShiftAmt); 1187 }; 1188 1189 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1190 break; 1191 } 1192 case Instruction::Sub: { 1193 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1194 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1195 Known, Known2, Depth, Q); 1196 break; 1197 } 1198 case Instruction::Add: { 1199 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1200 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1201 Known, Known2, Depth, Q); 1202 break; 1203 } 1204 case Instruction::SRem: 1205 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1206 APInt RA = Rem->getValue().abs(); 1207 if (RA.isPowerOf2()) { 1208 APInt LowBits = RA - 1; 1209 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1210 1211 // The low bits of the first operand are unchanged by the srem. 1212 Known.Zero = Known2.Zero & LowBits; 1213 Known.One = Known2.One & LowBits; 1214 1215 // If the first operand is non-negative or has all low bits zero, then 1216 // the upper bits are all zero. 1217 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1218 Known.Zero |= ~LowBits; 1219 1220 // If the first operand is negative and not all low bits are zero, then 1221 // the upper bits are all one. 1222 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1223 Known.One |= ~LowBits; 1224 1225 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1226 break; 1227 } 1228 } 1229 1230 // The sign bit is the LHS's sign bit, except when the result of the 1231 // remainder is zero. 1232 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1233 // If it's known zero, our sign bit is also zero. 1234 if (Known2.isNonNegative()) 1235 Known.makeNonNegative(); 1236 1237 break; 1238 case Instruction::URem: { 1239 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1240 const APInt &RA = Rem->getValue(); 1241 if (RA.isPowerOf2()) { 1242 APInt LowBits = (RA - 1); 1243 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1244 Known.Zero |= ~LowBits; 1245 Known.One &= LowBits; 1246 break; 1247 } 1248 } 1249 1250 // Since the result is less than or equal to either operand, any leading 1251 // zero bits in either operand must also exist in the result. 1252 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1253 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1254 1255 unsigned Leaders = 1256 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1257 Known.resetAll(); 1258 Known.Zero.setHighBits(Leaders); 1259 break; 1260 } 1261 1262 case Instruction::Alloca: { 1263 const AllocaInst *AI = cast<AllocaInst>(I); 1264 unsigned Align = AI->getAlignment(); 1265 if (Align == 0) 1266 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1267 1268 if (Align > 0) 1269 Known.Zero.setLowBits(countTrailingZeros(Align)); 1270 break; 1271 } 1272 case Instruction::GetElementPtr: { 1273 // Analyze all of the subscripts of this getelementptr instruction 1274 // to determine if we can prove known low zero bits. 1275 KnownBits LocalKnown(BitWidth); 1276 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1277 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1278 1279 gep_type_iterator GTI = gep_type_begin(I); 1280 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1281 Value *Index = I->getOperand(i); 1282 if (StructType *STy = GTI.getStructTypeOrNull()) { 1283 // Handle struct member offset arithmetic. 1284 1285 // Handle case when index is vector zeroinitializer 1286 Constant *CIndex = cast<Constant>(Index); 1287 if (CIndex->isZeroValue()) 1288 continue; 1289 1290 if (CIndex->getType()->isVectorTy()) 1291 Index = CIndex->getSplatValue(); 1292 1293 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1294 const StructLayout *SL = Q.DL.getStructLayout(STy); 1295 uint64_t Offset = SL->getElementOffset(Idx); 1296 TrailZ = std::min<unsigned>(TrailZ, 1297 countTrailingZeros(Offset)); 1298 } else { 1299 // Handle array index arithmetic. 1300 Type *IndexedTy = GTI.getIndexedType(); 1301 if (!IndexedTy->isSized()) { 1302 TrailZ = 0; 1303 break; 1304 } 1305 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1306 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1307 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1308 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1309 TrailZ = std::min(TrailZ, 1310 unsigned(countTrailingZeros(TypeSize) + 1311 LocalKnown.countMinTrailingZeros())); 1312 } 1313 } 1314 1315 Known.Zero.setLowBits(TrailZ); 1316 break; 1317 } 1318 case Instruction::PHI: { 1319 const PHINode *P = cast<PHINode>(I); 1320 // Handle the case of a simple two-predecessor recurrence PHI. 1321 // There's a lot more that could theoretically be done here, but 1322 // this is sufficient to catch some interesting cases. 1323 if (P->getNumIncomingValues() == 2) { 1324 for (unsigned i = 0; i != 2; ++i) { 1325 Value *L = P->getIncomingValue(i); 1326 Value *R = P->getIncomingValue(!i); 1327 Operator *LU = dyn_cast<Operator>(L); 1328 if (!LU) 1329 continue; 1330 unsigned Opcode = LU->getOpcode(); 1331 // Check for operations that have the property that if 1332 // both their operands have low zero bits, the result 1333 // will have low zero bits. 1334 if (Opcode == Instruction::Add || 1335 Opcode == Instruction::Sub || 1336 Opcode == Instruction::And || 1337 Opcode == Instruction::Or || 1338 Opcode == Instruction::Mul) { 1339 Value *LL = LU->getOperand(0); 1340 Value *LR = LU->getOperand(1); 1341 // Find a recurrence. 1342 if (LL == I) 1343 L = LR; 1344 else if (LR == I) 1345 L = LL; 1346 else 1347 break; 1348 // Ok, we have a PHI of the form L op= R. Check for low 1349 // zero bits. 1350 computeKnownBits(R, Known2, Depth + 1, Q); 1351 1352 // We need to take the minimum number of known bits 1353 KnownBits Known3(Known); 1354 computeKnownBits(L, Known3, Depth + 1, Q); 1355 1356 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1357 Known3.countMinTrailingZeros())); 1358 1359 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1360 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1361 // If initial value of recurrence is nonnegative, and we are adding 1362 // a nonnegative number with nsw, the result can only be nonnegative 1363 // or poison value regardless of the number of times we execute the 1364 // add in phi recurrence. If initial value is negative and we are 1365 // adding a negative number with nsw, the result can only be 1366 // negative or poison value. Similar arguments apply to sub and mul. 1367 // 1368 // (add non-negative, non-negative) --> non-negative 1369 // (add negative, negative) --> negative 1370 if (Opcode == Instruction::Add) { 1371 if (Known2.isNonNegative() && Known3.isNonNegative()) 1372 Known.makeNonNegative(); 1373 else if (Known2.isNegative() && Known3.isNegative()) 1374 Known.makeNegative(); 1375 } 1376 1377 // (sub nsw non-negative, negative) --> non-negative 1378 // (sub nsw negative, non-negative) --> negative 1379 else if (Opcode == Instruction::Sub && LL == I) { 1380 if (Known2.isNonNegative() && Known3.isNegative()) 1381 Known.makeNonNegative(); 1382 else if (Known2.isNegative() && Known3.isNonNegative()) 1383 Known.makeNegative(); 1384 } 1385 1386 // (mul nsw non-negative, non-negative) --> non-negative 1387 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1388 Known3.isNonNegative()) 1389 Known.makeNonNegative(); 1390 } 1391 1392 break; 1393 } 1394 } 1395 } 1396 1397 // Unreachable blocks may have zero-operand PHI nodes. 1398 if (P->getNumIncomingValues() == 0) 1399 break; 1400 1401 // Otherwise take the unions of the known bit sets of the operands, 1402 // taking conservative care to avoid excessive recursion. 1403 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1404 // Skip if every incoming value references to ourself. 1405 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1406 break; 1407 1408 Known.Zero.setAllBits(); 1409 Known.One.setAllBits(); 1410 for (Value *IncValue : P->incoming_values()) { 1411 // Skip direct self references. 1412 if (IncValue == P) continue; 1413 1414 Known2 = KnownBits(BitWidth); 1415 // Recurse, but cap the recursion to one level, because we don't 1416 // want to waste time spinning around in loops. 1417 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1418 Known.Zero &= Known2.Zero; 1419 Known.One &= Known2.One; 1420 // If all bits have been ruled out, there's no need to check 1421 // more operands. 1422 if (!Known.Zero && !Known.One) 1423 break; 1424 } 1425 } 1426 break; 1427 } 1428 case Instruction::Call: 1429 case Instruction::Invoke: 1430 // If range metadata is attached to this call, set known bits from that, 1431 // and then intersect with known bits based on other properties of the 1432 // function. 1433 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1434 computeKnownBitsFromRangeMetadata(*MD, Known); 1435 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1436 computeKnownBits(RV, Known2, Depth + 1, Q); 1437 Known.Zero |= Known2.Zero; 1438 Known.One |= Known2.One; 1439 } 1440 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1441 switch (II->getIntrinsicID()) { 1442 default: break; 1443 case Intrinsic::bitreverse: 1444 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1445 Known.Zero |= Known2.Zero.reverseBits(); 1446 Known.One |= Known2.One.reverseBits(); 1447 break; 1448 case Intrinsic::bswap: 1449 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1450 Known.Zero |= Known2.Zero.byteSwap(); 1451 Known.One |= Known2.One.byteSwap(); 1452 break; 1453 case Intrinsic::ctlz: { 1454 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1455 // If we have a known 1, its position is our upper bound. 1456 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1457 // If this call is undefined for 0, the result will be less than 2^n. 1458 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1459 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1460 unsigned LowBits = Log2_32(PossibleLZ)+1; 1461 Known.Zero.setBitsFrom(LowBits); 1462 break; 1463 } 1464 case Intrinsic::cttz: { 1465 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1466 // If we have a known 1, its position is our upper bound. 1467 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1468 // If this call is undefined for 0, the result will be less than 2^n. 1469 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1470 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1471 unsigned LowBits = Log2_32(PossibleTZ)+1; 1472 Known.Zero.setBitsFrom(LowBits); 1473 break; 1474 } 1475 case Intrinsic::ctpop: { 1476 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1477 // We can bound the space the count needs. Also, bits known to be zero 1478 // can't contribute to the population. 1479 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1480 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1481 Known.Zero.setBitsFrom(LowBits); 1482 // TODO: we could bound KnownOne using the lower bound on the number 1483 // of bits which might be set provided by popcnt KnownOne2. 1484 break; 1485 } 1486 case Intrinsic::x86_sse42_crc32_64_64: 1487 Known.Zero.setBitsFrom(32); 1488 break; 1489 } 1490 } 1491 break; 1492 case Instruction::ExtractElement: 1493 // Look through extract element. At the moment we keep this simple and skip 1494 // tracking the specific element. But at least we might find information 1495 // valid for all elements of the vector (for example if vector is sign 1496 // extended, shifted, etc). 1497 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1498 break; 1499 case Instruction::ExtractValue: 1500 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1501 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1502 if (EVI->getNumIndices() != 1) break; 1503 if (EVI->getIndices()[0] == 0) { 1504 switch (II->getIntrinsicID()) { 1505 default: break; 1506 case Intrinsic::uadd_with_overflow: 1507 case Intrinsic::sadd_with_overflow: 1508 computeKnownBitsAddSub(true, II->getArgOperand(0), 1509 II->getArgOperand(1), false, Known, Known2, 1510 Depth, Q); 1511 break; 1512 case Intrinsic::usub_with_overflow: 1513 case Intrinsic::ssub_with_overflow: 1514 computeKnownBitsAddSub(false, II->getArgOperand(0), 1515 II->getArgOperand(1), false, Known, Known2, 1516 Depth, Q); 1517 break; 1518 case Intrinsic::umul_with_overflow: 1519 case Intrinsic::smul_with_overflow: 1520 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1521 Known, Known2, Depth, Q); 1522 break; 1523 } 1524 } 1525 } 1526 } 1527 } 1528 1529 /// Determine which bits of V are known to be either zero or one and return 1530 /// them. 1531 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1532 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1533 computeKnownBits(V, Known, Depth, Q); 1534 return Known; 1535 } 1536 1537 /// Determine which bits of V are known to be either zero or one and return 1538 /// them in the Known bit set. 1539 /// 1540 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1541 /// we cannot optimize based on the assumption that it is zero without changing 1542 /// it to be an explicit zero. If we don't change it to zero, other code could 1543 /// optimized based on the contradictory assumption that it is non-zero. 1544 /// Because instcombine aggressively folds operations with undef args anyway, 1545 /// this won't lose us code quality. 1546 /// 1547 /// This function is defined on values with integer type, values with pointer 1548 /// type, and vectors of integers. In the case 1549 /// where V is a vector, known zero, and known one values are the 1550 /// same width as the vector element, and the bit is set only if it is true 1551 /// for all of the elements in the vector. 1552 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1553 const Query &Q) { 1554 assert(V && "No Value?"); 1555 assert(Depth <= MaxDepth && "Limit Search Depth"); 1556 unsigned BitWidth = Known.getBitWidth(); 1557 1558 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1559 V->getType()->isPtrOrPtrVectorTy()) && 1560 "Not integer or pointer type!"); 1561 1562 Type *ScalarTy = V->getType()->getScalarType(); 1563 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1564 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1565 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1566 (void)BitWidth; 1567 (void)ExpectedWidth; 1568 1569 const APInt *C; 1570 if (match(V, m_APInt(C))) { 1571 // We know all of the bits for a scalar constant or a splat vector constant! 1572 Known.One = *C; 1573 Known.Zero = ~Known.One; 1574 return; 1575 } 1576 // Null and aggregate-zero are all-zeros. 1577 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1578 Known.setAllZero(); 1579 return; 1580 } 1581 // Handle a constant vector by taking the intersection of the known bits of 1582 // each element. 1583 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1584 // We know that CDS must be a vector of integers. Take the intersection of 1585 // each element. 1586 Known.Zero.setAllBits(); Known.One.setAllBits(); 1587 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1588 APInt Elt = CDS->getElementAsAPInt(i); 1589 Known.Zero &= ~Elt; 1590 Known.One &= Elt; 1591 } 1592 return; 1593 } 1594 1595 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1596 // We know that CV must be a vector of integers. Take the intersection of 1597 // each element. 1598 Known.Zero.setAllBits(); Known.One.setAllBits(); 1599 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1600 Constant *Element = CV->getAggregateElement(i); 1601 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1602 if (!ElementCI) { 1603 Known.resetAll(); 1604 return; 1605 } 1606 const APInt &Elt = ElementCI->getValue(); 1607 Known.Zero &= ~Elt; 1608 Known.One &= Elt; 1609 } 1610 return; 1611 } 1612 1613 // Start out not knowing anything. 1614 Known.resetAll(); 1615 1616 // We can't imply anything about undefs. 1617 if (isa<UndefValue>(V)) 1618 return; 1619 1620 // There's no point in looking through other users of ConstantData for 1621 // assumptions. Confirm that we've handled them all. 1622 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1623 1624 // Limit search depth. 1625 // All recursive calls that increase depth must come after this. 1626 if (Depth == MaxDepth) 1627 return; 1628 1629 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1630 // the bits of its aliasee. 1631 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1632 if (!GA->isInterposable()) 1633 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1634 return; 1635 } 1636 1637 if (const Operator *I = dyn_cast<Operator>(V)) 1638 computeKnownBitsFromOperator(I, Known, Depth, Q); 1639 1640 // Aligned pointers have trailing zeros - refine Known.Zero set 1641 if (V->getType()->isPointerTy()) { 1642 unsigned Align = V->getPointerAlignment(Q.DL); 1643 if (Align) 1644 Known.Zero.setLowBits(countTrailingZeros(Align)); 1645 } 1646 1647 // computeKnownBitsFromAssume strictly refines Known. 1648 // Therefore, we run them after computeKnownBitsFromOperator. 