1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsRISCV.h" 56 #include "llvm/IR/IntrinsicsX86.h" 57 #include "llvm/IR/LLVMContext.h" 58 #include "llvm/IR/Metadata.h" 59 #include "llvm/IR/Module.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/User.h" 64 #include "llvm/IR/Value.h" 65 #include "llvm/Support/Casting.h" 66 #include "llvm/Support/CommandLine.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/KnownBits.h" 70 #include "llvm/Support/MathExtras.h" 71 #include <algorithm> 72 #include <array> 73 #include <cassert> 74 #include <cstdint> 75 #include <iterator> 76 #include <utility> 77 78 using namespace llvm; 79 using namespace llvm::PatternMatch; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getPointerTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// If true, it is safe to use metadata during simplification. 112 InstrInfoQuery IIQ; 113 114 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 115 const DominatorTree *DT, bool UseInstrInfo, 116 OptimizationRemarkEmitter *ORE = nullptr) 117 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 118 }; 119 120 } // end anonymous namespace 121 122 // Given the provided Value and, potentially, a context instruction, return 123 // the preferred context instruction (if any). 124 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 125 // If we've been provided with a context instruction, then use that (provided 126 // it has been inserted). 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 // If the value is really an already-inserted instruction, then use that. 131 CxtI = dyn_cast<Instruction>(V); 132 if (CxtI && CxtI->getParent()) 133 return CxtI; 134 135 return nullptr; 136 } 137 138 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 139 // If we've been provided with a context instruction, then use that (provided 140 // it has been inserted). 141 if (CxtI && CxtI->getParent()) 142 return CxtI; 143 144 // If the value is really an already-inserted instruction, then use that. 145 CxtI = dyn_cast<Instruction>(V1); 146 if (CxtI && CxtI->getParent()) 147 return CxtI; 148 149 CxtI = dyn_cast<Instruction>(V2); 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 return nullptr; 154 } 155 156 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 157 const APInt &DemandedElts, 158 APInt &DemandedLHS, APInt &DemandedRHS) { 159 // The length of scalable vectors is unknown at compile time, thus we 160 // cannot check their values 161 if (isa<ScalableVectorType>(Shuf->getType())) 162 return false; 163 164 int NumElts = 165 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 166 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 167 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 168 if (DemandedElts.isNullValue()) 169 return true; 170 // Simple case of a shuffle with zeroinitializer. 171 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 172 DemandedLHS.setBit(0); 173 return true; 174 } 175 for (int i = 0; i != NumMaskElts; ++i) { 176 if (!DemandedElts[i]) 177 continue; 178 int M = Shuf->getMaskValue(i); 179 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 180 181 // For undef elements, we don't know anything about the common state of 182 // the shuffle result. 183 if (M == -1) 184 return false; 185 if (M < NumElts) 186 DemandedLHS.setBit(M % NumElts); 187 else 188 DemandedRHS.setBit(M % NumElts); 189 } 190 191 return true; 192 } 193 194 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 195 KnownBits &Known, unsigned Depth, const Query &Q); 196 197 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 198 const Query &Q) { 199 // FIXME: We currently have no way to represent the DemandedElts of a scalable 200 // vector 201 if (isa<ScalableVectorType>(V->getType())) { 202 Known.resetAll(); 203 return; 204 } 205 206 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 207 APInt DemandedElts = 208 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 209 computeKnownBits(V, DemandedElts, Known, Depth, Q); 210 } 211 212 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 213 const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT, 216 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 217 ::computeKnownBits(V, Known, Depth, 218 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 219 } 220 221 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 222 KnownBits &Known, const DataLayout &DL, 223 unsigned Depth, AssumptionCache *AC, 224 const Instruction *CxtI, const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 226 ::computeKnownBits(V, DemandedElts, Known, Depth, 227 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 228 } 229 230 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 231 unsigned Depth, const Query &Q); 232 233 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 234 const Query &Q); 235 236 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, 239 const DominatorTree *DT, 240 OptimizationRemarkEmitter *ORE, 241 bool UseInstrInfo) { 242 return ::computeKnownBits( 243 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 244 } 245 246 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 247 const DataLayout &DL, unsigned Depth, 248 AssumptionCache *AC, const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, DemandedElts, Depth, 254 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 255 } 256 257 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 258 const DataLayout &DL, AssumptionCache *AC, 259 const Instruction *CxtI, const DominatorTree *DT, 260 bool UseInstrInfo) { 261 assert(LHS->getType() == RHS->getType() && 262 "LHS and RHS should have the same type"); 263 assert(LHS->getType()->isIntOrIntVectorTy() && 264 "LHS and RHS should be integers"); 265 // Look for an inverted mask: (X & ~M) op (Y & M). 266 Value *M; 267 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 268 match(RHS, m_c_And(m_Specific(M), m_Value()))) 269 return true; 270 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 271 match(LHS, m_c_And(m_Specific(M), m_Value()))) 272 return true; 273 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 274 KnownBits LHSKnown(IT->getBitWidth()); 275 KnownBits RHSKnown(IT->getBitWidth()); 276 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 277 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 278 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 279 } 280 281 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 282 for (const User *U : CxtI->users()) { 283 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 284 if (IC->isEquality()) 285 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 286 if (C->isNullValue()) 287 continue; 288 return false; 289 } 290 return true; 291 } 292 293 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 294 const Query &Q); 295 296 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 297 bool OrZero, unsigned Depth, 298 AssumptionCache *AC, const Instruction *CxtI, 299 const DominatorTree *DT, bool UseInstrInfo) { 300 return ::isKnownToBeAPowerOfTwo( 301 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 302 } 303 304 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 305 unsigned Depth, const Query &Q); 306 307 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 308 309 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 310 AssumptionCache *AC, const Instruction *CxtI, 311 const DominatorTree *DT, bool UseInstrInfo) { 312 return ::isKnownNonZero(V, Depth, 313 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 314 } 315 316 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 317 unsigned Depth, AssumptionCache *AC, 318 const Instruction *CxtI, const DominatorTree *DT, 319 bool UseInstrInfo) { 320 KnownBits Known = 321 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 322 return Known.isNonNegative(); 323 } 324 325 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 326 AssumptionCache *AC, const Instruction *CxtI, 327 const DominatorTree *DT, bool UseInstrInfo) { 328 if (auto *CI = dyn_cast<ConstantInt>(V)) 329 return CI->getValue().isStrictlyPositive(); 330 331 // TODO: We'd doing two recursive queries here. We should factor this such 332 // that only a single query is needed. 333 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 334 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 335 } 336 337 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 338 AssumptionCache *AC, const Instruction *CxtI, 339 const DominatorTree *DT, bool UseInstrInfo) { 340 KnownBits Known = 341 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 342 return Known.isNegative(); 343 } 344 345 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 346 const Query &Q); 347 348 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 349 const DataLayout &DL, AssumptionCache *AC, 350 const Instruction *CxtI, const DominatorTree *DT, 351 bool UseInstrInfo) { 352 return ::isKnownNonEqual(V1, V2, 0, 353 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 354 UseInstrInfo, /*ORE=*/nullptr)); 355 } 356 357 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 358 const Query &Q); 359 360 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 361 const DataLayout &DL, unsigned Depth, 362 AssumptionCache *AC, const Instruction *CxtI, 363 const DominatorTree *DT, bool UseInstrInfo) { 364 return ::MaskedValueIsZero( 365 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 366 } 367 368 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 369 unsigned Depth, const Query &Q); 370 371 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 372 const Query &Q) { 373 // FIXME: We currently have no way to represent the DemandedElts of a scalable 374 // vector 375 if (isa<ScalableVectorType>(V->getType())) 376 return 1; 377 378 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 379 APInt DemandedElts = 380 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 381 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 382 } 383 384 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 385 unsigned Depth, AssumptionCache *AC, 386 const Instruction *CxtI, 387 const DominatorTree *DT, bool UseInstrInfo) { 388 return ::ComputeNumSignBits( 389 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 390 } 391 392 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 393 bool NSW, const APInt &DemandedElts, 394 KnownBits &KnownOut, KnownBits &Known2, 395 unsigned Depth, const Query &Q) { 396 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 397 398 // If one operand is unknown and we have no nowrap information, 399 // the result will be unknown independently of the second operand. 400 if (KnownOut.isUnknown() && !NSW) 401 return; 402 403 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 404 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 405 } 406 407 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 408 const APInt &DemandedElts, KnownBits &Known, 409 KnownBits &Known2, unsigned Depth, 410 const Query &Q) { 411 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 412 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 413 414 bool isKnownNegative = false; 415 bool isKnownNonNegative = false; 416 // If the multiplication is known not to overflow, compute the sign bit. 417 if (NSW) { 418 if (Op0 == Op1) { 419 // The product of a number with itself is non-negative. 420 isKnownNonNegative = true; 421 } else { 422 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 423 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 424 bool isKnownNegativeOp1 = Known.isNegative(); 425 bool isKnownNegativeOp0 = Known2.isNegative(); 426 // The product of two numbers with the same sign is non-negative. 427 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 428 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 429 // The product of a negative number and a non-negative number is either 430 // negative or zero. 431 if (!isKnownNonNegative) 432 isKnownNegative = 433 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 434 Known2.isNonZero()) || 435 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 436 } 437 } 438 439 Known = KnownBits::mul(Known, Known2); 440 441 // Only make use of no-wrap flags if we failed to compute the sign bit 442 // directly. This matters if the multiplication always overflows, in 443 // which case we prefer to follow the result of the direct computation, 444 // though as the program is invoking undefined behaviour we can choose 445 // whatever we like here. 446 if (isKnownNonNegative && !Known.isNegative()) 447 Known.makeNonNegative(); 448 else if (isKnownNegative && !Known.isNonNegative()) 449 Known.makeNegative(); 450 } 451 452 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 453 KnownBits &Known) { 454 unsigned BitWidth = Known.getBitWidth(); 455 unsigned NumRanges = Ranges.getNumOperands() / 2; 456 assert(NumRanges >= 1); 457 458 Known.Zero.setAllBits(); 459 Known.One.setAllBits(); 460 461 for (unsigned i = 0; i < NumRanges; ++i) { 462 ConstantInt *Lower = 463 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 464 ConstantInt *Upper = 465 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 466 ConstantRange Range(Lower->getValue(), Upper->getValue()); 467 468 // The first CommonPrefixBits of all values in Range are equal. 469 unsigned CommonPrefixBits = 470 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 471 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 472 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 473 Known.One &= UnsignedMax & Mask; 474 Known.Zero &= ~UnsignedMax & Mask; 475 } 476 } 477 478 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 479 SmallVector<const Value *, 16> WorkSet(1, I); 480 SmallPtrSet<const Value *, 32> Visited; 481 SmallPtrSet<const Value *, 16> EphValues; 482 483 // The instruction defining an assumption's condition itself is always 484 // considered ephemeral to that assumption (even if it has other 485 // non-ephemeral users). See r246696's test case for an example. 486 if (is_contained(I->operands(), E)) 487 return true; 488 489 while (!WorkSet.empty()) { 490 const Value *V = WorkSet.pop_back_val(); 491 if (!Visited.insert(V).second) 492 continue; 493 494 // If all uses of this value are ephemeral, then so is this value. 495 if (llvm::all_of(V->users(), [&](const User *U) { 496 return EphValues.count(U); 497 })) { 498 if (V == E) 499 return true; 500 501 if (V == I || isSafeToSpeculativelyExecute(V)) { 502 EphValues.insert(V); 503 if (const User *U = dyn_cast<User>(V)) 504 append_range(WorkSet, U->operands()); 505 } 506 } 507 } 508 509 return false; 510 } 511 512 // Is this an intrinsic that cannot be speculated but also cannot trap? 513 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 514 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 515 return CI->isAssumeLikeIntrinsic(); 516 517 return false; 518 } 519 520 bool llvm::isValidAssumeForContext(const Instruction *Inv, 521 const Instruction *CxtI, 522 const DominatorTree *DT) { 523 // There are two restrictions on the use of an assume: 524 // 1. The assume must dominate the context (or the control flow must 525 // reach the assume whenever it reaches the context). 526 // 2. The context must not be in the assume's set of ephemeral values 527 // (otherwise we will use the assume to prove that the condition 528 // feeding the assume is trivially true, thus causing the removal of 529 // the assume). 530 531 if (Inv->getParent() == CxtI->getParent()) { 532 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 533 // in the BB. 534 if (Inv->comesBefore(CxtI)) 535 return true; 536 537 // Don't let an assume affect itself - this would cause the problems 538 // `isEphemeralValueOf` is trying to prevent, and it would also make 539 // the loop below go out of bounds. 540 if (Inv == CxtI) 541 return false; 542 543 // The context comes first, but they're both in the same block. 544 // Make sure there is nothing in between that might interrupt 545 // the control flow, not even CxtI itself. 546 // We limit the scan distance between the assume and its context instruction 547 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 548 // it can be adjusted if needed (could be turned into a cl::opt). 549 unsigned ScanLimit = 15; 550 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 551 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 552 return false; 553 554 return !isEphemeralValueOf(Inv, CxtI); 555 } 556 557 // Inv and CxtI are in different blocks. 558 if (DT) { 559 if (DT->dominates(Inv, CxtI)) 560 return true; 561 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 562 // We don't have a DT, but this trivially dominates. 563 return true; 564 } 565 566 return false; 567 } 568 569 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 570 // v u> y implies v != 0. 571 if (Pred == ICmpInst::ICMP_UGT) 572 return true; 573 574 // Special-case v != 0 to also handle v != null. 575 if (Pred == ICmpInst::ICMP_NE) 576 return match(RHS, m_Zero()); 577 578 // All other predicates - rely on generic ConstantRange handling. 579 const APInt *C; 580 if (!match(RHS, m_APInt(C))) 581 return false; 582 583 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 584 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 585 } 586 587 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 588 // Use of assumptions is context-sensitive. If we don't have a context, we 589 // cannot use them! 590 if (!Q.AC || !Q.CxtI) 591 return false; 592 593 if (Q.CxtI && V->getType()->isPointerTy()) { 594 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 595 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 596 V->getType()->getPointerAddressSpace())) 597 AttrKinds.push_back(Attribute::Dereferenceable); 598 599 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 600 return true; 601 } 602 603 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 604 if (!AssumeVH) 605 continue; 606 CallInst *I = cast<CallInst>(AssumeVH); 607 assert(I->getFunction() == Q.CxtI->getFunction() && 608 "Got assumption for the wrong function!"); 609 610 // Warning: This loop can end up being somewhat performance sensitive. 611 // We're running this loop for once for each value queried resulting in a 612 // runtime of ~O(#assumes * #values). 613 614 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 615 "must be an assume intrinsic"); 616 617 Value *RHS; 618 CmpInst::Predicate Pred; 619 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 620 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 621 return false; 622 623 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 624 return true; 625 } 626 627 return false; 628 } 629 630 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 631 unsigned Depth, const Query &Q) { 632 // Use of assumptions is context-sensitive. If we don't have a context, we 633 // cannot use them! 634 if (!Q.AC || !Q.CxtI) 635 return; 636 637 unsigned BitWidth = Known.getBitWidth(); 638 639 // Refine Known set if the pointer alignment is set by assume bundles. 640 if (V->getType()->isPointerTy()) { 641 if (RetainedKnowledge RK = getKnowledgeValidInContext( 642 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 643 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 644 } 645 } 646 647 // Note that the patterns below need to be kept in sync with the code 648 // in AssumptionCache::updateAffectedValues. 649 650 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 651 if (!AssumeVH) 652 continue; 653 CallInst *I = cast<CallInst>(AssumeVH); 654 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 655 "Got assumption for the wrong function!"); 656 657 // Warning: This loop can end up being somewhat performance sensitive. 658 // We're running this loop for once for each value queried resulting in a 659 // runtime of ~O(#assumes * #values). 660 661 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 662 "must be an assume intrinsic"); 663 664 Value *Arg = I->getArgOperand(0); 665 666 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 assert(BitWidth == 1 && "assume operand is not i1?"); 668 Known.setAllOnes(); 669 return; 670 } 671 if (match(Arg, m_Not(m_Specific(V))) && 672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 673 assert(BitWidth == 1 && "assume operand is not i1?"); 674 Known.setAllZero(); 675 return; 676 } 677 678 // The remaining tests are all recursive, so bail out if we hit the limit. 679 if (Depth == MaxAnalysisRecursionDepth) 680 continue; 681 682 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 683 if (!Cmp) 684 continue; 685 686 // We are attempting to compute known bits for the operands of an assume. 687 // Do not try to use other assumptions for those recursive calls because 688 // that can lead to mutual recursion and a compile-time explosion. 689 // An example of the mutual recursion: computeKnownBits can call 690 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 691 // and so on. 692 Query QueryNoAC = Q; 693 QueryNoAC.AC = nullptr; 694 695 // Note that ptrtoint may change the bitwidth. 696 Value *A, *B; 697 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 698 699 CmpInst::Predicate Pred; 700 uint64_t C; 701 switch (Cmp->getPredicate()) { 702 default: 703 break; 704 case ICmpInst::ICMP_EQ: 705 // assume(v = a) 706 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 707 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 708 KnownBits RHSKnown = 709 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 710 Known.Zero |= RHSKnown.Zero; 711 Known.One |= RHSKnown.One; 712 // assume(v & b = a) 713 } else if (match(Cmp, 714 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 715 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 716 KnownBits RHSKnown = 717 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 718 KnownBits MaskKnown = 719 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 720 721 // For those bits in the mask that are known to be one, we can propagate 722 // known bits from the RHS to V. 723 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 724 Known.One |= RHSKnown.One & MaskKnown.One; 725 // assume(~(v & b) = a) 726 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 727 m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 731 KnownBits MaskKnown = 732 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 733 734 // For those bits in the mask that are known to be one, we can propagate 735 // inverted known bits from the RHS to V. 736 Known.Zero |= RHSKnown.One & MaskKnown.One; 737 Known.One |= RHSKnown.Zero & MaskKnown.One; 738 // assume(v | b = a) 739 } else if (match(Cmp, 740 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 741 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 742 KnownBits RHSKnown = 743 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 744 KnownBits BKnown = 745 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 746 747 // For those bits in B that are known to be zero, we can propagate known 748 // bits from the RHS to V. 749 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 750 Known.One |= RHSKnown.One & BKnown.Zero; 751 // assume(~(v | b) = a) 752 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 753 m_Value(A))) && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 KnownBits RHSKnown = 756 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 757 KnownBits BKnown = 758 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 759 760 // For those bits in B that are known to be zero, we can propagate 761 // inverted known bits from the RHS to V. 762 Known.Zero |= RHSKnown.One & BKnown.Zero; 763 Known.One |= RHSKnown.Zero & BKnown.Zero; 764 // assume(v ^ b = a) 765 } else if (match(Cmp, 766 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 767 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 768 KnownBits RHSKnown = 769 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 770 KnownBits BKnown = 771 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 772 773 // For those bits in B that are known to be zero, we can propagate known 774 // bits from the RHS to V. For those bits in B that are known to be one, 775 // we can propagate inverted known bits from the RHS to V. 776 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 777 Known.One |= RHSKnown.One & BKnown.Zero; 778 Known.Zero |= RHSKnown.One & BKnown.One; 779 Known.One |= RHSKnown.Zero & BKnown.One; 780 // assume(~(v ^ b) = a) 781 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 782 m_Value(A))) && 783 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 784 KnownBits RHSKnown = 785 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 786 KnownBits BKnown = 787 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 788 789 // For those bits in B that are known to be zero, we can propagate 790 // inverted known bits from the RHS to V. For those bits in B that are 791 // known to be one, we can propagate known bits from the RHS to V. 792 Known.Zero |= RHSKnown.One & BKnown.Zero; 793 Known.One |= RHSKnown.Zero & BKnown.Zero; 794 Known.Zero |= RHSKnown.Zero & BKnown.One; 795 Known.One |= RHSKnown.One & BKnown.One; 796 // assume(v << c = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 800 KnownBits RHSKnown = 801 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 802 803 // For those bits in RHS that are known, we can propagate them to known 804 // bits in V shifted to the right by C. 805 RHSKnown.Zero.lshrInPlace(C); 806 Known.Zero |= RHSKnown.Zero; 807 RHSKnown.One.lshrInPlace(C); 808 Known.One |= RHSKnown.One; 809 // assume(~(v << c) = a) 810 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 811 m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 813 KnownBits RHSKnown = 814 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 815 // For those bits in RHS that are known, we can propagate them inverted 816 // to known bits in V shifted to the right by C. 817 RHSKnown.One.lshrInPlace(C); 818 Known.Zero |= RHSKnown.One; 819 RHSKnown.Zero.lshrInPlace(C); 820 Known.One |= RHSKnown.Zero; 821 // assume(v >> c = a) 822 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 823 m_Value(A))) && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 825 KnownBits RHSKnown = 826 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 827 // For those bits in RHS that are known, we can propagate them to known 828 // bits in V shifted to the right by C. 829 Known.Zero |= RHSKnown.Zero << C; 830 Known.One |= RHSKnown.One << C; 831 // assume(~(v >> c) = a) 832 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 833 m_Value(A))) && 834 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 835 KnownBits RHSKnown = 836 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 837 // For those bits in RHS that are known, we can propagate them inverted 838 // to known bits in V shifted to the right by C. 839 Known.Zero |= RHSKnown.One << C; 840 Known.One |= RHSKnown.Zero << C; 841 } 842 break; 843 case ICmpInst::ICMP_SGE: 844 // assume(v >=_s c) where c is non-negative 845 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 846 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 847 KnownBits RHSKnown = 848 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 849 850 if (RHSKnown.isNonNegative()) { 851 // We know that the sign bit is zero. 852 Known.makeNonNegative(); 853 } 854 } 855 break; 856 case ICmpInst::ICMP_SGT: 857 // assume(v >_s c) where c is at least -1. 858 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 859 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 860 KnownBits RHSKnown = 861 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 862 863 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 864 // We know that the sign bit is zero. 865 Known.makeNonNegative(); 866 } 867 } 868 break; 869 case ICmpInst::ICMP_SLE: 870 // assume(v <=_s c) where c is negative 871 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 872 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 873 KnownBits RHSKnown = 874 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 875 876 if (RHSKnown.isNegative()) { 877 // We know that the sign bit is one. 878 Known.makeNegative(); 879 } 880 } 881 break; 882 case ICmpInst::ICMP_SLT: 883 // assume(v <_s c) where c is non-positive 884 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 885 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 886 KnownBits RHSKnown = 887 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 888 889 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 890 // We know that the sign bit is one. 891 Known.makeNegative(); 892 } 893 } 894 break; 895 case ICmpInst::ICMP_ULE: 896 // assume(v <=_u c) 897 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 898 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 899 KnownBits RHSKnown = 900 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 901 902 // Whatever high bits in c are zero are known to be zero. 903 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 904 } 905 break; 906 case ICmpInst::ICMP_ULT: 907 // assume(v <_u c) 908 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 909 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 910 KnownBits RHSKnown = 911 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 912 913 // If the RHS is known zero, then this assumption must be wrong (nothing 914 // is unsigned less than zero). Signal a conflict and get out of here. 915 if (RHSKnown.isZero()) { 916 Known.Zero.setAllBits(); 917 Known.One.setAllBits(); 918 break; 919 } 920 921 // Whatever high bits in c are zero are known to be zero (if c is a power 922 // of 2, then one more). 923 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 925 else 926 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 927 } 928 break; 929 } 930 } 931 932 // If assumptions conflict with each other or previous known bits, then we 933 // have a logical fallacy. It's possible that the assumption is not reachable, 934 // so this isn't a real bug. On the other hand, the program may have undefined 935 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 936 // clear out the known bits, try to warn the user, and hope for the best. 937 if (Known.Zero.intersects(Known.One)) { 938 Known.resetAll(); 939 940 if (Q.ORE) 941 Q.ORE->emit([&]() { 942 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 943 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 944 CxtI) 945 << "Detected conflicting code assumptions. Program may " 946 "have undefined behavior, or compiler may have " 947 "internal error."; 948 }); 949 } 950 } 951 952 /// Compute known bits from a shift operator, including those with a 953 /// non-constant shift amount. Known is the output of this function. Known2 is a 954 /// pre-allocated temporary with the same bit width as Known and on return 955 /// contains the known bit of the shift value source. KF is an 956 /// operator-specific function that, given the known-bits and a shift amount, 957 /// compute the implied known-bits of the shift operator's result respectively 958 /// for that shift amount. The results from calling KF are conservatively 959 /// combined for all permitted shift amounts. 