1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Operator.h" 24 #include "llvm/Target/TargetData.h" 25 #include "llvm/Support/GetElementPtrTypeIterator.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/PatternMatch.h" 28 #include "llvm/ADT/SmallPtrSet.h" 29 #include <cstring> 30 using namespace llvm; 31 using namespace llvm::PatternMatch; 32 33 const unsigned MaxDepth = 6; 34 35 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 36 /// unknown returns 0). For vector types, returns the element type's bitwidth. 37 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 38 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 39 return BitWidth; 40 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 41 return TD ? TD->getPointerSizeInBits() : 0; 42 } 43 44 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 45 const APInt &Mask, 46 APInt &KnownZero, APInt &KnownOne, 47 APInt &KnownZero2, APInt &KnownOne2, 48 const TargetData *TD, unsigned Depth) { 49 if (!Add) { 50 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 51 // We know that the top bits of C-X are clear if X contains less bits 52 // than C (i.e. no wrap-around can happen). For example, 20-X is 53 // positive if we can prove that X is >= 0 and < 16. 54 if (!CLHS->getValue().isNegative()) { 55 unsigned BitWidth = Mask.getBitWidth(); 56 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 57 // NLZ can't be BitWidth with no sign bit 58 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 59 llvm::ComputeMaskedBits(Op1, MaskV, KnownZero2, KnownOne2, TD, Depth+1); 60 61 // If all of the MaskV bits are known to be zero, then we know the 62 // output top bits are zero, because we now know that the output is 63 // from [0-C]. 64 if ((KnownZero2 & MaskV) == MaskV) { 65 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 66 // Top bits known zero. 67 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 68 } 69 } 70 } 71 } 72 73 unsigned BitWidth = Mask.getBitWidth(); 74 75 // If one of the operands has trailing zeros, then the bits that the 76 // other operand has in those bit positions will be preserved in the 77 // result. For an add, this works with either operand. For a subtract, 78 // this only works if the known zeros are in the right operand. 79 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 80 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 81 BitWidth - Mask.countLeadingZeros()); 82 llvm::ComputeMaskedBits(Op0, Mask2, LHSKnownZero, LHSKnownOne, TD, Depth+1); 83 assert((LHSKnownZero & LHSKnownOne) == 0 && 84 "Bits known to be one AND zero?"); 85 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 86 87 llvm::ComputeMaskedBits(Op1, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 88 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 89 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 90 91 // Determine which operand has more trailing zeros, and use that 92 // many bits from the other operand. 93 if (LHSKnownZeroOut > RHSKnownZeroOut) { 94 if (Add) { 95 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 96 KnownZero |= KnownZero2 & Mask; 97 KnownOne |= KnownOne2 & Mask; 98 } else { 99 // If the known zeros are in the left operand for a subtract, 100 // fall back to the minimum known zeros in both operands. 101 KnownZero |= APInt::getLowBitsSet(BitWidth, 102 std::min(LHSKnownZeroOut, 103 RHSKnownZeroOut)); 104 } 105 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 106 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 107 KnownZero |= LHSKnownZero & Mask; 108 KnownOne |= LHSKnownOne & Mask; 109 } 110 111 // Are we still trying to solve for the sign bit? 112 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()) { 113 if (NSW) { 114 if (Add) { 115 // Adding two positive numbers can't wrap into negative 116 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 117 KnownZero |= APInt::getSignBit(BitWidth); 118 // and adding two negative numbers can't wrap into positive. 119 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 120 KnownOne |= APInt::getSignBit(BitWidth); 121 } else { 122 // Subtracting a negative number from a positive one can't wrap 123 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 124 KnownZero |= APInt::getSignBit(BitWidth); 125 // neither can subtracting a positive number from a negative one. 126 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 127 KnownOne |= APInt::getSignBit(BitWidth); 128 } 129 } 130 } 131 } 132 133 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 134 const APInt &Mask, 135 APInt &KnownZero, APInt &KnownOne, 136 APInt &KnownZero2, APInt &KnownOne2, 137 const TargetData *TD, unsigned Depth) { 138 unsigned BitWidth = Mask.getBitWidth(); 139 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 140 ComputeMaskedBits(Op1, Mask2, KnownZero, KnownOne, TD, Depth+1); 141 ComputeMaskedBits(Op0, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 142 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 143 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 144 145 bool isKnownNegative = false; 146 bool isKnownNonNegative = false; 147 // If the multiplication is known not to overflow, compute the sign bit. 148 if (Mask.isNegative() && NSW) { 149 if (Op0 == Op1) { 150 // The product of a number with itself is non-negative. 151 isKnownNonNegative = true; 152 } else { 153 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 154 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 155 bool isKnownNegativeOp1 = KnownOne.isNegative(); 156 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 157 // The product of two numbers with the same sign is non-negative. 158 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 159 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 160 // The product of a negative number and a non-negative number is either 161 // negative or zero. 162 if (!isKnownNonNegative) 163 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 164 isKnownNonZero(Op0, TD, Depth)) || 165 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 166 isKnownNonZero(Op1, TD, Depth)); 167 } 168 } 169 170 // If low bits are zero in either operand, output low known-0 bits. 171 // Also compute a conserative estimate for high known-0 bits. 172 // More trickiness is possible, but this is sufficient for the 173 // interesting case of alignment computation. 174 KnownOne.clearAllBits(); 175 unsigned TrailZ = KnownZero.countTrailingOnes() + 176 KnownZero2.countTrailingOnes(); 177 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 178 KnownZero2.countLeadingOnes(), 179 BitWidth) - BitWidth; 180 181 TrailZ = std::min(TrailZ, BitWidth); 182 LeadZ = std::min(LeadZ, BitWidth); 183 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 184 APInt::getHighBitsSet(BitWidth, LeadZ); 185 KnownZero &= Mask; 186 187 // Only make use of no-wrap flags if we failed to compute the sign bit 188 // directly. This matters if the multiplication always overflows, in 189 // which case we prefer to follow the result of the direct computation, 190 // though as the program is invoking undefined behaviour we can choose 191 // whatever we like here. 192 if (isKnownNonNegative && !KnownOne.isNegative()) 193 KnownZero.setBit(BitWidth - 1); 194 else if (isKnownNegative && !KnownZero.isNegative()) 195 KnownOne.setBit(BitWidth - 1); 196 } 197 198 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 199 /// known to be either zero or one and return them in the KnownZero/KnownOne 200 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 201 /// processing. 202 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 203 /// we cannot optimize based on the assumption that it is zero without changing 204 /// it to be an explicit zero. If we don't change it to zero, other code could 205 /// optimized based on the contradictory assumption that it is non-zero. 206 /// Because instcombine aggressively folds operations with undef args anyway, 207 /// this won't lose us code quality. 208 /// 209 /// This function is defined on values with integer type, values with pointer 210 /// type (but only if TD is non-null), and vectors of integers. In the case 211 /// where V is a vector, the mask, known zero, and known one values are the 212 /// same width as the vector element, and the bit is set only if it is true 213 /// for all of the elements in the vector. 214 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 215 APInt &KnownZero, APInt &KnownOne, 216 const TargetData *TD, unsigned Depth) { 217 assert(V && "No Value?"); 218 assert(Depth <= MaxDepth && "Limit Search Depth"); 219 unsigned BitWidth = Mask.getBitWidth(); 220 assert((V->getType()->isIntOrIntVectorTy() || 221 V->getType()->getScalarType()->isPointerTy()) && 222 "Not integer or pointer type!"); 223 assert((!TD || 224 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 225 (!V->getType()->isIntOrIntVectorTy() || 226 V->getType()->getScalarSizeInBits() == BitWidth) && 227 KnownZero.getBitWidth() == BitWidth && 228 KnownOne.getBitWidth() == BitWidth && 229 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 230 231 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 232 // We know all of the bits for a constant! 