1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 194 KnownBits LHSKnown(IT->getBitWidth()); 195 KnownBits RHSKnown(IT->getBitWidth()); 196 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 197 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 198 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 199 } 200 201 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 202 for (const User *U : CxtI->users()) { 203 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 204 if (IC->isEquality()) 205 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 206 if (C->isNullValue()) 207 continue; 208 return false; 209 } 210 return true; 211 } 212 213 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 214 const Query &Q); 215 216 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 217 bool OrZero, 218 unsigned Depth, AssumptionCache *AC, 219 const Instruction *CxtI, 220 const DominatorTree *DT) { 221 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 222 Query(DL, AC, safeCxtI(V, CxtI), DT)); 223 } 224 225 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 226 227 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 228 AssumptionCache *AC, const Instruction *CxtI, 229 const DominatorTree *DT) { 230 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 234 unsigned Depth, 235 AssumptionCache *AC, const Instruction *CxtI, 236 const DominatorTree *DT) { 237 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 238 return Known.isNonNegative(); 239 } 240 241 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 242 AssumptionCache *AC, const Instruction *CxtI, 243 const DominatorTree *DT) { 244 if (auto *CI = dyn_cast<ConstantInt>(V)) 245 return CI->getValue().isStrictlyPositive(); 246 247 // TODO: We'd doing two recursive queries here. We should factor this such 248 // that only a single query is needed. 249 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 250 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 251 } 252 253 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 254 AssumptionCache *AC, const Instruction *CxtI, 255 const DominatorTree *DT) { 256 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 257 return Known.isNegative(); 258 } 259 260 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 261 262 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 263 const DataLayout &DL, 264 AssumptionCache *AC, const Instruction *CxtI, 265 const DominatorTree *DT) { 266 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 267 safeCxtI(V1, safeCxtI(V2, CxtI)), 268 DT)); 269 } 270 271 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 272 const Query &Q); 273 274 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 275 const DataLayout &DL, 276 unsigned Depth, AssumptionCache *AC, 277 const Instruction *CxtI, const DominatorTree *DT) { 278 return ::MaskedValueIsZero(V, Mask, Depth, 279 Query(DL, AC, safeCxtI(V, CxtI), DT)); 280 } 281 282 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 283 const Query &Q); 284 285 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 286 unsigned Depth, AssumptionCache *AC, 287 const Instruction *CxtI, 288 const DominatorTree *DT) { 289 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 290 } 291 292 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 293 bool NSW, 294 KnownBits &KnownOut, KnownBits &Known2, 295 unsigned Depth, const Query &Q) { 296 unsigned BitWidth = KnownOut.getBitWidth(); 297 298 // If an initial sequence of bits in the result is not needed, the 299 // corresponding bits in the operands are not needed. 300 KnownBits LHSKnown(BitWidth); 301 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 302 computeKnownBits(Op1, Known2, Depth + 1, Q); 303 304 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 305 } 306 307 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 308 KnownBits &Known, KnownBits &Known2, 309 unsigned Depth, const Query &Q) { 310 unsigned BitWidth = Known.getBitWidth(); 311 computeKnownBits(Op1, Known, Depth + 1, Q); 312 computeKnownBits(Op0, Known2, Depth + 1, Q); 313 314 bool isKnownNegative = false; 315 bool isKnownNonNegative = false; 316 // If the multiplication is known not to overflow, compute the sign bit. 317 if (NSW) { 318 if (Op0 == Op1) { 319 // The product of a number with itself is non-negative. 320 isKnownNonNegative = true; 321 } else { 322 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 323 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 324 bool isKnownNegativeOp1 = Known.isNegative(); 325 bool isKnownNegativeOp0 = Known2.isNegative(); 326 // The product of two numbers with the same sign is non-negative. 327 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 328 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 329 // The product of a negative number and a non-negative number is either 330 // negative or zero. 331 if (!isKnownNonNegative) 332 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 333 isKnownNonZero(Op0, Depth, Q)) || 334 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 335 isKnownNonZero(Op1, Depth, Q)); 336 } 337 } 338 339 // If low bits are zero in either operand, output low known-0 bits. 340 // Also compute a conservative estimate for high known-0 bits. 341 // More trickiness is possible, but this is sufficient for the 342 // interesting case of alignment computation. 343 unsigned TrailZ = Known.countMinTrailingZeros() + 344 Known2.countMinTrailingZeros(); 345 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 346 Known2.countMinLeadingZeros(), 347 BitWidth) - BitWidth; 348 349 TrailZ = std::min(TrailZ, BitWidth); 350 LeadZ = std::min(LeadZ, BitWidth); 351 Known.resetAll(); 352 Known.Zero.setLowBits(TrailZ); 353 Known.Zero.setHighBits(LeadZ); 354 355 // Only make use of no-wrap flags if we failed to compute the sign bit 356 // directly. This matters if the multiplication always overflows, in 357 // which case we prefer to follow the result of the direct computation, 358 // though as the program is invoking undefined behaviour we can choose 359 // whatever we like here. 360 if (isKnownNonNegative && !Known.isNegative()) 361 Known.makeNonNegative(); 362 else if (isKnownNegative && !Known.isNonNegative()) 363 Known.makeNegative(); 364 } 365 366 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 367 KnownBits &Known) { 368 unsigned BitWidth = Known.getBitWidth(); 369 unsigned NumRanges = Ranges.getNumOperands() / 2; 370 assert(NumRanges >= 1); 371 372 Known.Zero.setAllBits(); 373 Known.One.setAllBits(); 374 375 for (unsigned i = 0; i < NumRanges; ++i) { 376 ConstantInt *Lower = 377 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 378 ConstantInt *Upper = 379 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 380 ConstantRange Range(Lower->getValue(), Upper->getValue()); 381 382 // The first CommonPrefixBits of all values in Range are equal. 383 unsigned CommonPrefixBits = 384 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 385 386 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 387 Known.One &= Range.getUnsignedMax() & Mask; 388 Known.Zero &= ~Range.getUnsignedMax() & Mask; 389 } 390 } 391 392 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 393 SmallVector<const Value *, 16> WorkSet(1, I); 394 SmallPtrSet<const Value *, 32> Visited; 395 SmallPtrSet<const Value *, 16> EphValues; 396 397 // The instruction defining an assumption's condition itself is always 398 // considered ephemeral to that assumption (even if it has other 399 // non-ephemeral users). See r246696's test case for an example. 400 if (is_contained(I->operands(), E)) 401 return true; 402 403 while (!WorkSet.empty()) { 404 const Value *V = WorkSet.pop_back_val(); 405 if (!Visited.insert(V).second) 406 continue; 407 408 // If all uses of this value are ephemeral, then so is this value. 409 if (llvm::all_of(V->users(), [&](const User *U) { 410 return EphValues.count(U); 411 })) { 412 if (V == E) 413 return true; 414 415 if (V == I || isSafeToSpeculativelyExecute(V)) { 416 EphValues.insert(V); 417 if (const User *U = dyn_cast<User>(V)) 418 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 419 J != JE; ++J) 420 WorkSet.push_back(*J); 421 } 422 } 423 } 424 425 return false; 426 } 427 428 // Is this an intrinsic that cannot be speculated but also cannot trap? 429 static bool isAssumeLikeIntrinsic(const Instruction *I) { 430 if (const CallInst *CI = dyn_cast<CallInst>(I)) 431 if (Function *F = CI->getCalledFunction()) 432 switch (F->getIntrinsicID()) { 433 default: break; 434 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 435 case Intrinsic::assume: 436 case Intrinsic::sideeffect: 437 case Intrinsic::dbg_declare: 438 case Intrinsic::dbg_value: 439 case Intrinsic::invariant_start: 440 case Intrinsic::invariant_end: 441 case Intrinsic::lifetime_start: 442 case Intrinsic::lifetime_end: 443 case Intrinsic::objectsize: 444 case Intrinsic::ptr_annotation: 445 case Intrinsic::var_annotation: 446 return true; 447 } 448 449 return false; 450 } 451 452 bool llvm::isValidAssumeForContext(const Instruction *Inv, 453 const Instruction *CxtI, 454 const DominatorTree *DT) { 455 // There are two restrictions on the use of an assume: 456 // 1. The assume must dominate the context (or the control flow must 457 // reach the assume whenever it reaches the context). 458 // 2. The context must not be in the assume's set of ephemeral values 459 // (otherwise we will use the assume to prove that the condition 460 // feeding the assume is trivially true, thus causing the removal of 461 // the assume). 462 463 if (DT) { 464 if (DT->dominates(Inv, CxtI)) 465 return true; 466 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 467 // We don't have a DT, but this trivially dominates. 468 return true; 469 } 470 471 // With or without a DT, the only remaining case we will check is if the 472 // instructions are in the same BB. Give up if that is not the case. 473 if (Inv->getParent() != CxtI->getParent()) 474 return false; 475 476 // If we have a dom tree, then we now know that the assume doens't dominate 477 // the other instruction. If we don't have a dom tree then we can check if 478 // the assume is first in the BB. 479 if (!DT) { 480 // Search forward from the assume until we reach the context (or the end 481 // of the block); the common case is that the assume will come first. 482 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 483 IE = Inv->getParent()->end(); I != IE; ++I) 484 if (&*I == CxtI) 485 return true; 486 } 487 488 // The context comes first, but they're both in the same block. Make sure 489 // there is nothing in between that might interrupt the control flow. 490 for (BasicBlock::const_iterator I = 491 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 492 I != IE; ++I) 493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 494 return false; 495 496 return !isEphemeralValueOf(Inv, CxtI); 497 } 498 499 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 500 unsigned Depth, const Query &Q) { 501 // Use of assumptions is context-sensitive. If we don't have a context, we 502 // cannot use them! 503 if (!Q.AC || !Q.CxtI) 504 return; 505 506 unsigned BitWidth = Known.getBitWidth(); 507 508 // Note that the patterns below need to be kept in sync with the code 509 // in AssumptionCache::updateAffectedValues. 510 511 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 512 if (!AssumeVH) 513 continue; 514 CallInst *I = cast<CallInst>(AssumeVH); 515 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 516 "Got assumption for the wrong function!"); 517 if (Q.isExcluded(I)) 518 continue; 519 520 // Warning: This loop can end up being somewhat performance sensetive. 521 // We're running this loop for once for each value queried resulting in a 522 // runtime of ~O(#assumes * #values). 523 524 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 525 "must be an assume intrinsic"); 526 527 Value *Arg = I->getArgOperand(0); 528 529 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 530 assert(BitWidth == 1 && "assume operand is not i1?"); 531 Known.setAllOnes(); 532 return; 533 } 534 if (match(Arg, m_Not(m_Specific(V))) && 535 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 536 assert(BitWidth == 1 && "assume operand is not i1?"); 537 Known.setAllZero(); 538 return; 539 } 540 541 // The remaining tests are all recursive, so bail out if we hit the limit. 542 if (Depth == MaxDepth) 543 continue; 544 545 Value *A, *B; 546 auto m_V = m_CombineOr(m_Specific(V), 547 m_CombineOr(m_PtrToInt(m_Specific(V)), 548 m_BitCast(m_Specific(V)))); 549 550 CmpInst::Predicate Pred; 551 ConstantInt *C; 552 // assume(v = a) 553 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 554 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 555 KnownBits RHSKnown(BitWidth); 556 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 557 Known.Zero |= RHSKnown.Zero; 558 Known.One |= RHSKnown.One; 559 // assume(v & b = a) 560 } else if (match(Arg, 561 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 562 Pred == ICmpInst::ICMP_EQ && 563 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 564 KnownBits RHSKnown(BitWidth); 565 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 566 KnownBits MaskKnown(BitWidth); 567 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 568 569 // For those bits in the mask that are known to be one, we can propagate 570 // known bits from the RHS to V. 571 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 572 Known.One |= RHSKnown.One & MaskKnown.One; 573 // assume(~(v & b) = a) 574 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 575 m_Value(A))) && 576 Pred == ICmpInst::ICMP_EQ && 577 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 578 KnownBits RHSKnown(BitWidth); 579 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 580 KnownBits MaskKnown(BitWidth); 581 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 582 583 // For those bits in the mask that are known to be one, we can propagate 584 // inverted known bits from the RHS to V. 585 Known.Zero |= RHSKnown.One & MaskKnown.One; 586 Known.One |= RHSKnown.Zero & MaskKnown.One; 587 // assume(v | b = a) 588 } else if (match(Arg, 589 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 590 Pred == ICmpInst::ICMP_EQ && 591 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 592 KnownBits RHSKnown(BitWidth); 593 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 594 KnownBits BKnown(BitWidth); 595 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 596 597 // For those bits in B that are known to be zero, we can propagate known 598 // bits from the RHS to V. 599 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 600 Known.One |= RHSKnown.One & BKnown.Zero; 601 // assume(~(v | b) = a) 602 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 603 m_Value(A))) && 604 Pred == ICmpInst::ICMP_EQ && 605 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 606 KnownBits RHSKnown(BitWidth); 607 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 608 KnownBits BKnown(BitWidth); 609 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 610 611 // For those bits in B that are known to be zero, we can propagate 612 // inverted known bits from the RHS to V. 613 Known.Zero |= RHSKnown.One & BKnown.Zero; 614 Known.One |= RHSKnown.Zero & BKnown.Zero; 615 // assume(v ^ b = a) 616 } else if (match(Arg, 617 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 618 Pred == ICmpInst::ICMP_EQ && 619 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 620 KnownBits RHSKnown(BitWidth); 621 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 622 KnownBits BKnown(BitWidth); 623 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 624 625 // For those bits in B that are known to be zero, we can propagate known 626 // bits from the RHS to V. For those bits in B that are known to be one, 627 // we can propagate inverted known bits from the RHS to V. 628 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 629 Known.One |= RHSKnown.One & BKnown.Zero; 630 Known.Zero |= RHSKnown.One & BKnown.One; 631 Known.One |= RHSKnown.Zero & BKnown.One; 632 // assume(~(v ^ b) = a) 633 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 634 m_Value(A))) && 635 Pred == ICmpInst::ICMP_EQ && 636 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 637 KnownBits RHSKnown(BitWidth); 638 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 639 KnownBits BKnown(BitWidth); 640 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 641 642 // For those bits in B that are known to be zero, we can propagate 643 // inverted known bits from the RHS to V. For those bits in B that are 644 // known to be one, we can propagate known bits from the RHS to V. 645 Known.Zero |= RHSKnown.One & BKnown.Zero; 646 Known.One |= RHSKnown.Zero & BKnown.Zero; 647 Known.Zero |= RHSKnown.Zero & BKnown.One; 648 Known.One |= RHSKnown.One & BKnown.One; 649 // assume(v << c = a) 650 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 651 m_Value(A))) && 652 Pred == ICmpInst::ICMP_EQ && 653 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 654 KnownBits RHSKnown(BitWidth); 655 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 656 // For those bits in RHS that are known, we can propagate them to known 657 // bits in V shifted to the right by C. 658 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 659 Known.Zero |= RHSKnown.Zero; 660 RHSKnown.One.lshrInPlace(C->getZExtValue()); 661 Known.One |= RHSKnown.One; 662 // assume(~(v << c) = a) 663 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 664 m_Value(A))) && 665 Pred == ICmpInst::ICMP_EQ && 666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 KnownBits RHSKnown(BitWidth); 668 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 669 // For those bits in RHS that are known, we can propagate them inverted 670 // to known bits in V shifted to the right by C. 671 RHSKnown.One.lshrInPlace(C->getZExtValue()); 672 Known.Zero |= RHSKnown.One; 673 RHSKnown.Zero.lshrInPlace(C->getZExtValue()); 674 Known.One |= RHSKnown.Zero; 675 // assume(v >> c = a) 676 } else if (match(Arg, 677 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 678 m_Value(A))) && 679 Pred == ICmpInst::ICMP_EQ && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 KnownBits RHSKnown(BitWidth); 682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 683 // For those bits in RHS that are known, we can propagate them to known 684 // bits in V shifted to the right by C. 685 Known.Zero |= RHSKnown.Zero << C->getZExtValue(); 686 Known.One |= RHSKnown.One << C->getZExtValue(); 687 // assume(~(v >> c) = a) 688 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 689 m_Value(A))) && 690 Pred == ICmpInst::ICMP_EQ && 691 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 692 KnownBits RHSKnown(BitWidth); 693 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 694 // For those bits in RHS that are known, we can propagate them inverted 695 // to known bits in V shifted to the right by C. 696 Known.Zero |= RHSKnown.One << C->getZExtValue(); 697 Known.One |= RHSKnown.Zero << C->getZExtValue(); 698 // assume(v >=_s c) where c is non-negative 699 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 700 Pred == ICmpInst::ICMP_SGE && 701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 702 KnownBits RHSKnown(BitWidth); 703 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 704 705 if (RHSKnown.isNonNegative()) { 706 // We know that the sign bit is zero. 707 Known.makeNonNegative(); 708 } 709 // assume(v >_s c) where c is at least -1. 710 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 711 Pred == ICmpInst::ICMP_SGT && 712 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 713 KnownBits RHSKnown(BitWidth); 714 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 715 716 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 717 // We know that the sign bit is zero. 718 Known.makeNonNegative(); 719 } 720 // assume(v <=_s c) where c is negative 721 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 722 Pred == ICmpInst::ICMP_SLE && 723 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 724 KnownBits RHSKnown(BitWidth); 725 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 726 727 if (RHSKnown.isNegative()) { 728 // We know that the sign bit is one. 729 Known.makeNegative(); 730 } 731 // assume(v <_s c) where c is non-positive 732 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 733 Pred == ICmpInst::ICMP_SLT && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown(BitWidth); 736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 737 738 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 739 // We know that the sign bit is one. 740 Known.makeNegative(); 741 } 742 // assume(v <=_u c) 743 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 744 Pred == ICmpInst::ICMP_ULE && 745 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 746 KnownBits RHSKnown(BitWidth); 747 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 748 749 // Whatever high bits in c are zero are known to be zero. 750 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 751 // assume(v <_u c) 752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 753 Pred == ICmpInst::ICMP_ULT && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown(BitWidth); 756 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 757 758 // Whatever high bits in c are zero are known to be zero (if c is a power 759 // of 2, then one more). 