960 static void computeKnownBitsFromShiftOperator( 961 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 962 KnownBits &Known2, unsigned Depth, const Query &Q, 963 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 964 unsigned BitWidth = Known.getBitWidth(); 965 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 966 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 967 968 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 969 // BitWidth > 64 and any upper bits are known, we'll end up returning the 970 // limit value (which implies all bits are known). 971 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 972 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 973 bool ShiftAmtIsConstant = Known.isConstant(); 974 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 975 976 if (ShiftAmtIsConstant) { 977 Known = KF(Known2, Known); 978 979 // If the known bits conflict, this must be an overflowing left shift, so 980 // the shift result is poison. We can return anything we want. Choose 0 for 981 // the best folding opportunity. 982 if (Known.hasConflict()) 983 Known.setAllZero(); 984 985 return; 986 } 987 988 // If the shift amount could be greater than or equal to the bit-width of the 989 // LHS, the value could be poison, but bail out because the check below is 990 // expensive. 991 // TODO: Should we just carry on? 992 if (MaxShiftAmtIsOutOfRange) { 993 Known.resetAll(); 994 return; 995 } 996 997 // It would be more-clearly correct to use the two temporaries for this 998 // calculation. Reusing the APInts here to prevent unnecessary allocations. 999 Known.resetAll(); 1000 1001 // If we know the shifter operand is nonzero, we can sometimes infer more 1002 // known bits. However this is expensive to compute, so be lazy about it and 1003 // only compute it when absolutely necessary. 1004 Optional<bool> ShifterOperandIsNonZero; 1005 1006 // Early exit if we can't constrain any well-defined shift amount. 1007 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1008 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1009 ShifterOperandIsNonZero = 1010 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1011 if (!*ShifterOperandIsNonZero) 1012 return; 1013 } 1014 1015 Known.Zero.setAllBits(); 1016 Known.One.setAllBits(); 1017 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1018 // Combine the shifted known input bits only for those shift amounts 1019 // compatible with its known constraints. 1020 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1021 continue; 1022 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1023 continue; 1024 // If we know the shifter is nonzero, we may be able to infer more known 1025 // bits. This check is sunk down as far as possible to avoid the expensive 1026 // call to isKnownNonZero if the cheaper checks above fail. 1027 if (ShiftAmt == 0) { 1028 if (!ShifterOperandIsNonZero.hasValue()) 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (*ShifterOperandIsNonZero) 1032 continue; 1033 } 1034 1035 Known = KnownBits::commonBits( 1036 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1037 } 1038 1039 // If the known bits conflict, the result is poison. Return a 0 and hope the 1040 // caller can further optimize that. 1041 if (Known.hasConflict()) 1042 Known.setAllZero(); 1043 } 1044 1045 static void computeKnownBitsFromOperator(const Operator *I, 1046 const APInt &DemandedElts, 1047 KnownBits &Known, unsigned Depth, 1048 const Query &Q) { 1049 unsigned BitWidth = Known.getBitWidth(); 1050 1051 KnownBits Known2(BitWidth); 1052 switch (I->getOpcode()) { 1053 default: break; 1054 case Instruction::Load: 1055 if (MDNode *MD = 1056 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1057 computeKnownBitsFromRangeMetadata(*MD, Known); 1058 break; 1059 case Instruction::And: { 1060 // If either the LHS or the RHS are Zero, the result is zero. 1061 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1063 1064 Known &= Known2; 1065 1066 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1067 // here we handle the more general case of adding any odd number by 1068 // matching the form add(x, add(x, y)) where y is odd. 1069 // TODO: This could be generalized to clearing any bit set in y where the 1070 // following bit is known to be unset in y. 1071 Value *X = nullptr, *Y = nullptr; 1072 if (!Known.Zero[0] && !Known.One[0] && 1073 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1074 Known2.resetAll(); 1075 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1076 if (Known2.countMinTrailingOnes() > 0) 1077 Known.Zero.setBit(0); 1078 } 1079 break; 1080 } 1081 case Instruction::Or: 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known |= Known2; 1086 break; 1087 case Instruction::Xor: 1088 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1089 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1090 1091 Known ^= Known2; 1092 break; 1093 case Instruction::Mul: { 1094 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1095 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1096 Known, Known2, Depth, Q); 1097 break; 1098 } 1099 case Instruction::UDiv: { 1100 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1101 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1102 Known = KnownBits::udiv(Known, Known2); 1103 break; 1104 } 1105 case Instruction::Select: { 1106 const Value *LHS = nullptr, *RHS = nullptr; 1107 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1108 if (SelectPatternResult::isMinOrMax(SPF)) { 1109 computeKnownBits(RHS, Known, Depth + 1, Q); 1110 computeKnownBits(LHS, Known2, Depth + 1, Q); 1111 switch (SPF) { 1112 default: 1113 llvm_unreachable("Unhandled select pattern flavor!"); 1114 case SPF_SMAX: 1115 Known = KnownBits::smax(Known, Known2); 1116 break; 1117 case SPF_SMIN: 1118 Known = KnownBits::smin(Known, Known2); 1119 break; 1120 case SPF_UMAX: 1121 Known = KnownBits::umax(Known, Known2); 1122 break; 1123 case SPF_UMIN: 1124 Known = KnownBits::umin(Known, Known2); 1125 break; 1126 } 1127 break; 1128 } 1129 1130 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1131 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1132 1133 // Only known if known in both the LHS and RHS. 1134 Known = KnownBits::commonBits(Known, Known2); 1135 1136 if (SPF == SPF_ABS) { 1137 // RHS from matchSelectPattern returns the negation part of abs pattern. 1138 // If the negate has an NSW flag we can assume the sign bit of the result 1139 // will be 0 because that makes abs(INT_MIN) undefined. 1140 if (match(RHS, m_Neg(m_Specific(LHS))) && 1141 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1142 Known.Zero.setSignBit(); 1143 } 1144 1145 break; 1146 } 1147 case Instruction::FPTrunc: 1148 case Instruction::FPExt: 1149 case Instruction::FPToUI: 1150 case Instruction::FPToSI: 1151 case Instruction::SIToFP: 1152 case Instruction::UIToFP: 1153 break; // Can't work with floating point. 1154 case Instruction::PtrToInt: 1155 case Instruction::IntToPtr: 1156 // Fall through and handle them the same as zext/trunc. 1157 LLVM_FALLTHROUGH; 1158 case Instruction::ZExt: 1159 case Instruction::Trunc: { 1160 Type *SrcTy = I->getOperand(0)->getType(); 1161 1162 unsigned SrcBitWidth; 1163 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1164 // which fall through here. 1165 Type *ScalarTy = SrcTy->getScalarType(); 1166 SrcBitWidth = ScalarTy->isPointerTy() ? 1167 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1168 Q.DL.getTypeSizeInBits(ScalarTy); 1169 1170 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1171 Known = Known.anyextOrTrunc(SrcBitWidth); 1172 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1173 Known = Known.zextOrTrunc(BitWidth); 1174 break; 1175 } 1176 case Instruction::BitCast: { 1177 Type *SrcTy = I->getOperand(0)->getType(); 1178 if (SrcTy->isIntOrPtrTy() && 1179 // TODO: For now, not handling conversions like: 1180 // (bitcast i64 %x to <2 x i32>) 1181 !I->getType()->isVectorTy()) { 1182 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1183 break; 1184 } 1185 break; 1186 } 1187 case Instruction::SExt: { 1188 // Compute the bits in the result that are not present in the input. 1189 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1190 1191 Known = Known.trunc(SrcBitWidth); 1192 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1193 // If the sign bit of the input is known set or clear, then we know the 1194 // top bits of the result. 1195 Known = Known.sext(BitWidth); 1196 break; 1197 } 1198 case Instruction::Shl: { 1199 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1200 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1201 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1202 // If this shift has "nsw" keyword, then the result is either a poison 1203 // value or has the same sign bit as the first operand. 1204 if (NSW) { 1205 if (KnownVal.Zero.isSignBitSet()) 1206 Result.Zero.setSignBit(); 1207 if (KnownVal.One.isSignBitSet()) 1208 Result.One.setSignBit(); 1209 } 1210 return Result; 1211 }; 1212 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1213 KF); 1214 // Trailing zeros of a right-shifted constant never decrease. 1215 const APInt *C; 1216 if (match(I->getOperand(0), m_APInt(C))) 1217 Known.Zero.setLowBits(C->countTrailingZeros()); 1218 break; 1219 } 1220 case Instruction::LShr: { 1221 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 return KnownBits::lshr(KnownVal, KnownAmt); 1223 }; 1224 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1225 KF); 1226 // Leading zeros of a left-shifted constant never decrease. 1227 const APInt *C; 1228 if (match(I->getOperand(0), m_APInt(C))) 1229 Known.Zero.setHighBits(C->countLeadingZeros()); 1230 break; 1231 } 1232 case Instruction::AShr: { 1233 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1234 return KnownBits::ashr(KnownVal, KnownAmt); 1235 }; 1236 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1237 KF); 1238 break; 1239 } 1240 case Instruction::Sub: { 1241 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1242 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1243 DemandedElts, Known, Known2, Depth, Q); 1244 break; 1245 } 1246 case Instruction::Add: { 1247 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1248 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1249 DemandedElts, Known, Known2, Depth, Q); 1250 break; 1251 } 1252 case Instruction::SRem: 1253 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1254 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1255 Known = KnownBits::srem(Known, Known2); 1256 break; 1257 1258 case Instruction::URem: 1259 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1260 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1261 Known = KnownBits::urem(Known, Known2); 1262 break; 1263 case Instruction::Alloca: 1264 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1265 break; 1266 case Instruction::GetElementPtr: { 1267 // Analyze all of the subscripts of this getelementptr instruction 1268 // to determine if we can prove known low zero bits. 1269 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1270 // Accumulate the constant indices in a separate variable 1271 // to minimize the number of calls to computeForAddSub. 1272 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1273 1274 gep_type_iterator GTI = gep_type_begin(I); 1275 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1276 // TrailZ can only become smaller, short-circuit if we hit zero. 1277 if (Known.isUnknown()) 1278 break; 1279 1280 Value *Index = I->getOperand(i); 1281 1282 // Handle case when index is zero. 1283 Constant *CIndex = dyn_cast<Constant>(Index); 1284 if (CIndex && CIndex->isZeroValue()) 1285 continue; 1286 1287 if (StructType *STy = GTI.getStructTypeOrNull()) { 1288 // Handle struct member offset arithmetic. 1289 1290 assert(CIndex && 1291 "Access to structure field must be known at compile time"); 1292 1293 if (CIndex->getType()->isVectorTy()) 1294 Index = CIndex->getSplatValue(); 1295 1296 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1297 const StructLayout *SL = Q.DL.getStructLayout(STy); 1298 uint64_t Offset = SL->getElementOffset(Idx); 1299 AccConstIndices += Offset; 1300 continue; 1301 } 1302 1303 // Handle array index arithmetic. 1304 Type *IndexedTy = GTI.getIndexedType(); 1305 if (!IndexedTy->isSized()) { 1306 Known.resetAll(); 1307 break; 1308 } 1309 1310 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1311 KnownBits IndexBits(IndexBitWidth); 1312 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1313 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1314 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1315 KnownBits ScalingFactor(IndexBitWidth); 1316 // Multiply by current sizeof type. 1317 // &A[i] == A + i * sizeof(*A[i]). 1318 if (IndexTypeSize.isScalable()) { 1319 // For scalable types the only thing we know about sizeof is 1320 // that this is a multiple of the minimum size. 1321 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1322 } else if (IndexBits.isConstant()) { 1323 APInt IndexConst = IndexBits.getConstant(); 1324 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1325 IndexConst *= ScalingFactor; 1326 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1327 continue; 1328 } else { 1329 ScalingFactor = 1330 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1331 } 1332 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1333 1334 // If the offsets have a different width from the pointer, according 1335 // to the language reference we need to sign-extend or truncate them 1336 // to the width of the pointer. 1337 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1338 1339 // Note that inbounds does *not* guarantee nsw for the addition, as only 1340 // the offset is signed, while the base address is unsigned. 1341 Known = KnownBits::computeForAddSub( 1342 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1343 } 1344 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1345 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1346 Known = KnownBits::computeForAddSub( 1347 /*Add=*/true, /*NSW=*/false, Known, Index); 1348 } 1349 break; 1350 } 1351 case Instruction::PHI: { 1352 const PHINode *P = cast<PHINode>(I); 1353 BinaryOperator *BO = nullptr; 1354 Value *R = nullptr, *L = nullptr; 1355 if (matchSimpleRecurrence(P, BO, R, L)) { 1356 // Handle the case of a simple two-predecessor recurrence PHI. 1357 // There's a lot more that could theoretically be done here, but 1358 // this is sufficient to catch some interesting cases. 1359 unsigned Opcode = BO->getOpcode(); 1360 1361 // If this is a shift recurrence, we know the bits being shifted in. 1362 // We can combine that with information about the start value of the 1363 // recurrence to conclude facts about the result. 1364 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1365 Opcode == Instruction::Shl) && 1366 BO->getOperand(0) == I) { 1367 1368 // We have matched a recurrence of the form: 1369 // %iv = [R, %entry], [%iv.next, %backedge] 1370 // %iv.next = shift_op %iv, L 1371 1372 // Recurse with the phi context to avoid concern about whether facts 1373 // inferred hold at original context instruction. TODO: It may be 1374 // correct to use the original context. IF warranted, explore and 1375 // add sufficient tests to cover. 1376 Query RecQ = Q; 1377 RecQ.CxtI = P; 1378 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1379 switch (Opcode) { 1380 case Instruction::Shl: 1381 // A shl recurrence will only increase the tailing zeros 1382 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1383 break; 1384 case Instruction::LShr: 1385 // A lshr recurrence will preserve the leading zeros of the 1386 // start value 1387 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1388 break; 1389 case Instruction::AShr: 1390 // An ashr recurrence will extend the initial sign bit 1391 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1392 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1393 break; 1394 }; 1395 } 1396 1397 // Check for operations that have the property that if 1398 // both their operands have low zero bits, the result 1399 // will have low zero bits. 1400 if (Opcode == Instruction::Add || 1401 Opcode == Instruction::Sub || 1402 Opcode == Instruction::And || 1403 Opcode == Instruction::Or || 1404 Opcode == Instruction::Mul) { 1405 // Change the context instruction to the "edge" that flows into the 1406 // phi. This is important because that is where the value is actually 1407 // "evaluated" even though it is used later somewhere else. (see also 1408 // D69571). 1409 Query RecQ = Q; 1410 1411 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1412 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1413 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1414 1415 // Ok, we have a PHI of the form L op= R. Check for low 1416 // zero bits. 1417 RecQ.CxtI = RInst; 1418 computeKnownBits(R, Known2, Depth + 1, RecQ); 1419 1420 // We need to take the minimum number of known bits 1421 KnownBits Known3(BitWidth); 1422 RecQ.CxtI = LInst; 1423 computeKnownBits(L, Known3, Depth + 1, RecQ); 1424 1425 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1426 Known3.countMinTrailingZeros())); 1427 1428 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1429 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1430 // If initial value of recurrence is nonnegative, and we are adding 1431 // a nonnegative number with nsw, the result can only be nonnegative 1432 // or poison value regardless of the number of times we execute the 1433 // add in phi recurrence. If initial value is negative and we are 1434 // adding a negative number with nsw, the result can only be 1435 // negative or poison value. Similar arguments apply to sub and mul. 1436 // 1437 // (add non-negative, non-negative) --> non-negative 1438 // (add negative, negative) --> negative 1439 if (Opcode == Instruction::Add) { 1440 if (Known2.isNonNegative() && Known3.isNonNegative()) 1441 Known.makeNonNegative(); 1442 else if (Known2.isNegative() && Known3.isNegative()) 1443 Known.makeNegative(); 1444 } 1445 1446 // (sub nsw non-negative, negative) --> non-negative 1447 // (sub nsw negative, non-negative) --> negative 1448 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1449 if (Known2.isNonNegative() && Known3.isNegative()) 1450 Known.makeNonNegative(); 1451 else if (Known2.isNegative() && Known3.isNonNegative()) 1452 Known.makeNegative(); 1453 } 1454 1455 // (mul nsw non-negative, non-negative) --> non-negative 1456 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1457 Known3.isNonNegative()) 1458 Known.makeNonNegative(); 1459 } 1460 1461 break; 1462 } 1463 } 1464 1465 // Unreachable blocks may have zero-operand PHI nodes. 1466 if (P->getNumIncomingValues() == 0) 1467 break; 1468 1469 // Otherwise take the unions of the known bit sets of the operands, 1470 // taking conservative care to avoid excessive recursion. 1471 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1472 // Skip if every incoming value references to ourself. 1473 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1474 break; 1475 1476 Known.Zero.setAllBits(); 1477 Known.One.setAllBits(); 1478 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1479 Value *IncValue = P->getIncomingValue(u); 1480 // Skip direct self references. 1481 if (IncValue == P) continue; 1482 1483 // Change the context instruction to the "edge" that flows into the 1484 // phi. This is important because that is where the value is actually 1485 // "evaluated" even though it is used later somewhere else. (see also 1486 // D69571). 1487 Query RecQ = Q; 1488 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1489 1490 Known2 = KnownBits(BitWidth); 1491 // Recurse, but cap the recursion to one level, because we don't 1492 // want to waste time spinning around in loops. 1493 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1494 Known = KnownBits::commonBits(Known, Known2); 1495 // If all bits have been ruled out, there's no need to check 1496 // more operands. 1497 if (Known.isUnknown()) 1498 break; 1499 } 1500 } 1501 break; 1502 } 1503 case Instruction::Call: 1504 case Instruction::Invoke: 1505 // If range metadata is attached to this call, set known bits from that, 1506 // and then intersect with known bits based on other properties of the 1507 // function. 1508 if (MDNode *MD = 1509 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1510 computeKnownBitsFromRangeMetadata(*MD, Known); 1511 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1512 computeKnownBits(RV, Known2, Depth + 1, Q); 1513 Known.Zero |= Known2.Zero; 1514 Known.One |= Known2.One; 1515 } 1516 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1517 switch (II->getIntrinsicID()) { 1518 default: break; 1519 case Intrinsic::abs: { 1520 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1521 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1522 Known = Known2.abs(IntMinIsPoison); 1523 break; 1524 } 1525 case Intrinsic::bitreverse: 1526 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1527 Known.Zero |= Known2.Zero.reverseBits(); 1528 Known.One |= Known2.One.reverseBits(); 1529 break; 1530 case Intrinsic::bswap: 1531 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1532 Known.Zero |= Known2.Zero.byteSwap(); 1533 Known.One |= Known2.One.byteSwap(); 1534 break; 1535 case Intrinsic::ctlz: { 1536 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1537 // If we have a known 1, its position is our upper bound. 1538 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1539 // If this call is undefined for 0, the result will be less than 2^n. 1540 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1541 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1542 unsigned LowBits = Log2_32(PossibleLZ)+1; 1543 Known.Zero.setBitsFrom(LowBits); 1544 break; 1545 } 1546 case Intrinsic::cttz: { 1547 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1548 // If we have a known 1, its position is our upper bound. 1549 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1550 // If this call is undefined for 0, the result will be less than 2^n. 1551 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1552 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1553 unsigned LowBits = Log2_32(PossibleTZ)+1; 1554 Known.Zero.setBitsFrom(LowBits); 1555 break; 1556 } 1557 case Intrinsic::ctpop: { 1558 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1559 // We can bound the space the count needs. Also, bits known to be zero 1560 // can't contribute to the population. 1561 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1562 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1563 Known.Zero.setBitsFrom(LowBits); 1564 // TODO: we could bound KnownOne using the lower bound on the number 1565 // of bits which might be set provided by popcnt KnownOne2. 1566 break; 1567 } 1568 case Intrinsic::fshr: 1569 case Intrinsic::fshl: { 1570 const APInt *SA; 1571 if (!match(I->getOperand(2), m_APInt(SA))) 1572 break; 1573 1574 // Normalize to funnel shift left. 1575 uint64_t ShiftAmt = SA->urem(BitWidth); 1576 if (II->getIntrinsicID() == Intrinsic::fshr) 1577 ShiftAmt = BitWidth - ShiftAmt; 1578 1579 KnownBits Known3(BitWidth); 1580 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1581 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1582 1583 Known.Zero = 1584 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1585 Known.One = 1586 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1587 break; 1588 } 1589 case Intrinsic::uadd_sat: 1590 case Intrinsic::usub_sat: { 1591 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1592 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1593 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1594 1595 // Add: Leading ones of either operand are preserved. 1596 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1597 // as leading zeros in the result. 1598 unsigned LeadingKnown; 1599 if (IsAdd) 1600 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1601 Known2.countMinLeadingOnes()); 1602 else 1603 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1604 Known2.countMinLeadingOnes()); 1605 1606 Known = KnownBits::computeForAddSub( 1607 IsAdd, /* NSW */ false, Known, Known2); 1608 1609 // We select between the operation result and all-ones/zero 1610 // respectively, so we can preserve known ones/zeros. 1611 if (IsAdd) { 1612 Known.One.setHighBits(LeadingKnown); 1613 Known.Zero.clearAllBits(); 1614 } else { 1615 Known.Zero.setHighBits(LeadingKnown); 1616 Known.One.clearAllBits(); 1617 } 1618 break; 1619 } 1620 case Intrinsic::umin: 1621 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1622 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1623 Known = KnownBits::umin(Known, Known2); 1624 break; 1625 case Intrinsic::umax: 1626 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1627 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1628 Known = KnownBits::umax(Known, Known2); 1629 break; 1630 case Intrinsic::smin: 1631 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1632 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1633 Known = KnownBits::smin(Known, Known2); 1634 break; 1635 case Intrinsic::smax: 1636 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1637 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1638 Known = KnownBits::smax(Known, Known2); 1639 break; 1640 case Intrinsic::x86_sse42_crc32_64_64: 1641 Known.Zero.setBitsFrom(32); 1642 break; 1643 case Intrinsic::riscv_vsetvli: 1644 case Intrinsic::riscv_vsetvlimax: 1645 // Assume that VL output is positive and would fit in an int32_t. 1646 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1647 if (BitWidth >= 32) 1648 Known.Zero.setBitsFrom(31); 1649 break; 1650 } 1651 } 1652 break; 1653 case Instruction::ShuffleVector: { 1654 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1655 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1656 if (!Shuf) { 1657 Known.resetAll(); 1658 return; 1659 } 1660 // For undef elements, we don't know anything about the common state of 1661 // the shuffle result. 1662 APInt DemandedLHS, DemandedRHS; 1663 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1664 Known.resetAll(); 1665 return; 1666 } 1667 Known.One.setAllBits(); 1668 Known.Zero.setAllBits(); 1669 if (!!DemandedLHS) { 1670 const Value *LHS = Shuf->getOperand(0); 1671 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1672 // If we don't know any bits, early out. 1673 if (Known.isUnknown()) 1674 break; 1675 } 1676 if (!!DemandedRHS) { 1677 const Value *RHS = Shuf->getOperand(1); 1678 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1679 Known = KnownBits::commonBits(Known, Known2); 1680 } 1681 break; 1682 } 1683 case Instruction::InsertElement: { 1684 const Value *Vec = I->getOperand(0); 1685 const Value *Elt = I->getOperand(1); 1686 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1687 // Early out if the index is non-constant or out-of-range. 1688 unsigned NumElts = DemandedElts.getBitWidth(); 1689 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1690 Known.resetAll(); 1691 return; 1692 } 1693 Known.One.setAllBits(); 1694 Known.Zero.setAllBits(); 1695 unsigned EltIdx = CIdx->getZExtValue(); 1696 // Do we demand the inserted element? 1697 if (DemandedElts[EltIdx]) { 1698 computeKnownBits(Elt, Known, Depth + 1, Q); 1699 // If we don't know any bits, early out. 1700 if (Known.isUnknown()) 1701 break; 1702 } 1703 // We don't need the base vector element that has been inserted. 1704 APInt DemandedVecElts = DemandedElts; 1705 DemandedVecElts.clearBit(EltIdx); 1706 if (!!DemandedVecElts) { 1707 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1708 Known = KnownBits::commonBits(Known, Known2); 1709 } 1710 break; 1711 } 1712 case Instruction::ExtractElement: { 1713 // Look through extract element. If the index is non-constant or 1714 // out-of-range demand all elements, otherwise just the extracted element. 1715 const Value *Vec = I->getOperand(0); 1716 const Value *Idx = I->getOperand(1); 1717 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1718 if (isa<ScalableVectorType>(Vec->getType())) { 1719 // FIXME: there's probably *something* we can do with scalable vectors 1720 Known.resetAll(); 1721 break; 1722 } 1723 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1724 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1725 if (CIdx && CIdx->getValue().ult(NumElts)) 1726 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1727 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1728 break; 1729 } 1730 case Instruction::ExtractValue: 1731 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1732 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1733 if (EVI->getNumIndices() != 1) break; 1734 if (EVI->getIndices()[0] == 0) { 1735 switch (II->getIntrinsicID()) { 1736 default: break; 1737 case Intrinsic::uadd_with_overflow: 1738 case Intrinsic::sadd_with_overflow: 1739 computeKnownBitsAddSub(true, II->getArgOperand(0), 1740 II->getArgOperand(1), false, DemandedElts, 1741 Known, Known2, Depth, Q); 1742 break; 1743 case Intrinsic::usub_with_overflow: 1744 case Intrinsic::ssub_with_overflow: 1745 computeKnownBitsAddSub(false, II->getArgOperand(0), 1746 II->getArgOperand(1), false, DemandedElts, 1747 Known, Known2, Depth, Q); 1748 break; 1749 case Intrinsic::umul_with_overflow: 1750 case Intrinsic::smul_with_overflow: 1751 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1752 DemandedElts, Known, Known2, Depth, Q); 1753 break; 1754 } 1755 } 1756 } 1757 break; 1758 case Instruction::Freeze: 1759 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1760 Depth + 1)) 1761 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1762 break; 1763 } 1764 } 1765 1766 /// Determine which bits of V are known to be either zero or one and return 1767 /// them. 1768 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1769 unsigned Depth, const Query &Q) { 1770 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1771 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1772 return Known; 1773 } 1774 1775 /// Determine which bits of V are known to be either zero or one and return 1776 /// them. 1777 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1778 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1779 computeKnownBits(V, Known, Depth, Q); 1780 return Known; 1781 } 1782 1783 /// Determine which bits of V are known to be either zero or one and return 1784 /// them in the Known bit set. 1785 /// 1786 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1787 /// we cannot optimize based on the assumption that it is zero without changing 1788 /// it to be an explicit zero. If we don't change it to zero, other code could 1789 /// optimized based on the contradictory assumption that it is non-zero. 1790 /// Because instcombine aggressively folds operations with undef args anyway, 1791 /// this won't lose us code quality. 