233 KnownOne = CI->getValue() & Mask; 234 KnownZero = ~KnownOne & Mask; 235 return; 236 } 237 // Null and aggregate-zero are all-zeros. 238 if (isa<ConstantPointerNull>(V) || 239 isa<ConstantAggregateZero>(V)) { 240 KnownOne.clearAllBits(); 241 KnownZero = Mask; 242 return; 243 } 244 // Handle a constant vector by taking the intersection of the known bits of 245 // each element. There is no real need to handle ConstantVector here, because 246 // we don't handle undef in any particularly useful way. 247 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 248 // We know that CDS must be a vector of integers. Take the intersection of 249 // each element. 250 KnownZero.setAllBits(); KnownOne.setAllBits(); 251 APInt Elt(KnownZero.getBitWidth(), 0); 252 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 253 Elt = CDS->getElementAsInteger(i); 254 KnownZero &= ~Elt; 255 KnownOne &= Elt; 256 } 257 return; 258 } 259 260 // The address of an aligned GlobalValue has trailing zeros. 261 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 262 unsigned Align = GV->getAlignment(); 263 if (Align == 0 && TD) { 264 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 265 Type *ObjectType = GVar->getType()->getElementType(); 266 if (ObjectType->isSized()) { 267 // If the object is defined in the current Module, we'll be giving 268 // it the preferred alignment. Otherwise, we have to assume that it 269 // may only have the minimum ABI alignment. 270 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 271 Align = TD->getPreferredAlignment(GVar); 272 else 273 Align = TD->getABITypeAlignment(ObjectType); 274 } 275 } 276 } 277 if (Align > 0) 278 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 279 CountTrailingZeros_32(Align)); 280 else 281 KnownZero.clearAllBits(); 282 KnownOne.clearAllBits(); 283 return; 284 } 285 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 286 // the bits of its aliasee. 287 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 288 if (GA->mayBeOverridden()) { 289 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 290 } else { 291 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 292 TD, Depth+1); 293 } 294 return; 295 } 296 297 if (Argument *A = dyn_cast<Argument>(V)) { 298 // Get alignment information off byval arguments if specified in the IR. 299 if (A->hasByValAttr()) 300 if (unsigned Align = A->getParamAlignment()) 301 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 302 CountTrailingZeros_32(Align)); 303 return; 304 } 305 306 // Start out not knowing anything. 307 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 308 309 if (Depth == MaxDepth || Mask == 0) 310 return; // Limit search depth. 311 312 Operator *I = dyn_cast<Operator>(V); 313 if (!I) return; 314 315 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 316 switch (I->getOpcode()) { 317 default: break; 318 case Instruction::And: { 319 // If either the LHS or the RHS are Zero, the result is zero. 320 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 321 APInt Mask2(Mask & ~KnownZero); 322 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 323 Depth+1); 324 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 325 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 326 327 // Output known-1 bits are only known if set in both the LHS & RHS. 328 KnownOne &= KnownOne2; 329 // Output known-0 are known to be clear if zero in either the LHS | RHS. 330 KnownZero |= KnownZero2; 331 return; 332 } 333 case Instruction::Or: { 334 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 335 APInt Mask2(Mask & ~KnownOne); 336 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 337 Depth+1); 338 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 339 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 340 341 // Output known-0 bits are only known if clear in both the LHS & RHS. 342 KnownZero &= KnownZero2; 343 // Output known-1 are known to be set if set in either the LHS | RHS. 344 KnownOne |= KnownOne2; 345 return; 346 } 347 case Instruction::Xor: { 348 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 349 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 350 Depth+1); 351 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 352 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 353 354 // Output known-0 bits are known if clear or set in both the LHS & RHS. 355 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 356 // Output known-1 are known to be set if set in only one of the LHS, RHS. 357 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 358 KnownZero = KnownZeroOut; 359 return; 360 } 361 case Instruction::Mul: { 362 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 363 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 364 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 365 TD, Depth); 366 break; 367 } 368 case Instruction::UDiv: { 369 // For the purposes of computing leading zeros we can conservatively 370 // treat a udiv as a logical right shift by the power of 2 known to 371 // be less than the denominator. 372 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 373 ComputeMaskedBits(I->getOperand(0), 374 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 375 unsigned LeadZ = KnownZero2.countLeadingOnes(); 376 377 KnownOne2.clearAllBits(); 378 KnownZero2.clearAllBits(); 379 ComputeMaskedBits(I->getOperand(1), 380 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 381 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 382 if (RHSUnknownLeadingOnes != BitWidth) 383 LeadZ = std::min(BitWidth, 384 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 385 386 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 387 return; 388 } 389 case Instruction::Select: 390 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 391 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 392 Depth+1); 393 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 394 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 395 396 // Only known if known in both the LHS and RHS. 397 KnownOne &= KnownOne2; 398 KnownZero &= KnownZero2; 399 return; 400 case Instruction::FPTrunc: 401 case Instruction::FPExt: 402 case Instruction::FPToUI: 403 case Instruction::FPToSI: 404 case Instruction::SIToFP: 405 case Instruction::UIToFP: 406 return; // Can't work with floating point. 407 case Instruction::PtrToInt: 408 case Instruction::IntToPtr: 409 // We can't handle these if we don't know the pointer size. 410 if (!TD) return; 411 // FALL THROUGH and handle them the same as zext/trunc. 412 case Instruction::ZExt: 413 case Instruction::Trunc: { 414 Type *SrcTy = I->getOperand(0)->getType(); 415 416 unsigned SrcBitWidth; 417 // Note that we handle pointer operands here because of inttoptr/ptrtoint 418 // which fall through here. 419 if (SrcTy->isPointerTy()) 420 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 421 else 422 SrcBitWidth = SrcTy->getScalarSizeInBits(); 423 424 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 425 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 426 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 427 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 428 Depth+1); 429 KnownZero = KnownZero.zextOrTrunc(BitWidth); 430 KnownOne = KnownOne.zextOrTrunc(BitWidth); 431 // Any top bits are known to be zero. 432 if (BitWidth > SrcBitWidth) 433 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 434 return; 435 } 436 case Instruction::BitCast: { 437 Type *SrcTy = I->getOperand(0)->getType(); 438 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 439 // TODO: For now, not handling conversions like: 440 // (bitcast i64 %x to <2 x i32>) 441 !I->getType()->isVectorTy()) { 442 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 443 Depth+1); 444 return; 445 } 446 break; 447 } 448 case Instruction::SExt: { 449 // Compute the bits in the result that are not present in the input. 450 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 451 452 APInt MaskIn = Mask.trunc(SrcBitWidth); 453 KnownZero = KnownZero.trunc(SrcBitWidth); 454 KnownOne = KnownOne.trunc(SrcBitWidth); 455 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 456 Depth+1); 457 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 458 KnownZero = KnownZero.zext(BitWidth); 459 KnownOne = KnownOne.zext(BitWidth); 460 461 // If the sign bit of the input is known set or clear, then we know the 462 // top bits of the result. 