760 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 761 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 762 else 763 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 764 } 765 } 766 767 // If assumptions conflict with each other or previous known bits, then we 768 // have a logical fallacy. It's possible that the assumption is not reachable, 769 // so this isn't a real bug. On the other hand, the program may have undefined 770 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 771 // clear out the known bits, try to warn the user, and hope for the best. 772 if (Known.Zero.intersects(Known.One)) { 773 Known.resetAll(); 774 775 if (Q.ORE) 776 Q.ORE->emit([&]() { 777 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 778 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 779 CxtI) 780 << "Detected conflicting code assumptions. Program may " 781 "have undefined behavior, or compiler may have " 782 "internal error."; 783 }); 784 } 785 } 786 787 /// Compute known bits from a shift operator, including those with a 788 /// non-constant shift amount. Known is the output of this function. Known2 is a 789 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 790 /// operator-specific functors that, given the known-zero or known-one bits 791 /// respectively, and a shift amount, compute the implied known-zero or 792 /// known-one bits of the shift operator's result respectively for that shift 793 /// amount. The results from calling KZF and KOF are conservatively combined for 794 /// all permitted shift amounts. 795 static void computeKnownBitsFromShiftOperator( 796 const Operator *I, KnownBits &Known, KnownBits &Known2, 797 unsigned Depth, const Query &Q, 798 function_ref<APInt(const APInt &, unsigned)> KZF, 799 function_ref<APInt(const APInt &, unsigned)> KOF) { 800 unsigned BitWidth = Known.getBitWidth(); 801 802 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 803 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 804 805 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 806 Known.Zero = KZF(Known.Zero, ShiftAmt); 807 Known.One = KOF(Known.One, ShiftAmt); 808 // If the known bits conflict, this must be an overflowing left shift, so 809 // the shift result is poison. We can return anything we want. Choose 0 for 810 // the best folding opportunity. 811 if (Known.hasConflict()) 812 Known.setAllZero(); 813 814 return; 815 } 816 817 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 818 819 // If the shift amount could be greater than or equal to the bit-width of the 820 // LHS, the value could be poison, but bail out because the check below is 821 // expensive. TODO: Should we just carry on? 822 if ((~Known.Zero).uge(BitWidth)) { 823 Known.resetAll(); 824 return; 825 } 826 827 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 828 // BitWidth > 64 and any upper bits are known, we'll end up returning the 829 // limit value (which implies all bits are known). 830 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 831 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 832 833 // It would be more-clearly correct to use the two temporaries for this 834 // calculation. Reusing the APInts here to prevent unnecessary allocations. 835 Known.resetAll(); 836 837 // If we know the shifter operand is nonzero, we can sometimes infer more 838 // known bits. However this is expensive to compute, so be lazy about it and 839 // only compute it when absolutely necessary. 840 Optional<bool> ShifterOperandIsNonZero; 841 842 // Early exit if we can't constrain any well-defined shift amount. 843 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 844 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 845 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 846 if (!*ShifterOperandIsNonZero) 847 return; 848 } 849 850 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 851 852 Known.Zero.setAllBits(); 853 Known.One.setAllBits(); 854 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 855 // Combine the shifted known input bits only for those shift amounts 856 // compatible with its known constraints. 857 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 858 continue; 859 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 860 continue; 861 // If we know the shifter is nonzero, we may be able to infer more known 862 // bits. This check is sunk down as far as possible to avoid the expensive 863 // call to isKnownNonZero if the cheaper checks above fail. 864 if (ShiftAmt == 0) { 865 if (!ShifterOperandIsNonZero.hasValue()) 866 ShifterOperandIsNonZero = 867 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 868 if (*ShifterOperandIsNonZero) 869 continue; 870 } 871 872 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 873 Known.One &= KOF(Known2.One, ShiftAmt); 874 } 875 876 // If the known bits conflict, the result is poison. Return a 0 and hope the 877 // caller can further optimize that. 878 if (Known.hasConflict()) 879 Known.setAllZero(); 880 } 881 882 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 883 unsigned Depth, const Query &Q) { 884 unsigned BitWidth = Known.getBitWidth(); 885 886 KnownBits Known2(Known); 887 switch (I->getOpcode()) { 888 default: break; 889 case Instruction::Load: 890 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 891 computeKnownBitsFromRangeMetadata(*MD, Known); 892 break; 893 case Instruction::And: { 894 // If either the LHS or the RHS are Zero, the result is zero. 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 897 898 // Output known-1 bits are only known if set in both the LHS & RHS. 899 Known.One &= Known2.One; 900 // Output known-0 are known to be clear if zero in either the LHS | RHS. 901 Known.Zero |= Known2.Zero; 902 903 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 904 // here we handle the more general case of adding any odd number by 905 // matching the form add(x, add(x, y)) where y is odd. 906 // TODO: This could be generalized to clearing any bit set in y where the 907 // following bit is known to be unset in y. 908 Value *Y = nullptr; 909 if (!Known.Zero[0] && !Known.One[0] && 910 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 911 m_Value(Y))) || 912 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 913 m_Value(Y))))) { 914 Known2.resetAll(); 915 computeKnownBits(Y, Known2, Depth + 1, Q); 916 if (Known2.countMinTrailingOnes() > 0) 917 Known.Zero.setBit(0); 918 } 919 break; 920 } 921 case Instruction::Or: 922 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 923 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 924 925 // Output known-0 bits are only known if clear in both the LHS & RHS. 926 Known.Zero &= Known2.Zero; 927 // Output known-1 are known to be set if set in either the LHS | RHS. 928 Known.One |= Known2.One; 929 break; 930 case Instruction::Xor: { 931 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 932 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 933 934 // Output known-0 bits are known if clear or set in both the LHS & RHS. 935 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 936 // Output known-1 are known to be set if set in only one of the LHS, RHS. 937 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 938 Known.Zero = std::move(KnownZeroOut); 939 break; 940 } 941 case Instruction::Mul: { 942 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 943 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 944 Known2, Depth, Q); 945 break; 946 } 947 case Instruction::UDiv: { 948 // For the purposes of computing leading zeros we can conservatively 949 // treat a udiv as a logical right shift by the power of 2 known to 950 // be less than the denominator. 951 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 952 unsigned LeadZ = Known2.countMinLeadingZeros(); 953 954 Known2.resetAll(); 955 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 956 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 957 if (RHSMaxLeadingZeros != BitWidth) 958 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 959 960 Known.Zero.setHighBits(LeadZ); 961 break; 962 } 963 case Instruction::Select: { 964 const Value *LHS, *RHS; 965 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 966 if (SelectPatternResult::isMinOrMax(SPF)) { 967 computeKnownBits(RHS, Known, Depth + 1, Q); 968 computeKnownBits(LHS, Known2, Depth + 1, Q); 969 } else { 970 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 971 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 972 } 973 974 unsigned MaxHighOnes = 0; 975 unsigned MaxHighZeros = 0; 976 if (SPF == SPF_SMAX) { 977 // If both sides are negative, the result is negative. 978 if (Known.isNegative() && Known2.isNegative()) 979 // We can derive a lower bound on the result by taking the max of the 980 // leading one bits. 981 MaxHighOnes = 982 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 983 // If either side is non-negative, the result is non-negative. 984 else if (Known.isNonNegative() || Known2.isNonNegative()) 985 MaxHighZeros = 1; 986 } else if (SPF == SPF_SMIN) { 987 // If both sides are non-negative, the result is non-negative. 988 if (Known.isNonNegative() && Known2.isNonNegative()) 989 // We can derive an upper bound on the result by taking the max of the 990 // leading zero bits. 991 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 992 Known2.countMinLeadingZeros()); 993 // If either side is negative, the result is negative. 994 else if (Known.isNegative() || Known2.isNegative()) 995 MaxHighOnes = 1; 996 } else if (SPF == SPF_UMAX) { 997 // We can derive a lower bound on the result by taking the max of the 998 // leading one bits. 999 MaxHighOnes = 1000 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1001 } else if (SPF == SPF_UMIN) { 1002 // We can derive an upper bound on the result by taking the max of the 1003 // leading zero bits. 1004 MaxHighZeros = 1005 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1006 } 1007 1008 // Only known if known in both the LHS and RHS. 1009 Known.One &= Known2.One; 1010 Known.Zero &= Known2.Zero; 1011 if (MaxHighOnes > 0) 1012 Known.One.setHighBits(MaxHighOnes); 1013 if (MaxHighZeros > 0) 1014 Known.Zero.setHighBits(MaxHighZeros); 1015 break; 1016 } 1017 case Instruction::FPTrunc: 1018 case Instruction::FPExt: 1019 case Instruction::FPToUI: 1020 case Instruction::FPToSI: 1021 case Instruction::SIToFP: 1022 case Instruction::UIToFP: 1023 break; // Can't work with floating point. 1024 case Instruction::PtrToInt: 1025 case Instruction::IntToPtr: 1026 // Fall through and handle them the same as zext/trunc. 1027 LLVM_FALLTHROUGH; 1028 case Instruction::ZExt: 1029 case Instruction::Trunc: { 1030 Type *SrcTy = I->getOperand(0)->getType(); 1031 1032 unsigned SrcBitWidth; 1033 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1034 // which fall through here. 1035 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1036 1037 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1038 Known = Known.zextOrTrunc(SrcBitWidth); 1039 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1040 Known = Known.zextOrTrunc(BitWidth); 1041 // Any top bits are known to be zero. 1042 if (BitWidth > SrcBitWidth) 1043 Known.Zero.setBitsFrom(SrcBitWidth); 1044 break; 1045 } 1046 case Instruction::BitCast: { 1047 Type *SrcTy = I->getOperand(0)->getType(); 1048 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1049 // TODO: For now, not handling conversions like: 1050 // (bitcast i64 %x to <2 x i32>) 1051 !I->getType()->isVectorTy()) { 1052 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1053 break; 1054 } 1055 break; 1056 } 1057 case Instruction::SExt: { 1058 // Compute the bits in the result that are not present in the input. 1059 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1060 1061 Known = Known.trunc(SrcBitWidth); 1062 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1063 // If the sign bit of the input is known set or clear, then we know the 1064 // top bits of the result. 1065 Known = Known.sext(BitWidth); 1066 break; 1067 } 1068 case Instruction::Shl: { 1069 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1070 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1071 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1072 APInt KZResult = KnownZero << ShiftAmt; 1073 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1074 // If this shift has "nsw" keyword, then the result is either a poison 1075 // value or has the same sign bit as the first operand. 1076 if (NSW && KnownZero.isSignBitSet()) 1077 KZResult.setSignBit(); 1078 return KZResult; 1079 }; 1080 1081 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1082 APInt KOResult = KnownOne << ShiftAmt; 1083 if (NSW && KnownOne.isSignBitSet()) 1084 KOResult.setSignBit(); 1085 return KOResult; 1086 }; 1087 1088 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1089 break; 1090 } 1091 case Instruction::LShr: { 1092 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1093 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1094 APInt KZResult = KnownZero.lshr(ShiftAmt); 1095 // High bits known zero. 1096 KZResult.setHighBits(ShiftAmt); 1097 return KZResult; 1098 }; 1099 1100 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1101 return KnownOne.lshr(ShiftAmt); 1102 }; 1103 1104 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1105 break; 1106 } 1107 case Instruction::AShr: { 1108 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1109 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1110 return KnownZero.ashr(ShiftAmt); 1111 }; 1112 1113 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1114 return KnownOne.ashr(ShiftAmt); 1115 }; 1116 1117 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1118 break; 1119 } 1120 case Instruction::Sub: { 1121 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1122 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1123 Known, Known2, Depth, Q); 1124 break; 1125 } 1126 case Instruction::Add: { 1127 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1128 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1129 Known, Known2, Depth, Q); 1130 break; 1131 } 1132 case Instruction::SRem: 1133 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1134 APInt RA = Rem->getValue().abs(); 1135 if (RA.isPowerOf2()) { 1136 APInt LowBits = RA - 1; 1137 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1138 1139 // The low bits of the first operand are unchanged by the srem. 1140 Known.Zero = Known2.Zero & LowBits; 1141 Known.One = Known2.One & LowBits; 1142 1143 // If the first operand is non-negative or has all low bits zero, then 1144 // the upper bits are all zero. 1145 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1146 Known.Zero |= ~LowBits; 1147 1148 // If the first operand is negative and not all low bits are zero, then 1149 // the upper bits are all one. 1150 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1151 Known.One |= ~LowBits; 1152 1153 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1154 break; 1155 } 1156 } 1157 1158 // The sign bit is the LHS's sign bit, except when the result of the 1159 // remainder is zero. 1160 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1161 // If it's known zero, our sign bit is also zero. 1162 if (Known2.isNonNegative()) 1163 Known.makeNonNegative(); 1164 1165 break; 1166 case Instruction::URem: { 1167 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1168 const APInt &RA = Rem->getValue(); 1169 if (RA.isPowerOf2()) { 1170 APInt LowBits = (RA - 1); 1171 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1172 Known.Zero |= ~LowBits; 1173 Known.One &= LowBits; 1174 break; 1175 } 1176 } 1177 1178 // Since the result is less than or equal to either operand, any leading 1179 // zero bits in either operand must also exist in the result. 1180 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1181 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1182 1183 unsigned Leaders = 1184 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1185 Known.resetAll(); 1186 Known.Zero.setHighBits(Leaders); 1187 break; 1188 } 1189 1190 case Instruction::Alloca: { 1191 const AllocaInst *AI = cast<AllocaInst>(I); 1192 unsigned Align = AI->getAlignment(); 1193 if (Align == 0) 1194 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1195 1196 if (Align > 0) 1197 Known.Zero.setLowBits(countTrailingZeros(Align)); 1198 break; 1199 } 1200 case Instruction::GetElementPtr: { 1201 // Analyze all of the subscripts of this getelementptr instruction 1202 // to determine if we can prove known low zero bits. 1203 KnownBits LocalKnown(BitWidth); 1204 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1205 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1206 1207 gep_type_iterator GTI = gep_type_begin(I); 1208 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1209 Value *Index = I->getOperand(i); 1210 if (StructType *STy = GTI.getStructTypeOrNull()) { 1211 // Handle struct member offset arithmetic. 1212 1213 // Handle case when index is vector zeroinitializer 1214 Constant *CIndex = cast<Constant>(Index); 1215 if (CIndex->isZeroValue()) 1216 continue; 1217 1218 if (CIndex->getType()->isVectorTy()) 1219 Index = CIndex->getSplatValue(); 1220 1221 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1222 const StructLayout *SL = Q.DL.getStructLayout(STy); 1223 uint64_t Offset = SL->getElementOffset(Idx); 1224 TrailZ = std::min<unsigned>(TrailZ, 1225 countTrailingZeros(Offset)); 1226 } else { 1227 // Handle array index arithmetic. 1228 Type *IndexedTy = GTI.getIndexedType(); 1229 if (!IndexedTy->isSized()) { 1230 TrailZ = 0; 1231 break; 1232 } 1233 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1234 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1235 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1236 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1237 TrailZ = std::min(TrailZ, 1238 unsigned(countTrailingZeros(TypeSize) + 1239 LocalKnown.countMinTrailingZeros())); 1240 } 1241 } 1242 1243 Known.Zero.setLowBits(TrailZ); 1244 break; 1245 } 1246 case Instruction::PHI: { 1247 const PHINode *P = cast<PHINode>(I); 1248 // Handle the case of a simple two-predecessor recurrence PHI. 1249 // There's a lot more that could theoretically be done here, but 1250 // this is sufficient to catch some interesting cases. 1251 if (P->getNumIncomingValues() == 2) { 1252 for (unsigned i = 0; i != 2; ++i) { 1253 Value *L = P->getIncomingValue(i); 1254 Value *R = P->getIncomingValue(!i); 1255 Operator *LU = dyn_cast<Operator>(L); 1256 if (!LU) 1257 continue; 1258 unsigned Opcode = LU->getOpcode(); 1259 // Check for operations that have the property that if 1260 // both their operands have low zero bits, the result 1261 // will have low zero bits. 1262 if (Opcode == Instruction::Add || 1263 Opcode == Instruction::Sub || 1264 Opcode == Instruction::And || 1265 Opcode == Instruction::Or || 1266 Opcode == Instruction::Mul) { 1267 Value *LL = LU->getOperand(0); 1268 Value *LR = LU->getOperand(1); 1269 // Find a recurrence. 