1792 /// 1793 /// This function is defined on values with integer type, values with pointer 1794 /// type, and vectors of integers. In the case 1795 /// where V is a vector, known zero, and known one values are the 1796 /// same width as the vector element, and the bit is set only if it is true 1797 /// for all of the demanded elements in the vector specified by DemandedElts. 1798 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1799 KnownBits &Known, unsigned Depth, const Query &Q) { 1800 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1801 // No demanded elts or V is a scalable vector, better to assume we don't 1802 // know anything. 1803 Known.resetAll(); 1804 return; 1805 } 1806 1807 assert(V && "No Value?"); 1808 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1809 1810 #ifndef NDEBUG 1811 Type *Ty = V->getType(); 1812 unsigned BitWidth = Known.getBitWidth(); 1813 1814 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1815 "Not integer or pointer type!"); 1816 1817 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1818 assert( 1819 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1820 "DemandedElt width should equal the fixed vector number of elements"); 1821 } else { 1822 assert(DemandedElts == APInt(1, 1) && 1823 "DemandedElt width should be 1 for scalars"); 1824 } 1825 1826 Type *ScalarTy = Ty->getScalarType(); 1827 if (ScalarTy->isPointerTy()) { 1828 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1829 "V and Known should have same BitWidth"); 1830 } else { 1831 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1832 "V and Known should have same BitWidth"); 1833 } 1834 #endif 1835 1836 const APInt *C; 1837 if (match(V, m_APInt(C))) { 1838 // We know all of the bits for a scalar constant or a splat vector constant! 1839 Known = KnownBits::makeConstant(*C); 1840 return; 1841 } 1842 // Null and aggregate-zero are all-zeros. 1843 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1844 Known.setAllZero(); 1845 return; 1846 } 1847 // Handle a constant vector by taking the intersection of the known bits of 1848 // each element. 1849 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1850 // We know that CDV must be a vector of integers. Take the intersection of 1851 // each element. 1852 Known.Zero.setAllBits(); Known.One.setAllBits(); 1853 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1854 if (!DemandedElts[i]) 1855 continue; 1856 APInt Elt = CDV->getElementAsAPInt(i); 1857 Known.Zero &= ~Elt; 1858 Known.One &= Elt; 1859 } 1860 return; 1861 } 1862 1863 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1864 // We know that CV must be a vector of integers. Take the intersection of 1865 // each element. 1866 Known.Zero.setAllBits(); Known.One.setAllBits(); 1867 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1868 if (!DemandedElts[i]) 1869 continue; 1870 Constant *Element = CV->getAggregateElement(i); 1871 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1872 if (!ElementCI) { 1873 Known.resetAll(); 1874 return; 1875 } 1876 const APInt &Elt = ElementCI->getValue(); 1877 Known.Zero &= ~Elt; 1878 Known.One &= Elt; 1879 } 1880 return; 1881 } 1882 1883 // Start out not knowing anything. 1884 Known.resetAll(); 1885 1886 // We can't imply anything about undefs. 1887 if (isa<UndefValue>(V)) 1888 return; 1889 1890 // There's no point in looking through other users of ConstantData for 1891 // assumptions. Confirm that we've handled them all. 1892 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1893 1894 // All recursive calls that increase depth must come after this. 1895 if (Depth == MaxAnalysisRecursionDepth) 1896 return; 1897 1898 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1899 // the bits of its aliasee. 1900 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1901 if (!GA->isInterposable()) 1902 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1903 return; 1904 } 1905 1906 if (const Operator *I = dyn_cast<Operator>(V)) 1907 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1908 1909 // Aligned pointers have trailing zeros - refine Known.Zero set 1910 if (isa<PointerType>(V->getType())) { 1911 Align Alignment = V->getPointerAlignment(Q.DL); 1912 Known.Zero.setLowBits(Log2(Alignment)); 1913 } 1914 1915 // computeKnownBitsFromAssume strictly refines Known. 1916 // Therefore, we run them after computeKnownBitsFromOperator. 1917 1918 // Check whether a nearby assume intrinsic can determine some known bits. 1919 computeKnownBitsFromAssume(V, Known, Depth, Q); 1920 1921 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1922 } 1923 1924 /// Return true if the given value is known to have exactly one 1925 /// bit set when defined. For vectors return true if every element is known to 1926 /// be a power of two when defined. Supports values with integer or pointer 1927 /// types and vectors of integers. 1928 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1929 const Query &Q) { 1930 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1931 1932 // Attempt to match against constants. 1933 if (OrZero && match(V, m_Power2OrZero())) 1934 return true; 1935 if (match(V, m_Power2())) 1936 return true; 1937 1938 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1939 // it is shifted off the end then the result is undefined. 1940 if (match(V, m_Shl(m_One(), m_Value()))) 1941 return true; 1942 1943 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1944 // the bottom. If it is shifted off the bottom then the result is undefined. 1945 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1946 return true; 1947 1948 // The remaining tests are all recursive, so bail out if we hit the limit. 1949 if (Depth++ == MaxAnalysisRecursionDepth) 1950 return false; 1951 1952 Value *X = nullptr, *Y = nullptr; 1953 // A shift left or a logical shift right of a power of two is a power of two 1954 // or zero. 1955 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1956 match(V, m_LShr(m_Value(X), m_Value())))) 1957 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1958 1959 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1960 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1961 1962 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1963 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1964 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1965 1966 // Peek through min/max. 1967 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 1968 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 1969 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 1970 } 1971 1972 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1973 // A power of two and'd with anything is a power of two or zero. 1974 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1975 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1976 return true; 1977 // X & (-X) is always a power of two or zero. 1978 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1979 return true; 1980 return false; 1981 } 1982 1983 // Adding a power-of-two or zero to the same power-of-two or zero yields 1984 // either the original power-of-two, a larger power-of-two or zero. 1985 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1986 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1987 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1988 Q.IIQ.hasNoSignedWrap(VOBO)) { 1989 if (match(X, m_And(m_Specific(Y), m_Value())) || 1990 match(X, m_And(m_Value(), m_Specific(Y)))) 1991 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1992 return true; 1993 if (match(Y, m_And(m_Specific(X), m_Value())) || 1994 match(Y, m_And(m_Value(), m_Specific(X)))) 1995 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1996 return true; 1997 1998 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1999 KnownBits LHSBits(BitWidth); 2000 computeKnownBits(X, LHSBits, Depth, Q); 2001 2002 KnownBits RHSBits(BitWidth); 2003 computeKnownBits(Y, RHSBits, Depth, Q); 2004 // If i8 V is a power of two or zero: 2005 // ZeroBits: 1 1 1 0 1 1 1 1 2006 // ~ZeroBits: 0 0 0 1 0 0 0 0 2007 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2008 // If OrZero isn't set, we cannot give back a zero result. 2009 // Make sure either the LHS or RHS has a bit set. 2010 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2011 return true; 2012 } 2013 } 2014 2015 // An exact divide or right shift can only shift off zero bits, so the result 2016 // is a power of two only if the first operand is a power of two and not 2017 // copying a sign bit (sdiv int_min, 2). 2018 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2019 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2020 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2021 Depth, Q); 2022 } 2023 2024 return false; 2025 } 2026 2027 /// Test whether a GEP's result is known to be non-null. 2028 /// 2029 /// Uses properties inherent in a GEP to try to determine whether it is known 2030 /// to be non-null. 2031 /// 2032 /// Currently this routine does not support vector GEPs. 2033 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2034 const Query &Q) { 2035 const Function *F = nullptr; 2036 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2037 F = I->getFunction(); 2038 2039 if (!GEP->isInBounds() || 2040 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2041 return false; 2042 2043 // FIXME: Support vector-GEPs. 2044 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2045 2046 // If the base pointer is non-null, we cannot walk to a null address with an 2047 // inbounds GEP in address space zero. 2048 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2049 return true; 2050 2051 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2052 // If so, then the GEP cannot produce a null pointer, as doing so would 2053 // inherently violate the inbounds contract within address space zero. 2054 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2055 GTI != GTE; ++GTI) { 2056 // Struct types are easy -- they must always be indexed by a constant. 2057 if (StructType *STy = GTI.getStructTypeOrNull()) { 2058 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2059 unsigned ElementIdx = OpC->getZExtValue(); 2060 const StructLayout *SL = Q.DL.getStructLayout(STy); 2061 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2062 if (ElementOffset > 0) 2063 return true; 2064 continue; 2065 } 2066 2067 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2068 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2069 continue; 2070 2071 // Fast path the constant operand case both for efficiency and so we don't 2072 // increment Depth when just zipping down an all-constant GEP. 2073 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2074 if (!OpC->isZero()) 2075 return true; 2076 continue; 2077 } 2078 2079 // We post-increment Depth here because while isKnownNonZero increments it 2080 // as well, when we pop back up that increment won't persist. We don't want 2081 // to recurse 10k times just because we have 10k GEP operands. We don't 2082 // bail completely out because we want to handle constant GEPs regardless 2083 // of depth. 2084 if (Depth++ >= MaxAnalysisRecursionDepth) 2085 continue; 2086 2087 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2088 return true; 2089 } 2090 2091 return false; 2092 } 2093 2094 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2095 const Instruction *CtxI, 2096 const DominatorTree *DT) { 2097 if (isa<Constant>(V)) 2098 return false; 2099 2100 if (!CtxI || !DT) 2101 return false; 2102 2103 unsigned NumUsesExplored = 0; 2104 for (auto *U : V->users()) { 2105 // Avoid massive lists 2106 if (NumUsesExplored >= DomConditionsMaxUses) 2107 break; 2108 NumUsesExplored++; 2109 2110 // If the value is used as an argument to a call or invoke, then argument 2111 // attributes may provide an answer about null-ness. 2112 if (const auto *CB = dyn_cast<CallBase>(U)) 2113 if (auto *CalledFunc = CB->getCalledFunction()) 2114 for (const Argument &Arg : CalledFunc->args()) 2115 if (CB->getArgOperand(Arg.getArgNo()) == V && 2116 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2117 DT->dominates(CB, CtxI)) 2118 return true; 2119 2120 // If the value is used as a load/store, then the pointer must be non null. 2121 if (V == getLoadStorePointerOperand(U)) { 2122 const Instruction *I = cast<Instruction>(U); 2123 if (!NullPointerIsDefined(I->getFunction(), 2124 V->getType()->getPointerAddressSpace()) && 2125 DT->dominates(I, CtxI)) 2126 return true; 2127 } 2128 2129 // Consider only compare instructions uniquely controlling a branch 2130 Value *RHS; 2131 CmpInst::Predicate Pred; 2132 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2133 continue; 2134 2135 bool NonNullIfTrue; 2136 if (cmpExcludesZero(Pred, RHS)) 2137 NonNullIfTrue = true; 2138 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2139 NonNullIfTrue = false; 2140 else 2141 continue; 2142 2143 SmallVector<const User *, 4> WorkList; 2144 SmallPtrSet<const User *, 4> Visited; 2145 for (auto *CmpU : U->users()) { 2146 assert(WorkList.empty() && "Should be!"); 2147 if (Visited.insert(CmpU).second) 2148 WorkList.push_back(CmpU); 2149 2150 while (!WorkList.empty()) { 2151 auto *Curr = WorkList.pop_back_val(); 2152 2153 // If a user is an AND, add all its users to the work list. We only 2154 // propagate "pred != null" condition through AND because it is only 2155 // correct to assume that all conditions of AND are met in true branch. 2156 // TODO: Support similar logic of OR and EQ predicate? 2157 if (NonNullIfTrue) 2158 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2159 for (auto *CurrU : Curr->users()) 2160 if (Visited.insert(CurrU).second) 2161 WorkList.push_back(CurrU); 2162 continue; 2163 } 2164 2165 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2166 assert(BI->isConditional() && "uses a comparison!"); 2167 2168 BasicBlock *NonNullSuccessor = 2169 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2170 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2171 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2172 return true; 2173 } else if (NonNullIfTrue && isGuard(Curr) && 2174 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2175 return true; 2176 } 2177 } 2178 } 2179 } 2180 2181 return false; 2182 } 2183 2184 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2185 /// ensure that the value it's attached to is never Value? 'RangeType' is 2186 /// is the type of the value described by the range. 2187 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2188 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2189 assert(NumRanges >= 1); 2190 for (unsigned i = 0; i < NumRanges; ++i) { 2191 ConstantInt *Lower = 2192 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2193 ConstantInt *Upper = 2194 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2195 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2196 if (Range.contains(Value)) 2197 return false; 2198 } 2199 return true; 2200 } 2201 2202 /// Try to detect a recurrence that monotonically increases/decreases from a 2203 /// non-zero starting value. These are common as induction variables. 2204 static bool isNonZeroRecurrence(const PHINode *PN) { 2205 BinaryOperator *BO = nullptr; 2206 Value *Start = nullptr, *Step = nullptr; 2207 const APInt *StartC, *StepC; 2208 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2209 !match(Start, m_APInt(StartC)) || StartC->isNullValue()) 2210 return false; 2211 2212 switch (BO->getOpcode()) { 2213 case Instruction::Add: 2214 // Starting from non-zero and stepping away from zero can never wrap back 2215 // to zero. 2216 return BO->hasNoUnsignedWrap() || 2217 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2218 StartC->isNegative() == StepC->isNegative()); 2219 case Instruction::Mul: 2220 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2221 match(Step, m_APInt(StepC)) && !StepC->isNullValue(); 2222 case Instruction::Shl: 2223 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2224 case Instruction::AShr: 2225 case Instruction::LShr: 2226 return BO->isExact(); 2227 default: 2228 return false; 2229 } 2230 } 2231 2232 /// Return true if the given value is known to be non-zero when defined. For 2233 /// vectors, return true if every demanded element is known to be non-zero when 2234 /// defined. For pointers, if the context instruction and dominator tree are 2235 /// specified, perform context-sensitive analysis and return true if the 2236 /// pointer couldn't possibly be null at the specified instruction. 2237 /// Supports values with integer or pointer type and vectors of integers. 2238 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2239 const Query &Q) { 2240 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2241 // vector 2242 if (isa<ScalableVectorType>(V->getType())) 2243 return false; 2244 2245 if (auto *C = dyn_cast<Constant>(V)) { 2246 if (C->isNullValue()) 2247 return false; 2248 if (isa<ConstantInt>(C)) 2249 // Must be non-zero due to null test above. 2250 return true; 2251 2252 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2253 // See the comment for IntToPtr/PtrToInt instructions below. 2254 if (CE->getOpcode() == Instruction::IntToPtr || 2255 CE->getOpcode() == Instruction::PtrToInt) 2256 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2257 .getFixedSize() <= 2258 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2259 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2260 } 2261 2262 // For constant vectors, check that all elements are undefined or known 2263 // non-zero to determine that the whole vector is known non-zero. 2264 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2265 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2266 if (!DemandedElts[i]) 2267 continue; 2268 Constant *Elt = C->getAggregateElement(i); 2269 if (!Elt || Elt->isNullValue()) 2270 return false; 2271 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2272 return false; 2273 } 2274 return true; 2275 } 2276 2277 // A global variable in address space 0 is non null unless extern weak 2278 // or an absolute symbol reference. Other address spaces may have null as a 2279 // valid address for a global, so we can't assume anything. 2280 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2281 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2282 GV->getType()->getAddressSpace() == 0) 2283 return true; 2284 } else 2285 return false; 2286 } 2287 2288 if (auto *I = dyn_cast<Instruction>(V)) { 2289 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2290 // If the possible ranges don't contain zero, then the value is 2291 // definitely non-zero. 2292 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2293 const APInt ZeroValue(Ty->getBitWidth(), 0); 2294 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2295 return true; 2296 } 2297 } 2298 } 2299 2300 if (isKnownNonZeroFromAssume(V, Q)) 2301 return true; 2302 2303 // Some of the tests below are recursive, so bail out if we hit the limit. 2304 if (Depth++ >= MaxAnalysisRecursionDepth) 2305 return false; 2306 2307 // Check for pointer simplifications. 2308 2309 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2310 // Alloca never returns null, malloc might. 2311 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2312 return true; 2313 2314 // A byval, inalloca may not be null in a non-default addres space. A 2315 // nonnull argument is assumed never 0. 2316 if (const Argument *A = dyn_cast<Argument>(V)) { 2317 if (((A->hasPassPointeeByValueCopyAttr() && 2318 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2319 A->hasNonNullAttr())) 2320 return true; 2321 } 2322 2323 // A Load tagged with nonnull metadata is never null. 2324 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2325 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2326 return true; 2327 2328 if (const auto *Call = dyn_cast<CallBase>(V)) { 2329 if (Call->isReturnNonNull()) 2330 return true; 2331 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2332 return isKnownNonZero(RP, Depth, Q); 2333 } 2334 } 2335 2336 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2337 return true; 2338 2339 // Check for recursive pointer simplifications. 2340 if (V->getType()->isPointerTy()) { 2341 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2342 // do not alter the value, or at least not the nullness property of the 2343 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2344 // 2345 // Note that we have to take special care to avoid looking through 2346 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2347 // as casts that can alter the value, e.g., AddrSpaceCasts. 2348 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2349 return isGEPKnownNonNull(GEP, Depth, Q); 2350 2351 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2352 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2353 2354 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2355 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2356 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2357 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2358 } 2359 2360 // Similar to int2ptr above, we can look through ptr2int here if the cast 2361 // is a no-op or an extend and not a truncate. 2362 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2363 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2364 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2365 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2366 2367 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2368 2369 // X | Y != 0 if X != 0 or Y != 0. 2370 Value *X = nullptr, *Y = nullptr; 2371 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2372 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2373 isKnownNonZero(Y, DemandedElts, Depth, Q); 2374 2375 // ext X != 0 if X != 0. 2376 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2377 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2378 2379 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2380 // if the lowest bit is shifted off the end. 2381 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2382 // shl nuw can't remove any non-zero bits. 2383 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2384 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2385 return isKnownNonZero(X, Depth, Q); 2386 2387 KnownBits Known(BitWidth); 2388 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2389 if (Known.One[0]) 2390 return true; 2391 } 2392 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2393 // defined if the sign bit is shifted off the end. 2394 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2395 // shr exact can only shift out zero bits. 2396 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2397 if (BO->isExact()) 2398 return isKnownNonZero(X, Depth, Q); 2399 2400 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2401 if (Known.isNegative()) 2402 return true; 2403 2404 // If the shifter operand is a constant, and all of the bits shifted 2405 // out are known to be zero, and X is known non-zero then at least one 2406 // non-zero bit must remain. 2407 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2408 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2409 // Is there a known one in the portion not shifted out? 2410 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2411 return true; 2412 // Are all the bits to be shifted out known zero? 2413 if (Known.countMinTrailingZeros() >= ShiftVal) 2414 return isKnownNonZero(X, DemandedElts, Depth, Q); 2415 } 2416 } 2417 // div exact can only produce a zero if the dividend is zero. 2418 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2419 return isKnownNonZero(X, DemandedElts, Depth, Q); 2420 } 2421 // X + Y. 2422 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2423 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2424 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2425 2426 // If X and Y are both non-negative (as signed values) then their sum is not 2427 // zero unless both X and Y are zero. 2428 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2429 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2430 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2431 return true; 2432 2433 // If X and Y are both negative (as signed values) then their sum is not 2434 // zero unless both X and Y equal INT_MIN. 2435 if (XKnown.isNegative() && YKnown.isNegative()) { 2436 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2437 // The sign bit of X is set. If some other bit is set then X is not equal 2438 // to INT_MIN. 2439 if (XKnown.One.intersects(Mask)) 2440 return true; 2441 // The sign bit of Y is set. If some other bit is set then Y is not equal 2442 // to INT_MIN. 2443 if (YKnown.One.intersects(Mask)) 2444 return true; 2445 } 2446 2447 // The sum of a non-negative number and a power of two is not zero. 2448 if (XKnown.isNonNegative() && 2449 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2450 return true; 2451 if (YKnown.isNonNegative() && 2452 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2453 return true; 2454 } 2455 // X * Y. 2456 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2457 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2458 // If X and Y are non-zero then so is X * Y as long as the multiplication 2459 // does not overflow. 2460 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2461 isKnownNonZero(X, DemandedElts, Depth, Q) && 2462 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2463 return true; 2464 } 2465 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2466 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2467 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2468 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2469 return true; 2470 } 2471 // PHI 2472 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2473 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2474 return true; 2475 2476 // Check if all incoming values are non-zero using recursion. 2477 Query RecQ = Q; 2478 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2479 return llvm::all_of(PN->operands(), [&](const Use &U) { 2480 if (U.get() == PN) 2481 return true; 2482 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2483 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2484 }); 2485 } 2486 // ExtractElement 2487 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2488 const Value *Vec = EEI->getVectorOperand(); 2489 const Value *Idx = EEI->getIndexOperand(); 2490 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2491 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2492 unsigned NumElts = VecTy->getNumElements(); 2493 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2494 if (CIdx && CIdx->getValue().ult(NumElts)) 2495 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2496 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2497 } 2498 } 2499 // Freeze 2500 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2501 auto *Op = FI->getOperand(0); 2502 if (isKnownNonZero(Op, Depth, Q) && 2503 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2504 return true; 2505 } 2506 2507 KnownBits Known(BitWidth); 2508 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2509 return Known.One != 0; 2510 } 2511 2512 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2513 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2514 // vector 2515 if (isa<ScalableVectorType>(V->getType())) 2516 return false; 2517 2518 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2519 APInt DemandedElts = 2520 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2521 return isKnownNonZero(V, DemandedElts, Depth, Q); 2522 } 2523 2524 /// If the pair of operators are the same invertible function of a single 2525 /// operand return the index of that operand. Otherwise, return None. An 2526 /// invertible function is one that is 1-to-1 and maps every input value 2527 /// to exactly one output value. This is equivalent to saying that Op1 2528 /// and Op2 are equal exactly when the specified pair of operands are equal, 2529 /// (except that Op1 and Op2 may be poison more often.) 2530 static Optional<unsigned> getInvertibleOperand(const Operator *Op1, 2531 const Operator *Op2) { 2532 if (Op1->getOpcode() != Op2->getOpcode()) 2533 return None; 2534 2535 switch (Op1->getOpcode()) { 2536 default: 2537 break; 2538 case Instruction::Add: 2539 case Instruction::Sub: 2540 if (Op1->getOperand(0) == Op2->getOperand(0)) 2541 return 1; 2542 if (Op1->getOperand(1) == Op2->getOperand(1)) 2543 return 0; 2544 break; 2545 case Instruction::Mul: { 2546 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2547 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2548 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2549 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2550 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2551 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2552 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2553 break; 2554 2555 // Assume operand order has been canonicalized 2556 if (Op1->getOperand(1) == Op2->getOperand(1) && 2557 isa<ConstantInt>(Op1->getOperand(1)) && 2558 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2559 return 0; 2560 break; 2561 } 2562 case Instruction::Shl: { 2563 // Same as multiplies, with the difference that we don't need to check 2564 // for a non-zero multiply. Shifts always multiply by non-zero. 2565 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2566 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2567 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2568 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2569 break; 2570 2571 if (Op1->getOperand(1) == Op2->getOperand(1)) 2572 return 0; 2573 break; 2574 } 2575 case Instruction::AShr: 2576 case Instruction::LShr: { 2577 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2578 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2579 if (!PEO1->isExact() || !PEO2->isExact()) 2580 break; 2581 2582 if (Op1->getOperand(1) == Op2->getOperand(1)) 2583 return 0; 2584 break; 2585 } 2586 case Instruction::SExt: 2587 case Instruction::ZExt: 2588 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2589 return 0; 2590 break; 2591 case Instruction::PHI: { 2592 const PHINode *PN1 = cast<PHINode>(Op1); 2593 const PHINode *PN2 = cast<PHINode>(Op2); 2594 2595 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2596 // are a single invertible function of the start values? Note that repeated 2597 // application of an invertible function is also invertible 2598 BinaryOperator *BO1 = nullptr; 2599 Value *Start1 = nullptr, *Step1 = nullptr; 2600 BinaryOperator *BO2 = nullptr; 2601 Value *Start2 = nullptr, *Step2 = nullptr; 2602 if (PN1->getParent() != PN2->getParent() || 2603 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2604 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2605 break; 2606 2607 Optional<unsigned> Idx = getInvertibleOperand(cast<Operator>(BO1), 2608 cast<Operator>(BO2)); 2609 if (!Idx || *Idx != 0) 2610 break; 2611 assert(BO1->getOperand(*Idx) == PN1 && BO2->getOperand(*Idx) == PN2); 2612 2613 // Phi operands might not be in the same order. TODO: generalize 2614 // interface to return pair of operands. 