463 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 464 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 465 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 466 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 467 return; 468 } 469 case Instruction::Shl: 470 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 471 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 472 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 473 APInt Mask2(Mask.lshr(ShiftAmt)); 474 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 475 Depth+1); 476 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 477 KnownZero <<= ShiftAmt; 478 KnownOne <<= ShiftAmt; 479 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 480 return; 481 } 482 break; 483 case Instruction::LShr: 484 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 485 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 486 // Compute the new bits that are at the top now. 487 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 488 489 // Unsigned shift right. 490 APInt Mask2(Mask.shl(ShiftAmt)); 491 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 492 Depth+1); 493 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 494 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 495 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 496 // high bits known zero. 497 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 498 return; 499 } 500 break; 501 case Instruction::AShr: 502 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 503 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 504 // Compute the new bits that are at the top now. 505 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 506 507 // Signed shift right. 508 APInt Mask2(Mask.shl(ShiftAmt)); 509 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 510 Depth+1); 511 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 512 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 513 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 514 515 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 516 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 517 KnownZero |= HighBits; 518 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 519 KnownOne |= HighBits; 520 return; 521 } 522 break; 523 case Instruction::Sub: { 524 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 525 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 526 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 527 TD, Depth); 528 break; 529 } 530 case Instruction::Add: { 531 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 532 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 533 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 534 TD, Depth); 535 break; 536 } 537 case Instruction::SRem: 538 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 539 APInt RA = Rem->getValue().abs(); 540 if (RA.isPowerOf2()) { 541 APInt LowBits = RA - 1; 542 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 543 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 544 Depth+1); 545 546 // The low bits of the first operand are unchanged by the srem. 547 KnownZero = KnownZero2 & LowBits; 548 KnownOne = KnownOne2 & LowBits; 549 550 // If the first operand is non-negative or has all low bits zero, then 551 // the upper bits are all zero. 552 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 553 KnownZero |= ~LowBits; 554 555 // If the first operand is negative and not all low bits are zero, then 556 // the upper bits are all one. 557 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 558 KnownOne |= ~LowBits; 559 560 KnownZero &= Mask; 561 KnownOne &= Mask; 562 563 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 564 } 565 } 566 567 // The sign bit is the LHS's sign bit, except when the result of the 568 // remainder is zero. 569 if (Mask.isNegative() && KnownZero.isNonNegative()) { 570 APInt Mask2 = APInt::getSignBit(BitWidth); 571 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 572 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 573 Depth+1); 574 // If it's known zero, our sign bit is also zero. 575 if (LHSKnownZero.isNegative()) 576 KnownZero |= LHSKnownZero; 577 } 578 579 break; 580 case Instruction::URem: { 581 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 582 APInt RA = Rem->getValue(); 583 if (RA.isPowerOf2()) { 584 APInt LowBits = (RA - 1); 585 APInt Mask2 = LowBits & Mask; 586 KnownZero |= ~LowBits & Mask; 587 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 588 Depth+1); 589 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 590 break; 591 } 592 } 593 594 // Since the result is less than or equal to either operand, any leading 595 // zero bits in either operand must also exist in the result. 596 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 597 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 598 TD, Depth+1); 599 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 600 TD, Depth+1); 601 602 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 603 KnownZero2.countLeadingOnes()); 604 KnownOne.clearAllBits(); 605 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 606 break; 607 } 608 609 case Instruction::Alloca: { 610 AllocaInst *AI = cast<AllocaInst>(V); 611 unsigned Align = AI->getAlignment(); 612 if (Align == 0 && TD) 613 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 614 615 if (Align > 0) 616 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 617 CountTrailingZeros_32(Align)); 618 break; 619 } 620 case Instruction::GetElementPtr: { 621 // Analyze all of the subscripts of this getelementptr instruction 622 // to determine if we can prove known low zero bits. 623 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 624 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 625 ComputeMaskedBits(I->getOperand(0), LocalMask, 626 LocalKnownZero, LocalKnownOne, TD, Depth+1); 627 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 628 629 gep_type_iterator GTI = gep_type_begin(I); 630 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 631 Value *Index = I->getOperand(i); 632 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 633 // Handle struct member offset arithmetic. 634 if (!TD) return; 635 const StructLayout *SL = TD->getStructLayout(STy); 636 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 637 uint64_t Offset = SL->getElementOffset(Idx); 638 TrailZ = std::min(TrailZ, 639 CountTrailingZeros_64(Offset)); 640 } else { 641 // Handle array index arithmetic. 642 Type *IndexedTy = GTI.getIndexedType(); 643 if (!IndexedTy->isSized()) return; 644 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 645 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 646 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 647 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 648 ComputeMaskedBits(Index, LocalMask, 649 LocalKnownZero, LocalKnownOne, TD, Depth+1); 650 TrailZ = std::min(TrailZ, 651 unsigned(CountTrailingZeros_64(TypeSize) + 652 LocalKnownZero.countTrailingOnes())); 653 } 654 } 655 656 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 657 break; 658 } 659 case Instruction::PHI: { 660 PHINode *P = cast<PHINode>(I); 661 // Handle the case of a simple two-predecessor recurrence PHI. 662 // There's a lot more that could theoretically be done here, but 663 // this is sufficient to catch some interesting cases. 664 if (P->getNumIncomingValues() == 2) { 665 for (unsigned i = 0; i != 2; ++i) { 666 Value *L = P->getIncomingValue(i); 667 Value *R = P->getIncomingValue(!i); 668 Operator *LU = dyn_cast<Operator>(L); 669 if (!LU) 670 continue; 671 unsigned Opcode = LU->getOpcode(); 672 // Check for operations that have the property that if 673 // both their operands have low zero bits, the result 674 // will have low zero bits. 675 if (Opcode == Instruction::Add || 676 Opcode == Instruction::Sub || 677 Opcode == Instruction::And || 678 Opcode == Instruction::Or || 679 Opcode == Instruction::Mul) { 680 Value *LL = LU->getOperand(0); 681 Value *LR = LU->getOperand(1); 682 // Find a recurrence. 683 if (LL == I) 684 L = LR; 685 else if (LR == I) 686 L = LL; 687 else 688 break; 689 // Ok, we have a PHI of the form L op= R. Check for low 690 // zero bits. 691 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 692 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 693 Mask2 = APInt::getLowBitsSet(BitWidth, 694 KnownZero2.countTrailingOnes()); 695 696 // We need to take the minimum number of known bits 697 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 698 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 699 700 KnownZero = Mask & 701 APInt::getLowBitsSet(BitWidth, 702 std::min(KnownZero2.countTrailingOnes(), 703 KnownZero3.countTrailingOnes())); 704 break; 705 } 706 } 707 } 708 709 // Unreachable blocks may have zero-operand PHI nodes. 710 if (P->getNumIncomingValues() == 0) 711 return; 712 713 // Otherwise take the unions of the known bit sets of the operands, 714 // taking conservative care to avoid excessive recursion. 