1649 1650 // Check whether a nearby assume intrinsic can determine some known bits. 1651 computeKnownBitsFromAssume(V, Known, Depth, Q); 1652 1653 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1654 } 1655 1656 /// Return true if the given value is known to have exactly one 1657 /// bit set when defined. For vectors return true if every element is known to 1658 /// be a power of two when defined. Supports values with integer or pointer 1659 /// types and vectors of integers. 1660 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1661 const Query &Q) { 1662 assert(Depth <= MaxDepth && "Limit Search Depth"); 1663 1664 // Attempt to match against constants. 1665 if (OrZero && match(V, m_Power2OrZero())) 1666 return true; 1667 if (match(V, m_Power2())) 1668 return true; 1669 1670 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1671 // it is shifted off the end then the result is undefined. 1672 if (match(V, m_Shl(m_One(), m_Value()))) 1673 return true; 1674 1675 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1676 // the bottom. If it is shifted off the bottom then the result is undefined. 1677 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1678 return true; 1679 1680 // The remaining tests are all recursive, so bail out if we hit the limit. 1681 if (Depth++ == MaxDepth) 1682 return false; 1683 1684 Value *X = nullptr, *Y = nullptr; 1685 // A shift left or a logical shift right of a power of two is a power of two 1686 // or zero. 1687 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1688 match(V, m_LShr(m_Value(X), m_Value())))) 1689 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1690 1691 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1692 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1693 1694 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1695 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1696 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1697 1698 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1699 // A power of two and'd with anything is a power of two or zero. 1700 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1701 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1702 return true; 1703 // X & (-X) is always a power of two or zero. 1704 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1705 return true; 1706 return false; 1707 } 1708 1709 // Adding a power-of-two or zero to the same power-of-two or zero yields 1710 // either the original power-of-two, a larger power-of-two or zero. 1711 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1712 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1713 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1714 if (match(X, m_And(m_Specific(Y), m_Value())) || 1715 match(X, m_And(m_Value(), m_Specific(Y)))) 1716 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1717 return true; 1718 if (match(Y, m_And(m_Specific(X), m_Value())) || 1719 match(Y, m_And(m_Value(), m_Specific(X)))) 1720 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1721 return true; 1722 1723 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1724 KnownBits LHSBits(BitWidth); 1725 computeKnownBits(X, LHSBits, Depth, Q); 1726 1727 KnownBits RHSBits(BitWidth); 1728 computeKnownBits(Y, RHSBits, Depth, Q); 1729 // If i8 V is a power of two or zero: 1730 // ZeroBits: 1 1 1 0 1 1 1 1 1731 // ~ZeroBits: 0 0 0 1 0 0 0 0 1732 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1733 // If OrZero isn't set, we cannot give back a zero result. 1734 // Make sure either the LHS or RHS has a bit set. 1735 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1736 return true; 1737 } 1738 } 1739 1740 // An exact divide or right shift can only shift off zero bits, so the result 1741 // is a power of two only if the first operand is a power of two and not 1742 // copying a sign bit (sdiv int_min, 2). 1743 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1744 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1745 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1746 Depth, Q); 1747 } 1748 1749 return false; 1750 } 1751 1752 /// \brief Test whether a GEP's result is known to be non-null. 1753 /// 1754 /// Uses properties inherent in a GEP to try to determine whether it is known 1755 /// to be non-null. 1756 /// 1757 /// Currently this routine does not support vector GEPs. 1758 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1759 const Query &Q) { 1760 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1761 return false; 1762 1763 // FIXME: Support vector-GEPs. 1764 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1765 1766 // If the base pointer is non-null, we cannot walk to a null address with an 1767 // inbounds GEP in address space zero. 1768 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1769 return true; 1770 1771 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1772 // If so, then the GEP cannot produce a null pointer, as doing so would 1773 // inherently violate the inbounds contract within address space zero. 1774 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1775 GTI != GTE; ++GTI) { 1776 // Struct types are easy -- they must always be indexed by a constant. 1777 if (StructType *STy = GTI.getStructTypeOrNull()) { 1778 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1779 unsigned ElementIdx = OpC->getZExtValue(); 1780 const StructLayout *SL = Q.DL.getStructLayout(STy); 1781 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1782 if (ElementOffset > 0) 1783 return true; 1784 continue; 1785 } 1786 1787 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1788 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1789 continue; 1790 1791 // Fast path the constant operand case both for efficiency and so we don't 1792 // increment Depth when just zipping down an all-constant GEP. 1793 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1794 if (!OpC->isZero()) 1795 return true; 1796 continue; 1797 } 1798 1799 // We post-increment Depth here because while isKnownNonZero increments it 1800 // as well, when we pop back up that increment won't persist. We don't want 1801 // to recurse 10k times just because we have 10k GEP operands. We don't 1802 // bail completely out because we want to handle constant GEPs regardless 1803 // of depth. 1804 if (Depth++ >= MaxDepth) 1805 continue; 1806 1807 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1808 return true; 1809 } 1810 1811 return false; 1812 } 1813 1814 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1815 const Instruction *CtxI, 1816 const DominatorTree *DT) { 1817 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1818 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1819 1820 if (!CtxI || !DT) 1821 return false; 1822 1823 unsigned NumUsesExplored = 0; 1824 for (auto *U : V->users()) { 1825 // Avoid massive lists 1826 if (NumUsesExplored >= DomConditionsMaxUses) 1827 break; 1828 NumUsesExplored++; 1829 1830 // If the value is used as an argument to a call or invoke, then argument 1831 // attributes may provide an answer about null-ness. 1832 if (auto CS = ImmutableCallSite(U)) 1833 if (auto *CalledFunc = CS.getCalledFunction()) 1834 for (const Argument &Arg : CalledFunc->args()) 1835 if (CS.getArgOperand(Arg.getArgNo()) == V && 1836 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1837 return true; 1838 1839 // Consider only compare instructions uniquely controlling a branch 1840 CmpInst::Predicate Pred; 1841 if (!match(const_cast<User *>(U), 1842 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1843 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1844 continue; 1845 1846 for (auto *CmpU : U->users()) { 1847 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1848 assert(BI->isConditional() && "uses a comparison!"); 1849 1850 BasicBlock *NonNullSuccessor = 1851 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1852 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1853 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1854 return true; 1855 } else if (Pred == ICmpInst::ICMP_NE && 1856 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1857 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1858 return true; 1859 } 1860 } 1861 } 1862 1863 return false; 1864 } 1865 1866 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1867 /// ensure that the value it's attached to is never Value? 'RangeType' is 1868 /// is the type of the value described by the range. 1869 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1870 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1871 assert(NumRanges >= 1); 1872 for (unsigned i = 0; i < NumRanges; ++i) { 1873 ConstantInt *Lower = 1874 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1875 ConstantInt *Upper = 1876 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1877 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1878 if (Range.contains(Value)) 1879 return false; 1880 } 1881 return true; 1882 } 1883 1884 /// Return true if the given value is known to be non-zero when defined. For 1885 /// vectors, return true if every element is known to be non-zero when 1886 /// defined. For pointers, if the context instruction and dominator tree are 1887 /// specified, perform context-sensitive analysis and return true if the 1888 /// pointer couldn't possibly be null at the specified instruction. 1889 /// Supports values with integer or pointer type and vectors of integers. 1890 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1891 if (auto *C = dyn_cast<Constant>(V)) { 1892 if (C->isNullValue()) 1893 return false; 1894 if (isa<ConstantInt>(C)) 1895 // Must be non-zero due to null test above. 1896 return true; 1897 1898 // For constant vectors, check that all elements are undefined or known 1899 // non-zero to determine that the whole vector is known non-zero. 1900 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1901 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1902 Constant *Elt = C->getAggregateElement(i); 1903 if (!Elt || Elt->isNullValue()) 1904 return false; 1905 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1906 return false; 1907 } 1908 return true; 1909 } 1910 1911 // A global variable in address space 0 is non null unless extern weak 1912 // or an absolute symbol reference. Other address spaces may have null as a 1913 // valid address for a global, so we can't assume anything. 1914 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1915 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1916 GV->getType()->getAddressSpace() == 0) 1917 return true; 1918 } else 1919 return false; 1920 } 1921 1922 if (auto *I = dyn_cast<Instruction>(V)) { 1923 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1924 // If the possible ranges don't contain zero, then the value is 1925 // definitely non-zero. 1926 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1927 const APInt ZeroValue(Ty->getBitWidth(), 0); 1928 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1929 return true; 1930 } 1931 } 1932 } 1933 1934 // Check for pointer simplifications. 1935 if (V->getType()->isPointerTy()) { 1936 // Alloca never returns null, malloc might. 1937 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1938 return true; 1939 1940 // A byval, inalloca, or nonnull argument is never null. 1941 if (const Argument *A = dyn_cast<Argument>(V)) 1942 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1943 return true; 1944 1945 // A Load tagged with nonnull metadata is never null. 1946 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1947 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1948 return true; 1949 1950 if (auto CS = ImmutableCallSite(V)) 1951 if (CS.isReturnNonNull()) 1952 return true; 1953 } 1954 1955 // The remaining tests are all recursive, so bail out if we hit the limit. 1956 if (Depth++ >= MaxDepth) 1957 return false; 1958 1959 // Check for recursive pointer simplifications. 1960 if (V->getType()->isPointerTy()) { 1961 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1962 return true; 1963 1964 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1965 if (isGEPKnownNonNull(GEP, Depth, Q)) 1966 return true; 1967 } 1968 1969 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1970 1971 // X | Y != 0 if X != 0 or Y != 0. 1972 Value *X = nullptr, *Y = nullptr; 1973 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1974 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1975 1976 // ext X != 0 if X != 0. 1977 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1978 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1979 1980 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1981 // if the lowest bit is shifted off the end. 1982 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1983 // shl nuw can't remove any non-zero bits. 1984 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1985 if (BO->hasNoUnsignedWrap()) 1986 return isKnownNonZero(X, Depth, Q); 1987 1988 KnownBits Known(BitWidth); 1989 computeKnownBits(X, Known, Depth, Q); 1990 if (Known.One[0]) 1991 return true; 1992 } 1993 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1994 // defined if the sign bit is shifted off the end. 1995 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1996 // shr exact can only shift out zero bits. 1997 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1998 if (BO->isExact()) 1999 return isKnownNonZero(X, Depth, Q); 2000 2001 KnownBits Known = computeKnownBits(X, Depth, Q); 2002 if (Known.isNegative()) 2003 return true; 2004 2005 // If the shifter operand is a constant, and all of the bits shifted 2006 // out are known to be zero, and X is known non-zero then at least one 2007 // non-zero bit must remain. 2008 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2009 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2010 // Is there a known one in the portion not shifted out? 2011 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2012 return true; 2013 // Are all the bits to be shifted out known zero? 2014 if (Known.countMinTrailingZeros() >= ShiftVal) 2015 return isKnownNonZero(X, Depth, Q); 2016 } 2017 } 2018 // div exact can only produce a zero if the dividend is zero. 2019 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2020 return isKnownNonZero(X, Depth, Q); 2021 } 2022 // X + Y. 2023 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2024 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2025 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2026 2027 // If X and Y are both non-negative (as signed values) then their sum is not 2028 // zero unless both X and Y are zero. 2029 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2030 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2031 return true; 2032 2033 // If X and Y are both negative (as signed values) then their sum is not 2034 // zero unless both X and Y equal INT_MIN. 2035 if (XKnown.isNegative() && YKnown.isNegative()) { 2036 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2037 // The sign bit of X is set. If some other bit is set then X is not equal 2038 // to INT_MIN. 2039 if (XKnown.One.intersects(Mask)) 2040 return true; 2041 // The sign bit of Y is set. If some other bit is set then Y is not equal 2042 // to INT_MIN. 2043 if (YKnown.One.intersects(Mask)) 2044 return true; 2045 } 2046 2047 // The sum of a non-negative number and a power of two is not zero. 2048 if (XKnown.isNonNegative() && 2049 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2050 return true; 2051 if (YKnown.isNonNegative() && 2052 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2053 return true; 2054 } 2055 // X * Y. 2056 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2057 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2058 // If X and Y are non-zero then so is X * Y as long as the multiplication 2059 // does not overflow. 2060 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2061 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2062 return true; 2063 } 2064 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2065 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2066 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2067 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2068 return true; 2069 } 2070 // PHI 2071 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2072 // Try and detect a recurrence that monotonically increases from a 2073 // starting value, as these are common as induction variables. 2074 if (PN->getNumIncomingValues() == 2) { 2075 Value *Start = PN->getIncomingValue(0); 2076 Value *Induction = PN->getIncomingValue(1); 2077 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2078 std::swap(Start, Induction); 2079 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2080 if (!C->isZero() && !C->isNegative()) { 2081 ConstantInt *X; 2082 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2083 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2084 !X->isNegative()) 2085 return true; 2086 } 2087 } 2088 } 2089 // Check if all incoming values are non-zero constant. 