2615 if (PN1->getOperand(0) == BO1 && PN2->getOperand(0) == BO2) 2616 return 1; 2617 if (PN1->getOperand(1) == BO1 && PN2->getOperand(1) == BO2) 2618 return 0; 2619 } 2620 } 2621 return None; 2622 } 2623 2624 /// Return true if V2 == V1 + X, where X is known non-zero. 2625 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2626 const Query &Q) { 2627 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2628 if (!BO || BO->getOpcode() != Instruction::Add) 2629 return false; 2630 Value *Op = nullptr; 2631 if (V2 == BO->getOperand(0)) 2632 Op = BO->getOperand(1); 2633 else if (V2 == BO->getOperand(1)) 2634 Op = BO->getOperand(0); 2635 else 2636 return false; 2637 return isKnownNonZero(Op, Depth + 1, Q); 2638 } 2639 2640 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2641 /// the multiplication is nuw or nsw. 2642 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2643 const Query &Q) { 2644 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2645 const APInt *C; 2646 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2647 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2648 !C->isNullValue() && !C->isOneValue() && 2649 isKnownNonZero(V1, Depth + 1, Q); 2650 } 2651 return false; 2652 } 2653 2654 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2655 /// the shift is nuw or nsw. 2656 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2657 const Query &Q) { 2658 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2659 const APInt *C; 2660 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2661 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2662 !C->isNullValue() && isKnownNonZero(V1, Depth + 1, Q); 2663 } 2664 return false; 2665 } 2666 2667 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2668 unsigned Depth, const Query &Q) { 2669 // Check two PHIs are in same block. 2670 if (PN1->getParent() != PN2->getParent()) 2671 return false; 2672 2673 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2674 bool UsedFullRecursion = false; 2675 for (const BasicBlock *IncomBB : PN1->blocks()) { 2676 if (!VisitedBBs.insert(IncomBB).second) 2677 continue; // Don't reprocess blocks that we have dealt with already. 2678 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2679 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2680 const APInt *C1, *C2; 2681 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2682 continue; 2683 2684 // Only one pair of phi operands is allowed for full recursion. 2685 if (UsedFullRecursion) 2686 return false; 2687 2688 Query RecQ = Q; 2689 RecQ.CxtI = IncomBB->getTerminator(); 2690 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2691 return false; 2692 UsedFullRecursion = true; 2693 } 2694 return true; 2695 } 2696 2697 /// Return true if it is known that V1 != V2. 2698 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2699 const Query &Q) { 2700 if (V1 == V2) 2701 return false; 2702 if (V1->getType() != V2->getType()) 2703 // We can't look through casts yet. 2704 return false; 2705 2706 if (Depth >= MaxAnalysisRecursionDepth) 2707 return false; 2708 2709 // See if we can recurse through (exactly one of) our operands. This 2710 // requires our operation be 1-to-1 and map every input value to exactly 2711 // one output value. Such an operation is invertible. 2712 auto *O1 = dyn_cast<Operator>(V1); 2713 auto *O2 = dyn_cast<Operator>(V2); 2714 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2715 if (Optional<unsigned> Opt = getInvertibleOperand(O1, O2)) { 2716 unsigned Idx = *Opt; 2717 return isKnownNonEqual(O1->getOperand(Idx), O2->getOperand(Idx), 2718 Depth + 1, Q); 2719 } 2720 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2721 const PHINode *PN2 = cast<PHINode>(V2); 2722 // FIXME: This is missing a generalization to handle the case where one is 2723 // a PHI and another one isn't. 2724 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2725 return true; 2726 }; 2727 } 2728 2729 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2730 return true; 2731 2732 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2733 return true; 2734 2735 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2736 return true; 2737 2738 if (V1->getType()->isIntOrIntVectorTy()) { 2739 // Are any known bits in V1 contradictory to known bits in V2? If V1 2740 // has a known zero where V2 has a known one, they must not be equal. 2741 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2742 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2743 2744 if (Known1.Zero.intersects(Known2.One) || 2745 Known2.Zero.intersects(Known1.One)) 2746 return true; 2747 } 2748 return false; 2749 } 2750 2751 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2752 /// simplify operations downstream. Mask is known to be zero for bits that V 2753 /// cannot have. 2754 /// 2755 /// This function is defined on values with integer type, values with pointer 2756 /// type, and vectors of integers. In the case 2757 /// where V is a vector, the mask, known zero, and known one values are the 2758 /// same width as the vector element, and the bit is set only if it is true 2759 /// for all of the elements in the vector. 2760 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2761 const Query &Q) { 2762 KnownBits Known(Mask.getBitWidth()); 2763 computeKnownBits(V, Known, Depth, Q); 2764 return Mask.isSubsetOf(Known.Zero); 2765 } 2766 2767 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2768 // Returns the input and lower/upper bounds. 2769 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2770 const APInt *&CLow, const APInt *&CHigh) { 2771 assert(isa<Operator>(Select) && 2772 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2773 "Input should be a Select!"); 2774 2775 const Value *LHS = nullptr, *RHS = nullptr; 2776 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2777 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2778 return false; 2779 2780 if (!match(RHS, m_APInt(CLow))) 2781 return false; 2782 2783 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2784 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2785 if (getInverseMinMaxFlavor(SPF) != SPF2) 2786 return false; 2787 2788 if (!match(RHS2, m_APInt(CHigh))) 2789 return false; 2790 2791 if (SPF == SPF_SMIN) 2792 std::swap(CLow, CHigh); 2793 2794 In = LHS2; 2795 return CLow->sle(*CHigh); 2796 } 2797 2798 /// For vector constants, loop over the elements and find the constant with the 2799 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2800 /// or if any element was not analyzed; otherwise, return the count for the 2801 /// element with the minimum number of sign bits. 2802 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2803 const APInt &DemandedElts, 2804 unsigned TyBits) { 2805 const auto *CV = dyn_cast<Constant>(V); 2806 if (!CV || !isa<FixedVectorType>(CV->getType())) 2807 return 0; 2808 2809 unsigned MinSignBits = TyBits; 2810 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2811 for (unsigned i = 0; i != NumElts; ++i) { 2812 if (!DemandedElts[i]) 2813 continue; 2814 // If we find a non-ConstantInt, bail out. 2815 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2816 if (!Elt) 2817 return 0; 2818 2819 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2820 } 2821 2822 return MinSignBits; 2823 } 2824 2825 static unsigned ComputeNumSignBitsImpl(const Value *V, 2826 const APInt &DemandedElts, 2827 unsigned Depth, const Query &Q); 2828 2829 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2830 unsigned Depth, const Query &Q) { 2831 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2832 assert(Result > 0 && "At least one sign bit needs to be present!"); 2833 return Result; 2834 } 2835 2836 /// Return the number of times the sign bit of the register is replicated into 2837 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2838 /// (itself), but other cases can give us information. For example, immediately 2839 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2840 /// other, so we return 3. For vectors, return the number of sign bits for the 2841 /// vector element with the minimum number of known sign bits of the demanded 2842 /// elements in the vector specified by DemandedElts. 2843 static unsigned ComputeNumSignBitsImpl(const Value *V, 2844 const APInt &DemandedElts, 2845 unsigned Depth, const Query &Q) { 2846 Type *Ty = V->getType(); 2847 2848 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2849 // vector 2850 if (isa<ScalableVectorType>(Ty)) 2851 return 1; 2852 2853 #ifndef NDEBUG 2854 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2855 2856 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2857 assert( 2858 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2859 "DemandedElt width should equal the fixed vector number of elements"); 2860 } else { 2861 assert(DemandedElts == APInt(1, 1) && 2862 "DemandedElt width should be 1 for scalars"); 2863 } 2864 #endif 2865 2866 // We return the minimum number of sign bits that are guaranteed to be present 2867 // in V, so for undef we have to conservatively return 1. We don't have the 2868 // same behavior for poison though -- that's a FIXME today. 2869 2870 Type *ScalarTy = Ty->getScalarType(); 2871 unsigned TyBits = ScalarTy->isPointerTy() ? 2872 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2873 Q.DL.getTypeSizeInBits(ScalarTy); 2874 2875 unsigned Tmp, Tmp2; 2876 unsigned FirstAnswer = 1; 2877 2878 // Note that ConstantInt is handled by the general computeKnownBits case 2879 // below. 2880 2881 if (Depth == MaxAnalysisRecursionDepth) 2882 return 1; 2883 2884 if (auto *U = dyn_cast<Operator>(V)) { 2885 switch (Operator::getOpcode(V)) { 2886 default: break; 2887 case Instruction::SExt: 2888 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2889 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2890 2891 case Instruction::SDiv: { 2892 const APInt *Denominator; 2893 // sdiv X, C -> adds log(C) sign bits. 2894 if (match(U->getOperand(1), m_APInt(Denominator))) { 2895 2896 // Ignore non-positive denominator. 2897 if (!Denominator->isStrictlyPositive()) 2898 break; 2899 2900 // Calculate the incoming numerator bits. 2901 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2902 2903 // Add floor(log(C)) bits to the numerator bits. 2904 return std::min(TyBits, NumBits + Denominator->logBase2()); 2905 } 2906 break; 2907 } 2908 2909 case Instruction::SRem: { 2910 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2911 2912 const APInt *Denominator; 2913 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2914 // positive constant. This let us put a lower bound on the number of sign 2915 // bits. 2916 if (match(U->getOperand(1), m_APInt(Denominator))) { 2917 2918 // Ignore non-positive denominator. 2919 if (Denominator->isStrictlyPositive()) { 2920 // Calculate the leading sign bit constraints by examining the 2921 // denominator. Given that the denominator is positive, there are two 2922 // cases: 2923 // 2924 // 1. The numerator is positive. The result range is [0,C) and 2925 // [0,C) u< (1 << ceilLogBase2(C)). 2926 // 2927 // 2. The numerator is negative. Then the result range is (-C,0] and 2928 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2929 // 2930 // Thus a lower bound on the number of sign bits is `TyBits - 2931 // ceilLogBase2(C)`. 2932 2933 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2934 Tmp = std::max(Tmp, ResBits); 2935 } 2936 } 2937 return Tmp; 2938 } 2939 2940 case Instruction::AShr: { 2941 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2942 // ashr X, C -> adds C sign bits. Vectors too. 2943 const APInt *ShAmt; 2944 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2945 if (ShAmt->uge(TyBits)) 2946 break; // Bad shift. 2947 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2948 Tmp += ShAmtLimited; 2949 if (Tmp > TyBits) Tmp = TyBits; 2950 } 2951 return Tmp; 2952 } 2953 case Instruction::Shl: { 2954 const APInt *ShAmt; 2955 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2956 // shl destroys sign bits. 2957 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2958 if (ShAmt->uge(TyBits) || // Bad shift. 2959 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2960 Tmp2 = ShAmt->getZExtValue(); 2961 return Tmp - Tmp2; 2962 } 2963 break; 2964 } 2965 case Instruction::And: 2966 case Instruction::Or: 2967 case Instruction::Xor: // NOT is handled here. 2968 // Logical binary ops preserve the number of sign bits at the worst. 2969 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2970 if (Tmp != 1) { 2971 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2972 FirstAnswer = std::min(Tmp, Tmp2); 2973 // We computed what we know about the sign bits as our first 2974 // answer. Now proceed to the generic code that uses 2975 // computeKnownBits, and pick whichever answer is better. 2976 } 2977 break; 2978 2979 case Instruction::Select: { 2980 // If we have a clamp pattern, we know that the number of sign bits will 2981 // be the minimum of the clamp min/max range. 2982 const Value *X; 2983 const APInt *CLow, *CHigh; 2984 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2985 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2986 2987 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2988 if (Tmp == 1) break; 2989 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2990 return std::min(Tmp, Tmp2); 2991 } 2992 2993 case Instruction::Add: 2994 // Add can have at most one carry bit. Thus we know that the output 2995 // is, at worst, one more bit than the inputs. 2996 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2997 if (Tmp == 1) break; 2998 2999 // Special case decrementing a value (ADD X, -1): 3000 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3001 if (CRHS->isAllOnesValue()) { 3002 KnownBits Known(TyBits); 3003 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3004 3005 // If the input is known to be 0 or 1, the output is 0/-1, which is 3006 // all sign bits set. 3007 if ((Known.Zero | 1).isAllOnesValue()) 3008 return TyBits; 3009 3010 // If we are subtracting one from a positive number, there is no carry 3011 // out of the result. 3012 if (Known.isNonNegative()) 3013 return Tmp; 3014 } 3015 3016 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3017 if (Tmp2 == 1) break; 3018 return std::min(Tmp, Tmp2) - 1; 3019 3020 case Instruction::Sub: 3021 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3022 if (Tmp2 == 1) break; 3023 3024 // Handle NEG. 3025 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3026 if (CLHS->isNullValue()) { 3027 KnownBits Known(TyBits); 3028 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3029 // If the input is known to be 0 or 1, the output is 0/-1, which is 3030 // all sign bits set. 3031 if ((Known.Zero | 1).isAllOnesValue()) 3032 return TyBits; 3033 3034 // If the input is known to be positive (the sign bit is known clear), 3035 // the output of the NEG has the same number of sign bits as the 3036 // input. 3037 if (Known.isNonNegative()) 3038 return Tmp2; 3039 3040 // Otherwise, we treat this like a SUB. 3041 } 3042 3043 // Sub can have at most one carry bit. Thus we know that the output 3044 // is, at worst, one more bit than the inputs. 3045 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3046 if (Tmp == 1) break; 3047 return std::min(Tmp, Tmp2) - 1; 3048 3049 case Instruction::Mul: { 3050 // The output of the Mul can be at most twice the valid bits in the 3051 // inputs. 3052 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3053 if (SignBitsOp0 == 1) break; 3054 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3055 if (SignBitsOp1 == 1) break; 3056 unsigned OutValidBits = 3057 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3058 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3059 } 3060 3061 case Instruction::PHI: { 3062 const PHINode *PN = cast<PHINode>(U); 3063 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3064 // Don't analyze large in-degree PHIs. 3065 if (NumIncomingValues > 4) break; 3066 // Unreachable blocks may have zero-operand PHI nodes. 3067 if (NumIncomingValues == 0) break; 3068 3069 // Take the minimum of all incoming values. This can't infinitely loop 3070 // because of our depth threshold. 3071 Query RecQ = Q; 3072 Tmp = TyBits; 3073 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3074 if (Tmp == 1) return Tmp; 3075 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3076 Tmp = std::min( 3077 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3078 } 3079 return Tmp; 3080 } 3081 3082 case Instruction::Trunc: 3083 // FIXME: it's tricky to do anything useful for this, but it is an 3084 // important case for targets like X86. 3085 break; 3086 3087 case Instruction::ExtractElement: 3088 // Look through extract element. At the moment we keep this simple and 3089 // skip tracking the specific element. But at least we might find 3090 // information valid for all elements of the vector (for example if vector 3091 // is sign extended, shifted, etc). 3092 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3093 3094 case Instruction::ShuffleVector: { 3095 // Collect the minimum number of sign bits that are shared by every vector 3096 // element referenced by the shuffle. 3097 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3098 if (!Shuf) { 3099 // FIXME: Add support for shufflevector constant expressions. 3100 return 1; 3101 } 3102 APInt DemandedLHS, DemandedRHS; 3103 // For undef elements, we don't know anything about the common state of 3104 // the shuffle result. 3105 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3106 return 1; 3107 Tmp = std::numeric_limits<unsigned>::max(); 3108 if (!!DemandedLHS) { 3109 const Value *LHS = Shuf->getOperand(0); 3110 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3111 } 3112 // If we don't know anything, early out and try computeKnownBits 3113 // fall-back. 3114 if (Tmp == 1) 3115 break; 3116 if (!!DemandedRHS) { 3117 const Value *RHS = Shuf->getOperand(1); 3118 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3119 Tmp = std::min(Tmp, Tmp2); 3120 } 3121 // If we don't know anything, early out and try computeKnownBits 3122 // fall-back. 3123 if (Tmp == 1) 3124 break; 3125 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3126 return Tmp; 3127 } 3128 case Instruction::Call: { 3129 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3130 switch (II->getIntrinsicID()) { 3131 default: break; 3132 case Intrinsic::abs: 3133 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3134 if (Tmp == 1) break; 3135 3136 // Absolute value reduces number of sign bits by at most 1. 3137 return Tmp - 1; 3138 } 3139 } 3140 } 3141 } 3142 } 3143 3144 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3145 // use this information. 3146 3147 // If we can examine all elements of a vector constant successfully, we're 3148 // done (we can't do any better than that). If not, keep trying. 3149 if (unsigned VecSignBits = 3150 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3151 return VecSignBits; 3152 3153 KnownBits Known(TyBits); 3154 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3155 3156 // If we know that the sign bit is either zero or one, determine the number of 3157 // identical bits in the top of the input value. 3158 return std::max(FirstAnswer, Known.countMinSignBits()); 3159 } 3160 3161 /// This function computes the integer multiple of Base that equals V. 3162 /// If successful, it returns true and returns the multiple in 3163 /// Multiple. If unsuccessful, it returns false. It looks 3164 /// through SExt instructions only if LookThroughSExt is true. 3165 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3166 bool LookThroughSExt, unsigned Depth) { 3167 assert(V && "No Value?"); 3168 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3169 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3170 3171 Type *T = V->getType(); 3172 3173 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3174 3175 if (Base == 0) 3176 return false; 3177 3178 if (Base == 1) { 3179 Multiple = V; 3180 return true; 3181 } 3182 3183 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3184 Constant *BaseVal = ConstantInt::get(T, Base); 3185 if (CO && CO == BaseVal) { 3186 // Multiple is 1. 3187 Multiple = ConstantInt::get(T, 1); 3188 return true; 3189 } 3190 3191 if (CI && CI->getZExtValue() % Base == 0) { 3192 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3193 return true; 3194 } 3195 3196 if (Depth == MaxAnalysisRecursionDepth) return false; 3197 3198 Operator *I = dyn_cast<Operator>(V); 3199 if (!I) return false; 3200 3201 switch (I->getOpcode()) { 3202 default: break; 3203 case Instruction::SExt: 3204 if (!LookThroughSExt) return false; 3205 // otherwise fall through to ZExt 3206 LLVM_FALLTHROUGH; 3207 case Instruction::ZExt: 3208 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3209 LookThroughSExt, Depth+1); 3210 case Instruction::Shl: 3211 case Instruction::Mul: { 3212 Value *Op0 = I->getOperand(0); 3213 Value *Op1 = I->getOperand(1); 3214 3215 if (I->getOpcode() == Instruction::Shl) { 3216 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3217 if (!Op1CI) return false; 3218 // Turn Op0 << Op1 into Op0 * 2^Op1 3219 APInt Op1Int = Op1CI->getValue(); 3220 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3221 APInt API(Op1Int.getBitWidth(), 0); 3222 API.setBit(BitToSet); 3223 Op1 = ConstantInt::get(V->getContext(), API); 3224 } 3225 3226 Value *Mul0 = nullptr; 3227 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3228 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3229 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3230 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3231 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3232 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3233 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3234 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3235 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3236 3237 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3238 Multiple = ConstantExpr::getMul(MulC, Op1C); 3239 return true; 3240 } 3241 3242 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3243 if (Mul0CI->getValue() == 1) { 3244 // V == Base * Op1, so return Op1 3245 Multiple = Op1; 3246 return true; 3247 } 3248 } 3249 3250 Value *Mul1 = nullptr; 3251 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3252 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3253 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3254 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3255 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3256 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3257 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3258 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3259 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3260 3261 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3262 Multiple = ConstantExpr::getMul(MulC, Op0C); 3263 return true; 3264 } 3265 3266 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3267 if (Mul1CI->getValue() == 1) { 3268 // V == Base * Op0, so return Op0 3269 Multiple = Op0; 3270 return true; 3271 } 3272 } 3273 } 3274 } 3275 3276 // We could not determine if V is a multiple of Base. 3277 return false; 3278 } 3279 3280 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3281 const TargetLibraryInfo *TLI) { 3282 const Function *F = CB.getCalledFunction(); 3283 if (!F) 3284 return Intrinsic::not_intrinsic; 3285 3286 if (F->isIntrinsic()) 3287 return F->getIntrinsicID(); 3288 3289 // We are going to infer semantics of a library function based on mapping it 3290 // to an LLVM intrinsic. Check that the library function is available from 3291 // this callbase and in this environment. 3292 LibFunc Func; 3293 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3294 !CB.onlyReadsMemory()) 3295 return Intrinsic::not_intrinsic; 3296 3297 switch (Func) { 3298 default: 3299 break; 3300 case LibFunc_sin: 3301 case LibFunc_sinf: 3302 case LibFunc_sinl: 3303 return Intrinsic::sin; 3304 case LibFunc_cos: 3305 case LibFunc_cosf: 3306 case LibFunc_cosl: 3307 return Intrinsic::cos; 3308 case LibFunc_exp: 3309 case LibFunc_expf: 3310 case LibFunc_expl: 3311 return Intrinsic::exp; 3312 case LibFunc_exp2: 3313 case LibFunc_exp2f: 3314 case LibFunc_exp2l: 3315 return Intrinsic::exp2; 3316 case LibFunc_log: 3317 case LibFunc_logf: 3318 case LibFunc_logl: 3319 return Intrinsic::log; 3320 case LibFunc_log10: 3321 case LibFunc_log10f: 3322 case LibFunc_log10l: 3323 return Intrinsic::log10; 3324 case LibFunc_log2: 3325 case LibFunc_log2f: 3326 case LibFunc_log2l: 3327 return Intrinsic::log2; 3328 case LibFunc_fabs: 3329 case LibFunc_fabsf: 3330 case LibFunc_fabsl: 3331 return Intrinsic::fabs; 3332 case LibFunc_fmin: 3333 case LibFunc_fminf: 3334 case LibFunc_fminl: 3335 return Intrinsic::minnum; 3336 case LibFunc_fmax: 3337 case LibFunc_fmaxf: 3338 case LibFunc_fmaxl: 3339 return Intrinsic::maxnum; 3340 case LibFunc_copysign: 3341 case LibFunc_copysignf: 3342 case LibFunc_copysignl: 3343 return Intrinsic::copysign; 3344 case LibFunc_floor: 3345 case LibFunc_floorf: 3346 case LibFunc_floorl: 3347 return Intrinsic::floor; 3348 case LibFunc_ceil: 3349 case LibFunc_ceilf: 3350 case LibFunc_ceill: 3351 return Intrinsic::ceil; 3352 case LibFunc_trunc: 3353 case LibFunc_truncf: 3354 case LibFunc_truncl: 3355 return Intrinsic::trunc; 3356 case LibFunc_rint: 3357 case LibFunc_rintf: 3358 case LibFunc_rintl: 3359 return Intrinsic::rint; 3360 case LibFunc_nearbyint: 3361 case LibFunc_nearbyintf: 3362 case LibFunc_nearbyintl: 3363 return Intrinsic::nearbyint; 3364 case LibFunc_round: 3365 case LibFunc_roundf: 3366 case LibFunc_roundl: 3367 return Intrinsic::round; 3368 case LibFunc_roundeven: 3369 case LibFunc_roundevenf: 3370 case LibFunc_roundevenl: 3371 return Intrinsic::roundeven; 3372 case LibFunc_pow: 3373 case LibFunc_powf: 3374 case LibFunc_powl: 3375 return Intrinsic::pow; 3376 case LibFunc_sqrt: 3377 case LibFunc_sqrtf: 3378 case LibFunc_sqrtl: 3379 return Intrinsic::sqrt; 3380 } 3381 3382 return Intrinsic::not_intrinsic; 3383 } 3384 3385 /// Return true if we can prove that the specified FP value is never equal to 3386 /// -0.0. 3387 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3388 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3389 /// the same as +0.0 in floating-point ops. 3390 /// 3391 /// NOTE: this function will need to be revisited when we support non-default 3392 /// rounding modes! 3393 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3394 unsigned Depth) { 3395 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3396 return !CFP->getValueAPF().isNegZero(); 3397 3398 if (Depth == MaxAnalysisRecursionDepth) 3399 return false; 3400 3401 auto *Op = dyn_cast<Operator>(V); 3402 if (!Op) 3403 return false; 3404 3405 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3406 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3407 return true; 3408 3409 // sitofp and uitofp turn into +0.0 for zero. 3410 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3411 return true; 3412 3413 if (auto *Call = dyn_cast<CallInst>(Op)) { 3414 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3415 switch (IID) { 3416 default: 3417 break; 3418 // sqrt(-0.0) = -0.0, no other negative results are possible. 3419 case Intrinsic::sqrt: 3420 case Intrinsic::canonicalize: 3421 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3422 // fabs(x) != -0.0 3423 case Intrinsic::fabs: 3424 return true; 3425 } 3426 } 3427 3428 return false; 3429 } 3430 3431 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3432 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3433 /// bit despite comparing equal. 3434 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3435 const TargetLibraryInfo *TLI, 3436 bool SignBitOnly, 3437 unsigned Depth) { 3438 // TODO: This function does not do the right thing when SignBitOnly is true 3439 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3440 // which flips the sign bits of NaNs. See 3441 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3442 3443 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3444 return !CFP->getValueAPF().isNegative() || 3445 (!SignBitOnly && CFP->getValueAPF().isZero()); 3446 } 3447 3448 // Handle vector of constants. 3449 if (auto *CV = dyn_cast<Constant>(V)) { 3450 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3451 unsigned NumElts = CVFVTy->getNumElements(); 3452 for (unsigned i = 0; i != NumElts; ++i) { 3453 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3454 if (!CFP) 3455 return false; 3456 if (CFP->getValueAPF().isNegative() && 3457 (SignBitOnly || !CFP->getValueAPF().isZero())) 3458 return false; 3459 } 3460 3461 // All non-negative ConstantFPs. 3462 return true; 3463 } 3464 } 3465 3466 if (Depth == MaxAnalysisRecursionDepth) 3467 return false; 3468 3469 const Operator *I = dyn_cast<Operator>(V); 3470 if (!I) 3471 return false; 3472 3473 switch (I->getOpcode()) { 3474 default: 3475 break; 3476 // Unsigned integers are always nonnegative. 3477 case Instruction::UIToFP: 3478 return true; 3479 case Instruction::FMul: 3480 case Instruction::FDiv: 3481 // X * X is always non-negative or a NaN. 3482 // X / X is always exactly 1.0 or a NaN. 3483 if (I->getOperand(0) == I->getOperand(1) && 3484 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3485 return true; 3486 3487 LLVM_FALLTHROUGH; 3488 case Instruction::FAdd: 3489 case Instruction::FRem: 3490 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3491 Depth + 1) && 3492 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3493 Depth + 1); 3494 case Instruction::Select: 3495 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3496 Depth + 1) && 3497 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3498 Depth + 1); 3499 case Instruction::FPExt: 3500 case Instruction::FPTrunc: 3501 // Widening/narrowing never change sign. 3502 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3503 Depth + 1); 3504 case Instruction::ExtractElement: 3505 // Look through extract element. At the moment we keep this simple and skip 3506 // tracking the specific element. But at least we might find information 3507 // valid for all elements of the vector. 3508 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3509 Depth + 1); 3510 case Instruction::Call: 3511 const auto *CI = cast<CallInst>(I); 3512 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3513 switch (IID) { 3514 default: 3515 break; 3516 case Intrinsic::maxnum: { 3517 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3518 auto isPositiveNum = [&](Value *V) { 3519 if (SignBitOnly) { 3520 // With SignBitOnly, this is tricky because the result of 3521 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3522 // a constant strictly greater than 0.0. 