1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 unsigned BitWidth = Known.getBitWidth(); 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 441 isKnownNonZero(Op0, Depth, Q)) || 442 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 443 isKnownNonZero(Op1, Depth, Q)); 444 } 445 } 446 447 assert(!Known.hasConflict() && !Known2.hasConflict()); 448 // Compute a conservative estimate for high known-0 bits. 449 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 450 Known2.countMinLeadingZeros(), 451 BitWidth) - BitWidth; 452 LeadZ = std::min(LeadZ, BitWidth); 453 454 // The result of the bottom bits of an integer multiply can be 455 // inferred by looking at the bottom bits of both operands and 456 // multiplying them together. 457 // We can infer at least the minimum number of known trailing bits 458 // of both operands. Depending on number of trailing zeros, we can 459 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 460 // a and b are divisible by m and n respectively. 461 // We then calculate how many of those bits are inferrable and set 462 // the output. For example, the i8 mul: 463 // a = XXXX1100 (12) 464 // b = XXXX1110 (14) 465 // We know the bottom 3 bits are zero since the first can be divided by 466 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 467 // Applying the multiplication to the trimmed arguments gets: 468 // XX11 (3) 469 // X111 (7) 470 // ------- 471 // XX11 472 // XX11 473 // XX11 474 // XX11 475 // ------- 476 // XXXXX01 477 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 478 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 479 // The proof for this can be described as: 480 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 481 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 482 // umin(countTrailingZeros(C2), C6) + 483 // umin(C5 - umin(countTrailingZeros(C1), C5), 484 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 485 // %aa = shl i8 %a, C5 486 // %bb = shl i8 %b, C6 487 // %aaa = or i8 %aa, C1 488 // %bbb = or i8 %bb, C2 489 // %mul = mul i8 %aaa, %bbb 490 // %mask = and i8 %mul, C7 491 // => 492 // %mask = i8 ((C1*C2)&C7) 493 // Where C5, C6 describe the known bits of %a, %b 494 // C1, C2 describe the known bottom bits of %a, %b. 495 // C7 describes the mask of the known bits of the result. 496 APInt Bottom0 = Known.One; 497 APInt Bottom1 = Known2.One; 498 499 // How many times we'd be able to divide each argument by 2 (shr by 1). 500 // This gives us the number of trailing zeros on the multiplication result. 501 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 502 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 503 unsigned TrailZero0 = Known.countMinTrailingZeros(); 504 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 505 unsigned TrailZ = TrailZero0 + TrailZero1; 506 507 // Figure out the fewest known-bits operand. 508 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 509 TrailBitsKnown1 - TrailZero1); 510 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 511 512 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 513 Bottom1.getLoBits(TrailBitsKnown1); 514 515 Known.resetAll(); 516 Known.Zero.setHighBits(LeadZ); 517 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 518 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 519 520 // Only make use of no-wrap flags if we failed to compute the sign bit 521 // directly. This matters if the multiplication always overflows, in 522 // which case we prefer to follow the result of the direct computation, 523 // though as the program is invoking undefined behaviour we can choose 524 // whatever we like here. 525 if (isKnownNonNegative && !Known.isNegative()) 526 Known.makeNonNegative(); 527 else if (isKnownNegative && !Known.isNonNegative()) 528 Known.makeNegative(); 529 } 530 531 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 532 KnownBits &Known) { 533 unsigned BitWidth = Known.getBitWidth(); 534 unsigned NumRanges = Ranges.getNumOperands() / 2; 535 assert(NumRanges >= 1); 536 537 Known.Zero.setAllBits(); 538 Known.One.setAllBits(); 539 540 for (unsigned i = 0; i < NumRanges; ++i) { 541 ConstantInt *Lower = 542 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 543 ConstantInt *Upper = 544 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 545 ConstantRange Range(Lower->getValue(), Upper->getValue()); 546 547 // The first CommonPrefixBits of all values in Range are equal. 548 unsigned CommonPrefixBits = 549 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 550 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 551 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 552 Known.One &= UnsignedMax & Mask; 553 Known.Zero &= ~UnsignedMax & Mask; 554 } 555 } 556 557 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 558 SmallVector<const Value *, 16> WorkSet(1, I); 559 SmallPtrSet<const Value *, 32> Visited; 560 SmallPtrSet<const Value *, 16> EphValues; 561 562 // The instruction defining an assumption's condition itself is always 563 // considered ephemeral to that assumption (even if it has other 564 // non-ephemeral users). See r246696's test case for an example. 565 if (is_contained(I->operands(), E)) 566 return true; 567 568 while (!WorkSet.empty()) { 569 const Value *V = WorkSet.pop_back_val(); 570 if (!Visited.insert(V).second) 571 continue; 572 573 // If all uses of this value are ephemeral, then so is this value. 574 if (llvm::all_of(V->users(), [&](const User *U) { 575 return EphValues.count(U); 576 })) { 577 if (V == E) 578 return true; 579 580 if (V == I || isSafeToSpeculativelyExecute(V)) { 581 EphValues.insert(V); 582 if (const User *U = dyn_cast<User>(V)) 583 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 584 J != JE; ++J) 585 WorkSet.push_back(*J); 586 } 587 } 588 } 589 590 return false; 591 } 592 593 // Is this an intrinsic that cannot be speculated but also cannot trap? 594 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 595 if (const CallInst *CI = dyn_cast<CallInst>(I)) 596 if (Function *F = CI->getCalledFunction()) 597 switch (F->getIntrinsicID()) { 598 default: break; 599 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 600 case Intrinsic::assume: 601 case Intrinsic::sideeffect: 602 case Intrinsic::dbg_declare: 603 case Intrinsic::dbg_value: 604 case Intrinsic::dbg_label: 605 case Intrinsic::invariant_start: 606 case Intrinsic::invariant_end: 607 case Intrinsic::lifetime_start: 608 case Intrinsic::lifetime_end: 609 case Intrinsic::objectsize: 610 case Intrinsic::ptr_annotation: 611 case Intrinsic::var_annotation: 612 return true; 613 } 614 615 return false; 616 } 617 618 bool llvm::isValidAssumeForContext(const Instruction *Inv, 619 const Instruction *CxtI, 620 const DominatorTree *DT) { 621 // There are two restrictions on the use of an assume: 622 // 1. The assume must dominate the context (or the control flow must 623 // reach the assume whenever it reaches the context). 624 // 2. The context must not be in the assume's set of ephemeral values 625 // (otherwise we will use the assume to prove that the condition 626 // feeding the assume is trivially true, thus causing the removal of 627 // the assume). 628 629 if (Inv->getParent() == CxtI->getParent()) { 630 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 631 // in the BB. 632 if (Inv->comesBefore(CxtI)) 633 return true; 634 635 // Don't let an assume affect itself - this would cause the problems 636 // `isEphemeralValueOf` is trying to prevent, and it would also make 637 // the loop below go out of bounds. 638 if (Inv == CxtI) 639 return false; 640 641 // The context comes first, but they're both in the same block. 642 // Make sure there is nothing in between that might interrupt 643 // the control flow, not even CxtI itself. 644 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 645 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 646 return false; 647 648 return !isEphemeralValueOf(Inv, CxtI); 649 } 650 651 // Inv and CxtI are in different blocks. 652 if (DT) { 653 if (DT->dominates(Inv, CxtI)) 654 return true; 655 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 656 // We don't have a DT, but this trivially dominates. 657 return true; 658 } 659 660 return false; 661 } 662 663 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 664 // Use of assumptions is context-sensitive. If we don't have a context, we 665 // cannot use them! 666 if (!Q.AC || !Q.CxtI) 667 return false; 668 669 // Note that the patterns below need to be kept in sync with the code 670 // in AssumptionCache::updateAffectedValues. 671 672 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 673 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 674 675 Value *RHS; 676 CmpInst::Predicate Pred; 677 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 678 return false; 679 // assume(v u> y) -> assume(v != 0) 680 if (Pred == ICmpInst::ICMP_UGT) 681 return true; 682 683 // assume(v != 0) 684 // We special-case this one to ensure that we handle `assume(v != null)`. 685 if (Pred == ICmpInst::ICMP_NE) 686 return match(RHS, m_Zero()); 687 688 // All other predicates - rely on generic ConstantRange handling. 689 ConstantInt *CI; 690 if (!match(RHS, m_ConstantInt(CI))) 691 return false; 692 ConstantRange RHSRange(CI->getValue()); 693 ConstantRange TrueValues = 694 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 695 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 696 }; 697 698 if (Q.CxtI && V->getType()->isPointerTy()) { 699 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 700 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 701 V->getType()->getPointerAddressSpace())) 702 AttrKinds.push_back(Attribute::Dereferenceable); 703 704 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 705 return true; 706 } 707 708 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 709 if (!AssumeVH) 710 continue; 711 CallInst *I = cast<CallInst>(AssumeVH); 712 assert(I->getFunction() == Q.CxtI->getFunction() && 713 "Got assumption for the wrong function!"); 714 if (Q.isExcluded(I)) 715 continue; 716 717 // Warning: This loop can end up being somewhat performance sensitive. 718 // We're running this loop for once for each value queried resulting in a 719 // runtime of ~O(#assumes * #values). 720 721 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 722 "must be an assume intrinsic"); 723 724 Value *Arg = I->getArgOperand(0); 725 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 726 if (!Cmp) 727 continue; 728 729 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 730 return true; 731 } 732 733 return false; 734 } 735 736 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 737 unsigned Depth, const Query &Q) { 738 // Use of assumptions is context-sensitive. If we don't have a context, we 739 // cannot use them! 740 if (!Q.AC || !Q.CxtI) 741 return; 742 743 unsigned BitWidth = Known.getBitWidth(); 744 745 // Note that the patterns below need to be kept in sync with the code 746 // in AssumptionCache::updateAffectedValues. 747 748 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 749 if (!AssumeVH) 750 continue; 751 CallInst *I = cast<CallInst>(AssumeVH); 752 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 753 "Got assumption for the wrong function!"); 754 if (Q.isExcluded(I)) 755 continue; 756 757 // Warning: This loop can end up being somewhat performance sensitive. 758 // We're running this loop for once for each value queried resulting in a 759 // runtime of ~O(#assumes * #values). 760 761 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 762 "must be an assume intrinsic"); 763 764 Value *Arg = I->getArgOperand(0); 765 766 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 767 assert(BitWidth == 1 && "assume operand is not i1?"); 768 Known.setAllOnes(); 769 return; 770 } 771 if (match(Arg, m_Not(m_Specific(V))) && 772 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 773 assert(BitWidth == 1 && "assume operand is not i1?"); 774 Known.setAllZero(); 775 return; 776 } 777 778 // The remaining tests are all recursive, so bail out if we hit the limit. 779 if (Depth == MaxAnalysisRecursionDepth) 780 continue; 781 782 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 783 if (!Cmp) 784 continue; 785 786 // Note that ptrtoint may change the bitwidth. 787 Value *A, *B; 788 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 789 790 CmpInst::Predicate Pred; 791 uint64_t C; 792 switch (Cmp->getPredicate()) { 793 default: 794 break; 795 case ICmpInst::ICMP_EQ: 796 // assume(v = a) 797 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 798 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 799 KnownBits RHSKnown = 800 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 801 Known.Zero |= RHSKnown.Zero; 802 Known.One |= RHSKnown.One; 803 // assume(v & b = a) 804 } else if (match(Cmp, 805 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 806 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 807 KnownBits RHSKnown = 808 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 KnownBits MaskKnown = 810 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 811 812 // For those bits in the mask that are known to be one, we can propagate 813 // known bits from the RHS to V. 814 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 815 Known.One |= RHSKnown.One & MaskKnown.One; 816 // assume(~(v & b) = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 KnownBits MaskKnown = 823 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 824 825 // For those bits in the mask that are known to be one, we can propagate 826 // inverted known bits from the RHS to V. 827 Known.Zero |= RHSKnown.One & MaskKnown.One; 828 Known.One |= RHSKnown.Zero & MaskKnown.One; 829 // assume(v | b = a) 830 } else if (match(Cmp, 831 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 KnownBits BKnown = 836 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 837 838 // For those bits in B that are known to be zero, we can propagate known 839 // bits from the RHS to V. 840 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 841 Known.One |= RHSKnown.One & BKnown.Zero; 842 // assume(~(v | b) = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 KnownBits BKnown = 849 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 850 851 // For those bits in B that are known to be zero, we can propagate 852 // inverted known bits from the RHS to V. 853 Known.Zero |= RHSKnown.One & BKnown.Zero; 854 Known.One |= RHSKnown.Zero & BKnown.Zero; 855 // assume(v ^ b = a) 856 } else if (match(Cmp, 857 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 861 KnownBits BKnown = 862 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 863 864 // For those bits in B that are known to be zero, we can propagate known 865 // bits from the RHS to V. For those bits in B that are known to be one, 866 // we can propagate inverted known bits from the RHS to V. 867 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 868 Known.One |= RHSKnown.One & BKnown.Zero; 869 Known.Zero |= RHSKnown.One & BKnown.One; 870 Known.One |= RHSKnown.Zero & BKnown.One; 871 // assume(~(v ^ b) = a) 872 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 873 m_Value(A))) && 874 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 875 KnownBits RHSKnown = 876 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 877 KnownBits BKnown = 878 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 879 880 // For those bits in B that are known to be zero, we can propagate 881 // inverted known bits from the RHS to V. For those bits in B that are 882 // known to be one, we can propagate known bits from the RHS to V. 883 Known.Zero |= RHSKnown.One & BKnown.Zero; 884 Known.One |= RHSKnown.Zero & BKnown.Zero; 885 Known.Zero |= RHSKnown.Zero & BKnown.One; 886 Known.One |= RHSKnown.One & BKnown.One; 887 // assume(v << c = a) 888 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 889 m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 891 KnownBits RHSKnown = 892 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 893 894 // For those bits in RHS that are known, we can propagate them to known 895 // bits in V shifted to the right by C. 896 RHSKnown.Zero.lshrInPlace(C); 897 Known.Zero |= RHSKnown.Zero; 898 RHSKnown.One.lshrInPlace(C); 899 Known.One |= RHSKnown.One; 900 // assume(~(v << c) = a) 901 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 902 m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 904 KnownBits RHSKnown = 905 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 906 // For those bits in RHS that are known, we can propagate them inverted 907 // to known bits in V shifted to the right by C. 908 RHSKnown.One.lshrInPlace(C); 909 Known.Zero |= RHSKnown.One; 910 RHSKnown.Zero.lshrInPlace(C); 911 Known.One |= RHSKnown.Zero; 912 // assume(v >> c = a) 913 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 914 m_Value(A))) && 915 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 916 KnownBits RHSKnown = 917 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 918 // For those bits in RHS that are known, we can propagate them to known 919 // bits in V shifted to the right by C. 920 Known.Zero |= RHSKnown.Zero << C; 921 Known.One |= RHSKnown.One << C; 922 // assume(~(v >> c) = a) 923 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 924 m_Value(A))) && 925 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 926 KnownBits RHSKnown = 927 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 928 // For those bits in RHS that are known, we can propagate them inverted 929 // to known bits in V shifted to the right by C. 930 Known.Zero |= RHSKnown.One << C; 931 Known.One |= RHSKnown.Zero << C; 932 } 933 break; 934 case ICmpInst::ICMP_SGE: 935 // assume(v >=_s c) where c is non-negative 936 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 937 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 938 KnownBits RHSKnown = 939 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 940 941 if (RHSKnown.isNonNegative()) { 942 // We know that the sign bit is zero. 943 Known.makeNonNegative(); 944 } 945 } 946 break; 947 case ICmpInst::ICMP_SGT: 948 // assume(v >_s c) where c is at least -1. 949 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 950 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 951 KnownBits RHSKnown = 952 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 953 954 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 955 // We know that the sign bit is zero. 956 Known.makeNonNegative(); 957 } 958 } 959 break; 960 case ICmpInst::ICMP_SLE: 961 // assume(v <=_s c) where c is negative 962 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 963 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 964 KnownBits RHSKnown = 965 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 966 967 if (RHSKnown.isNegative()) { 968 // We know that the sign bit is one. 969 Known.makeNegative(); 970 } 971 } 972 break; 973 case ICmpInst::ICMP_SLT: 974 // assume(v <_s c) where c is non-positive 975 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 976 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 977 KnownBits RHSKnown = 978 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 979 980 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 981 // We know that the sign bit is one. 982 Known.makeNegative(); 983 } 984 } 985 break; 986 case ICmpInst::ICMP_ULE: 987 // assume(v <=_u c) 988 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 989 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 990 KnownBits RHSKnown = 991 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 992 993 // Whatever high bits in c are zero are known to be zero. 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 995 } 996 break; 997 case ICmpInst::ICMP_ULT: 998 // assume(v <_u c) 999 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 1000 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 1001 KnownBits RHSKnown = 1002 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 1003 1004 // If the RHS is known zero, then this assumption must be wrong (nothing 1005 // is unsigned less than zero). Signal a conflict and get out of here. 1006 if (RHSKnown.isZero()) { 1007 Known.Zero.setAllBits(); 1008 Known.One.setAllBits(); 1009 break; 1010 } 1011 1012 // Whatever high bits in c are zero are known to be zero (if c is a power 1013 // of 2, then one more). 1014 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 1015 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 1016 else 1017 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 1018 } 1019 break; 1020 } 1021 } 1022 1023 // If assumptions conflict with each other or previous known bits, then we 1024 // have a logical fallacy. It's possible that the assumption is not reachable, 1025 // so this isn't a real bug. On the other hand, the program may have undefined 1026 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1027 // clear out the known bits, try to warn the user, and hope for the best. 1028 if (Known.Zero.intersects(Known.One)) { 1029 Known.resetAll(); 1030 1031 if (Q.ORE) 1032 Q.ORE->emit([&]() { 1033 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1034 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1035 CxtI) 1036 << "Detected conflicting code assumptions. Program may " 1037 "have undefined behavior, or compiler may have " 1038 "internal error."; 1039 }); 1040 } 1041 } 1042 1043 /// Compute known bits from a shift operator, including those with a 1044 /// non-constant shift amount. Known is the output of this function. Known2 is a 1045 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1046 /// operator-specific functions that, given the known-zero or known-one bits 1047 /// respectively, and a shift amount, compute the implied known-zero or 1048 /// known-one bits of the shift operator's result respectively for that shift 1049 /// amount. The results from calling KZF and KOF are conservatively combined for 1050 /// all permitted shift amounts. 1051 static void computeKnownBitsFromShiftOperator( 1052 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1053 KnownBits &Known2, unsigned Depth, const Query &Q, 1054 function_ref<APInt(const APInt &, unsigned)> KZF, 1055 function_ref<APInt(const APInt &, unsigned)> KOF) { 1056 unsigned BitWidth = Known.getBitWidth(); 1057 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 if (Known.isConstant()) { 1060 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1061 1062 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1063 Known.Zero = KZF(Known.Zero, ShiftAmt); 1064 Known.One = KOF(Known.One, ShiftAmt); 1065 // If the known bits conflict, this must be an overflowing left shift, so 1066 // the shift result is poison. We can return anything we want. Choose 0 for 1067 // the best folding opportunity. 1068 if (Known.hasConflict()) 1069 Known.setAllZero(); 1070 1071 return; 1072 } 1073 1074 // If the shift amount could be greater than or equal to the bit-width of the 1075 // LHS, the value could be poison, but bail out because the check below is 1076 // expensive. 1077 // TODO: Should we just carry on? 1078 if (Known.getMaxValue().uge(BitWidth)) { 1079 Known.resetAll(); 1080 return; 1081 } 1082 1083 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1084 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1085 // limit value (which implies all bits are known). 1086 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1087 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1088 1089 // It would be more-clearly correct to use the two temporaries for this 1090 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1091 Known.resetAll(); 1092 1093 // If we know the shifter operand is nonzero, we can sometimes infer more 1094 // known bits. However this is expensive to compute, so be lazy about it and 1095 // only compute it when absolutely necessary. 1096 Optional<bool> ShifterOperandIsNonZero; 1097 1098 // Early exit if we can't constrain any well-defined shift amount. 1099 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1100 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1101 ShifterOperandIsNonZero = 1102 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1103 if (!*ShifterOperandIsNonZero) 1104 return; 1105 } 1106 1107 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1108 1109 Known.Zero.setAllBits(); 1110 Known.One.setAllBits(); 1111 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1112 // Combine the shifted known input bits only for those shift amounts 1113 // compatible with its known constraints. 1114 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1115 continue; 1116 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1117 continue; 1118 // If we know the shifter is nonzero, we may be able to infer more known 1119 // bits. This check is sunk down as far as possible to avoid the expensive 1120 // call to isKnownNonZero if the cheaper checks above fail. 1121 if (ShiftAmt == 0) { 1122 if (!ShifterOperandIsNonZero.hasValue()) 1123 ShifterOperandIsNonZero = 1124 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1125 if (*ShifterOperandIsNonZero) 1126 continue; 1127 } 1128 1129 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1130 Known.One &= KOF(Known2.One, ShiftAmt); 1131 } 1132 1133 // If the known bits conflict, the result is poison. Return a 0 and hope the 1134 // caller can further optimize that. 1135 if (Known.hasConflict()) 1136 Known.setAllZero(); 1137 } 1138 1139 static void computeKnownBitsFromOperator(const Operator *I, 1140 const APInt &DemandedElts, 1141 KnownBits &Known, unsigned Depth, 1142 const Query &Q) { 1143 unsigned BitWidth = Known.getBitWidth(); 1144 1145 KnownBits Known2(BitWidth); 1146 switch (I->getOpcode()) { 1147 default: break; 1148 case Instruction::Load: 1149 if (MDNode *MD = 1150 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1151 computeKnownBitsFromRangeMetadata(*MD, Known); 1152 break; 1153 case Instruction::And: { 1154 // If either the LHS or the RHS are Zero, the result is zero. 1155 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1156 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1157 1158 Known &= Known2; 1159 1160 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1161 // here we handle the more general case of adding any odd number by 1162 // matching the form add(x, add(x, y)) where y is odd. 1163 // TODO: This could be generalized to clearing any bit set in y where the 1164 // following bit is known to be unset in y. 1165 Value *X = nullptr, *Y = nullptr; 1166 if (!Known.Zero[0] && !Known.One[0] && 1167 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1168 Known2.resetAll(); 1169 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1170 if (Known2.countMinTrailingOnes() > 0) 1171 Known.Zero.setBit(0); 1172 } 1173 break; 1174 } 1175 case Instruction::Or: 1176 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1178 1179 Known |= Known2; 1180 break; 1181 case Instruction::Xor: 1182 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1183 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1184 1185 Known ^= Known2; 1186 break; 1187 case Instruction::Mul: { 1188 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1189 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1190 Known, Known2, Depth, Q); 1191 break; 1192 } 1193 case Instruction::UDiv: { 1194 // For the purposes of computing leading zeros we can conservatively 1195 // treat a udiv as a logical right shift by the power of 2 known to 1196 // be less than the denominator. 