2090 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2091 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2092 }); 2093 if (AllNonZeroConstants) 2094 return true; 2095 } 2096 2097 KnownBits Known(BitWidth); 2098 computeKnownBits(V, Known, Depth, Q); 2099 return Known.One != 0; 2100 } 2101 2102 /// Return true if V2 == V1 + X, where X is known non-zero. 2103 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2104 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2105 if (!BO || BO->getOpcode() != Instruction::Add) 2106 return false; 2107 Value *Op = nullptr; 2108 if (V2 == BO->getOperand(0)) 2109 Op = BO->getOperand(1); 2110 else if (V2 == BO->getOperand(1)) 2111 Op = BO->getOperand(0); 2112 else 2113 return false; 2114 return isKnownNonZero(Op, 0, Q); 2115 } 2116 2117 /// Return true if it is known that V1 != V2. 2118 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2119 if (V1 == V2) 2120 return false; 2121 if (V1->getType() != V2->getType()) 2122 // We can't look through casts yet. 2123 return false; 2124 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2125 return true; 2126 2127 if (V1->getType()->isIntOrIntVectorTy()) { 2128 // Are any known bits in V1 contradictory to known bits in V2? If V1 2129 // has a known zero where V2 has a known one, they must not be equal. 2130 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2131 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2132 2133 if (Known1.Zero.intersects(Known2.One) || 2134 Known2.Zero.intersects(Known1.One)) 2135 return true; 2136 } 2137 return false; 2138 } 2139 2140 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2141 /// simplify operations downstream. Mask is known to be zero for bits that V 2142 /// cannot have. 2143 /// 2144 /// This function is defined on values with integer type, values with pointer 2145 /// type, and vectors of integers. In the case 2146 /// where V is a vector, the mask, known zero, and known one values are the 2147 /// same width as the vector element, and the bit is set only if it is true 2148 /// for all of the elements in the vector. 2149 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2150 const Query &Q) { 2151 KnownBits Known(Mask.getBitWidth()); 2152 computeKnownBits(V, Known, Depth, Q); 2153 return Mask.isSubsetOf(Known.Zero); 2154 } 2155 2156 /// For vector constants, loop over the elements and find the constant with the 2157 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2158 /// or if any element was not analyzed; otherwise, return the count for the 2159 /// element with the minimum number of sign bits. 2160 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2161 unsigned TyBits) { 2162 const auto *CV = dyn_cast<Constant>(V); 2163 if (!CV || !CV->getType()->isVectorTy()) 2164 return 0; 2165 2166 unsigned MinSignBits = TyBits; 2167 unsigned NumElts = CV->getType()->getVectorNumElements(); 2168 for (unsigned i = 0; i != NumElts; ++i) { 2169 // If we find a non-ConstantInt, bail out. 2170 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2171 if (!Elt) 2172 return 0; 2173 2174 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2175 } 2176 2177 return MinSignBits; 2178 } 2179 2180 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2181 const Query &Q); 2182 2183 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2184 const Query &Q) { 2185 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2186 assert(Result > 0 && "At least one sign bit needs to be present!"); 2187 return Result; 2188 } 2189 2190 /// Return the number of times the sign bit of the register is replicated into 2191 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2192 /// (itself), but other cases can give us information. For example, immediately 2193 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2194 /// other, so we return 3. For vectors, return the number of sign bits for the 2195 /// vector element with the minimum number of known sign bits. 2196 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2197 const Query &Q) { 2198 assert(Depth <= MaxDepth && "Limit Search Depth"); 2199 2200 // We return the minimum number of sign bits that are guaranteed to be present 2201 // in V, so for undef we have to conservatively return 1. We don't have the 2202 // same behavior for poison though -- that's a FIXME today. 2203 2204 Type *ScalarTy = V->getType()->getScalarType(); 2205 unsigned TyBits = ScalarTy->isPointerTy() ? 2206 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2207 Q.DL.getTypeSizeInBits(ScalarTy); 2208 2209 unsigned Tmp, Tmp2; 2210 unsigned FirstAnswer = 1; 2211 2212 // Note that ConstantInt is handled by the general computeKnownBits case 2213 // below. 2214 2215 if (Depth == MaxDepth) 2216 return 1; // Limit search depth. 2217 2218 const Operator *U = dyn_cast<Operator>(V); 2219 switch (Operator::getOpcode(V)) { 2220 default: break; 2221 case Instruction::SExt: 2222 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2223 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2224 2225 case Instruction::SDiv: { 2226 const APInt *Denominator; 2227 // sdiv X, C -> adds log(C) sign bits. 2228 if (match(U->getOperand(1), m_APInt(Denominator))) { 2229 2230 // Ignore non-positive denominator. 2231 if (!Denominator->isStrictlyPositive()) 2232 break; 2233 2234 // Calculate the incoming numerator bits. 2235 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2236 2237 // Add floor(log(C)) bits to the numerator bits. 2238 return std::min(TyBits, NumBits + Denominator->logBase2()); 2239 } 2240 break; 2241 } 2242 2243 case Instruction::SRem: { 2244 const APInt *Denominator; 2245 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2246 // positive constant. This let us put a lower bound on the number of sign 2247 // bits. 2248 if (match(U->getOperand(1), m_APInt(Denominator))) { 2249 2250 // Ignore non-positive denominator. 2251 if (!Denominator->isStrictlyPositive()) 2252 break; 2253 2254 // Calculate the incoming numerator bits. SRem by a positive constant 2255 // can't lower the number of sign bits. 2256 unsigned NumrBits = 2257 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2258 2259 // Calculate the leading sign bit constraints by examining the 2260 // denominator. Given that the denominator is positive, there are two 2261 // cases: 2262 // 2263 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2264 // (1 << ceilLogBase2(C)). 2265 // 2266 // 2. the numerator is negative. Then the result range is (-C,0] and 2267 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2268 // 2269 // Thus a lower bound on the number of sign bits is `TyBits - 2270 // ceilLogBase2(C)`. 2271 2272 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2273 return std::max(NumrBits, ResBits); 2274 } 2275 break; 2276 } 2277 2278 case Instruction::AShr: { 2279 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2280 // ashr X, C -> adds C sign bits. Vectors too. 2281 const APInt *ShAmt; 2282 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2283 if (ShAmt->uge(TyBits)) 2284 break; // Bad shift. 2285 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2286 Tmp += ShAmtLimited; 2287 if (Tmp > TyBits) Tmp = TyBits; 2288 } 2289 return Tmp; 2290 } 2291 case Instruction::Shl: { 2292 const APInt *ShAmt; 2293 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2294 // shl destroys sign bits. 2295 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2296 if (ShAmt->uge(TyBits) || // Bad shift. 2297 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2298 Tmp2 = ShAmt->getZExtValue(); 2299 return Tmp - Tmp2; 2300 } 2301 break; 2302 } 2303 case Instruction::And: 2304 case Instruction::Or: 2305 case Instruction::Xor: // NOT is handled here. 2306 // Logical binary ops preserve the number of sign bits at the worst. 2307 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2308 if (Tmp != 1) { 2309 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2310 FirstAnswer = std::min(Tmp, Tmp2); 2311 // We computed what we know about the sign bits as our first 2312 // answer. Now proceed to the generic code that uses 2313 // computeKnownBits, and pick whichever answer is better. 2314 } 2315 break; 2316 2317 case Instruction::Select: 2318 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2319 if (Tmp == 1) return 1; // Early out. 2320 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2321 return std::min(Tmp, Tmp2); 2322 2323 case Instruction::Add: 2324 // Add can have at most one carry bit. Thus we know that the output 2325 // is, at worst, one more bit than the inputs. 2326 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2327 if (Tmp == 1) return 1; // Early out. 2328 2329 // Special case decrementing a value (ADD X, -1): 2330 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2331 if (CRHS->isAllOnesValue()) { 2332 KnownBits Known(TyBits); 2333 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2334 2335 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2336 // sign bits set. 2337 if ((Known.Zero | 1).isAllOnesValue()) 2338 return TyBits; 2339 2340 // If we are subtracting one from a positive number, there is no carry 2341 // out of the result. 2342 if (Known.isNonNegative()) 2343 return Tmp; 2344 } 2345 2346 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2347 if (Tmp2 == 1) return 1; 2348 return std::min(Tmp, Tmp2)-1; 2349 2350 case Instruction::Sub: 2351 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2352 if (Tmp2 == 1) return 1; 2353 2354 // Handle NEG. 2355 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2356 if (CLHS->isNullValue()) { 2357 KnownBits Known(TyBits); 2358 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2359 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2360 // sign bits set. 2361 if ((Known.Zero | 1).isAllOnesValue()) 2362 return TyBits; 2363 2364 // If the input is known to be positive (the sign bit is known clear), 2365 // the output of the NEG has the same number of sign bits as the input. 2366 if (Known.isNonNegative()) 2367 return Tmp2; 2368 2369 // Otherwise, we treat this like a SUB. 2370 } 2371 2372 // Sub can have at most one carry bit. Thus we know that the output 2373 // is, at worst, one more bit than the inputs. 2374 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2375 if (Tmp == 1) return 1; // Early out. 2376 return std::min(Tmp, Tmp2)-1; 2377 2378 case Instruction::Mul: { 2379 // The output of the Mul can be at most twice the valid bits in the inputs. 2380 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2381 if (SignBitsOp0 == 1) return 1; // Early out. 2382 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2383 if (SignBitsOp1 == 1) return 1; 2384 unsigned OutValidBits = 2385 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2386 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2387 } 2388 2389 case Instruction::PHI: { 2390 const PHINode *PN = cast<PHINode>(U); 2391 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2392 // Don't analyze large in-degree PHIs. 2393 if (NumIncomingValues > 4) break; 2394 // Unreachable blocks may have zero-operand PHI nodes. 2395 if (NumIncomingValues == 0) break; 2396 2397 // Take the minimum of all incoming values. This can't infinitely loop 2398 // because of our depth threshold. 2399 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2400 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2401 if (Tmp == 1) return Tmp; 2402 Tmp = std::min( 2403 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2404 } 2405 return Tmp; 2406 } 2407 2408 case Instruction::Trunc: 2409 // FIXME: it's tricky to do anything useful for this, but it is an important 2410 // case for targets like X86. 2411 break; 2412 2413 case Instruction::ExtractElement: 2414 // Look through extract element. At the moment we keep this simple and skip 2415 // tracking the specific element. But at least we might find information 2416 // valid for all elements of the vector (for example if vector is sign 2417 // extended, shifted, etc). 2418 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2419 } 2420 2421 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2422 // use this information. 2423 2424 // If we can examine all elements of a vector constant successfully, we're 2425 // done (we can't do any better than that). If not, keep trying. 2426 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2427 return VecSignBits; 2428 2429 KnownBits Known(TyBits); 2430 computeKnownBits(V, Known, Depth, Q); 2431 2432 // If we know that the sign bit is either zero or one, determine the number of 2433 // identical bits in the top of the input value. 2434 return std::max(FirstAnswer, Known.countMinSignBits()); 2435 } 2436 2437 /// This function computes the integer multiple of Base that equals V. 2438 /// If successful, it returns true and returns the multiple in 2439 /// Multiple. If unsuccessful, it returns false. It looks 2440 /// through SExt instructions only if LookThroughSExt is true. 2441 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2442 bool LookThroughSExt, unsigned Depth) { 2443 const unsigned MaxDepth = 6; 2444 2445 assert(V && "No Value?"); 2446 assert(Depth <= MaxDepth && "Limit Search Depth"); 2447 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2448 2449 Type *T = V->getType(); 2450 2451 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2452 2453 if (Base == 0) 2454 return false; 2455 2456 if (Base == 1) { 2457 Multiple = V; 2458 return true; 2459 } 2460 2461 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2462 Constant *BaseVal = ConstantInt::get(T, Base); 2463 if (CO && CO == BaseVal) { 2464 // Multiple is 1. 2465 Multiple = ConstantInt::get(T, 1); 2466 return true; 2467 } 2468 2469 if (CI && CI->getZExtValue() % Base == 0) { 2470 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2471 return true; 2472 } 2473 2474 if (Depth == MaxDepth) return false; // Limit search depth. 2475 2476 Operator *I = dyn_cast<Operator>(V); 2477 if (!I) return false; 2478 2479 switch (I->getOpcode()) { 2480 default: break; 2481 case Instruction::SExt: 2482 if (!LookThroughSExt) return false; 2483 // otherwise fall through to ZExt 2484 LLVM_FALLTHROUGH; 2485 case Instruction::ZExt: 2486 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2487 LookThroughSExt, Depth+1); 2488 case Instruction::Shl: 2489 case Instruction::Mul: { 2490 Value *Op0 = I->getOperand(0); 2491 Value *Op1 = I->getOperand(1); 2492 2493 if (I->getOpcode() == Instruction::Shl) { 2494 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2495 if (!Op1CI) return false; 2496 // Turn Op0 << Op1 into Op0 * 2^Op1 2497 APInt Op1Int = Op1CI->getValue(); 2498 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2499 APInt API(Op1Int.getBitWidth(), 0); 2500 API.setBit(BitToSet); 2501 Op1 = ConstantInt::get(V->getContext(), API); 2502 } 2503 2504 Value *Mul0 = nullptr; 2505 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2506 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2507 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2508 if (Op1C->getType()->getPrimitiveSizeInBits() < 2509 MulC->getType()->getPrimitiveSizeInBits()) 2510 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2511 if (Op1C->getType()->getPrimitiveSizeInBits() > 2512 MulC->getType()->getPrimitiveSizeInBits()) 2513 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2514 2515 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2516 Multiple = ConstantExpr::getMul(MulC, Op1C); 2517 return true; 2518 } 2519 2520 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2521 if (Mul0CI->getValue() == 1) { 2522 // V == Base * Op1, so return Op1 2523 Multiple = Op1; 2524 return true; 2525 } 2526 } 2527 2528 Value *Mul1 = nullptr; 2529 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2530 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2531 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2532 if (Op0C->getType()->getPrimitiveSizeInBits() < 2533 MulC->getType()->getPrimitiveSizeInBits()) 2534 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2535 if (Op0C->getType()->getPrimitiveSizeInBits() > 2536 MulC->getType()->getPrimitiveSizeInBits()) 2537 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2538 2539 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2540 Multiple = ConstantExpr::getMul(MulC, Op0C); 2541 return true; 2542 } 2543 2544 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2545 if (Mul1CI->getValue() == 1) { 2546 // V == Base * Op0, so return Op0 2547 Multiple = Op0; 2548 return true; 2549 } 2550 } 2551 } 2552 } 2553 2554 // We could not determine if V is a multiple of Base. 2555 return false; 2556 } 2557 2558 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2559 const TargetLibraryInfo *TLI) { 2560 const Function *F = ICS.getCalledFunction(); 2561 if (!F) 2562 return Intrinsic::not_intrinsic; 2563 2564 if (F->isIntrinsic()) 2565 return F->getIntrinsicID(); 2566 2567 if (!TLI) 2568 return Intrinsic::not_intrinsic; 2569 2570 LibFunc Func; 2571 // We're going to make assumptions on the semantics of the functions, check 2572 // that the target knows that it's available in this environment and it does 2573 // not have local linkage. 