1270 if (LL == I) 1271 L = LR; 1272 else if (LR == I) 1273 L = LL; 1274 else 1275 break; 1276 // Ok, we have a PHI of the form L op= R. Check for low 1277 // zero bits. 1278 computeKnownBits(R, Known2, Depth + 1, Q); 1279 1280 // We need to take the minimum number of known bits 1281 KnownBits Known3(Known); 1282 computeKnownBits(L, Known3, Depth + 1, Q); 1283 1284 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1285 Known3.countMinTrailingZeros())); 1286 1287 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1288 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1289 // If initial value of recurrence is nonnegative, and we are adding 1290 // a nonnegative number with nsw, the result can only be nonnegative 1291 // or poison value regardless of the number of times we execute the 1292 // add in phi recurrence. If initial value is negative and we are 1293 // adding a negative number with nsw, the result can only be 1294 // negative or poison value. Similar arguments apply to sub and mul. 1295 // 1296 // (add non-negative, non-negative) --> non-negative 1297 // (add negative, negative) --> negative 1298 if (Opcode == Instruction::Add) { 1299 if (Known2.isNonNegative() && Known3.isNonNegative()) 1300 Known.makeNonNegative(); 1301 else if (Known2.isNegative() && Known3.isNegative()) 1302 Known.makeNegative(); 1303 } 1304 1305 // (sub nsw non-negative, negative) --> non-negative 1306 // (sub nsw negative, non-negative) --> negative 1307 else if (Opcode == Instruction::Sub && LL == I) { 1308 if (Known2.isNonNegative() && Known3.isNegative()) 1309 Known.makeNonNegative(); 1310 else if (Known2.isNegative() && Known3.isNonNegative()) 1311 Known.makeNegative(); 1312 } 1313 1314 // (mul nsw non-negative, non-negative) --> non-negative 1315 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1316 Known3.isNonNegative()) 1317 Known.makeNonNegative(); 1318 } 1319 1320 break; 1321 } 1322 } 1323 } 1324 1325 // Unreachable blocks may have zero-operand PHI nodes. 1326 if (P->getNumIncomingValues() == 0) 1327 break; 1328 1329 // Otherwise take the unions of the known bit sets of the operands, 1330 // taking conservative care to avoid excessive recursion. 1331 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1332 // Skip if every incoming value references to ourself. 1333 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1334 break; 1335 1336 Known.Zero.setAllBits(); 1337 Known.One.setAllBits(); 1338 for (Value *IncValue : P->incoming_values()) { 1339 // Skip direct self references. 1340 if (IncValue == P) continue; 1341 1342 Known2 = KnownBits(BitWidth); 1343 // Recurse, but cap the recursion to one level, because we don't 1344 // want to waste time spinning around in loops. 1345 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1346 Known.Zero &= Known2.Zero; 1347 Known.One &= Known2.One; 1348 // If all bits have been ruled out, there's no need to check 1349 // more operands. 1350 if (!Known.Zero && !Known.One) 1351 break; 1352 } 1353 } 1354 break; 1355 } 1356 case Instruction::Call: 1357 case Instruction::Invoke: 1358 // If range metadata is attached to this call, set known bits from that, 1359 // and then intersect with known bits based on other properties of the 1360 // function. 1361 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1362 computeKnownBitsFromRangeMetadata(*MD, Known); 1363 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1364 computeKnownBits(RV, Known2, Depth + 1, Q); 1365 Known.Zero |= Known2.Zero; 1366 Known.One |= Known2.One; 1367 } 1368 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1369 switch (II->getIntrinsicID()) { 1370 default: break; 1371 case Intrinsic::bitreverse: 1372 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1373 Known.Zero |= Known2.Zero.reverseBits(); 1374 Known.One |= Known2.One.reverseBits(); 1375 break; 1376 case Intrinsic::bswap: 1377 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1378 Known.Zero |= Known2.Zero.byteSwap(); 1379 Known.One |= Known2.One.byteSwap(); 1380 break; 1381 case Intrinsic::ctlz: { 1382 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1383 // If we have a known 1, its position is our upper bound. 1384 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1385 // If this call is undefined for 0, the result will be less than 2^n. 1386 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1387 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1388 unsigned LowBits = Log2_32(PossibleLZ)+1; 1389 Known.Zero.setBitsFrom(LowBits); 1390 break; 1391 } 1392 case Intrinsic::cttz: { 1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1394 // If we have a known 1, its position is our upper bound. 1395 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1396 // If this call is undefined for 0, the result will be less than 2^n. 1397 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1398 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1399 unsigned LowBits = Log2_32(PossibleTZ)+1; 1400 Known.Zero.setBitsFrom(LowBits); 1401 break; 1402 } 1403 case Intrinsic::ctpop: { 1404 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1405 // We can bound the space the count needs. Also, bits known to be zero 1406 // can't contribute to the population. 1407 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1408 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1409 Known.Zero.setBitsFrom(LowBits); 1410 // TODO: we could bound KnownOne using the lower bound on the number 1411 // of bits which might be set provided by popcnt KnownOne2. 1412 break; 1413 } 1414 case Intrinsic::x86_sse42_crc32_64_64: 1415 Known.Zero.setBitsFrom(32); 1416 break; 1417 } 1418 } 1419 break; 1420 case Instruction::ExtractElement: 1421 // Look through extract element. At the moment we keep this simple and skip 1422 // tracking the specific element. But at least we might find information 1423 // valid for all elements of the vector (for example if vector is sign 1424 // extended, shifted, etc). 1425 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1426 break; 1427 case Instruction::ExtractValue: 1428 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1429 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1430 if (EVI->getNumIndices() != 1) break; 1431 if (EVI->getIndices()[0] == 0) { 1432 switch (II->getIntrinsicID()) { 1433 default: break; 1434 case Intrinsic::uadd_with_overflow: 1435 case Intrinsic::sadd_with_overflow: 1436 computeKnownBitsAddSub(true, II->getArgOperand(0), 1437 II->getArgOperand(1), false, Known, Known2, 1438 Depth, Q); 1439 break; 1440 case Intrinsic::usub_with_overflow: 1441 case Intrinsic::ssub_with_overflow: 1442 computeKnownBitsAddSub(false, II->getArgOperand(0), 1443 II->getArgOperand(1), false, Known, Known2, 1444 Depth, Q); 1445 break; 1446 case Intrinsic::umul_with_overflow: 1447 case Intrinsic::smul_with_overflow: 1448 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1449 Known, Known2, Depth, Q); 1450 break; 1451 } 1452 } 1453 } 1454 } 1455 } 1456 1457 /// Determine which bits of V are known to be either zero or one and return 1458 /// them. 1459 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1460 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1461 computeKnownBits(V, Known, Depth, Q); 1462 return Known; 1463 } 1464 1465 /// Determine which bits of V are known to be either zero or one and return 1466 /// them in the Known bit set. 1467 /// 1468 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1469 /// we cannot optimize based on the assumption that it is zero without changing 1470 /// it to be an explicit zero. If we don't change it to zero, other code could 1471 /// optimized based on the contradictory assumption that it is non-zero. 1472 /// Because instcombine aggressively folds operations with undef args anyway, 1473 /// this won't lose us code quality. 1474 /// 1475 /// This function is defined on values with integer type, values with pointer 1476 /// type, and vectors of integers. In the case 1477 /// where V is a vector, known zero, and known one values are the 1478 /// same width as the vector element, and the bit is set only if it is true 1479 /// for all of the elements in the vector. 1480 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1481 const Query &Q) { 1482 assert(V && "No Value?"); 1483 assert(Depth <= MaxDepth && "Limit Search Depth"); 1484 unsigned BitWidth = Known.getBitWidth(); 1485 1486 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1487 V->getType()->isPtrOrPtrVectorTy()) && 1488 "Not integer or pointer type!"); 1489 assert(Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth && 1490 "V and Known should have same BitWidth"); 1491 (void)BitWidth; 1492 1493 const APInt *C; 1494 if (match(V, m_APInt(C))) { 1495 // We know all of the bits for a scalar constant or a splat vector constant! 1496 Known.One = *C; 1497 Known.Zero = ~Known.One; 1498 return; 1499 } 1500 // Null and aggregate-zero are all-zeros. 1501 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1502 Known.setAllZero(); 1503 return; 1504 } 1505 // Handle a constant vector by taking the intersection of the known bits of 1506 // each element. 1507 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1508 // We know that CDS must be a vector of integers. Take the intersection of 1509 // each element. 1510 Known.Zero.setAllBits(); Known.One.setAllBits(); 1511 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1512 APInt Elt = CDS->getElementAsAPInt(i); 1513 Known.Zero &= ~Elt; 1514 Known.One &= Elt; 1515 } 1516 return; 1517 } 1518 1519 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1520 // We know that CV must be a vector of integers. Take the intersection of 1521 // each element. 1522 Known.Zero.setAllBits(); Known.One.setAllBits(); 1523 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1524 Constant *Element = CV->getAggregateElement(i); 1525 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1526 if (!ElementCI) { 1527 Known.resetAll(); 1528 return; 1529 } 1530 const APInt &Elt = ElementCI->getValue(); 1531 Known.Zero &= ~Elt; 1532 Known.One &= Elt; 1533 } 1534 return; 1535 } 1536 1537 // Start out not knowing anything. 1538 Known.resetAll(); 1539 1540 // We can't imply anything about undefs. 1541 if (isa<UndefValue>(V)) 1542 return; 1543 1544 // There's no point in looking through other users of ConstantData for 1545 // assumptions. Confirm that we've handled them all. 1546 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1547 1548 // Limit search depth. 1549 // All recursive calls that increase depth must come after this. 1550 if (Depth == MaxDepth) 1551 return; 1552 1553 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1554 // the bits of its aliasee. 1555 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1556 if (!GA->isInterposable()) 1557 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1558 return; 1559 } 1560 1561 if (const Operator *I = dyn_cast<Operator>(V)) 1562 computeKnownBitsFromOperator(I, Known, Depth, Q); 1563 1564 // Aligned pointers have trailing zeros - refine Known.Zero set 1565 if (V->getType()->isPointerTy()) { 1566 unsigned Align = V->getPointerAlignment(Q.DL); 1567 if (Align) 1568 Known.Zero.setLowBits(countTrailingZeros(Align)); 1569 } 1570 1571 // computeKnownBitsFromAssume strictly refines Known. 1572 // Therefore, we run them after computeKnownBitsFromOperator. 1573 1574 // Check whether a nearby assume intrinsic can determine some known bits. 1575 computeKnownBitsFromAssume(V, Known, Depth, Q); 1576 1577 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1578 } 1579 1580 /// Return true if the given value is known to have exactly one 1581 /// bit set when defined. For vectors return true if every element is known to 1582 /// be a power of two when defined. Supports values with integer or pointer 1583 /// types and vectors of integers. 1584 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1585 const Query &Q) { 1586 assert(Depth <= MaxDepth && "Limit Search Depth"); 1587 1588 if (const Constant *C = dyn_cast<Constant>(V)) { 1589 if (C->isNullValue()) 1590 return OrZero; 1591 1592 const APInt *ConstIntOrConstSplatInt; 1593 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1594 return ConstIntOrConstSplatInt->isPowerOf2(); 1595 } 1596 1597 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1598 // it is shifted off the end then the result is undefined. 1599 if (match(V, m_Shl(m_One(), m_Value()))) 1600 return true; 1601 1602 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1603 // the bottom. If it is shifted off the bottom then the result is undefined. 1604 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1605 return true; 1606 1607 // The remaining tests are all recursive, so bail out if we hit the limit. 1608 if (Depth++ == MaxDepth) 1609 return false; 1610 1611 Value *X = nullptr, *Y = nullptr; 1612 // A shift left or a logical shift right of a power of two is a power of two 1613 // or zero. 1614 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1615 match(V, m_LShr(m_Value(X), m_Value())))) 1616 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1617 1618 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1619 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1620 1621 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1622 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1623 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1624 1625 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1626 // A power of two and'd with anything is a power of two or zero. 1627 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1628 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1629 return true; 1630 // X & (-X) is always a power of two or zero. 1631 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1632 return true; 1633 return false; 1634 } 1635 1636 // Adding a power-of-two or zero to the same power-of-two or zero yields 1637 // either the original power-of-two, a larger power-of-two or zero. 1638 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1639 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1640 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1641 if (match(X, m_And(m_Specific(Y), m_Value())) || 1642 match(X, m_And(m_Value(), m_Specific(Y)))) 1643 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1644 return true; 1645 if (match(Y, m_And(m_Specific(X), m_Value())) || 1646 match(Y, m_And(m_Value(), m_Specific(X)))) 1647 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1648 return true; 1649 1650 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1651 KnownBits LHSBits(BitWidth); 1652 computeKnownBits(X, LHSBits, Depth, Q); 1653 1654 KnownBits RHSBits(BitWidth); 1655 computeKnownBits(Y, RHSBits, Depth, Q); 1656 // If i8 V is a power of two or zero: 1657 // ZeroBits: 1 1 1 0 1 1 1 1 1658 // ~ZeroBits: 0 0 0 1 0 0 0 0 1659 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1660 // If OrZero isn't set, we cannot give back a zero result. 1661 // Make sure either the LHS or RHS has a bit set. 1662 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1663 return true; 1664 } 1665 } 1666 1667 // An exact divide or right shift can only shift off zero bits, so the result 1668 // is a power of two only if the first operand is a power of two and not 1669 // copying a sign bit (sdiv int_min, 2). 1670 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1671 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1672 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1673 Depth, Q); 1674 } 1675 1676 return false; 1677 } 1678 1679 /// \brief Test whether a GEP's result is known to be non-null. 1680 /// 1681 /// Uses properties inherent in a GEP to try to determine whether it is known 1682 /// to be non-null. 1683 /// 1684 /// Currently this routine does not support vector GEPs. 1685 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1686 const Query &Q) { 1687 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1688 return false; 1689 1690 // FIXME: Support vector-GEPs. 1691 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1692 1693 // If the base pointer is non-null, we cannot walk to a null address with an 1694 // inbounds GEP in address space zero. 1695 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1696 return true; 1697 1698 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1699 // If so, then the GEP cannot produce a null pointer, as doing so would 1700 // inherently violate the inbounds contract within address space zero. 1701 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1702 GTI != GTE; ++GTI) { 1703 // Struct types are easy -- they must always be indexed by a constant. 1704 if (StructType *STy = GTI.getStructTypeOrNull()) { 1705 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1706 unsigned ElementIdx = OpC->getZExtValue(); 1707 const StructLayout *SL = Q.DL.getStructLayout(STy); 1708 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1709 if (ElementOffset > 0) 1710 return true; 1711 continue; 1712 } 1713 1714 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1715 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1716 continue; 1717 1718 // Fast path the constant operand case both for efficiency and so we don't 1719 // increment Depth when just zipping down an all-constant GEP. 1720 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1721 if (!OpC->isZero()) 1722 return true; 1723 continue; 1724 } 1725 1726 // We post-increment Depth here because while isKnownNonZero increments it 1727 // as well, when we pop back up that increment won't persist. We don't want 1728 // to recurse 10k times just because we have 10k GEP operands. We don't 1729 // bail completely out because we want to handle constant GEPs regardless 1730 // of depth. 1731 if (Depth++ >= MaxDepth) 1732 continue; 1733 1734 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1735 return true; 1736 } 1737 1738 return false; 1739 } 1740 1741 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1742 const Instruction *CtxI, 1743 const DominatorTree *DT) { 1744 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1745 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1746 1747 if (!CtxI || !DT) 1748 return false; 1749 1750 unsigned NumUsesExplored = 0; 1751 for (auto *U : V->users()) { 1752 // Avoid massive lists 1753 if (NumUsesExplored >= DomConditionsMaxUses) 1754 break; 1755 NumUsesExplored++; 1756 1757 // If the value is used as an argument to a call or invoke, then argument 1758 // attributes may provide an answer about null-ness. 1759 if (auto CS = ImmutableCallSite(U)) 1760 if (auto *CalledFunc = CS.getCalledFunction()) 1761 for (const Argument &Arg : CalledFunc->args()) 1762 if (CS.getArgOperand(Arg.getArgNo()) == V && 1763 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1764 return true; 1765 1766 // Consider only compare instructions uniquely controlling a branch 1767 CmpInst::Predicate Pred; 1768 if (!match(const_cast<User *>(U), 1769 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1770 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1771 continue; 1772 1773 for (auto *CmpU : U->users()) { 1774 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1775 assert(BI->isConditional() && "uses a comparison!"); 1776 1777 BasicBlock *NonNullSuccessor = 1778 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1779 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1780 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1781 return true; 1782 } else if (Pred == ICmpInst::ICMP_NE && 1783 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1784 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1785 return true; 1786 } 1787 } 1788 } 1789 1790 return false; 1791 } 1792 1793 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1794 /// ensure that the value it's attached to is never Value? 'RangeType' is 1795 /// is the type of the value described by the range. 1796 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1797 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1798 assert(NumRanges >= 1); 1799 for (unsigned i = 0; i < NumRanges; ++i) { 1800 ConstantInt *Lower = 1801 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1802 ConstantInt *Upper = 1803 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1804 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1805 if (Range.contains(Value)) 1806 return false; 1807 } 1808 return true; 1809 } 1810 1811 /// Return true if the given value is known to be non-zero when defined. For 1812 /// vectors, return true if every element is known to be non-zero when 1813 /// defined. For pointers, if the context instruction and dominator tree are 1814 /// specified, perform context-sensitive analysis and return true if the 1815 /// pointer couldn't possibly be null at the specified instruction. 1816 /// Supports values with integer or pointer type and vectors of integers. 1817 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1818 if (auto *C = dyn_cast<Constant>(V)) { 1819 if (C->isNullValue()) 1820 return false; 1821 if (isa<ConstantInt>(C)) 1822 // Must be non-zero due to null test above. 