1197 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1198 unsigned LeadZ = Known2.countMinLeadingZeros(); 1199 1200 Known2.resetAll(); 1201 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1202 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1203 if (RHSMaxLeadingZeros != BitWidth) 1204 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1205 1206 Known.Zero.setHighBits(LeadZ); 1207 break; 1208 } 1209 case Instruction::Select: { 1210 const Value *LHS = nullptr, *RHS = nullptr; 1211 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1212 if (SelectPatternResult::isMinOrMax(SPF)) { 1213 computeKnownBits(RHS, Known, Depth + 1, Q); 1214 computeKnownBits(LHS, Known2, Depth + 1, Q); 1215 } else { 1216 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1217 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1218 } 1219 1220 unsigned MaxHighOnes = 0; 1221 unsigned MaxHighZeros = 0; 1222 if (SPF == SPF_SMAX) { 1223 // If both sides are negative, the result is negative. 1224 if (Known.isNegative() && Known2.isNegative()) 1225 // We can derive a lower bound on the result by taking the max of the 1226 // leading one bits. 1227 MaxHighOnes = 1228 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1229 // If either side is non-negative, the result is non-negative. 1230 else if (Known.isNonNegative() || Known2.isNonNegative()) 1231 MaxHighZeros = 1; 1232 } else if (SPF == SPF_SMIN) { 1233 // If both sides are non-negative, the result is non-negative. 1234 if (Known.isNonNegative() && Known2.isNonNegative()) 1235 // We can derive an upper bound on the result by taking the max of the 1236 // leading zero bits. 1237 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1238 Known2.countMinLeadingZeros()); 1239 // If either side is negative, the result is negative. 1240 else if (Known.isNegative() || Known2.isNegative()) 1241 MaxHighOnes = 1; 1242 } else if (SPF == SPF_UMAX) { 1243 // We can derive a lower bound on the result by taking the max of the 1244 // leading one bits. 1245 MaxHighOnes = 1246 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1247 } else if (SPF == SPF_UMIN) { 1248 // We can derive an upper bound on the result by taking the max of the 1249 // leading zero bits. 1250 MaxHighZeros = 1251 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1252 } else if (SPF == SPF_ABS) { 1253 // RHS from matchSelectPattern returns the negation part of abs pattern. 1254 // If the negate has an NSW flag we can assume the sign bit of the result 1255 // will be 0 because that makes abs(INT_MIN) undefined. 1256 if (match(RHS, m_Neg(m_Specific(LHS))) && 1257 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1258 MaxHighZeros = 1; 1259 } 1260 1261 // Only known if known in both the LHS and RHS. 1262 Known.One &= Known2.One; 1263 Known.Zero &= Known2.Zero; 1264 if (MaxHighOnes > 0) 1265 Known.One.setHighBits(MaxHighOnes); 1266 if (MaxHighZeros > 0) 1267 Known.Zero.setHighBits(MaxHighZeros); 1268 break; 1269 } 1270 case Instruction::FPTrunc: 1271 case Instruction::FPExt: 1272 case Instruction::FPToUI: 1273 case Instruction::FPToSI: 1274 case Instruction::SIToFP: 1275 case Instruction::UIToFP: 1276 break; // Can't work with floating point. 1277 case Instruction::PtrToInt: 1278 case Instruction::IntToPtr: 1279 // Fall through and handle them the same as zext/trunc. 1280 LLVM_FALLTHROUGH; 1281 case Instruction::ZExt: 1282 case Instruction::Trunc: { 1283 Type *SrcTy = I->getOperand(0)->getType(); 1284 1285 unsigned SrcBitWidth; 1286 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1287 // which fall through here. 1288 Type *ScalarTy = SrcTy->getScalarType(); 1289 SrcBitWidth = ScalarTy->isPointerTy() ? 1290 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1291 Q.DL.getTypeSizeInBits(ScalarTy); 1292 1293 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1294 Known = Known.anyextOrTrunc(SrcBitWidth); 1295 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1296 Known = Known.zextOrTrunc(BitWidth); 1297 break; 1298 } 1299 case Instruction::BitCast: { 1300 Type *SrcTy = I->getOperand(0)->getType(); 1301 if (SrcTy->isIntOrPtrTy() && 1302 // TODO: For now, not handling conversions like: 1303 // (bitcast i64 %x to <2 x i32>) 1304 !I->getType()->isVectorTy()) { 1305 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1306 break; 1307 } 1308 break; 1309 } 1310 case Instruction::SExt: { 1311 // Compute the bits in the result that are not present in the input. 1312 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1313 1314 Known = Known.trunc(SrcBitWidth); 1315 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1316 // If the sign bit of the input is known set or clear, then we know the 1317 // top bits of the result. 1318 Known = Known.sext(BitWidth); 1319 break; 1320 } 1321 case Instruction::Shl: { 1322 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1323 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1324 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1325 APInt KZResult = KnownZero << ShiftAmt; 1326 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1327 // If this shift has "nsw" keyword, then the result is either a poison 1328 // value or has the same sign bit as the first operand. 1329 if (NSW && KnownZero.isSignBitSet()) 1330 KZResult.setSignBit(); 1331 return KZResult; 1332 }; 1333 1334 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1335 APInt KOResult = KnownOne << ShiftAmt; 1336 if (NSW && KnownOne.isSignBitSet()) 1337 KOResult.setSignBit(); 1338 return KOResult; 1339 }; 1340 1341 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1342 KZF, KOF); 1343 break; 1344 } 1345 case Instruction::LShr: { 1346 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1347 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1348 APInt KZResult = KnownZero.lshr(ShiftAmt); 1349 // High bits known zero. 1350 KZResult.setHighBits(ShiftAmt); 1351 return KZResult; 1352 }; 1353 1354 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1355 return KnownOne.lshr(ShiftAmt); 1356 }; 1357 1358 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1359 KZF, KOF); 1360 break; 1361 } 1362 case Instruction::AShr: { 1363 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1364 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1365 return KnownZero.ashr(ShiftAmt); 1366 }; 1367 1368 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1369 return KnownOne.ashr(ShiftAmt); 1370 }; 1371 1372 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1373 KZF, KOF); 1374 break; 1375 } 1376 case Instruction::Sub: { 1377 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1378 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1379 DemandedElts, Known, Known2, Depth, Q); 1380 break; 1381 } 1382 case Instruction::Add: { 1383 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1384 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1385 DemandedElts, Known, Known2, Depth, Q); 1386 break; 1387 } 1388 case Instruction::SRem: 1389 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1390 APInt RA = Rem->getValue().abs(); 1391 if (RA.isPowerOf2()) { 1392 APInt LowBits = RA - 1; 1393 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1394 1395 // The low bits of the first operand are unchanged by the srem. 1396 Known.Zero = Known2.Zero & LowBits; 1397 Known.One = Known2.One & LowBits; 1398 1399 // If the first operand is non-negative or has all low bits zero, then 1400 // the upper bits are all zero. 1401 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1402 Known.Zero |= ~LowBits; 1403 1404 // If the first operand is negative and not all low bits are zero, then 1405 // the upper bits are all one. 1406 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1407 Known.One |= ~LowBits; 1408 1409 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1410 break; 1411 } 1412 } 1413 1414 // The sign bit is the LHS's sign bit, except when the result of the 1415 // remainder is zero. 1416 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1417 // If it's known zero, our sign bit is also zero. 1418 if (Known2.isNonNegative()) 1419 Known.makeNonNegative(); 1420 1421 break; 1422 case Instruction::URem: { 1423 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1424 const APInt &RA = Rem->getValue(); 1425 if (RA.isPowerOf2()) { 1426 APInt LowBits = (RA - 1); 1427 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1428 Known.Zero |= ~LowBits; 1429 Known.One &= LowBits; 1430 break; 1431 } 1432 } 1433 1434 // Since the result is less than or equal to either operand, any leading 1435 // zero bits in either operand must also exist in the result. 1436 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1437 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1438 1439 unsigned Leaders = 1440 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1441 Known.resetAll(); 1442 Known.Zero.setHighBits(Leaders); 1443 break; 1444 } 1445 case Instruction::Alloca: 1446 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1447 break; 1448 case Instruction::GetElementPtr: { 1449 // Analyze all of the subscripts of this getelementptr instruction 1450 // to determine if we can prove known low zero bits. 1451 KnownBits LocalKnown(BitWidth); 1452 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1453 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1454 1455 gep_type_iterator GTI = gep_type_begin(I); 1456 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1457 // TrailZ can only become smaller, short-circuit if we hit zero. 1458 if (TrailZ == 0) 1459 break; 1460 1461 Value *Index = I->getOperand(i); 1462 if (StructType *STy = GTI.getStructTypeOrNull()) { 1463 // Handle struct member offset arithmetic. 1464 1465 // Handle case when index is vector zeroinitializer 1466 Constant *CIndex = cast<Constant>(Index); 1467 if (CIndex->isZeroValue()) 1468 continue; 1469 1470 if (CIndex->getType()->isVectorTy()) 1471 Index = CIndex->getSplatValue(); 1472 1473 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1474 const StructLayout *SL = Q.DL.getStructLayout(STy); 1475 uint64_t Offset = SL->getElementOffset(Idx); 1476 TrailZ = std::min<unsigned>(TrailZ, 1477 countTrailingZeros(Offset)); 1478 } else { 1479 // Handle array index arithmetic. 1480 Type *IndexedTy = GTI.getIndexedType(); 1481 if (!IndexedTy->isSized()) { 1482 TrailZ = 0; 1483 break; 1484 } 1485 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1486 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1487 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1488 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1489 TrailZ = std::min(TrailZ, 1490 unsigned(countTrailingZeros(TypeSize) + 1491 LocalKnown.countMinTrailingZeros())); 1492 } 1493 } 1494 1495 Known.Zero.setLowBits(TrailZ); 1496 break; 1497 } 1498 case Instruction::PHI: { 1499 const PHINode *P = cast<PHINode>(I); 1500 // Handle the case of a simple two-predecessor recurrence PHI. 1501 // There's a lot more that could theoretically be done here, but 1502 // this is sufficient to catch some interesting cases. 1503 if (P->getNumIncomingValues() == 2) { 1504 for (unsigned i = 0; i != 2; ++i) { 1505 Value *L = P->getIncomingValue(i); 1506 Value *R = P->getIncomingValue(!i); 1507 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1508 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1509 Operator *LU = dyn_cast<Operator>(L); 1510 if (!LU) 1511 continue; 1512 unsigned Opcode = LU->getOpcode(); 1513 // Check for operations that have the property that if 1514 // both their operands have low zero bits, the result 1515 // will have low zero bits. 1516 if (Opcode == Instruction::Add || 1517 Opcode == Instruction::Sub || 1518 Opcode == Instruction::And || 1519 Opcode == Instruction::Or || 1520 Opcode == Instruction::Mul) { 1521 Value *LL = LU->getOperand(0); 1522 Value *LR = LU->getOperand(1); 1523 // Find a recurrence. 1524 if (LL == I) 1525 L = LR; 1526 else if (LR == I) 1527 L = LL; 1528 else 1529 continue; // Check for recurrence with L and R flipped. 1530 1531 // Change the context instruction to the "edge" that flows into the 1532 // phi. This is important because that is where the value is actually 1533 // "evaluated" even though it is used later somewhere else. (see also 1534 // D69571). 1535 Query RecQ = Q; 1536 1537 // Ok, we have a PHI of the form L op= R. Check for low 1538 // zero bits. 1539 RecQ.CxtI = RInst; 1540 computeKnownBits(R, Known2, Depth + 1, RecQ); 1541 1542 // We need to take the minimum number of known bits 1543 KnownBits Known3(BitWidth); 1544 RecQ.CxtI = LInst; 1545 computeKnownBits(L, Known3, Depth + 1, RecQ); 1546 1547 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1548 Known3.countMinTrailingZeros())); 1549 1550 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1551 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1552 // If initial value of recurrence is nonnegative, and we are adding 1553 // a nonnegative number with nsw, the result can only be nonnegative 1554 // or poison value regardless of the number of times we execute the 1555 // add in phi recurrence. If initial value is negative and we are 1556 // adding a negative number with nsw, the result can only be 1557 // negative or poison value. Similar arguments apply to sub and mul. 1558 // 1559 // (add non-negative, non-negative) --> non-negative 1560 // (add negative, negative) --> negative 1561 if (Opcode == Instruction::Add) { 1562 if (Known2.isNonNegative() && Known3.isNonNegative()) 1563 Known.makeNonNegative(); 1564 else if (Known2.isNegative() && Known3.isNegative()) 1565 Known.makeNegative(); 1566 } 1567 1568 // (sub nsw non-negative, negative) --> non-negative 1569 // (sub nsw negative, non-negative) --> negative 1570 else if (Opcode == Instruction::Sub && LL == I) { 1571 if (Known2.isNonNegative() && Known3.isNegative()) 1572 Known.makeNonNegative(); 1573 else if (Known2.isNegative() && Known3.isNonNegative()) 1574 Known.makeNegative(); 1575 } 1576 1577 // (mul nsw non-negative, non-negative) --> non-negative 1578 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1579 Known3.isNonNegative()) 1580 Known.makeNonNegative(); 1581 } 1582 1583 break; 1584 } 1585 } 1586 } 1587 1588 // Unreachable blocks may have zero-operand PHI nodes. 1589 if (P->getNumIncomingValues() == 0) 1590 break; 1591 1592 // Otherwise take the unions of the known bit sets of the operands, 1593 // taking conservative care to avoid excessive recursion. 1594 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1595 // Skip if every incoming value references to ourself. 1596 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1597 break; 1598 1599 Known.Zero.setAllBits(); 1600 Known.One.setAllBits(); 1601 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1602 Value *IncValue = P->getIncomingValue(u); 1603 // Skip direct self references. 1604 if (IncValue == P) continue; 1605 1606 // Change the context instruction to the "edge" that flows into the 1607 // phi. This is important because that is where the value is actually 1608 // "evaluated" even though it is used later somewhere else. (see also 1609 // D69571). 1610 Query RecQ = Q; 1611 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1612 1613 Known2 = KnownBits(BitWidth); 1614 // Recurse, but cap the recursion to one level, because we don't 1615 // want to waste time spinning around in loops. 1616 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1617 Known.Zero &= Known2.Zero; 1618 Known.One &= Known2.One; 1619 // If all bits have been ruled out, there's no need to check 1620 // more operands. 1621 if (!Known.Zero && !Known.One) 1622 break; 1623 } 1624 } 1625 break; 1626 } 1627 case Instruction::Call: 1628 case Instruction::Invoke: 1629 // If range metadata is attached to this call, set known bits from that, 1630 // and then intersect with known bits based on other properties of the 1631 // function. 1632 if (MDNode *MD = 1633 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1634 computeKnownBitsFromRangeMetadata(*MD, Known); 1635 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1636 computeKnownBits(RV, Known2, Depth + 1, Q); 1637 Known.Zero |= Known2.Zero; 1638 Known.One |= Known2.One; 1639 } 1640 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1641 switch (II->getIntrinsicID()) { 1642 default: break; 1643 case Intrinsic::abs: 1644 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1645 1646 // If the source's MSB is zero then we know the rest of the bits. 1647 if (Known2.isNonNegative()) { 1648 Known.Zero |= Known2.Zero; 1649 Known.One |= Known2.One; 1650 break; 1651 } 1652 1653 // Absolute value preserves trailing zero count. 1654 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1655 1656 // If this call is undefined for INT_MIN, the result is positive. We 1657 // also know it can't be INT_MIN if there is a set bit that isn't the 1658 // sign bit. 1659 Known2.One.clearSignBit(); 1660 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1661 Known.Zero.setSignBit(); 1662 // FIXME: Handle known negative input? 1663 // FIXME: Calculate the negated Known bits and combine them? 1664 break; 1665 case Intrinsic::bitreverse: 1666 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1667 Known.Zero |= Known2.Zero.reverseBits(); 1668 Known.One |= Known2.One.reverseBits(); 1669 break; 1670 case Intrinsic::bswap: 1671 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1672 Known.Zero |= Known2.Zero.byteSwap(); 1673 Known.One |= Known2.One.byteSwap(); 1674 break; 1675 case Intrinsic::ctlz: { 1676 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1677 // If we have a known 1, its position is our upper bound. 1678 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1679 // If this call is undefined for 0, the result will be less than 2^n. 1680 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1681 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1682 unsigned LowBits = Log2_32(PossibleLZ)+1; 1683 Known.Zero.setBitsFrom(LowBits); 1684 break; 1685 } 1686 case Intrinsic::cttz: { 1687 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1688 // If we have a known 1, its position is our upper bound. 1689 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1690 // If this call is undefined for 0, the result will be less than 2^n. 1691 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1692 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1693 unsigned LowBits = Log2_32(PossibleTZ)+1; 1694 Known.Zero.setBitsFrom(LowBits); 1695 break; 1696 } 1697 case Intrinsic::ctpop: { 1698 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1699 // We can bound the space the count needs. Also, bits known to be zero 1700 // can't contribute to the population. 1701 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1702 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1703 Known.Zero.setBitsFrom(LowBits); 1704 // TODO: we could bound KnownOne using the lower bound on the number 1705 // of bits which might be set provided by popcnt KnownOne2. 1706 break; 1707 } 1708 case Intrinsic::fshr: 1709 case Intrinsic::fshl: { 1710 const APInt *SA; 1711 if (!match(I->getOperand(2), m_APInt(SA))) 1712 break; 1713 1714 // Normalize to funnel shift left. 1715 uint64_t ShiftAmt = SA->urem(BitWidth); 1716 if (II->getIntrinsicID() == Intrinsic::fshr) 1717 ShiftAmt = BitWidth - ShiftAmt; 1718 1719 KnownBits Known3(BitWidth); 1720 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1721 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1722 1723 Known.Zero = 1724 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1725 Known.One = 1726 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1727 break; 1728 } 1729 case Intrinsic::uadd_sat: 1730 case Intrinsic::usub_sat: { 1731 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1732 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1733 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1734 1735 // Add: Leading ones of either operand are preserved. 1736 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1737 // as leading zeros in the result. 1738 unsigned LeadingKnown; 1739 if (IsAdd) 1740 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1741 Known2.countMinLeadingOnes()); 1742 else 1743 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1744 Known2.countMinLeadingOnes()); 1745 1746 Known = KnownBits::computeForAddSub( 1747 IsAdd, /* NSW */ false, Known, Known2); 1748 1749 // We select between the operation result and all-ones/zero 1750 // respectively, so we can preserve known ones/zeros. 1751 if (IsAdd) { 1752 Known.One.setHighBits(LeadingKnown); 1753 Known.Zero.clearAllBits(); 1754 } else { 1755 Known.Zero.setHighBits(LeadingKnown); 1756 Known.One.clearAllBits(); 1757 } 1758 break; 1759 } 1760 case Intrinsic::x86_sse42_crc32_64_64: 1761 Known.Zero.setBitsFrom(32); 1762 break; 1763 } 1764 } 1765 break; 1766 case Instruction::ShuffleVector: { 1767 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1768 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1769 if (!Shuf) { 1770 Known.resetAll(); 1771 return; 1772 } 1773 // For undef elements, we don't know anything about the common state of 1774 // the shuffle result. 1775 APInt DemandedLHS, DemandedRHS; 1776 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1777 Known.resetAll(); 1778 return; 1779 } 1780 Known.One.setAllBits(); 1781 Known.Zero.setAllBits(); 1782 if (!!DemandedLHS) { 1783 const Value *LHS = Shuf->getOperand(0); 1784 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1785 // If we don't know any bits, early out. 1786 if (Known.isUnknown()) 1787 break; 1788 } 1789 if (!!DemandedRHS) { 1790 const Value *RHS = Shuf->getOperand(1); 1791 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1792 Known.One &= Known2.One; 1793 Known.Zero &= Known2.Zero; 1794 } 1795 break; 1796 } 1797 case Instruction::InsertElement: { 1798 const Value *Vec = I->getOperand(0); 1799 const Value *Elt = I->getOperand(1); 1800 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1801 // Early out if the index is non-constant or out-of-range. 1802 unsigned NumElts = DemandedElts.getBitWidth(); 1803 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1804 Known.resetAll(); 1805 return; 1806 } 1807 Known.One.setAllBits(); 1808 Known.Zero.setAllBits(); 1809 unsigned EltIdx = CIdx->getZExtValue(); 1810 // Do we demand the inserted element? 1811 if (DemandedElts[EltIdx]) { 1812 computeKnownBits(Elt, Known, Depth + 1, Q); 1813 // If we don't know any bits, early out. 1814 if (Known.isUnknown()) 1815 break; 1816 } 1817 // We don't need the base vector element that has been inserted. 1818 APInt DemandedVecElts = DemandedElts; 1819 DemandedVecElts.clearBit(EltIdx); 1820 if (!!DemandedVecElts) { 1821 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1822 Known.One &= Known2.One; 1823 Known.Zero &= Known2.Zero; 1824 } 1825 break; 1826 } 1827 case Instruction::ExtractElement: { 1828 // Look through extract element. If the index is non-constant or 1829 // out-of-range demand all elements, otherwise just the extracted element. 1830 const Value *Vec = I->getOperand(0); 1831 const Value *Idx = I->getOperand(1); 1832 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1833 if (isa<ScalableVectorType>(Vec->getType())) { 1834 // FIXME: there's probably *something* we can do with scalable vectors 1835 Known.resetAll(); 1836 break; 1837 } 1838 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1839 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1840 if (CIdx && CIdx->getValue().ult(NumElts)) 1841 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1842 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1843 break; 1844 } 1845 case Instruction::ExtractValue: 1846 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1847 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1848 if (EVI->getNumIndices() != 1) break; 1849 if (EVI->getIndices()[0] == 0) { 1850 switch (II->getIntrinsicID()) { 1851 default: break; 1852 case Intrinsic::uadd_with_overflow: 1853 case Intrinsic::sadd_with_overflow: 1854 computeKnownBitsAddSub(true, II->getArgOperand(0), 1855 II->getArgOperand(1), false, DemandedElts, 1856 Known, Known2, Depth, Q); 1857 break; 1858 case Intrinsic::usub_with_overflow: 1859 case Intrinsic::ssub_with_overflow: 1860 computeKnownBitsAddSub(false, II->getArgOperand(0), 1861 II->getArgOperand(1), false, DemandedElts, 1862 Known, Known2, Depth, Q); 1863 break; 1864 case Intrinsic::umul_with_overflow: 1865 case Intrinsic::smul_with_overflow: 1866 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1867 DemandedElts, Known, Known2, Depth, Q); 1868 break; 1869 } 1870 } 1871 } 1872 break; 1873 } 1874 } 1875 1876 /// Determine which bits of V are known to be either zero or one and return 1877 /// them. 1878 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1879 unsigned Depth, const Query &Q) { 1880 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1881 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1882 return Known; 1883 } 1884 1885 /// Determine which bits of V are known to be either zero or one and return 1886 /// them. 1887 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1888 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1889 computeKnownBits(V, Known, Depth, Q); 1890 return Known; 1891 } 1892 1893 /// Determine which bits of V are known to be either zero or one and return 1894 /// them in the Known bit set. 1895 /// 1896 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1897 /// we cannot optimize based on the assumption that it is zero without changing 1898 /// it to be an explicit zero. If we don't change it to zero, other code could 1899 /// optimized based on the contradictory assumption that it is non-zero. 1900 /// Because instcombine aggressively folds operations with undef args anyway, 1901 /// this won't lose us code quality. 1902 /// 1903 /// This function is defined on values with integer type, values with pointer 1904 /// type, and vectors of integers. In the case 1905 /// where V is a vector, known zero, and known one values are the 1906 /// same width as the vector element, and the bit is set only if it is true 1907 /// for all of the demanded elements in the vector specified by DemandedElts. 1908 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1909 KnownBits &Known, unsigned Depth, const Query &Q) { 1910 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1911 // No demanded elts or V is a scalable vector, better to assume we don't 1912 // know anything. 1913 Known.resetAll(); 1914 return; 1915 } 1916 1917 assert(V && "No Value?"); 1918 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1919 1920 #ifndef NDEBUG 1921 Type *Ty = V->getType(); 1922 unsigned BitWidth = Known.getBitWidth(); 1923 1924 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1925 "Not integer or pointer type!"); 1926 1927 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1928 assert( 1929 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1930 "DemandedElt width should equal the fixed vector number of elements"); 1931 } else { 1932 assert(DemandedElts == APInt(1, 1) && 1933 "DemandedElt width should be 1 for scalars"); 1934 } 1935 1936 Type *ScalarTy = Ty->getScalarType(); 1937 if (ScalarTy->isPointerTy()) { 1938 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1939 "V and Known should have same BitWidth"); 1940 } else { 1941 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1942 "V and Known should have same BitWidth"); 1943 } 1944 #endif 1945 1946 const APInt *C; 1947 if (match(V, m_APInt(C))) { 1948 // We know all of the bits for a scalar constant or a splat vector constant! 1949 Known.One = *C; 1950 Known.Zero = ~Known.One; 1951 return; 1952 } 1953 // Null and aggregate-zero are all-zeros. 1954 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1955 Known.setAllZero(); 1956 return; 1957 } 1958 // Handle a constant vector by taking the intersection of the known bits of 1959 // each element. 1960 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1961 // We know that CDV must be a vector of integers. Take the intersection of 1962 // each element. 