2574 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2575 return Intrinsic::not_intrinsic; 2576 2577 if (!ICS.onlyReadsMemory()) 2578 return Intrinsic::not_intrinsic; 2579 2580 // Otherwise check if we have a call to a function that can be turned into a 2581 // vector intrinsic. 2582 switch (Func) { 2583 default: 2584 break; 2585 case LibFunc_sin: 2586 case LibFunc_sinf: 2587 case LibFunc_sinl: 2588 return Intrinsic::sin; 2589 case LibFunc_cos: 2590 case LibFunc_cosf: 2591 case LibFunc_cosl: 2592 return Intrinsic::cos; 2593 case LibFunc_exp: 2594 case LibFunc_expf: 2595 case LibFunc_expl: 2596 return Intrinsic::exp; 2597 case LibFunc_exp2: 2598 case LibFunc_exp2f: 2599 case LibFunc_exp2l: 2600 return Intrinsic::exp2; 2601 case LibFunc_log: 2602 case LibFunc_logf: 2603 case LibFunc_logl: 2604 return Intrinsic::log; 2605 case LibFunc_log10: 2606 case LibFunc_log10f: 2607 case LibFunc_log10l: 2608 return Intrinsic::log10; 2609 case LibFunc_log2: 2610 case LibFunc_log2f: 2611 case LibFunc_log2l: 2612 return Intrinsic::log2; 2613 case LibFunc_fabs: 2614 case LibFunc_fabsf: 2615 case LibFunc_fabsl: 2616 return Intrinsic::fabs; 2617 case LibFunc_fmin: 2618 case LibFunc_fminf: 2619 case LibFunc_fminl: 2620 return Intrinsic::minnum; 2621 case LibFunc_fmax: 2622 case LibFunc_fmaxf: 2623 case LibFunc_fmaxl: 2624 return Intrinsic::maxnum; 2625 case LibFunc_copysign: 2626 case LibFunc_copysignf: 2627 case LibFunc_copysignl: 2628 return Intrinsic::copysign; 2629 case LibFunc_floor: 2630 case LibFunc_floorf: 2631 case LibFunc_floorl: 2632 return Intrinsic::floor; 2633 case LibFunc_ceil: 2634 case LibFunc_ceilf: 2635 case LibFunc_ceill: 2636 return Intrinsic::ceil; 2637 case LibFunc_trunc: 2638 case LibFunc_truncf: 2639 case LibFunc_truncl: 2640 return Intrinsic::trunc; 2641 case LibFunc_rint: 2642 case LibFunc_rintf: 2643 case LibFunc_rintl: 2644 return Intrinsic::rint; 2645 case LibFunc_nearbyint: 2646 case LibFunc_nearbyintf: 2647 case LibFunc_nearbyintl: 2648 return Intrinsic::nearbyint; 2649 case LibFunc_round: 2650 case LibFunc_roundf: 2651 case LibFunc_roundl: 2652 return Intrinsic::round; 2653 case LibFunc_pow: 2654 case LibFunc_powf: 2655 case LibFunc_powl: 2656 return Intrinsic::pow; 2657 case LibFunc_sqrt: 2658 case LibFunc_sqrtf: 2659 case LibFunc_sqrtl: 2660 return Intrinsic::sqrt; 2661 } 2662 2663 return Intrinsic::not_intrinsic; 2664 } 2665 2666 /// Return true if we can prove that the specified FP value is never equal to 2667 /// -0.0. 2668 /// 2669 /// NOTE: this function will need to be revisited when we support non-default 2670 /// rounding modes! 2671 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2672 unsigned Depth) { 2673 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2674 return !CFP->getValueAPF().isNegZero(); 2675 2676 // Limit search depth. 2677 if (Depth == MaxDepth) 2678 return false; 2679 2680 auto *Op = dyn_cast<Operator>(V); 2681 if (!Op) 2682 return false; 2683 2684 // Check if the nsz fast-math flag is set. 2685 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2686 if (FPO->hasNoSignedZeros()) 2687 return true; 2688 2689 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2690 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2691 return true; 2692 2693 // sitofp and uitofp turn into +0.0 for zero. 2694 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2695 return true; 2696 2697 if (auto *Call = dyn_cast<CallInst>(Op)) { 2698 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2699 switch (IID) { 2700 default: 2701 break; 2702 // sqrt(-0.0) = -0.0, no other negative results are possible. 2703 case Intrinsic::sqrt: 2704 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2705 // fabs(x) != -0.0 2706 case Intrinsic::fabs: 2707 return true; 2708 } 2709 } 2710 2711 return false; 2712 } 2713 2714 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2715 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2716 /// bit despite comparing equal. 2717 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2718 const TargetLibraryInfo *TLI, 2719 bool SignBitOnly, 2720 unsigned Depth) { 2721 // TODO: This function does not do the right thing when SignBitOnly is true 2722 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2723 // which flips the sign bits of NaNs. See 2724 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2725 2726 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2727 return !CFP->getValueAPF().isNegative() || 2728 (!SignBitOnly && CFP->getValueAPF().isZero()); 2729 } 2730 2731 // Handle vector of constants. 2732 if (auto *CV = dyn_cast<Constant>(V)) { 2733 if (CV->getType()->isVectorTy()) { 2734 unsigned NumElts = CV->getType()->getVectorNumElements(); 2735 for (unsigned i = 0; i != NumElts; ++i) { 2736 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2737 if (!CFP) 2738 return false; 2739 if (CFP->getValueAPF().isNegative() && 2740 (SignBitOnly || !CFP->getValueAPF().isZero())) 2741 return false; 2742 } 2743 2744 // All non-negative ConstantFPs. 2745 return true; 2746 } 2747 } 2748 2749 if (Depth == MaxDepth) 2750 return false; // Limit search depth. 2751 2752 const Operator *I = dyn_cast<Operator>(V); 2753 if (!I) 2754 return false; 2755 2756 switch (I->getOpcode()) { 2757 default: 2758 break; 2759 // Unsigned integers are always nonnegative. 2760 case Instruction::UIToFP: 2761 return true; 2762 case Instruction::FMul: 2763 // x*x is always non-negative or a NaN. 2764 if (I->getOperand(0) == I->getOperand(1) && 2765 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2766 return true; 2767 2768 LLVM_FALLTHROUGH; 2769 case Instruction::FAdd: 2770 case Instruction::FDiv: 2771 case Instruction::FRem: 2772 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2773 Depth + 1) && 2774 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2775 Depth + 1); 2776 case Instruction::Select: 2777 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2778 Depth + 1) && 2779 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2780 Depth + 1); 2781 case Instruction::FPExt: 2782 case Instruction::FPTrunc: 2783 // Widening/narrowing never change sign. 2784 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2785 Depth + 1); 2786 case Instruction::ExtractElement: 2787 // Look through extract element. At the moment we keep this simple and skip 2788 // tracking the specific element. But at least we might find information 2789 // valid for all elements of the vector. 2790 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2791 Depth + 1); 2792 case Instruction::Call: 2793 const auto *CI = cast<CallInst>(I); 2794 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2795 switch (IID) { 2796 default: 2797 break; 2798 case Intrinsic::maxnum: 2799 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2800 Depth + 1) || 2801 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2802 Depth + 1); 2803 case Intrinsic::minnum: 2804 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2805 Depth + 1) && 2806 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2807 Depth + 1); 2808 case Intrinsic::exp: 2809 case Intrinsic::exp2: 2810 case Intrinsic::fabs: 2811 return true; 2812 2813 case Intrinsic::sqrt: 2814 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2815 if (!SignBitOnly) 2816 return true; 2817 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2818 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2819 2820 case Intrinsic::powi: 2821 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2822 // powi(x,n) is non-negative if n is even. 2823 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2824 return true; 2825 } 2826 // TODO: This is not correct. Given that exp is an integer, here are the 2827 // ways that pow can return a negative value: 2828 // 2829 // pow(x, exp) --> negative if exp is odd and x is negative. 2830 // pow(-0, exp) --> -inf if exp is negative odd. 2831 // pow(-0, exp) --> -0 if exp is positive odd. 2832 // pow(-inf, exp) --> -0 if exp is negative odd. 2833 // pow(-inf, exp) --> -inf if exp is positive odd. 2834 // 2835 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2836 // but we must return false if x == -0. Unfortunately we do not currently 2837 // have a way of expressing this constraint. See details in 2838 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2839 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2840 Depth + 1); 2841 2842 case Intrinsic::fma: 2843 case Intrinsic::fmuladd: 2844 // x*x+y is non-negative if y is non-negative. 2845 return I->getOperand(0) == I->getOperand(1) && 2846 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2847 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2848 Depth + 1); 2849 } 2850 break; 2851 } 2852 return false; 2853 } 2854 2855 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2856 const TargetLibraryInfo *TLI) { 2857 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2858 } 2859 2860 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2861 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2862 } 2863 2864 bool llvm::isKnownNeverNaN(const Value *V) { 2865 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2866 2867 // If we're told that NaNs won't happen, assume they won't. 2868 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2869 if (FPMathOp->hasNoNaNs()) 2870 return true; 2871 2872 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2873 // functions. For example, the result of sitofp is never NaN. 2874 2875 // Handle scalar constants. 2876 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2877 return !CFP->isNaN(); 2878 2879 // Bail out for constant expressions, but try to handle vector constants. 2880 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2881 return false; 2882 2883 // For vectors, verify that each element is not NaN. 2884 unsigned NumElts = V->getType()->getVectorNumElements(); 2885 for (unsigned i = 0; i != NumElts; ++i) { 2886 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2887 if (!Elt) 2888 return false; 2889 if (isa<UndefValue>(Elt)) 2890 continue; 2891 auto *CElt = dyn_cast<ConstantFP>(Elt); 2892 if (!CElt || CElt->isNaN()) 2893 return false; 2894 } 2895 // All elements were confirmed not-NaN or undefined. 2896 return true; 2897 } 2898 2899 /// If the specified value can be set by repeating the same byte in memory, 2900 /// return the i8 value that it is represented with. This is 2901 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2902 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2903 /// byte store (e.g. i16 0x1234), return null. 2904 Value *llvm::isBytewiseValue(Value *V) { 2905 // All byte-wide stores are splatable, even of arbitrary variables. 2906 if (V->getType()->isIntegerTy(8)) return V; 2907 2908 // Handle 'null' ConstantArrayZero etc. 2909 if (Constant *C = dyn_cast<Constant>(V)) 2910 if (C->isNullValue()) 2911 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2912 2913 // Constant float and double values can be handled as integer values if the 2914 // corresponding integer value is "byteable". An important case is 0.0. 2915 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2916 if (CFP->getType()->isFloatTy()) 2917 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2918 if (CFP->getType()->isDoubleTy()) 2919 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2920 // Don't handle long double formats, which have strange constraints. 2921 } 2922 2923 // We can handle constant integers that are multiple of 8 bits. 2924 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2925 if (CI->getBitWidth() % 8 == 0) { 2926 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2927 2928 if (!CI->getValue().isSplat(8)) 2929 return nullptr; 2930 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2931 } 2932 } 2933 2934 // A ConstantDataArray/Vector is splatable if all its members are equal and 2935 // also splatable. 2936 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2937 Value *Elt = CA->getElementAsConstant(0); 2938 Value *Val = isBytewiseValue(Elt); 2939 if (!Val) 2940 return nullptr; 2941 2942 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2943 if (CA->getElementAsConstant(I) != Elt) 2944 return nullptr; 2945 2946 return Val; 2947 } 2948 2949 // Conceptually, we could handle things like: 2950 // %a = zext i8 %X to i16 2951 // %b = shl i16 %a, 8 2952 // %c = or i16 %a, %b 2953 // but until there is an example that actually needs this, it doesn't seem 2954 // worth worrying about. 2955 return nullptr; 2956 } 2957 2958 // This is the recursive version of BuildSubAggregate. It takes a few different 2959 // arguments. Idxs is the index within the nested struct From that we are 2960 // looking at now (which is of type IndexedType). IdxSkip is the number of 2961 // indices from Idxs that should be left out when inserting into the resulting 2962 // struct. To is the result struct built so far, new insertvalue instructions 2963 // build on that. 2964 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2965 SmallVectorImpl<unsigned> &Idxs, 2966 unsigned IdxSkip, 2967 Instruction *InsertBefore) { 2968 StructType *STy = dyn_cast<StructType>(IndexedType); 2969 if (STy) { 2970 // Save the original To argument so we can modify it 2971 Value *OrigTo = To; 2972 // General case, the type indexed by Idxs is a struct 2973 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2974 // Process each struct element recursively 2975 Idxs.push_back(i); 2976 Value *PrevTo = To; 2977 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2978 InsertBefore); 2979 Idxs.pop_back(); 2980 if (!To) { 2981 // Couldn't find any inserted value for this index? Cleanup 2982 while (PrevTo != OrigTo) { 2983 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2984 PrevTo = Del->getAggregateOperand(); 2985 Del->eraseFromParent(); 2986 } 2987 // Stop processing elements 2988 break; 2989 } 2990 } 2991 // If we successfully found a value for each of our subaggregates 2992 if (To) 2993 return To; 2994 } 2995 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2996 // the struct's elements had a value that was inserted directly. In the latter 2997 // case, perhaps we can't determine each of the subelements individually, but 2998 // we might be able to find the complete struct somewhere. 2999 3000 // Find the value that is at that particular spot 3001 Value *V = FindInsertedValue(From, Idxs); 3002 3003 if (!V) 3004 return nullptr; 3005 3006 // Insert the value in the new (sub) aggregate 3007 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3008 "tmp", InsertBefore); 3009 } 3010 3011 // This helper takes a nested struct and extracts a part of it (which is again a 3012 // struct) into a new value. For example, given the struct: 3013 // { a, { b, { c, d }, e } } 3014 // and the indices "1, 1" this returns 3015 // { c, d }. 3016 // 3017 // It does this by inserting an insertvalue for each element in the resulting 3018 // struct, as opposed to just inserting a single struct. This will only work if 3019 // each of the elements of the substruct are known (ie, inserted into From by an 3020 // insertvalue instruction somewhere). 3021 // 3022 // All inserted insertvalue instructions are inserted before InsertBefore 3023 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3024 Instruction *InsertBefore) { 3025 assert(InsertBefore && "Must have someplace to insert!"); 3026 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3027 idx_range); 3028 Value *To = UndefValue::get(IndexedType); 3029 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3030 unsigned IdxSkip = Idxs.size(); 3031 3032 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3033 } 3034 3035 /// Given an aggregate and a sequence of indices, see if the scalar value 3036 /// indexed is already around as a register, for example if it was inserted 3037 /// directly into the aggregate. 3038 /// 3039 /// If InsertBefore is not null, this function will duplicate (modified) 3040 /// insertvalues when a part of a nested struct is extracted. 3041 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3042 Instruction *InsertBefore) { 3043 // Nothing to index? Just return V then (this is useful at the end of our 3044 // recursion). 3045 if (idx_range.empty()) 3046 return V; 3047 // We have indices, so V should have an indexable type. 3048 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3049 "Not looking at a struct or array?"); 3050 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3051 "Invalid indices for type?"); 3052 3053 if (Constant *C = dyn_cast<Constant>(V)) { 3054 C = C->getAggregateElement(idx_range[0]); 3055 if (!C) return nullptr; 3056 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3057 } 3058 3059 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3060 // Loop the indices for the insertvalue instruction in parallel with the 3061 // requested indices 3062 const unsigned *req_idx = idx_range.begin(); 3063 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3064 i != e; ++i, ++req_idx) { 3065 if (req_idx == idx_range.end()) { 3066 // We can't handle this without inserting insertvalues 3067 if (!InsertBefore) 3068 return nullptr; 3069 3070 // The requested index identifies a part of a nested aggregate. Handle 3071 // this specially. For example, 3072 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3073 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3074 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3075 // This can be changed into 3076 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3077 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3078 // which allows the unused 0,0 element from the nested struct to be 3079 // removed. 