715 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 716 // Skip if every incoming value references to ourself. 717 if (P->hasConstantValue() == P) 718 break; 719 720 KnownZero = Mask; 721 KnownOne = Mask; 722 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 723 // Skip direct self references. 724 if (P->getIncomingValue(i) == P) continue; 725 726 KnownZero2 = APInt(BitWidth, 0); 727 KnownOne2 = APInt(BitWidth, 0); 728 // Recurse, but cap the recursion to one level, because we don't 729 // want to waste time spinning around in loops. 730 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 731 KnownZero2, KnownOne2, TD, MaxDepth-1); 732 KnownZero &= KnownZero2; 733 KnownOne &= KnownOne2; 734 // If all bits have been ruled out, there's no need to check 735 // more operands. 736 if (!KnownZero && !KnownOne) 737 break; 738 } 739 } 740 break; 741 } 742 case Instruction::Call: 743 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 744 switch (II->getIntrinsicID()) { 745 default: break; 746 case Intrinsic::ctlz: 747 case Intrinsic::cttz: { 748 unsigned LowBits = Log2_32(BitWidth)+1; 749 // If this call is undefined for 0, the result will be less than 2^n. 750 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 751 LowBits -= 1; 752 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 753 break; 754 } 755 case Intrinsic::ctpop: { 756 unsigned LowBits = Log2_32(BitWidth)+1; 757 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 758 break; 759 } 760 case Intrinsic::x86_sse42_crc32_64_8: 761 case Intrinsic::x86_sse42_crc32_64_64: 762 KnownZero = Mask & APInt::getHighBitsSet(64, 32); 763 break; 764 } 765 } 766 break; 767 case Instruction::ExtractValue: 768 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 769 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 770 if (EVI->getNumIndices() != 1) break; 771 if (EVI->getIndices()[0] == 0) { 772 switch (II->getIntrinsicID()) { 773 default: break; 774 case Intrinsic::uadd_with_overflow: 775 case Intrinsic::sadd_with_overflow: 776 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 777 II->getArgOperand(1), false, Mask, 778 KnownZero, KnownOne, KnownZero2, KnownOne2, 779 TD, Depth); 780 break; 781 case Intrinsic::usub_with_overflow: 782 case Intrinsic::ssub_with_overflow: 783 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 784 II->getArgOperand(1), false, Mask, 785 KnownZero, KnownOne, KnownZero2, KnownOne2, 786 TD, Depth); 787 break; 788 case Intrinsic::umul_with_overflow: 789 case Intrinsic::smul_with_overflow: 790 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 791 false, Mask, KnownZero, KnownOne, 792 KnownZero2, KnownOne2, TD, Depth); 793 break; 794 } 795 } 796 } 797 } 798 } 799 800 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 801 /// one. Convenience wrapper around ComputeMaskedBits. 802 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 803 const TargetData *TD, unsigned Depth) { 804 unsigned BitWidth = getBitWidth(V->getType(), TD); 805 if (!BitWidth) { 806 KnownZero = false; 807 KnownOne = false; 808 return; 809 } 810 APInt ZeroBits(BitWidth, 0); 811 APInt OneBits(BitWidth, 0); 812 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 813 Depth); 814 KnownOne = OneBits[BitWidth - 1]; 815 KnownZero = ZeroBits[BitWidth - 1]; 816 } 817 818 /// isPowerOfTwo - Return true if the given value is known to have exactly one 819 /// bit set when defined. For vectors return true if every element is known to 820 /// be a power of two when defined. Supports values with integer or pointer 821 /// types and vectors of integers. 822 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 823 unsigned Depth) { 824 if (Constant *C = dyn_cast<Constant>(V)) { 825 if (C->isNullValue()) 826 return OrZero; 827 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 828 return CI->getValue().isPowerOf2(); 829 // TODO: Handle vector constants. 830 } 831 832 // 1 << X is clearly a power of two if the one is not shifted off the end. If 833 // it is shifted off the end then the result is undefined. 834 if (match(V, m_Shl(m_One(), m_Value()))) 835 return true; 836 837 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 838 // bottom. If it is shifted off the bottom then the result is undefined. 839 if (match(V, m_LShr(m_SignBit(), m_Value()))) 840 return true; 841 842 // The remaining tests are all recursive, so bail out if we hit the limit. 843 if (Depth++ == MaxDepth) 844 return false; 845 846 Value *X = 0, *Y = 0; 847 // A shift of a power of two is a power of two or zero. 848 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 849 match(V, m_Shr(m_Value(X), m_Value())))) 850 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 851 852 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 853 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 854 855 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 856 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 857 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 858 859 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 860 // A power of two and'd with anything is a power of two or zero. 861 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 862 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 863 return true; 864 // X & (-X) is always a power of two or zero. 865 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 866 return true; 867 return false; 868 } 869 870 // An exact divide or right shift can only shift off zero bits, so the result 871 // is a power of two only if the first operand is a power of two and not 872 // copying a sign bit (sdiv int_min, 2). 873 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 874 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 875 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 876 } 877 878 return false; 879 } 880 881 /// isKnownNonZero - Return true if the given value is known to be non-zero 882 /// when defined. For vectors return true if every element is known to be 883 /// non-zero when defined. Supports values with integer or pointer type and 884 /// vectors of integers. 885 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 886 if (Constant *C = dyn_cast<Constant>(V)) { 887 if (C->isNullValue()) 888 return false; 889 if (isa<ConstantInt>(C)) 890 // Must be non-zero due to null test above. 891 return true; 892 // TODO: Handle vectors 893 return false; 894 } 895 896 // The remaining tests are all recursive, so bail out if we hit the limit. 897 if (Depth++ >= MaxDepth) 898 return false; 899 900 unsigned BitWidth = getBitWidth(V->getType(), TD); 901 902 // X | Y != 0 if X != 0 or Y != 0. 903 Value *X = 0, *Y = 0; 904 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 905 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 906 907 // ext X != 0 if X != 0. 908 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 909 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 910 911 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 912 // if the lowest bit is shifted off the end. 913 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 914 // shl nuw can't remove any non-zero bits. 915 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 916 if (BO->hasNoUnsignedWrap()) 917 return isKnownNonZero(X, TD, Depth); 918 919 APInt KnownZero(BitWidth, 0); 920 APInt KnownOne(BitWidth, 0); 921 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 922 if (KnownOne[0]) 923 return true; 924 } 925 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 926 // defined if the sign bit is shifted off the end. 927 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 928 // shr exact can only shift out zero bits. 929 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 930 if (BO->isExact()) 931 return isKnownNonZero(X, TD, Depth); 932 933 bool XKnownNonNegative, XKnownNegative; 934 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 935 if (XKnownNegative) 936 return true; 937 } 938 // div exact can only produce a zero if the dividend is zero. 939 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 940 return isKnownNonZero(X, TD, Depth); 941 } 942 // X + Y. 943 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 944 bool XKnownNonNegative, XKnownNegative; 945 bool YKnownNonNegative, YKnownNegative; 946 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 947 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 948 949 // If X and Y are both non-negative (as signed values) then their sum is not 950 // zero unless both X and Y are zero. 951 if (XKnownNonNegative && YKnownNonNegative) 952 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 953 return true; 954 955 // If X and Y are both negative (as signed values) then their sum is not 956 // zero unless both X and Y equal INT_MIN. 957 if (BitWidth && XKnownNegative && YKnownNegative) { 958 APInt KnownZero(BitWidth, 0); 959 APInt KnownOne(BitWidth, 0); 960 APInt Mask = APInt::getSignedMaxValue(BitWidth); 961 // The sign bit of X is set. If some other bit is set then X is not equal 962 // to INT_MIN. 963 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 964 if ((KnownOne & Mask) != 0) 965 return true; 966 // The sign bit of Y is set. If some other bit is set then Y is not equal 967 // to INT_MIN. 968 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 969 if ((KnownOne & Mask) != 0) 970 return true; 971 } 972 973 // The sum of a non-negative number and a power of two is not zero. 974 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 975 return true; 976 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 977 return true; 978 } 979 // X * Y. 980 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 981 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 982 // If X and Y are non-zero then so is X * Y as long as the multiplication 983 // does not overflow. 