1823 return true; 1824 1825 // For constant vectors, check that all elements are undefined or known 1826 // non-zero to determine that the whole vector is known non-zero. 1827 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1828 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1829 Constant *Elt = C->getAggregateElement(i); 1830 if (!Elt || Elt->isNullValue()) 1831 return false; 1832 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1833 return false; 1834 } 1835 return true; 1836 } 1837 1838 // A global variable in address space 0 is non null unless extern weak 1839 // or an absolute symbol reference. Other address spaces may have null as a 1840 // valid address for a global, so we can't assume anything. 1841 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1842 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1843 GV->getType()->getAddressSpace() == 0) 1844 return true; 1845 } else 1846 return false; 1847 } 1848 1849 if (auto *I = dyn_cast<Instruction>(V)) { 1850 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1851 // If the possible ranges don't contain zero, then the value is 1852 // definitely non-zero. 1853 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1854 const APInt ZeroValue(Ty->getBitWidth(), 0); 1855 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1856 return true; 1857 } 1858 } 1859 } 1860 1861 // Check for pointer simplifications. 1862 if (V->getType()->isPointerTy()) { 1863 // Alloca never returns null, malloc might. 1864 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1865 return true; 1866 1867 // A byval, inalloca, or nonnull argument is never null. 1868 if (const Argument *A = dyn_cast<Argument>(V)) 1869 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1870 return true; 1871 1872 // A Load tagged with nonnull metadata is never null. 1873 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1874 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1875 return true; 1876 1877 if (auto CS = ImmutableCallSite(V)) 1878 if (CS.isReturnNonNull()) 1879 return true; 1880 } 1881 1882 // The remaining tests are all recursive, so bail out if we hit the limit. 1883 if (Depth++ >= MaxDepth) 1884 return false; 1885 1886 // Check for recursive pointer simplifications. 1887 if (V->getType()->isPointerTy()) { 1888 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1889 return true; 1890 1891 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1892 if (isGEPKnownNonNull(GEP, Depth, Q)) 1893 return true; 1894 } 1895 1896 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1897 1898 // X | Y != 0 if X != 0 or Y != 0. 1899 Value *X = nullptr, *Y = nullptr; 1900 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1901 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1902 1903 // ext X != 0 if X != 0. 1904 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1905 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1906 1907 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1908 // if the lowest bit is shifted off the end. 1909 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1910 // shl nuw can't remove any non-zero bits. 1911 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1912 if (BO->hasNoUnsignedWrap()) 1913 return isKnownNonZero(X, Depth, Q); 1914 1915 KnownBits Known(BitWidth); 1916 computeKnownBits(X, Known, Depth, Q); 1917 if (Known.One[0]) 1918 return true; 1919 } 1920 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1921 // defined if the sign bit is shifted off the end. 1922 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1923 // shr exact can only shift out zero bits. 1924 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1925 if (BO->isExact()) 1926 return isKnownNonZero(X, Depth, Q); 1927 1928 KnownBits Known = computeKnownBits(X, Depth, Q); 1929 if (Known.isNegative()) 1930 return true; 1931 1932 // If the shifter operand is a constant, and all of the bits shifted 1933 // out are known to be zero, and X is known non-zero then at least one 1934 // non-zero bit must remain. 1935 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1936 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1937 // Is there a known one in the portion not shifted out? 1938 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 1939 return true; 1940 // Are all the bits to be shifted out known zero? 1941 if (Known.countMinTrailingZeros() >= ShiftVal) 1942 return isKnownNonZero(X, Depth, Q); 1943 } 1944 } 1945 // div exact can only produce a zero if the dividend is zero. 1946 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1947 return isKnownNonZero(X, Depth, Q); 1948 } 1949 // X + Y. 1950 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1951 KnownBits XKnown = computeKnownBits(X, Depth, Q); 1952 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 1953 1954 // If X and Y are both non-negative (as signed values) then their sum is not 1955 // zero unless both X and Y are zero. 1956 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 1957 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1958 return true; 1959 1960 // If X and Y are both negative (as signed values) then their sum is not 1961 // zero unless both X and Y equal INT_MIN. 1962 if (XKnown.isNegative() && YKnown.isNegative()) { 1963 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1964 // The sign bit of X is set. If some other bit is set then X is not equal 1965 // to INT_MIN. 1966 if (XKnown.One.intersects(Mask)) 1967 return true; 1968 // The sign bit of Y is set. If some other bit is set then Y is not equal 1969 // to INT_MIN. 1970 if (YKnown.One.intersects(Mask)) 1971 return true; 1972 } 1973 1974 // The sum of a non-negative number and a power of two is not zero. 1975 if (XKnown.isNonNegative() && 1976 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1977 return true; 1978 if (YKnown.isNonNegative() && 1979 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1980 return true; 1981 } 1982 // X * Y. 1983 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1984 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1985 // If X and Y are non-zero then so is X * Y as long as the multiplication 1986 // does not overflow. 1987 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1988 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1989 return true; 1990 } 1991 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1992 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1993 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1994 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1995 return true; 1996 } 1997 // PHI 1998 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1999 // Try and detect a recurrence that monotonically increases from a 2000 // starting value, as these are common as induction variables. 2001 if (PN->getNumIncomingValues() == 2) { 2002 Value *Start = PN->getIncomingValue(0); 2003 Value *Induction = PN->getIncomingValue(1); 2004 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2005 std::swap(Start, Induction); 2006 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2007 if (!C->isZero() && !C->isNegative()) { 2008 ConstantInt *X; 2009 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2010 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2011 !X->isNegative()) 2012 return true; 2013 } 2014 } 2015 } 2016 // Check if all incoming values are non-zero constant. 2017 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2018 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2019 }); 2020 if (AllNonZeroConstants) 2021 return true; 2022 } 2023 2024 KnownBits Known(BitWidth); 2025 computeKnownBits(V, Known, Depth, Q); 2026 return Known.One != 0; 2027 } 2028 2029 /// Return true if V2 == V1 + X, where X is known non-zero. 2030 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2031 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2032 if (!BO || BO->getOpcode() != Instruction::Add) 2033 return false; 2034 Value *Op = nullptr; 2035 if (V2 == BO->getOperand(0)) 2036 Op = BO->getOperand(1); 2037 else if (V2 == BO->getOperand(1)) 2038 Op = BO->getOperand(0); 2039 else 2040 return false; 2041 return isKnownNonZero(Op, 0, Q); 2042 } 2043 2044 /// Return true if it is known that V1 != V2. 2045 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2046 if (V1 == V2) 2047 return false; 2048 if (V1->getType() != V2->getType()) 2049 // We can't look through casts yet. 2050 return false; 2051 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2052 return true; 2053 2054 if (V1->getType()->isIntOrIntVectorTy()) { 2055 // Are any known bits in V1 contradictory to known bits in V2? If V1 2056 // has a known zero where V2 has a known one, they must not be equal. 2057 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2058 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2059 2060 if (Known1.Zero.intersects(Known2.One) || 2061 Known2.Zero.intersects(Known1.One)) 2062 return true; 2063 } 2064 return false; 2065 } 2066 2067 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2068 /// simplify operations downstream. Mask is known to be zero for bits that V 2069 /// cannot have. 2070 /// 2071 /// This function is defined on values with integer type, values with pointer 2072 /// type, and vectors of integers. In the case 2073 /// where V is a vector, the mask, known zero, and known one values are the 2074 /// same width as the vector element, and the bit is set only if it is true 2075 /// for all of the elements in the vector. 2076 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2077 const Query &Q) { 2078 KnownBits Known(Mask.getBitWidth()); 2079 computeKnownBits(V, Known, Depth, Q); 2080 return Mask.isSubsetOf(Known.Zero); 2081 } 2082 2083 /// For vector constants, loop over the elements and find the constant with the 2084 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2085 /// or if any element was not analyzed; otherwise, return the count for the 2086 /// element with the minimum number of sign bits. 2087 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2088 unsigned TyBits) { 2089 const auto *CV = dyn_cast<Constant>(V); 2090 if (!CV || !CV->getType()->isVectorTy()) 2091 return 0; 2092 2093 unsigned MinSignBits = TyBits; 2094 unsigned NumElts = CV->getType()->getVectorNumElements(); 2095 for (unsigned i = 0; i != NumElts; ++i) { 2096 // If we find a non-ConstantInt, bail out. 2097 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2098 if (!Elt) 2099 return 0; 2100 2101 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2102 } 2103 2104 return MinSignBits; 2105 } 2106 2107 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2108 const Query &Q); 2109 2110 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2111 const Query &Q) { 2112 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2113 assert(Result > 0 && "At least one sign bit needs to be present!"); 2114 return Result; 2115 } 2116 2117 /// Return the number of times the sign bit of the register is replicated into 2118 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2119 /// (itself), but other cases can give us information. For example, immediately 2120 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2121 /// other, so we return 3. For vectors, return the number of sign bits for the 2122 /// vector element with the mininum number of known sign bits. 2123 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2124 const Query &Q) { 2125 assert(Depth <= MaxDepth && "Limit Search Depth"); 2126 2127 // We return the minimum number of sign bits that are guaranteed to be present 2128 // in V, so for undef we have to conservatively return 1. We don't have the 2129 // same behavior for poison though -- that's a FIXME today. 2130 2131 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2132 unsigned Tmp, Tmp2; 2133 unsigned FirstAnswer = 1; 2134 2135 // Note that ConstantInt is handled by the general computeKnownBits case 2136 // below. 2137 2138 if (Depth == MaxDepth) 2139 return 1; // Limit search depth. 2140 2141 const Operator *U = dyn_cast<Operator>(V); 2142 switch (Operator::getOpcode(V)) { 2143 default: break; 2144 case Instruction::SExt: 2145 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2146 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2147 2148 case Instruction::SDiv: { 2149 const APInt *Denominator; 2150 // sdiv X, C -> adds log(C) sign bits. 2151 if (match(U->getOperand(1), m_APInt(Denominator))) { 2152 2153 // Ignore non-positive denominator. 2154 if (!Denominator->isStrictlyPositive()) 2155 break; 2156 2157 // Calculate the incoming numerator bits. 2158 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2159 2160 // Add floor(log(C)) bits to the numerator bits. 2161 return std::min(TyBits, NumBits + Denominator->logBase2()); 2162 } 2163 break; 2164 } 2165 2166 case Instruction::SRem: { 2167 const APInt *Denominator; 2168 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2169 // positive constant. This let us put a lower bound on the number of sign 2170 // bits. 2171 if (match(U->getOperand(1), m_APInt(Denominator))) { 2172 2173 // Ignore non-positive denominator. 2174 if (!Denominator->isStrictlyPositive()) 2175 break; 2176 2177 // Calculate the incoming numerator bits. SRem by a positive constant 2178 // can't lower the number of sign bits. 2179 unsigned NumrBits = 2180 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2181 2182 // Calculate the leading sign bit constraints by examining the 2183 // denominator. Given that the denominator is positive, there are two 2184 // cases: 2185 // 2186 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2187 // (1 << ceilLogBase2(C)). 2188 // 2189 // 2. the numerator is negative. Then the result range is (-C,0] and 2190 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2191 // 2192 // Thus a lower bound on the number of sign bits is `TyBits - 2193 // ceilLogBase2(C)`. 2194 2195 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2196 return std::max(NumrBits, ResBits); 2197 } 2198 break; 2199 } 2200 2201 case Instruction::AShr: { 2202 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2203 // ashr X, C -> adds C sign bits. Vectors too. 2204 const APInt *ShAmt; 2205 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2206 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2207 if (ShAmtLimited >= TyBits) 2208 break; // Bad shift. 2209 Tmp += ShAmtLimited; 2210 if (Tmp > TyBits) Tmp = TyBits; 2211 } 2212 return Tmp; 2213 } 2214 case Instruction::Shl: { 2215 const APInt *ShAmt; 2216 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2217 // shl destroys sign bits. 2218 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2219 Tmp2 = ShAmt->getZExtValue(); 2220 if (Tmp2 >= TyBits || // Bad shift. 2221 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2222 return Tmp - Tmp2; 2223 } 2224 break; 2225 } 2226 case Instruction::And: 2227 case Instruction::Or: 2228 case Instruction::Xor: // NOT is handled here. 2229 // Logical binary ops preserve the number of sign bits at the worst. 2230 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2231 if (Tmp != 1) { 2232 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2233 FirstAnswer = std::min(Tmp, Tmp2); 2234 // We computed what we know about the sign bits as our first 2235 // answer. Now proceed to the generic code that uses 2236 // computeKnownBits, and pick whichever answer is better. 2237 } 2238 break; 2239 2240 case Instruction::Select: 2241 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2242 if (Tmp == 1) return 1; // Early out. 2243 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2244 return std::min(Tmp, Tmp2); 2245 2246 case Instruction::Add: 2247 // Add can have at most one carry bit. Thus we know that the output 2248 // is, at worst, one more bit than the inputs. 2249 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2250 if (Tmp == 1) return 1; // Early out. 2251 2252 // Special case decrementing a value (ADD X, -1): 2253 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2254 if (CRHS->isAllOnesValue()) { 2255 KnownBits Known(TyBits); 2256 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2257 2258 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2259 // sign bits set. 2260 if ((Known.Zero | 1).isAllOnesValue()) 2261 return TyBits; 2262 2263 // If we are subtracting one from a positive number, there is no carry 2264 // out of the result. 2265 if (Known.isNonNegative()) 2266 return Tmp; 2267 } 2268 2269 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2270 if (Tmp2 == 1) return 1; 2271 return std::min(Tmp, Tmp2)-1; 2272 2273 case Instruction::Sub: 2274 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2275 if (Tmp2 == 1) return 1; 2276 2277 // Handle NEG. 2278 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2279 if (CLHS->isNullValue()) { 2280 KnownBits Known(TyBits); 2281 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2282 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2283 // sign bits set. 2284 if ((Known.Zero | 1).isAllOnesValue()) 2285 return TyBits; 2286 2287 // If the input is known to be positive (the sign bit is known clear), 2288 // the output of the NEG has the same number of sign bits as the input. 2289 if (Known.isNonNegative()) 2290 return Tmp2; 2291 2292 // Otherwise, we treat this like a SUB. 2293 } 2294 2295 // Sub can have at most one carry bit. Thus we know that the output 2296 // is, at worst, one more bit than the inputs. 2297 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2298 if (Tmp == 1) return 1; // Early out. 2299 return std::min(Tmp, Tmp2)-1; 2300 2301 case Instruction::Mul: { 2302 // The output of the Mul can be at most twice the valid bits in the inputs. 2303 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2304 if (SignBitsOp0 == 1) return 1; // Early out. 2305 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2306 if (SignBitsOp1 == 1) return 1; 2307 unsigned OutValidBits = 2308 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2309 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2310 } 2311 2312 case Instruction::PHI: { 2313 const PHINode *PN = cast<PHINode>(U); 2314 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2315 // Don't analyze large in-degree PHIs. 2316 if (NumIncomingValues > 4) break; 2317 // Unreachable blocks may have zero-operand PHI nodes. 2318 if (NumIncomingValues == 0) break; 2319 2320 // Take the minimum of all incoming values. This can't infinitely loop 2321 // because of our depth threshold. 2322 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2323 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2324 if (Tmp == 1) return Tmp; 2325 Tmp = std::min( 2326 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2327 } 2328 return Tmp; 2329 } 2330 2331 case Instruction::Trunc: 2332 // FIXME: it's tricky to do anything useful for this, but it is an important 2333 // case for targets like X86. 2334 break; 2335 2336 case Instruction::ExtractElement: 2337 // Look through extract element. At the moment we keep this simple and skip 2338 // tracking the specific element. But at least we might find information 2339 // valid for all elements of the vector (for example if vector is sign 2340 // extended, shifted, etc). 2341 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2342 } 2343 2344 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2345 // use this information. 2346 2347 // If we can examine all elements of a vector constant successfully, we're 2348 // done (we can't do any better than that). If not, keep trying. 2349 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2350 return VecSignBits; 2351 2352 KnownBits Known(TyBits); 2353 computeKnownBits(V, Known, Depth, Q); 2354 2355 // If we know that the sign bit is either zero or one, determine the number of 2356 // identical bits in the top of the input value. 2357 return std::max(FirstAnswer, Known.countMinSignBits()); 2358 } 2359 2360 /// This function computes the integer multiple of Base that equals V. 2361 /// If successful, it returns true and returns the multiple in 2362 /// Multiple. If unsuccessful, it returns false. It looks 2363 /// through SExt instructions only if LookThroughSExt is true. 2364 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2365 bool LookThroughSExt, unsigned Depth) { 2366 const unsigned MaxDepth = 6; 2367 2368 assert(V && "No Value?"); 2369 assert(Depth <= MaxDepth && "Limit Search Depth"); 2370 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2371 2372 Type *T = V->getType(); 2373 2374 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2375 2376 if (Base == 0) 2377 return false; 2378 2379 if (Base == 1) { 2380 Multiple = V; 2381 return true; 2382 } 2383 2384 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2385 Constant *BaseVal = ConstantInt::get(T, Base); 2386 if (CO && CO == BaseVal) { 2387 // Multiple is 1. 