3523 const APFloat *C; 3524 return match(V, m_APFloat(C)) && 3525 *C > APFloat::getZero(C->getSemantics()); 3526 } 3527 3528 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3529 // maxnum can't be ordered-less-than-zero. 3530 return isKnownNeverNaN(V, TLI) && 3531 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3532 }; 3533 3534 // TODO: This could be improved. We could also check that neither operand 3535 // has its sign bit set (and at least 1 is not-NAN?). 3536 return isPositiveNum(V0) || isPositiveNum(V1); 3537 } 3538 3539 case Intrinsic::maximum: 3540 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3541 Depth + 1) || 3542 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3543 Depth + 1); 3544 case Intrinsic::minnum: 3545 case Intrinsic::minimum: 3546 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3547 Depth + 1) && 3548 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3549 Depth + 1); 3550 case Intrinsic::exp: 3551 case Intrinsic::exp2: 3552 case Intrinsic::fabs: 3553 return true; 3554 3555 case Intrinsic::sqrt: 3556 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3557 if (!SignBitOnly) 3558 return true; 3559 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3560 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3561 3562 case Intrinsic::powi: 3563 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3564 // powi(x,n) is non-negative if n is even. 3565 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3566 return true; 3567 } 3568 // TODO: This is not correct. Given that exp is an integer, here are the 3569 // ways that pow can return a negative value: 3570 // 3571 // pow(x, exp) --> negative if exp is odd and x is negative. 3572 // pow(-0, exp) --> -inf if exp is negative odd. 3573 // pow(-0, exp) --> -0 if exp is positive odd. 3574 // pow(-inf, exp) --> -0 if exp is negative odd. 3575 // pow(-inf, exp) --> -inf if exp is positive odd. 3576 // 3577 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3578 // but we must return false if x == -0. Unfortunately we do not currently 3579 // have a way of expressing this constraint. See details in 3580 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3581 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3582 Depth + 1); 3583 3584 case Intrinsic::fma: 3585 case Intrinsic::fmuladd: 3586 // x*x+y is non-negative if y is non-negative. 3587 return I->getOperand(0) == I->getOperand(1) && 3588 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3589 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3590 Depth + 1); 3591 } 3592 break; 3593 } 3594 return false; 3595 } 3596 3597 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3598 const TargetLibraryInfo *TLI) { 3599 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3600 } 3601 3602 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3603 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3604 } 3605 3606 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3607 unsigned Depth) { 3608 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3609 3610 // If we're told that infinities won't happen, assume they won't. 3611 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3612 if (FPMathOp->hasNoInfs()) 3613 return true; 3614 3615 // Handle scalar constants. 3616 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3617 return !CFP->isInfinity(); 3618 3619 if (Depth == MaxAnalysisRecursionDepth) 3620 return false; 3621 3622 if (auto *Inst = dyn_cast<Instruction>(V)) { 3623 switch (Inst->getOpcode()) { 3624 case Instruction::Select: { 3625 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3626 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3627 } 3628 case Instruction::SIToFP: 3629 case Instruction::UIToFP: { 3630 // Get width of largest magnitude integer (remove a bit if signed). 3631 // This still works for a signed minimum value because the largest FP 3632 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3633 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3634 if (Inst->getOpcode() == Instruction::SIToFP) 3635 --IntSize; 3636 3637 // If the exponent of the largest finite FP value can hold the largest 3638 // integer, the result of the cast must be finite. 3639 Type *FPTy = Inst->getType()->getScalarType(); 3640 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3641 } 3642 default: 3643 break; 3644 } 3645 } 3646 3647 // try to handle fixed width vector constants 3648 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3649 if (VFVTy && isa<Constant>(V)) { 3650 // For vectors, verify that each element is not infinity. 3651 unsigned NumElts = VFVTy->getNumElements(); 3652 for (unsigned i = 0; i != NumElts; ++i) { 3653 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3654 if (!Elt) 3655 return false; 3656 if (isa<UndefValue>(Elt)) 3657 continue; 3658 auto *CElt = dyn_cast<ConstantFP>(Elt); 3659 if (!CElt || CElt->isInfinity()) 3660 return false; 3661 } 3662 // All elements were confirmed non-infinity or undefined. 3663 return true; 3664 } 3665 3666 // was not able to prove that V never contains infinity 3667 return false; 3668 } 3669 3670 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3671 unsigned Depth) { 3672 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3673 3674 // If we're told that NaNs won't happen, assume they won't. 3675 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3676 if (FPMathOp->hasNoNaNs()) 3677 return true; 3678 3679 // Handle scalar constants. 3680 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3681 return !CFP->isNaN(); 3682 3683 if (Depth == MaxAnalysisRecursionDepth) 3684 return false; 3685 3686 if (auto *Inst = dyn_cast<Instruction>(V)) { 3687 switch (Inst->getOpcode()) { 3688 case Instruction::FAdd: 3689 case Instruction::FSub: 3690 // Adding positive and negative infinity produces NaN. 3691 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3692 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3693 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3694 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3695 3696 case Instruction::FMul: 3697 // Zero multiplied with infinity produces NaN. 3698 // FIXME: If neither side can be zero fmul never produces NaN. 3699 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3700 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3701 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3702 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3703 3704 case Instruction::FDiv: 3705 case Instruction::FRem: 3706 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3707 return false; 3708 3709 case Instruction::Select: { 3710 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3711 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3712 } 3713 case Instruction::SIToFP: 3714 case Instruction::UIToFP: 3715 return true; 3716 case Instruction::FPTrunc: 3717 case Instruction::FPExt: 3718 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3719 default: 3720 break; 3721 } 3722 } 3723 3724 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3725 switch (II->getIntrinsicID()) { 3726 case Intrinsic::canonicalize: 3727 case Intrinsic::fabs: 3728 case Intrinsic::copysign: 3729 case Intrinsic::exp: 3730 case Intrinsic::exp2: 3731 case Intrinsic::floor: 3732 case Intrinsic::ceil: 3733 case Intrinsic::trunc: 3734 case Intrinsic::rint: 3735 case Intrinsic::nearbyint: 3736 case Intrinsic::round: 3737 case Intrinsic::roundeven: 3738 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3739 case Intrinsic::sqrt: 3740 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3741 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3742 case Intrinsic::minnum: 3743 case Intrinsic::maxnum: 3744 // If either operand is not NaN, the result is not NaN. 3745 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3746 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3747 default: 3748 return false; 3749 } 3750 } 3751 3752 // Try to handle fixed width vector constants 3753 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3754 if (VFVTy && isa<Constant>(V)) { 3755 // For vectors, verify that each element is not NaN. 3756 unsigned NumElts = VFVTy->getNumElements(); 3757 for (unsigned i = 0; i != NumElts; ++i) { 3758 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3759 if (!Elt) 3760 return false; 3761 if (isa<UndefValue>(Elt)) 3762 continue; 3763 auto *CElt = dyn_cast<ConstantFP>(Elt); 3764 if (!CElt || CElt->isNaN()) 3765 return false; 3766 } 3767 // All elements were confirmed not-NaN or undefined. 3768 return true; 3769 } 3770 3771 // Was not able to prove that V never contains NaN 3772 return false; 3773 } 3774 3775 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3776 3777 // All byte-wide stores are splatable, even of arbitrary variables. 3778 if (V->getType()->isIntegerTy(8)) 3779 return V; 3780 3781 LLVMContext &Ctx = V->getContext(); 3782 3783 // Undef don't care. 3784 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3785 if (isa<UndefValue>(V)) 3786 return UndefInt8; 3787 3788 // Return Undef for zero-sized type. 3789 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3790 return UndefInt8; 3791 3792 Constant *C = dyn_cast<Constant>(V); 3793 if (!C) { 3794 // Conceptually, we could handle things like: 3795 // %a = zext i8 %X to i16 3796 // %b = shl i16 %a, 8 3797 // %c = or i16 %a, %b 3798 // but until there is an example that actually needs this, it doesn't seem 3799 // worth worrying about. 3800 return nullptr; 3801 } 3802 3803 // Handle 'null' ConstantArrayZero etc. 3804 if (C->isNullValue()) 3805 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3806 3807 // Constant floating-point values can be handled as integer values if the 3808 // corresponding integer value is "byteable". An important case is 0.0. 3809 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3810 Type *Ty = nullptr; 3811 if (CFP->getType()->isHalfTy()) 3812 Ty = Type::getInt16Ty(Ctx); 3813 else if (CFP->getType()->isFloatTy()) 3814 Ty = Type::getInt32Ty(Ctx); 3815 else if (CFP->getType()->isDoubleTy()) 3816 Ty = Type::getInt64Ty(Ctx); 3817 // Don't handle long double formats, which have strange constraints. 3818 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3819 : nullptr; 3820 } 3821 3822 // We can handle constant integers that are multiple of 8 bits. 3823 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3824 if (CI->getBitWidth() % 8 == 0) { 3825 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3826 if (!CI->getValue().isSplat(8)) 3827 return nullptr; 3828 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3829 } 3830 } 3831 3832 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3833 if (CE->getOpcode() == Instruction::IntToPtr) { 3834 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3835 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3836 return isBytewiseValue( 3837 ConstantExpr::getIntegerCast(CE->getOperand(0), 3838 Type::getIntNTy(Ctx, BitWidth), false), 3839 DL); 3840 } 3841 } 3842 } 3843 3844 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3845 if (LHS == RHS) 3846 return LHS; 3847 if (!LHS || !RHS) 3848 return nullptr; 3849 if (LHS == UndefInt8) 3850 return RHS; 3851 if (RHS == UndefInt8) 3852 return LHS; 3853 return nullptr; 3854 }; 3855 3856 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3857 Value *Val = UndefInt8; 3858 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3859 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3860 return nullptr; 3861 return Val; 3862 } 3863 3864 if (isa<ConstantAggregate>(C)) { 3865 Value *Val = UndefInt8; 3866 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3867 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3868 return nullptr; 3869 return Val; 3870 } 3871 3872 // Don't try to handle the handful of other constants. 3873 return nullptr; 3874 } 3875 3876 // This is the recursive version of BuildSubAggregate. It takes a few different 3877 // arguments. Idxs is the index within the nested struct From that we are 3878 // looking at now (which is of type IndexedType). IdxSkip is the number of 3879 // indices from Idxs that should be left out when inserting into the resulting 3880 // struct. To is the result struct built so far, new insertvalue instructions 3881 // build on that. 3882 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3883 SmallVectorImpl<unsigned> &Idxs, 3884 unsigned IdxSkip, 3885 Instruction *InsertBefore) { 3886 StructType *STy = dyn_cast<StructType>(IndexedType); 3887 if (STy) { 3888 // Save the original To argument so we can modify it 3889 Value *OrigTo = To; 3890 // General case, the type indexed by Idxs is a struct 3891 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3892 // Process each struct element recursively 3893 Idxs.push_back(i); 3894 Value *PrevTo = To; 3895 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3896 InsertBefore); 3897 Idxs.pop_back(); 3898 if (!To) { 3899 // Couldn't find any inserted value for this index? Cleanup 3900 while (PrevTo != OrigTo) { 3901 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3902 PrevTo = Del->getAggregateOperand(); 3903 Del->eraseFromParent(); 3904 } 3905 // Stop processing elements 3906 break; 3907 } 3908 } 3909 // If we successfully found a value for each of our subaggregates 3910 if (To) 3911 return To; 3912 } 3913 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3914 // the struct's elements had a value that was inserted directly. In the latter 3915 // case, perhaps we can't determine each of the subelements individually, but 3916 // we might be able to find the complete struct somewhere. 3917 3918 // Find the value that is at that particular spot 3919 Value *V = FindInsertedValue(From, Idxs); 3920 3921 if (!V) 3922 return nullptr; 3923 3924 // Insert the value in the new (sub) aggregate 3925 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3926 "tmp", InsertBefore); 3927 } 3928 3929 // This helper takes a nested struct and extracts a part of it (which is again a 3930 // struct) into a new value. For example, given the struct: 3931 // { a, { b, { c, d }, e } } 3932 // and the indices "1, 1" this returns 3933 // { c, d }. 3934 // 3935 // It does this by inserting an insertvalue for each element in the resulting 3936 // struct, as opposed to just inserting a single struct. This will only work if 3937 // each of the elements of the substruct are known (ie, inserted into From by an 3938 // insertvalue instruction somewhere). 3939 // 3940 // All inserted insertvalue instructions are inserted before InsertBefore 3941 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3942 Instruction *InsertBefore) { 3943 assert(InsertBefore && "Must have someplace to insert!"); 3944 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3945 idx_range); 3946 Value *To = UndefValue::get(IndexedType); 3947 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3948 unsigned IdxSkip = Idxs.size(); 3949 3950 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3951 } 3952 3953 /// Given an aggregate and a sequence of indices, see if the scalar value 3954 /// indexed is already around as a register, for example if it was inserted 3955 /// directly into the aggregate. 3956 /// 3957 /// If InsertBefore is not null, this function will duplicate (modified) 3958 /// insertvalues when a part of a nested struct is extracted. 3959 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3960 Instruction *InsertBefore) { 3961 // Nothing to index? Just return V then (this is useful at the end of our 3962 // recursion). 3963 if (idx_range.empty()) 3964 return V; 3965 // We have indices, so V should have an indexable type. 3966 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3967 "Not looking at a struct or array?"); 3968 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3969 "Invalid indices for type?"); 3970 3971 if (Constant *C = dyn_cast<Constant>(V)) { 3972 C = C->getAggregateElement(idx_range[0]); 3973 if (!C) return nullptr; 3974 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3975 } 3976 3977 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3978 // Loop the indices for the insertvalue instruction in parallel with the 3979 // requested indices 3980 const unsigned *req_idx = idx_range.begin(); 3981 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3982 i != e; ++i, ++req_idx) { 3983 if (req_idx == idx_range.end()) { 3984 // We can't handle this without inserting insertvalues 3985 if (!InsertBefore) 3986 return nullptr; 3987 3988 // The requested index identifies a part of a nested aggregate. Handle 3989 // this specially. For example, 3990 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3991 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3992 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3993 // This can be changed into 3994 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3995 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3996 // which allows the unused 0,0 element from the nested struct to be 3997 // removed. 3998 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3999 InsertBefore); 4000 } 4001 4002 // This insert value inserts something else than what we are looking for. 4003 // See if the (aggregate) value inserted into has the value we are 4004 // looking for, then. 4005 if (*req_idx != *i) 4006 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4007 InsertBefore); 4008 } 4009 // If we end up here, the indices of the insertvalue match with those 4010 // requested (though possibly only partially). Now we recursively look at 4011 // the inserted value, passing any remaining indices. 4012 return FindInsertedValue(I->getInsertedValueOperand(), 4013 makeArrayRef(req_idx, idx_range.end()), 4014 InsertBefore); 4015 } 4016 4017 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4018 // If we're extracting a value from an aggregate that was extracted from 4019 // something else, we can extract from that something else directly instead. 4020 // However, we will need to chain I's indices with the requested indices. 4021 4022 // Calculate the number of indices required 4023 unsigned size = I->getNumIndices() + idx_range.size(); 4024 // Allocate some space to put the new indices in 4025 SmallVector<unsigned, 5> Idxs; 4026 Idxs.reserve(size); 4027 // Add indices from the extract value instruction 4028 Idxs.append(I->idx_begin(), I->idx_end()); 4029 4030 // Add requested indices 4031 Idxs.append(idx_range.begin(), idx_range.end()); 4032 4033 assert(Idxs.size() == size 4034 && "Number of indices added not correct?"); 4035 4036 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4037 } 4038 // Otherwise, we don't know (such as, extracting from a function return value 4039 // or load instruction) 4040 return nullptr; 4041 } 4042 4043 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4044 unsigned CharSize) { 4045 // Make sure the GEP has exactly three arguments. 4046 if (GEP->getNumOperands() != 3) 4047 return false; 4048 4049 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4050 // CharSize. 4051 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4052 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4053 return false; 4054 4055 // Check to make sure that the first operand of the GEP is an integer and 4056 // has value 0 so that we are sure we're indexing into the initializer. 4057 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4058 if (!FirstIdx || !FirstIdx->isZero()) 4059 return false; 4060 4061 return true; 4062 } 4063 4064 bool llvm::getConstantDataArrayInfo(const Value *V, 4065 ConstantDataArraySlice &Slice, 4066 unsigned ElementSize, uint64_t Offset) { 4067 assert(V); 4068 4069 // Look through bitcast instructions and geps. 4070 V = V->stripPointerCasts(); 4071 4072 // If the value is a GEP instruction or constant expression, treat it as an 4073 // offset. 4074 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4075 // The GEP operator should be based on a pointer to string constant, and is 4076 // indexing into the string constant. 4077 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4078 return false; 4079 4080 // If the second index isn't a ConstantInt, then this is a variable index 4081 // into the array. If this occurs, we can't say anything meaningful about 4082 // the string. 4083 uint64_t StartIdx = 0; 4084 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4085 StartIdx = CI->getZExtValue(); 4086 else 4087 return false; 4088 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4089 StartIdx + Offset); 4090 } 4091 4092 // The GEP instruction, constant or instruction, must reference a global 4093 // variable that is a constant and is initialized. The referenced constant 4094 // initializer is the array that we'll use for optimization. 4095 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4096 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4097 return false; 4098 4099 const ConstantDataArray *Array; 4100 ArrayType *ArrayTy; 4101 if (GV->getInitializer()->isNullValue()) { 4102 Type *GVTy = GV->getValueType(); 4103 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4104 // A zeroinitializer for the array; there is no ConstantDataArray. 4105 Array = nullptr; 4106 } else { 4107 const DataLayout &DL = GV->getParent()->getDataLayout(); 4108 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4109 uint64_t Length = SizeInBytes / (ElementSize / 8); 4110 if (Length <= Offset) 4111 return false; 4112 4113 Slice.Array = nullptr; 4114 Slice.Offset = 0; 4115 Slice.Length = Length - Offset; 4116 return true; 4117 } 4118 } else { 4119 // This must be a ConstantDataArray. 4120 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4121 if (!Array) 4122 return false; 4123 ArrayTy = Array->getType(); 4124 } 4125 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4126 return false; 4127 4128 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4129 if (Offset > NumElts) 4130 return false; 4131 4132 Slice.Array = Array; 4133 Slice.Offset = Offset; 4134 Slice.Length = NumElts - Offset; 4135 return true; 4136 } 4137 4138 /// This function computes the length of a null-terminated C string pointed to 4139 /// by V. If successful, it returns true and returns the string in Str. 4140 /// If unsuccessful, it returns false. 4141 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4142 uint64_t Offset, bool TrimAtNul) { 4143 ConstantDataArraySlice Slice; 4144 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4145 return false; 4146 4147 if (Slice.Array == nullptr) { 4148 if (TrimAtNul) { 4149 Str = StringRef(); 4150 return true; 4151 } 4152 if (Slice.Length == 1) { 4153 Str = StringRef("", 1); 4154 return true; 4155 } 4156 // We cannot instantiate a StringRef as we do not have an appropriate string 4157 // of 0s at hand. 4158 return false; 4159 } 4160 4161 // Start out with the entire array in the StringRef. 4162 Str = Slice.Array->getAsString(); 4163 // Skip over 'offset' bytes. 4164 Str = Str.substr(Slice.Offset); 4165 4166 if (TrimAtNul) { 4167 // Trim off the \0 and anything after it. If the array is not nul 4168 // terminated, we just return the whole end of string. The client may know 4169 // some other way that the string is length-bound. 4170 Str = Str.substr(0, Str.find('\0')); 4171 } 4172 return true; 4173 } 4174 4175 // These next two are very similar to the above, but also look through PHI 4176 // nodes. 4177 // TODO: See if we can integrate these two together. 4178 4179 /// If we can compute the length of the string pointed to by 4180 /// the specified pointer, return 'len+1'. If we can't, return 0. 4181 static uint64_t GetStringLengthH(const Value *V, 4182 SmallPtrSetImpl<const PHINode*> &PHIs, 4183 unsigned CharSize) { 4184 // Look through noop bitcast instructions. 4185 V = V->stripPointerCasts(); 4186 4187 // If this is a PHI node, there are two cases: either we have already seen it 4188 // or we haven't. 4189 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4190 if (!PHIs.insert(PN).second) 4191 return ~0ULL; // already in the set. 4192 4193 // If it was new, see if all the input strings are the same length. 4194 uint64_t LenSoFar = ~0ULL; 4195 for (Value *IncValue : PN->incoming_values()) { 4196 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4197 if (Len == 0) return 0; // Unknown length -> unknown. 4198 4199 if (Len == ~0ULL) continue; 4200 4201 if (Len != LenSoFar && LenSoFar != ~0ULL) 4202 return 0; // Disagree -> unknown. 4203 LenSoFar = Len; 4204 } 4205 4206 // Success, all agree. 4207 return LenSoFar; 4208 } 4209 4210 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4211 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4212 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4213 if (Len1 == 0) return 0; 4214 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4215 if (Len2 == 0) return 0; 4216 if (Len1 == ~0ULL) return Len2; 4217 if (Len2 == ~0ULL) return Len1; 4218 if (Len1 != Len2) return 0; 4219 return Len1; 4220 } 4221 4222 // Otherwise, see if we can read the string. 4223 ConstantDataArraySlice Slice; 4224 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4225 return 0; 4226 4227 if (Slice.Array == nullptr) 4228 return 1; 4229 4230 // Search for nul characters 4231 unsigned NullIndex = 0; 4232 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4233 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4234 break; 4235 } 4236 4237 return NullIndex + 1; 4238 } 4239 4240 /// If we can compute the length of the string pointed to by 4241 /// the specified pointer, return 'len+1'. If we can't, return 0. 4242 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4243 if (!V->getType()->isPointerTy()) 4244 return 0; 4245 4246 SmallPtrSet<const PHINode*, 32> PHIs; 4247 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4248 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4249 // an empty string as a length. 4250 return Len == ~0ULL ? 1 : Len; 4251 } 4252 4253 const Value * 4254 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4255 bool MustPreserveNullness) { 4256 assert(Call && 4257 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4258 if (const Value *RV = Call->getReturnedArgOperand()) 4259 return RV; 4260 // This can be used only as a aliasing property. 4261 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4262 Call, MustPreserveNullness)) 4263 return Call->getArgOperand(0); 4264 return nullptr; 4265 } 4266 4267 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4268 const CallBase *Call, bool MustPreserveNullness) { 4269 switch (Call->getIntrinsicID()) { 4270 case Intrinsic::launder_invariant_group: 4271 case Intrinsic::strip_invariant_group: 4272 case Intrinsic::aarch64_irg: 4273 case Intrinsic::aarch64_tagp: 4274 return true; 4275 case Intrinsic::ptrmask: 4276 return !MustPreserveNullness; 4277 default: 4278 return false; 4279 } 4280 } 4281 4282 /// \p PN defines a loop-variant pointer to an object. Check if the 4283 /// previous iteration of the loop was referring to the same object as \p PN. 4284 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4285 const LoopInfo *LI) { 4286 // Find the loop-defined value. 4287 Loop *L = LI->getLoopFor(PN->getParent()); 4288 if (PN->getNumIncomingValues() != 2) 4289 return true; 4290 4291 // Find the value from previous iteration. 4292 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4293 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4294 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4295 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4296 return true; 4297 4298 // If a new pointer is loaded in the loop, the pointer references a different 4299 // object in every iteration. E.g.: 4300 // for (i) 4301 // int *p = a[i]; 4302 // ... 4303 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4304 if (!L->isLoopInvariant(Load->getPointerOperand())) 4305 return false; 4306 return true; 4307 } 4308 4309 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4310 if (!V->getType()->isPointerTy()) 4311 return V; 4312 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4313 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4314 V = GEP->getPointerOperand(); 4315 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4316 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4317 V = cast<Operator>(V)->getOperand(0); 4318 if (!V->getType()->isPointerTy()) 4319 return V; 4320 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4321 if (GA->isInterposable()) 4322 return V; 4323 V = GA->getAliasee(); 4324 } else { 4325 if (auto *PHI = dyn_cast<PHINode>(V)) { 4326 // Look through single-arg phi nodes created by LCSSA. 4327 if (PHI->getNumIncomingValues() == 1) { 4328 V = PHI->getIncomingValue(0); 4329 continue; 4330 } 4331 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4332 // CaptureTracking can know about special capturing properties of some 4333 // intrinsics like launder.invariant.group, that can't be expressed with 4334 // the attributes, but have properties like returning aliasing pointer. 4335 // Because some analysis may assume that nocaptured pointer is not 4336 // returned from some special intrinsic (because function would have to 4337 // be marked with returns attribute), it is crucial to use this function 4338 // because it should be in sync with CaptureTracking. Not using it may 4339 // cause weird miscompilations where 2 aliasing pointers are assumed to 4340 // noalias. 4341 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4342 V = RP; 4343 continue; 4344 } 4345 } 4346 4347 return V; 4348 } 4349 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4350 } 4351 return V; 4352 } 4353 4354 void llvm::getUnderlyingObjects(const Value *V, 4355 SmallVectorImpl<const Value *> &Objects, 4356 LoopInfo *LI, unsigned MaxLookup) { 4357 SmallPtrSet<const Value *, 4> Visited; 4358 SmallVector<const Value *, 4> Worklist; 4359 Worklist.push_back(V); 4360 do { 4361 const Value *P = Worklist.pop_back_val(); 4362 P = getUnderlyingObject(P, MaxLookup); 4363 4364 if (!Visited.insert(P).second) 4365 continue; 4366 4367 if (auto *SI = dyn_cast<SelectInst>(P)) { 4368 Worklist.push_back(SI->getTrueValue()); 4369 Worklist.push_back(SI->getFalseValue()); 4370 continue; 4371 } 4372 4373 if (auto *PN = dyn_cast<PHINode>(P)) { 4374 // If this PHI changes the underlying object in every iteration of the 4375 // loop, don't look through it. Consider: 4376 // int **A; 4377 // for (i) { 4378 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4379 // Curr = A[i]; 4380 // *Prev, *Curr; 4381 // 4382 // Prev is tracking Curr one iteration behind so they refer to different 4383 // underlying objects. 4384 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4385 isSameUnderlyingObjectInLoop(PN, LI)) 4386 append_range(Worklist, PN->incoming_values()); 4387 continue; 4388 } 4389 4390 Objects.push_back(P); 4391 } while (!Worklist.empty()); 4392 } 4393 4394 /// This is the function that does the work of looking through basic 4395 /// ptrtoint+arithmetic+inttoptr sequences. 4396 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4397 do { 4398 if (const Operator *U = dyn_cast<Operator>(V)) { 4399 // If we find a ptrtoint, we can transfer control back to the 4400 // regular getUnderlyingObjectFromInt. 