1963 Known.Zero.setAllBits(); Known.One.setAllBits(); 1964 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1965 if (!DemandedElts[i]) 1966 continue; 1967 APInt Elt = CDV->getElementAsAPInt(i); 1968 Known.Zero &= ~Elt; 1969 Known.One &= Elt; 1970 } 1971 return; 1972 } 1973 1974 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1975 // We know that CV must be a vector of integers. Take the intersection of 1976 // each element. 1977 Known.Zero.setAllBits(); Known.One.setAllBits(); 1978 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1979 if (!DemandedElts[i]) 1980 continue; 1981 Constant *Element = CV->getAggregateElement(i); 1982 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1983 if (!ElementCI) { 1984 Known.resetAll(); 1985 return; 1986 } 1987 const APInt &Elt = ElementCI->getValue(); 1988 Known.Zero &= ~Elt; 1989 Known.One &= Elt; 1990 } 1991 return; 1992 } 1993 1994 // Start out not knowing anything. 1995 Known.resetAll(); 1996 1997 // We can't imply anything about undefs. 1998 if (isa<UndefValue>(V)) 1999 return; 2000 2001 // There's no point in looking through other users of ConstantData for 2002 // assumptions. Confirm that we've handled them all. 2003 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2004 2005 // All recursive calls that increase depth must come after this. 2006 if (Depth == MaxAnalysisRecursionDepth) 2007 return; 2008 2009 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2010 // the bits of its aliasee. 2011 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2012 if (!GA->isInterposable()) 2013 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2014 return; 2015 } 2016 2017 if (const Operator *I = dyn_cast<Operator>(V)) 2018 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2019 2020 // Aligned pointers have trailing zeros - refine Known.Zero set 2021 if (isa<PointerType>(V->getType())) { 2022 Align Alignment = V->getPointerAlignment(Q.DL); 2023 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 2024 } 2025 2026 // computeKnownBitsFromAssume strictly refines Known. 2027 // Therefore, we run them after computeKnownBitsFromOperator. 2028 2029 // Check whether a nearby assume intrinsic can determine some known bits. 2030 computeKnownBitsFromAssume(V, Known, Depth, Q); 2031 2032 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2033 } 2034 2035 /// Return true if the given value is known to have exactly one 2036 /// bit set when defined. For vectors return true if every element is known to 2037 /// be a power of two when defined. Supports values with integer or pointer 2038 /// types and vectors of integers. 2039 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2040 const Query &Q) { 2041 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2042 2043 // Attempt to match against constants. 2044 if (OrZero && match(V, m_Power2OrZero())) 2045 return true; 2046 if (match(V, m_Power2())) 2047 return true; 2048 2049 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2050 // it is shifted off the end then the result is undefined. 2051 if (match(V, m_Shl(m_One(), m_Value()))) 2052 return true; 2053 2054 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2055 // the bottom. If it is shifted off the bottom then the result is undefined. 2056 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2057 return true; 2058 2059 // The remaining tests are all recursive, so bail out if we hit the limit. 2060 if (Depth++ == MaxAnalysisRecursionDepth) 2061 return false; 2062 2063 Value *X = nullptr, *Y = nullptr; 2064 // A shift left or a logical shift right of a power of two is a power of two 2065 // or zero. 2066 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2067 match(V, m_LShr(m_Value(X), m_Value())))) 2068 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2069 2070 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2071 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2072 2073 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2074 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2075 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2076 2077 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2078 // A power of two and'd with anything is a power of two or zero. 2079 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2080 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2081 return true; 2082 // X & (-X) is always a power of two or zero. 2083 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2084 return true; 2085 return false; 2086 } 2087 2088 // Adding a power-of-two or zero to the same power-of-two or zero yields 2089 // either the original power-of-two, a larger power-of-two or zero. 2090 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2091 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2092 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2093 Q.IIQ.hasNoSignedWrap(VOBO)) { 2094 if (match(X, m_And(m_Specific(Y), m_Value())) || 2095 match(X, m_And(m_Value(), m_Specific(Y)))) 2096 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2097 return true; 2098 if (match(Y, m_And(m_Specific(X), m_Value())) || 2099 match(Y, m_And(m_Value(), m_Specific(X)))) 2100 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2101 return true; 2102 2103 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2104 KnownBits LHSBits(BitWidth); 2105 computeKnownBits(X, LHSBits, Depth, Q); 2106 2107 KnownBits RHSBits(BitWidth); 2108 computeKnownBits(Y, RHSBits, Depth, Q); 2109 // If i8 V is a power of two or zero: 2110 // ZeroBits: 1 1 1 0 1 1 1 1 2111 // ~ZeroBits: 0 0 0 1 0 0 0 0 2112 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2113 // If OrZero isn't set, we cannot give back a zero result. 2114 // Make sure either the LHS or RHS has a bit set. 2115 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2116 return true; 2117 } 2118 } 2119 2120 // An exact divide or right shift can only shift off zero bits, so the result 2121 // is a power of two only if the first operand is a power of two and not 2122 // copying a sign bit (sdiv int_min, 2). 2123 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2124 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2125 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2126 Depth, Q); 2127 } 2128 2129 return false; 2130 } 2131 2132 /// Test whether a GEP's result is known to be non-null. 2133 /// 2134 /// Uses properties inherent in a GEP to try to determine whether it is known 2135 /// to be non-null. 2136 /// 2137 /// Currently this routine does not support vector GEPs. 2138 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2139 const Query &Q) { 2140 const Function *F = nullptr; 2141 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2142 F = I->getFunction(); 2143 2144 if (!GEP->isInBounds() || 2145 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2146 return false; 2147 2148 // FIXME: Support vector-GEPs. 2149 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2150 2151 // If the base pointer is non-null, we cannot walk to a null address with an 2152 // inbounds GEP in address space zero. 2153 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2154 return true; 2155 2156 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2157 // If so, then the GEP cannot produce a null pointer, as doing so would 2158 // inherently violate the inbounds contract within address space zero. 2159 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2160 GTI != GTE; ++GTI) { 2161 // Struct types are easy -- they must always be indexed by a constant. 2162 if (StructType *STy = GTI.getStructTypeOrNull()) { 2163 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2164 unsigned ElementIdx = OpC->getZExtValue(); 2165 const StructLayout *SL = Q.DL.getStructLayout(STy); 2166 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2167 if (ElementOffset > 0) 2168 return true; 2169 continue; 2170 } 2171 2172 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2173 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2174 continue; 2175 2176 // Fast path the constant operand case both for efficiency and so we don't 2177 // increment Depth when just zipping down an all-constant GEP. 2178 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2179 if (!OpC->isZero()) 2180 return true; 2181 continue; 2182 } 2183 2184 // We post-increment Depth here because while isKnownNonZero increments it 2185 // as well, when we pop back up that increment won't persist. We don't want 2186 // to recurse 10k times just because we have 10k GEP operands. We don't 2187 // bail completely out because we want to handle constant GEPs regardless 2188 // of depth. 2189 if (Depth++ >= MaxAnalysisRecursionDepth) 2190 continue; 2191 2192 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2193 return true; 2194 } 2195 2196 return false; 2197 } 2198 2199 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2200 const Instruction *CtxI, 2201 const DominatorTree *DT) { 2202 if (isa<Constant>(V)) 2203 return false; 2204 2205 if (!CtxI || !DT) 2206 return false; 2207 2208 unsigned NumUsesExplored = 0; 2209 for (auto *U : V->users()) { 2210 // Avoid massive lists 2211 if (NumUsesExplored >= DomConditionsMaxUses) 2212 break; 2213 NumUsesExplored++; 2214 2215 // If the value is used as an argument to a call or invoke, then argument 2216 // attributes may provide an answer about null-ness. 2217 if (const auto *CB = dyn_cast<CallBase>(U)) 2218 if (auto *CalledFunc = CB->getCalledFunction()) 2219 for (const Argument &Arg : CalledFunc->args()) 2220 if (CB->getArgOperand(Arg.getArgNo()) == V && 2221 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2222 return true; 2223 2224 // If the value is used as a load/store, then the pointer must be non null. 2225 if (V == getLoadStorePointerOperand(U)) { 2226 const Instruction *I = cast<Instruction>(U); 2227 if (!NullPointerIsDefined(I->getFunction(), 2228 V->getType()->getPointerAddressSpace()) && 2229 DT->dominates(I, CtxI)) 2230 return true; 2231 } 2232 2233 // Consider only compare instructions uniquely controlling a branch 2234 CmpInst::Predicate Pred; 2235 if (!match(const_cast<User *>(U), 2236 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2237 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2238 continue; 2239 2240 SmallVector<const User *, 4> WorkList; 2241 SmallPtrSet<const User *, 4> Visited; 2242 for (auto *CmpU : U->users()) { 2243 assert(WorkList.empty() && "Should be!"); 2244 if (Visited.insert(CmpU).second) 2245 WorkList.push_back(CmpU); 2246 2247 while (!WorkList.empty()) { 2248 auto *Curr = WorkList.pop_back_val(); 2249 2250 // If a user is an AND, add all its users to the work list. We only 2251 // propagate "pred != null" condition through AND because it is only 2252 // correct to assume that all conditions of AND are met in true branch. 2253 // TODO: Support similar logic of OR and EQ predicate? 2254 if (Pred == ICmpInst::ICMP_NE) 2255 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2256 if (BO->getOpcode() == Instruction::And) { 2257 for (auto *BOU : BO->users()) 2258 if (Visited.insert(BOU).second) 2259 WorkList.push_back(BOU); 2260 continue; 2261 } 2262 2263 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2264 assert(BI->isConditional() && "uses a comparison!"); 2265 2266 BasicBlock *NonNullSuccessor = 2267 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2268 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2269 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2270 return true; 2271 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2272 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2273 return true; 2274 } 2275 } 2276 } 2277 } 2278 2279 return false; 2280 } 2281 2282 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2283 /// ensure that the value it's attached to is never Value? 'RangeType' is 2284 /// is the type of the value described by the range. 2285 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2286 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2287 assert(NumRanges >= 1); 2288 for (unsigned i = 0; i < NumRanges; ++i) { 2289 ConstantInt *Lower = 2290 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2291 ConstantInt *Upper = 2292 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2293 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2294 if (Range.contains(Value)) 2295 return false; 2296 } 2297 return true; 2298 } 2299 2300 /// Return true if the given value is known to be non-zero when defined. For 2301 /// vectors, return true if every demanded element is known to be non-zero when 2302 /// defined. For pointers, if the context instruction and dominator tree are 2303 /// specified, perform context-sensitive analysis and return true if the 2304 /// pointer couldn't possibly be null at the specified instruction. 2305 /// Supports values with integer or pointer type and vectors of integers. 2306 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2307 const Query &Q) { 2308 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2309 // vector 2310 if (isa<ScalableVectorType>(V->getType())) 2311 return false; 2312 2313 if (auto *C = dyn_cast<Constant>(V)) { 2314 if (C->isNullValue()) 2315 return false; 2316 if (isa<ConstantInt>(C)) 2317 // Must be non-zero due to null test above. 2318 return true; 2319 2320 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2321 // See the comment for IntToPtr/PtrToInt instructions below. 2322 if (CE->getOpcode() == Instruction::IntToPtr || 2323 CE->getOpcode() == Instruction::PtrToInt) 2324 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2325 Q.DL.getTypeSizeInBits(CE->getType())) 2326 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2327 } 2328 2329 // For constant vectors, check that all elements are undefined or known 2330 // non-zero to determine that the whole vector is known non-zero. 2331 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2332 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2333 if (!DemandedElts[i]) 2334 continue; 2335 Constant *Elt = C->getAggregateElement(i); 2336 if (!Elt || Elt->isNullValue()) 2337 return false; 2338 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2339 return false; 2340 } 2341 return true; 2342 } 2343 2344 // A global variable in address space 0 is non null unless extern weak 2345 // or an absolute symbol reference. Other address spaces may have null as a 2346 // valid address for a global, so we can't assume anything. 2347 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2348 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2349 GV->getType()->getAddressSpace() == 0) 2350 return true; 2351 } else 2352 return false; 2353 } 2354 2355 if (auto *I = dyn_cast<Instruction>(V)) { 2356 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2357 // If the possible ranges don't contain zero, then the value is 2358 // definitely non-zero. 2359 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2360 const APInt ZeroValue(Ty->getBitWidth(), 0); 2361 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2362 return true; 2363 } 2364 } 2365 } 2366 2367 if (isKnownNonZeroFromAssume(V, Q)) 2368 return true; 2369 2370 // Some of the tests below are recursive, so bail out if we hit the limit. 2371 if (Depth++ >= MaxAnalysisRecursionDepth) 2372 return false; 2373 2374 // Check for pointer simplifications. 2375 2376 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2377 // Alloca never returns null, malloc might. 2378 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2379 return true; 2380 2381 // A byval, inalloca may not be null in a non-default addres space. A 2382 // nonnull argument is assumed never 0. 2383 if (const Argument *A = dyn_cast<Argument>(V)) { 2384 if (((A->hasPassPointeeByValueCopyAttr() && 2385 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2386 A->hasNonNullAttr())) 2387 return true; 2388 } 2389 2390 // A Load tagged with nonnull metadata is never null. 2391 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2392 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2393 return true; 2394 2395 if (const auto *Call = dyn_cast<CallBase>(V)) { 2396 if (Call->isReturnNonNull()) 2397 return true; 2398 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2399 return isKnownNonZero(RP, Depth, Q); 2400 } 2401 } 2402 2403 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2404 return true; 2405 2406 // Check for recursive pointer simplifications. 2407 if (V->getType()->isPointerTy()) { 2408 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2409 // do not alter the value, or at least not the nullness property of the 2410 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2411 // 2412 // Note that we have to take special care to avoid looking through 2413 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2414 // as casts that can alter the value, e.g., AddrSpaceCasts. 2415 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2416 if (isGEPKnownNonNull(GEP, Depth, Q)) 2417 return true; 2418 2419 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2420 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2421 2422 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2423 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2424 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2425 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2426 } 2427 2428 // Similar to int2ptr above, we can look through ptr2int here if the cast 2429 // is a no-op or an extend and not a truncate. 2430 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2431 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2432 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2433 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2434 2435 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2436 2437 // X | Y != 0 if X != 0 or Y != 0. 2438 Value *X = nullptr, *Y = nullptr; 2439 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2440 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2441 isKnownNonZero(Y, DemandedElts, Depth, Q); 2442 2443 // ext X != 0 if X != 0. 2444 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2445 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2446 2447 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2448 // if the lowest bit is shifted off the end. 2449 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2450 // shl nuw can't remove any non-zero bits. 2451 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2452 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2453 return isKnownNonZero(X, Depth, Q); 2454 2455 KnownBits Known(BitWidth); 2456 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2457 if (Known.One[0]) 2458 return true; 2459 } 2460 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2461 // defined if the sign bit is shifted off the end. 2462 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2463 // shr exact can only shift out zero bits. 2464 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2465 if (BO->isExact()) 2466 return isKnownNonZero(X, Depth, Q); 2467 2468 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2469 if (Known.isNegative()) 2470 return true; 2471 2472 // If the shifter operand is a constant, and all of the bits shifted 2473 // out are known to be zero, and X is known non-zero then at least one 2474 // non-zero bit must remain. 2475 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2476 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2477 // Is there a known one in the portion not shifted out? 2478 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2479 return true; 2480 // Are all the bits to be shifted out known zero? 2481 if (Known.countMinTrailingZeros() >= ShiftVal) 2482 return isKnownNonZero(X, DemandedElts, Depth, Q); 2483 } 2484 } 2485 // div exact can only produce a zero if the dividend is zero. 2486 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2487 return isKnownNonZero(X, DemandedElts, Depth, Q); 2488 } 2489 // X + Y. 2490 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2491 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2492 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2493 2494 // If X and Y are both non-negative (as signed values) then their sum is not 2495 // zero unless both X and Y are zero. 2496 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2497 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2498 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2499 return true; 2500 2501 // If X and Y are both negative (as signed values) then their sum is not 2502 // zero unless both X and Y equal INT_MIN. 2503 if (XKnown.isNegative() && YKnown.isNegative()) { 2504 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2505 // The sign bit of X is set. If some other bit is set then X is not equal 2506 // to INT_MIN. 2507 if (XKnown.One.intersects(Mask)) 2508 return true; 2509 // The sign bit of Y is set. If some other bit is set then Y is not equal 2510 // to INT_MIN. 2511 if (YKnown.One.intersects(Mask)) 2512 return true; 2513 } 2514 2515 // The sum of a non-negative number and a power of two is not zero. 2516 if (XKnown.isNonNegative() && 2517 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2518 return true; 2519 if (YKnown.isNonNegative() && 2520 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2521 return true; 2522 } 2523 // X * Y. 2524 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2525 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2526 // If X and Y are non-zero then so is X * Y as long as the multiplication 2527 // does not overflow. 2528 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2529 isKnownNonZero(X, DemandedElts, Depth, Q) && 2530 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2531 return true; 2532 } 2533 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2534 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2535 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2536 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2537 return true; 2538 } 2539 // PHI 2540 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2541 // Try and detect a recurrence that monotonically increases from a 2542 // starting value, as these are common as induction variables. 2543 if (PN->getNumIncomingValues() == 2) { 2544 Value *Start = PN->getIncomingValue(0); 2545 Value *Induction = PN->getIncomingValue(1); 2546 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2547 std::swap(Start, Induction); 2548 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2549 if (!C->isZero() && !C->isNegative()) { 2550 ConstantInt *X; 2551 if (Q.IIQ.UseInstrInfo && 2552 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2553 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2554 !X->isNegative()) 2555 return true; 2556 } 2557 } 2558 } 2559 // Check if all incoming values are non-zero constant. 2560 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2561 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2562 }); 2563 if (AllNonZeroConstants) 2564 return true; 2565 } 2566 // ExtractElement 2567 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2568 const Value *Vec = EEI->getVectorOperand(); 2569 const Value *Idx = EEI->getIndexOperand(); 2570 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2571 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 2572 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2573 if (CIdx && CIdx->getValue().ult(NumElts)) 2574 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2575 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2576 } 2577 2578 KnownBits Known(BitWidth); 2579 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2580 return Known.One != 0; 2581 } 2582 2583 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2584 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2585 // vector 2586 if (isa<ScalableVectorType>(V->getType())) 2587 return false; 2588 2589 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2590 APInt DemandedElts = 2591 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2592 return isKnownNonZero(V, DemandedElts, Depth, Q); 2593 } 2594 2595 /// Return true if V2 == V1 + X, where X is known non-zero. 2596 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2597 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2598 if (!BO || BO->getOpcode() != Instruction::Add) 2599 return false; 2600 Value *Op = nullptr; 2601 if (V2 == BO->getOperand(0)) 2602 Op = BO->getOperand(1); 2603 else if (V2 == BO->getOperand(1)) 2604 Op = BO->getOperand(0); 2605 else 2606 return false; 2607 return isKnownNonZero(Op, 0, Q); 2608 } 2609 2610 /// Return true if it is known that V1 != V2. 2611 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2612 if (V1 == V2) 2613 return false; 2614 if (V1->getType() != V2->getType()) 2615 // We can't look through casts yet. 2616 return false; 2617 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2618 return true; 2619 2620 if (V1->getType()->isIntOrIntVectorTy()) { 2621 // Are any known bits in V1 contradictory to known bits in V2? If V1 2622 // has a known zero where V2 has a known one, they must not be equal. 2623 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2624 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2625 2626 if (Known1.Zero.intersects(Known2.One) || 2627 Known2.Zero.intersects(Known1.One)) 2628 return true; 2629 } 2630 return false; 2631 } 2632 2633 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2634 /// simplify operations downstream. Mask is known to be zero for bits that V 2635 /// cannot have. 2636 /// 2637 /// This function is defined on values with integer type, values with pointer 2638 /// type, and vectors of integers. In the case 2639 /// where V is a vector, the mask, known zero, and known one values are the 2640 /// same width as the vector element, and the bit is set only if it is true 2641 /// for all of the elements in the vector. 2642 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2643 const Query &Q) { 2644 KnownBits Known(Mask.getBitWidth()); 2645 computeKnownBits(V, Known, Depth, Q); 2646 return Mask.isSubsetOf(Known.Zero); 2647 } 2648 2649 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2650 // Returns the input and lower/upper bounds. 2651 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2652 const APInt *&CLow, const APInt *&CHigh) { 2653 assert(isa<Operator>(Select) && 2654 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2655 "Input should be a Select!"); 2656 2657 const Value *LHS = nullptr, *RHS = nullptr; 2658 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2659 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2660 return false; 2661 2662 if (!match(RHS, m_APInt(CLow))) 2663 return false; 2664 2665 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2666 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2667 if (getInverseMinMaxFlavor(SPF) != SPF2) 2668 return false; 2669 2670 if (!match(RHS2, m_APInt(CHigh))) 2671 return false; 2672 2673 if (SPF == SPF_SMIN) 2674 std::swap(CLow, CHigh); 2675 2676 In = LHS2; 2677 return CLow->sle(*CHigh); 2678 } 2679 2680 /// For vector constants, loop over the elements and find the constant with the 2681 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2682 /// or if any element was not analyzed; otherwise, return the count for the 2683 /// element with the minimum number of sign bits. 2684 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2685 const APInt &DemandedElts, 2686 unsigned TyBits) { 2687 const auto *CV = dyn_cast<Constant>(V); 2688 if (!CV || !isa<FixedVectorType>(CV->getType())) 2689 return 0; 2690 2691 unsigned MinSignBits = TyBits; 2692 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2693 for (unsigned i = 0; i != NumElts; ++i) { 2694 if (!DemandedElts[i]) 2695 continue; 2696 // If we find a non-ConstantInt, bail out. 2697 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2698 if (!Elt) 2699 return 0; 2700 2701 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2702 } 2703 2704 return MinSignBits; 2705 } 2706 2707 static unsigned ComputeNumSignBitsImpl(const Value *V, 2708 const APInt &DemandedElts, 2709 unsigned Depth, const Query &Q); 2710 2711 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2712 unsigned Depth, const Query &Q) { 2713 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2714 assert(Result > 0 && "At least one sign bit needs to be present!"); 2715 return Result; 2716 } 2717 2718 /// Return the number of times the sign bit of the register is replicated into 2719 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2720 /// (itself), but other cases can give us information. For example, immediately 2721 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2722 /// other, so we return 3. For vectors, return the number of sign bits for the 2723 /// vector element with the minimum number of known sign bits of the demanded 2724 /// elements in the vector specified by DemandedElts. 