2388 Multiple = ConstantInt::get(T, 1); 2389 return true; 2390 } 2391 2392 if (CI && CI->getZExtValue() % Base == 0) { 2393 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2394 return true; 2395 } 2396 2397 if (Depth == MaxDepth) return false; // Limit search depth. 2398 2399 Operator *I = dyn_cast<Operator>(V); 2400 if (!I) return false; 2401 2402 switch (I->getOpcode()) { 2403 default: break; 2404 case Instruction::SExt: 2405 if (!LookThroughSExt) return false; 2406 // otherwise fall through to ZExt 2407 LLVM_FALLTHROUGH; 2408 case Instruction::ZExt: 2409 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2410 LookThroughSExt, Depth+1); 2411 case Instruction::Shl: 2412 case Instruction::Mul: { 2413 Value *Op0 = I->getOperand(0); 2414 Value *Op1 = I->getOperand(1); 2415 2416 if (I->getOpcode() == Instruction::Shl) { 2417 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2418 if (!Op1CI) return false; 2419 // Turn Op0 << Op1 into Op0 * 2^Op1 2420 APInt Op1Int = Op1CI->getValue(); 2421 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2422 APInt API(Op1Int.getBitWidth(), 0); 2423 API.setBit(BitToSet); 2424 Op1 = ConstantInt::get(V->getContext(), API); 2425 } 2426 2427 Value *Mul0 = nullptr; 2428 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2429 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2430 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2431 if (Op1C->getType()->getPrimitiveSizeInBits() < 2432 MulC->getType()->getPrimitiveSizeInBits()) 2433 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2434 if (Op1C->getType()->getPrimitiveSizeInBits() > 2435 MulC->getType()->getPrimitiveSizeInBits()) 2436 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2437 2438 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2439 Multiple = ConstantExpr::getMul(MulC, Op1C); 2440 return true; 2441 } 2442 2443 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2444 if (Mul0CI->getValue() == 1) { 2445 // V == Base * Op1, so return Op1 2446 Multiple = Op1; 2447 return true; 2448 } 2449 } 2450 2451 Value *Mul1 = nullptr; 2452 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2453 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2454 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2455 if (Op0C->getType()->getPrimitiveSizeInBits() < 2456 MulC->getType()->getPrimitiveSizeInBits()) 2457 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2458 if (Op0C->getType()->getPrimitiveSizeInBits() > 2459 MulC->getType()->getPrimitiveSizeInBits()) 2460 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2461 2462 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2463 Multiple = ConstantExpr::getMul(MulC, Op0C); 2464 return true; 2465 } 2466 2467 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2468 if (Mul1CI->getValue() == 1) { 2469 // V == Base * Op0, so return Op0 2470 Multiple = Op0; 2471 return true; 2472 } 2473 } 2474 } 2475 } 2476 2477 // We could not determine if V is a multiple of Base. 2478 return false; 2479 } 2480 2481 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2482 const TargetLibraryInfo *TLI) { 2483 const Function *F = ICS.getCalledFunction(); 2484 if (!F) 2485 return Intrinsic::not_intrinsic; 2486 2487 if (F->isIntrinsic()) 2488 return F->getIntrinsicID(); 2489 2490 if (!TLI) 2491 return Intrinsic::not_intrinsic; 2492 2493 LibFunc Func; 2494 // We're going to make assumptions on the semantics of the functions, check 2495 // that the target knows that it's available in this environment and it does 2496 // not have local linkage. 2497 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2498 return Intrinsic::not_intrinsic; 2499 2500 if (!ICS.onlyReadsMemory()) 2501 return Intrinsic::not_intrinsic; 2502 2503 // Otherwise check if we have a call to a function that can be turned into a 2504 // vector intrinsic. 2505 switch (Func) { 2506 default: 2507 break; 2508 case LibFunc_sin: 2509 case LibFunc_sinf: 2510 case LibFunc_sinl: 2511 return Intrinsic::sin; 2512 case LibFunc_cos: 2513 case LibFunc_cosf: 2514 case LibFunc_cosl: 2515 return Intrinsic::cos; 2516 case LibFunc_exp: 2517 case LibFunc_expf: 2518 case LibFunc_expl: 2519 return Intrinsic::exp; 2520 case LibFunc_exp2: 2521 case LibFunc_exp2f: 2522 case LibFunc_exp2l: 2523 return Intrinsic::exp2; 2524 case LibFunc_log: 2525 case LibFunc_logf: 2526 case LibFunc_logl: 2527 return Intrinsic::log; 2528 case LibFunc_log10: 2529 case LibFunc_log10f: 2530 case LibFunc_log10l: 2531 return Intrinsic::log10; 2532 case LibFunc_log2: 2533 case LibFunc_log2f: 2534 case LibFunc_log2l: 2535 return Intrinsic::log2; 2536 case LibFunc_fabs: 2537 case LibFunc_fabsf: 2538 case LibFunc_fabsl: 2539 return Intrinsic::fabs; 2540 case LibFunc_fmin: 2541 case LibFunc_fminf: 2542 case LibFunc_fminl: 2543 return Intrinsic::minnum; 2544 case LibFunc_fmax: 2545 case LibFunc_fmaxf: 2546 case LibFunc_fmaxl: 2547 return Intrinsic::maxnum; 2548 case LibFunc_copysign: 2549 case LibFunc_copysignf: 2550 case LibFunc_copysignl: 2551 return Intrinsic::copysign; 2552 case LibFunc_floor: 2553 case LibFunc_floorf: 2554 case LibFunc_floorl: 2555 return Intrinsic::floor; 2556 case LibFunc_ceil: 2557 case LibFunc_ceilf: 2558 case LibFunc_ceill: 2559 return Intrinsic::ceil; 2560 case LibFunc_trunc: 2561 case LibFunc_truncf: 2562 case LibFunc_truncl: 2563 return Intrinsic::trunc; 2564 case LibFunc_rint: 2565 case LibFunc_rintf: 2566 case LibFunc_rintl: 2567 return Intrinsic::rint; 2568 case LibFunc_nearbyint: 2569 case LibFunc_nearbyintf: 2570 case LibFunc_nearbyintl: 2571 return Intrinsic::nearbyint; 2572 case LibFunc_round: 2573 case LibFunc_roundf: 2574 case LibFunc_roundl: 2575 return Intrinsic::round; 2576 case LibFunc_pow: 2577 case LibFunc_powf: 2578 case LibFunc_powl: 2579 return Intrinsic::pow; 2580 case LibFunc_sqrt: 2581 case LibFunc_sqrtf: 2582 case LibFunc_sqrtl: 2583 return Intrinsic::sqrt; 2584 } 2585 2586 return Intrinsic::not_intrinsic; 2587 } 2588 2589 /// Return true if we can prove that the specified FP value is never equal to 2590 /// -0.0. 2591 /// 2592 /// NOTE: this function will need to be revisited when we support non-default 2593 /// rounding modes! 2594 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2595 unsigned Depth) { 2596 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2597 return !CFP->getValueAPF().isNegZero(); 2598 2599 if (Depth == MaxDepth) 2600 return false; // Limit search depth. 2601 2602 const Operator *I = dyn_cast<Operator>(V); 2603 if (!I) return false; 2604 2605 // Check if the nsz fast-math flag is set 2606 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2607 if (FPO->hasNoSignedZeros()) 2608 return true; 2609 2610 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2611 if (I->getOpcode() == Instruction::FAdd) 2612 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2613 if (CFP->isNullValue()) 2614 return true; 2615 2616 // sitofp and uitofp turn into +0.0 for zero. 2617 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2618 return true; 2619 2620 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2621 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2622 switch (IID) { 2623 default: 2624 break; 2625 // sqrt(-0.0) = -0.0, no other negative results are possible. 2626 case Intrinsic::sqrt: 2627 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2628 // fabs(x) != -0.0 2629 case Intrinsic::fabs: 2630 return true; 2631 } 2632 } 2633 2634 return false; 2635 } 2636 2637 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2638 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2639 /// bit despite comparing equal. 2640 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2641 const TargetLibraryInfo *TLI, 2642 bool SignBitOnly, 2643 unsigned Depth) { 2644 // TODO: This function does not do the right thing when SignBitOnly is true 2645 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2646 // which flips the sign bits of NaNs. See 2647 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2648 2649 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2650 return !CFP->getValueAPF().isNegative() || 2651 (!SignBitOnly && CFP->getValueAPF().isZero()); 2652 } 2653 2654 if (Depth == MaxDepth) 2655 return false; // Limit search depth. 2656 2657 const Operator *I = dyn_cast<Operator>(V); 2658 if (!I) 2659 return false; 2660 2661 switch (I->getOpcode()) { 2662 default: 2663 break; 2664 // Unsigned integers are always nonnegative. 2665 case Instruction::UIToFP: 2666 return true; 2667 case Instruction::FMul: 2668 // x*x is always non-negative or a NaN. 2669 if (I->getOperand(0) == I->getOperand(1) && 2670 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2671 return true; 2672 2673 LLVM_FALLTHROUGH; 2674 case Instruction::FAdd: 2675 case Instruction::FDiv: 2676 case Instruction::FRem: 2677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2678 Depth + 1) && 2679 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2680 Depth + 1); 2681 case Instruction::Select: 2682 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2683 Depth + 1) && 2684 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2685 Depth + 1); 2686 case Instruction::FPExt: 2687 case Instruction::FPTrunc: 2688 // Widening/narrowing never change sign. 2689 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2690 Depth + 1); 2691 case Instruction::Call: 2692 const auto *CI = cast<CallInst>(I); 2693 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2694 switch (IID) { 2695 default: 2696 break; 2697 case Intrinsic::maxnum: 2698 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2699 Depth + 1) || 2700 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2701 Depth + 1); 2702 case Intrinsic::minnum: 2703 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2704 Depth + 1) && 2705 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2706 Depth + 1); 2707 case Intrinsic::exp: 2708 case Intrinsic::exp2: 2709 case Intrinsic::fabs: 2710 return true; 2711 2712 case Intrinsic::sqrt: 2713 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2714 if (!SignBitOnly) 2715 return true; 2716 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2717 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2718 2719 case Intrinsic::powi: 2720 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2721 // powi(x,n) is non-negative if n is even. 2722 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2723 return true; 2724 } 2725 // TODO: This is not correct. Given that exp is an integer, here are the 2726 // ways that pow can return a negative value: 2727 // 2728 // pow(x, exp) --> negative if exp is odd and x is negative. 2729 // pow(-0, exp) --> -inf if exp is negative odd. 2730 // pow(-0, exp) --> -0 if exp is positive odd. 2731 // pow(-inf, exp) --> -0 if exp is negative odd. 2732 // pow(-inf, exp) --> -inf if exp is positive odd. 2733 // 2734 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2735 // but we must return false if x == -0. Unfortunately we do not currently 2736 // have a way of expressing this constraint. See details in 2737 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2738 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2739 Depth + 1); 2740 2741 case Intrinsic::fma: 2742 case Intrinsic::fmuladd: 2743 // x*x+y is non-negative if y is non-negative. 2744 return I->getOperand(0) == I->getOperand(1) && 2745 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2746 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2747 Depth + 1); 2748 } 2749 break; 2750 } 2751 return false; 2752 } 2753 2754 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2755 const TargetLibraryInfo *TLI) { 2756 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2757 } 2758 2759 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2760 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2761 } 2762 2763 bool llvm::isKnownNeverNaN(const Value *V) { 2764 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2765 2766 // If we're told that NaNs won't happen, assume they won't. 2767 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2768 if (FPMathOp->hasNoNaNs()) 2769 return true; 2770 2771 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2772 // functions. For example, the result of sitofp is never NaN. 2773 2774 // Handle scalar constants. 2775 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2776 return !CFP->isNaN(); 2777 2778 // Bail out for constant expressions, but try to handle vector constants. 2779 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2780 return false; 2781 2782 // For vectors, verify that each element is not NaN. 2783 unsigned NumElts = V->getType()->getVectorNumElements(); 2784 for (unsigned i = 0; i != NumElts; ++i) { 2785 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2786 if (!Elt) 2787 return false; 2788 if (isa<UndefValue>(Elt)) 2789 continue; 2790 auto *CElt = dyn_cast<ConstantFP>(Elt); 2791 if (!CElt || CElt->isNaN()) 2792 return false; 2793 } 2794 // All elements were confirmed not-NaN or undefined. 2795 return true; 2796 } 2797 2798 /// If the specified value can be set by repeating the same byte in memory, 2799 /// return the i8 value that it is represented with. This is 2800 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2801 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2802 /// byte store (e.g. i16 0x1234), return null. 2803 Value *llvm::isBytewiseValue(Value *V) { 2804 // All byte-wide stores are splatable, even of arbitrary variables. 2805 if (V->getType()->isIntegerTy(8)) return V; 2806 2807 // Handle 'null' ConstantArrayZero etc. 2808 if (Constant *C = dyn_cast<Constant>(V)) 2809 if (C->isNullValue()) 2810 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2811 2812 // Constant float and double values can be handled as integer values if the 2813 // corresponding integer value is "byteable". An important case is 0.0. 2814 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2815 if (CFP->getType()->isFloatTy()) 2816 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2817 if (CFP->getType()->isDoubleTy()) 2818 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2819 // Don't handle long double formats, which have strange constraints. 2820 } 2821 2822 // We can handle constant integers that are multiple of 8 bits. 2823 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2824 if (CI->getBitWidth() % 8 == 0) { 2825 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2826 2827 if (!CI->getValue().isSplat(8)) 2828 return nullptr; 2829 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2830 } 2831 } 2832 2833 // A ConstantDataArray/Vector is splatable if all its members are equal and 2834 // also splatable. 2835 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2836 Value *Elt = CA->getElementAsConstant(0); 2837 Value *Val = isBytewiseValue(Elt); 2838 if (!Val) 2839 return nullptr; 2840 2841 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2842 if (CA->getElementAsConstant(I) != Elt) 2843 return nullptr; 2844 2845 return Val; 2846 } 2847 2848 // Conceptually, we could handle things like: 2849 // %a = zext i8 %X to i16 2850 // %b = shl i16 %a, 8 2851 // %c = or i16 %a, %b 2852 // but until there is an example that actually needs this, it doesn't seem 2853 // worth worrying about. 2854 return nullptr; 2855 } 2856 2857 // This is the recursive version of BuildSubAggregate. It takes a few different 2858 // arguments. Idxs is the index within the nested struct From that we are 2859 // looking at now (which is of type IndexedType). IdxSkip is the number of 2860 // indices from Idxs that should be left out when inserting into the resulting 2861 // struct. To is the result struct built so far, new insertvalue instructions 2862 // build on that. 2863 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2864 SmallVectorImpl<unsigned> &Idxs, 2865 unsigned IdxSkip, 2866 Instruction *InsertBefore) { 2867 StructType *STy = dyn_cast<StructType>(IndexedType); 2868 if (STy) { 2869 // Save the original To argument so we can modify it 2870 Value *OrigTo = To; 2871 // General case, the type indexed by Idxs is a struct 2872 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2873 // Process each struct element recursively 2874 Idxs.push_back(i); 2875 Value *PrevTo = To; 2876 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2877 InsertBefore); 2878 Idxs.pop_back(); 2879 if (!To) { 2880 // Couldn't find any inserted value for this index? Cleanup 2881 while (PrevTo != OrigTo) { 2882 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2883 PrevTo = Del->getAggregateOperand(); 2884 Del->eraseFromParent(); 2885 } 2886 // Stop processing elements 2887 break; 2888 } 2889 } 2890 // If we successfully found a value for each of our subaggregates 2891 if (To) 2892 return To; 2893 } 2894 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2895 // the struct's elements had a value that was inserted directly. In the latter 2896 // case, perhaps we can't determine each of the subelements individually, but 2897 // we might be able to find the complete struct somewhere. 2898 2899 // Find the value that is at that particular spot 2900 Value *V = FindInsertedValue(From, Idxs); 2901 2902 if (!V) 2903 return nullptr; 2904 2905 // Insert the value in the new (sub) aggregrate 2906 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2907 "tmp", InsertBefore); 2908 } 2909 2910 // This helper takes a nested struct and extracts a part of it (which is again a 2911 // struct) into a new value. For example, given the struct: 2912 // { a, { b, { c, d }, e } } 2913 // and the indices "1, 1" this returns 2914 // { c, d }. 2915 // 2916 // It does this by inserting an insertvalue for each element in the resulting 2917 // struct, as opposed to just inserting a single struct. This will only work if 2918 // each of the elements of the substruct are known (ie, inserted into From by an 2919 // insertvalue instruction somewhere). 2920 // 2921 // All inserted insertvalue instructions are inserted before InsertBefore 2922 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2923 Instruction *InsertBefore) { 2924 assert(InsertBefore && "Must have someplace to insert!"); 2925 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2926 idx_range); 2927 Value *To = UndefValue::get(IndexedType); 2928 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2929 unsigned IdxSkip = Idxs.size(); 2930 2931 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2932 } 2933 2934 /// Given an aggregrate and an sequence of indices, see if 2935 /// the scalar value indexed is already around as a register, for example if it 2936 /// were inserted directly into the aggregrate. 2937 /// 2938 /// If InsertBefore is not null, this function will duplicate (modified) 2939 /// insertvalues when a part of a nested struct is extracted. 2940 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2941 Instruction *InsertBefore) { 2942 // Nothing to index? Just return V then (this is useful at the end of our 2943 // recursion). 2944 if (idx_range.empty()) 2945 return V; 2946 // We have indices, so V should have an indexable type. 2947 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2948 "Not looking at a struct or array?"); 2949 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2950 "Invalid indices for type?"); 2951 2952 if (Constant *C = dyn_cast<Constant>(V)) { 2953 C = C->getAggregateElement(idx_range[0]); 2954 if (!C) return nullptr; 2955 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2956 } 2957 2958 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2959 // Loop the indices for the insertvalue instruction in parallel with the 2960 // requested indices 2961 const unsigned *req_idx = idx_range.begin(); 2962 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2963 i != e; ++i, ++req_idx) { 2964 if (req_idx == idx_range.end()) { 2965 // We can't handle this without inserting insertvalues 2966 if (!InsertBefore) 2967 return nullptr; 2968 2969 // The requested index identifies a part of a nested aggregate. Handle 2970 // this specially. For example, 2971 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2972 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2973 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2974 // This can be changed into 2975 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2976 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2977 // which allows the unused 0,0 element from the nested struct to be 2978 // removed. 