4401 if (U->getOpcode() == Instruction::PtrToInt) 4402 return U->getOperand(0); 4403 // If we find an add of a constant, a multiplied value, or a phi, it's 4404 // likely that the other operand will lead us to the base 4405 // object. We don't have to worry about the case where the 4406 // object address is somehow being computed by the multiply, 4407 // because our callers only care when the result is an 4408 // identifiable object. 4409 if (U->getOpcode() != Instruction::Add || 4410 (!isa<ConstantInt>(U->getOperand(1)) && 4411 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4412 !isa<PHINode>(U->getOperand(1)))) 4413 return V; 4414 V = U->getOperand(0); 4415 } else { 4416 return V; 4417 } 4418 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4419 } while (true); 4420 } 4421 4422 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4423 /// ptrtoint+arithmetic+inttoptr sequences. 4424 /// It returns false if unidentified object is found in getUnderlyingObjects. 4425 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4426 SmallVectorImpl<Value *> &Objects) { 4427 SmallPtrSet<const Value *, 16> Visited; 4428 SmallVector<const Value *, 4> Working(1, V); 4429 do { 4430 V = Working.pop_back_val(); 4431 4432 SmallVector<const Value *, 4> Objs; 4433 getUnderlyingObjects(V, Objs); 4434 4435 for (const Value *V : Objs) { 4436 if (!Visited.insert(V).second) 4437 continue; 4438 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4439 const Value *O = 4440 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4441 if (O->getType()->isPointerTy()) { 4442 Working.push_back(O); 4443 continue; 4444 } 4445 } 4446 // If getUnderlyingObjects fails to find an identifiable object, 4447 // getUnderlyingObjectsForCodeGen also fails for safety. 4448 if (!isIdentifiedObject(V)) { 4449 Objects.clear(); 4450 return false; 4451 } 4452 Objects.push_back(const_cast<Value *>(V)); 4453 } 4454 } while (!Working.empty()); 4455 return true; 4456 } 4457 4458 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4459 AllocaInst *Result = nullptr; 4460 SmallPtrSet<Value *, 4> Visited; 4461 SmallVector<Value *, 4> Worklist; 4462 4463 auto AddWork = [&](Value *V) { 4464 if (Visited.insert(V).second) 4465 Worklist.push_back(V); 4466 }; 4467 4468 AddWork(V); 4469 do { 4470 V = Worklist.pop_back_val(); 4471 assert(Visited.count(V)); 4472 4473 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4474 if (Result && Result != AI) 4475 return nullptr; 4476 Result = AI; 4477 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4478 AddWork(CI->getOperand(0)); 4479 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4480 for (Value *IncValue : PN->incoming_values()) 4481 AddWork(IncValue); 4482 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4483 AddWork(SI->getTrueValue()); 4484 AddWork(SI->getFalseValue()); 4485 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4486 if (OffsetZero && !GEP->hasAllZeroIndices()) 4487 return nullptr; 4488 AddWork(GEP->getPointerOperand()); 4489 } else { 4490 return nullptr; 4491 } 4492 } while (!Worklist.empty()); 4493 4494 return Result; 4495 } 4496 4497 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4498 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4499 for (const User *U : V->users()) { 4500 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4501 if (!II) 4502 return false; 4503 4504 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4505 continue; 4506 4507 if (AllowDroppable && II->isDroppable()) 4508 continue; 4509 4510 return false; 4511 } 4512 return true; 4513 } 4514 4515 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4516 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4517 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4518 } 4519 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4520 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4521 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4522 } 4523 4524 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4525 if (!LI.isUnordered()) 4526 return true; 4527 const Function &F = *LI.getFunction(); 4528 // Speculative load may create a race that did not exist in the source. 4529 return F.hasFnAttribute(Attribute::SanitizeThread) || 4530 // Speculative load may load data from dirty regions. 4531 F.hasFnAttribute(Attribute::SanitizeAddress) || 4532 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4533 } 4534 4535 4536 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4537 const Instruction *CtxI, 4538 const DominatorTree *DT, 4539 const TargetLibraryInfo *TLI) { 4540 const Operator *Inst = dyn_cast<Operator>(V); 4541 if (!Inst) 4542 return false; 4543 4544 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4545 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4546 if (C->canTrap()) 4547 return false; 4548 4549 switch (Inst->getOpcode()) { 4550 default: 4551 return true; 4552 case Instruction::UDiv: 4553 case Instruction::URem: { 4554 // x / y is undefined if y == 0. 4555 const APInt *V; 4556 if (match(Inst->getOperand(1), m_APInt(V))) 4557 return *V != 0; 4558 return false; 4559 } 4560 case Instruction::SDiv: 4561 case Instruction::SRem: { 4562 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4563 const APInt *Numerator, *Denominator; 4564 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4565 return false; 4566 // We cannot hoist this division if the denominator is 0. 4567 if (*Denominator == 0) 4568 return false; 4569 // It's safe to hoist if the denominator is not 0 or -1. 4570 if (!Denominator->isAllOnesValue()) 4571 return true; 4572 // At this point we know that the denominator is -1. It is safe to hoist as 4573 // long we know that the numerator is not INT_MIN. 4574 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4575 return !Numerator->isMinSignedValue(); 4576 // The numerator *might* be MinSignedValue. 4577 return false; 4578 } 4579 case Instruction::Load: { 4580 const LoadInst *LI = cast<LoadInst>(Inst); 4581 if (mustSuppressSpeculation(*LI)) 4582 return false; 4583 const DataLayout &DL = LI->getModule()->getDataLayout(); 4584 return isDereferenceableAndAlignedPointer( 4585 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4586 DL, CtxI, DT, TLI); 4587 } 4588 case Instruction::Call: { 4589 auto *CI = cast<const CallInst>(Inst); 4590 const Function *Callee = CI->getCalledFunction(); 4591 4592 // The called function could have undefined behavior or side-effects, even 4593 // if marked readnone nounwind. 4594 return Callee && Callee->isSpeculatable(); 4595 } 4596 case Instruction::VAArg: 4597 case Instruction::Alloca: 4598 case Instruction::Invoke: 4599 case Instruction::CallBr: 4600 case Instruction::PHI: 4601 case Instruction::Store: 4602 case Instruction::Ret: 4603 case Instruction::Br: 4604 case Instruction::IndirectBr: 4605 case Instruction::Switch: 4606 case Instruction::Unreachable: 4607 case Instruction::Fence: 4608 case Instruction::AtomicRMW: 4609 case Instruction::AtomicCmpXchg: 4610 case Instruction::LandingPad: 4611 case Instruction::Resume: 4612 case Instruction::CatchSwitch: 4613 case Instruction::CatchPad: 4614 case Instruction::CatchRet: 4615 case Instruction::CleanupPad: 4616 case Instruction::CleanupRet: 4617 return false; // Misc instructions which have effects 4618 } 4619 } 4620 4621 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4622 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4623 } 4624 4625 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4626 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4627 switch (OR) { 4628 case ConstantRange::OverflowResult::MayOverflow: 4629 return OverflowResult::MayOverflow; 4630 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4631 return OverflowResult::AlwaysOverflowsLow; 4632 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4633 return OverflowResult::AlwaysOverflowsHigh; 4634 case ConstantRange::OverflowResult::NeverOverflows: 4635 return OverflowResult::NeverOverflows; 4636 } 4637 llvm_unreachable("Unknown OverflowResult"); 4638 } 4639 4640 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4641 static ConstantRange computeConstantRangeIncludingKnownBits( 4642 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4643 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4644 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4645 KnownBits Known = computeKnownBits( 4646 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4647 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4648 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4649 ConstantRange::PreferredRangeType RangeType = 4650 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4651 return CR1.intersectWith(CR2, RangeType); 4652 } 4653 4654 OverflowResult llvm::computeOverflowForUnsignedMul( 4655 const Value *LHS, const Value *RHS, const DataLayout &DL, 4656 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4657 bool UseInstrInfo) { 4658 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4659 nullptr, UseInstrInfo); 4660 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4661 nullptr, UseInstrInfo); 4662 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4663 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4664 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4665 } 4666 4667 OverflowResult 4668 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4669 const DataLayout &DL, AssumptionCache *AC, 4670 const Instruction *CxtI, 4671 const DominatorTree *DT, bool UseInstrInfo) { 4672 // Multiplying n * m significant bits yields a result of n + m significant 4673 // bits. If the total number of significant bits does not exceed the 4674 // result bit width (minus 1), there is no overflow. 4675 // This means if we have enough leading sign bits in the operands 4676 // we can guarantee that the result does not overflow. 4677 // Ref: "Hacker's Delight" by Henry Warren 4678 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4679 4680 // Note that underestimating the number of sign bits gives a more 4681 // conservative answer. 4682 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4683 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4684 4685 // First handle the easy case: if we have enough sign bits there's 4686 // definitely no overflow. 4687 if (SignBits > BitWidth + 1) 4688 return OverflowResult::NeverOverflows; 4689 4690 // There are two ambiguous cases where there can be no overflow: 4691 // SignBits == BitWidth + 1 and 4692 // SignBits == BitWidth 4693 // The second case is difficult to check, therefore we only handle the 4694 // first case. 4695 if (SignBits == BitWidth + 1) { 4696 // It overflows only when both arguments are negative and the true 4697 // product is exactly the minimum negative number. 4698 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4699 // For simplicity we just check if at least one side is not negative. 4700 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4701 nullptr, UseInstrInfo); 4702 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4703 nullptr, UseInstrInfo); 4704 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4705 return OverflowResult::NeverOverflows; 4706 } 4707 return OverflowResult::MayOverflow; 4708 } 4709 4710 OverflowResult llvm::computeOverflowForUnsignedAdd( 4711 const Value *LHS, const Value *RHS, const DataLayout &DL, 4712 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4713 bool UseInstrInfo) { 4714 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4715 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4716 nullptr, UseInstrInfo); 4717 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4718 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4719 nullptr, UseInstrInfo); 4720 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4721 } 4722 4723 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4724 const Value *RHS, 4725 const AddOperator *Add, 4726 const DataLayout &DL, 4727 AssumptionCache *AC, 4728 const Instruction *CxtI, 4729 const DominatorTree *DT) { 4730 if (Add && Add->hasNoSignedWrap()) { 4731 return OverflowResult::NeverOverflows; 4732 } 4733 4734 // If LHS and RHS each have at least two sign bits, the addition will look 4735 // like 4736 // 4737 // XX..... + 4738 // YY..... 4739 // 4740 // If the carry into the most significant position is 0, X and Y can't both 4741 // be 1 and therefore the carry out of the addition is also 0. 4742 // 4743 // If the carry into the most significant position is 1, X and Y can't both 4744 // be 0 and therefore the carry out of the addition is also 1. 4745 // 4746 // Since the carry into the most significant position is always equal to 4747 // the carry out of the addition, there is no signed overflow. 4748 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4749 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4750 return OverflowResult::NeverOverflows; 4751 4752 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4753 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4754 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4755 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4756 OverflowResult OR = 4757 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4758 if (OR != OverflowResult::MayOverflow) 4759 return OR; 4760 4761 // The remaining code needs Add to be available. Early returns if not so. 4762 if (!Add) 4763 return OverflowResult::MayOverflow; 4764 4765 // If the sign of Add is the same as at least one of the operands, this add 4766 // CANNOT overflow. If this can be determined from the known bits of the 4767 // operands the above signedAddMayOverflow() check will have already done so. 4768 // The only other way to improve on the known bits is from an assumption, so 4769 // call computeKnownBitsFromAssume() directly. 4770 bool LHSOrRHSKnownNonNegative = 4771 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4772 bool LHSOrRHSKnownNegative = 4773 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4774 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4775 KnownBits AddKnown(LHSRange.getBitWidth()); 4776 computeKnownBitsFromAssume( 4777 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4778 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4779 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4780 return OverflowResult::NeverOverflows; 4781 } 4782 4783 return OverflowResult::MayOverflow; 4784 } 4785 4786 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4787 const Value *RHS, 4788 const DataLayout &DL, 4789 AssumptionCache *AC, 4790 const Instruction *CxtI, 4791 const DominatorTree *DT) { 4792 // Checking for conditions implied by dominating conditions may be expensive. 4793 // Limit it to usub_with_overflow calls for now. 4794 if (match(CxtI, 4795 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4796 if (auto C = 4797 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4798 if (*C) 4799 return OverflowResult::NeverOverflows; 4800 return OverflowResult::AlwaysOverflowsLow; 4801 } 4802 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4803 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4804 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4805 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4806 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4807 } 4808 4809 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4810 const Value *RHS, 4811 const DataLayout &DL, 4812 AssumptionCache *AC, 4813 const Instruction *CxtI, 4814 const DominatorTree *DT) { 4815 // If LHS and RHS each have at least two sign bits, the subtraction 4816 // cannot overflow. 4817 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4818 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4819 return OverflowResult::NeverOverflows; 4820 4821 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4822 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4823 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4824 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4825 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4826 } 4827 4828 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4829 const DominatorTree &DT) { 4830 SmallVector<const BranchInst *, 2> GuardingBranches; 4831 SmallVector<const ExtractValueInst *, 2> Results; 4832 4833 for (const User *U : WO->users()) { 4834 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4835 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4836 4837 if (EVI->getIndices()[0] == 0) 4838 Results.push_back(EVI); 4839 else { 4840 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4841 4842 for (const auto *U : EVI->users()) 4843 if (const auto *B = dyn_cast<BranchInst>(U)) { 4844 assert(B->isConditional() && "How else is it using an i1?"); 4845 GuardingBranches.push_back(B); 4846 } 4847 } 4848 } else { 4849 // We are using the aggregate directly in a way we don't want to analyze 4850 // here (storing it to a global, say). 4851 return false; 4852 } 4853 } 4854 4855 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4856 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4857 if (!NoWrapEdge.isSingleEdge()) 4858 return false; 4859 4860 // Check if all users of the add are provably no-wrap. 4861 for (const auto *Result : Results) { 4862 // If the extractvalue itself is not executed on overflow, the we don't 4863 // need to check each use separately, since domination is transitive. 4864 if (DT.dominates(NoWrapEdge, Result->getParent())) 4865 continue; 4866 4867 for (auto &RU : Result->uses()) 4868 if (!DT.dominates(NoWrapEdge, RU)) 4869 return false; 4870 } 4871 4872 return true; 4873 }; 4874 4875 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4876 } 4877 4878 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4879 // See whether I has flags that may create poison 4880 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4881 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4882 return true; 4883 } 4884 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4885 if (ExactOp->isExact()) 4886 return true; 4887 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4888 auto FMF = FP->getFastMathFlags(); 4889 if (FMF.noNaNs() || FMF.noInfs()) 4890 return true; 4891 } 4892 4893 unsigned Opcode = Op->getOpcode(); 4894 4895 // Check whether opcode is a poison/undef-generating operation 4896 switch (Opcode) { 4897 case Instruction::Shl: 4898 case Instruction::AShr: 4899 case Instruction::LShr: { 4900 // Shifts return poison if shiftwidth is larger than the bitwidth. 4901 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4902 SmallVector<Constant *, 4> ShiftAmounts; 4903 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4904 unsigned NumElts = FVTy->getNumElements(); 4905 for (unsigned i = 0; i < NumElts; ++i) 4906 ShiftAmounts.push_back(C->getAggregateElement(i)); 4907 } else if (isa<ScalableVectorType>(C->getType())) 4908 return true; // Can't tell, just return true to be safe 4909 else 4910 ShiftAmounts.push_back(C); 4911 4912 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4913 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4914 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4915 }); 4916 return !Safe; 4917 } 4918 return true; 4919 } 4920 case Instruction::FPToSI: 4921 case Instruction::FPToUI: 4922 // fptosi/ui yields poison if the resulting value does not fit in the 4923 // destination type. 4924 return true; 4925 case Instruction::Call: 4926 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4927 switch (II->getIntrinsicID()) { 4928 // TODO: Add more intrinsics. 4929 case Intrinsic::ctpop: 4930 case Intrinsic::sadd_with_overflow: 4931 case Intrinsic::ssub_with_overflow: 4932 case Intrinsic::smul_with_overflow: 4933 case Intrinsic::uadd_with_overflow: 4934 case Intrinsic::usub_with_overflow: 4935 case Intrinsic::umul_with_overflow: 4936 return false; 4937 } 4938 } 4939 LLVM_FALLTHROUGH; 4940 case Instruction::CallBr: 4941 case Instruction::Invoke: { 4942 const auto *CB = cast<CallBase>(Op); 4943 return !CB->hasRetAttr(Attribute::NoUndef); 4944 } 4945 case Instruction::InsertElement: 4946 case Instruction::ExtractElement: { 4947 // If index exceeds the length of the vector, it returns poison 4948 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4949 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4950 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4951 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4952 return true; 4953 return false; 4954 } 4955 case Instruction::ShuffleVector: { 4956 // shufflevector may return undef. 4957 if (PoisonOnly) 4958 return false; 4959 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4960 ? cast<ConstantExpr>(Op)->getShuffleMask() 4961 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4962 return is_contained(Mask, UndefMaskElem); 4963 } 4964 case Instruction::FNeg: 4965 case Instruction::PHI: 4966 case Instruction::Select: 4967 case Instruction::URem: 4968 case Instruction::SRem: 4969 case Instruction::ExtractValue: 4970 case Instruction::InsertValue: 4971 case Instruction::Freeze: 4972 case Instruction::ICmp: 4973 case Instruction::FCmp: 4974 return false; 4975 case Instruction::GetElementPtr: { 4976 const auto *GEP = cast<GEPOperator>(Op); 4977 return GEP->isInBounds(); 4978 } 4979 default: { 4980 const auto *CE = dyn_cast<ConstantExpr>(Op); 4981 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4982 return false; 4983 else if (Instruction::isBinaryOp(Opcode)) 4984 return false; 4985 // Be conservative and return true. 4986 return true; 4987 } 4988 } 4989 } 4990 4991 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4992 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4993 } 4994 4995 bool llvm::canCreatePoison(const Operator *Op) { 4996 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4997 } 4998 4999 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5000 const Value *V, unsigned Depth) { 5001 if (ValAssumedPoison == V) 5002 return true; 5003 5004 const unsigned MaxDepth = 2; 5005 if (Depth >= MaxDepth) 5006 return false; 5007 5008 if (const auto *I = dyn_cast<Instruction>(V)) { 5009 if (propagatesPoison(cast<Operator>(I))) 5010 return any_of(I->operands(), [=](const Value *Op) { 5011 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5012 }); 5013 5014 // 'select ValAssumedPoison, _, _' is poison. 5015 if (const auto *SI = dyn_cast<SelectInst>(I)) 5016 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5017 Depth + 1); 5018 // V = extractvalue V0, idx 5019 // V2 = extractvalue V0, idx2 5020 // V0's elements are all poison or not. (e.g., add_with_overflow) 5021 const WithOverflowInst *II; 5022 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5023 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 5024 return true; 5025 } 5026 return false; 5027 } 5028 5029 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5030 unsigned Depth) { 5031 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5032 return true; 5033 5034 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5035 return true; 5036 5037 const unsigned MaxDepth = 2; 5038 if (Depth >= MaxDepth) 5039 return false; 5040 5041 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5042 if (I && !canCreatePoison(cast<Operator>(I))) { 5043 return all_of(I->operands(), [=](const Value *Op) { 5044 return impliesPoison(Op, V, Depth + 1); 5045 }); 5046 } 5047 return false; 5048 } 5049 5050 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5051 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5052 } 5053 5054 static bool programUndefinedIfUndefOrPoison(const Value *V, 5055 bool PoisonOnly); 5056 5057 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5058 AssumptionCache *AC, 5059 const Instruction *CtxI, 5060 const DominatorTree *DT, 5061 unsigned Depth, bool PoisonOnly) { 5062 if (Depth >= MaxAnalysisRecursionDepth) 5063 return false; 5064 5065 if (isa<MetadataAsValue>(V)) 5066 return false; 5067 5068 if (const auto *A = dyn_cast<Argument>(V)) { 5069 if (A->hasAttribute(Attribute::NoUndef)) 5070 return true; 5071 } 5072 5073 if (auto *C = dyn_cast<Constant>(V)) { 5074 if (isa<UndefValue>(C)) 5075 return PoisonOnly && !isa<PoisonValue>(C); 5076 5077 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5078 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5079 return true; 5080 5081 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5082 return (PoisonOnly ? !C->containsPoisonElement() 5083 : !C->containsUndefOrPoisonElement()) && 5084 !C->containsConstantExpression(); 5085 } 5086 5087 // Strip cast operations from a pointer value. 5088 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5089 // inbounds with zero offset. To guarantee that the result isn't poison, the 5090 // stripped pointer is checked as it has to be pointing into an allocated 5091 // object or be null `null` to ensure `inbounds` getelement pointers with a 5092 // zero offset could not produce poison. 5093 // It can strip off addrspacecast that do not change bit representation as 5094 // well. We believe that such addrspacecast is equivalent to no-op. 5095 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5096 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5097 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5098 return true; 5099 5100 auto OpCheck = [&](const Value *V) { 5101 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5102 PoisonOnly); 5103 }; 5104 5105 if (auto *Opr = dyn_cast<Operator>(V)) { 5106 // If the value is a freeze instruction, then it can never 5107 // be undef or poison. 5108 if (isa<FreezeInst>(V)) 5109 return true; 5110 5111 if (const auto *CB = dyn_cast<CallBase>(V)) { 5112 if (CB->hasRetAttr(Attribute::NoUndef)) 5113 return true; 5114 } 5115 5116 if (const auto *PN = dyn_cast<PHINode>(V)) { 5117 unsigned Num = PN->getNumIncomingValues(); 5118 bool IsWellDefined = true; 5119 for (unsigned i = 0; i < Num; ++i) { 5120 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5121 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5122 DT, Depth + 1, PoisonOnly)) { 5123 IsWellDefined = false; 5124 break; 5125 } 5126 } 5127 if (IsWellDefined) 5128 return true; 5129 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5130 return true; 5131 } 5132 5133 if (auto *I = dyn_cast<LoadInst>(V)) 5134 if (I->getMetadata(LLVMContext::MD_noundef)) 5135 return true; 5136 5137 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5138 return true; 5139 5140 // CxtI may be null or a cloned instruction. 5141 if (!CtxI || !CtxI->getParent() || !DT) 5142 return false; 5143 5144 auto *DNode = DT->getNode(CtxI->getParent()); 5145 if (!DNode) 5146 // Unreachable block 5147 return false; 5148 5149 // If V is used as a branch condition before reaching CtxI, V cannot be 5150 // undef or poison. 5151 // br V, BB1, BB2 5152 // BB1: 5153 // CtxI ; V cannot be undef or poison here 5154 auto *Dominator = DNode->getIDom(); 5155 while (Dominator) { 5156 auto *TI = Dominator->getBlock()->getTerminator(); 5157 5158 Value *Cond = nullptr; 5159 if (auto BI = dyn_cast<BranchInst>(TI)) { 5160 if (BI->isConditional()) 5161 Cond = BI->getCondition(); 5162 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5163 Cond = SI->getCondition(); 5164 } 5165 5166 if (Cond) { 5167 if (Cond == V) 5168 return true; 5169 else if (PoisonOnly && isa<Operator>(Cond)) { 5170 // For poison, we can analyze further 5171 auto *Opr = cast<Operator>(Cond); 5172 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5173 return true; 5174 } 5175 } 5176 5177 Dominator = Dominator->getIDom(); 5178 } 5179 5180 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5181 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5182 return true; 5183 5184 return false; 5185 } 5186 5187 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5188 const Instruction *CtxI, 5189 const DominatorTree *DT, 5190 unsigned Depth) { 5191 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5192 } 5193 5194 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5195 const Instruction *CtxI, 5196 const DominatorTree *DT, unsigned Depth) { 5197 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5198 } 5199 5200 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5201 const DataLayout &DL, 5202 AssumptionCache *AC, 5203 const Instruction *CxtI, 5204 const DominatorTree *DT) { 5205 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5206 Add, DL, AC, CxtI, DT); 5207 } 5208 5209 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5210 const Value *RHS, 5211 const DataLayout &DL, 5212 AssumptionCache *AC, 5213 const Instruction *CxtI, 5214 const DominatorTree *DT) { 5215 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5216 } 5217 5218 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5219 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5220 // of time because it's possible for another thread to interfere with it for an 5221 // arbitrary length of time, but programs aren't allowed to rely on that. 5222 5223 // If there is no successor, then execution can't transfer to it. 5224 if (isa<ReturnInst>(I)) 5225 return false; 5226 if (isa<UnreachableInst>(I)) 5227 return false; 5228 5229 // An instruction that returns without throwing must transfer control flow 5230 // to a successor. 5231 return !I->mayThrow() && I->willReturn(); 5232 } 5233 5234 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5235 // TODO: This is slightly conservative for invoke instruction since exiting 5236 // via an exception *is* normal control for them. 5237 for (const Instruction &I : *BB) 5238 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5239 return false; 5240 return true; 5241 } 5242 5243 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5244 const Loop *L) { 5245 // The loop header is guaranteed to be executed for every iteration. 5246 // 5247 // FIXME: Relax this constraint to cover all basic blocks that are 5248 // guaranteed to be executed at every iteration. 5249 if (I->getParent() != L->getHeader()) return false; 5250 5251 for (const Instruction &LI : *L->getHeader()) { 5252 if (&LI == I) return true; 5253 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5254 } 5255 llvm_unreachable("Instruction not contained in its own parent basic block."); 5256 } 5257 5258 bool llvm::propagatesPoison(const Operator *I) { 5259 switch (I->getOpcode()) { 5260 case Instruction::Freeze: 5261 case Instruction::Select: 5262 case Instruction::PHI: 5263 case Instruction::Invoke: 5264 return false; 5265 case Instruction::Call: 5266 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5267 switch (II->getIntrinsicID()) { 5268 // TODO: Add more intrinsics. 5269 case Intrinsic::sadd_with_overflow: 5270 case Intrinsic::ssub_with_overflow: 5271 case Intrinsic::smul_with_overflow: 5272 case Intrinsic::uadd_with_overflow: 5273 case Intrinsic::usub_with_overflow: 5274 case Intrinsic::umul_with_overflow: 5275 // If an input is a vector containing a poison element, the 5276 // two output vectors (calculated results, overflow bits)' 5277 // corresponding lanes are poison. 