2725 static unsigned ComputeNumSignBitsImpl(const Value *V, 2726 const APInt &DemandedElts, 2727 unsigned Depth, const Query &Q) { 2728 Type *Ty = V->getType(); 2729 2730 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2731 // vector 2732 if (isa<ScalableVectorType>(Ty)) 2733 return 1; 2734 2735 #ifndef NDEBUG 2736 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2737 2738 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2739 assert( 2740 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2741 "DemandedElt width should equal the fixed vector number of elements"); 2742 } else { 2743 assert(DemandedElts == APInt(1, 1) && 2744 "DemandedElt width should be 1 for scalars"); 2745 } 2746 #endif 2747 2748 // We return the minimum number of sign bits that are guaranteed to be present 2749 // in V, so for undef we have to conservatively return 1. We don't have the 2750 // same behavior for poison though -- that's a FIXME today. 2751 2752 Type *ScalarTy = Ty->getScalarType(); 2753 unsigned TyBits = ScalarTy->isPointerTy() ? 2754 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2755 Q.DL.getTypeSizeInBits(ScalarTy); 2756 2757 unsigned Tmp, Tmp2; 2758 unsigned FirstAnswer = 1; 2759 2760 // Note that ConstantInt is handled by the general computeKnownBits case 2761 // below. 2762 2763 if (Depth == MaxAnalysisRecursionDepth) 2764 return 1; 2765 2766 if (auto *U = dyn_cast<Operator>(V)) { 2767 switch (Operator::getOpcode(V)) { 2768 default: break; 2769 case Instruction::SExt: 2770 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2771 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2772 2773 case Instruction::SDiv: { 2774 const APInt *Denominator; 2775 // sdiv X, C -> adds log(C) sign bits. 2776 if (match(U->getOperand(1), m_APInt(Denominator))) { 2777 2778 // Ignore non-positive denominator. 2779 if (!Denominator->isStrictlyPositive()) 2780 break; 2781 2782 // Calculate the incoming numerator bits. 2783 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2784 2785 // Add floor(log(C)) bits to the numerator bits. 2786 return std::min(TyBits, NumBits + Denominator->logBase2()); 2787 } 2788 break; 2789 } 2790 2791 case Instruction::SRem: { 2792 const APInt *Denominator; 2793 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2794 // positive constant. This let us put a lower bound on the number of sign 2795 // bits. 2796 if (match(U->getOperand(1), m_APInt(Denominator))) { 2797 2798 // Ignore non-positive denominator. 2799 if (!Denominator->isStrictlyPositive()) 2800 break; 2801 2802 // Calculate the incoming numerator bits. SRem by a positive constant 2803 // can't lower the number of sign bits. 2804 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2805 2806 // Calculate the leading sign bit constraints by examining the 2807 // denominator. Given that the denominator is positive, there are two 2808 // cases: 2809 // 2810 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2811 // (1 << ceilLogBase2(C)). 2812 // 2813 // 2. the numerator is negative. Then the result range is (-C,0] and 2814 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2815 // 2816 // Thus a lower bound on the number of sign bits is `TyBits - 2817 // ceilLogBase2(C)`. 2818 2819 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2820 return std::max(NumrBits, ResBits); 2821 } 2822 break; 2823 } 2824 2825 case Instruction::AShr: { 2826 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2827 // ashr X, C -> adds C sign bits. Vectors too. 2828 const APInt *ShAmt; 2829 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2830 if (ShAmt->uge(TyBits)) 2831 break; // Bad shift. 2832 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2833 Tmp += ShAmtLimited; 2834 if (Tmp > TyBits) Tmp = TyBits; 2835 } 2836 return Tmp; 2837 } 2838 case Instruction::Shl: { 2839 const APInt *ShAmt; 2840 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2841 // shl destroys sign bits. 2842 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2843 if (ShAmt->uge(TyBits) || // Bad shift. 2844 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2845 Tmp2 = ShAmt->getZExtValue(); 2846 return Tmp - Tmp2; 2847 } 2848 break; 2849 } 2850 case Instruction::And: 2851 case Instruction::Or: 2852 case Instruction::Xor: // NOT is handled here. 2853 // Logical binary ops preserve the number of sign bits at the worst. 2854 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2855 if (Tmp != 1) { 2856 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2857 FirstAnswer = std::min(Tmp, Tmp2); 2858 // We computed what we know about the sign bits as our first 2859 // answer. Now proceed to the generic code that uses 2860 // computeKnownBits, and pick whichever answer is better. 2861 } 2862 break; 2863 2864 case Instruction::Select: { 2865 // If we have a clamp pattern, we know that the number of sign bits will 2866 // be the minimum of the clamp min/max range. 2867 const Value *X; 2868 const APInt *CLow, *CHigh; 2869 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2870 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2871 2872 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2873 if (Tmp == 1) break; 2874 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2875 return std::min(Tmp, Tmp2); 2876 } 2877 2878 case Instruction::Add: 2879 // Add can have at most one carry bit. Thus we know that the output 2880 // is, at worst, one more bit than the inputs. 2881 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2882 if (Tmp == 1) break; 2883 2884 // Special case decrementing a value (ADD X, -1): 2885 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2886 if (CRHS->isAllOnesValue()) { 2887 KnownBits Known(TyBits); 2888 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2889 2890 // If the input is known to be 0 or 1, the output is 0/-1, which is 2891 // all sign bits set. 2892 if ((Known.Zero | 1).isAllOnesValue()) 2893 return TyBits; 2894 2895 // If we are subtracting one from a positive number, there is no carry 2896 // out of the result. 2897 if (Known.isNonNegative()) 2898 return Tmp; 2899 } 2900 2901 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2902 if (Tmp2 == 1) break; 2903 return std::min(Tmp, Tmp2) - 1; 2904 2905 case Instruction::Sub: 2906 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2907 if (Tmp2 == 1) break; 2908 2909 // Handle NEG. 2910 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2911 if (CLHS->isNullValue()) { 2912 KnownBits Known(TyBits); 2913 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2914 // If the input is known to be 0 or 1, the output is 0/-1, which is 2915 // all sign bits set. 2916 if ((Known.Zero | 1).isAllOnesValue()) 2917 return TyBits; 2918 2919 // If the input is known to be positive (the sign bit is known clear), 2920 // the output of the NEG has the same number of sign bits as the 2921 // input. 2922 if (Known.isNonNegative()) 2923 return Tmp2; 2924 2925 // Otherwise, we treat this like a SUB. 2926 } 2927 2928 // Sub can have at most one carry bit. Thus we know that the output 2929 // is, at worst, one more bit than the inputs. 2930 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2931 if (Tmp == 1) break; 2932 return std::min(Tmp, Tmp2) - 1; 2933 2934 case Instruction::Mul: { 2935 // The output of the Mul can be at most twice the valid bits in the 2936 // inputs. 2937 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2938 if (SignBitsOp0 == 1) break; 2939 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2940 if (SignBitsOp1 == 1) break; 2941 unsigned OutValidBits = 2942 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2943 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2944 } 2945 2946 case Instruction::PHI: { 2947 const PHINode *PN = cast<PHINode>(U); 2948 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2949 // Don't analyze large in-degree PHIs. 2950 if (NumIncomingValues > 4) break; 2951 // Unreachable blocks may have zero-operand PHI nodes. 2952 if (NumIncomingValues == 0) break; 2953 2954 // Take the minimum of all incoming values. This can't infinitely loop 2955 // because of our depth threshold. 2956 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2957 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2958 if (Tmp == 1) return Tmp; 2959 Tmp = std::min( 2960 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2961 } 2962 return Tmp; 2963 } 2964 2965 case Instruction::Trunc: 2966 // FIXME: it's tricky to do anything useful for this, but it is an 2967 // important case for targets like X86. 2968 break; 2969 2970 case Instruction::ExtractElement: 2971 // Look through extract element. At the moment we keep this simple and 2972 // skip tracking the specific element. But at least we might find 2973 // information valid for all elements of the vector (for example if vector 2974 // is sign extended, shifted, etc). 2975 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2976 2977 case Instruction::ShuffleVector: { 2978 // Collect the minimum number of sign bits that are shared by every vector 2979 // element referenced by the shuffle. 2980 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2981 if (!Shuf) { 2982 // FIXME: Add support for shufflevector constant expressions. 2983 return 1; 2984 } 2985 APInt DemandedLHS, DemandedRHS; 2986 // For undef elements, we don't know anything about the common state of 2987 // the shuffle result. 2988 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2989 return 1; 2990 Tmp = std::numeric_limits<unsigned>::max(); 2991 if (!!DemandedLHS) { 2992 const Value *LHS = Shuf->getOperand(0); 2993 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2994 } 2995 // If we don't know anything, early out and try computeKnownBits 2996 // fall-back. 2997 if (Tmp == 1) 2998 break; 2999 if (!!DemandedRHS) { 3000 const Value *RHS = Shuf->getOperand(1); 3001 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3002 Tmp = std::min(Tmp, Tmp2); 3003 } 3004 // If we don't know anything, early out and try computeKnownBits 3005 // fall-back. 3006 if (Tmp == 1) 3007 break; 3008 assert(Tmp <= Ty->getScalarSizeInBits() && 3009 "Failed to determine minimum sign bits"); 3010 return Tmp; 3011 } 3012 case Instruction::Call: { 3013 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3014 switch (II->getIntrinsicID()) { 3015 default: break; 3016 case Intrinsic::abs: 3017 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3018 if (Tmp == 1) break; 3019 3020 // Absolute value reduces number of sign bits by at most 1. 3021 return Tmp - 1; 3022 } 3023 } 3024 } 3025 } 3026 } 3027 3028 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3029 // use this information. 3030 3031 // If we can examine all elements of a vector constant successfully, we're 3032 // done (we can't do any better than that). If not, keep trying. 3033 if (unsigned VecSignBits = 3034 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3035 return VecSignBits; 3036 3037 KnownBits Known(TyBits); 3038 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3039 3040 // If we know that the sign bit is either zero or one, determine the number of 3041 // identical bits in the top of the input value. 3042 return std::max(FirstAnswer, Known.countMinSignBits()); 3043 } 3044 3045 /// This function computes the integer multiple of Base that equals V. 3046 /// If successful, it returns true and returns the multiple in 3047 /// Multiple. If unsuccessful, it returns false. It looks 3048 /// through SExt instructions only if LookThroughSExt is true. 3049 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3050 bool LookThroughSExt, unsigned Depth) { 3051 assert(V && "No Value?"); 3052 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3053 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3054 3055 Type *T = V->getType(); 3056 3057 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3058 3059 if (Base == 0) 3060 return false; 3061 3062 if (Base == 1) { 3063 Multiple = V; 3064 return true; 3065 } 3066 3067 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3068 Constant *BaseVal = ConstantInt::get(T, Base); 3069 if (CO && CO == BaseVal) { 3070 // Multiple is 1. 3071 Multiple = ConstantInt::get(T, 1); 3072 return true; 3073 } 3074 3075 if (CI && CI->getZExtValue() % Base == 0) { 3076 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3077 return true; 3078 } 3079 3080 if (Depth == MaxAnalysisRecursionDepth) return false; 3081 3082 Operator *I = dyn_cast<Operator>(V); 3083 if (!I) return false; 3084 3085 switch (I->getOpcode()) { 3086 default: break; 3087 case Instruction::SExt: 3088 if (!LookThroughSExt) return false; 3089 // otherwise fall through to ZExt 3090 LLVM_FALLTHROUGH; 3091 case Instruction::ZExt: 3092 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3093 LookThroughSExt, Depth+1); 3094 case Instruction::Shl: 3095 case Instruction::Mul: { 3096 Value *Op0 = I->getOperand(0); 3097 Value *Op1 = I->getOperand(1); 3098 3099 if (I->getOpcode() == Instruction::Shl) { 3100 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3101 if (!Op1CI) return false; 3102 // Turn Op0 << Op1 into Op0 * 2^Op1 3103 APInt Op1Int = Op1CI->getValue(); 3104 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3105 APInt API(Op1Int.getBitWidth(), 0); 3106 API.setBit(BitToSet); 3107 Op1 = ConstantInt::get(V->getContext(), API); 3108 } 3109 3110 Value *Mul0 = nullptr; 3111 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3112 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3113 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3114 if (Op1C->getType()->getPrimitiveSizeInBits() < 3115 MulC->getType()->getPrimitiveSizeInBits()) 3116 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3117 if (Op1C->getType()->getPrimitiveSizeInBits() > 3118 MulC->getType()->getPrimitiveSizeInBits()) 3119 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3120 3121 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3122 Multiple = ConstantExpr::getMul(MulC, Op1C); 3123 return true; 3124 } 3125 3126 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3127 if (Mul0CI->getValue() == 1) { 3128 // V == Base * Op1, so return Op1 3129 Multiple = Op1; 3130 return true; 3131 } 3132 } 3133 3134 Value *Mul1 = nullptr; 3135 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3136 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3137 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3138 if (Op0C->getType()->getPrimitiveSizeInBits() < 3139 MulC->getType()->getPrimitiveSizeInBits()) 3140 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3141 if (Op0C->getType()->getPrimitiveSizeInBits() > 3142 MulC->getType()->getPrimitiveSizeInBits()) 3143 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3144 3145 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3146 Multiple = ConstantExpr::getMul(MulC, Op0C); 3147 return true; 3148 } 3149 3150 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3151 if (Mul1CI->getValue() == 1) { 3152 // V == Base * Op0, so return Op0 3153 Multiple = Op0; 3154 return true; 3155 } 3156 } 3157 } 3158 } 3159 3160 // We could not determine if V is a multiple of Base. 3161 return false; 3162 } 3163 3164 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3165 const TargetLibraryInfo *TLI) { 3166 const Function *F = CB.getCalledFunction(); 3167 if (!F) 3168 return Intrinsic::not_intrinsic; 3169 3170 if (F->isIntrinsic()) 3171 return F->getIntrinsicID(); 3172 3173 // We are going to infer semantics of a library function based on mapping it 3174 // to an LLVM intrinsic. Check that the library function is available from 3175 // this callbase and in this environment. 3176 LibFunc Func; 3177 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3178 !CB.onlyReadsMemory()) 3179 return Intrinsic::not_intrinsic; 3180 3181 switch (Func) { 3182 default: 3183 break; 3184 case LibFunc_sin: 3185 case LibFunc_sinf: 3186 case LibFunc_sinl: 3187 return Intrinsic::sin; 3188 case LibFunc_cos: 3189 case LibFunc_cosf: 3190 case LibFunc_cosl: 3191 return Intrinsic::cos; 3192 case LibFunc_exp: 3193 case LibFunc_expf: 3194 case LibFunc_expl: 3195 return Intrinsic::exp; 3196 case LibFunc_exp2: 3197 case LibFunc_exp2f: 3198 case LibFunc_exp2l: 3199 return Intrinsic::exp2; 3200 case LibFunc_log: 3201 case LibFunc_logf: 3202 case LibFunc_logl: 3203 return Intrinsic::log; 3204 case LibFunc_log10: 3205 case LibFunc_log10f: 3206 case LibFunc_log10l: 3207 return Intrinsic::log10; 3208 case LibFunc_log2: 3209 case LibFunc_log2f: 3210 case LibFunc_log2l: 3211 return Intrinsic::log2; 3212 case LibFunc_fabs: 3213 case LibFunc_fabsf: 3214 case LibFunc_fabsl: 3215 return Intrinsic::fabs; 3216 case LibFunc_fmin: 3217 case LibFunc_fminf: 3218 case LibFunc_fminl: 3219 return Intrinsic::minnum; 3220 case LibFunc_fmax: 3221 case LibFunc_fmaxf: 3222 case LibFunc_fmaxl: 3223 return Intrinsic::maxnum; 3224 case LibFunc_copysign: 3225 case LibFunc_copysignf: 3226 case LibFunc_copysignl: 3227 return Intrinsic::copysign; 3228 case LibFunc_floor: 3229 case LibFunc_floorf: 3230 case LibFunc_floorl: 3231 return Intrinsic::floor; 3232 case LibFunc_ceil: 3233 case LibFunc_ceilf: 3234 case LibFunc_ceill: 3235 return Intrinsic::ceil; 3236 case LibFunc_trunc: 3237 case LibFunc_truncf: 3238 case LibFunc_truncl: 3239 return Intrinsic::trunc; 3240 case LibFunc_rint: 3241 case LibFunc_rintf: 3242 case LibFunc_rintl: 3243 return Intrinsic::rint; 3244 case LibFunc_nearbyint: 3245 case LibFunc_nearbyintf: 3246 case LibFunc_nearbyintl: 3247 return Intrinsic::nearbyint; 3248 case LibFunc_round: 3249 case LibFunc_roundf: 3250 case LibFunc_roundl: 3251 return Intrinsic::round; 3252 case LibFunc_roundeven: 3253 case LibFunc_roundevenf: 3254 case LibFunc_roundevenl: 3255 return Intrinsic::roundeven; 3256 case LibFunc_pow: 3257 case LibFunc_powf: 3258 case LibFunc_powl: 3259 return Intrinsic::pow; 3260 case LibFunc_sqrt: 3261 case LibFunc_sqrtf: 3262 case LibFunc_sqrtl: 3263 return Intrinsic::sqrt; 3264 } 3265 3266 return Intrinsic::not_intrinsic; 3267 } 3268 3269 /// Return true if we can prove that the specified FP value is never equal to 3270 /// -0.0. 3271 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3272 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3273 /// the same as +0.0 in floating-point ops. 3274 /// 3275 /// NOTE: this function will need to be revisited when we support non-default 3276 /// rounding modes! 3277 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3278 unsigned Depth) { 3279 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3280 return !CFP->getValueAPF().isNegZero(); 3281 3282 if (Depth == MaxAnalysisRecursionDepth) 3283 return false; 3284 3285 auto *Op = dyn_cast<Operator>(V); 3286 if (!Op) 3287 return false; 3288 3289 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3290 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3291 return true; 3292 3293 // sitofp and uitofp turn into +0.0 for zero. 3294 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3295 return true; 3296 3297 if (auto *Call = dyn_cast<CallInst>(Op)) { 3298 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3299 switch (IID) { 3300 default: 3301 break; 3302 // sqrt(-0.0) = -0.0, no other negative results are possible. 3303 case Intrinsic::sqrt: 3304 case Intrinsic::canonicalize: 3305 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3306 // fabs(x) != -0.0 3307 case Intrinsic::fabs: 3308 return true; 3309 } 3310 } 3311 3312 return false; 3313 } 3314 3315 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3316 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3317 /// bit despite comparing equal. 3318 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3319 const TargetLibraryInfo *TLI, 3320 bool SignBitOnly, 3321 unsigned Depth) { 3322 // TODO: This function does not do the right thing when SignBitOnly is true 3323 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3324 // which flips the sign bits of NaNs. See 3325 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3326 3327 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3328 return !CFP->getValueAPF().isNegative() || 3329 (!SignBitOnly && CFP->getValueAPF().isZero()); 3330 } 3331 3332 // Handle vector of constants. 3333 if (auto *CV = dyn_cast<Constant>(V)) { 3334 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3335 unsigned NumElts = CVFVTy->getNumElements(); 3336 for (unsigned i = 0; i != NumElts; ++i) { 3337 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3338 if (!CFP) 3339 return false; 3340 if (CFP->getValueAPF().isNegative() && 3341 (SignBitOnly || !CFP->getValueAPF().isZero())) 3342 return false; 3343 } 3344 3345 // All non-negative ConstantFPs. 3346 return true; 3347 } 3348 } 3349 3350 if (Depth == MaxAnalysisRecursionDepth) 3351 return false; 3352 3353 const Operator *I = dyn_cast<Operator>(V); 3354 if (!I) 3355 return false; 3356 3357 switch (I->getOpcode()) { 3358 default: 3359 break; 3360 // Unsigned integers are always nonnegative. 3361 case Instruction::UIToFP: 3362 return true; 3363 case Instruction::FMul: 3364 case Instruction::FDiv: 3365 // X * X is always non-negative or a NaN. 3366 // X / X is always exactly 1.0 or a NaN. 3367 if (I->getOperand(0) == I->getOperand(1) && 3368 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3369 return true; 3370 3371 LLVM_FALLTHROUGH; 3372 case Instruction::FAdd: 3373 case Instruction::FRem: 3374 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3375 Depth + 1) && 3376 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3377 Depth + 1); 3378 case Instruction::Select: 3379 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3380 Depth + 1) && 3381 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3382 Depth + 1); 3383 case Instruction::FPExt: 3384 case Instruction::FPTrunc: 3385 // Widening/narrowing never change sign. 3386 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3387 Depth + 1); 3388 case Instruction::ExtractElement: 3389 // Look through extract element. At the moment we keep this simple and skip 3390 // tracking the specific element. But at least we might find information 3391 // valid for all elements of the vector. 3392 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3393 Depth + 1); 3394 case Instruction::Call: 3395 const auto *CI = cast<CallInst>(I); 3396 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3397 switch (IID) { 3398 default: 3399 break; 3400 case Intrinsic::maxnum: { 3401 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3402 auto isPositiveNum = [&](Value *V) { 3403 if (SignBitOnly) { 3404 // With SignBitOnly, this is tricky because the result of 3405 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3406 // a constant strictly greater than 0.0. 3407 const APFloat *C; 3408 return match(V, m_APFloat(C)) && 3409 *C > APFloat::getZero(C->getSemantics()); 3410 } 3411 3412 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3413 // maxnum can't be ordered-less-than-zero. 3414 return isKnownNeverNaN(V, TLI) && 3415 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3416 }; 3417 3418 // TODO: This could be improved. We could also check that neither operand 3419 // has its sign bit set (and at least 1 is not-NAN?). 3420 return isPositiveNum(V0) || isPositiveNum(V1); 3421 } 3422 3423 case Intrinsic::maximum: 3424 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3425 Depth + 1) || 3426 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3427 Depth + 1); 3428 case Intrinsic::minnum: 3429 case Intrinsic::minimum: 3430 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3431 Depth + 1) && 3432 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3433 Depth + 1); 3434 case Intrinsic::exp: 3435 case Intrinsic::exp2: 3436 case Intrinsic::fabs: 3437 return true; 3438 3439 case Intrinsic::sqrt: 3440 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3441 if (!SignBitOnly) 3442 return true; 3443 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3444 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3445 3446 case Intrinsic::powi: 3447 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3448 // powi(x,n) is non-negative if n is even. 3449 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3450 return true; 3451 } 3452 // TODO: This is not correct. Given that exp is an integer, here are the 3453 // ways that pow can return a negative value: 3454 // 3455 // pow(x, exp) --> negative if exp is odd and x is negative. 3456 // pow(-0, exp) --> -inf if exp is negative odd. 3457 // pow(-0, exp) --> -0 if exp is positive odd. 3458 // pow(-inf, exp) --> -0 if exp is negative odd. 3459 // pow(-inf, exp) --> -inf if exp is positive odd. 3460 // 3461 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3462 // but we must return false if x == -0. Unfortunately we do not currently 3463 // have a way of expressing this constraint. See details in 3464 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3465 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3466 Depth + 1); 3467 3468 case Intrinsic::fma: 3469 case Intrinsic::fmuladd: 3470 // x*x+y is non-negative if y is non-negative. 3471 return I->getOperand(0) == I->getOperand(1) && 3472 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3473 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3474 Depth + 1); 3475 } 3476 break; 3477 } 3478 return false; 3479 } 3480 3481 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3482 const TargetLibraryInfo *TLI) { 3483 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3484 } 3485 3486 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3487 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3488 } 3489 3490 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3491 unsigned Depth) { 3492 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3493 3494 // If we're told that infinities won't happen, assume they won't. 3495 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3496 if (FPMathOp->hasNoInfs()) 3497 return true; 3498 3499 // Handle scalar constants. 3500 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3501 return !CFP->isInfinity(); 3502 3503 if (Depth == MaxAnalysisRecursionDepth) 3504 return false; 3505 3506 if (auto *Inst = dyn_cast<Instruction>(V)) { 3507 switch (Inst->getOpcode()) { 3508 case Instruction::Select: { 3509 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3510 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3511 } 3512 case Instruction::UIToFP: 3513 // If the input type fits into the floating type the result is finite. 3514 return ilogb(APFloat::getLargest( 3515 Inst->getType()->getScalarType()->getFltSemantics())) >= 3516 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3517 default: 3518 break; 3519 } 3520 } 3521 3522 // try to handle fixed width vector constants 3523 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3524 if (VFVTy && isa<Constant>(V)) { 3525 // For vectors, verify that each element is not infinity. 