2979 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2980 InsertBefore); 2981 } 2982 2983 // This insert value inserts something else than what we are looking for. 2984 // See if the (aggregate) value inserted into has the value we are 2985 // looking for, then. 2986 if (*req_idx != *i) 2987 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2988 InsertBefore); 2989 } 2990 // If we end up here, the indices of the insertvalue match with those 2991 // requested (though possibly only partially). Now we recursively look at 2992 // the inserted value, passing any remaining indices. 2993 return FindInsertedValue(I->getInsertedValueOperand(), 2994 makeArrayRef(req_idx, idx_range.end()), 2995 InsertBefore); 2996 } 2997 2998 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2999 // If we're extracting a value from an aggregate that was extracted from 3000 // something else, we can extract from that something else directly instead. 3001 // However, we will need to chain I's indices with the requested indices. 3002 3003 // Calculate the number of indices required 3004 unsigned size = I->getNumIndices() + idx_range.size(); 3005 // Allocate some space to put the new indices in 3006 SmallVector<unsigned, 5> Idxs; 3007 Idxs.reserve(size); 3008 // Add indices from the extract value instruction 3009 Idxs.append(I->idx_begin(), I->idx_end()); 3010 3011 // Add requested indices 3012 Idxs.append(idx_range.begin(), idx_range.end()); 3013 3014 assert(Idxs.size() == size 3015 && "Number of indices added not correct?"); 3016 3017 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3018 } 3019 // Otherwise, we don't know (such as, extracting from a function return value 3020 // or load instruction) 3021 return nullptr; 3022 } 3023 3024 /// Analyze the specified pointer to see if it can be expressed as a base 3025 /// pointer plus a constant offset. Return the base and offset to the caller. 3026 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3027 const DataLayout &DL) { 3028 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 3029 APInt ByteOffset(BitWidth, 0); 3030 3031 // We walk up the defs but use a visited set to handle unreachable code. In 3032 // that case, we stop after accumulating the cycle once (not that it 3033 // matters). 3034 SmallPtrSet<Value *, 16> Visited; 3035 while (Visited.insert(Ptr).second) { 3036 if (Ptr->getType()->isVectorTy()) 3037 break; 3038 3039 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3040 // If one of the values we have visited is an addrspacecast, then 3041 // the pointer type of this GEP may be different from the type 3042 // of the Ptr parameter which was passed to this function. This 3043 // means when we construct GEPOffset, we need to use the size 3044 // of GEP's pointer type rather than the size of the original 3045 // pointer type. 3046 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 3047 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3048 break; 3049 3050 ByteOffset += GEPOffset.getSExtValue(); 3051 3052 Ptr = GEP->getPointerOperand(); 3053 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3054 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3055 Ptr = cast<Operator>(Ptr)->getOperand(0); 3056 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3057 if (GA->isInterposable()) 3058 break; 3059 Ptr = GA->getAliasee(); 3060 } else { 3061 break; 3062 } 3063 } 3064 Offset = ByteOffset.getSExtValue(); 3065 return Ptr; 3066 } 3067 3068 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3069 unsigned CharSize) { 3070 // Make sure the GEP has exactly three arguments. 3071 if (GEP->getNumOperands() != 3) 3072 return false; 3073 3074 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3075 // CharSize. 3076 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3077 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3078 return false; 3079 3080 // Check to make sure that the first operand of the GEP is an integer and 3081 // has value 0 so that we are sure we're indexing into the initializer. 3082 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3083 if (!FirstIdx || !FirstIdx->isZero()) 3084 return false; 3085 3086 return true; 3087 } 3088 3089 bool llvm::getConstantDataArrayInfo(const Value *V, 3090 ConstantDataArraySlice &Slice, 3091 unsigned ElementSize, uint64_t Offset) { 3092 assert(V); 3093 3094 // Look through bitcast instructions and geps. 3095 V = V->stripPointerCasts(); 3096 3097 // If the value is a GEP instruction or constant expression, treat it as an 3098 // offset. 3099 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3100 // The GEP operator should be based on a pointer to string constant, and is 3101 // indexing into the string constant. 3102 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3103 return false; 3104 3105 // If the second index isn't a ConstantInt, then this is a variable index 3106 // into the array. If this occurs, we can't say anything meaningful about 3107 // the string. 3108 uint64_t StartIdx = 0; 3109 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3110 StartIdx = CI->getZExtValue(); 3111 else 3112 return false; 3113 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3114 StartIdx + Offset); 3115 } 3116 3117 // The GEP instruction, constant or instruction, must reference a global 3118 // variable that is a constant and is initialized. The referenced constant 3119 // initializer is the array that we'll use for optimization. 3120 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3121 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3122 return false; 3123 3124 const ConstantDataArray *Array; 3125 ArrayType *ArrayTy; 3126 if (GV->getInitializer()->isNullValue()) { 3127 Type *GVTy = GV->getValueType(); 3128 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3129 // A zeroinitializer for the array; there is no ConstantDataArray. 3130 Array = nullptr; 3131 } else { 3132 const DataLayout &DL = GV->getParent()->getDataLayout(); 3133 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3134 uint64_t Length = SizeInBytes / (ElementSize / 8); 3135 if (Length <= Offset) 3136 return false; 3137 3138 Slice.Array = nullptr; 3139 Slice.Offset = 0; 3140 Slice.Length = Length - Offset; 3141 return true; 3142 } 3143 } else { 3144 // This must be a ConstantDataArray. 3145 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3146 if (!Array) 3147 return false; 3148 ArrayTy = Array->getType(); 3149 } 3150 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3151 return false; 3152 3153 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3154 if (Offset > NumElts) 3155 return false; 3156 3157 Slice.Array = Array; 3158 Slice.Offset = Offset; 3159 Slice.Length = NumElts - Offset; 3160 return true; 3161 } 3162 3163 /// This function computes the length of a null-terminated C string pointed to 3164 /// by V. If successful, it returns true and returns the string in Str. 3165 /// If unsuccessful, it returns false. 3166 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3167 uint64_t Offset, bool TrimAtNul) { 3168 ConstantDataArraySlice Slice; 3169 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3170 return false; 3171 3172 if (Slice.Array == nullptr) { 3173 if (TrimAtNul) { 3174 Str = StringRef(); 3175 return true; 3176 } 3177 if (Slice.Length == 1) { 3178 Str = StringRef("", 1); 3179 return true; 3180 } 3181 // We cannot instantiate a StringRef as we do not have an appropriate string 3182 // of 0s at hand. 3183 return false; 3184 } 3185 3186 // Start out with the entire array in the StringRef. 3187 Str = Slice.Array->getAsString(); 3188 // Skip over 'offset' bytes. 3189 Str = Str.substr(Slice.Offset); 3190 3191 if (TrimAtNul) { 3192 // Trim off the \0 and anything after it. If the array is not nul 3193 // terminated, we just return the whole end of string. The client may know 3194 // some other way that the string is length-bound. 3195 Str = Str.substr(0, Str.find('\0')); 3196 } 3197 return true; 3198 } 3199 3200 // These next two are very similar to the above, but also look through PHI 3201 // nodes. 3202 // TODO: See if we can integrate these two together. 3203 3204 /// If we can compute the length of the string pointed to by 3205 /// the specified pointer, return 'len+1'. If we can't, return 0. 3206 static uint64_t GetStringLengthH(const Value *V, 3207 SmallPtrSetImpl<const PHINode*> &PHIs, 3208 unsigned CharSize) { 3209 // Look through noop bitcast instructions. 3210 V = V->stripPointerCasts(); 3211 3212 // If this is a PHI node, there are two cases: either we have already seen it 3213 // or we haven't. 3214 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3215 if (!PHIs.insert(PN).second) 3216 return ~0ULL; // already in the set. 3217 3218 // If it was new, see if all the input strings are the same length. 3219 uint64_t LenSoFar = ~0ULL; 3220 for (Value *IncValue : PN->incoming_values()) { 3221 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3222 if (Len == 0) return 0; // Unknown length -> unknown. 3223 3224 if (Len == ~0ULL) continue; 3225 3226 if (Len != LenSoFar && LenSoFar != ~0ULL) 3227 return 0; // Disagree -> unknown. 3228 LenSoFar = Len; 3229 } 3230 3231 // Success, all agree. 3232 return LenSoFar; 3233 } 3234 3235 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3236 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3237 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3238 if (Len1 == 0) return 0; 3239 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3240 if (Len2 == 0) return 0; 3241 if (Len1 == ~0ULL) return Len2; 3242 if (Len2 == ~0ULL) return Len1; 3243 if (Len1 != Len2) return 0; 3244 return Len1; 3245 } 3246 3247 // Otherwise, see if we can read the string. 3248 ConstantDataArraySlice Slice; 3249 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3250 return 0; 3251 3252 if (Slice.Array == nullptr) 3253 return 1; 3254 3255 // Search for nul characters 3256 unsigned NullIndex = 0; 3257 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3258 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3259 break; 3260 } 3261 3262 return NullIndex + 1; 3263 } 3264 3265 /// If we can compute the length of the string pointed to by 3266 /// the specified pointer, return 'len+1'. If we can't, return 0. 3267 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3268 if (!V->getType()->isPointerTy()) return 0; 3269 3270 SmallPtrSet<const PHINode*, 32> PHIs; 3271 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3272 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3273 // an empty string as a length. 3274 return Len == ~0ULL ? 1 : Len; 3275 } 3276 3277 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3278 /// previous iteration of the loop was referring to the same object as \p PN. 3279 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3280 const LoopInfo *LI) { 3281 // Find the loop-defined value. 3282 Loop *L = LI->getLoopFor(PN->getParent()); 3283 if (PN->getNumIncomingValues() != 2) 3284 return true; 3285 3286 // Find the value from previous iteration. 3287 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3288 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3289 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3290 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3291 return true; 3292 3293 // If a new pointer is loaded in the loop, the pointer references a different 3294 // object in every iteration. E.g.: 3295 // for (i) 3296 // int *p = a[i]; 3297 // ... 3298 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3299 if (!L->isLoopInvariant(Load->getPointerOperand())) 3300 return false; 3301 return true; 3302 } 3303 3304 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3305 unsigned MaxLookup) { 3306 if (!V->getType()->isPointerTy()) 3307 return V; 3308 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3309 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3310 V = GEP->getPointerOperand(); 3311 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3312 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3313 V = cast<Operator>(V)->getOperand(0); 3314 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3315 if (GA->isInterposable()) 3316 return V; 3317 V = GA->getAliasee(); 3318 } else if (isa<AllocaInst>(V)) { 3319 // An alloca can't be further simplified. 3320 return V; 3321 } else { 3322 if (auto CS = CallSite(V)) 3323 if (Value *RV = CS.getReturnedArgOperand()) { 3324 V = RV; 3325 continue; 3326 } 3327 3328 // See if InstructionSimplify knows any relevant tricks. 3329 if (Instruction *I = dyn_cast<Instruction>(V)) 3330 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3331 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3332 V = Simplified; 3333 continue; 3334 } 3335 3336 return V; 3337 } 3338 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3339 } 3340 return V; 3341 } 3342 3343 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3344 const DataLayout &DL, LoopInfo *LI, 3345 unsigned MaxLookup) { 3346 SmallPtrSet<Value *, 4> Visited; 3347 SmallVector<Value *, 4> Worklist; 3348 Worklist.push_back(V); 3349 do { 3350 Value *P = Worklist.pop_back_val(); 3351 P = GetUnderlyingObject(P, DL, MaxLookup); 3352 3353 if (!Visited.insert(P).second) 3354 continue; 3355 3356 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3357 Worklist.push_back(SI->getTrueValue()); 3358 Worklist.push_back(SI->getFalseValue()); 3359 continue; 3360 } 3361 3362 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3363 // If this PHI changes the underlying object in every iteration of the 3364 // loop, don't look through it. Consider: 3365 // int **A; 3366 // for (i) { 3367 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3368 // Curr = A[i]; 3369 // *Prev, *Curr; 3370 // 3371 // Prev is tracking Curr one iteration behind so they refer to different 3372 // underlying objects. 3373 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3374 isSameUnderlyingObjectInLoop(PN, LI)) 3375 for (Value *IncValue : PN->incoming_values()) 3376 Worklist.push_back(IncValue); 3377 continue; 3378 } 3379 3380 Objects.push_back(P); 3381 } while (!Worklist.empty()); 3382 } 3383 3384 /// This is the function that does the work of looking through basic 3385 /// ptrtoint+arithmetic+inttoptr sequences. 3386 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3387 do { 3388 if (const Operator *U = dyn_cast<Operator>(V)) { 3389 // If we find a ptrtoint, we can transfer control back to the 3390 // regular getUnderlyingObjectFromInt. 3391 if (U->getOpcode() == Instruction::PtrToInt) 3392 return U->getOperand(0); 3393 // If we find an add of a constant, a multiplied value, or a phi, it's 3394 // likely that the other operand will lead us to the base 3395 // object. We don't have to worry about the case where the 3396 // object address is somehow being computed by the multiply, 3397 // because our callers only care when the result is an 3398 // identifiable object. 3399 if (U->getOpcode() != Instruction::Add || 3400 (!isa<ConstantInt>(U->getOperand(1)) && 3401 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3402 !isa<PHINode>(U->getOperand(1)))) 3403 return V; 3404 V = U->getOperand(0); 3405 } else { 3406 return V; 3407 } 3408 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3409 } while (true); 3410 } 3411 3412 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3413 /// ptrtoint+arithmetic+inttoptr sequences. 3414 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3415 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3416 SmallVectorImpl<Value *> &Objects, 3417 const DataLayout &DL) { 3418 SmallPtrSet<const Value *, 16> Visited; 3419 SmallVector<const Value *, 4> Working(1, V); 3420 do { 3421 V = Working.pop_back_val(); 3422 3423 SmallVector<Value *, 4> Objs; 3424 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3425 3426 for (Value *V : Objs) { 3427 if (!Visited.insert(V).second) 3428 continue; 3429 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3430 const Value *O = 3431 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3432 if (O->getType()->isPointerTy()) { 3433 Working.push_back(O); 3434 continue; 3435 } 3436 } 3437 // If GetUnderlyingObjects fails to find an identifiable object, 3438 // getUnderlyingObjectsForCodeGen also fails for safety. 3439 if (!isIdentifiedObject(V)) { 3440 Objects.clear(); 3441 return false; 3442 } 3443 Objects.push_back(const_cast<Value *>(V)); 3444 } 3445 } while (!Working.empty()); 3446 return true; 3447 } 3448 3449 /// Return true if the only users of this pointer are lifetime markers. 3450 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3451 for (const User *U : V->users()) { 3452 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3453 if (!II) return false; 3454 3455 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3456 II->getIntrinsicID() != Intrinsic::lifetime_end) 3457 return false; 3458 } 3459 return true; 3460 } 3461 3462 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3463 const Instruction *CtxI, 3464 const DominatorTree *DT) { 3465 const Operator *Inst = dyn_cast<Operator>(V); 3466 if (!Inst) 3467 return false; 3468 3469 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3470 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3471 if (C->canTrap()) 3472 return false; 3473 3474 switch (Inst->getOpcode()) { 3475 default: 3476 return true; 3477 case Instruction::UDiv: 3478 case Instruction::URem: { 3479 // x / y is undefined if y == 0. 3480 const APInt *V; 3481 if (match(Inst->getOperand(1), m_APInt(V))) 3482 return *V != 0; 3483 return false; 3484 } 3485 case Instruction::SDiv: 3486 case Instruction::SRem: { 3487 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3488 const APInt *Numerator, *Denominator; 3489 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3490 return false; 3491 // We cannot hoist this division if the denominator is 0. 3492 if (*Denominator == 0) 3493 return false; 3494 // It's safe to hoist if the denominator is not 0 or -1. 3495 if (*Denominator != -1) 3496 return true; 3497 // At this point we know that the denominator is -1. It is safe to hoist as 3498 // long we know that the numerator is not INT_MIN. 3499 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3500 return !Numerator->isMinSignedValue(); 3501 // The numerator *might* be MinSignedValue. 3502 return false; 3503 } 3504 case Instruction::Load: { 3505 const LoadInst *LI = cast<LoadInst>(Inst); 3506 if (!LI->isUnordered() || 3507 // Speculative load may create a race that did not exist in the source. 3508 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3509 // Speculative load may load data from dirty regions. 3510 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3511 return false; 3512 const DataLayout &DL = LI->getModule()->getDataLayout(); 3513 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3514 LI->getAlignment(), DL, CtxI, DT); 3515 } 3516 case Instruction::Call: { 3517 auto *CI = cast<const CallInst>(Inst); 3518 const Function *Callee = CI->getCalledFunction(); 3519 3520 // The called function could have undefined behavior or side-effects, even 3521 // if marked readnone nounwind. 3522 return Callee && Callee->isSpeculatable(); 3523 } 3524 case Instruction::VAArg: 3525 case Instruction::Alloca: 3526 case Instruction::Invoke: 3527 case Instruction::PHI: 3528 case Instruction::Store: 3529 case Instruction::Ret: 3530 case Instruction::Br: 3531 case Instruction::IndirectBr: 3532 case Instruction::Switch: 3533 case Instruction::Unreachable: 3534 case Instruction::Fence: 3535 case Instruction::AtomicRMW: 3536 case Instruction::AtomicCmpXchg: 3537 case Instruction::LandingPad: 3538 case Instruction::Resume: 3539 case Instruction::CatchSwitch: 3540 case Instruction::CatchPad: 3541 case Instruction::CatchRet: 3542 case Instruction::CleanupPad: 3543 case Instruction::CleanupRet: 3544 return false; // Misc instructions which have effects 3545 } 3546 } 3547 3548 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3549 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3550 } 3551 3552 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3553 const Value *RHS, 3554 const DataLayout &DL, 3555 AssumptionCache *AC, 3556 const Instruction *CxtI, 3557 const DominatorTree *DT) { 3558 // Multiplying n * m significant bits yields a result of n + m significant 3559 // bits. If the total number of significant bits does not exceed the 3560 // result bit width (minus 1), there is no overflow. 3561 // This means if we have enough leading zero bits in the operands 3562 // we can guarantee that the result does not overflow. 