3080 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3081 InsertBefore); 3082 } 3083 3084 // This insert value inserts something else than what we are looking for. 3085 // See if the (aggregate) value inserted into has the value we are 3086 // looking for, then. 3087 if (*req_idx != *i) 3088 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3089 InsertBefore); 3090 } 3091 // If we end up here, the indices of the insertvalue match with those 3092 // requested (though possibly only partially). Now we recursively look at 3093 // the inserted value, passing any remaining indices. 3094 return FindInsertedValue(I->getInsertedValueOperand(), 3095 makeArrayRef(req_idx, idx_range.end()), 3096 InsertBefore); 3097 } 3098 3099 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3100 // If we're extracting a value from an aggregate that was extracted from 3101 // something else, we can extract from that something else directly instead. 3102 // However, we will need to chain I's indices with the requested indices. 3103 3104 // Calculate the number of indices required 3105 unsigned size = I->getNumIndices() + idx_range.size(); 3106 // Allocate some space to put the new indices in 3107 SmallVector<unsigned, 5> Idxs; 3108 Idxs.reserve(size); 3109 // Add indices from the extract value instruction 3110 Idxs.append(I->idx_begin(), I->idx_end()); 3111 3112 // Add requested indices 3113 Idxs.append(idx_range.begin(), idx_range.end()); 3114 3115 assert(Idxs.size() == size 3116 && "Number of indices added not correct?"); 3117 3118 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3119 } 3120 // Otherwise, we don't know (such as, extracting from a function return value 3121 // or load instruction) 3122 return nullptr; 3123 } 3124 3125 /// Analyze the specified pointer to see if it can be expressed as a base 3126 /// pointer plus a constant offset. Return the base and offset to the caller. 3127 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3128 const DataLayout &DL) { 3129 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3130 APInt ByteOffset(BitWidth, 0); 3131 3132 // We walk up the defs but use a visited set to handle unreachable code. In 3133 // that case, we stop after accumulating the cycle once (not that it 3134 // matters). 3135 SmallPtrSet<Value *, 16> Visited; 3136 while (Visited.insert(Ptr).second) { 3137 if (Ptr->getType()->isVectorTy()) 3138 break; 3139 3140 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3141 // If one of the values we have visited is an addrspacecast, then 3142 // the pointer type of this GEP may be different from the type 3143 // of the Ptr parameter which was passed to this function. This 3144 // means when we construct GEPOffset, we need to use the size 3145 // of GEP's pointer type rather than the size of the original 3146 // pointer type. 3147 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3148 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3149 break; 3150 3151 ByteOffset += GEPOffset.getSExtValue(); 3152 3153 Ptr = GEP->getPointerOperand(); 3154 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3155 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3156 Ptr = cast<Operator>(Ptr)->getOperand(0); 3157 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3158 if (GA->isInterposable()) 3159 break; 3160 Ptr = GA->getAliasee(); 3161 } else { 3162 break; 3163 } 3164 } 3165 Offset = ByteOffset.getSExtValue(); 3166 return Ptr; 3167 } 3168 3169 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3170 unsigned CharSize) { 3171 // Make sure the GEP has exactly three arguments. 3172 if (GEP->getNumOperands() != 3) 3173 return false; 3174 3175 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3176 // CharSize. 3177 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3178 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3179 return false; 3180 3181 // Check to make sure that the first operand of the GEP is an integer and 3182 // has value 0 so that we are sure we're indexing into the initializer. 3183 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3184 if (!FirstIdx || !FirstIdx->isZero()) 3185 return false; 3186 3187 return true; 3188 } 3189 3190 bool llvm::getConstantDataArrayInfo(const Value *V, 3191 ConstantDataArraySlice &Slice, 3192 unsigned ElementSize, uint64_t Offset) { 3193 assert(V); 3194 3195 // Look through bitcast instructions and geps. 3196 V = V->stripPointerCasts(); 3197 3198 // If the value is a GEP instruction or constant expression, treat it as an 3199 // offset. 3200 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3201 // The GEP operator should be based on a pointer to string constant, and is 3202 // indexing into the string constant. 3203 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3204 return false; 3205 3206 // If the second index isn't a ConstantInt, then this is a variable index 3207 // into the array. If this occurs, we can't say anything meaningful about 3208 // the string. 3209 uint64_t StartIdx = 0; 3210 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3211 StartIdx = CI->getZExtValue(); 3212 else 3213 return false; 3214 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3215 StartIdx + Offset); 3216 } 3217 3218 // The GEP instruction, constant or instruction, must reference a global 3219 // variable that is a constant and is initialized. The referenced constant 3220 // initializer is the array that we'll use for optimization. 3221 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3222 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3223 return false; 3224 3225 const ConstantDataArray *Array; 3226 ArrayType *ArrayTy; 3227 if (GV->getInitializer()->isNullValue()) { 3228 Type *GVTy = GV->getValueType(); 3229 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3230 // A zeroinitializer for the array; there is no ConstantDataArray. 3231 Array = nullptr; 3232 } else { 3233 const DataLayout &DL = GV->getParent()->getDataLayout(); 3234 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3235 uint64_t Length = SizeInBytes / (ElementSize / 8); 3236 if (Length <= Offset) 3237 return false; 3238 3239 Slice.Array = nullptr; 3240 Slice.Offset = 0; 3241 Slice.Length = Length - Offset; 3242 return true; 3243 } 3244 } else { 3245 // This must be a ConstantDataArray. 3246 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3247 if (!Array) 3248 return false; 3249 ArrayTy = Array->getType(); 3250 } 3251 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3252 return false; 3253 3254 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3255 if (Offset > NumElts) 3256 return false; 3257 3258 Slice.Array = Array; 3259 Slice.Offset = Offset; 3260 Slice.Length = NumElts - Offset; 3261 return true; 3262 } 3263 3264 /// This function computes the length of a null-terminated C string pointed to 3265 /// by V. If successful, it returns true and returns the string in Str. 3266 /// If unsuccessful, it returns false. 3267 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3268 uint64_t Offset, bool TrimAtNul) { 3269 ConstantDataArraySlice Slice; 3270 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3271 return false; 3272 3273 if (Slice.Array == nullptr) { 3274 if (TrimAtNul) { 3275 Str = StringRef(); 3276 return true; 3277 } 3278 if (Slice.Length == 1) { 3279 Str = StringRef("", 1); 3280 return true; 3281 } 3282 // We cannot instantiate a StringRef as we do not have an appropriate string 3283 // of 0s at hand. 3284 return false; 3285 } 3286 3287 // Start out with the entire array in the StringRef. 3288 Str = Slice.Array->getAsString(); 3289 // Skip over 'offset' bytes. 3290 Str = Str.substr(Slice.Offset); 3291 3292 if (TrimAtNul) { 3293 // Trim off the \0 and anything after it. If the array is not nul 3294 // terminated, we just return the whole end of string. The client may know 3295 // some other way that the string is length-bound. 3296 Str = Str.substr(0, Str.find('\0')); 3297 } 3298 return true; 3299 } 3300 3301 // These next two are very similar to the above, but also look through PHI 3302 // nodes. 3303 // TODO: See if we can integrate these two together. 3304 3305 /// If we can compute the length of the string pointed to by 3306 /// the specified pointer, return 'len+1'. If we can't, return 0. 3307 static uint64_t GetStringLengthH(const Value *V, 3308 SmallPtrSetImpl<const PHINode*> &PHIs, 3309 unsigned CharSize) { 3310 // Look through noop bitcast instructions. 3311 V = V->stripPointerCasts(); 3312 3313 // If this is a PHI node, there are two cases: either we have already seen it 3314 // or we haven't. 3315 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3316 if (!PHIs.insert(PN).second) 3317 return ~0ULL; // already in the set. 3318 3319 // If it was new, see if all the input strings are the same length. 3320 uint64_t LenSoFar = ~0ULL; 3321 for (Value *IncValue : PN->incoming_values()) { 3322 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3323 if (Len == 0) return 0; // Unknown length -> unknown. 3324 3325 if (Len == ~0ULL) continue; 3326 3327 if (Len != LenSoFar && LenSoFar != ~0ULL) 3328 return 0; // Disagree -> unknown. 3329 LenSoFar = Len; 3330 } 3331 3332 // Success, all agree. 3333 return LenSoFar; 3334 } 3335 3336 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3337 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3338 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3339 if (Len1 == 0) return 0; 3340 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3341 if (Len2 == 0) return 0; 3342 if (Len1 == ~0ULL) return Len2; 3343 if (Len2 == ~0ULL) return Len1; 3344 if (Len1 != Len2) return 0; 3345 return Len1; 3346 } 3347 3348 // Otherwise, see if we can read the string. 3349 ConstantDataArraySlice Slice; 3350 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3351 return 0; 3352 3353 if (Slice.Array == nullptr) 3354 return 1; 3355 3356 // Search for nul characters 3357 unsigned NullIndex = 0; 3358 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3359 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3360 break; 3361 } 3362 3363 return NullIndex + 1; 3364 } 3365 3366 /// If we can compute the length of the string pointed to by 3367 /// the specified pointer, return 'len+1'. If we can't, return 0. 3368 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3369 if (!V->getType()->isPointerTy()) return 0; 3370 3371 SmallPtrSet<const PHINode*, 32> PHIs; 3372 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3373 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3374 // an empty string as a length. 3375 return Len == ~0ULL ? 1 : Len; 3376 } 3377 3378 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3379 /// previous iteration of the loop was referring to the same object as \p PN. 3380 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3381 const LoopInfo *LI) { 3382 // Find the loop-defined value. 3383 Loop *L = LI->getLoopFor(PN->getParent()); 3384 if (PN->getNumIncomingValues() != 2) 3385 return true; 3386 3387 // Find the value from previous iteration. 3388 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3389 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3390 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3391 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3392 return true; 3393 3394 // If a new pointer is loaded in the loop, the pointer references a different 3395 // object in every iteration. E.g.: 3396 // for (i) 3397 // int *p = a[i]; 3398 // ... 3399 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3400 if (!L->isLoopInvariant(Load->getPointerOperand())) 3401 return false; 3402 return true; 3403 } 3404 3405 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3406 unsigned MaxLookup) { 3407 if (!V->getType()->isPointerTy()) 3408 return V; 3409 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3410 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3411 V = GEP->getPointerOperand(); 3412 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3413 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3414 V = cast<Operator>(V)->getOperand(0); 3415 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3416 if (GA->isInterposable()) 3417 return V; 3418 V = GA->getAliasee(); 3419 } else if (isa<AllocaInst>(V)) { 3420 // An alloca can't be further simplified. 3421 return V; 3422 } else { 3423 if (auto CS = CallSite(V)) 3424 if (Value *RV = CS.getReturnedArgOperand()) { 3425 V = RV; 3426 continue; 3427 } 3428 3429 // See if InstructionSimplify knows any relevant tricks. 3430 if (Instruction *I = dyn_cast<Instruction>(V)) 3431 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3432 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3433 V = Simplified; 3434 continue; 3435 } 3436 3437 return V; 3438 } 3439 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3440 } 3441 return V; 3442 } 3443 3444 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3445 const DataLayout &DL, LoopInfo *LI, 3446 unsigned MaxLookup) { 3447 SmallPtrSet<Value *, 4> Visited; 3448 SmallVector<Value *, 4> Worklist; 3449 Worklist.push_back(V); 3450 do { 3451 Value *P = Worklist.pop_back_val(); 3452 P = GetUnderlyingObject(P, DL, MaxLookup); 3453 3454 if (!Visited.insert(P).second) 3455 continue; 3456 3457 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3458 Worklist.push_back(SI->getTrueValue()); 3459 Worklist.push_back(SI->getFalseValue()); 3460 continue; 3461 } 3462 3463 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3464 // If this PHI changes the underlying object in every iteration of the 3465 // loop, don't look through it. Consider: 3466 // int **A; 3467 // for (i) { 3468 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3469 // Curr = A[i]; 3470 // *Prev, *Curr; 3471 // 3472 // Prev is tracking Curr one iteration behind so they refer to different 3473 // underlying objects. 3474 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3475 isSameUnderlyingObjectInLoop(PN, LI)) 3476 for (Value *IncValue : PN->incoming_values()) 3477 Worklist.push_back(IncValue); 3478 continue; 3479 } 3480 3481 Objects.push_back(P); 3482 } while (!Worklist.empty()); 3483 } 3484 3485 /// This is the function that does the work of looking through basic 3486 /// ptrtoint+arithmetic+inttoptr sequences. 3487 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3488 do { 3489 if (const Operator *U = dyn_cast<Operator>(V)) { 3490 // If we find a ptrtoint, we can transfer control back to the 3491 // regular getUnderlyingObjectFromInt. 3492 if (U->getOpcode() == Instruction::PtrToInt) 3493 return U->getOperand(0); 3494 // If we find an add of a constant, a multiplied value, or a phi, it's 3495 // likely that the other operand will lead us to the base 3496 // object. We don't have to worry about the case where the 3497 // object address is somehow being computed by the multiply, 3498 // because our callers only care when the result is an 3499 // identifiable object. 3500 if (U->getOpcode() != Instruction::Add || 3501 (!isa<ConstantInt>(U->getOperand(1)) && 3502 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3503 !isa<PHINode>(U->getOperand(1)))) 3504 return V; 3505 V = U->getOperand(0); 3506 } else { 3507 return V; 3508 } 3509 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3510 } while (true); 3511 } 3512 3513 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3514 /// ptrtoint+arithmetic+inttoptr sequences. 3515 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3516 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3517 SmallVectorImpl<Value *> &Objects, 3518 const DataLayout &DL) { 3519 SmallPtrSet<const Value *, 16> Visited; 3520 SmallVector<const Value *, 4> Working(1, V); 3521 do { 3522 V = Working.pop_back_val(); 3523 3524 SmallVector<Value *, 4> Objs; 3525 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3526 3527 for (Value *V : Objs) { 3528 if (!Visited.insert(V).second) 3529 continue; 3530 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3531 const Value *O = 3532 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3533 if (O->getType()->isPointerTy()) { 3534 Working.push_back(O); 3535 continue; 3536 } 3537 } 3538 // If GetUnderlyingObjects fails to find an identifiable object, 3539 // getUnderlyingObjectsForCodeGen also fails for safety. 