3526 unsigned NumElts = VFVTy->getNumElements(); 3527 for (unsigned i = 0; i != NumElts; ++i) { 3528 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3529 if (!Elt) 3530 return false; 3531 if (isa<UndefValue>(Elt)) 3532 continue; 3533 auto *CElt = dyn_cast<ConstantFP>(Elt); 3534 if (!CElt || CElt->isInfinity()) 3535 return false; 3536 } 3537 // All elements were confirmed non-infinity or undefined. 3538 return true; 3539 } 3540 3541 // was not able to prove that V never contains infinity 3542 return false; 3543 } 3544 3545 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3546 unsigned Depth) { 3547 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3548 3549 // If we're told that NaNs won't happen, assume they won't. 3550 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3551 if (FPMathOp->hasNoNaNs()) 3552 return true; 3553 3554 // Handle scalar constants. 3555 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3556 return !CFP->isNaN(); 3557 3558 if (Depth == MaxAnalysisRecursionDepth) 3559 return false; 3560 3561 if (auto *Inst = dyn_cast<Instruction>(V)) { 3562 switch (Inst->getOpcode()) { 3563 case Instruction::FAdd: 3564 case Instruction::FSub: 3565 // Adding positive and negative infinity produces NaN. 3566 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3567 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3568 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3569 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3570 3571 case Instruction::FMul: 3572 // Zero multiplied with infinity produces NaN. 3573 // FIXME: If neither side can be zero fmul never produces NaN. 3574 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3575 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3576 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3577 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3578 3579 case Instruction::FDiv: 3580 case Instruction::FRem: 3581 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3582 return false; 3583 3584 case Instruction::Select: { 3585 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3586 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3587 } 3588 case Instruction::SIToFP: 3589 case Instruction::UIToFP: 3590 return true; 3591 case Instruction::FPTrunc: 3592 case Instruction::FPExt: 3593 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3594 default: 3595 break; 3596 } 3597 } 3598 3599 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3600 switch (II->getIntrinsicID()) { 3601 case Intrinsic::canonicalize: 3602 case Intrinsic::fabs: 3603 case Intrinsic::copysign: 3604 case Intrinsic::exp: 3605 case Intrinsic::exp2: 3606 case Intrinsic::floor: 3607 case Intrinsic::ceil: 3608 case Intrinsic::trunc: 3609 case Intrinsic::rint: 3610 case Intrinsic::nearbyint: 3611 case Intrinsic::round: 3612 case Intrinsic::roundeven: 3613 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3614 case Intrinsic::sqrt: 3615 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3616 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3617 case Intrinsic::minnum: 3618 case Intrinsic::maxnum: 3619 // If either operand is not NaN, the result is not NaN. 3620 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3621 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3622 default: 3623 return false; 3624 } 3625 } 3626 3627 // Try to handle fixed width vector constants 3628 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3629 if (VFVTy && isa<Constant>(V)) { 3630 // For vectors, verify that each element is not NaN. 3631 unsigned NumElts = VFVTy->getNumElements(); 3632 for (unsigned i = 0; i != NumElts; ++i) { 3633 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3634 if (!Elt) 3635 return false; 3636 if (isa<UndefValue>(Elt)) 3637 continue; 3638 auto *CElt = dyn_cast<ConstantFP>(Elt); 3639 if (!CElt || CElt->isNaN()) 3640 return false; 3641 } 3642 // All elements were confirmed not-NaN or undefined. 3643 return true; 3644 } 3645 3646 // Was not able to prove that V never contains NaN 3647 return false; 3648 } 3649 3650 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3651 3652 // All byte-wide stores are splatable, even of arbitrary variables. 3653 if (V->getType()->isIntegerTy(8)) 3654 return V; 3655 3656 LLVMContext &Ctx = V->getContext(); 3657 3658 // Undef don't care. 3659 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3660 if (isa<UndefValue>(V)) 3661 return UndefInt8; 3662 3663 // Return Undef for zero-sized type. 3664 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3665 return UndefInt8; 3666 3667 Constant *C = dyn_cast<Constant>(V); 3668 if (!C) { 3669 // Conceptually, we could handle things like: 3670 // %a = zext i8 %X to i16 3671 // %b = shl i16 %a, 8 3672 // %c = or i16 %a, %b 3673 // but until there is an example that actually needs this, it doesn't seem 3674 // worth worrying about. 3675 return nullptr; 3676 } 3677 3678 // Handle 'null' ConstantArrayZero etc. 3679 if (C->isNullValue()) 3680 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3681 3682 // Constant floating-point values can be handled as integer values if the 3683 // corresponding integer value is "byteable". An important case is 0.0. 3684 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3685 Type *Ty = nullptr; 3686 if (CFP->getType()->isHalfTy()) 3687 Ty = Type::getInt16Ty(Ctx); 3688 else if (CFP->getType()->isFloatTy()) 3689 Ty = Type::getInt32Ty(Ctx); 3690 else if (CFP->getType()->isDoubleTy()) 3691 Ty = Type::getInt64Ty(Ctx); 3692 // Don't handle long double formats, which have strange constraints. 3693 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3694 : nullptr; 3695 } 3696 3697 // We can handle constant integers that are multiple of 8 bits. 3698 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3699 if (CI->getBitWidth() % 8 == 0) { 3700 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3701 if (!CI->getValue().isSplat(8)) 3702 return nullptr; 3703 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3704 } 3705 } 3706 3707 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3708 if (CE->getOpcode() == Instruction::IntToPtr) { 3709 auto PS = DL.getPointerSizeInBits( 3710 cast<PointerType>(CE->getType())->getAddressSpace()); 3711 return isBytewiseValue( 3712 ConstantExpr::getIntegerCast(CE->getOperand(0), 3713 Type::getIntNTy(Ctx, PS), false), 3714 DL); 3715 } 3716 } 3717 3718 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3719 if (LHS == RHS) 3720 return LHS; 3721 if (!LHS || !RHS) 3722 return nullptr; 3723 if (LHS == UndefInt8) 3724 return RHS; 3725 if (RHS == UndefInt8) 3726 return LHS; 3727 return nullptr; 3728 }; 3729 3730 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3731 Value *Val = UndefInt8; 3732 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3733 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3734 return nullptr; 3735 return Val; 3736 } 3737 3738 if (isa<ConstantAggregate>(C)) { 3739 Value *Val = UndefInt8; 3740 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3741 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3742 return nullptr; 3743 return Val; 3744 } 3745 3746 // Don't try to handle the handful of other constants. 3747 return nullptr; 3748 } 3749 3750 // This is the recursive version of BuildSubAggregate. It takes a few different 3751 // arguments. Idxs is the index within the nested struct From that we are 3752 // looking at now (which is of type IndexedType). IdxSkip is the number of 3753 // indices from Idxs that should be left out when inserting into the resulting 3754 // struct. To is the result struct built so far, new insertvalue instructions 3755 // build on that. 3756 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3757 SmallVectorImpl<unsigned> &Idxs, 3758 unsigned IdxSkip, 3759 Instruction *InsertBefore) { 3760 StructType *STy = dyn_cast<StructType>(IndexedType); 3761 if (STy) { 3762 // Save the original To argument so we can modify it 3763 Value *OrigTo = To; 3764 // General case, the type indexed by Idxs is a struct 3765 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3766 // Process each struct element recursively 3767 Idxs.push_back(i); 3768 Value *PrevTo = To; 3769 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3770 InsertBefore); 3771 Idxs.pop_back(); 3772 if (!To) { 3773 // Couldn't find any inserted value for this index? Cleanup 3774 while (PrevTo != OrigTo) { 3775 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3776 PrevTo = Del->getAggregateOperand(); 3777 Del->eraseFromParent(); 3778 } 3779 // Stop processing elements 3780 break; 3781 } 3782 } 3783 // If we successfully found a value for each of our subaggregates 3784 if (To) 3785 return To; 3786 } 3787 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3788 // the struct's elements had a value that was inserted directly. In the latter 3789 // case, perhaps we can't determine each of the subelements individually, but 3790 // we might be able to find the complete struct somewhere. 3791 3792 // Find the value that is at that particular spot 3793 Value *V = FindInsertedValue(From, Idxs); 3794 3795 if (!V) 3796 return nullptr; 3797 3798 // Insert the value in the new (sub) aggregate 3799 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3800 "tmp", InsertBefore); 3801 } 3802 3803 // This helper takes a nested struct and extracts a part of it (which is again a 3804 // struct) into a new value. For example, given the struct: 3805 // { a, { b, { c, d }, e } } 3806 // and the indices "1, 1" this returns 3807 // { c, d }. 3808 // 3809 // It does this by inserting an insertvalue for each element in the resulting 3810 // struct, as opposed to just inserting a single struct. This will only work if 3811 // each of the elements of the substruct are known (ie, inserted into From by an 3812 // insertvalue instruction somewhere). 3813 // 3814 // All inserted insertvalue instructions are inserted before InsertBefore 3815 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3816 Instruction *InsertBefore) { 3817 assert(InsertBefore && "Must have someplace to insert!"); 3818 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3819 idx_range); 3820 Value *To = UndefValue::get(IndexedType); 3821 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3822 unsigned IdxSkip = Idxs.size(); 3823 3824 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3825 } 3826 3827 /// Given an aggregate and a sequence of indices, see if the scalar value 3828 /// indexed is already around as a register, for example if it was inserted 3829 /// directly into the aggregate. 3830 /// 3831 /// If InsertBefore is not null, this function will duplicate (modified) 3832 /// insertvalues when a part of a nested struct is extracted. 3833 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3834 Instruction *InsertBefore) { 3835 // Nothing to index? Just return V then (this is useful at the end of our 3836 // recursion). 3837 if (idx_range.empty()) 3838 return V; 3839 // We have indices, so V should have an indexable type. 3840 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3841 "Not looking at a struct or array?"); 3842 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3843 "Invalid indices for type?"); 3844 3845 if (Constant *C = dyn_cast<Constant>(V)) { 3846 C = C->getAggregateElement(idx_range[0]); 3847 if (!C) return nullptr; 3848 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3849 } 3850 3851 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3852 // Loop the indices for the insertvalue instruction in parallel with the 3853 // requested indices 3854 const unsigned *req_idx = idx_range.begin(); 3855 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3856 i != e; ++i, ++req_idx) { 3857 if (req_idx == idx_range.end()) { 3858 // We can't handle this without inserting insertvalues 3859 if (!InsertBefore) 3860 return nullptr; 3861 3862 // The requested index identifies a part of a nested aggregate. Handle 3863 // this specially. For example, 3864 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3865 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3866 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3867 // This can be changed into 3868 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3869 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3870 // which allows the unused 0,0 element from the nested struct to be 3871 // removed. 3872 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3873 InsertBefore); 3874 } 3875 3876 // This insert value inserts something else than what we are looking for. 3877 // See if the (aggregate) value inserted into has the value we are 3878 // looking for, then. 3879 if (*req_idx != *i) 3880 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3881 InsertBefore); 3882 } 3883 // If we end up here, the indices of the insertvalue match with those 3884 // requested (though possibly only partially). Now we recursively look at 3885 // the inserted value, passing any remaining indices. 3886 return FindInsertedValue(I->getInsertedValueOperand(), 3887 makeArrayRef(req_idx, idx_range.end()), 3888 InsertBefore); 3889 } 3890 3891 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3892 // If we're extracting a value from an aggregate that was extracted from 3893 // something else, we can extract from that something else directly instead. 3894 // However, we will need to chain I's indices with the requested indices. 3895 3896 // Calculate the number of indices required 3897 unsigned size = I->getNumIndices() + idx_range.size(); 3898 // Allocate some space to put the new indices in 3899 SmallVector<unsigned, 5> Idxs; 3900 Idxs.reserve(size); 3901 // Add indices from the extract value instruction 3902 Idxs.append(I->idx_begin(), I->idx_end()); 3903 3904 // Add requested indices 3905 Idxs.append(idx_range.begin(), idx_range.end()); 3906 3907 assert(Idxs.size() == size 3908 && "Number of indices added not correct?"); 3909 3910 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3911 } 3912 // Otherwise, we don't know (such as, extracting from a function return value 3913 // or load instruction) 3914 return nullptr; 3915 } 3916 3917 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3918 unsigned CharSize) { 3919 // Make sure the GEP has exactly three arguments. 3920 if (GEP->getNumOperands() != 3) 3921 return false; 3922 3923 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3924 // CharSize. 3925 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3926 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3927 return false; 3928 3929 // Check to make sure that the first operand of the GEP is an integer and 3930 // has value 0 so that we are sure we're indexing into the initializer. 3931 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3932 if (!FirstIdx || !FirstIdx->isZero()) 3933 return false; 3934 3935 return true; 3936 } 3937 3938 bool llvm::getConstantDataArrayInfo(const Value *V, 3939 ConstantDataArraySlice &Slice, 3940 unsigned ElementSize, uint64_t Offset) { 3941 assert(V); 3942 3943 // Look through bitcast instructions and geps. 3944 V = V->stripPointerCasts(); 3945 3946 // If the value is a GEP instruction or constant expression, treat it as an 3947 // offset. 3948 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3949 // The GEP operator should be based on a pointer to string constant, and is 3950 // indexing into the string constant. 3951 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3952 return false; 3953 3954 // If the second index isn't a ConstantInt, then this is a variable index 3955 // into the array. If this occurs, we can't say anything meaningful about 3956 // the string. 3957 uint64_t StartIdx = 0; 3958 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3959 StartIdx = CI->getZExtValue(); 3960 else 3961 return false; 3962 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3963 StartIdx + Offset); 3964 } 3965 3966 // The GEP instruction, constant or instruction, must reference a global 3967 // variable that is a constant and is initialized. The referenced constant 3968 // initializer is the array that we'll use for optimization. 3969 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3970 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3971 return false; 3972 3973 const ConstantDataArray *Array; 3974 ArrayType *ArrayTy; 3975 if (GV->getInitializer()->isNullValue()) { 3976 Type *GVTy = GV->getValueType(); 3977 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3978 // A zeroinitializer for the array; there is no ConstantDataArray. 3979 Array = nullptr; 3980 } else { 3981 const DataLayout &DL = GV->getParent()->getDataLayout(); 3982 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3983 uint64_t Length = SizeInBytes / (ElementSize / 8); 3984 if (Length <= Offset) 3985 return false; 3986 3987 Slice.Array = nullptr; 3988 Slice.Offset = 0; 3989 Slice.Length = Length - Offset; 3990 return true; 3991 } 3992 } else { 3993 // This must be a ConstantDataArray. 3994 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3995 if (!Array) 3996 return false; 3997 ArrayTy = Array->getType(); 3998 } 3999 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4000 return false; 4001 4002 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4003 if (Offset > NumElts) 4004 return false; 4005 4006 Slice.Array = Array; 4007 Slice.Offset = Offset; 4008 Slice.Length = NumElts - Offset; 4009 return true; 4010 } 4011 4012 /// This function computes the length of a null-terminated C string pointed to 4013 /// by V. If successful, it returns true and returns the string in Str. 4014 /// If unsuccessful, it returns false. 4015 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4016 uint64_t Offset, bool TrimAtNul) { 4017 ConstantDataArraySlice Slice; 4018 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4019 return false; 4020 4021 if (Slice.Array == nullptr) { 4022 if (TrimAtNul) { 4023 Str = StringRef(); 4024 return true; 4025 } 4026 if (Slice.Length == 1) { 4027 Str = StringRef("", 1); 4028 return true; 4029 } 4030 // We cannot instantiate a StringRef as we do not have an appropriate string 4031 // of 0s at hand. 4032 return false; 4033 } 4034 4035 // Start out with the entire array in the StringRef. 4036 Str = Slice.Array->getAsString(); 4037 // Skip over 'offset' bytes. 4038 Str = Str.substr(Slice.Offset); 4039 4040 if (TrimAtNul) { 4041 // Trim off the \0 and anything after it. If the array is not nul 4042 // terminated, we just return the whole end of string. The client may know 4043 // some other way that the string is length-bound. 4044 Str = Str.substr(0, Str.find('\0')); 4045 } 4046 return true; 4047 } 4048 4049 // These next two are very similar to the above, but also look through PHI 4050 // nodes. 4051 // TODO: See if we can integrate these two together. 4052 4053 /// If we can compute the length of the string pointed to by 4054 /// the specified pointer, return 'len+1'. If we can't, return 0. 4055 static uint64_t GetStringLengthH(const Value *V, 4056 SmallPtrSetImpl<const PHINode*> &PHIs, 4057 unsigned CharSize) { 4058 // Look through noop bitcast instructions. 4059 V = V->stripPointerCasts(); 4060 4061 // If this is a PHI node, there are two cases: either we have already seen it 4062 // or we haven't. 4063 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4064 if (!PHIs.insert(PN).second) 4065 return ~0ULL; // already in the set. 4066 4067 // If it was new, see if all the input strings are the same length. 4068 uint64_t LenSoFar = ~0ULL; 4069 for (Value *IncValue : PN->incoming_values()) { 4070 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4071 if (Len == 0) return 0; // Unknown length -> unknown. 4072 4073 if (Len == ~0ULL) continue; 4074 4075 if (Len != LenSoFar && LenSoFar != ~0ULL) 4076 return 0; // Disagree -> unknown. 4077 LenSoFar = Len; 4078 } 4079 4080 // Success, all agree. 4081 return LenSoFar; 4082 } 4083 4084 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4085 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4086 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4087 if (Len1 == 0) return 0; 4088 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4089 if (Len2 == 0) return 0; 4090 if (Len1 == ~0ULL) return Len2; 4091 if (Len2 == ~0ULL) return Len1; 4092 if (Len1 != Len2) return 0; 4093 return Len1; 4094 } 4095 4096 // Otherwise, see if we can read the string. 4097 ConstantDataArraySlice Slice; 4098 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4099 return 0; 4100 4101 if (Slice.Array == nullptr) 4102 return 1; 4103 4104 // Search for nul characters 4105 unsigned NullIndex = 0; 4106 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4107 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4108 break; 4109 } 4110 4111 return NullIndex + 1; 4112 } 4113 4114 /// If we can compute the length of the string pointed to by 4115 /// the specified pointer, return 'len+1'. If we can't, return 0. 4116 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4117 if (!V->getType()->isPointerTy()) 4118 return 0; 4119 4120 SmallPtrSet<const PHINode*, 32> PHIs; 4121 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4122 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4123 // an empty string as a length. 4124 return Len == ~0ULL ? 1 : Len; 4125 } 4126 4127 const Value * 4128 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4129 bool MustPreserveNullness) { 4130 assert(Call && 4131 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4132 if (const Value *RV = Call->getReturnedArgOperand()) 4133 return RV; 4134 // This can be used only as a aliasing property. 4135 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4136 Call, MustPreserveNullness)) 4137 return Call->getArgOperand(0); 4138 return nullptr; 4139 } 4140 4141 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4142 const CallBase *Call, bool MustPreserveNullness) { 4143 switch (Call->getIntrinsicID()) { 4144 case Intrinsic::launder_invariant_group: 4145 case Intrinsic::strip_invariant_group: 4146 case Intrinsic::aarch64_irg: 4147 case Intrinsic::aarch64_tagp: 4148 return true; 4149 case Intrinsic::ptrmask: 4150 return !MustPreserveNullness; 4151 default: 4152 return false; 4153 } 4154 } 4155 4156 /// \p PN defines a loop-variant pointer to an object. Check if the 4157 /// previous iteration of the loop was referring to the same object as \p PN. 4158 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4159 const LoopInfo *LI) { 4160 // Find the loop-defined value. 4161 Loop *L = LI->getLoopFor(PN->getParent()); 4162 if (PN->getNumIncomingValues() != 2) 4163 return true; 4164 4165 // Find the value from previous iteration. 4166 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4167 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4168 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4169 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4170 return true; 4171 4172 // If a new pointer is loaded in the loop, the pointer references a different 4173 // object in every iteration. E.g.: 4174 // for (i) 4175 // int *p = a[i]; 4176 // ... 4177 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4178 if (!L->isLoopInvariant(Load->getPointerOperand())) 4179 return false; 4180 return true; 4181 } 4182 4183 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4184 if (!V->getType()->isPointerTy()) 4185 return V; 4186 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4187 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4188 V = GEP->getPointerOperand(); 4189 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4190 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4191 V = cast<Operator>(V)->getOperand(0); 4192 if (!V->getType()->isPointerTy()) 4193 return V; 4194 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4195 if (GA->isInterposable()) 4196 return V; 4197 V = GA->getAliasee(); 4198 } else { 4199 if (auto *PHI = dyn_cast<PHINode>(V)) { 4200 // Look through single-arg phi nodes created by LCSSA. 4201 if (PHI->getNumIncomingValues() == 1) { 4202 V = PHI->getIncomingValue(0); 4203 continue; 4204 } 4205 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4206 // CaptureTracking can know about special capturing properties of some 4207 // intrinsics like launder.invariant.group, that can't be expressed with 4208 // the attributes, but have properties like returning aliasing pointer. 4209 // Because some analysis may assume that nocaptured pointer is not 4210 // returned from some special intrinsic (because function would have to 4211 // be marked with returns attribute), it is crucial to use this function 4212 // because it should be in sync with CaptureTracking. Not using it may 4213 // cause weird miscompilations where 2 aliasing pointers are assumed to 4214 // noalias. 4215 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4216 V = RP; 4217 continue; 4218 } 4219 } 4220 4221 return V; 4222 } 4223 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4224 } 4225 return V; 4226 } 4227 4228 void llvm::getUnderlyingObjects(const Value *V, 4229 SmallVectorImpl<const Value *> &Objects, 4230 LoopInfo *LI, unsigned MaxLookup) { 4231 SmallPtrSet<const Value *, 4> Visited; 4232 SmallVector<const Value *, 4> Worklist; 4233 Worklist.push_back(V); 4234 do { 4235 const Value *P = Worklist.pop_back_val(); 4236 P = getUnderlyingObject(P, MaxLookup); 4237 4238 if (!Visited.insert(P).second) 4239 continue; 4240 4241 if (auto *SI = dyn_cast<SelectInst>(P)) { 4242 Worklist.push_back(SI->getTrueValue()); 4243 Worklist.push_back(SI->getFalseValue()); 4244 continue; 4245 } 4246 4247 if (auto *PN = dyn_cast<PHINode>(P)) { 4248 // If this PHI changes the underlying object in every iteration of the 4249 // loop, don't look through it. Consider: 4250 // int **A; 4251 // for (i) { 4252 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4253 // Curr = A[i]; 4254 // *Prev, *Curr; 4255 // 4256 // Prev is tracking Curr one iteration behind so they refer to different 4257 // underlying objects. 4258 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4259 isSameUnderlyingObjectInLoop(PN, LI)) 4260 for (Value *IncValue : PN->incoming_values()) 4261 Worklist.push_back(IncValue); 4262 continue; 4263 } 4264 4265 Objects.push_back(P); 4266 } while (!Worklist.empty()); 4267 } 4268 4269 /// This is the function that does the work of looking through basic 4270 /// ptrtoint+arithmetic+inttoptr sequences. 4271 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4272 do { 4273 if (const Operator *U = dyn_cast<Operator>(V)) { 4274 // If we find a ptrtoint, we can transfer control back to the 4275 // regular getUnderlyingObjectFromInt. 4276 if (U->getOpcode() == Instruction::PtrToInt) 4277 return U->getOperand(0); 4278 // If we find an add of a constant, a multiplied value, or a phi, it's 4279 // likely that the other operand will lead us to the base 4280 // object. We don't have to worry about the case where the 4281 // object address is somehow being computed by the multiply, 4282 // because our callers only care when the result is an 4283 // identifiable object. 4284 if (U->getOpcode() != Instruction::Add || 4285 (!isa<ConstantInt>(U->getOperand(1)) && 4286 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4287 !isa<PHINode>(U->getOperand(1)))) 4288 return V; 4289 V = U->getOperand(0); 4290 } else { 4291 return V; 4292 } 4293 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4294 } while (true); 4295 } 4296 4297 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4298 /// ptrtoint+arithmetic+inttoptr sequences. 4299 /// It returns false if unidentified object is found in getUnderlyingObjects. 