3563 // Ref: "Hacker's Delight" by Henry Warren 3564 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3565 KnownBits LHSKnown(BitWidth); 3566 KnownBits RHSKnown(BitWidth); 3567 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3568 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3569 // Note that underestimating the number of zero bits gives a more 3570 // conservative answer. 3571 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3572 RHSKnown.countMinLeadingZeros(); 3573 // First handle the easy case: if we have enough zero bits there's 3574 // definitely no overflow. 3575 if (ZeroBits >= BitWidth) 3576 return OverflowResult::NeverOverflows; 3577 3578 // Get the largest possible values for each operand. 3579 APInt LHSMax = ~LHSKnown.Zero; 3580 APInt RHSMax = ~RHSKnown.Zero; 3581 3582 // We know the multiply operation doesn't overflow if the maximum values for 3583 // each operand will not overflow after we multiply them together. 3584 bool MaxOverflow; 3585 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3586 if (!MaxOverflow) 3587 return OverflowResult::NeverOverflows; 3588 3589 // We know it always overflows if multiplying the smallest possible values for 3590 // the operands also results in overflow. 3591 bool MinOverflow; 3592 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3593 if (MinOverflow) 3594 return OverflowResult::AlwaysOverflows; 3595 3596 return OverflowResult::MayOverflow; 3597 } 3598 3599 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3600 const Value *RHS, 3601 const DataLayout &DL, 3602 AssumptionCache *AC, 3603 const Instruction *CxtI, 3604 const DominatorTree *DT) { 3605 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3606 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3607 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3608 3609 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3610 // The sign bit is set in both cases: this MUST overflow. 3611 // Create a simple add instruction, and insert it into the struct. 3612 return OverflowResult::AlwaysOverflows; 3613 } 3614 3615 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3616 // The sign bit is clear in both cases: this CANNOT overflow. 3617 // Create a simple add instruction, and insert it into the struct. 3618 return OverflowResult::NeverOverflows; 3619 } 3620 } 3621 3622 return OverflowResult::MayOverflow; 3623 } 3624 3625 /// \brief Return true if we can prove that adding the two values of the 3626 /// knownbits will not overflow. 3627 /// Otherwise return false. 3628 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3629 const KnownBits &RHSKnown) { 3630 // Addition of two 2's complement numbers having opposite signs will never 3631 // overflow. 3632 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3633 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3634 return true; 3635 3636 // If either of the values is known to be non-negative, adding them can only 3637 // overflow if the second is also non-negative, so we can assume that. 3638 // Two non-negative numbers will only overflow if there is a carry to the 3639 // sign bit, so we can check if even when the values are as big as possible 3640 // there is no overflow to the sign bit. 3641 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3642 APInt MaxLHS = ~LHSKnown.Zero; 3643 MaxLHS.clearSignBit(); 3644 APInt MaxRHS = ~RHSKnown.Zero; 3645 MaxRHS.clearSignBit(); 3646 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3647 return Result.isSignBitClear(); 3648 } 3649 3650 // If either of the values is known to be negative, adding them can only 3651 // overflow if the second is also negative, so we can assume that. 3652 // Two negative number will only overflow if there is no carry to the sign 3653 // bit, so we can check if even when the values are as small as possible 3654 // there is overflow to the sign bit. 3655 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3656 APInt MinLHS = LHSKnown.One; 3657 MinLHS.clearSignBit(); 3658 APInt MinRHS = RHSKnown.One; 3659 MinRHS.clearSignBit(); 3660 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3661 return Result.isSignBitSet(); 3662 } 3663 3664 // If we reached here it means that we know nothing about the sign bits. 3665 // In this case we can't know if there will be an overflow, since by 3666 // changing the sign bits any two values can be made to overflow. 3667 return false; 3668 } 3669 3670 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3671 const Value *RHS, 3672 const AddOperator *Add, 3673 const DataLayout &DL, 3674 AssumptionCache *AC, 3675 const Instruction *CxtI, 3676 const DominatorTree *DT) { 3677 if (Add && Add->hasNoSignedWrap()) { 3678 return OverflowResult::NeverOverflows; 3679 } 3680 3681 // If LHS and RHS each have at least two sign bits, the addition will look 3682 // like 3683 // 3684 // XX..... + 3685 // YY..... 3686 // 3687 // If the carry into the most significant position is 0, X and Y can't both 3688 // be 1 and therefore the carry out of the addition is also 0. 3689 // 3690 // If the carry into the most significant position is 1, X and Y can't both 3691 // be 0 and therefore the carry out of the addition is also 1. 3692 // 3693 // Since the carry into the most significant position is always equal to 3694 // the carry out of the addition, there is no signed overflow. 3695 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3696 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3697 return OverflowResult::NeverOverflows; 3698 3699 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3700 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3701 3702 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3703 return OverflowResult::NeverOverflows; 3704 3705 // The remaining code needs Add to be available. Early returns if not so. 3706 if (!Add) 3707 return OverflowResult::MayOverflow; 3708 3709 // If the sign of Add is the same as at least one of the operands, this add 3710 // CANNOT overflow. This is particularly useful when the sum is 3711 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3712 // operands. 3713 bool LHSOrRHSKnownNonNegative = 3714 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3715 bool LHSOrRHSKnownNegative = 3716 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3717 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3718 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3719 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3720 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3721 return OverflowResult::NeverOverflows; 3722 } 3723 } 3724 3725 return OverflowResult::MayOverflow; 3726 } 3727 3728 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3729 const DominatorTree &DT) { 3730 #ifndef NDEBUG 3731 auto IID = II->getIntrinsicID(); 3732 assert((IID == Intrinsic::sadd_with_overflow || 3733 IID == Intrinsic::uadd_with_overflow || 3734 IID == Intrinsic::ssub_with_overflow || 3735 IID == Intrinsic::usub_with_overflow || 3736 IID == Intrinsic::smul_with_overflow || 3737 IID == Intrinsic::umul_with_overflow) && 3738 "Not an overflow intrinsic!"); 3739 #endif 3740 3741 SmallVector<const BranchInst *, 2> GuardingBranches; 3742 SmallVector<const ExtractValueInst *, 2> Results; 3743 3744 for (const User *U : II->users()) { 3745 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3746 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3747 3748 if (EVI->getIndices()[0] == 0) 3749 Results.push_back(EVI); 3750 else { 3751 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3752 3753 for (const auto *U : EVI->users()) 3754 if (const auto *B = dyn_cast<BranchInst>(U)) { 3755 assert(B->isConditional() && "How else is it using an i1?"); 3756 GuardingBranches.push_back(B); 3757 } 3758 } 3759 } else { 3760 // We are using the aggregate directly in a way we don't want to analyze 3761 // here (storing it to a global, say). 3762 return false; 3763 } 3764 } 3765 3766 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3767 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3768 if (!NoWrapEdge.isSingleEdge()) 3769 return false; 3770 3771 // Check if all users of the add are provably no-wrap. 3772 for (const auto *Result : Results) { 3773 // If the extractvalue itself is not executed on overflow, the we don't 3774 // need to check each use separately, since domination is transitive. 3775 if (DT.dominates(NoWrapEdge, Result->getParent())) 3776 continue; 3777 3778 for (auto &RU : Result->uses()) 3779 if (!DT.dominates(NoWrapEdge, RU)) 3780 return false; 3781 } 3782 3783 return true; 3784 }; 3785 3786 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 3787 } 3788 3789 3790 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3791 const DataLayout &DL, 3792 AssumptionCache *AC, 3793 const Instruction *CxtI, 3794 const DominatorTree *DT) { 3795 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3796 Add, DL, AC, CxtI, DT); 3797 } 3798 3799 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3800 const Value *RHS, 3801 const DataLayout &DL, 3802 AssumptionCache *AC, 3803 const Instruction *CxtI, 3804 const DominatorTree *DT) { 3805 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3806 } 3807 3808 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3809 // A memory operation returns normally if it isn't volatile. A volatile 3810 // operation is allowed to trap. 3811 // 3812 // An atomic operation isn't guaranteed to return in a reasonable amount of 3813 // time because it's possible for another thread to interfere with it for an 3814 // arbitrary length of time, but programs aren't allowed to rely on that. 3815 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3816 return !LI->isVolatile(); 3817 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3818 return !SI->isVolatile(); 3819 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3820 return !CXI->isVolatile(); 3821 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3822 return !RMWI->isVolatile(); 3823 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3824 return !MII->isVolatile(); 3825 3826 // If there is no successor, then execution can't transfer to it. 3827 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3828 return !CRI->unwindsToCaller(); 3829 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3830 return !CatchSwitch->unwindsToCaller(); 3831 if (isa<ResumeInst>(I)) 3832 return false; 3833 if (isa<ReturnInst>(I)) 3834 return false; 3835 if (isa<UnreachableInst>(I)) 3836 return false; 3837 3838 // Calls can throw, or contain an infinite loop, or kill the process. 3839 if (auto CS = ImmutableCallSite(I)) { 3840 // Call sites that throw have implicit non-local control flow. 3841 if (!CS.doesNotThrow()) 3842 return false; 3843 3844 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3845 // etc. and thus not return. However, LLVM already assumes that 3846 // 3847 // - Thread exiting actions are modeled as writes to memory invisible to 3848 // the program. 3849 // 3850 // - Loops that don't have side effects (side effects are volatile/atomic 3851 // stores and IO) always terminate (see http://llvm.org/PR965). 3852 // Furthermore IO itself is also modeled as writes to memory invisible to 3853 // the program. 3854 // 3855 // We rely on those assumptions here, and use the memory effects of the call 3856 // target as a proxy for checking that it always returns. 3857 3858 // FIXME: This isn't aggressive enough; a call which only writes to a global 3859 // is guaranteed to return. 3860 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3861 match(I, m_Intrinsic<Intrinsic::assume>()) || 3862 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 3863 } 3864 3865 // Other instructions return normally. 3866 return true; 3867 } 3868 3869 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3870 const Loop *L) { 3871 // The loop header is guaranteed to be executed for every iteration. 3872 // 3873 // FIXME: Relax this constraint to cover all basic blocks that are 3874 // guaranteed to be executed at every iteration. 3875 if (I->getParent() != L->getHeader()) return false; 3876 3877 for (const Instruction &LI : *L->getHeader()) { 3878 if (&LI == I) return true; 3879 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3880 } 3881 llvm_unreachable("Instruction not contained in its own parent basic block."); 3882 } 3883 3884 bool llvm::propagatesFullPoison(const Instruction *I) { 3885 switch (I->getOpcode()) { 3886 case Instruction::Add: 3887 case Instruction::Sub: 3888 case Instruction::Xor: 3889 case Instruction::Trunc: 3890 case Instruction::BitCast: 3891 case Instruction::AddrSpaceCast: 3892 case Instruction::Mul: 3893 case Instruction::Shl: 3894 case Instruction::GetElementPtr: 3895 // These operations all propagate poison unconditionally. Note that poison 3896 // is not any particular value, so xor or subtraction of poison with 3897 // itself still yields poison, not zero. 3898 return true; 3899 3900 case Instruction::AShr: 3901 case Instruction::SExt: 3902 // For these operations, one bit of the input is replicated across 3903 // multiple output bits. A replicated poison bit is still poison. 3904 return true; 3905 3906 case Instruction::ICmp: 3907 // Comparing poison with any value yields poison. This is why, for 3908 // instance, x s< (x +nsw 1) can be folded to true. 3909 return true; 3910 3911 default: 3912 return false; 3913 } 3914 } 3915 3916 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3917 switch (I->getOpcode()) { 3918 case Instruction::Store: 3919 return cast<StoreInst>(I)->getPointerOperand(); 3920 3921 case Instruction::Load: 3922 return cast<LoadInst>(I)->getPointerOperand(); 3923 3924 case Instruction::AtomicCmpXchg: 3925 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3926 3927 case Instruction::AtomicRMW: 3928 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3929 3930 case Instruction::UDiv: 3931 case Instruction::SDiv: 3932 case Instruction::URem: 3933 case Instruction::SRem: 3934 return I->getOperand(1); 3935 3936 default: 3937 return nullptr; 3938 } 3939 } 3940 3941 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 3942 // We currently only look for uses of poison values within the same basic 3943 // block, as that makes it easier to guarantee that the uses will be 3944 // executed given that PoisonI is executed. 3945 // 3946 // FIXME: Expand this to consider uses beyond the same basic block. To do 3947 // this, look out for the distinction between post-dominance and strong 3948 // post-dominance. 3949 const BasicBlock *BB = PoisonI->getParent(); 3950 3951 // Set of instructions that we have proved will yield poison if PoisonI 3952 // does. 3953 SmallSet<const Value *, 16> YieldsPoison; 3954 SmallSet<const BasicBlock *, 4> Visited; 3955 YieldsPoison.insert(PoisonI); 3956 Visited.insert(PoisonI->getParent()); 3957 3958 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3959 3960 unsigned Iter = 0; 3961 while (Iter++ < MaxDepth) { 3962 for (auto &I : make_range(Begin, End)) { 3963 if (&I != PoisonI) { 3964 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3965 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3966 return true; 3967 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3968 return false; 3969 } 3970 3971 // Mark poison that propagates from I through uses of I. 3972 if (YieldsPoison.count(&I)) { 3973 for (const User *User : I.users()) { 3974 const Instruction *UserI = cast<Instruction>(User); 3975 if (propagatesFullPoison(UserI)) 3976 YieldsPoison.insert(User); 3977 } 3978 } 3979 } 3980 3981 if (auto *NextBB = BB->getSingleSuccessor()) { 3982 if (Visited.insert(NextBB).second) { 3983 BB = NextBB; 3984 Begin = BB->getFirstNonPHI()->getIterator(); 3985 End = BB->end(); 3986 continue; 3987 } 3988 } 3989 3990 break; 3991 } 3992 return false; 3993 } 3994 3995 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3996 if (FMF.noNaNs()) 3997 return true; 3998 3999 if (auto *C = dyn_cast<ConstantFP>(V)) 4000 return !C->isNaN(); 4001 return false; 4002 } 4003 4004 static bool isKnownNonZero(const Value *V) { 4005 if (auto *C = dyn_cast<ConstantFP>(V)) 4006 return !C->isZero(); 4007 return false; 4008 } 4009 4010 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4011 /// Given non-min/max outer cmp/select from the clamp pattern this 4012 /// function recognizes if it can be substitued by a "canonical" min/max 4013 /// pattern. 4014 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4015 Value *CmpLHS, Value *CmpRHS, 4016 Value *TrueVal, Value *FalseVal, 4017 Value *&LHS, Value *&RHS) { 4018 // Try to match 4019 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4020 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4021 // and return description of the outer Max/Min. 4022 4023 // First, check if select has inverse order: 4024 if (CmpRHS == FalseVal) { 4025 std::swap(TrueVal, FalseVal); 4026 Pred = CmpInst::getInversePredicate(Pred); 4027 } 4028 4029 // Assume success now. If there's no match, callers should not use these anyway. 4030 LHS = TrueVal; 4031 RHS = FalseVal; 4032 4033 const APFloat *FC1; 4034 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4035 return {SPF_UNKNOWN, SPNB_NA, false}; 4036 4037 const APFloat *FC2; 4038 switch (Pred) { 4039 case CmpInst::FCMP_OLT: 4040 case CmpInst::FCMP_OLE: 4041 case CmpInst::FCMP_ULT: 4042 case CmpInst::FCMP_ULE: 4043 if (match(FalseVal, 4044 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4045 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4046 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4047 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4048 break; 4049 case CmpInst::FCMP_OGT: 4050 case CmpInst::FCMP_OGE: 4051 case CmpInst::FCMP_UGT: 4052 case CmpInst::FCMP_UGE: 4053 if (match(FalseVal, 4054 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4055 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4056 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4057 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4058 break; 4059 default: 4060 break; 4061 } 4062 4063 return {SPF_UNKNOWN, SPNB_NA, false}; 4064 } 4065 4066 /// Recognize variations of: 4067 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4068 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4069 Value *CmpLHS, Value *CmpRHS, 4070 Value *TrueVal, Value *FalseVal) { 4071 // Swap the select operands and predicate to match the patterns below. 4072 if (CmpRHS != TrueVal) { 4073 Pred = ICmpInst::getSwappedPredicate(Pred); 4074 std::swap(TrueVal, FalseVal); 4075 } 4076 const APInt *C1; 4077 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4078 const APInt *C2; 4079 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4080 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4081 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4082 return {SPF_SMAX, SPNB_NA, false}; 4083 4084 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4085 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4086 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4087 return {SPF_SMIN, SPNB_NA, false}; 4088 4089 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4090 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4091 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4092 return {SPF_UMAX, SPNB_NA, false}; 4093 4094 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4095 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4096 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4097 return {SPF_UMIN, SPNB_NA, false}; 4098 } 4099 return {SPF_UNKNOWN, SPNB_NA, false}; 4100 } 4101 4102 /// Match non-obvious integer minimum and maximum sequences. 4103 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4104 Value *CmpLHS, Value *CmpRHS, 4105 Value *TrueVal, Value *FalseVal, 4106 Value *&LHS, Value *&RHS) { 4107 // Assume success. If there's no match, callers should not use these anyway. 4108 LHS = TrueVal; 4109 RHS = FalseVal; 4110 4111 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4112 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4113 return SPR; 4114 4115 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4116 return {SPF_UNKNOWN, SPNB_NA, false}; 4117 4118 // Z = X -nsw Y 4119 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4120 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4121 if (match(TrueVal, m_Zero()) && 4122 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4123 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4124 4125 // Z = X -nsw Y 4126 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4127 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4128 if (match(FalseVal, m_Zero()) && 4129 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4130 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4131 4132 const APInt *C1; 4133 if (!match(CmpRHS, m_APInt(C1))) 4134 return {SPF_UNKNOWN, SPNB_NA, false}; 4135 4136 // An unsigned min/max can be written with a signed compare. 