3540 if (!isIdentifiedObject(V)) { 3541 Objects.clear(); 3542 return false; 3543 } 3544 Objects.push_back(const_cast<Value *>(V)); 3545 } 3546 } while (!Working.empty()); 3547 return true; 3548 } 3549 3550 /// Return true if the only users of this pointer are lifetime markers. 3551 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3552 for (const User *U : V->users()) { 3553 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3554 if (!II) return false; 3555 3556 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3557 II->getIntrinsicID() != Intrinsic::lifetime_end) 3558 return false; 3559 } 3560 return true; 3561 } 3562 3563 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3564 const Instruction *CtxI, 3565 const DominatorTree *DT) { 3566 const Operator *Inst = dyn_cast<Operator>(V); 3567 if (!Inst) 3568 return false; 3569 3570 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3571 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3572 if (C->canTrap()) 3573 return false; 3574 3575 switch (Inst->getOpcode()) { 3576 default: 3577 return true; 3578 case Instruction::UDiv: 3579 case Instruction::URem: { 3580 // x / y is undefined if y == 0. 3581 const APInt *V; 3582 if (match(Inst->getOperand(1), m_APInt(V))) 3583 return *V != 0; 3584 return false; 3585 } 3586 case Instruction::SDiv: 3587 case Instruction::SRem: { 3588 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3589 const APInt *Numerator, *Denominator; 3590 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3591 return false; 3592 // We cannot hoist this division if the denominator is 0. 3593 if (*Denominator == 0) 3594 return false; 3595 // It's safe to hoist if the denominator is not 0 or -1. 3596 if (*Denominator != -1) 3597 return true; 3598 // At this point we know that the denominator is -1. It is safe to hoist as 3599 // long we know that the numerator is not INT_MIN. 3600 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3601 return !Numerator->isMinSignedValue(); 3602 // The numerator *might* be MinSignedValue. 3603 return false; 3604 } 3605 case Instruction::Load: { 3606 const LoadInst *LI = cast<LoadInst>(Inst); 3607 if (!LI->isUnordered() || 3608 // Speculative load may create a race that did not exist in the source. 3609 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3610 // Speculative load may load data from dirty regions. 3611 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3612 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3613 return false; 3614 const DataLayout &DL = LI->getModule()->getDataLayout(); 3615 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3616 LI->getAlignment(), DL, CtxI, DT); 3617 } 3618 case Instruction::Call: { 3619 auto *CI = cast<const CallInst>(Inst); 3620 const Function *Callee = CI->getCalledFunction(); 3621 3622 // The called function could have undefined behavior or side-effects, even 3623 // if marked readnone nounwind. 3624 return Callee && Callee->isSpeculatable(); 3625 } 3626 case Instruction::VAArg: 3627 case Instruction::Alloca: 3628 case Instruction::Invoke: 3629 case Instruction::PHI: 3630 case Instruction::Store: 3631 case Instruction::Ret: 3632 case Instruction::Br: 3633 case Instruction::IndirectBr: 3634 case Instruction::Switch: 3635 case Instruction::Unreachable: 3636 case Instruction::Fence: 3637 case Instruction::AtomicRMW: 3638 case Instruction::AtomicCmpXchg: 3639 case Instruction::LandingPad: 3640 case Instruction::Resume: 3641 case Instruction::CatchSwitch: 3642 case Instruction::CatchPad: 3643 case Instruction::CatchRet: 3644 case Instruction::CleanupPad: 3645 case Instruction::CleanupRet: 3646 return false; // Misc instructions which have effects 3647 } 3648 } 3649 3650 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3651 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3652 } 3653 3654 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3655 const Value *RHS, 3656 const DataLayout &DL, 3657 AssumptionCache *AC, 3658 const Instruction *CxtI, 3659 const DominatorTree *DT) { 3660 // Multiplying n * m significant bits yields a result of n + m significant 3661 // bits. If the total number of significant bits does not exceed the 3662 // result bit width (minus 1), there is no overflow. 3663 // This means if we have enough leading zero bits in the operands 3664 // we can guarantee that the result does not overflow. 3665 // Ref: "Hacker's Delight" by Henry Warren 3666 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3667 KnownBits LHSKnown(BitWidth); 3668 KnownBits RHSKnown(BitWidth); 3669 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3670 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3671 // Note that underestimating the number of zero bits gives a more 3672 // conservative answer. 3673 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3674 RHSKnown.countMinLeadingZeros(); 3675 // First handle the easy case: if we have enough zero bits there's 3676 // definitely no overflow. 3677 if (ZeroBits >= BitWidth) 3678 return OverflowResult::NeverOverflows; 3679 3680 // Get the largest possible values for each operand. 3681 APInt LHSMax = ~LHSKnown.Zero; 3682 APInt RHSMax = ~RHSKnown.Zero; 3683 3684 // We know the multiply operation doesn't overflow if the maximum values for 3685 // each operand will not overflow after we multiply them together. 3686 bool MaxOverflow; 3687 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3688 if (!MaxOverflow) 3689 return OverflowResult::NeverOverflows; 3690 3691 // We know it always overflows if multiplying the smallest possible values for 3692 // the operands also results in overflow. 3693 bool MinOverflow; 3694 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3695 if (MinOverflow) 3696 return OverflowResult::AlwaysOverflows; 3697 3698 return OverflowResult::MayOverflow; 3699 } 3700 3701 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3702 const Value *RHS, 3703 const DataLayout &DL, 3704 AssumptionCache *AC, 3705 const Instruction *CxtI, 3706 const DominatorTree *DT) { 3707 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3708 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3709 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3710 3711 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3712 // The sign bit is set in both cases: this MUST overflow. 3713 // Create a simple add instruction, and insert it into the struct. 3714 return OverflowResult::AlwaysOverflows; 3715 } 3716 3717 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3718 // The sign bit is clear in both cases: this CANNOT overflow. 3719 // Create a simple add instruction, and insert it into the struct. 3720 return OverflowResult::NeverOverflows; 3721 } 3722 } 3723 3724 return OverflowResult::MayOverflow; 3725 } 3726 3727 /// \brief Return true if we can prove that adding the two values of the 3728 /// knownbits will not overflow. 3729 /// Otherwise return false. 3730 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3731 const KnownBits &RHSKnown) { 3732 // Addition of two 2's complement numbers having opposite signs will never 3733 // overflow. 3734 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3735 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3736 return true; 3737 3738 // If either of the values is known to be non-negative, adding them can only 3739 // overflow if the second is also non-negative, so we can assume that. 3740 // Two non-negative numbers will only overflow if there is a carry to the 3741 // sign bit, so we can check if even when the values are as big as possible 3742 // there is no overflow to the sign bit. 3743 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3744 APInt MaxLHS = ~LHSKnown.Zero; 3745 MaxLHS.clearSignBit(); 3746 APInt MaxRHS = ~RHSKnown.Zero; 3747 MaxRHS.clearSignBit(); 3748 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3749 return Result.isSignBitClear(); 3750 } 3751 3752 // If either of the values is known to be negative, adding them can only 3753 // overflow if the second is also negative, so we can assume that. 3754 // Two negative number will only overflow if there is no carry to the sign 3755 // bit, so we can check if even when the values are as small as possible 3756 // there is overflow to the sign bit. 3757 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3758 APInt MinLHS = LHSKnown.One; 3759 MinLHS.clearSignBit(); 3760 APInt MinRHS = RHSKnown.One; 3761 MinRHS.clearSignBit(); 3762 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3763 return Result.isSignBitSet(); 3764 } 3765 3766 // If we reached here it means that we know nothing about the sign bits. 3767 // In this case we can't know if there will be an overflow, since by 3768 // changing the sign bits any two values can be made to overflow. 3769 return false; 3770 } 3771 3772 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3773 const Value *RHS, 3774 const AddOperator *Add, 3775 const DataLayout &DL, 3776 AssumptionCache *AC, 3777 const Instruction *CxtI, 3778 const DominatorTree *DT) { 3779 if (Add && Add->hasNoSignedWrap()) { 3780 return OverflowResult::NeverOverflows; 3781 } 3782 3783 // If LHS and RHS each have at least two sign bits, the addition will look 3784 // like 3785 // 3786 // XX..... + 3787 // YY..... 3788 // 3789 // If the carry into the most significant position is 0, X and Y can't both 3790 // be 1 and therefore the carry out of the addition is also 0. 3791 // 3792 // If the carry into the most significant position is 1, X and Y can't both 3793 // be 0 and therefore the carry out of the addition is also 1. 3794 // 3795 // Since the carry into the most significant position is always equal to 3796 // the carry out of the addition, there is no signed overflow. 3797 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3798 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3799 return OverflowResult::NeverOverflows; 3800 3801 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3802 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3803 3804 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3805 return OverflowResult::NeverOverflows; 3806 3807 // The remaining code needs Add to be available. Early returns if not so. 3808 if (!Add) 3809 return OverflowResult::MayOverflow; 3810 3811 // If the sign of Add is the same as at least one of the operands, this add 3812 // CANNOT overflow. This is particularly useful when the sum is 3813 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3814 // operands. 3815 bool LHSOrRHSKnownNonNegative = 3816 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3817 bool LHSOrRHSKnownNegative = 3818 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3819 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3820 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3821 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3822 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3823 return OverflowResult::NeverOverflows; 3824 } 3825 } 3826 3827 return OverflowResult::MayOverflow; 3828 } 3829 3830 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3831 const DominatorTree &DT) { 3832 #ifndef NDEBUG 3833 auto IID = II->getIntrinsicID(); 3834 assert((IID == Intrinsic::sadd_with_overflow || 3835 IID == Intrinsic::uadd_with_overflow || 3836 IID == Intrinsic::ssub_with_overflow || 3837 IID == Intrinsic::usub_with_overflow || 3838 IID == Intrinsic::smul_with_overflow || 3839 IID == Intrinsic::umul_with_overflow) && 3840 "Not an overflow intrinsic!"); 3841 #endif 3842 3843 SmallVector<const BranchInst *, 2> GuardingBranches; 3844 SmallVector<const ExtractValueInst *, 2> Results; 3845 3846 for (const User *U : II->users()) { 3847 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3848 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3849 3850 if (EVI->getIndices()[0] == 0) 3851 Results.push_back(EVI); 3852 else { 3853 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3854 3855 for (const auto *U : EVI->users()) 3856 if (const auto *B = dyn_cast<BranchInst>(U)) { 3857 assert(B->isConditional() && "How else is it using an i1?"); 3858 GuardingBranches.push_back(B); 3859 } 3860 } 3861 } else { 3862 // We are using the aggregate directly in a way we don't want to analyze 3863 // here (storing it to a global, say). 3864 return false; 3865 } 3866 } 3867 3868 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3869 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3870 if (!NoWrapEdge.isSingleEdge()) 3871 return false; 3872 3873 // Check if all users of the add are provably no-wrap. 3874 for (const auto *Result : Results) { 3875 // If the extractvalue itself is not executed on overflow, the we don't 3876 // need to check each use separately, since domination is transitive. 3877 if (DT.dominates(NoWrapEdge, Result->getParent())) 3878 continue; 3879 3880 for (auto &RU : Result->uses()) 3881 if (!DT.dominates(NoWrapEdge, RU)) 3882 return false; 3883 } 3884 3885 return true; 3886 }; 3887 3888 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 3889 } 3890 3891 3892 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3893 const DataLayout &DL, 3894 AssumptionCache *AC, 3895 const Instruction *CxtI, 3896 const DominatorTree *DT) { 3897 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3898 Add, DL, AC, CxtI, DT); 3899 } 3900 3901 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3902 const Value *RHS, 3903 const DataLayout &DL, 3904 AssumptionCache *AC, 3905 const Instruction *CxtI, 3906 const DominatorTree *DT) { 3907 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3908 } 3909 3910 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3911 // A memory operation returns normally if it isn't volatile. A volatile 3912 // operation is allowed to trap. 3913 // 3914 // An atomic operation isn't guaranteed to return in a reasonable amount of 3915 // time because it's possible for another thread to interfere with it for an 3916 // arbitrary length of time, but programs aren't allowed to rely on that. 3917 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3918 return !LI->isVolatile(); 3919 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3920 return !SI->isVolatile(); 3921 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3922 return !CXI->isVolatile(); 3923 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3924 return !RMWI->isVolatile(); 3925 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3926 return !MII->isVolatile(); 3927 3928 // If there is no successor, then execution can't transfer to it. 3929 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3930 return !CRI->unwindsToCaller(); 3931 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3932 return !CatchSwitch->unwindsToCaller(); 3933 if (isa<ResumeInst>(I)) 3934 return false; 3935 if (isa<ReturnInst>(I)) 3936 return false; 3937 if (isa<UnreachableInst>(I)) 3938 return false; 3939 3940 // Calls can throw, or contain an infinite loop, or kill the process. 3941 if (auto CS = ImmutableCallSite(I)) { 3942 // Call sites that throw have implicit non-local control flow. 3943 if (!CS.doesNotThrow()) 3944 return false; 3945 3946 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3947 // etc. and thus not return. However, LLVM already assumes that 3948 // 3949 // - Thread exiting actions are modeled as writes to memory invisible to 3950 // the program. 3951 // 3952 // - Loops that don't have side effects (side effects are volatile/atomic 3953 // stores and IO) always terminate (see http://llvm.org/PR965). 3954 // Furthermore IO itself is also modeled as writes to memory invisible to 3955 // the program. 3956 // 3957 // We rely on those assumptions here, and use the memory effects of the call 3958 // target as a proxy for checking that it always returns. 3959 3960 // FIXME: This isn't aggressive enough; a call which only writes to a global 3961 // is guaranteed to return. 3962 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3963 match(I, m_Intrinsic<Intrinsic::assume>()) || 3964 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 3965 } 3966 3967 // Other instructions return normally. 3968 return true; 3969 } 3970 3971 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 3972 // TODO: This is slightly consdervative for invoke instruction since exiting 3973 // via an exception *is* normal control for them. 3974 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 3975 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3976 return false; 3977 return true; 3978 } 3979 3980 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3981 const Loop *L) { 3982 // The loop header is guaranteed to be executed for every iteration. 3983 // 3984 // FIXME: Relax this constraint to cover all basic blocks that are 3985 // guaranteed to be executed at every iteration. 