4300 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4301 SmallVectorImpl<Value *> &Objects) { 4302 SmallPtrSet<const Value *, 16> Visited; 4303 SmallVector<const Value *, 4> Working(1, V); 4304 do { 4305 V = Working.pop_back_val(); 4306 4307 SmallVector<const Value *, 4> Objs; 4308 getUnderlyingObjects(V, Objs); 4309 4310 for (const Value *V : Objs) { 4311 if (!Visited.insert(V).second) 4312 continue; 4313 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4314 const Value *O = 4315 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4316 if (O->getType()->isPointerTy()) { 4317 Working.push_back(O); 4318 continue; 4319 } 4320 } 4321 // If getUnderlyingObjects fails to find an identifiable object, 4322 // getUnderlyingObjectsForCodeGen also fails for safety. 4323 if (!isIdentifiedObject(V)) { 4324 Objects.clear(); 4325 return false; 4326 } 4327 Objects.push_back(const_cast<Value *>(V)); 4328 } 4329 } while (!Working.empty()); 4330 return true; 4331 } 4332 4333 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4334 AllocaInst *Result = nullptr; 4335 SmallPtrSet<Value *, 4> Visited; 4336 SmallVector<Value *, 4> Worklist; 4337 4338 auto AddWork = [&](Value *V) { 4339 if (Visited.insert(V).second) 4340 Worklist.push_back(V); 4341 }; 4342 4343 AddWork(V); 4344 do { 4345 V = Worklist.pop_back_val(); 4346 assert(Visited.count(V)); 4347 4348 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4349 if (Result && Result != AI) 4350 return nullptr; 4351 Result = AI; 4352 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4353 AddWork(CI->getOperand(0)); 4354 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4355 for (Value *IncValue : PN->incoming_values()) 4356 AddWork(IncValue); 4357 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4358 AddWork(SI->getTrueValue()); 4359 AddWork(SI->getFalseValue()); 4360 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4361 if (OffsetZero && !GEP->hasAllZeroIndices()) 4362 return nullptr; 4363 AddWork(GEP->getPointerOperand()); 4364 } else { 4365 return nullptr; 4366 } 4367 } while (!Worklist.empty()); 4368 4369 return Result; 4370 } 4371 4372 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4373 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4374 for (const User *U : V->users()) { 4375 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4376 if (!II) 4377 return false; 4378 4379 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4380 continue; 4381 4382 if (AllowDroppable && II->isDroppable()) 4383 continue; 4384 4385 return false; 4386 } 4387 return true; 4388 } 4389 4390 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4391 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4392 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4393 } 4394 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4395 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4396 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4397 } 4398 4399 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4400 if (!LI.isUnordered()) 4401 return true; 4402 const Function &F = *LI.getFunction(); 4403 // Speculative load may create a race that did not exist in the source. 4404 return F.hasFnAttribute(Attribute::SanitizeThread) || 4405 // Speculative load may load data from dirty regions. 4406 F.hasFnAttribute(Attribute::SanitizeAddress) || 4407 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4408 } 4409 4410 4411 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4412 const Instruction *CtxI, 4413 const DominatorTree *DT) { 4414 const Operator *Inst = dyn_cast<Operator>(V); 4415 if (!Inst) 4416 return false; 4417 4418 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4419 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4420 if (C->canTrap()) 4421 return false; 4422 4423 switch (Inst->getOpcode()) { 4424 default: 4425 return true; 4426 case Instruction::UDiv: 4427 case Instruction::URem: { 4428 // x / y is undefined if y == 0. 4429 const APInt *V; 4430 if (match(Inst->getOperand(1), m_APInt(V))) 4431 return *V != 0; 4432 return false; 4433 } 4434 case Instruction::SDiv: 4435 case Instruction::SRem: { 4436 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4437 const APInt *Numerator, *Denominator; 4438 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4439 return false; 4440 // We cannot hoist this division if the denominator is 0. 4441 if (*Denominator == 0) 4442 return false; 4443 // It's safe to hoist if the denominator is not 0 or -1. 4444 if (*Denominator != -1) 4445 return true; 4446 // At this point we know that the denominator is -1. It is safe to hoist as 4447 // long we know that the numerator is not INT_MIN. 4448 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4449 return !Numerator->isMinSignedValue(); 4450 // The numerator *might* be MinSignedValue. 4451 return false; 4452 } 4453 case Instruction::Load: { 4454 const LoadInst *LI = cast<LoadInst>(Inst); 4455 if (mustSuppressSpeculation(*LI)) 4456 return false; 4457 const DataLayout &DL = LI->getModule()->getDataLayout(); 4458 return isDereferenceableAndAlignedPointer( 4459 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4460 DL, CtxI, DT); 4461 } 4462 case Instruction::Call: { 4463 auto *CI = cast<const CallInst>(Inst); 4464 const Function *Callee = CI->getCalledFunction(); 4465 4466 // The called function could have undefined behavior or side-effects, even 4467 // if marked readnone nounwind. 4468 return Callee && Callee->isSpeculatable(); 4469 } 4470 case Instruction::VAArg: 4471 case Instruction::Alloca: 4472 case Instruction::Invoke: 4473 case Instruction::CallBr: 4474 case Instruction::PHI: 4475 case Instruction::Store: 4476 case Instruction::Ret: 4477 case Instruction::Br: 4478 case Instruction::IndirectBr: 4479 case Instruction::Switch: 4480 case Instruction::Unreachable: 4481 case Instruction::Fence: 4482 case Instruction::AtomicRMW: 4483 case Instruction::AtomicCmpXchg: 4484 case Instruction::LandingPad: 4485 case Instruction::Resume: 4486 case Instruction::CatchSwitch: 4487 case Instruction::CatchPad: 4488 case Instruction::CatchRet: 4489 case Instruction::CleanupPad: 4490 case Instruction::CleanupRet: 4491 return false; // Misc instructions which have effects 4492 } 4493 } 4494 4495 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4496 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4497 } 4498 4499 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4500 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4501 switch (OR) { 4502 case ConstantRange::OverflowResult::MayOverflow: 4503 return OverflowResult::MayOverflow; 4504 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4505 return OverflowResult::AlwaysOverflowsLow; 4506 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4507 return OverflowResult::AlwaysOverflowsHigh; 4508 case ConstantRange::OverflowResult::NeverOverflows: 4509 return OverflowResult::NeverOverflows; 4510 } 4511 llvm_unreachable("Unknown OverflowResult"); 4512 } 4513 4514 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4515 static ConstantRange computeConstantRangeIncludingKnownBits( 4516 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4517 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4518 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4519 KnownBits Known = computeKnownBits( 4520 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4521 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4522 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4523 ConstantRange::PreferredRangeType RangeType = 4524 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4525 return CR1.intersectWith(CR2, RangeType); 4526 } 4527 4528 OverflowResult llvm::computeOverflowForUnsignedMul( 4529 const Value *LHS, const Value *RHS, const DataLayout &DL, 4530 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4531 bool UseInstrInfo) { 4532 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4533 nullptr, UseInstrInfo); 4534 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4535 nullptr, UseInstrInfo); 4536 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4537 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4538 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4539 } 4540 4541 OverflowResult 4542 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4543 const DataLayout &DL, AssumptionCache *AC, 4544 const Instruction *CxtI, 4545 const DominatorTree *DT, bool UseInstrInfo) { 4546 // Multiplying n * m significant bits yields a result of n + m significant 4547 // bits. If the total number of significant bits does not exceed the 4548 // result bit width (minus 1), there is no overflow. 4549 // This means if we have enough leading sign bits in the operands 4550 // we can guarantee that the result does not overflow. 4551 // Ref: "Hacker's Delight" by Henry Warren 4552 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4553 4554 // Note that underestimating the number of sign bits gives a more 4555 // conservative answer. 4556 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4557 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4558 4559 // First handle the easy case: if we have enough sign bits there's 4560 // definitely no overflow. 4561 if (SignBits > BitWidth + 1) 4562 return OverflowResult::NeverOverflows; 4563 4564 // There are two ambiguous cases where there can be no overflow: 4565 // SignBits == BitWidth + 1 and 4566 // SignBits == BitWidth 4567 // The second case is difficult to check, therefore we only handle the 4568 // first case. 4569 if (SignBits == BitWidth + 1) { 4570 // It overflows only when both arguments are negative and the true 4571 // product is exactly the minimum negative number. 4572 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4573 // For simplicity we just check if at least one side is not negative. 4574 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4575 nullptr, UseInstrInfo); 4576 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4577 nullptr, UseInstrInfo); 4578 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4579 return OverflowResult::NeverOverflows; 4580 } 4581 return OverflowResult::MayOverflow; 4582 } 4583 4584 OverflowResult llvm::computeOverflowForUnsignedAdd( 4585 const Value *LHS, const Value *RHS, const DataLayout &DL, 4586 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4587 bool UseInstrInfo) { 4588 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4589 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4590 nullptr, UseInstrInfo); 4591 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4592 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4593 nullptr, UseInstrInfo); 4594 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4595 } 4596 4597 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4598 const Value *RHS, 4599 const AddOperator *Add, 4600 const DataLayout &DL, 4601 AssumptionCache *AC, 4602 const Instruction *CxtI, 4603 const DominatorTree *DT) { 4604 if (Add && Add->hasNoSignedWrap()) { 4605 return OverflowResult::NeverOverflows; 4606 } 4607 4608 // If LHS and RHS each have at least two sign bits, the addition will look 4609 // like 4610 // 4611 // XX..... + 4612 // YY..... 4613 // 4614 // If the carry into the most significant position is 0, X and Y can't both 4615 // be 1 and therefore the carry out of the addition is also 0. 4616 // 4617 // If the carry into the most significant position is 1, X and Y can't both 4618 // be 0 and therefore the carry out of the addition is also 1. 4619 // 4620 // Since the carry into the most significant position is always equal to 4621 // the carry out of the addition, there is no signed overflow. 4622 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4623 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4624 return OverflowResult::NeverOverflows; 4625 4626 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4627 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4628 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4629 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4630 OverflowResult OR = 4631 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4632 if (OR != OverflowResult::MayOverflow) 4633 return OR; 4634 4635 // The remaining code needs Add to be available. Early returns if not so. 4636 if (!Add) 4637 return OverflowResult::MayOverflow; 4638 4639 // If the sign of Add is the same as at least one of the operands, this add 4640 // CANNOT overflow. If this can be determined from the known bits of the 4641 // operands the above signedAddMayOverflow() check will have already done so. 4642 // The only other way to improve on the known bits is from an assumption, so 4643 // call computeKnownBitsFromAssume() directly. 4644 bool LHSOrRHSKnownNonNegative = 4645 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4646 bool LHSOrRHSKnownNegative = 4647 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4648 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4649 KnownBits AddKnown(LHSRange.getBitWidth()); 4650 computeKnownBitsFromAssume( 4651 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4652 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4653 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4654 return OverflowResult::NeverOverflows; 4655 } 4656 4657 return OverflowResult::MayOverflow; 4658 } 4659 4660 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4661 const Value *RHS, 4662 const DataLayout &DL, 4663 AssumptionCache *AC, 4664 const Instruction *CxtI, 4665 const DominatorTree *DT) { 4666 // Checking for conditions implied by dominating conditions may be expensive. 4667 // Limit it to usub_with_overflow calls for now. 4668 if (match(CxtI, 4669 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4670 if (auto C = 4671 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4672 if (*C) 4673 return OverflowResult::NeverOverflows; 4674 return OverflowResult::AlwaysOverflowsLow; 4675 } 4676 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4677 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4678 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4679 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4680 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4681 } 4682 4683 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4684 const Value *RHS, 4685 const DataLayout &DL, 4686 AssumptionCache *AC, 4687 const Instruction *CxtI, 4688 const DominatorTree *DT) { 4689 // If LHS and RHS each have at least two sign bits, the subtraction 4690 // cannot overflow. 4691 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4692 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4693 return OverflowResult::NeverOverflows; 4694 4695 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4696 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4697 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4698 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4699 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4700 } 4701 4702 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4703 const DominatorTree &DT) { 4704 SmallVector<const BranchInst *, 2> GuardingBranches; 4705 SmallVector<const ExtractValueInst *, 2> Results; 4706 4707 for (const User *U : WO->users()) { 4708 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4709 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4710 4711 if (EVI->getIndices()[0] == 0) 4712 Results.push_back(EVI); 4713 else { 4714 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4715 4716 for (const auto *U : EVI->users()) 4717 if (const auto *B = dyn_cast<BranchInst>(U)) { 4718 assert(B->isConditional() && "How else is it using an i1?"); 4719 GuardingBranches.push_back(B); 4720 } 4721 } 4722 } else { 4723 // We are using the aggregate directly in a way we don't want to analyze 4724 // here (storing it to a global, say). 4725 return false; 4726 } 4727 } 4728 4729 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4730 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4731 if (!NoWrapEdge.isSingleEdge()) 4732 return false; 4733 4734 // Check if all users of the add are provably no-wrap. 4735 for (const auto *Result : Results) { 4736 // If the extractvalue itself is not executed on overflow, the we don't 4737 // need to check each use separately, since domination is transitive. 4738 if (DT.dominates(NoWrapEdge, Result->getParent())) 4739 continue; 4740 4741 for (auto &RU : Result->uses()) 4742 if (!DT.dominates(NoWrapEdge, RU)) 4743 return false; 4744 } 4745 4746 return true; 4747 }; 4748 4749 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4750 } 4751 4752 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4753 // See whether I has flags that may create poison 4754 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4755 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4756 return true; 4757 } 4758 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4759 if (ExactOp->isExact()) 4760 return true; 4761 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4762 auto FMF = FP->getFastMathFlags(); 4763 if (FMF.noNaNs() || FMF.noInfs()) 4764 return true; 4765 } 4766 4767 unsigned Opcode = Op->getOpcode(); 4768 4769 // Check whether opcode is a poison/undef-generating operation 4770 switch (Opcode) { 4771 case Instruction::Shl: 4772 case Instruction::AShr: 4773 case Instruction::LShr: { 4774 // Shifts return poison if shiftwidth is larger than the bitwidth. 4775 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4776 SmallVector<Constant *, 4> ShiftAmounts; 4777 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4778 unsigned NumElts = FVTy->getNumElements(); 4779 for (unsigned i = 0; i < NumElts; ++i) 4780 ShiftAmounts.push_back(C->getAggregateElement(i)); 4781 } else if (isa<ScalableVectorType>(C->getType())) 4782 return true; // Can't tell, just return true to be safe 4783 else 4784 ShiftAmounts.push_back(C); 4785 4786 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4787 auto *CI = dyn_cast<ConstantInt>(C); 4788 return CI && CI->getZExtValue() < C->getType()->getIntegerBitWidth(); 4789 }); 4790 return !Safe; 4791 } 4792 return true; 4793 } 4794 case Instruction::FPToSI: 4795 case Instruction::FPToUI: 4796 // fptosi/ui yields poison if the resulting value does not fit in the 4797 // destination type. 4798 return true; 4799 case Instruction::Call: 4800 case Instruction::CallBr: 4801 case Instruction::Invoke: { 4802 const auto *CB = cast<CallBase>(Op); 4803 return !CB->hasRetAttr(Attribute::NoUndef); 4804 } 4805 case Instruction::InsertElement: 4806 case Instruction::ExtractElement: { 4807 // If index exceeds the length of the vector, it returns poison 4808 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4809 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4810 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4811 if (!Idx || 4812 Idx->getZExtValue() >= VTy->getElementCount().getKnownMinValue()) 4813 return true; 4814 return false; 4815 } 4816 case Instruction::ShuffleVector: { 4817 // shufflevector may return undef. 4818 if (PoisonOnly) 4819 return false; 4820 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4821 ? cast<ConstantExpr>(Op)->getShuffleMask() 4822 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4823 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4824 } 4825 case Instruction::FNeg: 4826 case Instruction::PHI: 4827 case Instruction::Select: 4828 case Instruction::URem: 4829 case Instruction::SRem: 4830 case Instruction::ExtractValue: 4831 case Instruction::InsertValue: 4832 case Instruction::Freeze: 4833 case Instruction::ICmp: 4834 case Instruction::FCmp: 4835 return false; 4836 case Instruction::GetElementPtr: { 4837 const auto *GEP = cast<GEPOperator>(Op); 4838 return GEP->isInBounds(); 4839 } 4840 default: { 4841 const auto *CE = dyn_cast<ConstantExpr>(Op); 4842 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4843 return false; 4844 else if (Instruction::isBinaryOp(Opcode)) 4845 return false; 4846 // Be conservative and return true. 4847 return true; 4848 } 4849 } 4850 } 4851 4852 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4853 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4854 } 4855 4856 bool llvm::canCreatePoison(const Operator *Op) { 4857 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4858 } 4859 4860 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4861 const Instruction *CtxI, 4862 const DominatorTree *DT, 4863 unsigned Depth) { 4864 if (Depth >= MaxAnalysisRecursionDepth) 4865 return false; 4866 4867 if (const auto *A = dyn_cast<Argument>(V)) { 4868 if (A->hasAttribute(Attribute::NoUndef)) 4869 return true; 4870 } 4871 4872 if (auto *C = dyn_cast<Constant>(V)) { 4873 if (isa<UndefValue>(C)) 4874 return false; 4875 4876 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4877 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4878 return true; 4879 4880 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4881 return !C->containsConstantExpression() && !C->containsUndefElement(); 4882 } 4883 4884 // Strip cast operations from a pointer value. 4885 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4886 // inbounds with zero offset. To guarantee that the result isn't poison, the 4887 // stripped pointer is checked as it has to be pointing into an allocated 4888 // object or be null `null` to ensure `inbounds` getelement pointers with a 4889 // zero offset could not produce poison. 4890 // It can strip off addrspacecast that do not change bit representation as 4891 // well. We believe that such addrspacecast is equivalent to no-op. 4892 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4893 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4894 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4895 return true; 4896 4897 auto OpCheck = [&](const Value *V) { 4898 return isGuaranteedNotToBeUndefOrPoison(V, CtxI, DT, Depth + 1); 4899 }; 4900 4901 if (auto *Opr = dyn_cast<Operator>(V)) { 4902 // If the value is a freeze instruction, then it can never 4903 // be undef or poison. 4904 if (isa<FreezeInst>(V)) 4905 return true; 4906 4907 if (const auto *CB = dyn_cast<CallBase>(V)) { 4908 if (CB->hasRetAttr(Attribute::NoUndef)) 4909 return true; 4910 } 4911 4912 if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4913 return true; 4914 } 4915 4916 if (auto *I = dyn_cast<Instruction>(V)) { 4917 if (programUndefinedIfPoison(I) && I->getType()->isIntegerTy(1)) 4918 // Note: once we have an agreement that poison is a value-wise concept, 4919 // we can remove the isIntegerTy(1) constraint. 4920 return true; 4921 } 4922 4923 // CxtI may be null or a cloned instruction. 4924 if (!CtxI || !CtxI->getParent() || !DT) 4925 return false; 4926 4927 auto *DNode = DT->getNode(CtxI->getParent()); 4928 if (!DNode) 4929 // Unreachable block 4930 return false; 4931 4932 // If V is used as a branch condition before reaching CtxI, V cannot be 4933 // undef or poison. 4934 // br V, BB1, BB2 4935 // BB1: 4936 // CtxI ; V cannot be undef or poison here 4937 auto *Dominator = DNode->getIDom(); 4938 while (Dominator) { 4939 auto *TI = Dominator->getBlock()->getTerminator(); 4940 4941 if (auto BI = dyn_cast<BranchInst>(TI)) { 4942 if (BI->isConditional() && BI->getCondition() == V) 4943 return true; 4944 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4945 if (SI->getCondition() == V) 4946 return true; 4947 } 4948 4949 Dominator = Dominator->getIDom(); 4950 } 4951 4952 return false; 4953 } 4954 4955 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4956 const DataLayout &DL, 4957 AssumptionCache *AC, 4958 const Instruction *CxtI, 4959 const DominatorTree *DT) { 4960 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4961 Add, DL, AC, CxtI, DT); 4962 } 4963 4964 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4965 const Value *RHS, 4966 const DataLayout &DL, 4967 AssumptionCache *AC, 4968 const Instruction *CxtI, 4969 const DominatorTree *DT) { 4970 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4971 } 4972 4973 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4974 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4975 // of time because it's possible for another thread to interfere with it for an 4976 // arbitrary length of time, but programs aren't allowed to rely on that. 4977 4978 // If there is no successor, then execution can't transfer to it. 4979 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4980 return !CRI->unwindsToCaller(); 4981 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4982 return !CatchSwitch->unwindsToCaller(); 4983 if (isa<ResumeInst>(I)) 4984 return false; 4985 if (isa<ReturnInst>(I)) 4986 return false; 4987 if (isa<UnreachableInst>(I)) 4988 return false; 4989 4990 // Calls can throw, or contain an infinite loop, or kill the process. 4991 if (const auto *CB = dyn_cast<CallBase>(I)) { 4992 // Call sites that throw have implicit non-local control flow. 4993 if (!CB->doesNotThrow()) 4994 return false; 4995 4996 // A function which doens't throw and has "willreturn" attribute will 4997 // always return. 4998 if (CB->hasFnAttr(Attribute::WillReturn)) 4999 return true; 5000 5001 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5002 // etc. and thus not return. However, LLVM already assumes that 5003 // 5004 // - Thread exiting actions are modeled as writes to memory invisible to 5005 // the program. 5006 // 5007 // - Loops that don't have side effects (side effects are volatile/atomic 5008 // stores and IO) always terminate (see http://llvm.org/PR965). 5009 // Furthermore IO itself is also modeled as writes to memory invisible to 5010 // the program. 5011 // 5012 // We rely on those assumptions here, and use the memory effects of the call 5013 // target as a proxy for checking that it always returns. 5014 5015 // FIXME: This isn't aggressive enough; a call which only writes to a global 5016 // is guaranteed to return. 5017 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5018 } 5019 5020 // Other instructions return normally. 5021 return true; 5022 } 5023 5024 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5025 // TODO: This is slightly conservative for invoke instruction since exiting 5026 // via an exception *is* normal control for them. 5027 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5028 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5029 return false; 5030 return true; 5031 } 5032 5033 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5034 const Loop *L) { 5035 // The loop header is guaranteed to be executed for every iteration. 5036 // 5037 // FIXME: Relax this constraint to cover all basic blocks that are 5038 // guaranteed to be executed at every iteration. 5039 if (I->getParent() != L->getHeader()) return false; 5040 5041 for (const Instruction &LI : *L->getHeader()) { 5042 if (&LI == I) return true; 5043 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5044 } 5045 llvm_unreachable("Instruction not contained in its own parent basic block."); 5046 } 5047 5048 bool llvm::propagatesPoison(const Instruction *I) { 5049 switch (I->getOpcode()) { 5050 case Instruction::Freeze: 5051 case Instruction::Select: 5052 case Instruction::PHI: 5053 case Instruction::Call: 5054 case Instruction::Invoke: 5055 return false; 5056 case Instruction::ICmp: 5057 case Instruction::FCmp: 5058 case Instruction::GetElementPtr: 5059 return true; 5060 default: 5061 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5062 return true; 5063 5064 // Be conservative and return false. 