4137 const APInt *C2; 4138 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4139 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4140 // Is the sign bit set? 4141 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4142 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4143 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4144 C2->isMaxSignedValue()) 4145 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4146 4147 // Is the sign bit clear? 4148 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4149 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4150 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4151 C2->isMinSignedValue()) 4152 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4153 } 4154 4155 // Look through 'not' ops to find disguised signed min/max. 4156 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4157 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4158 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4159 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4160 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4161 4162 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4163 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4164 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4165 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4166 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4167 4168 return {SPF_UNKNOWN, SPNB_NA, false}; 4169 } 4170 4171 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4172 FastMathFlags FMF, 4173 Value *CmpLHS, Value *CmpRHS, 4174 Value *TrueVal, Value *FalseVal, 4175 Value *&LHS, Value *&RHS) { 4176 LHS = CmpLHS; 4177 RHS = CmpRHS; 4178 4179 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4180 // return inconsistent results between implementations. 4181 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4182 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4183 // Therefore we behave conservatively and only proceed if at least one of the 4184 // operands is known to not be zero, or if we don't care about signed zeroes. 4185 switch (Pred) { 4186 default: break; 4187 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4188 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4189 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4190 !isKnownNonZero(CmpRHS)) 4191 return {SPF_UNKNOWN, SPNB_NA, false}; 4192 } 4193 4194 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4195 bool Ordered = false; 4196 4197 // When given one NaN and one non-NaN input: 4198 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4199 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4200 // ordered comparison fails), which could be NaN or non-NaN. 4201 // so here we discover exactly what NaN behavior is required/accepted. 4202 if (CmpInst::isFPPredicate(Pred)) { 4203 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4204 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4205 4206 if (LHSSafe && RHSSafe) { 4207 // Both operands are known non-NaN. 4208 NaNBehavior = SPNB_RETURNS_ANY; 4209 } else if (CmpInst::isOrdered(Pred)) { 4210 // An ordered comparison will return false when given a NaN, so it 4211 // returns the RHS. 4212 Ordered = true; 4213 if (LHSSafe) 4214 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4215 NaNBehavior = SPNB_RETURNS_NAN; 4216 else if (RHSSafe) 4217 NaNBehavior = SPNB_RETURNS_OTHER; 4218 else 4219 // Completely unsafe. 4220 return {SPF_UNKNOWN, SPNB_NA, false}; 4221 } else { 4222 Ordered = false; 4223 // An unordered comparison will return true when given a NaN, so it 4224 // returns the LHS. 4225 if (LHSSafe) 4226 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4227 NaNBehavior = SPNB_RETURNS_OTHER; 4228 else if (RHSSafe) 4229 NaNBehavior = SPNB_RETURNS_NAN; 4230 else 4231 // Completely unsafe. 4232 return {SPF_UNKNOWN, SPNB_NA, false}; 4233 } 4234 } 4235 4236 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4237 std::swap(CmpLHS, CmpRHS); 4238 Pred = CmpInst::getSwappedPredicate(Pred); 4239 if (NaNBehavior == SPNB_RETURNS_NAN) 4240 NaNBehavior = SPNB_RETURNS_OTHER; 4241 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4242 NaNBehavior = SPNB_RETURNS_NAN; 4243 Ordered = !Ordered; 4244 } 4245 4246 // ([if]cmp X, Y) ? X : Y 4247 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4248 switch (Pred) { 4249 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4250 case ICmpInst::ICMP_UGT: 4251 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4252 case ICmpInst::ICMP_SGT: 4253 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4254 case ICmpInst::ICMP_ULT: 4255 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4256 case ICmpInst::ICMP_SLT: 4257 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4258 case FCmpInst::FCMP_UGT: 4259 case FCmpInst::FCMP_UGE: 4260 case FCmpInst::FCMP_OGT: 4261 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4262 case FCmpInst::FCMP_ULT: 4263 case FCmpInst::FCMP_ULE: 4264 case FCmpInst::FCMP_OLT: 4265 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4266 } 4267 } 4268 4269 const APInt *C1; 4270 if (match(CmpRHS, m_APInt(C1))) { 4271 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4272 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4273 4274 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4275 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4276 if (Pred == ICmpInst::ICMP_SGT && 4277 (C1->isNullValue() || C1->isAllOnesValue())) { 4278 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4279 } 4280 4281 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4282 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4283 if (Pred == ICmpInst::ICMP_SLT && 4284 (C1->isNullValue() || C1->isOneValue())) { 4285 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4286 } 4287 } 4288 } 4289 4290 if (CmpInst::isIntPredicate(Pred)) 4291 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4292 4293 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4294 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4295 // semantics than minNum. Be conservative in such case. 4296 if (NaNBehavior != SPNB_RETURNS_ANY || 4297 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4298 !isKnownNonZero(CmpRHS))) 4299 return {SPF_UNKNOWN, SPNB_NA, false}; 4300 4301 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4302 } 4303 4304 /// Helps to match a select pattern in case of a type mismatch. 4305 /// 4306 /// The function processes the case when type of true and false values of a 4307 /// select instruction differs from type of the cmp instruction operands because 4308 /// of a cast instructon. The function checks if it is legal to move the cast 4309 /// operation after "select". If yes, it returns the new second value of 4310 /// "select" (with the assumption that cast is moved): 4311 /// 1. As operand of cast instruction when both values of "select" are same cast 4312 /// instructions. 4313 /// 2. As restored constant (by applying reverse cast operation) when the first 4314 /// value of the "select" is a cast operation and the second value is a 4315 /// constant. 4316 /// NOTE: We return only the new second value because the first value could be 4317 /// accessed as operand of cast instruction. 4318 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4319 Instruction::CastOps *CastOp) { 4320 auto *Cast1 = dyn_cast<CastInst>(V1); 4321 if (!Cast1) 4322 return nullptr; 4323 4324 *CastOp = Cast1->getOpcode(); 4325 Type *SrcTy = Cast1->getSrcTy(); 4326 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4327 // If V1 and V2 are both the same cast from the same type, look through V1. 4328 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4329 return Cast2->getOperand(0); 4330 return nullptr; 4331 } 4332 4333 auto *C = dyn_cast<Constant>(V2); 4334 if (!C) 4335 return nullptr; 4336 4337 Constant *CastedTo = nullptr; 4338 switch (*CastOp) { 4339 case Instruction::ZExt: 4340 if (CmpI->isUnsigned()) 4341 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4342 break; 4343 case Instruction::SExt: 4344 if (CmpI->isSigned()) 4345 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4346 break; 4347 case Instruction::Trunc: 4348 Constant *CmpConst; 4349 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4350 CmpConst->getType() == SrcTy) { 4351 // Here we have the following case: 4352 // 4353 // %cond = cmp iN %x, CmpConst 4354 // %tr = trunc iN %x to iK 4355 // %narrowsel = select i1 %cond, iK %t, iK C 4356 // 4357 // We can always move trunc after select operation: 4358 // 4359 // %cond = cmp iN %x, CmpConst 4360 // %widesel = select i1 %cond, iN %x, iN CmpConst 4361 // %tr = trunc iN %widesel to iK 4362 // 4363 // Note that C could be extended in any way because we don't care about 4364 // upper bits after truncation. It can't be abs pattern, because it would 4365 // look like: 4366 // 4367 // select i1 %cond, x, -x. 4368 // 4369 // So only min/max pattern could be matched. Such match requires widened C 4370 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4371 // CmpConst == C is checked below. 4372 CastedTo = CmpConst; 4373 } else { 4374 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4375 } 4376 break; 4377 case Instruction::FPTrunc: 4378 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4379 break; 4380 case Instruction::FPExt: 4381 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4382 break; 4383 case Instruction::FPToUI: 4384 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4385 break; 4386 case Instruction::FPToSI: 4387 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4388 break; 4389 case Instruction::UIToFP: 4390 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4391 break; 4392 case Instruction::SIToFP: 4393 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4394 break; 4395 default: 4396 break; 4397 } 4398 4399 if (!CastedTo) 4400 return nullptr; 4401 4402 // Make sure the cast doesn't lose any information. 4403 Constant *CastedBack = 4404 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4405 if (CastedBack != C) 4406 return nullptr; 4407 4408 return CastedTo; 4409 } 4410 4411 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4412 Instruction::CastOps *CastOp) { 4413 SelectInst *SI = dyn_cast<SelectInst>(V); 4414 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4415 4416 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4417 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4418 4419 CmpInst::Predicate Pred = CmpI->getPredicate(); 4420 Value *CmpLHS = CmpI->getOperand(0); 4421 Value *CmpRHS = CmpI->getOperand(1); 4422 Value *TrueVal = SI->getTrueValue(); 4423 Value *FalseVal = SI->getFalseValue(); 4424 FastMathFlags FMF; 4425 if (isa<FPMathOperator>(CmpI)) 4426 FMF = CmpI->getFastMathFlags(); 4427 4428 // Bail out early. 4429 if (CmpI->isEquality()) 4430 return {SPF_UNKNOWN, SPNB_NA, false}; 4431 4432 // Deal with type mismatches. 4433 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4434 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4435 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4436 cast<CastInst>(TrueVal)->getOperand(0), C, 4437 LHS, RHS); 4438 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4439 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4440 C, cast<CastInst>(FalseVal)->getOperand(0), 4441 LHS, RHS); 4442 } 4443 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4444 LHS, RHS); 4445 } 4446 4447 /// Return true if "icmp Pred LHS RHS" is always true. 4448 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4449 const Value *RHS, const DataLayout &DL, 4450 unsigned Depth) { 4451 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4452 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4453 return true; 4454 4455 switch (Pred) { 4456 default: 4457 return false; 4458 4459 case CmpInst::ICMP_SLE: { 4460 const APInt *C; 4461 4462 // LHS s<= LHS +_{nsw} C if C >= 0 4463 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4464 return !C->isNegative(); 4465 return false; 4466 } 4467 4468 case CmpInst::ICMP_ULE: { 4469 const APInt *C; 4470 4471 // LHS u<= LHS +_{nuw} C for any C 4472 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4473 return true; 4474 4475 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4476 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4477 const Value *&X, 4478 const APInt *&CA, const APInt *&CB) { 4479 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4480 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4481 return true; 4482 4483 // If X & C == 0 then (X | C) == X +_{nuw} C 4484 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4485 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4486 KnownBits Known(CA->getBitWidth()); 4487 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4488 /*CxtI*/ nullptr, /*DT*/ nullptr); 4489 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4490 return true; 4491 } 4492 4493 return false; 4494 }; 4495 4496 const Value *X; 4497 const APInt *CLHS, *CRHS; 4498 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4499 return CLHS->ule(*CRHS); 4500 4501 return false; 4502 } 4503 } 4504 } 4505 4506 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4507 /// ALHS ARHS" is true. Otherwise, return None. 4508 static Optional<bool> 4509 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4510 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4511 const DataLayout &DL, unsigned Depth) { 4512 switch (Pred) { 4513 default: 4514 return None; 4515 4516 case CmpInst::ICMP_SLT: 4517 case CmpInst::ICMP_SLE: 4518 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4519 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4520 return true; 4521 return None; 4522 4523 case CmpInst::ICMP_ULT: 4524 case CmpInst::ICMP_ULE: 4525 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4526 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4527 return true; 4528 return None; 4529 } 4530 } 4531 4532 /// Return true if the operands of the two compares match. IsSwappedOps is true 4533 /// when the operands match, but are swapped. 4534 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4535 const Value *BLHS, const Value *BRHS, 4536 bool &IsSwappedOps) { 4537 4538 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4539 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4540 return IsMatchingOps || IsSwappedOps; 4541 } 4542 4543 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4544 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4545 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4546 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4547 const Value *ALHS, 4548 const Value *ARHS, 4549 CmpInst::Predicate BPred, 4550 const Value *BLHS, 4551 const Value *BRHS, 4552 bool IsSwappedOps) { 4553 // Canonicalize the operands so they're matching. 4554 if (IsSwappedOps) { 4555 std::swap(BLHS, BRHS); 4556 BPred = ICmpInst::getSwappedPredicate(BPred); 4557 } 4558 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4559 return true; 4560 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4561 return false; 4562 4563 return None; 4564 } 4565 4566 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4567 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4568 /// C2" is false. Otherwise, return None if we can't infer anything. 4569 static Optional<bool> 4570 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4571 const ConstantInt *C1, 4572 CmpInst::Predicate BPred, 4573 const Value *BLHS, const ConstantInt *C2) { 4574 assert(ALHS == BLHS && "LHS operands must match."); 4575 ConstantRange DomCR = 4576 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4577 ConstantRange CR = 4578 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4579 ConstantRange Intersection = DomCR.intersectWith(CR); 4580 ConstantRange Difference = DomCR.difference(CR); 4581 if (Intersection.isEmptySet()) 4582 return false; 4583 if (Difference.isEmptySet()) 4584 return true; 4585 return None; 4586 } 4587 4588 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4589 /// false. Otherwise, return None if we can't infer anything. 4590 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4591 const ICmpInst *RHS, 4592 const DataLayout &DL, bool LHSIsTrue, 4593 unsigned Depth) { 4594 Value *ALHS = LHS->getOperand(0); 4595 Value *ARHS = LHS->getOperand(1); 4596 // The rest of the logic assumes the LHS condition is true. If that's not the 4597 // case, invert the predicate to make it so. 4598 ICmpInst::Predicate APred = 4599 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4600 4601 Value *BLHS = RHS->getOperand(0); 4602 Value *BRHS = RHS->getOperand(1); 4603 ICmpInst::Predicate BPred = RHS->getPredicate(); 4604 4605 // Can we infer anything when the two compares have matching operands? 4606 bool IsSwappedOps; 4607 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4608 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4609 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4610 return Implication; 4611 // No amount of additional analysis will infer the second condition, so 4612 // early exit. 4613 return None; 4614 } 4615 4616 // Can we infer anything when the LHS operands match and the RHS operands are 4617 // constants (not necessarily matching)? 4618 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4619 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4620 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4621 cast<ConstantInt>(BRHS))) 4622 return Implication; 4623 // No amount of additional analysis will infer the second condition, so 4624 // early exit. 4625 return None; 4626 } 4627 4628 if (APred == BPred) 4629 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 4630 return None; 4631 } 4632 4633 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4634 /// false. Otherwise, return None if we can't infer anything. We expect the 4635 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 4636 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 4637 const ICmpInst *RHS, 4638 const DataLayout &DL, bool LHSIsTrue, 4639 unsigned Depth) { 4640 // The LHS must be an 'or' or an 'and' instruction. 4641 assert((LHS->getOpcode() == Instruction::And || 4642 LHS->getOpcode() == Instruction::Or) && 4643 "Expected LHS to be 'and' or 'or'."); 4644 4645 assert(Depth <= MaxDepth && "Hit recursion limit"); 4646 4647 // If the result of an 'or' is false, then we know both legs of the 'or' are 4648 // false. Similarly, if the result of an 'and' is true, then we know both 4649 // legs of the 'and' are true. 4650 Value *ALHS, *ARHS; 4651 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 4652 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 4653 // FIXME: Make this non-recursion. 4654 if (Optional<bool> Implication = 4655 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 4656 return Implication; 4657 if (Optional<bool> Implication = 4658 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 4659 return Implication; 4660 return None; 4661 } 4662 return None; 4663 } 4664 4665 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4666 const DataLayout &DL, bool LHSIsTrue, 4667 unsigned Depth) { 4668 // Bail out when we hit the limit. 4669 if (Depth == MaxDepth) 4670 return None; 4671 4672 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 4673 // example. 4674 if (LHS->getType() != RHS->getType()) 4675 return None; 4676 4677 Type *OpTy = LHS->getType(); 4678 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 4679 4680 // LHS ==> RHS by definition 4681 if (LHS == RHS) 4682 return LHSIsTrue; 4683 4684 // FIXME: Extending the code below to handle vectors. 4685 if (OpTy->isVectorTy()) 4686 return None; 4687 4688 assert(OpTy->isIntegerTy(1) && "implied by above"); 4689 4690 // Both LHS and RHS are icmps. 4691 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 4692 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 4693 if (LHSCmp && RHSCmp) 4694 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 4695 4696 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 4697 // an icmp. FIXME: Add support for and/or on the RHS. 4698 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 4699 if (LHSBO && RHSCmp) { 4700 if ((LHSBO->getOpcode() == Instruction::And || 4701 LHSBO->getOpcode() == Instruction::Or)) 4702 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 4703 } 4704 return None; 4705 } 4706