5278 return true; 5279 } 5280 } 5281 return false; 5282 case Instruction::ICmp: 5283 case Instruction::FCmp: 5284 case Instruction::GetElementPtr: 5285 return true; 5286 default: 5287 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5288 return true; 5289 5290 // Be conservative and return false. 5291 return false; 5292 } 5293 } 5294 5295 void llvm::getGuaranteedWellDefinedOps( 5296 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5297 switch (I->getOpcode()) { 5298 case Instruction::Store: 5299 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5300 break; 5301 5302 case Instruction::Load: 5303 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5304 break; 5305 5306 // Since dereferenceable attribute imply noundef, atomic operations 5307 // also implicitly have noundef pointers too 5308 case Instruction::AtomicCmpXchg: 5309 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5310 break; 5311 5312 case Instruction::AtomicRMW: 5313 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5314 break; 5315 5316 case Instruction::Call: 5317 case Instruction::Invoke: { 5318 const CallBase *CB = cast<CallBase>(I); 5319 if (CB->isIndirectCall()) 5320 Operands.insert(CB->getCalledOperand()); 5321 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5322 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5323 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5324 Operands.insert(CB->getArgOperand(i)); 5325 } 5326 break; 5327 } 5328 5329 default: 5330 break; 5331 } 5332 } 5333 5334 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5335 SmallPtrSetImpl<const Value *> &Operands) { 5336 getGuaranteedWellDefinedOps(I, Operands); 5337 switch (I->getOpcode()) { 5338 // Divisors of these operations are allowed to be partially undef. 5339 case Instruction::UDiv: 5340 case Instruction::SDiv: 5341 case Instruction::URem: 5342 case Instruction::SRem: 5343 Operands.insert(I->getOperand(1)); 5344 break; 5345 5346 default: 5347 break; 5348 } 5349 } 5350 5351 bool llvm::mustTriggerUB(const Instruction *I, 5352 const SmallSet<const Value *, 16>& KnownPoison) { 5353 SmallPtrSet<const Value *, 4> NonPoisonOps; 5354 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5355 5356 for (const auto *V : NonPoisonOps) 5357 if (KnownPoison.count(V)) 5358 return true; 5359 5360 return false; 5361 } 5362 5363 static bool programUndefinedIfUndefOrPoison(const Value *V, 5364 bool PoisonOnly) { 5365 // We currently only look for uses of values within the same basic 5366 // block, as that makes it easier to guarantee that the uses will be 5367 // executed given that Inst is executed. 5368 // 5369 // FIXME: Expand this to consider uses beyond the same basic block. To do 5370 // this, look out for the distinction between post-dominance and strong 5371 // post-dominance. 5372 const BasicBlock *BB = nullptr; 5373 BasicBlock::const_iterator Begin; 5374 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5375 BB = Inst->getParent(); 5376 Begin = Inst->getIterator(); 5377 Begin++; 5378 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5379 BB = &Arg->getParent()->getEntryBlock(); 5380 Begin = BB->begin(); 5381 } else { 5382 return false; 5383 } 5384 5385 // Limit number of instructions we look at, to avoid scanning through large 5386 // blocks. The current limit is chosen arbitrarily. 5387 unsigned ScanLimit = 32; 5388 BasicBlock::const_iterator End = BB->end(); 5389 5390 if (!PoisonOnly) { 5391 // Since undef does not propagate eagerly, be conservative & just check 5392 // whether a value is directly passed to an instruction that must take 5393 // well-defined operands. 5394 5395 for (auto &I : make_range(Begin, End)) { 5396 if (isa<DbgInfoIntrinsic>(I)) 5397 continue; 5398 if (--ScanLimit == 0) 5399 break; 5400 5401 SmallPtrSet<const Value *, 4> WellDefinedOps; 5402 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5403 if (WellDefinedOps.contains(V)) 5404 return true; 5405 5406 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5407 break; 5408 } 5409 return false; 5410 } 5411 5412 // Set of instructions that we have proved will yield poison if Inst 5413 // does. 5414 SmallSet<const Value *, 16> YieldsPoison; 5415 SmallSet<const BasicBlock *, 4> Visited; 5416 5417 YieldsPoison.insert(V); 5418 auto Propagate = [&](const User *User) { 5419 if (propagatesPoison(cast<Operator>(User))) 5420 YieldsPoison.insert(User); 5421 }; 5422 for_each(V->users(), Propagate); 5423 Visited.insert(BB); 5424 5425 while (true) { 5426 for (auto &I : make_range(Begin, End)) { 5427 if (isa<DbgInfoIntrinsic>(I)) 5428 continue; 5429 if (--ScanLimit == 0) 5430 return false; 5431 if (mustTriggerUB(&I, YieldsPoison)) 5432 return true; 5433 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5434 return false; 5435 5436 // Mark poison that propagates from I through uses of I. 5437 if (YieldsPoison.count(&I)) 5438 for_each(I.users(), Propagate); 5439 } 5440 5441 BB = BB->getSingleSuccessor(); 5442 if (!BB || !Visited.insert(BB).second) 5443 break; 5444 5445 Begin = BB->getFirstNonPHI()->getIterator(); 5446 End = BB->end(); 5447 } 5448 return false; 5449 } 5450 5451 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5452 return ::programUndefinedIfUndefOrPoison(Inst, false); 5453 } 5454 5455 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5456 return ::programUndefinedIfUndefOrPoison(Inst, true); 5457 } 5458 5459 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5460 if (FMF.noNaNs()) 5461 return true; 5462 5463 if (auto *C = dyn_cast<ConstantFP>(V)) 5464 return !C->isNaN(); 5465 5466 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5467 if (!C->getElementType()->isFloatingPointTy()) 5468 return false; 5469 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5470 if (C->getElementAsAPFloat(I).isNaN()) 5471 return false; 5472 } 5473 return true; 5474 } 5475 5476 if (isa<ConstantAggregateZero>(V)) 5477 return true; 5478 5479 return false; 5480 } 5481 5482 static bool isKnownNonZero(const Value *V) { 5483 if (auto *C = dyn_cast<ConstantFP>(V)) 5484 return !C->isZero(); 5485 5486 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5487 if (!C->getElementType()->isFloatingPointTy()) 5488 return false; 5489 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5490 if (C->getElementAsAPFloat(I).isZero()) 5491 return false; 5492 } 5493 return true; 5494 } 5495 5496 return false; 5497 } 5498 5499 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5500 /// Given non-min/max outer cmp/select from the clamp pattern this 5501 /// function recognizes if it can be substitued by a "canonical" min/max 5502 /// pattern. 5503 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5504 Value *CmpLHS, Value *CmpRHS, 5505 Value *TrueVal, Value *FalseVal, 5506 Value *&LHS, Value *&RHS) { 5507 // Try to match 5508 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5509 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5510 // and return description of the outer Max/Min. 5511 5512 // First, check if select has inverse order: 5513 if (CmpRHS == FalseVal) { 5514 std::swap(TrueVal, FalseVal); 5515 Pred = CmpInst::getInversePredicate(Pred); 5516 } 5517 5518 // Assume success now. If there's no match, callers should not use these anyway. 5519 LHS = TrueVal; 5520 RHS = FalseVal; 5521 5522 const APFloat *FC1; 5523 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5524 return {SPF_UNKNOWN, SPNB_NA, false}; 5525 5526 const APFloat *FC2; 5527 switch (Pred) { 5528 case CmpInst::FCMP_OLT: 5529 case CmpInst::FCMP_OLE: 5530 case CmpInst::FCMP_ULT: 5531 case CmpInst::FCMP_ULE: 5532 if (match(FalseVal, 5533 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5534 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5535 *FC1 < *FC2) 5536 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5537 break; 5538 case CmpInst::FCMP_OGT: 5539 case CmpInst::FCMP_OGE: 5540 case CmpInst::FCMP_UGT: 5541 case CmpInst::FCMP_UGE: 5542 if (match(FalseVal, 5543 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5544 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5545 *FC1 > *FC2) 5546 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5547 break; 5548 default: 5549 break; 5550 } 5551 5552 return {SPF_UNKNOWN, SPNB_NA, false}; 5553 } 5554 5555 /// Recognize variations of: 5556 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5557 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5558 Value *CmpLHS, Value *CmpRHS, 5559 Value *TrueVal, Value *FalseVal) { 5560 // Swap the select operands and predicate to match the patterns below. 5561 if (CmpRHS != TrueVal) { 5562 Pred = ICmpInst::getSwappedPredicate(Pred); 5563 std::swap(TrueVal, FalseVal); 5564 } 5565 const APInt *C1; 5566 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5567 const APInt *C2; 5568 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5569 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5570 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5571 return {SPF_SMAX, SPNB_NA, false}; 5572 5573 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5574 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5575 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5576 return {SPF_SMIN, SPNB_NA, false}; 5577 5578 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5579 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5580 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5581 return {SPF_UMAX, SPNB_NA, false}; 5582 5583 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5584 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5585 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5586 return {SPF_UMIN, SPNB_NA, false}; 5587 } 5588 return {SPF_UNKNOWN, SPNB_NA, false}; 5589 } 5590 5591 /// Recognize variations of: 5592 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5593 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5594 Value *CmpLHS, Value *CmpRHS, 5595 Value *TVal, Value *FVal, 5596 unsigned Depth) { 5597 // TODO: Allow FP min/max with nnan/nsz. 5598 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5599 5600 Value *A = nullptr, *B = nullptr; 5601 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5602 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5603 return {SPF_UNKNOWN, SPNB_NA, false}; 5604 5605 Value *C = nullptr, *D = nullptr; 5606 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5607 if (L.Flavor != R.Flavor) 5608 return {SPF_UNKNOWN, SPNB_NA, false}; 5609 5610 // We have something like: x Pred y ? min(a, b) : min(c, d). 5611 // Try to match the compare to the min/max operations of the select operands. 5612 // First, make sure we have the right compare predicate. 5613 switch (L.Flavor) { 5614 case SPF_SMIN: 5615 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5616 Pred = ICmpInst::getSwappedPredicate(Pred); 5617 std::swap(CmpLHS, CmpRHS); 5618 } 5619 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5620 break; 5621 return {SPF_UNKNOWN, SPNB_NA, false}; 5622 case SPF_SMAX: 5623 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5624 Pred = ICmpInst::getSwappedPredicate(Pred); 5625 std::swap(CmpLHS, CmpRHS); 5626 } 5627 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5628 break; 5629 return {SPF_UNKNOWN, SPNB_NA, false}; 5630 case SPF_UMIN: 5631 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5632 Pred = ICmpInst::getSwappedPredicate(Pred); 5633 std::swap(CmpLHS, CmpRHS); 5634 } 5635 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5636 break; 5637 return {SPF_UNKNOWN, SPNB_NA, false}; 5638 case SPF_UMAX: 5639 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5640 Pred = ICmpInst::getSwappedPredicate(Pred); 5641 std::swap(CmpLHS, CmpRHS); 5642 } 5643 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5644 break; 5645 return {SPF_UNKNOWN, SPNB_NA, false}; 5646 default: 5647 return {SPF_UNKNOWN, SPNB_NA, false}; 5648 } 5649 5650 // If there is a common operand in the already matched min/max and the other 5651 // min/max operands match the compare operands (either directly or inverted), 5652 // then this is min/max of the same flavor. 5653 5654 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5655 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5656 if (D == B) { 5657 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5658 match(A, m_Not(m_Specific(CmpRHS))))) 5659 return {L.Flavor, SPNB_NA, false}; 5660 } 5661 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5662 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5663 if (C == B) { 5664 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5665 match(A, m_Not(m_Specific(CmpRHS))))) 5666 return {L.Flavor, SPNB_NA, false}; 5667 } 5668 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5669 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5670 if (D == A) { 5671 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5672 match(B, m_Not(m_Specific(CmpRHS))))) 5673 return {L.Flavor, SPNB_NA, false}; 5674 } 5675 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5676 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5677 if (C == A) { 5678 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5679 match(B, m_Not(m_Specific(CmpRHS))))) 5680 return {L.Flavor, SPNB_NA, false}; 5681 } 5682 5683 return {SPF_UNKNOWN, SPNB_NA, false}; 5684 } 5685 5686 /// If the input value is the result of a 'not' op, constant integer, or vector 5687 /// splat of a constant integer, return the bitwise-not source value. 5688 /// TODO: This could be extended to handle non-splat vector integer constants. 5689 static Value *getNotValue(Value *V) { 5690 Value *NotV; 5691 if (match(V, m_Not(m_Value(NotV)))) 5692 return NotV; 5693 5694 const APInt *C; 5695 if (match(V, m_APInt(C))) 5696 return ConstantInt::get(V->getType(), ~(*C)); 5697 5698 return nullptr; 5699 } 5700 5701 /// Match non-obvious integer minimum and maximum sequences. 5702 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5703 Value *CmpLHS, Value *CmpRHS, 5704 Value *TrueVal, Value *FalseVal, 5705 Value *&LHS, Value *&RHS, 5706 unsigned Depth) { 5707 // Assume success. If there's no match, callers should not use these anyway. 5708 LHS = TrueVal; 5709 RHS = FalseVal; 5710 5711 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5712 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5713 return SPR; 5714 5715 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5716 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5717 return SPR; 5718 5719 // Look through 'not' ops to find disguised min/max. 5720 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5721 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5722 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5723 switch (Pred) { 5724 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5725 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5726 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5727 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5728 default: break; 5729 } 5730 } 5731 5732 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5733 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5734 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5735 switch (Pred) { 5736 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5737 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5738 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5739 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5740 default: break; 5741 } 5742 } 5743 5744 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5745 return {SPF_UNKNOWN, SPNB_NA, false}; 5746 5747 // Z = X -nsw Y 5748 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5749 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5750 if (match(TrueVal, m_Zero()) && 5751 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5752 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5753 5754 // Z = X -nsw Y 5755 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5756 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5757 if (match(FalseVal, m_Zero()) && 5758 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5759 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5760 5761 const APInt *C1; 5762 if (!match(CmpRHS, m_APInt(C1))) 5763 return {SPF_UNKNOWN, SPNB_NA, false}; 5764 5765 // An unsigned min/max can be written with a signed compare. 5766 const APInt *C2; 5767 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5768 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5769 // Is the sign bit set? 5770 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5771 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5772 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5773 C2->isMaxSignedValue()) 5774 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5775 5776 // Is the sign bit clear? 5777 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5778 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5779 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5780 C2->isMinSignedValue()) 5781 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5782 } 5783 5784 return {SPF_UNKNOWN, SPNB_NA, false}; 5785 } 5786 5787 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5788 assert(X && Y && "Invalid operand"); 5789 5790 // X = sub (0, Y) || X = sub nsw (0, Y) 5791 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5792 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5793 return true; 5794 5795 // Y = sub (0, X) || Y = sub nsw (0, X) 5796 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5797 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5798 return true; 5799 5800 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5801 Value *A, *B; 5802 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5803 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5804 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5805 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5806 } 5807 5808 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5809 FastMathFlags FMF, 5810 Value *CmpLHS, Value *CmpRHS, 5811 Value *TrueVal, Value *FalseVal, 5812 Value *&LHS, Value *&RHS, 5813 unsigned Depth) { 5814 if (CmpInst::isFPPredicate(Pred)) { 5815 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5816 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5817 // purpose of identifying min/max. Disregard vector constants with undefined 5818 // elements because those can not be back-propagated for analysis. 5819 Value *OutputZeroVal = nullptr; 5820 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5821 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5822 OutputZeroVal = TrueVal; 5823 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5824 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5825 OutputZeroVal = FalseVal; 5826 5827 if (OutputZeroVal) { 5828 if (match(CmpLHS, m_AnyZeroFP())) 5829 CmpLHS = OutputZeroVal; 5830 if (match(CmpRHS, m_AnyZeroFP())) 5831 CmpRHS = OutputZeroVal; 5832 } 5833 } 5834 5835 LHS = CmpLHS; 5836 RHS = CmpRHS; 5837 5838 // Signed zero may return inconsistent results between implementations. 5839 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5840 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5841 // Therefore, we behave conservatively and only proceed if at least one of the 5842 // operands is known to not be zero or if we don't care about signed zero. 5843 switch (Pred) { 5844 default: break; 5845 // FIXME: Include OGT/OLT/UGT/ULT. 5846 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5847 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5848 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5849 !isKnownNonZero(CmpRHS)) 5850 return {SPF_UNKNOWN, SPNB_NA, false}; 5851 } 5852 5853 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5854 bool Ordered = false; 5855 5856 // When given one NaN and one non-NaN input: 5857 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5858 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5859 // ordered comparison fails), which could be NaN or non-NaN. 5860 // so here we discover exactly what NaN behavior is required/accepted. 5861 if (CmpInst::isFPPredicate(Pred)) { 5862 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5863 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5864 5865 if (LHSSafe && RHSSafe) { 5866 // Both operands are known non-NaN. 5867 NaNBehavior = SPNB_RETURNS_ANY; 5868 } else if (CmpInst::isOrdered(Pred)) { 5869 // An ordered comparison will return false when given a NaN, so it 5870 // returns the RHS. 5871 Ordered = true; 5872 if (LHSSafe) 5873 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5874 NaNBehavior = SPNB_RETURNS_NAN; 5875 else if (RHSSafe) 5876 NaNBehavior = SPNB_RETURNS_OTHER; 5877 else 5878 // Completely unsafe. 5879 return {SPF_UNKNOWN, SPNB_NA, false}; 5880 } else { 5881 Ordered = false; 5882 // An unordered comparison will return true when given a NaN, so it 5883 // returns the LHS. 5884 if (LHSSafe) 5885 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5886 NaNBehavior = SPNB_RETURNS_OTHER; 5887 else if (RHSSafe) 5888 NaNBehavior = SPNB_RETURNS_NAN; 5889 else 5890 // Completely unsafe. 5891 return {SPF_UNKNOWN, SPNB_NA, false}; 5892 } 5893 } 5894 5895 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5896 std::swap(CmpLHS, CmpRHS); 5897 Pred = CmpInst::getSwappedPredicate(Pred); 5898 if (NaNBehavior == SPNB_RETURNS_NAN) 5899 NaNBehavior = SPNB_RETURNS_OTHER; 5900 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5901 NaNBehavior = SPNB_RETURNS_NAN; 5902 Ordered = !Ordered; 5903 } 5904 5905 // ([if]cmp X, Y) ? X : Y 5906 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5907 switch (Pred) { 5908 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5909 case ICmpInst::ICMP_UGT: 5910 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5911 case ICmpInst::ICMP_SGT: 5912 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5913 case ICmpInst::ICMP_ULT: 5914 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5915 case ICmpInst::ICMP_SLT: 5916 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5917 case FCmpInst::FCMP_UGT: 5918 case FCmpInst::FCMP_UGE: 5919 case FCmpInst::FCMP_OGT: 5920 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5921 case FCmpInst::FCMP_ULT: 5922 case FCmpInst::FCMP_ULE: 5923 case FCmpInst::FCMP_OLT: 5924 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5925 } 5926 } 5927 5928 if (isKnownNegation(TrueVal, FalseVal)) { 5929 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5930 // match against either LHS or sext(LHS). 5931 auto MaybeSExtCmpLHS = 5932 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5933 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5934 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5935 if (match(TrueVal, MaybeSExtCmpLHS)) { 5936 // Set the return values. If the compare uses the negated value (-X >s 0), 5937 // swap the return values because the negated value is always 'RHS'. 5938 LHS = TrueVal; 5939 RHS = FalseVal; 5940 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5941 std::swap(LHS, RHS); 5942 5943 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5944 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5945 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5946 return {SPF_ABS, SPNB_NA, false}; 5947 5948 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5949 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5950 return {SPF_ABS, SPNB_NA, false}; 5951 5952 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5953 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5954 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5955 return {SPF_NABS, SPNB_NA, false}; 5956 } 5957 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5958 // Set the return values. If the compare uses the negated value (-X >s 0), 5959 // swap the return values because the negated value is always 'RHS'. 5960 LHS = FalseVal; 5961 RHS = TrueVal; 5962 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5963 std::swap(LHS, RHS); 5964 5965 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5966 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5967 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5968 return {SPF_NABS, SPNB_NA, false}; 5969 5970 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5971 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5972 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5973 return {SPF_ABS, SPNB_NA, false}; 5974 } 5975 } 5976 5977 if (CmpInst::isIntPredicate(Pred)) 5978 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5979 5980 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5981 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5982 // semantics than minNum. Be conservative in such case. 5983 if (NaNBehavior != SPNB_RETURNS_ANY || 5984 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5985 !isKnownNonZero(CmpRHS))) 5986 return {SPF_UNKNOWN, SPNB_NA, false}; 5987 5988 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5989 } 5990 5991 /// Helps to match a select pattern in case of a type mismatch. 5992 /// 5993 /// The function processes the case when type of true and false values of a 5994 /// select instruction differs from type of the cmp instruction operands because 5995 /// of a cast instruction. The function checks if it is legal to move the cast 5996 /// operation after "select". If yes, it returns the new second value of 5997 /// "select" (with the assumption that cast is moved): 5998 /// 1. As operand of cast instruction when both values of "select" are same cast 5999 /// instructions. 6000 /// 2. As restored constant (by applying reverse cast operation) when the first 6001 /// value of the "select" is a cast operation and the second value is a 6002 /// constant. 6003 /// NOTE: We return only the new second value because the first value could be 6004 /// accessed as operand of cast instruction. 6005 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6006 Instruction::CastOps *CastOp) { 6007 auto *Cast1 = dyn_cast<CastInst>(V1); 6008 if (!Cast1) 6009 return nullptr; 6010 6011 *CastOp = Cast1->getOpcode(); 6012 Type *SrcTy = Cast1->getSrcTy(); 6013 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6014 // If V1 and V2 are both the same cast from the same type, look through V1. 6015 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6016 return Cast2->getOperand(0); 6017 return nullptr; 6018 } 6019 6020 auto *C = dyn_cast<Constant>(V2); 6021 if (!C) 6022 return nullptr; 6023 6024 Constant *CastedTo = nullptr; 6025 switch (*CastOp) { 6026 case Instruction::ZExt: 6027 if (CmpI->isUnsigned()) 6028 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6029 break; 6030 case Instruction::SExt: 6031 if (CmpI->isSigned()) 6032 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6033 break; 6034 case Instruction::Trunc: 6035 Constant *CmpConst; 6036 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6037 CmpConst->getType() == SrcTy) { 6038 // Here we have the following case: 6039 // 6040 // %cond = cmp iN %x, CmpConst 6041 // %tr = trunc iN %x to iK 6042 // %narrowsel = select i1 %cond, iK %t, iK C 6043 // 6044 // We can always move trunc after select operation: 6045 // 6046 // %cond = cmp iN %x, CmpConst 6047 // %widesel = select i1 %cond, iN %x, iN CmpConst 6048 // %tr = trunc iN %widesel to iK 6049 // 6050 // Note that C could be extended in any way because we don't care about 6051 // upper bits after truncation. It can't be abs pattern, because it would 6052 // look like: 6053 // 6054 // select i1 %cond, x, -x. 6055 // 6056 // So only min/max pattern could be matched. Such match requires widened C 6057 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6058 // CmpConst == C is checked below. 6059 CastedTo = CmpConst; 6060 } else { 6061 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6062 } 6063 break; 6064 case Instruction::FPTrunc: 6065 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6066 break; 6067 case Instruction::FPExt: 6068 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6069 break; 6070 case Instruction::FPToUI: 6071 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6072 break; 6073 case Instruction::FPToSI: 6074 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6075 break; 6076 case Instruction::UIToFP: 6077 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6078 break; 6079 case Instruction::SIToFP: 6080 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6081 break; 6082 default: 6083 break; 6084 } 6085 6086 if (!CastedTo) 6087 return nullptr; 6088 6089 // Make sure the cast doesn't lose any information. 6090 Constant *CastedBack = 6091 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6092 if (CastedBack != C) 6093 return nullptr; 6094 6095 return CastedTo; 6096 } 6097 6098 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6099 Instruction::CastOps *CastOp, 6100 unsigned Depth) { 6101 if (Depth >= MaxAnalysisRecursionDepth) 6102 return {SPF_UNKNOWN, SPNB_NA, false}; 6103 6104 SelectInst *SI = dyn_cast<SelectInst>(V); 6105 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6106 6107 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6108 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6109 6110 Value *TrueVal = SI->getTrueValue(); 6111 Value *FalseVal = SI->getFalseValue(); 6112 6113 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6114 CastOp, Depth); 6115 } 6116 6117 SelectPatternResult llvm::matchDecomposedSelectPattern( 6118 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6119 Instruction::CastOps *CastOp, unsigned Depth) { 6120 CmpInst::Predicate Pred = CmpI->getPredicate(); 6121 Value *CmpLHS = CmpI->getOperand(0); 6122 Value *CmpRHS = CmpI->getOperand(1); 6123 FastMathFlags FMF; 6124 if (isa<FPMathOperator>(CmpI)) 6125 FMF = CmpI->getFastMathFlags(); 6126 6127 // Bail out early. 6128 if (CmpI->isEquality()) 6129 return {SPF_UNKNOWN, SPNB_NA, false}; 6130 6131 // Deal with type mismatches. 6132 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6133 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6134 // If this is a potential fmin/fmax with a cast to integer, then ignore 6135 // -0.0 because there is no corresponding integer value. 6136 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6137 FMF.setNoSignedZeros(); 6138 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6139 cast<CastInst>(TrueVal)->getOperand(0), C, 6140 LHS, RHS, Depth); 6141 } 6142 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6143 // If this is a potential fmin/fmax with a cast to integer, then ignore 6144 // -0.0 because there is no corresponding integer value. 