5065 return false; 5066 } 5067 } 5068 5069 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5070 SmallPtrSetImpl<const Value *> &Operands) { 5071 switch (I->getOpcode()) { 5072 case Instruction::Store: 5073 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5074 break; 5075 5076 case Instruction::Load: 5077 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5078 break; 5079 5080 case Instruction::AtomicCmpXchg: 5081 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5082 break; 5083 5084 case Instruction::AtomicRMW: 5085 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5086 break; 5087 5088 case Instruction::UDiv: 5089 case Instruction::SDiv: 5090 case Instruction::URem: 5091 case Instruction::SRem: 5092 Operands.insert(I->getOperand(1)); 5093 break; 5094 5095 case Instruction::Call: 5096 case Instruction::Invoke: { 5097 const CallBase *CB = cast<CallBase>(I); 5098 if (CB->isIndirectCall()) 5099 Operands.insert(CB->getCalledOperand()); 5100 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5101 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5102 Operands.insert(CB->getArgOperand(i)); 5103 } 5104 break; 5105 } 5106 5107 default: 5108 break; 5109 } 5110 } 5111 5112 bool llvm::mustTriggerUB(const Instruction *I, 5113 const SmallSet<const Value *, 16>& KnownPoison) { 5114 SmallPtrSet<const Value *, 4> NonPoisonOps; 5115 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5116 5117 for (const auto *V : NonPoisonOps) 5118 if (KnownPoison.count(V)) 5119 return true; 5120 5121 return false; 5122 } 5123 5124 5125 bool llvm::programUndefinedIfPoison(const Instruction *PoisonI) { 5126 // We currently only look for uses of poison values within the same basic 5127 // block, as that makes it easier to guarantee that the uses will be 5128 // executed given that PoisonI is executed. 5129 // 5130 // FIXME: Expand this to consider uses beyond the same basic block. To do 5131 // this, look out for the distinction between post-dominance and strong 5132 // post-dominance. 5133 const BasicBlock *BB = PoisonI->getParent(); 5134 5135 // Set of instructions that we have proved will yield poison if PoisonI 5136 // does. 5137 SmallSet<const Value *, 16> YieldsPoison; 5138 SmallSet<const BasicBlock *, 4> Visited; 5139 YieldsPoison.insert(PoisonI); 5140 Visited.insert(PoisonI->getParent()); 5141 5142 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 5143 5144 unsigned Iter = 0; 5145 while (Iter++ < MaxAnalysisRecursionDepth) { 5146 for (auto &I : make_range(Begin, End)) { 5147 if (&I != PoisonI) { 5148 if (mustTriggerUB(&I, YieldsPoison)) 5149 return true; 5150 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5151 return false; 5152 } 5153 5154 // Mark poison that propagates from I through uses of I. 5155 if (YieldsPoison.count(&I)) { 5156 for (const User *User : I.users()) { 5157 const Instruction *UserI = cast<Instruction>(User); 5158 if (propagatesPoison(UserI)) 5159 YieldsPoison.insert(User); 5160 } 5161 } 5162 } 5163 5164 if (auto *NextBB = BB->getSingleSuccessor()) { 5165 if (Visited.insert(NextBB).second) { 5166 BB = NextBB; 5167 Begin = BB->getFirstNonPHI()->getIterator(); 5168 End = BB->end(); 5169 continue; 5170 } 5171 } 5172 5173 break; 5174 } 5175 return false; 5176 } 5177 5178 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5179 if (FMF.noNaNs()) 5180 return true; 5181 5182 if (auto *C = dyn_cast<ConstantFP>(V)) 5183 return !C->isNaN(); 5184 5185 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5186 if (!C->getElementType()->isFloatingPointTy()) 5187 return false; 5188 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5189 if (C->getElementAsAPFloat(I).isNaN()) 5190 return false; 5191 } 5192 return true; 5193 } 5194 5195 if (isa<ConstantAggregateZero>(V)) 5196 return true; 5197 5198 return false; 5199 } 5200 5201 static bool isKnownNonZero(const Value *V) { 5202 if (auto *C = dyn_cast<ConstantFP>(V)) 5203 return !C->isZero(); 5204 5205 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5206 if (!C->getElementType()->isFloatingPointTy()) 5207 return false; 5208 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5209 if (C->getElementAsAPFloat(I).isZero()) 5210 return false; 5211 } 5212 return true; 5213 } 5214 5215 return false; 5216 } 5217 5218 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5219 /// Given non-min/max outer cmp/select from the clamp pattern this 5220 /// function recognizes if it can be substitued by a "canonical" min/max 5221 /// pattern. 5222 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5223 Value *CmpLHS, Value *CmpRHS, 5224 Value *TrueVal, Value *FalseVal, 5225 Value *&LHS, Value *&RHS) { 5226 // Try to match 5227 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5228 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5229 // and return description of the outer Max/Min. 5230 5231 // First, check if select has inverse order: 5232 if (CmpRHS == FalseVal) { 5233 std::swap(TrueVal, FalseVal); 5234 Pred = CmpInst::getInversePredicate(Pred); 5235 } 5236 5237 // Assume success now. If there's no match, callers should not use these anyway. 5238 LHS = TrueVal; 5239 RHS = FalseVal; 5240 5241 const APFloat *FC1; 5242 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5243 return {SPF_UNKNOWN, SPNB_NA, false}; 5244 5245 const APFloat *FC2; 5246 switch (Pred) { 5247 case CmpInst::FCMP_OLT: 5248 case CmpInst::FCMP_OLE: 5249 case CmpInst::FCMP_ULT: 5250 case CmpInst::FCMP_ULE: 5251 if (match(FalseVal, 5252 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5253 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5254 *FC1 < *FC2) 5255 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5256 break; 5257 case CmpInst::FCMP_OGT: 5258 case CmpInst::FCMP_OGE: 5259 case CmpInst::FCMP_UGT: 5260 case CmpInst::FCMP_UGE: 5261 if (match(FalseVal, 5262 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5263 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5264 *FC1 > *FC2) 5265 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5266 break; 5267 default: 5268 break; 5269 } 5270 5271 return {SPF_UNKNOWN, SPNB_NA, false}; 5272 } 5273 5274 /// Recognize variations of: 5275 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5276 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5277 Value *CmpLHS, Value *CmpRHS, 5278 Value *TrueVal, Value *FalseVal) { 5279 // Swap the select operands and predicate to match the patterns below. 5280 if (CmpRHS != TrueVal) { 5281 Pred = ICmpInst::getSwappedPredicate(Pred); 5282 std::swap(TrueVal, FalseVal); 5283 } 5284 const APInt *C1; 5285 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5286 const APInt *C2; 5287 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5288 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5289 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5290 return {SPF_SMAX, SPNB_NA, false}; 5291 5292 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5293 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5294 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5295 return {SPF_SMIN, SPNB_NA, false}; 5296 5297 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5298 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5299 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5300 return {SPF_UMAX, SPNB_NA, false}; 5301 5302 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5303 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5304 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5305 return {SPF_UMIN, SPNB_NA, false}; 5306 } 5307 return {SPF_UNKNOWN, SPNB_NA, false}; 5308 } 5309 5310 /// Recognize variations of: 5311 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5312 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5313 Value *CmpLHS, Value *CmpRHS, 5314 Value *TVal, Value *FVal, 5315 unsigned Depth) { 5316 // TODO: Allow FP min/max with nnan/nsz. 5317 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5318 5319 Value *A = nullptr, *B = nullptr; 5320 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5321 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5322 return {SPF_UNKNOWN, SPNB_NA, false}; 5323 5324 Value *C = nullptr, *D = nullptr; 5325 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5326 if (L.Flavor != R.Flavor) 5327 return {SPF_UNKNOWN, SPNB_NA, false}; 5328 5329 // We have something like: x Pred y ? min(a, b) : min(c, d). 5330 // Try to match the compare to the min/max operations of the select operands. 5331 // First, make sure we have the right compare predicate. 5332 switch (L.Flavor) { 5333 case SPF_SMIN: 5334 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5335 Pred = ICmpInst::getSwappedPredicate(Pred); 5336 std::swap(CmpLHS, CmpRHS); 5337 } 5338 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5339 break; 5340 return {SPF_UNKNOWN, SPNB_NA, false}; 5341 case SPF_SMAX: 5342 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5343 Pred = ICmpInst::getSwappedPredicate(Pred); 5344 std::swap(CmpLHS, CmpRHS); 5345 } 5346 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5347 break; 5348 return {SPF_UNKNOWN, SPNB_NA, false}; 5349 case SPF_UMIN: 5350 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5351 Pred = ICmpInst::getSwappedPredicate(Pred); 5352 std::swap(CmpLHS, CmpRHS); 5353 } 5354 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5355 break; 5356 return {SPF_UNKNOWN, SPNB_NA, false}; 5357 case SPF_UMAX: 5358 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5359 Pred = ICmpInst::getSwappedPredicate(Pred); 5360 std::swap(CmpLHS, CmpRHS); 5361 } 5362 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5363 break; 5364 return {SPF_UNKNOWN, SPNB_NA, false}; 5365 default: 5366 return {SPF_UNKNOWN, SPNB_NA, false}; 5367 } 5368 5369 // If there is a common operand in the already matched min/max and the other 5370 // min/max operands match the compare operands (either directly or inverted), 5371 // then this is min/max of the same flavor. 5372 5373 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5374 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5375 if (D == B) { 5376 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5377 match(A, m_Not(m_Specific(CmpRHS))))) 5378 return {L.Flavor, SPNB_NA, false}; 5379 } 5380 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5381 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5382 if (C == B) { 5383 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5384 match(A, m_Not(m_Specific(CmpRHS))))) 5385 return {L.Flavor, SPNB_NA, false}; 5386 } 5387 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5388 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5389 if (D == A) { 5390 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5391 match(B, m_Not(m_Specific(CmpRHS))))) 5392 return {L.Flavor, SPNB_NA, false}; 5393 } 5394 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5395 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5396 if (C == A) { 5397 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5398 match(B, m_Not(m_Specific(CmpRHS))))) 5399 return {L.Flavor, SPNB_NA, false}; 5400 } 5401 5402 return {SPF_UNKNOWN, SPNB_NA, false}; 5403 } 5404 5405 /// If the input value is the result of a 'not' op, constant integer, or vector 5406 /// splat of a constant integer, return the bitwise-not source value. 5407 /// TODO: This could be extended to handle non-splat vector integer constants. 5408 static Value *getNotValue(Value *V) { 5409 Value *NotV; 5410 if (match(V, m_Not(m_Value(NotV)))) 5411 return NotV; 5412 5413 const APInt *C; 5414 if (match(V, m_APInt(C))) 5415 return ConstantInt::get(V->getType(), ~(*C)); 5416 5417 return nullptr; 5418 } 5419 5420 /// Match non-obvious integer minimum and maximum sequences. 5421 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5422 Value *CmpLHS, Value *CmpRHS, 5423 Value *TrueVal, Value *FalseVal, 5424 Value *&LHS, Value *&RHS, 5425 unsigned Depth) { 5426 // Assume success. If there's no match, callers should not use these anyway. 5427 LHS = TrueVal; 5428 RHS = FalseVal; 5429 5430 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5431 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5432 return SPR; 5433 5434 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5435 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5436 return SPR; 5437 5438 // Look through 'not' ops to find disguised min/max. 5439 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5440 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5441 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5442 switch (Pred) { 5443 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5444 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5445 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5446 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5447 default: break; 5448 } 5449 } 5450 5451 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5452 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5453 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5454 switch (Pred) { 5455 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5456 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5457 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5458 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5459 default: break; 5460 } 5461 } 5462 5463 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5464 return {SPF_UNKNOWN, SPNB_NA, false}; 5465 5466 // Z = X -nsw Y 5467 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5468 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5469 if (match(TrueVal, m_Zero()) && 5470 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5471 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5472 5473 // Z = X -nsw Y 5474 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5475 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5476 if (match(FalseVal, m_Zero()) && 5477 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5478 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5479 5480 const APInt *C1; 5481 if (!match(CmpRHS, m_APInt(C1))) 5482 return {SPF_UNKNOWN, SPNB_NA, false}; 5483 5484 // An unsigned min/max can be written with a signed compare. 5485 const APInt *C2; 5486 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5487 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5488 // Is the sign bit set? 5489 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5490 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5491 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5492 C2->isMaxSignedValue()) 5493 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5494 5495 // Is the sign bit clear? 5496 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5497 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5498 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5499 C2->isMinSignedValue()) 5500 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5501 } 5502 5503 return {SPF_UNKNOWN, SPNB_NA, false}; 5504 } 5505 5506 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5507 assert(X && Y && "Invalid operand"); 5508 5509 // X = sub (0, Y) || X = sub nsw (0, Y) 5510 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5511 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5512 return true; 5513 5514 // Y = sub (0, X) || Y = sub nsw (0, X) 5515 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5516 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5517 return true; 5518 5519 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5520 Value *A, *B; 5521 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5522 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5523 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5524 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5525 } 5526 5527 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5528 FastMathFlags FMF, 5529 Value *CmpLHS, Value *CmpRHS, 5530 Value *TrueVal, Value *FalseVal, 5531 Value *&LHS, Value *&RHS, 5532 unsigned Depth) { 5533 if (CmpInst::isFPPredicate(Pred)) { 5534 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5535 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5536 // purpose of identifying min/max. Disregard vector constants with undefined 5537 // elements because those can not be back-propagated for analysis. 5538 Value *OutputZeroVal = nullptr; 5539 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5540 !cast<Constant>(TrueVal)->containsUndefElement()) 5541 OutputZeroVal = TrueVal; 5542 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5543 !cast<Constant>(FalseVal)->containsUndefElement()) 5544 OutputZeroVal = FalseVal; 5545 5546 if (OutputZeroVal) { 5547 if (match(CmpLHS, m_AnyZeroFP())) 5548 CmpLHS = OutputZeroVal; 5549 if (match(CmpRHS, m_AnyZeroFP())) 5550 CmpRHS = OutputZeroVal; 5551 } 5552 } 5553 5554 LHS = CmpLHS; 5555 RHS = CmpRHS; 5556 5557 // Signed zero may return inconsistent results between implementations. 5558 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5559 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5560 // Therefore, we behave conservatively and only proceed if at least one of the 5561 // operands is known to not be zero or if we don't care about signed zero. 5562 switch (Pred) { 5563 default: break; 5564 // FIXME: Include OGT/OLT/UGT/ULT. 5565 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5566 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5567 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5568 !isKnownNonZero(CmpRHS)) 5569 return {SPF_UNKNOWN, SPNB_NA, false}; 5570 } 5571 5572 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5573 bool Ordered = false; 5574 5575 // When given one NaN and one non-NaN input: 5576 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5577 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5578 // ordered comparison fails), which could be NaN or non-NaN. 5579 // so here we discover exactly what NaN behavior is required/accepted. 5580 if (CmpInst::isFPPredicate(Pred)) { 5581 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5582 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5583 5584 if (LHSSafe && RHSSafe) { 5585 // Both operands are known non-NaN. 5586 NaNBehavior = SPNB_RETURNS_ANY; 5587 } else if (CmpInst::isOrdered(Pred)) { 5588 // An ordered comparison will return false when given a NaN, so it 5589 // returns the RHS. 5590 Ordered = true; 5591 if (LHSSafe) 5592 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5593 NaNBehavior = SPNB_RETURNS_NAN; 5594 else if (RHSSafe) 5595 NaNBehavior = SPNB_RETURNS_OTHER; 5596 else 5597 // Completely unsafe. 5598 return {SPF_UNKNOWN, SPNB_NA, false}; 5599 } else { 5600 Ordered = false; 5601 // An unordered comparison will return true when given a NaN, so it 5602 // returns the LHS. 5603 if (LHSSafe) 5604 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5605 NaNBehavior = SPNB_RETURNS_OTHER; 5606 else if (RHSSafe) 5607 NaNBehavior = SPNB_RETURNS_NAN; 5608 else 5609 // Completely unsafe. 5610 return {SPF_UNKNOWN, SPNB_NA, false}; 5611 } 5612 } 5613 5614 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5615 std::swap(CmpLHS, CmpRHS); 5616 Pred = CmpInst::getSwappedPredicate(Pred); 5617 if (NaNBehavior == SPNB_RETURNS_NAN) 5618 NaNBehavior = SPNB_RETURNS_OTHER; 5619 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5620 NaNBehavior = SPNB_RETURNS_NAN; 5621 Ordered = !Ordered; 5622 } 5623 5624 // ([if]cmp X, Y) ? X : Y 5625 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5626 switch (Pred) { 5627 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5628 case ICmpInst::ICMP_UGT: 5629 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5630 case ICmpInst::ICMP_SGT: 5631 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5632 case ICmpInst::ICMP_ULT: 5633 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5634 case ICmpInst::ICMP_SLT: 5635 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5636 case FCmpInst::FCMP_UGT: 5637 case FCmpInst::FCMP_UGE: 5638 case FCmpInst::FCMP_OGT: 5639 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5640 case FCmpInst::FCMP_ULT: 5641 case FCmpInst::FCMP_ULE: 5642 case FCmpInst::FCMP_OLT: 5643 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5644 } 5645 } 5646 5647 if (isKnownNegation(TrueVal, FalseVal)) { 5648 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5649 // match against either LHS or sext(LHS). 5650 auto MaybeSExtCmpLHS = 5651 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5652 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5653 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5654 if (match(TrueVal, MaybeSExtCmpLHS)) { 5655 // Set the return values. If the compare uses the negated value (-X >s 0), 5656 // swap the return values because the negated value is always 'RHS'. 5657 LHS = TrueVal; 5658 RHS = FalseVal; 5659 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5660 std::swap(LHS, RHS); 5661 5662 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5663 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5664 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5665 return {SPF_ABS, SPNB_NA, false}; 5666 5667 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5668 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5669 return {SPF_ABS, SPNB_NA, false}; 5670 5671 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5672 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5673 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5674 return {SPF_NABS, SPNB_NA, false}; 5675 } 5676 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5677 // Set the return values. If the compare uses the negated value (-X >s 0), 5678 // swap the return values because the negated value is always 'RHS'. 5679 LHS = FalseVal; 5680 RHS = TrueVal; 5681 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5682 std::swap(LHS, RHS); 5683 5684 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5685 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5686 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5687 return {SPF_NABS, SPNB_NA, false}; 5688 5689 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5690 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5691 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5692 return {SPF_ABS, SPNB_NA, false}; 5693 } 5694 } 5695 5696 if (CmpInst::isIntPredicate(Pred)) 5697 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5698 5699 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5700 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5701 // semantics than minNum. Be conservative in such case. 5702 if (NaNBehavior != SPNB_RETURNS_ANY || 5703 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5704 !isKnownNonZero(CmpRHS))) 5705 return {SPF_UNKNOWN, SPNB_NA, false}; 5706 5707 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5708 } 5709 5710 /// Helps to match a select pattern in case of a type mismatch. 5711 /// 5712 /// The function processes the case when type of true and false values of a 5713 /// select instruction differs from type of the cmp instruction operands because 5714 /// of a cast instruction. The function checks if it is legal to move the cast 5715 /// operation after "select". If yes, it returns the new second value of 5716 /// "select" (with the assumption that cast is moved): 5717 /// 1. As operand of cast instruction when both values of "select" are same cast 5718 /// instructions. 5719 /// 2. As restored constant (by applying reverse cast operation) when the first 5720 /// value of the "select" is a cast operation and the second value is a 5721 /// constant. 5722 /// NOTE: We return only the new second value because the first value could be 5723 /// accessed as operand of cast instruction. 5724 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5725 Instruction::CastOps *CastOp) { 5726 auto *Cast1 = dyn_cast<CastInst>(V1); 5727 if (!Cast1) 5728 return nullptr; 5729 5730 *CastOp = Cast1->getOpcode(); 5731 Type *SrcTy = Cast1->getSrcTy(); 5732 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5733 // If V1 and V2 are both the same cast from the same type, look through V1. 5734 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5735 return Cast2->getOperand(0); 5736 return nullptr; 5737 } 5738 5739 auto *C = dyn_cast<Constant>(V2); 5740 if (!C) 5741 return nullptr; 5742 5743 Constant *CastedTo = nullptr; 5744 switch (*CastOp) { 5745 case Instruction::ZExt: 5746 if (CmpI->isUnsigned()) 5747 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5748 break; 5749 case Instruction::SExt: 5750 if (CmpI->isSigned()) 5751 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5752 break; 5753 case Instruction::Trunc: 5754 Constant *CmpConst; 5755 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5756 CmpConst->getType() == SrcTy) { 5757 // Here we have the following case: 5758 // 5759 // %cond = cmp iN %x, CmpConst 5760 // %tr = trunc iN %x to iK 5761 // %narrowsel = select i1 %cond, iK %t, iK C 5762 // 5763 // We can always move trunc after select operation: 5764 // 5765 // %cond = cmp iN %x, CmpConst 5766 // %widesel = select i1 %cond, iN %x, iN CmpConst 5767 // %tr = trunc iN %widesel to iK 5768 // 5769 // Note that C could be extended in any way because we don't care about 5770 // upper bits after truncation. It can't be abs pattern, because it would 5771 // look like: 5772 // 5773 // select i1 %cond, x, -x. 5774 // 5775 // So only min/max pattern could be matched. Such match requires widened C 5776 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5777 // CmpConst == C is checked below. 5778 CastedTo = CmpConst; 5779 } else { 5780 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5781 } 5782 break; 5783 case Instruction::FPTrunc: 5784 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5785 break; 5786 case Instruction::FPExt: 5787 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5788 break; 5789 case Instruction::FPToUI: 5790 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5791 break; 5792 case Instruction::FPToSI: 5793 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5794 break; 5795 case Instruction::UIToFP: 5796 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5797 break; 5798 case Instruction::SIToFP: 5799 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5800 break; 5801 default: 5802 break; 5803 } 5804 5805 if (!CastedTo) 5806 return nullptr; 5807 5808 // Make sure the cast doesn't lose any information. 5809 Constant *CastedBack = 5810 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5811 if (CastedBack != C) 5812 return nullptr; 5813 5814 return CastedTo; 5815 } 5816 5817 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5818 Instruction::CastOps *CastOp, 5819 unsigned Depth) { 5820 if (Depth >= MaxAnalysisRecursionDepth) 5821 return {SPF_UNKNOWN, SPNB_NA, false}; 5822 5823 SelectInst *SI = dyn_cast<SelectInst>(V); 5824 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5825 5826 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5827 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5828 5829 Value *TrueVal = SI->getTrueValue(); 5830 Value *FalseVal = SI->getFalseValue(); 5831 5832 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5833 CastOp, Depth); 5834 } 5835 5836 SelectPatternResult llvm::matchDecomposedSelectPattern( 5837 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5838 Instruction::CastOps *CastOp, unsigned Depth) { 5839 CmpInst::Predicate Pred = CmpI->getPredicate(); 5840 Value *CmpLHS = CmpI->getOperand(0); 5841 Value *CmpRHS = CmpI->getOperand(1); 5842 FastMathFlags FMF; 5843 if (isa<FPMathOperator>(CmpI)) 5844 FMF = CmpI->getFastMathFlags(); 5845 5846 // Bail out early. 5847 if (CmpI->isEquality()) 5848 return {SPF_UNKNOWN, SPNB_NA, false}; 5849 5850 // Deal with type mismatches. 5851 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5852 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5853 // If this is a potential fmin/fmax with a cast to integer, then ignore 5854 // -0.0 because there is no corresponding integer value. 