3986 if (I->getParent() != L->getHeader()) return false; 3987 3988 for (const Instruction &LI : *L->getHeader()) { 3989 if (&LI == I) return true; 3990 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3991 } 3992 llvm_unreachable("Instruction not contained in its own parent basic block."); 3993 } 3994 3995 bool llvm::propagatesFullPoison(const Instruction *I) { 3996 switch (I->getOpcode()) { 3997 case Instruction::Add: 3998 case Instruction::Sub: 3999 case Instruction::Xor: 4000 case Instruction::Trunc: 4001 case Instruction::BitCast: 4002 case Instruction::AddrSpaceCast: 4003 case Instruction::Mul: 4004 case Instruction::Shl: 4005 case Instruction::GetElementPtr: 4006 // These operations all propagate poison unconditionally. Note that poison 4007 // is not any particular value, so xor or subtraction of poison with 4008 // itself still yields poison, not zero. 4009 return true; 4010 4011 case Instruction::AShr: 4012 case Instruction::SExt: 4013 // For these operations, one bit of the input is replicated across 4014 // multiple output bits. A replicated poison bit is still poison. 4015 return true; 4016 4017 case Instruction::ICmp: 4018 // Comparing poison with any value yields poison. This is why, for 4019 // instance, x s< (x +nsw 1) can be folded to true. 4020 return true; 4021 4022 default: 4023 return false; 4024 } 4025 } 4026 4027 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4028 switch (I->getOpcode()) { 4029 case Instruction::Store: 4030 return cast<StoreInst>(I)->getPointerOperand(); 4031 4032 case Instruction::Load: 4033 return cast<LoadInst>(I)->getPointerOperand(); 4034 4035 case Instruction::AtomicCmpXchg: 4036 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4037 4038 case Instruction::AtomicRMW: 4039 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4040 4041 case Instruction::UDiv: 4042 case Instruction::SDiv: 4043 case Instruction::URem: 4044 case Instruction::SRem: 4045 return I->getOperand(1); 4046 4047 default: 4048 return nullptr; 4049 } 4050 } 4051 4052 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4053 // We currently only look for uses of poison values within the same basic 4054 // block, as that makes it easier to guarantee that the uses will be 4055 // executed given that PoisonI is executed. 4056 // 4057 // FIXME: Expand this to consider uses beyond the same basic block. To do 4058 // this, look out for the distinction between post-dominance and strong 4059 // post-dominance. 4060 const BasicBlock *BB = PoisonI->getParent(); 4061 4062 // Set of instructions that we have proved will yield poison if PoisonI 4063 // does. 4064 SmallSet<const Value *, 16> YieldsPoison; 4065 SmallSet<const BasicBlock *, 4> Visited; 4066 YieldsPoison.insert(PoisonI); 4067 Visited.insert(PoisonI->getParent()); 4068 4069 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4070 4071 unsigned Iter = 0; 4072 while (Iter++ < MaxDepth) { 4073 for (auto &I : make_range(Begin, End)) { 4074 if (&I != PoisonI) { 4075 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4076 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4077 return true; 4078 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4079 return false; 4080 } 4081 4082 // Mark poison that propagates from I through uses of I. 4083 if (YieldsPoison.count(&I)) { 4084 for (const User *User : I.users()) { 4085 const Instruction *UserI = cast<Instruction>(User); 4086 if (propagatesFullPoison(UserI)) 4087 YieldsPoison.insert(User); 4088 } 4089 } 4090 } 4091 4092 if (auto *NextBB = BB->getSingleSuccessor()) { 4093 if (Visited.insert(NextBB).second) { 4094 BB = NextBB; 4095 Begin = BB->getFirstNonPHI()->getIterator(); 4096 End = BB->end(); 4097 continue; 4098 } 4099 } 4100 4101 break; 4102 } 4103 return false; 4104 } 4105 4106 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4107 if (FMF.noNaNs()) 4108 return true; 4109 4110 if (auto *C = dyn_cast<ConstantFP>(V)) 4111 return !C->isNaN(); 4112 return false; 4113 } 4114 4115 static bool isKnownNonZero(const Value *V) { 4116 if (auto *C = dyn_cast<ConstantFP>(V)) 4117 return !C->isZero(); 4118 return false; 4119 } 4120 4121 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4122 /// Given non-min/max outer cmp/select from the clamp pattern this 4123 /// function recognizes if it can be substitued by a "canonical" min/max 4124 /// pattern. 4125 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4126 Value *CmpLHS, Value *CmpRHS, 4127 Value *TrueVal, Value *FalseVal, 4128 Value *&LHS, Value *&RHS) { 4129 // Try to match 4130 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4131 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4132 // and return description of the outer Max/Min. 4133 4134 // First, check if select has inverse order: 4135 if (CmpRHS == FalseVal) { 4136 std::swap(TrueVal, FalseVal); 4137 Pred = CmpInst::getInversePredicate(Pred); 4138 } 4139 4140 // Assume success now. If there's no match, callers should not use these anyway. 4141 LHS = TrueVal; 4142 RHS = FalseVal; 4143 4144 const APFloat *FC1; 4145 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4146 return {SPF_UNKNOWN, SPNB_NA, false}; 4147 4148 const APFloat *FC2; 4149 switch (Pred) { 4150 case CmpInst::FCMP_OLT: 4151 case CmpInst::FCMP_OLE: 4152 case CmpInst::FCMP_ULT: 4153 case CmpInst::FCMP_ULE: 4154 if (match(FalseVal, 4155 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4156 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4157 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4158 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4159 break; 4160 case CmpInst::FCMP_OGT: 4161 case CmpInst::FCMP_OGE: 4162 case CmpInst::FCMP_UGT: 4163 case CmpInst::FCMP_UGE: 4164 if (match(FalseVal, 4165 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4166 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4167 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4168 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4169 break; 4170 default: 4171 break; 4172 } 4173 4174 return {SPF_UNKNOWN, SPNB_NA, false}; 4175 } 4176 4177 /// Recognize variations of: 4178 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4179 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4180 Value *CmpLHS, Value *CmpRHS, 4181 Value *TrueVal, Value *FalseVal) { 4182 // Swap the select operands and predicate to match the patterns below. 4183 if (CmpRHS != TrueVal) { 4184 Pred = ICmpInst::getSwappedPredicate(Pred); 4185 std::swap(TrueVal, FalseVal); 4186 } 4187 const APInt *C1; 4188 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4189 const APInt *C2; 4190 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4191 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4192 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4193 return {SPF_SMAX, SPNB_NA, false}; 4194 4195 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4196 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4197 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4198 return {SPF_SMIN, SPNB_NA, false}; 4199 4200 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4201 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4202 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4203 return {SPF_UMAX, SPNB_NA, false}; 4204 4205 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4206 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4207 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4208 return {SPF_UMIN, SPNB_NA, false}; 4209 } 4210 return {SPF_UNKNOWN, SPNB_NA, false}; 4211 } 4212 4213 /// Recognize variations of: 4214 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4215 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4216 Value *CmpLHS, Value *CmpRHS, 4217 Value *TVal, Value *FVal, 4218 unsigned Depth) { 4219 // TODO: Allow FP min/max with nnan/nsz. 4220 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4221 4222 Value *A, *B; 4223 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4224 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4225 return {SPF_UNKNOWN, SPNB_NA, false}; 4226 4227 Value *C, *D; 4228 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4229 if (L.Flavor != R.Flavor) 4230 return {SPF_UNKNOWN, SPNB_NA, false}; 4231 4232 // We have something like: x Pred y ? min(a, b) : min(c, d). 4233 // Try to match the compare to the min/max operations of the select operands. 4234 // First, make sure we have the right compare predicate. 4235 switch (L.Flavor) { 4236 case SPF_SMIN: 4237 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4238 Pred = ICmpInst::getSwappedPredicate(Pred); 4239 std::swap(CmpLHS, CmpRHS); 4240 } 4241 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4242 break; 4243 return {SPF_UNKNOWN, SPNB_NA, false}; 4244 case SPF_SMAX: 4245 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4246 Pred = ICmpInst::getSwappedPredicate(Pred); 4247 std::swap(CmpLHS, CmpRHS); 4248 } 4249 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4250 break; 4251 return {SPF_UNKNOWN, SPNB_NA, false}; 4252 case SPF_UMIN: 4253 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4254 Pred = ICmpInst::getSwappedPredicate(Pred); 4255 std::swap(CmpLHS, CmpRHS); 4256 } 4257 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4258 break; 4259 return {SPF_UNKNOWN, SPNB_NA, false}; 4260 case SPF_UMAX: 4261 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4262 Pred = ICmpInst::getSwappedPredicate(Pred); 4263 std::swap(CmpLHS, CmpRHS); 4264 } 4265 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4266 break; 4267 return {SPF_UNKNOWN, SPNB_NA, false}; 4268 default: 4269 return {SPF_UNKNOWN, SPNB_NA, false}; 4270 } 4271 4272 // If there is a common operand in the already matched min/max and the other 4273 // min/max operands match the compare operands (either directly or inverted), 4274 // then this is min/max of the same flavor. 4275 4276 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4277 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4278 if (D == B) { 4279 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4280 match(A, m_Not(m_Specific(CmpRHS))))) 4281 return {L.Flavor, SPNB_NA, false}; 4282 } 4283 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4284 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4285 if (C == B) { 4286 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4287 match(A, m_Not(m_Specific(CmpRHS))))) 4288 return {L.Flavor, SPNB_NA, false}; 4289 } 4290 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4291 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4292 if (D == A) { 4293 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4294 match(B, m_Not(m_Specific(CmpRHS))))) 4295 return {L.Flavor, SPNB_NA, false}; 4296 } 4297 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4298 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4299 if (C == A) { 4300 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4301 match(B, m_Not(m_Specific(CmpRHS))))) 4302 return {L.Flavor, SPNB_NA, false}; 4303 } 4304 4305 return {SPF_UNKNOWN, SPNB_NA, false}; 4306 } 4307 4308 /// Match non-obvious integer minimum and maximum sequences. 4309 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4310 Value *CmpLHS, Value *CmpRHS, 4311 Value *TrueVal, Value *FalseVal, 4312 Value *&LHS, Value *&RHS, 4313 unsigned Depth) { 4314 // Assume success. If there's no match, callers should not use these anyway. 4315 LHS = TrueVal; 4316 RHS = FalseVal; 4317 4318 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4319 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4320 return SPR; 4321 4322 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4323 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4324 return SPR; 4325 4326 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4327 return {SPF_UNKNOWN, SPNB_NA, false}; 4328 4329 // Z = X -nsw Y 4330 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4331 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4332 if (match(TrueVal, m_Zero()) && 4333 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4334 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4335 4336 // Z = X -nsw Y 4337 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4338 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4339 if (match(FalseVal, m_Zero()) && 4340 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4341 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4342 4343 const APInt *C1; 4344 if (!match(CmpRHS, m_APInt(C1))) 4345 return {SPF_UNKNOWN, SPNB_NA, false}; 4346 4347 // An unsigned min/max can be written with a signed compare. 4348 const APInt *C2; 4349 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4350 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4351 // Is the sign bit set? 4352 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4353 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4354 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4355 C2->isMaxSignedValue()) 4356 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4357 4358 // Is the sign bit clear? 4359 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4360 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4361 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4362 C2->isMinSignedValue()) 4363 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4364 } 4365 4366 // Look through 'not' ops to find disguised signed min/max. 4367 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4368 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4369 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4370 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4371 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4372 4373 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4374 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4375 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4376 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4377 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4378 4379 return {SPF_UNKNOWN, SPNB_NA, false}; 4380 } 4381 4382 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4383 FastMathFlags FMF, 4384 Value *CmpLHS, Value *CmpRHS, 4385 Value *TrueVal, Value *FalseVal, 4386 Value *&LHS, Value *&RHS, 4387 unsigned Depth) { 4388 LHS = CmpLHS; 4389 RHS = CmpRHS; 4390 4391 // Signed zero may return inconsistent results between implementations. 4392 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4393 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4394 // Therefore, we behave conservatively and only proceed if at least one of the 4395 // operands is known to not be zero or if we don't care about signed zero. 4396 switch (Pred) { 4397 default: break; 4398 // FIXME: Include OGT/OLT/UGT/ULT. 4399 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4400 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4401 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4402 !isKnownNonZero(CmpRHS)) 4403 return {SPF_UNKNOWN, SPNB_NA, false}; 4404 } 4405 4406 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4407 bool Ordered = false; 4408 4409 // When given one NaN and one non-NaN input: 4410 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4411 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4412 // ordered comparison fails), which could be NaN or non-NaN. 4413 // so here we discover exactly what NaN behavior is required/accepted. 4414 if (CmpInst::isFPPredicate(Pred)) { 4415 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4416 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4417 4418 if (LHSSafe && RHSSafe) { 4419 // Both operands are known non-NaN. 4420 NaNBehavior = SPNB_RETURNS_ANY; 4421 } else if (CmpInst::isOrdered(Pred)) { 4422 // An ordered comparison will return false when given a NaN, so it 4423 // returns the RHS. 4424 Ordered = true; 4425 if (LHSSafe) 4426 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4427 NaNBehavior = SPNB_RETURNS_NAN; 4428 else if (RHSSafe) 4429 NaNBehavior = SPNB_RETURNS_OTHER; 4430 else 4431 // Completely unsafe. 4432 return {SPF_UNKNOWN, SPNB_NA, false}; 4433 } else { 4434 Ordered = false; 4435 // An unordered comparison will return true when given a NaN, so it 4436 // returns the LHS. 4437 if (LHSSafe) 4438 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4439 NaNBehavior = SPNB_RETURNS_OTHER; 4440 else if (RHSSafe) 4441 NaNBehavior = SPNB_RETURNS_NAN; 4442 else 4443 // Completely unsafe. 