984 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 985 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 986 return true; 987 } 988 // (C ? X : Y) != 0 if X != 0 and Y != 0. 989 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 990 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 991 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 992 return true; 993 } 994 995 if (!BitWidth) return false; 996 APInt KnownZero(BitWidth, 0); 997 APInt KnownOne(BitWidth, 0); 998 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 999 TD, Depth); 1000 return KnownOne != 0; 1001 } 1002 1003 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1004 /// this predicate to simplify operations downstream. Mask is known to be zero 1005 /// for bits that V cannot have. 1006 /// 1007 /// This function is defined on values with integer type, values with pointer 1008 /// type (but only if TD is non-null), and vectors of integers. In the case 1009 /// where V is a vector, the mask, known zero, and known one values are the 1010 /// same width as the vector element, and the bit is set only if it is true 1011 /// for all of the elements in the vector. 1012 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1013 const TargetData *TD, unsigned Depth) { 1014 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1015 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1016 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1017 return (KnownZero & Mask) == Mask; 1018 } 1019 1020 1021 1022 /// ComputeNumSignBits - Return the number of times the sign bit of the 1023 /// register is replicated into the other bits. We know that at least 1 bit 1024 /// is always equal to the sign bit (itself), but other cases can give us 1025 /// information. For example, immediately after an "ashr X, 2", we know that 1026 /// the top 3 bits are all equal to each other, so we return 3. 1027 /// 1028 /// 'Op' must have a scalar integer type. 1029 /// 1030 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 1031 unsigned Depth) { 1032 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1033 "ComputeNumSignBits requires a TargetData object to operate " 1034 "on non-integer values!"); 1035 Type *Ty = V->getType(); 1036 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1037 Ty->getScalarSizeInBits(); 1038 unsigned Tmp, Tmp2; 1039 unsigned FirstAnswer = 1; 1040 1041 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1042 // below. 1043 1044 if (Depth == 6) 1045 return 1; // Limit search depth. 1046 1047 Operator *U = dyn_cast<Operator>(V); 1048 switch (Operator::getOpcode(V)) { 1049 default: break; 1050 case Instruction::SExt: 1051 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1052 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1053 1054 case Instruction::AShr: { 1055 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1056 // ashr X, C -> adds C sign bits. Vectors too. 1057 const APInt *ShAmt; 1058 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1059 Tmp += ShAmt->getZExtValue(); 1060 if (Tmp > TyBits) Tmp = TyBits; 1061 } 1062 return Tmp; 1063 } 1064 case Instruction::Shl: { 1065 const APInt *ShAmt; 1066 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1067 // shl destroys sign bits. 1068 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1069 Tmp2 = ShAmt->getZExtValue(); 1070 if (Tmp2 >= TyBits || // Bad shift. 1071 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1072 return Tmp - Tmp2; 1073 } 1074 break; 1075 } 1076 case Instruction::And: 1077 case Instruction::Or: 1078 case Instruction::Xor: // NOT is handled here. 1079 // Logical binary ops preserve the number of sign bits at the worst. 1080 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1081 if (Tmp != 1) { 1082 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1083 FirstAnswer = std::min(Tmp, Tmp2); 1084 // We computed what we know about the sign bits as our first 1085 // answer. Now proceed to the generic code that uses 1086 // ComputeMaskedBits, and pick whichever answer is better. 1087 } 1088 break; 1089 1090 case Instruction::Select: 1091 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1092 if (Tmp == 1) return 1; // Early out. 1093 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1094 return std::min(Tmp, Tmp2); 1095 1096 case Instruction::Add: 1097 // Add can have at most one carry bit. Thus we know that the output 1098 // is, at worst, one more bit than the inputs. 1099 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1100 if (Tmp == 1) return 1; // Early out. 1101 1102 // Special case decrementing a value (ADD X, -1): 1103 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1104 if (CRHS->isAllOnesValue()) { 1105 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1106 APInt Mask = APInt::getAllOnesValue(TyBits); 1107 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1108 Depth+1); 1109 1110 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1111 // sign bits set. 1112 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1113 return TyBits; 1114 1115 // If we are subtracting one from a positive number, there is no carry 1116 // out of the result. 1117 if (KnownZero.isNegative()) 1118 return Tmp; 1119 } 1120 1121 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1122 if (Tmp2 == 1) return 1; 1123 return std::min(Tmp, Tmp2)-1; 1124 1125 case Instruction::Sub: 1126 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1127 if (Tmp2 == 1) return 1; 1128 1129 // Handle NEG. 1130 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1131 if (CLHS->isNullValue()) { 1132 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1133 APInt Mask = APInt::getAllOnesValue(TyBits); 1134 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1135 TD, Depth+1); 1136 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1137 // sign bits set. 1138 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1139 return TyBits; 1140 1141 // If the input is known to be positive (the sign bit is known clear), 1142 // the output of the NEG has the same number of sign bits as the input. 1143 if (KnownZero.isNegative()) 1144 return Tmp2; 1145 1146 // Otherwise, we treat this like a SUB. 1147 } 1148 1149 // Sub can have at most one carry bit. Thus we know that the output 1150 // is, at worst, one more bit than the inputs. 1151 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1152 if (Tmp == 1) return 1; // Early out. 1153 return std::min(Tmp, Tmp2)-1; 1154 1155 case Instruction::PHI: { 1156 PHINode *PN = cast<PHINode>(U); 1157 // Don't analyze large in-degree PHIs. 1158 if (PN->getNumIncomingValues() > 4) break; 1159 1160 // Take the minimum of all incoming values. This can't infinitely loop 1161 // because of our depth threshold. 1162 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1163 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1164 if (Tmp == 1) return Tmp; 1165 Tmp = std::min(Tmp, 1166 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1167 } 1168 return Tmp; 1169 } 1170 1171 case Instruction::Trunc: 1172 // FIXME: it's tricky to do anything useful for this, but it is an important 1173 // case for targets like X86. 1174 break; 1175 } 1176 1177 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1178 // use this information. 1179 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1180 APInt Mask = APInt::getAllOnesValue(TyBits); 1181 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1182 1183 if (KnownZero.isNegative()) { // sign bit is 0 1184 Mask = KnownZero; 1185 } else if (KnownOne.isNegative()) { // sign bit is 1; 1186 Mask = KnownOne; 1187 } else { 1188 // Nothing known. 1189 return FirstAnswer; 1190 } 1191 1192 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1193 // the number of identical bits in the top of the input value. 1194 Mask = ~Mask; 1195 Mask <<= Mask.getBitWidth()-TyBits; 1196 // Return # leading zeros. We use 'min' here in case Val was zero before 1197 // shifting. We don't want to return '64' as for an i32 "0". 