5855 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5856 FMF.setNoSignedZeros(); 5857 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5858 cast<CastInst>(TrueVal)->getOperand(0), C, 5859 LHS, RHS, Depth); 5860 } 5861 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5862 // If this is a potential fmin/fmax with a cast to integer, then ignore 5863 // -0.0 because there is no corresponding integer value. 5864 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5865 FMF.setNoSignedZeros(); 5866 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5867 C, cast<CastInst>(FalseVal)->getOperand(0), 5868 LHS, RHS, Depth); 5869 } 5870 } 5871 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5872 LHS, RHS, Depth); 5873 } 5874 5875 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5876 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5877 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5878 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5879 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5880 if (SPF == SPF_FMINNUM) 5881 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5882 if (SPF == SPF_FMAXNUM) 5883 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5884 llvm_unreachable("unhandled!"); 5885 } 5886 5887 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5888 if (SPF == SPF_SMIN) return SPF_SMAX; 5889 if (SPF == SPF_UMIN) return SPF_UMAX; 5890 if (SPF == SPF_SMAX) return SPF_SMIN; 5891 if (SPF == SPF_UMAX) return SPF_UMIN; 5892 llvm_unreachable("unhandled!"); 5893 } 5894 5895 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5896 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5897 } 5898 5899 /// Return true if "icmp Pred LHS RHS" is always true. 5900 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5901 const Value *RHS, const DataLayout &DL, 5902 unsigned Depth) { 5903 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5904 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5905 return true; 5906 5907 switch (Pred) { 5908 default: 5909 return false; 5910 5911 case CmpInst::ICMP_SLE: { 5912 const APInt *C; 5913 5914 // LHS s<= LHS +_{nsw} C if C >= 0 5915 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5916 return !C->isNegative(); 5917 return false; 5918 } 5919 5920 case CmpInst::ICMP_ULE: { 5921 const APInt *C; 5922 5923 // LHS u<= LHS +_{nuw} C for any C 5924 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5925 return true; 5926 5927 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5928 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5929 const Value *&X, 5930 const APInt *&CA, const APInt *&CB) { 5931 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5932 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5933 return true; 5934 5935 // If X & C == 0 then (X | C) == X +_{nuw} C 5936 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5937 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5938 KnownBits Known(CA->getBitWidth()); 5939 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5940 /*CxtI*/ nullptr, /*DT*/ nullptr); 5941 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5942 return true; 5943 } 5944 5945 return false; 5946 }; 5947 5948 const Value *X; 5949 const APInt *CLHS, *CRHS; 5950 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5951 return CLHS->ule(*CRHS); 5952 5953 return false; 5954 } 5955 } 5956 } 5957 5958 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5959 /// ALHS ARHS" is true. Otherwise, return None. 5960 static Optional<bool> 5961 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5962 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5963 const DataLayout &DL, unsigned Depth) { 5964 switch (Pred) { 5965 default: 5966 return None; 5967 5968 case CmpInst::ICMP_SLT: 5969 case CmpInst::ICMP_SLE: 5970 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5971 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5972 return true; 5973 return None; 5974 5975 case CmpInst::ICMP_ULT: 5976 case CmpInst::ICMP_ULE: 5977 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5978 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5979 return true; 5980 return None; 5981 } 5982 } 5983 5984 /// Return true if the operands of the two compares match. IsSwappedOps is true 5985 /// when the operands match, but are swapped. 5986 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5987 const Value *BLHS, const Value *BRHS, 5988 bool &IsSwappedOps) { 5989 5990 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5991 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5992 return IsMatchingOps || IsSwappedOps; 5993 } 5994 5995 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5996 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5997 /// Otherwise, return None if we can't infer anything. 5998 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5999 CmpInst::Predicate BPred, 6000 bool AreSwappedOps) { 6001 // Canonicalize the predicate as if the operands were not commuted. 6002 if (AreSwappedOps) 6003 BPred = ICmpInst::getSwappedPredicate(BPred); 6004 6005 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6006 return true; 6007 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6008 return false; 6009 6010 return None; 6011 } 6012 6013 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6014 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6015 /// Otherwise, return None if we can't infer anything. 6016 static Optional<bool> 6017 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6018 const ConstantInt *C1, 6019 CmpInst::Predicate BPred, 6020 const ConstantInt *C2) { 6021 ConstantRange DomCR = 6022 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6023 ConstantRange CR = 6024 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6025 ConstantRange Intersection = DomCR.intersectWith(CR); 6026 ConstantRange Difference = DomCR.difference(CR); 6027 if (Intersection.isEmptySet()) 6028 return false; 6029 if (Difference.isEmptySet()) 6030 return true; 6031 return None; 6032 } 6033 6034 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6035 /// false. Otherwise, return None if we can't infer anything. 6036 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6037 CmpInst::Predicate BPred, 6038 const Value *BLHS, const Value *BRHS, 6039 const DataLayout &DL, bool LHSIsTrue, 6040 unsigned Depth) { 6041 Value *ALHS = LHS->getOperand(0); 6042 Value *ARHS = LHS->getOperand(1); 6043 6044 // The rest of the logic assumes the LHS condition is true. If that's not the 6045 // case, invert the predicate to make it so. 6046 CmpInst::Predicate APred = 6047 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6048 6049 // Can we infer anything when the two compares have matching operands? 6050 bool AreSwappedOps; 6051 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6052 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6053 APred, BPred, AreSwappedOps)) 6054 return Implication; 6055 // No amount of additional analysis will infer the second condition, so 6056 // early exit. 6057 return None; 6058 } 6059 6060 // Can we infer anything when the LHS operands match and the RHS operands are 6061 // constants (not necessarily matching)? 6062 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6063 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6064 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6065 return Implication; 6066 // No amount of additional analysis will infer the second condition, so 6067 // early exit. 6068 return None; 6069 } 6070 6071 if (APred == BPred) 6072 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6073 return None; 6074 } 6075 6076 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6077 /// false. Otherwise, return None if we can't infer anything. We expect the 6078 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6079 static Optional<bool> 6080 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6081 const Value *RHSOp0, const Value *RHSOp1, 6082 6083 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6084 // The LHS must be an 'or' or an 'and' instruction. 6085 assert((LHS->getOpcode() == Instruction::And || 6086 LHS->getOpcode() == Instruction::Or) && 6087 "Expected LHS to be 'and' or 'or'."); 6088 6089 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6090 6091 // If the result of an 'or' is false, then we know both legs of the 'or' are 6092 // false. Similarly, if the result of an 'and' is true, then we know both 6093 // legs of the 'and' are true. 6094 Value *ALHS, *ARHS; 6095 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6096 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6097 // FIXME: Make this non-recursion. 6098 if (Optional<bool> Implication = isImpliedCondition( 6099 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6100 return Implication; 6101 if (Optional<bool> Implication = isImpliedCondition( 6102 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6103 return Implication; 6104 return None; 6105 } 6106 return None; 6107 } 6108 6109 Optional<bool> 6110 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6111 const Value *RHSOp0, const Value *RHSOp1, 6112 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6113 // Bail out when we hit the limit. 6114 if (Depth == MaxAnalysisRecursionDepth) 6115 return None; 6116 6117 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6118 // example. 6119 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6120 return None; 6121 6122 Type *OpTy = LHS->getType(); 6123 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6124 6125 // FIXME: Extending the code below to handle vectors. 6126 if (OpTy->isVectorTy()) 6127 return None; 6128 6129 assert(OpTy->isIntegerTy(1) && "implied by above"); 6130 6131 // Both LHS and RHS are icmps. 6132 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6133 if (LHSCmp) 6134 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6135 Depth); 6136 6137 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6138 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6139 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6140 if (LHSBO) { 6141 if ((LHSBO->getOpcode() == Instruction::And || 6142 LHSBO->getOpcode() == Instruction::Or)) 6143 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6144 Depth); 6145 } 6146 return None; 6147 } 6148 6149 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6150 const DataLayout &DL, bool LHSIsTrue, 6151 unsigned Depth) { 6152 // LHS ==> RHS by definition 6153 if (LHS == RHS) 6154 return LHSIsTrue; 6155 6156 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6157 if (RHSCmp) 6158 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6159 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6160 LHSIsTrue, Depth); 6161 return None; 6162 } 6163 6164 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6165 // condition dominating ContextI or nullptr, if no condition is found. 6166 static std::pair<Value *, bool> 6167 getDomPredecessorCondition(const Instruction *ContextI) { 6168 if (!ContextI || !ContextI->getParent()) 6169 return {nullptr, false}; 6170 6171 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6172 // dominator tree (eg, from a SimplifyQuery) instead? 6173 const BasicBlock *ContextBB = ContextI->getParent(); 6174 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6175 if (!PredBB) 6176 return {nullptr, false}; 6177 6178 // We need a conditional branch in the predecessor. 6179 Value *PredCond; 6180 BasicBlock *TrueBB, *FalseBB; 6181 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6182 return {nullptr, false}; 6183 6184 // The branch should get simplified. Don't bother simplifying this condition. 6185 if (TrueBB == FalseBB) 6186 return {nullptr, false}; 6187 6188 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6189 "Predecessor block does not point to successor?"); 6190 6191 // Is this condition implied by the predecessor condition? 6192 return {PredCond, TrueBB == ContextBB}; 6193 } 6194 6195 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6196 const Instruction *ContextI, 6197 const DataLayout &DL) { 6198 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6199 auto PredCond = getDomPredecessorCondition(ContextI); 6200 if (PredCond.first) 6201 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6202 return None; 6203 } 6204 6205 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6206 const Value *LHS, const Value *RHS, 6207 const Instruction *ContextI, 6208 const DataLayout &DL) { 6209 auto PredCond = getDomPredecessorCondition(ContextI); 6210 if (PredCond.first) 6211 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6212 PredCond.second); 6213 return None; 6214 } 6215 6216 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6217 APInt &Upper, const InstrInfoQuery &IIQ) { 6218 unsigned Width = Lower.getBitWidth(); 6219 const APInt *C; 6220 switch (BO.getOpcode()) { 6221 case Instruction::Add: 6222 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6223 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6224 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6225 // 'add nuw x, C' produces [C, UINT_MAX]. 6226 Lower = *C; 6227 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6228 if (C->isNegative()) { 6229 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6230 Lower = APInt::getSignedMinValue(Width); 6231 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6232 } else { 6233 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6234 Lower = APInt::getSignedMinValue(Width) + *C; 6235 Upper = APInt::getSignedMaxValue(Width) + 1; 6236 } 6237 } 6238 } 6239 break; 6240 6241 case Instruction::And: 6242 if (match(BO.getOperand(1), m_APInt(C))) 6243 // 'and x, C' produces [0, C]. 6244 Upper = *C + 1; 6245 break; 6246 6247 case Instruction::Or: 6248 if (match(BO.getOperand(1), m_APInt(C))) 6249 // 'or x, C' produces [C, UINT_MAX]. 6250 Lower = *C; 6251 break; 6252 6253 case Instruction::AShr: 6254 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6255 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6256 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6257 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6258 } else if (match(BO.getOperand(0), m_APInt(C))) { 6259 unsigned ShiftAmount = Width - 1; 6260 if (!C->isNullValue() && IIQ.isExact(&BO)) 6261 ShiftAmount = C->countTrailingZeros(); 6262 if (C->isNegative()) { 6263 // 'ashr C, x' produces [C, C >> (Width-1)] 6264 Lower = *C; 6265 Upper = C->ashr(ShiftAmount) + 1; 6266 } else { 6267 // 'ashr C, x' produces [C >> (Width-1), C] 6268 Lower = C->ashr(ShiftAmount); 6269 Upper = *C + 1; 6270 } 6271 } 6272 break; 6273 6274 case Instruction::LShr: 6275 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6276 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6277 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6278 } else if (match(BO.getOperand(0), m_APInt(C))) { 6279 // 'lshr C, x' produces [C >> (Width-1), C]. 6280 unsigned ShiftAmount = Width - 1; 6281 if (!C->isNullValue() && IIQ.isExact(&BO)) 6282 ShiftAmount = C->countTrailingZeros(); 6283 Lower = C->lshr(ShiftAmount); 6284 Upper = *C + 1; 6285 } 6286 break; 6287 6288 case Instruction::Shl: 6289 if (match(BO.getOperand(0), m_APInt(C))) { 6290 if (IIQ.hasNoUnsignedWrap(&BO)) { 6291 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6292 Lower = *C; 6293 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6294 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6295 if (C->isNegative()) { 6296 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6297 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6298 Lower = C->shl(ShiftAmount); 6299 Upper = *C + 1; 6300 } else { 6301 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6302 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6303 Lower = *C; 6304 Upper = C->shl(ShiftAmount) + 1; 6305 } 6306 } 6307 } 6308 break; 6309 6310 case Instruction::SDiv: 6311 if (match(BO.getOperand(1), m_APInt(C))) { 6312 APInt IntMin = APInt::getSignedMinValue(Width); 6313 APInt IntMax = APInt::getSignedMaxValue(Width); 6314 if (C->isAllOnesValue()) { 6315 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6316 // where C != -1 and C != 0 and C != 1 6317 Lower = IntMin + 1; 6318 Upper = IntMax + 1; 6319 } else if (C->countLeadingZeros() < Width - 1) { 6320 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6321 // where C != -1 and C != 0 and C != 1 6322 Lower = IntMin.sdiv(*C); 6323 Upper = IntMax.sdiv(*C); 6324 if (Lower.sgt(Upper)) 6325 std::swap(Lower, Upper); 6326 Upper = Upper + 1; 6327 assert(Upper != Lower && "Upper part of range has wrapped!"); 6328 } 6329 } else if (match(BO.getOperand(0), m_APInt(C))) { 6330 if (C->isMinSignedValue()) { 6331 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6332 Lower = *C; 6333 Upper = Lower.lshr(1) + 1; 6334 } else { 6335 // 'sdiv C, x' produces [-|C|, |C|]. 6336 Upper = C->abs() + 1; 6337 Lower = (-Upper) + 1; 6338 } 6339 } 6340 break; 6341 6342 case Instruction::UDiv: 6343 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6344 // 'udiv x, C' produces [0, UINT_MAX / C]. 6345 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6346 } else if (match(BO.getOperand(0), m_APInt(C))) { 6347 // 'udiv C, x' produces [0, C]. 6348 Upper = *C + 1; 6349 } 6350 break; 6351 6352 case Instruction::SRem: 6353 if (match(BO.getOperand(1), m_APInt(C))) { 6354 // 'srem x, C' produces (-|C|, |C|). 6355 Upper = C->abs(); 6356 Lower = (-Upper) + 1; 6357 } 6358 break; 6359 6360 case Instruction::URem: 6361 if (match(BO.getOperand(1), m_APInt(C))) 6362 // 'urem x, C' produces [0, C). 6363 Upper = *C; 6364 break; 6365 6366 default: 6367 break; 6368 } 6369 } 6370 6371 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6372 APInt &Upper) { 6373 unsigned Width = Lower.getBitWidth(); 6374 const APInt *C; 6375 switch (II.getIntrinsicID()) { 6376 case Intrinsic::uadd_sat: 6377 // uadd.sat(x, C) produces [C, UINT_MAX]. 6378 if (match(II.getOperand(0), m_APInt(C)) || 6379 match(II.getOperand(1), m_APInt(C))) 6380 Lower = *C; 6381 break; 6382 case Intrinsic::sadd_sat: 6383 if (match(II.getOperand(0), m_APInt(C)) || 6384 match(II.getOperand(1), m_APInt(C))) { 6385 if (C->isNegative()) { 6386 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6387 Lower = APInt::getSignedMinValue(Width); 6388 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6389 } else { 6390 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6391 Lower = APInt::getSignedMinValue(Width) + *C; 6392 Upper = APInt::getSignedMaxValue(Width) + 1; 6393 } 6394 } 6395 break; 6396 case Intrinsic::usub_sat: 6397 // usub.sat(C, x) produces [0, C]. 6398 if (match(II.getOperand(0), m_APInt(C))) 6399 Upper = *C + 1; 6400 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6401 else if (match(II.getOperand(1), m_APInt(C))) 6402 Upper = APInt::getMaxValue(Width) - *C + 1; 6403 break; 6404 case Intrinsic::ssub_sat: 6405 if (match(II.getOperand(0), m_APInt(C))) { 6406 if (C->isNegative()) { 6407 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6408 Lower = APInt::getSignedMinValue(Width); 6409 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6410 } else { 6411 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6412 Lower = *C - APInt::getSignedMaxValue(Width); 6413 Upper = APInt::getSignedMaxValue(Width) + 1; 6414 } 6415 } else if (match(II.getOperand(1), m_APInt(C))) { 6416 if (C->isNegative()) { 6417 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6418 Lower = APInt::getSignedMinValue(Width) - *C; 6419 Upper = APInt::getSignedMaxValue(Width) + 1; 6420 } else { 6421 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6422 Lower = APInt::getSignedMinValue(Width); 6423 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6424 } 6425 } 6426 break; 6427 case Intrinsic::umin: 6428 case Intrinsic::umax: 6429 case Intrinsic::smin: 6430 case Intrinsic::smax: 6431 if (!match(II.getOperand(0), m_APInt(C)) && 6432 !match(II.getOperand(1), m_APInt(C))) 6433 break; 6434 6435 switch (II.getIntrinsicID()) { 6436 case Intrinsic::umin: 6437 Upper = *C + 1; 6438 break; 6439 case Intrinsic::umax: 6440 Lower = *C; 6441 break; 6442 case Intrinsic::smin: 6443 Lower = APInt::getSignedMinValue(Width); 6444 Upper = *C + 1; 6445 break; 6446 case Intrinsic::smax: 6447 Lower = *C; 6448 Upper = APInt::getSignedMaxValue(Width) + 1; 6449 break; 6450 default: 6451 llvm_unreachable("Must be min/max intrinsic"); 6452 } 6453 break; 6454 case Intrinsic::abs: 6455 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6456 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6457 if (match(II.getOperand(1), m_One())) 6458 Upper = APInt::getSignedMaxValue(Width) + 1; 6459 else 6460 Upper = APInt::getSignedMinValue(Width) + 1; 6461 break; 6462 default: 6463 break; 6464 } 6465 } 6466 6467 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6468 APInt &Upper, const InstrInfoQuery &IIQ) { 6469 const Value *LHS = nullptr, *RHS = nullptr; 6470 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6471 if (R.Flavor == SPF_UNKNOWN) 6472 return; 6473 6474 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6475 6476 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6477 // If the negation part of the abs (in RHS) has the NSW flag, 6478 // then the result of abs(X) is [0..SIGNED_MAX], 6479 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6480 Lower = APInt::getNullValue(BitWidth); 6481 if (match(RHS, m_Neg(m_Specific(LHS))) && 6482 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6483 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6484 else 6485 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6486 return; 6487 } 6488 6489 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6490 // The result of -abs(X) is <= 0. 6491 Lower = APInt::getSignedMinValue(BitWidth); 6492 Upper = APInt(BitWidth, 1); 6493 return; 6494 } 6495 6496 const APInt *C; 6497 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6498 return; 6499 6500 switch (R.Flavor) { 6501 case SPF_UMIN: 6502 Upper = *C + 1; 6503 break; 6504 case SPF_UMAX: 6505 Lower = *C; 6506 break; 6507 case SPF_SMIN: 6508 Lower = APInt::getSignedMinValue(BitWidth); 6509 Upper = *C + 1; 6510 break; 6511 case SPF_SMAX: 6512 Lower = *C; 6513 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6514 break; 6515 default: 6516 break; 6517 } 6518 } 6519 6520 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6521 AssumptionCache *AC, 6522 const Instruction *CtxI, 6523 unsigned Depth) { 6524 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6525 6526 if (Depth == MaxAnalysisRecursionDepth) 6527 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6528 6529 const APInt *C; 6530 if (match(V, m_APInt(C))) 6531 return ConstantRange(*C); 6532 6533 InstrInfoQuery IIQ(UseInstrInfo); 6534 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6535 APInt Lower = APInt(BitWidth, 0); 6536 APInt Upper = APInt(BitWidth, 0); 6537 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6538 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6539 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6540 setLimitsForIntrinsic(*II, Lower, Upper); 6541 else if (auto *SI = dyn_cast<SelectInst>(V)) 6542 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6543 6544 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6545 6546 if (auto *I = dyn_cast<Instruction>(V)) 6547 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6548 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6549 6550 if (CtxI && AC) { 6551 // Try to restrict the range based on information from assumptions. 6552 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6553 if (!AssumeVH) 6554 continue; 6555 CallInst *I = cast<CallInst>(AssumeVH); 6556 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6557 "Got assumption for the wrong function!"); 6558 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6559 "must be an assume intrinsic"); 6560 6561 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6562 continue; 6563 Value *Arg = I->getArgOperand(0); 6564 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6565 // Currently we just use information from comparisons. 6566 if (!Cmp || Cmp->getOperand(0) != V) 6567 continue; 6568 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6569 AC, I, Depth + 1); 6570 CR = CR.intersectWith( 6571 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6572 } 6573 } 6574 6575 return CR; 6576 } 6577 6578 static Optional<int64_t> 6579 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6580 // Skip over the first indices. 6581 gep_type_iterator GTI = gep_type_begin(GEP); 6582 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6583 /*skip along*/; 6584 6585 // Compute the offset implied by the rest of the indices. 6586 int64_t Offset = 0; 6587 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6588 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6589 if (!OpC) 6590 return None; 6591 if (OpC->isZero()) 6592 continue; // No offset. 6593 6594 // Handle struct indices, which add their field offset to the pointer. 6595 if (StructType *STy = GTI.getStructTypeOrNull()) { 6596 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6597 continue; 6598 } 6599 6600 // Otherwise, we have a sequential type like an array or fixed-length 6601 // vector. Multiply the index by the ElementSize. 6602 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6603 if (Size.isScalable()) 6604 return None; 6605 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6606 } 6607 6608 return Offset; 6609 } 6610 6611 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6612 const DataLayout &DL) { 6613 Ptr1 = Ptr1->stripPointerCasts(); 6614 Ptr2 = Ptr2->stripPointerCasts(); 6615 6616 // Handle the trivial case first. 6617 if (Ptr1 == Ptr2) { 6618 return 0; 6619 } 6620 6621 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6622 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6623 6624 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6625 // as in "P" and "gep P, 1". 6626 // Also do this iteratively to handle the the following case: 6627 // Ptr_t1 = GEP Ptr1, c1 6628 // Ptr_t2 = GEP Ptr_t1, c2 6629 // Ptr2 = GEP Ptr_t2, c3 6630 // where we will return c1+c2+c3. 6631 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6632 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6633 // are the same, and return the difference between offsets. 6634 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6635 const Value *Ptr) -> Optional<int64_t> { 6636 const GEPOperator *GEP_T = GEP; 6637 int64_t OffsetVal = 0; 6638 bool HasSameBase = false; 6639 while (GEP_T) { 6640 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6641 if (!Offset) 6642 return None; 6643 OffsetVal += *Offset; 6644 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6645 if (Op0 == Ptr) { 6646 HasSameBase = true; 6647 break; 6648 } 6649 GEP_T = dyn_cast<GEPOperator>(Op0); 6650 } 6651 if (!HasSameBase) 6652 return None; 6653 return OffsetVal; 6654 }; 6655 6656 if (GEP1) { 6657 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6658 if (Offset) 6659 return -*Offset; 6660 } 6661 if (GEP2) { 6662 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6663 if (Offset) 6664 return Offset; 6665 } 6666 6667 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6668 // base. After that base, they may have some number of common (and 6669 // potentially variable) indices. After that they handle some constant 6670 // offset, which determines their offset from each other. At this point, we 6671 // handle no other case. 6672 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6673 return None; 6674 6675 // Skip any common indices and track the GEP types. 6676 unsigned Idx = 1; 6677 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6678 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6679 break; 6680 6681 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6682 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6683 if (!Offset1 || !Offset2) 6684 return None; 6685 return *Offset2 - *Offset1; 6686 } 6687