6145 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6146 FMF.setNoSignedZeros(); 6147 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6148 C, cast<CastInst>(FalseVal)->getOperand(0), 6149 LHS, RHS, Depth); 6150 } 6151 } 6152 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6153 LHS, RHS, Depth); 6154 } 6155 6156 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6157 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6158 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6159 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6160 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6161 if (SPF == SPF_FMINNUM) 6162 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6163 if (SPF == SPF_FMAXNUM) 6164 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6165 llvm_unreachable("unhandled!"); 6166 } 6167 6168 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6169 if (SPF == SPF_SMIN) return SPF_SMAX; 6170 if (SPF == SPF_UMIN) return SPF_UMAX; 6171 if (SPF == SPF_SMAX) return SPF_SMIN; 6172 if (SPF == SPF_UMAX) return SPF_UMIN; 6173 llvm_unreachable("unhandled!"); 6174 } 6175 6176 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6177 switch (MinMaxID) { 6178 case Intrinsic::smax: return Intrinsic::smin; 6179 case Intrinsic::smin: return Intrinsic::smax; 6180 case Intrinsic::umax: return Intrinsic::umin; 6181 case Intrinsic::umin: return Intrinsic::umax; 6182 default: llvm_unreachable("Unexpected intrinsic"); 6183 } 6184 } 6185 6186 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6187 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6188 } 6189 6190 std::pair<Intrinsic::ID, bool> 6191 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6192 // Check if VL contains select instructions that can be folded into a min/max 6193 // vector intrinsic and return the intrinsic if it is possible. 6194 // TODO: Support floating point min/max. 6195 bool AllCmpSingleUse = true; 6196 SelectPatternResult SelectPattern; 6197 SelectPattern.Flavor = SPF_UNKNOWN; 6198 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6199 Value *LHS, *RHS; 6200 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6201 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6202 CurrentPattern.Flavor == SPF_FMINNUM || 6203 CurrentPattern.Flavor == SPF_FMAXNUM || 6204 !I->getType()->isIntOrIntVectorTy()) 6205 return false; 6206 if (SelectPattern.Flavor != SPF_UNKNOWN && 6207 SelectPattern.Flavor != CurrentPattern.Flavor) 6208 return false; 6209 SelectPattern = CurrentPattern; 6210 AllCmpSingleUse &= 6211 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6212 return true; 6213 })) { 6214 switch (SelectPattern.Flavor) { 6215 case SPF_SMIN: 6216 return {Intrinsic::smin, AllCmpSingleUse}; 6217 case SPF_UMIN: 6218 return {Intrinsic::umin, AllCmpSingleUse}; 6219 case SPF_SMAX: 6220 return {Intrinsic::smax, AllCmpSingleUse}; 6221 case SPF_UMAX: 6222 return {Intrinsic::umax, AllCmpSingleUse}; 6223 default: 6224 llvm_unreachable("unexpected select pattern flavor"); 6225 } 6226 } 6227 return {Intrinsic::not_intrinsic, false}; 6228 } 6229 6230 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6231 Value *&Start, Value *&Step) { 6232 // Handle the case of a simple two-predecessor recurrence PHI. 6233 // There's a lot more that could theoretically be done here, but 6234 // this is sufficient to catch some interesting cases. 6235 if (P->getNumIncomingValues() != 2) 6236 return false; 6237 6238 for (unsigned i = 0; i != 2; ++i) { 6239 Value *L = P->getIncomingValue(i); 6240 Value *R = P->getIncomingValue(!i); 6241 Operator *LU = dyn_cast<Operator>(L); 6242 if (!LU) 6243 continue; 6244 unsigned Opcode = LU->getOpcode(); 6245 6246 switch (Opcode) { 6247 default: 6248 continue; 6249 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6250 case Instruction::LShr: 6251 case Instruction::AShr: 6252 case Instruction::Shl: 6253 case Instruction::Add: 6254 case Instruction::Sub: 6255 case Instruction::And: 6256 case Instruction::Or: 6257 case Instruction::Mul: { 6258 Value *LL = LU->getOperand(0); 6259 Value *LR = LU->getOperand(1); 6260 // Find a recurrence. 6261 if (LL == P) 6262 L = LR; 6263 else if (LR == P) 6264 L = LL; 6265 else 6266 continue; // Check for recurrence with L and R flipped. 6267 6268 break; // Match! 6269 } 6270 }; 6271 6272 // We have matched a recurrence of the form: 6273 // %iv = [R, %entry], [%iv.next, %backedge] 6274 // %iv.next = binop %iv, L 6275 // OR 6276 // %iv = [R, %entry], [%iv.next, %backedge] 6277 // %iv.next = binop L, %iv 6278 BO = cast<BinaryOperator>(LU); 6279 Start = R; 6280 Step = L; 6281 return true; 6282 } 6283 return false; 6284 } 6285 6286 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6287 Value *&Start, Value *&Step) { 6288 BinaryOperator *BO = nullptr; 6289 P = dyn_cast<PHINode>(I->getOperand(0)); 6290 if (!P) 6291 P = dyn_cast<PHINode>(I->getOperand(1)); 6292 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6293 } 6294 6295 /// Return true if "icmp Pred LHS RHS" is always true. 6296 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6297 const Value *RHS, const DataLayout &DL, 6298 unsigned Depth) { 6299 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6300 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6301 return true; 6302 6303 switch (Pred) { 6304 default: 6305 return false; 6306 6307 case CmpInst::ICMP_SLE: { 6308 const APInt *C; 6309 6310 // LHS s<= LHS +_{nsw} C if C >= 0 6311 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6312 return !C->isNegative(); 6313 return false; 6314 } 6315 6316 case CmpInst::ICMP_ULE: { 6317 const APInt *C; 6318 6319 // LHS u<= LHS +_{nuw} C for any C 6320 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6321 return true; 6322 6323 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6324 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6325 const Value *&X, 6326 const APInt *&CA, const APInt *&CB) { 6327 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6328 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6329 return true; 6330 6331 // If X & C == 0 then (X | C) == X +_{nuw} C 6332 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6333 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6334 KnownBits Known(CA->getBitWidth()); 6335 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6336 /*CxtI*/ nullptr, /*DT*/ nullptr); 6337 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6338 return true; 6339 } 6340 6341 return false; 6342 }; 6343 6344 const Value *X; 6345 const APInt *CLHS, *CRHS; 6346 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6347 return CLHS->ule(*CRHS); 6348 6349 return false; 6350 } 6351 } 6352 } 6353 6354 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6355 /// ALHS ARHS" is true. Otherwise, return None. 6356 static Optional<bool> 6357 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6358 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6359 const DataLayout &DL, unsigned Depth) { 6360 switch (Pred) { 6361 default: 6362 return None; 6363 6364 case CmpInst::ICMP_SLT: 6365 case CmpInst::ICMP_SLE: 6366 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6367 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6368 return true; 6369 return None; 6370 6371 case CmpInst::ICMP_ULT: 6372 case CmpInst::ICMP_ULE: 6373 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6374 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6375 return true; 6376 return None; 6377 } 6378 } 6379 6380 /// Return true if the operands of the two compares match. IsSwappedOps is true 6381 /// when the operands match, but are swapped. 6382 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6383 const Value *BLHS, const Value *BRHS, 6384 bool &IsSwappedOps) { 6385 6386 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6387 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6388 return IsMatchingOps || IsSwappedOps; 6389 } 6390 6391 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6392 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6393 /// Otherwise, return None if we can't infer anything. 6394 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6395 CmpInst::Predicate BPred, 6396 bool AreSwappedOps) { 6397 // Canonicalize the predicate as if the operands were not commuted. 6398 if (AreSwappedOps) 6399 BPred = ICmpInst::getSwappedPredicate(BPred); 6400 6401 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6402 return true; 6403 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6404 return false; 6405 6406 return None; 6407 } 6408 6409 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6410 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6411 /// Otherwise, return None if we can't infer anything. 6412 static Optional<bool> 6413 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6414 const ConstantInt *C1, 6415 CmpInst::Predicate BPred, 6416 const ConstantInt *C2) { 6417 ConstantRange DomCR = 6418 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6419 ConstantRange CR = 6420 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6421 ConstantRange Intersection = DomCR.intersectWith(CR); 6422 ConstantRange Difference = DomCR.difference(CR); 6423 if (Intersection.isEmptySet()) 6424 return false; 6425 if (Difference.isEmptySet()) 6426 return true; 6427 return None; 6428 } 6429 6430 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6431 /// false. Otherwise, return None if we can't infer anything. 6432 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6433 CmpInst::Predicate BPred, 6434 const Value *BLHS, const Value *BRHS, 6435 const DataLayout &DL, bool LHSIsTrue, 6436 unsigned Depth) { 6437 Value *ALHS = LHS->getOperand(0); 6438 Value *ARHS = LHS->getOperand(1); 6439 6440 // The rest of the logic assumes the LHS condition is true. If that's not the 6441 // case, invert the predicate to make it so. 6442 CmpInst::Predicate APred = 6443 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6444 6445 // Can we infer anything when the two compares have matching operands? 6446 bool AreSwappedOps; 6447 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6448 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6449 APred, BPred, AreSwappedOps)) 6450 return Implication; 6451 // No amount of additional analysis will infer the second condition, so 6452 // early exit. 6453 return None; 6454 } 6455 6456 // Can we infer anything when the LHS operands match and the RHS operands are 6457 // constants (not necessarily matching)? 6458 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6459 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6460 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6461 return Implication; 6462 // No amount of additional analysis will infer the second condition, so 6463 // early exit. 6464 return None; 6465 } 6466 6467 if (APred == BPred) 6468 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6469 return None; 6470 } 6471 6472 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6473 /// false. Otherwise, return None if we can't infer anything. We expect the 6474 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6475 static Optional<bool> 6476 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6477 const Value *RHSOp0, const Value *RHSOp1, 6478 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6479 // The LHS must be an 'or', 'and', or a 'select' instruction. 6480 assert((LHS->getOpcode() == Instruction::And || 6481 LHS->getOpcode() == Instruction::Or || 6482 LHS->getOpcode() == Instruction::Select) && 6483 "Expected LHS to be 'and', 'or', or 'select'."); 6484 6485 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6486 6487 // If the result of an 'or' is false, then we know both legs of the 'or' are 6488 // false. Similarly, if the result of an 'and' is true, then we know both 6489 // legs of the 'and' are true. 6490 const Value *ALHS, *ARHS; 6491 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6492 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6493 // FIXME: Make this non-recursion. 6494 if (Optional<bool> Implication = isImpliedCondition( 6495 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6496 return Implication; 6497 if (Optional<bool> Implication = isImpliedCondition( 6498 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6499 return Implication; 6500 return None; 6501 } 6502 return None; 6503 } 6504 6505 Optional<bool> 6506 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6507 const Value *RHSOp0, const Value *RHSOp1, 6508 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6509 // Bail out when we hit the limit. 6510 if (Depth == MaxAnalysisRecursionDepth) 6511 return None; 6512 6513 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6514 // example. 6515 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6516 return None; 6517 6518 Type *OpTy = LHS->getType(); 6519 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6520 6521 // FIXME: Extending the code below to handle vectors. 6522 if (OpTy->isVectorTy()) 6523 return None; 6524 6525 assert(OpTy->isIntegerTy(1) && "implied by above"); 6526 6527 // Both LHS and RHS are icmps. 6528 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6529 if (LHSCmp) 6530 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6531 Depth); 6532 6533 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6534 /// the RHS to be an icmp. 6535 /// FIXME: Add support for and/or/select on the RHS. 6536 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6537 if ((LHSI->getOpcode() == Instruction::And || 6538 LHSI->getOpcode() == Instruction::Or || 6539 LHSI->getOpcode() == Instruction::Select)) 6540 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6541 Depth); 6542 } 6543 return None; 6544 } 6545 6546 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6547 const DataLayout &DL, bool LHSIsTrue, 6548 unsigned Depth) { 6549 // LHS ==> RHS by definition 6550 if (LHS == RHS) 6551 return LHSIsTrue; 6552 6553 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6554 if (RHSCmp) 6555 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6556 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6557 LHSIsTrue, Depth); 6558 return None; 6559 } 6560 6561 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6562 // condition dominating ContextI or nullptr, if no condition is found. 6563 static std::pair<Value *, bool> 6564 getDomPredecessorCondition(const Instruction *ContextI) { 6565 if (!ContextI || !ContextI->getParent()) 6566 return {nullptr, false}; 6567 6568 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6569 // dominator tree (eg, from a SimplifyQuery) instead? 6570 const BasicBlock *ContextBB = ContextI->getParent(); 6571 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6572 if (!PredBB) 6573 return {nullptr, false}; 6574 6575 // We need a conditional branch in the predecessor. 6576 Value *PredCond; 6577 BasicBlock *TrueBB, *FalseBB; 6578 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6579 return {nullptr, false}; 6580 6581 // The branch should get simplified. Don't bother simplifying this condition. 6582 if (TrueBB == FalseBB) 6583 return {nullptr, false}; 6584 6585 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6586 "Predecessor block does not point to successor?"); 6587 6588 // Is this condition implied by the predecessor condition? 6589 return {PredCond, TrueBB == ContextBB}; 6590 } 6591 6592 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6593 const Instruction *ContextI, 6594 const DataLayout &DL) { 6595 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6596 auto PredCond = getDomPredecessorCondition(ContextI); 6597 if (PredCond.first) 6598 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6599 return None; 6600 } 6601 6602 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6603 const Value *LHS, const Value *RHS, 6604 const Instruction *ContextI, 6605 const DataLayout &DL) { 6606 auto PredCond = getDomPredecessorCondition(ContextI); 6607 if (PredCond.first) 6608 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6609 PredCond.second); 6610 return None; 6611 } 6612 6613 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6614 APInt &Upper, const InstrInfoQuery &IIQ) { 6615 unsigned Width = Lower.getBitWidth(); 6616 const APInt *C; 6617 switch (BO.getOpcode()) { 6618 case Instruction::Add: 6619 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6620 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6621 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6622 // 'add nuw x, C' produces [C, UINT_MAX]. 6623 Lower = *C; 6624 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6625 if (C->isNegative()) { 6626 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6627 Lower = APInt::getSignedMinValue(Width); 6628 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6629 } else { 6630 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6631 Lower = APInt::getSignedMinValue(Width) + *C; 6632 Upper = APInt::getSignedMaxValue(Width) + 1; 6633 } 6634 } 6635 } 6636 break; 6637 6638 case Instruction::And: 6639 if (match(BO.getOperand(1), m_APInt(C))) 6640 // 'and x, C' produces [0, C]. 6641 Upper = *C + 1; 6642 break; 6643 6644 case Instruction::Or: 6645 if (match(BO.getOperand(1), m_APInt(C))) 6646 // 'or x, C' produces [C, UINT_MAX]. 6647 Lower = *C; 6648 break; 6649 6650 case Instruction::AShr: 6651 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6652 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6653 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6654 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6655 } else if (match(BO.getOperand(0), m_APInt(C))) { 6656 unsigned ShiftAmount = Width - 1; 6657 if (!C->isNullValue() && IIQ.isExact(&BO)) 6658 ShiftAmount = C->countTrailingZeros(); 6659 if (C->isNegative()) { 6660 // 'ashr C, x' produces [C, C >> (Width-1)] 6661 Lower = *C; 6662 Upper = C->ashr(ShiftAmount) + 1; 6663 } else { 6664 // 'ashr C, x' produces [C >> (Width-1), C] 6665 Lower = C->ashr(ShiftAmount); 6666 Upper = *C + 1; 6667 } 6668 } 6669 break; 6670 6671 case Instruction::LShr: 6672 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6673 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6674 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6675 } else if (match(BO.getOperand(0), m_APInt(C))) { 6676 // 'lshr C, x' produces [C >> (Width-1), C]. 6677 unsigned ShiftAmount = Width - 1; 6678 if (!C->isNullValue() && IIQ.isExact(&BO)) 6679 ShiftAmount = C->countTrailingZeros(); 6680 Lower = C->lshr(ShiftAmount); 6681 Upper = *C + 1; 6682 } 6683 break; 6684 6685 case Instruction::Shl: 6686 if (match(BO.getOperand(0), m_APInt(C))) { 6687 if (IIQ.hasNoUnsignedWrap(&BO)) { 6688 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6689 Lower = *C; 6690 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6691 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6692 if (C->isNegative()) { 6693 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6694 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6695 Lower = C->shl(ShiftAmount); 6696 Upper = *C + 1; 6697 } else { 6698 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6699 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6700 Lower = *C; 6701 Upper = C->shl(ShiftAmount) + 1; 6702 } 6703 } 6704 } 6705 break; 6706 6707 case Instruction::SDiv: 6708 if (match(BO.getOperand(1), m_APInt(C))) { 6709 APInt IntMin = APInt::getSignedMinValue(Width); 6710 APInt IntMax = APInt::getSignedMaxValue(Width); 6711 if (C->isAllOnesValue()) { 6712 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6713 // where C != -1 and C != 0 and C != 1 6714 Lower = IntMin + 1; 6715 Upper = IntMax + 1; 6716 } else if (C->countLeadingZeros() < Width - 1) { 6717 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6718 // where C != -1 and C != 0 and C != 1 6719 Lower = IntMin.sdiv(*C); 6720 Upper = IntMax.sdiv(*C); 6721 if (Lower.sgt(Upper)) 6722 std::swap(Lower, Upper); 6723 Upper = Upper + 1; 6724 assert(Upper != Lower && "Upper part of range has wrapped!"); 6725 } 6726 } else if (match(BO.getOperand(0), m_APInt(C))) { 6727 if (C->isMinSignedValue()) { 6728 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6729 Lower = *C; 6730 Upper = Lower.lshr(1) + 1; 6731 } else { 6732 // 'sdiv C, x' produces [-|C|, |C|]. 6733 Upper = C->abs() + 1; 6734 Lower = (-Upper) + 1; 6735 } 6736 } 6737 break; 6738 6739 case Instruction::UDiv: 6740 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6741 // 'udiv x, C' produces [0, UINT_MAX / C]. 6742 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6743 } else if (match(BO.getOperand(0), m_APInt(C))) { 6744 // 'udiv C, x' produces [0, C]. 6745 Upper = *C + 1; 6746 } 6747 break; 6748 6749 case Instruction::SRem: 6750 if (match(BO.getOperand(1), m_APInt(C))) { 6751 // 'srem x, C' produces (-|C|, |C|). 6752 Upper = C->abs(); 6753 Lower = (-Upper) + 1; 6754 } 6755 break; 6756 6757 case Instruction::URem: 6758 if (match(BO.getOperand(1), m_APInt(C))) 6759 // 'urem x, C' produces [0, C). 6760 Upper = *C; 6761 break; 6762 6763 default: 6764 break; 6765 } 6766 } 6767 6768 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6769 APInt &Upper) { 6770 unsigned Width = Lower.getBitWidth(); 6771 const APInt *C; 6772 switch (II.getIntrinsicID()) { 6773 case Intrinsic::ctpop: 6774 case Intrinsic::ctlz: 6775 case Intrinsic::cttz: 6776 // Maximum of set/clear bits is the bit width. 6777 assert(Lower == 0 && "Expected lower bound to be zero"); 6778 Upper = Width + 1; 6779 break; 6780 case Intrinsic::uadd_sat: 6781 // uadd.sat(x, C) produces [C, UINT_MAX]. 6782 if (match(II.getOperand(0), m_APInt(C)) || 6783 match(II.getOperand(1), m_APInt(C))) 6784 Lower = *C; 6785 break; 6786 case Intrinsic::sadd_sat: 6787 if (match(II.getOperand(0), m_APInt(C)) || 6788 match(II.getOperand(1), m_APInt(C))) { 6789 if (C->isNegative()) { 6790 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6791 Lower = APInt::getSignedMinValue(Width); 6792 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6793 } else { 6794 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6795 Lower = APInt::getSignedMinValue(Width) + *C; 6796 Upper = APInt::getSignedMaxValue(Width) + 1; 6797 } 6798 } 6799 break; 6800 case Intrinsic::usub_sat: 6801 // usub.sat(C, x) produces [0, C]. 6802 if (match(II.getOperand(0), m_APInt(C))) 6803 Upper = *C + 1; 6804 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6805 else if (match(II.getOperand(1), m_APInt(C))) 6806 Upper = APInt::getMaxValue(Width) - *C + 1; 6807 break; 6808 case Intrinsic::ssub_sat: 6809 if (match(II.getOperand(0), m_APInt(C))) { 6810 if (C->isNegative()) { 6811 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6812 Lower = APInt::getSignedMinValue(Width); 6813 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6814 } else { 6815 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6816 Lower = *C - APInt::getSignedMaxValue(Width); 6817 Upper = APInt::getSignedMaxValue(Width) + 1; 6818 } 6819 } else if (match(II.getOperand(1), m_APInt(C))) { 6820 if (C->isNegative()) { 6821 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6822 Lower = APInt::getSignedMinValue(Width) - *C; 6823 Upper = APInt::getSignedMaxValue(Width) + 1; 6824 } else { 6825 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6826 Lower = APInt::getSignedMinValue(Width); 6827 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6828 } 6829 } 6830 break; 6831 case Intrinsic::umin: 6832 case Intrinsic::umax: 6833 case Intrinsic::smin: 6834 case Intrinsic::smax: 6835 if (!match(II.getOperand(0), m_APInt(C)) && 6836 !match(II.getOperand(1), m_APInt(C))) 6837 break; 6838 6839 switch (II.getIntrinsicID()) { 6840 case Intrinsic::umin: 6841 Upper = *C + 1; 6842 break; 6843 case Intrinsic::umax: 6844 Lower = *C; 6845 break; 6846 case Intrinsic::smin: 6847 Lower = APInt::getSignedMinValue(Width); 6848 Upper = *C + 1; 6849 break; 6850 case Intrinsic::smax: 6851 Lower = *C; 6852 Upper = APInt::getSignedMaxValue(Width) + 1; 6853 break; 6854 default: 6855 llvm_unreachable("Must be min/max intrinsic"); 6856 } 6857 break; 6858 case Intrinsic::abs: 6859 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6860 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6861 if (match(II.getOperand(1), m_One())) 6862 Upper = APInt::getSignedMaxValue(Width) + 1; 6863 else 6864 Upper = APInt::getSignedMinValue(Width) + 1; 6865 break; 6866 default: 6867 break; 6868 } 6869 } 6870 6871 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6872 APInt &Upper, const InstrInfoQuery &IIQ) { 6873 const Value *LHS = nullptr, *RHS = nullptr; 6874 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6875 if (R.Flavor == SPF_UNKNOWN) 6876 return; 6877 6878 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6879 6880 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6881 // If the negation part of the abs (in RHS) has the NSW flag, 6882 // then the result of abs(X) is [0..SIGNED_MAX], 6883 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6884 Lower = APInt::getNullValue(BitWidth); 6885 if (match(RHS, m_Neg(m_Specific(LHS))) && 6886 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6887 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6888 else 6889 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6890 return; 6891 } 6892 6893 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6894 // The result of -abs(X) is <= 0. 6895 Lower = APInt::getSignedMinValue(BitWidth); 6896 Upper = APInt(BitWidth, 1); 6897 return; 6898 } 6899 6900 const APInt *C; 6901 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6902 return; 6903 6904 switch (R.Flavor) { 6905 case SPF_UMIN: 6906 Upper = *C + 1; 6907 break; 6908 case SPF_UMAX: 6909 Lower = *C; 6910 break; 6911 case SPF_SMIN: 6912 Lower = APInt::getSignedMinValue(BitWidth); 6913 Upper = *C + 1; 6914 break; 6915 case SPF_SMAX: 6916 Lower = *C; 6917 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6918 break; 6919 default: 6920 break; 6921 } 6922 } 6923 6924 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6925 AssumptionCache *AC, 6926 const Instruction *CtxI, 6927 unsigned Depth) { 6928 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6929 6930 if (Depth == MaxAnalysisRecursionDepth) 6931 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6932 6933 const APInt *C; 6934 if (match(V, m_APInt(C))) 6935 return ConstantRange(*C); 6936 6937 InstrInfoQuery IIQ(UseInstrInfo); 6938 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6939 APInt Lower = APInt(BitWidth, 0); 6940 APInt Upper = APInt(BitWidth, 0); 6941 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6942 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6943 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6944 setLimitsForIntrinsic(*II, Lower, Upper); 6945 else if (auto *SI = dyn_cast<SelectInst>(V)) 6946 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6947 6948 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6949 6950 if (auto *I = dyn_cast<Instruction>(V)) 6951 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6952 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6953 6954 if (CtxI && AC) { 6955 // Try to restrict the range based on information from assumptions. 6956 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6957 if (!AssumeVH) 6958 continue; 6959 CallInst *I = cast<CallInst>(AssumeVH); 6960 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6961 "Got assumption for the wrong function!"); 6962 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6963 "must be an assume intrinsic"); 6964 6965 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6966 continue; 6967 Value *Arg = I->getArgOperand(0); 6968 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6969 // Currently we just use information from comparisons. 6970 if (!Cmp || Cmp->getOperand(0) != V) 6971 continue; 6972 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6973 AC, I, Depth + 1); 6974 CR = CR.intersectWith( 6975 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6976 } 6977 } 6978 6979 return CR; 6980 } 6981 6982 static Optional<int64_t> 6983 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6984 // Skip over the first indices. 6985 gep_type_iterator GTI = gep_type_begin(GEP); 6986 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6987 /*skip along*/; 6988 6989 // Compute the offset implied by the rest of the indices. 6990 int64_t Offset = 0; 6991 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6992 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6993 if (!OpC) 6994 return None; 6995 if (OpC->isZero()) 6996 continue; // No offset. 6997 6998 // Handle struct indices, which add their field offset to the pointer. 6999 if (StructType *STy = GTI.getStructTypeOrNull()) { 7000 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7001 continue; 7002 } 7003 7004 // Otherwise, we have a sequential type like an array or fixed-length 7005 // vector. Multiply the index by the ElementSize. 7006 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7007 if (Size.isScalable()) 7008 return None; 7009 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7010 } 7011 7012 return Offset; 7013 } 7014 7015 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7016 const DataLayout &DL) { 7017 Ptr1 = Ptr1->stripPointerCasts(); 7018 Ptr2 = Ptr2->stripPointerCasts(); 7019 7020 // Handle the trivial case first. 7021 if (Ptr1 == Ptr2) { 7022 return 0; 7023 } 7024 7025 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7026 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7027 7028 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7029 // as in "P" and "gep P, 1". 7030 // Also do this iteratively to handle the the following case: 7031 // Ptr_t1 = GEP Ptr1, c1 7032 // Ptr_t2 = GEP Ptr_t1, c2 7033 // Ptr2 = GEP Ptr_t2, c3 7034 // where we will return c1+c2+c3. 7035 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7036 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7037 // are the same, and return the difference between offsets. 7038 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7039 const Value *Ptr) -> Optional<int64_t> { 7040 const GEPOperator *GEP_T = GEP; 7041 int64_t OffsetVal = 0; 7042 bool HasSameBase = false; 7043 while (GEP_T) { 7044 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7045 if (!Offset) 7046 return None; 7047 OffsetVal += *Offset; 7048 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7049 if (Op0 == Ptr) { 7050 HasSameBase = true; 7051 break; 7052 } 7053 GEP_T = dyn_cast<GEPOperator>(Op0); 7054 } 7055 if (!HasSameBase) 7056 return None; 7057 return OffsetVal; 7058 }; 7059 7060 if (GEP1) { 7061 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7062 if (Offset) 7063 return -*Offset; 7064 } 7065 if (GEP2) { 7066 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7067 if (Offset) 7068 return Offset; 7069 } 7070 7071 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7072 // base. After that base, they may have some number of common (and 7073 // potentially variable) indices. After that they handle some constant 7074 // offset, which determines their offset from each other. At this point, we 7075 // handle no other case. 7076 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7077 return None; 7078 7079 // Skip any common indices and track the GEP types. 7080 unsigned Idx = 1; 7081 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7082 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7083 break; 7084 7085 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7086 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7087 if (!Offset1 || !Offset2) 7088 return None; 7089 return *Offset2 - *Offset1; 7090 } 7091