1198 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1199 } 1200 1201 /// ComputeMultiple - This function computes the integer multiple of Base that 1202 /// equals V. If successful, it returns true and returns the multiple in 1203 /// Multiple. If unsuccessful, it returns false. It looks 1204 /// through SExt instructions only if LookThroughSExt is true. 1205 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1206 bool LookThroughSExt, unsigned Depth) { 1207 const unsigned MaxDepth = 6; 1208 1209 assert(V && "No Value?"); 1210 assert(Depth <= MaxDepth && "Limit Search Depth"); 1211 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1212 1213 Type *T = V->getType(); 1214 1215 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1216 1217 if (Base == 0) 1218 return false; 1219 1220 if (Base == 1) { 1221 Multiple = V; 1222 return true; 1223 } 1224 1225 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1226 Constant *BaseVal = ConstantInt::get(T, Base); 1227 if (CO && CO == BaseVal) { 1228 // Multiple is 1. 1229 Multiple = ConstantInt::get(T, 1); 1230 return true; 1231 } 1232 1233 if (CI && CI->getZExtValue() % Base == 0) { 1234 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1235 return true; 1236 } 1237 1238 if (Depth == MaxDepth) return false; // Limit search depth. 1239 1240 Operator *I = dyn_cast<Operator>(V); 1241 if (!I) return false; 1242 1243 switch (I->getOpcode()) { 1244 default: break; 1245 case Instruction::SExt: 1246 if (!LookThroughSExt) return false; 1247 // otherwise fall through to ZExt 1248 case Instruction::ZExt: 1249 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1250 LookThroughSExt, Depth+1); 1251 case Instruction::Shl: 1252 case Instruction::Mul: { 1253 Value *Op0 = I->getOperand(0); 1254 Value *Op1 = I->getOperand(1); 1255 1256 if (I->getOpcode() == Instruction::Shl) { 1257 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1258 if (!Op1CI) return false; 1259 // Turn Op0 << Op1 into Op0 * 2^Op1 1260 APInt Op1Int = Op1CI->getValue(); 1261 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1262 APInt API(Op1Int.getBitWidth(), 0); 1263 API.setBit(BitToSet); 1264 Op1 = ConstantInt::get(V->getContext(), API); 1265 } 1266 1267 Value *Mul0 = NULL; 1268 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1269 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1270 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1271 if (Op1C->getType()->getPrimitiveSizeInBits() < 1272 MulC->getType()->getPrimitiveSizeInBits()) 1273 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1274 if (Op1C->getType()->getPrimitiveSizeInBits() > 1275 MulC->getType()->getPrimitiveSizeInBits()) 1276 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1277 1278 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1279 Multiple = ConstantExpr::getMul(MulC, Op1C); 1280 return true; 1281 } 1282 1283 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1284 if (Mul0CI->getValue() == 1) { 1285 // V == Base * Op1, so return Op1 1286 Multiple = Op1; 1287 return true; 1288 } 1289 } 1290 1291 Value *Mul1 = NULL; 1292 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1293 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1294 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1295 if (Op0C->getType()->getPrimitiveSizeInBits() < 1296 MulC->getType()->getPrimitiveSizeInBits()) 1297 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1298 if (Op0C->getType()->getPrimitiveSizeInBits() > 1299 MulC->getType()->getPrimitiveSizeInBits()) 1300 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1301 1302 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1303 Multiple = ConstantExpr::getMul(MulC, Op0C); 1304 return true; 1305 } 1306 1307 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1308 if (Mul1CI->getValue() == 1) { 1309 // V == Base * Op0, so return Op0 1310 Multiple = Op0; 1311 return true; 1312 } 1313 } 1314 } 1315 } 1316 1317 // We could not determine if V is a multiple of Base. 1318 return false; 1319 } 1320 1321 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1322 /// value is never equal to -0.0. 1323 /// 1324 /// NOTE: this function will need to be revisited when we support non-default 1325 /// rounding modes! 1326 /// 1327 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1328 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1329 return !CFP->getValueAPF().isNegZero(); 1330 1331 if (Depth == 6) 1332 return 1; // Limit search depth. 1333 1334 const Operator *I = dyn_cast<Operator>(V); 1335 if (I == 0) return false; 1336 1337 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1338 if (I->getOpcode() == Instruction::FAdd && 1339 isa<ConstantFP>(I->getOperand(1)) && 1340 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1341 return true; 1342 1343 // sitofp and uitofp turn into +0.0 for zero. 1344 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1345 return true; 1346 1347 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1348 // sqrt(-0.0) = -0.0, no other negative results are possible. 1349 if (II->getIntrinsicID() == Intrinsic::sqrt) 1350 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1351 1352 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1353 if (const Function *F = CI->getCalledFunction()) { 1354 if (F->isDeclaration()) { 1355 // abs(x) != -0.0 1356 if (F->getName() == "abs") return true; 1357 // fabs[lf](x) != -0.0 1358 if (F->getName() == "fabs") return true; 1359 if (F->getName() == "fabsf") return true; 1360 if (F->getName() == "fabsl") return true; 1361 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1362 F->getName() == "sqrtl") 1363 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1364 } 1365 } 1366 1367 return false; 1368 } 1369 1370 /// isBytewiseValue - If the specified value can be set by repeating the same 1371 /// byte in memory, return the i8 value that it is represented with. This is 1372 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1373 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1374 /// byte store (e.g. i16 0x1234), return null. 1375 Value *llvm::isBytewiseValue(Value *V) { 1376 // All byte-wide stores are splatable, even of arbitrary variables. 1377 if (V->getType()->isIntegerTy(8)) return V; 1378 1379 // Handle 'null' ConstantArrayZero etc. 1380 if (Constant *C = dyn_cast<Constant>(V)) 1381 if (C->isNullValue()) 1382 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1383 1384 // Constant float and double values can be handled as integer values if the 1385 // corresponding integer value is "byteable". An important case is 0.0. 1386 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1387 if (CFP->getType()->isFloatTy()) 1388 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1389 if (CFP->getType()->isDoubleTy()) 1390 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1391 // Don't handle long double formats, which have strange constraints. 1392 } 1393 1394 // We can handle constant integers that are power of two in size and a 1395 // multiple of 8 bits. 1396 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1397 unsigned Width = CI->getBitWidth(); 1398 if (isPowerOf2_32(Width) && Width > 8) { 1399 // We can handle this value if the recursive binary decomposition is the 1400 // same at all levels. 1401 APInt Val = CI->getValue(); 1402 APInt Val2; 1403 while (Val.getBitWidth() != 8) { 1404 unsigned NextWidth = Val.getBitWidth()/2; 1405 Val2 = Val.lshr(NextWidth); 1406 Val2 = Val2.trunc(Val.getBitWidth()/2); 1407 Val = Val.trunc(Val.getBitWidth()/2); 1408 1409 // If the top/bottom halves aren't the same, reject it. 1410 if (Val != Val2) 1411 return 0; 1412 } 1413 return ConstantInt::get(V->getContext(), Val); 1414 } 1415 } 1416 1417 // A ConstantDataArray/Vector is splatable if all its members are equal and 1418 // also splatable. 1419 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1420 Value *Elt = CA->getElementAsConstant(0); 1421 Value *Val = isBytewiseValue(Elt); 1422 if (!Val) 1423 return 0; 1424 1425 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1426 if (CA->getElementAsConstant(I) != Elt) 1427 return 0; 1428 1429 return Val; 1430 } 1431 1432 // Conceptually, we could handle things like: 1433 // %a = zext i8 %X to i16 1434 // %b = shl i16 %a, 8 1435 // %c = or i16 %a, %b 1436 // but until there is an example that actually needs this, it doesn't seem 1437 // worth worrying about. 