4444 return {SPF_UNKNOWN, SPNB_NA, false}; 4445 } 4446 } 4447 4448 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4449 std::swap(CmpLHS, CmpRHS); 4450 Pred = CmpInst::getSwappedPredicate(Pred); 4451 if (NaNBehavior == SPNB_RETURNS_NAN) 4452 NaNBehavior = SPNB_RETURNS_OTHER; 4453 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4454 NaNBehavior = SPNB_RETURNS_NAN; 4455 Ordered = !Ordered; 4456 } 4457 4458 // ([if]cmp X, Y) ? X : Y 4459 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4460 switch (Pred) { 4461 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4462 case ICmpInst::ICMP_UGT: 4463 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4464 case ICmpInst::ICMP_SGT: 4465 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4466 case ICmpInst::ICMP_ULT: 4467 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4468 case ICmpInst::ICMP_SLT: 4469 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4470 case FCmpInst::FCMP_UGT: 4471 case FCmpInst::FCMP_UGE: 4472 case FCmpInst::FCMP_OGT: 4473 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4474 case FCmpInst::FCMP_ULT: 4475 case FCmpInst::FCMP_ULE: 4476 case FCmpInst::FCMP_OLT: 4477 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4478 } 4479 } 4480 4481 const APInt *C1; 4482 if (match(CmpRHS, m_APInt(C1))) { 4483 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4484 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4485 4486 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4487 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4488 if (Pred == ICmpInst::ICMP_SGT && 4489 (C1->isNullValue() || C1->isAllOnesValue())) { 4490 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4491 } 4492 4493 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4494 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4495 if (Pred == ICmpInst::ICMP_SLT && 4496 (C1->isNullValue() || C1->isOneValue())) { 4497 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4498 } 4499 } 4500 } 4501 4502 if (CmpInst::isIntPredicate(Pred)) 4503 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4504 4505 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4506 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4507 // semantics than minNum. Be conservative in such case. 4508 if (NaNBehavior != SPNB_RETURNS_ANY || 4509 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4510 !isKnownNonZero(CmpRHS))) 4511 return {SPF_UNKNOWN, SPNB_NA, false}; 4512 4513 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4514 } 4515 4516 /// Helps to match a select pattern in case of a type mismatch. 4517 /// 4518 /// The function processes the case when type of true and false values of a 4519 /// select instruction differs from type of the cmp instruction operands because 4520 /// of a cast instruction. The function checks if it is legal to move the cast 4521 /// operation after "select". If yes, it returns the new second value of 4522 /// "select" (with the assumption that cast is moved): 4523 /// 1. As operand of cast instruction when both values of "select" are same cast 4524 /// instructions. 4525 /// 2. As restored constant (by applying reverse cast operation) when the first 4526 /// value of the "select" is a cast operation and the second value is a 4527 /// constant. 4528 /// NOTE: We return only the new second value because the first value could be 4529 /// accessed as operand of cast instruction. 4530 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4531 Instruction::CastOps *CastOp) { 4532 auto *Cast1 = dyn_cast<CastInst>(V1); 4533 if (!Cast1) 4534 return nullptr; 4535 4536 *CastOp = Cast1->getOpcode(); 4537 Type *SrcTy = Cast1->getSrcTy(); 4538 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4539 // If V1 and V2 are both the same cast from the same type, look through V1. 4540 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4541 return Cast2->getOperand(0); 4542 return nullptr; 4543 } 4544 4545 auto *C = dyn_cast<Constant>(V2); 4546 if (!C) 4547 return nullptr; 4548 4549 Constant *CastedTo = nullptr; 4550 switch (*CastOp) { 4551 case Instruction::ZExt: 4552 if (CmpI->isUnsigned()) 4553 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4554 break; 4555 case Instruction::SExt: 4556 if (CmpI->isSigned()) 4557 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4558 break; 4559 case Instruction::Trunc: 4560 Constant *CmpConst; 4561 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4562 CmpConst->getType() == SrcTy) { 4563 // Here we have the following case: 4564 // 4565 // %cond = cmp iN %x, CmpConst 4566 // %tr = trunc iN %x to iK 4567 // %narrowsel = select i1 %cond, iK %t, iK C 4568 // 4569 // We can always move trunc after select operation: 4570 // 4571 // %cond = cmp iN %x, CmpConst 4572 // %widesel = select i1 %cond, iN %x, iN CmpConst 4573 // %tr = trunc iN %widesel to iK 4574 // 4575 // Note that C could be extended in any way because we don't care about 4576 // upper bits after truncation. It can't be abs pattern, because it would 4577 // look like: 4578 // 4579 // select i1 %cond, x, -x. 4580 // 4581 // So only min/max pattern could be matched. Such match requires widened C 4582 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4583 // CmpConst == C is checked below. 4584 CastedTo = CmpConst; 4585 } else { 4586 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4587 } 4588 break; 4589 case Instruction::FPTrunc: 4590 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4591 break; 4592 case Instruction::FPExt: 4593 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4594 break; 4595 case Instruction::FPToUI: 4596 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4597 break; 4598 case Instruction::FPToSI: 4599 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4600 break; 4601 case Instruction::UIToFP: 4602 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4603 break; 4604 case Instruction::SIToFP: 4605 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4606 break; 4607 default: 4608 break; 4609 } 4610 4611 if (!CastedTo) 4612 return nullptr; 4613 4614 // Make sure the cast doesn't lose any information. 4615 Constant *CastedBack = 4616 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4617 if (CastedBack != C) 4618 return nullptr; 4619 4620 return CastedTo; 4621 } 4622 4623 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4624 Instruction::CastOps *CastOp, 4625 unsigned Depth) { 4626 if (Depth >= MaxDepth) 4627 return {SPF_UNKNOWN, SPNB_NA, false}; 4628 4629 SelectInst *SI = dyn_cast<SelectInst>(V); 4630 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4631 4632 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4633 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4634 4635 CmpInst::Predicate Pred = CmpI->getPredicate(); 4636 Value *CmpLHS = CmpI->getOperand(0); 4637 Value *CmpRHS = CmpI->getOperand(1); 4638 Value *TrueVal = SI->getTrueValue(); 4639 Value *FalseVal = SI->getFalseValue(); 4640 FastMathFlags FMF; 4641 if (isa<FPMathOperator>(CmpI)) 4642 FMF = CmpI->getFastMathFlags(); 4643 4644 // Bail out early. 4645 if (CmpI->isEquality()) 4646 return {SPF_UNKNOWN, SPNB_NA, false}; 4647 4648 // Deal with type mismatches. 4649 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4650 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4651 // If this is a potential fmin/fmax with a cast to integer, then ignore 4652 // -0.0 because there is no corresponding integer value. 4653 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4654 FMF.setNoSignedZeros(); 4655 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4656 cast<CastInst>(TrueVal)->getOperand(0), C, 4657 LHS, RHS, Depth); 4658 } 4659 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4660 // If this is a potential fmin/fmax with a cast to integer, then ignore 4661 // -0.0 because there is no corresponding integer value. 4662 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4663 FMF.setNoSignedZeros(); 4664 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4665 C, cast<CastInst>(FalseVal)->getOperand(0), 4666 LHS, RHS, Depth); 4667 } 4668 } 4669 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4670 LHS, RHS, Depth); 4671 } 4672 4673 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4674 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4675 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4676 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4677 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4678 if (SPF == SPF_FMINNUM) 4679 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4680 if (SPF == SPF_FMAXNUM) 4681 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4682 llvm_unreachable("unhandled!"); 4683 } 4684 4685 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4686 if (SPF == SPF_SMIN) return SPF_SMAX; 4687 if (SPF == SPF_UMIN) return SPF_UMAX; 4688 if (SPF == SPF_SMAX) return SPF_SMIN; 4689 if (SPF == SPF_UMAX) return SPF_UMIN; 4690 llvm_unreachable("unhandled!"); 4691 } 4692 4693 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4694 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4695 } 4696 4697 /// Return true if "icmp Pred LHS RHS" is always true. 4698 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4699 const Value *RHS, const DataLayout &DL, 4700 unsigned Depth) { 4701 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4702 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4703 return true; 4704 4705 switch (Pred) { 4706 default: 4707 return false; 4708 4709 case CmpInst::ICMP_SLE: { 4710 const APInt *C; 4711 4712 // LHS s<= LHS +_{nsw} C if C >= 0 4713 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4714 return !C->isNegative(); 4715 return false; 4716 } 4717 4718 case CmpInst::ICMP_ULE: { 4719 const APInt *C; 4720 4721 // LHS u<= LHS +_{nuw} C for any C 4722 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4723 return true; 4724 4725 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4726 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4727 const Value *&X, 4728 const APInt *&CA, const APInt *&CB) { 4729 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4730 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4731 return true; 4732 4733 // If X & C == 0 then (X | C) == X +_{nuw} C 4734 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4735 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4736 KnownBits Known(CA->getBitWidth()); 4737 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4738 /*CxtI*/ nullptr, /*DT*/ nullptr); 4739 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4740 return true; 4741 } 4742 4743 return false; 4744 }; 4745 4746 const Value *X; 4747 const APInt *CLHS, *CRHS; 4748 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4749 return CLHS->ule(*CRHS); 4750 4751 return false; 4752 } 4753 } 4754 } 4755 4756 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4757 /// ALHS ARHS" is true. Otherwise, return None. 4758 static Optional<bool> 4759 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4760 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4761 const DataLayout &DL, unsigned Depth) { 4762 switch (Pred) { 4763 default: 4764 return None; 4765 4766 case CmpInst::ICMP_SLT: 4767 case CmpInst::ICMP_SLE: 4768 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4769 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4770 return true; 4771 return None; 4772 4773 case CmpInst::ICMP_ULT: 4774 case CmpInst::ICMP_ULE: 4775 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4776 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4777 return true; 4778 return None; 4779 } 4780 } 4781 4782 /// Return true if the operands of the two compares match. IsSwappedOps is true 4783 /// when the operands match, but are swapped. 4784 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4785 const Value *BLHS, const Value *BRHS, 4786 bool &IsSwappedOps) { 4787 4788 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4789 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4790 return IsMatchingOps || IsSwappedOps; 4791 } 4792 4793 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4794 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4795 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4796 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4797 const Value *ALHS, 4798 const Value *ARHS, 4799 CmpInst::Predicate BPred, 4800 const Value *BLHS, 4801 const Value *BRHS, 4802 bool IsSwappedOps) { 4803 // Canonicalize the operands so they're matching. 4804 if (IsSwappedOps) { 4805 std::swap(BLHS, BRHS); 4806 BPred = ICmpInst::getSwappedPredicate(BPred); 4807 } 4808 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4809 return true; 4810 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4811 return false; 4812 4813 return None; 4814 } 4815 4816 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4817 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4818 /// C2" is false. Otherwise, return None if we can't infer anything. 4819 static Optional<bool> 4820 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4821 const ConstantInt *C1, 4822 CmpInst::Predicate BPred, 4823 const Value *BLHS, const ConstantInt *C2) { 4824 assert(ALHS == BLHS && "LHS operands must match."); 4825 ConstantRange DomCR = 4826 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4827 ConstantRange CR = 4828 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4829 ConstantRange Intersection = DomCR.intersectWith(CR); 4830 ConstantRange Difference = DomCR.difference(CR); 4831 if (Intersection.isEmptySet()) 4832 return false; 4833 if (Difference.isEmptySet()) 4834 return true; 4835 return None; 4836 } 4837 4838 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4839 /// false. Otherwise, return None if we can't infer anything. 4840 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4841 const ICmpInst *RHS, 4842 const DataLayout &DL, bool LHSIsTrue, 4843 unsigned Depth) { 4844 Value *ALHS = LHS->getOperand(0); 4845 Value *ARHS = LHS->getOperand(1); 4846 // The rest of the logic assumes the LHS condition is true. If that's not the 4847 // case, invert the predicate to make it so. 4848 ICmpInst::Predicate APred = 4849 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4850 4851 Value *BLHS = RHS->getOperand(0); 4852 Value *BRHS = RHS->getOperand(1); 4853 ICmpInst::Predicate BPred = RHS->getPredicate(); 4854 4855 // Can we infer anything when the two compares have matching operands? 4856 bool IsSwappedOps; 4857 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4858 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4859 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4860 return Implication; 4861 // No amount of additional analysis will infer the second condition, so 4862 // early exit. 4863 return None; 4864 } 4865 4866 // Can we infer anything when the LHS operands match and the RHS operands are 4867 // constants (not necessarily matching)? 4868 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4869 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4870 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4871 cast<ConstantInt>(BRHS))) 4872 return Implication; 4873 // No amount of additional analysis will infer the second condition, so 4874 // early exit. 4875 return None; 4876 } 4877 4878 if (APred == BPred) 4879 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4880 return None; 4881 } 4882 4883 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4884 /// false. Otherwise, return None if we can't infer anything. We expect the 4885 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4886 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4887 const ICmpInst *RHS, 4888 const DataLayout &DL, bool LHSIsTrue, 4889 unsigned Depth) { 4890 // The LHS must be an 'or' or an 'and' instruction. 4891 assert((LHS->getOpcode() == Instruction::And || 4892 LHS->getOpcode() == Instruction::Or) && 4893 "Expected LHS to be 'and' or 'or'."); 4894 4895 assert(Depth <= MaxDepth && "Hit recursion limit"); 4896 4897 // If the result of an 'or' is false, then we know both legs of the 'or' are 4898 // false. Similarly, if the result of an 'and' is true, then we know both 4899 // legs of the 'and' are true. 4900 Value *ALHS, *ARHS; 4901 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4902 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4903 // FIXME: Make this non-recursion. 4904 if (Optional<bool> Implication = 4905 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4906 return Implication; 4907 if (Optional<bool> Implication = 4908 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4909 return Implication; 4910 return None; 4911 } 4912 return None; 4913 } 4914 4915 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4916 const DataLayout &DL, bool LHSIsTrue, 4917 unsigned Depth) { 4918 // Bail out when we hit the limit. 4919 if (Depth == MaxDepth) 4920 return None; 4921 4922 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4923 // example. 4924 if (LHS->getType() != RHS->getType()) 4925 return None; 4926 4927 Type *OpTy = LHS->getType(); 4928 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4929 4930 // LHS ==> RHS by definition 4931 if (LHS == RHS) 4932 return LHSIsTrue; 4933 4934 // FIXME: Extending the code below to handle vectors. 4935 if (OpTy->isVectorTy()) 4936 return None; 4937 4938 assert(OpTy->isIntegerTy(1) && "implied by above"); 4939 4940 // Both LHS and RHS are icmps. 4941 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4942 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4943 if (LHSCmp && RHSCmp) 4944 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4945 4946 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4947 // an icmp. FIXME: Add support for and/or on the RHS. 4948 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4949 if (LHSBO && RHSCmp) { 4950 if ((LHSBO->getOpcode() == Instruction::And || 4951 LHSBO->getOpcode() == Instruction::Or)) 4952 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4953 } 4954 return None; 4955 } 4956