1438 return 0; 1439 } 1440 1441 1442 // This is the recursive version of BuildSubAggregate. It takes a few different 1443 // arguments. Idxs is the index within the nested struct From that we are 1444 // looking at now (which is of type IndexedType). IdxSkip is the number of 1445 // indices from Idxs that should be left out when inserting into the resulting 1446 // struct. To is the result struct built so far, new insertvalue instructions 1447 // build on that. 1448 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1449 SmallVector<unsigned, 10> &Idxs, 1450 unsigned IdxSkip, 1451 Instruction *InsertBefore) { 1452 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1453 if (STy) { 1454 // Save the original To argument so we can modify it 1455 Value *OrigTo = To; 1456 // General case, the type indexed by Idxs is a struct 1457 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1458 // Process each struct element recursively 1459 Idxs.push_back(i); 1460 Value *PrevTo = To; 1461 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1462 InsertBefore); 1463 Idxs.pop_back(); 1464 if (!To) { 1465 // Couldn't find any inserted value for this index? Cleanup 1466 while (PrevTo != OrigTo) { 1467 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1468 PrevTo = Del->getAggregateOperand(); 1469 Del->eraseFromParent(); 1470 } 1471 // Stop processing elements 1472 break; 1473 } 1474 } 1475 // If we successfully found a value for each of our subaggregates 1476 if (To) 1477 return To; 1478 } 1479 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1480 // the struct's elements had a value that was inserted directly. In the latter 1481 // case, perhaps we can't determine each of the subelements individually, but 1482 // we might be able to find the complete struct somewhere. 1483 1484 // Find the value that is at that particular spot 1485 Value *V = FindInsertedValue(From, Idxs); 1486 1487 if (!V) 1488 return NULL; 1489 1490 // Insert the value in the new (sub) aggregrate 1491 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1492 "tmp", InsertBefore); 1493 } 1494 1495 // This helper takes a nested struct and extracts a part of it (which is again a 1496 // struct) into a new value. For example, given the struct: 1497 // { a, { b, { c, d }, e } } 1498 // and the indices "1, 1" this returns 1499 // { c, d }. 1500 // 1501 // It does this by inserting an insertvalue for each element in the resulting 1502 // struct, as opposed to just inserting a single struct. This will only work if 1503 // each of the elements of the substruct are known (ie, inserted into From by an 1504 // insertvalue instruction somewhere). 1505 // 1506 // All inserted insertvalue instructions are inserted before InsertBefore 1507 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1508 Instruction *InsertBefore) { 1509 assert(InsertBefore && "Must have someplace to insert!"); 1510 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1511 idx_range); 1512 Value *To = UndefValue::get(IndexedType); 1513 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1514 unsigned IdxSkip = Idxs.size(); 1515 1516 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1517 } 1518 1519 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1520 /// the scalar value indexed is already around as a register, for example if it 1521 /// were inserted directly into the aggregrate. 1522 /// 1523 /// If InsertBefore is not null, this function will duplicate (modified) 1524 /// insertvalues when a part of a nested struct is extracted. 1525 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1526 Instruction *InsertBefore) { 1527 // Nothing to index? Just return V then (this is useful at the end of our 1528 // recursion). 1529 if (idx_range.empty()) 1530 return V; 1531 // We have indices, so V should have an indexable type. 1532 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1533 "Not looking at a struct or array?"); 1534 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1535 "Invalid indices for type?"); 1536 1537 if (Constant *C = dyn_cast<Constant>(V)) { 1538 C = C->getAggregateElement(idx_range[0]); 1539 if (C == 0) return 0; 1540 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1541 } 1542 1543 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1544 // Loop the indices for the insertvalue instruction in parallel with the 1545 // requested indices 1546 const unsigned *req_idx = idx_range.begin(); 1547 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1548 i != e; ++i, ++req_idx) { 1549 if (req_idx == idx_range.end()) { 1550 // We can't handle this without inserting insertvalues 1551 if (!InsertBefore) 1552 return 0; 1553 1554 // The requested index identifies a part of a nested aggregate. Handle 1555 // this specially. For example, 1556 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1557 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1558 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1559 // This can be changed into 1560 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1561 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1562 // which allows the unused 0,0 element from the nested struct to be 1563 // removed. 1564 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1565 InsertBefore); 1566 } 1567 1568 // This insert value inserts something else than what we are looking for. 1569 // See if the (aggregrate) value inserted into has the value we are 1570 // looking for, then. 1571 if (*req_idx != *i) 1572 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1573 InsertBefore); 1574 } 1575 // If we end up here, the indices of the insertvalue match with those 1576 // requested (though possibly only partially). Now we recursively look at 1577 // the inserted value, passing any remaining indices. 1578 return FindInsertedValue(I->getInsertedValueOperand(), 1579 makeArrayRef(req_idx, idx_range.end()), 1580 InsertBefore); 1581 } 1582 1583 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1584 // If we're extracting a value from an aggregrate that was extracted from 1585 // something else, we can extract from that something else directly instead. 1586 // However, we will need to chain I's indices with the requested indices. 1587 1588 // Calculate the number of indices required 1589 unsigned size = I->getNumIndices() + idx_range.size(); 1590 // Allocate some space to put the new indices in 1591 SmallVector<unsigned, 5> Idxs; 1592 Idxs.reserve(size); 1593 // Add indices from the extract value instruction 1594 Idxs.append(I->idx_begin(), I->idx_end()); 1595 1596 // Add requested indices 1597 Idxs.append(idx_range.begin(), idx_range.end()); 1598 1599 assert(Idxs.size() == size 1600 && "Number of indices added not correct?"); 1601 1602 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1603 } 1604 // Otherwise, we don't know (such as, extracting from a function return value 1605 // or load instruction) 1606 return 0; 1607 } 1608 1609 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1610 /// it can be expressed as a base pointer plus a constant offset. Return the 1611 /// base and offset to the caller. 1612 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1613 const TargetData &TD) { 1614 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1615 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1616 return Ptr; 1617 1618 // Just look through bitcasts. 1619 if (PtrOp->getOpcode() == Instruction::BitCast) 1620 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1621 1622 // If this is a GEP with constant indices, we can look through it. 1623 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1624 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1625 1626 gep_type_iterator GTI = gep_type_begin(GEP); 1627 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1628 ++I, ++GTI) { 1629 ConstantInt *OpC = cast<ConstantInt>(*I); 1630 if (OpC->isZero()) continue; 1631 1632 // Handle a struct and array indices which add their offset to the pointer. 1633 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1634 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1635 } else { 1636 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1637 Offset += OpC->getSExtValue()*Size; 1638 } 1639 } 1640 1641 // Re-sign extend from the pointer size if needed to get overflow edge cases 1642 // right. 1643 unsigned PtrSize = TD.getPointerSizeInBits(); 1644 if (PtrSize < 64) 1645 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1646 1647 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1648 } 1649 1650 1651 /// getConstantStringInfo - This function computes the length of a 1652 /// null-terminated C string pointed to by V. If successful, it returns true 1653 /// and returns the string in Str. If unsuccessful, it returns false. 1654 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1655 uint64_t Offset, bool TrimAtNul) { 1656 assert(V); 1657 1658 // Look through bitcast instructions and geps. 1659 V = V->stripPointerCasts(); 1660 1661 // If the value is a GEP instructionor constant expression, treat it as an 1662 // offset. 1663 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1664 // Make sure the GEP has exactly three arguments. 1665 if (GEP->getNumOperands() != 3) 1666 return false; 1667 1668 // Make sure the index-ee is a pointer to array of i8. 1669 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1670 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1671 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1672 return false; 1673 1674 // Check to make sure that the first operand of the GEP is an integer and 1675 // has value 0 so that we are sure we're indexing into the initializer. 1676 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1677 if (FirstIdx == 0 || !FirstIdx->isZero()) 1678 return false; 1679 1680 // If the second index isn't a ConstantInt, then this is a variable index 1681 // into the array. If this occurs, we can't say anything meaningful about 1682 // the string. 1683 uint64_t StartIdx = 0; 1684 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1685 StartIdx = CI->getZExtValue(); 1686 else 1687 return false; 1688 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1689 } 1690 1691 // The GEP instruction, constant or instruction, must reference a global 1692 // variable that is a constant and is initialized. The referenced constant 1693 // initializer is the array that we'll use for optimization. 1694 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1695 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1696 return false; 1697 1698 // Handle the all-zeros case 1699 if (GV->getInitializer()->isNullValue()) { 1700 // This is a degenerate case. The initializer is constant zero so the 1701 // length of the string must be zero. 1702 Str = ""; 1703 return true; 1704 } 1705 1706 // Must be a Constant Array 1707 const ConstantDataArray *Array = 1708 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1709 if (Array == 0 || !Array->isString()) 1710 return false; 1711 1712 // Get the number of elements in the array 1713 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1714 1715 // Start out with the entire array in the StringRef. 1716 Str = Array->getAsString(); 1717 1718 if (Offset > NumElts) 1719 return false; 1720 1721 // Skip over 'offset' bytes. 1722 Str = Str.substr(Offset); 1723 1724 if (TrimAtNul) { 1725 // Trim off the \0 and anything after it. If the array is not nul 1726 // terminated, we just return the whole end of string. The client may know 1727 // some other way that the string is length-bound. 1728 Str = Str.substr(0, Str.find('\0')); 1729 } 1730 return true; 1731 } 1732 1733 // These next two are very similar to the above, but also look through PHI 1734 // nodes. 1735 // TODO: See if we can integrate these two together. 1736 1737 /// GetStringLengthH - If we can compute the length of the string pointed to by 1738 /// the specified pointer, return 'len+1'. If we can't, return 0. 1739 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1740 // Look through noop bitcast instructions. 1741 V = V->stripPointerCasts(); 1742 1743 // If this is a PHI node, there are two cases: either we have already seen it 1744 // or we haven't. 1745 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1746 if (!PHIs.insert(PN)) 1747 return ~0ULL; // already in the set. 1748 1749 // If it was new, see if all the input strings are the same length. 1750 uint64_t LenSoFar = ~0ULL; 1751 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1752 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1753 if (Len == 0) return 0; // Unknown length -> unknown. 1754 1755 if (Len == ~0ULL) continue; 1756 1757 if (Len != LenSoFar && LenSoFar != ~0ULL) 1758 return 0; // Disagree -> unknown. 1759 LenSoFar = Len; 1760 } 1761 1762 // Success, all agree. 1763 return LenSoFar; 1764 } 1765 1766 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1767 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1768 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1769 if (Len1 == 0) return 0; 1770 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1771 if (Len2 == 0) return 0; 1772 if (Len1 == ~0ULL) return Len2; 1773 if (Len2 == ~0ULL) return Len1; 1774 if (Len1 != Len2) return 0; 1775 return Len1; 1776 } 1777 1778 // Otherwise, see if we can read the string. 1779 StringRef StrData; 1780 if (!getConstantStringInfo(V, StrData)) 1781 return 0; 1782 1783 return StrData.size()+1; 1784 } 1785 1786 /// GetStringLength - If we can compute the length of the string pointed to by 1787 /// the specified pointer, return 'len+1'. If we can't, return 0. 1788 uint64_t llvm::GetStringLength(Value *V) { 1789 if (!V->getType()->isPointerTy()) return 0; 1790 1791 SmallPtrSet<PHINode*, 32> PHIs; 1792 uint64_t Len = GetStringLengthH(V, PHIs); 1793 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1794 // an empty string as a length. 1795 return Len == ~0ULL ? 1 : Len; 1796 } 1797 1798 Value * 1799 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1800 if (!V->getType()->isPointerTy()) 1801 return V; 1802 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1803 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1804 V = GEP->getPointerOperand(); 1805 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1806 V = cast<Operator>(V)->getOperand(0); 1807 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1808 if (GA->mayBeOverridden()) 1809 return V; 1810 V = GA->getAliasee(); 1811 } else { 1812 // See if InstructionSimplify knows any relevant tricks. 1813 if (Instruction *I = dyn_cast<Instruction>(V)) 1814 // TODO: Acquire a DominatorTree and use it. 1815 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1816 V = Simplified; 1817 continue; 1818 } 1819 1820 return V; 1821 } 1822 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1823 } 1824 return V; 1825 } 1826 1827 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1828 /// are lifetime markers. 1829 /// 1830 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1831 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1832 UI != UE; ++UI) { 1833 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1834 if (!II) return false; 1835 1836 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1837 II->getIntrinsicID() != Intrinsic::lifetime_end) 1838 return false; 1839 } 1840 return true; 1841 } 1842 1843 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1844 const TargetData *TD) { 1845 const Operator *Inst = dyn_cast<Operator>(V); 1846 if (!Inst) 1847 return false; 1848 1849 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1850 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1851 if (C->canTrap()) 1852 return false; 1853 1854 switch (Inst->getOpcode()) { 1855 default: 1856 return true; 1857 case Instruction::UDiv: 1858 case Instruction::URem: 1859 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1860 return isKnownNonZero(Inst->getOperand(1), TD); 1861 case Instruction::SDiv: 1862 case Instruction::SRem: { 1863 Value *Op = Inst->getOperand(1); 1864 // x / y is undefined if y == 0 1865 if (!isKnownNonZero(Op, TD)) 1866 return false; 1867 // x / y might be undefined if y == -1 1868 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1869 if (BitWidth == 0) 1870 return false; 1871 APInt KnownZero(BitWidth, 0); 1872 APInt KnownOne(BitWidth, 0); 1873 ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth), 1874 KnownZero, KnownOne, TD); 1875 return !!KnownZero; 1876 } 1877 case Instruction::Load: { 1878 const LoadInst *LI = cast<LoadInst>(Inst); 1879 if (!LI->isUnordered()) 1880 return false; 1881 return LI->getPointerOperand()->isDereferenceablePointer(); 1882 } 1883 case Instruction::Call: { 1884 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1885 switch (II->getIntrinsicID()) { 1886 case Intrinsic::bswap: 1887 case Intrinsic::ctlz: 1888 case Intrinsic::ctpop: 1889 case Intrinsic::cttz: 1890 case Intrinsic::objectsize: 1891 case Intrinsic::sadd_with_overflow: 1892 case Intrinsic::smul_with_overflow: 1893 case Intrinsic::ssub_with_overflow: 1894 case Intrinsic::uadd_with_overflow: 1895 case Intrinsic::umul_with_overflow: 1896 case Intrinsic::usub_with_overflow: 1897 return true; 1898 // TODO: some fp intrinsics are marked as having the same error handling 1899 // as libm. They're safe to speculate when they won't error. 1900 // TODO: are convert_{from,to}_fp16 safe? 1901 // TODO: can we list target-specific intrinsics here? 1902 default: break; 1903 } 1904 } 1905 return false; // The called function could have undefined behavior or 1906 // side-effects, even if marked readnone nounwind. 1907 } 1908 case Instruction::VAArg: 1909 case Instruction::Alloca: 1910 case Instruction::Invoke: 1911 case Instruction::PHI: 1912 case Instruction::Store: 1913 case Instruction::Ret: 1914 case Instruction::Br: 1915 case Instruction::IndirectBr: 1916 case Instruction::Switch: 1917 case Instruction::Unreachable: 1918 case Instruction::Fence: 1919 case Instruction::LandingPad: 1920 case Instruction::AtomicRMW: 1921 case Instruction::AtomicCmpXchg: 1922 case Instruction::Resume: 1923 return false; // Misc instructions which have effects 1924 } 1925 } 1926