1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/GuardUtils.h"
32 #include "llvm/Analysis/InstructionSimplify.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/LoopInfo.h"
35 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/IR/Argument.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/Constant.h"
41 #include "llvm/IR/ConstantRange.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/IntrinsicsAArch64.h"
57 #include "llvm/IR/IntrinsicsRISCV.h"
58 #include "llvm/IR/IntrinsicsX86.h"
59 #include "llvm/IR/LLVMContext.h"
60 #include "llvm/IR/Metadata.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/User.h"
66 #include "llvm/IR/Value.h"
67 #include "llvm/Support/Casting.h"
68 #include "llvm/Support/CommandLine.h"
69 #include "llvm/Support/Compiler.h"
70 #include "llvm/Support/ErrorHandling.h"
71 #include "llvm/Support/KnownBits.h"
72 #include "llvm/Support/MathExtras.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstdint>
76 #include <utility>
77 
78 using namespace llvm;
79 using namespace llvm::PatternMatch;
80 
81 // Controls the number of uses of the value searched for possible
82 // dominating comparisons.
83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
84                                               cl::Hidden, cl::init(20));
85 
86 // According to the LangRef, branching on a poison condition is absolutely
87 // immediate full UB.  However, historically we haven't implemented that
88 // consistently as we had an important transformation (non-trivial unswitch)
89 // which introduced instances of branch on poison/undef to otherwise well
90 // defined programs.  This issue has since been fixed, but the flag is
91 // temporarily retained to easily diagnose potential regressions.
92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub",
93                                         cl::Hidden, cl::init(true));
94 
95 
96 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
97 /// returns the element type's bitwidth.
98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
99   if (unsigned BitWidth = Ty->getScalarSizeInBits())
100     return BitWidth;
101 
102   return DL.getPointerTypeSizeInBits(Ty);
103 }
104 
105 namespace {
106 
107 // Simplifying using an assume can only be done in a particular control-flow
108 // context (the context instruction provides that context). If an assume and
109 // the context instruction are not in the same block then the DT helps in
110 // figuring out if we can use it.
111 struct Query {
112   const DataLayout &DL;
113   AssumptionCache *AC;
114   const Instruction *CxtI;
115   const DominatorTree *DT;
116 
117   // Unlike the other analyses, this may be a nullptr because not all clients
118   // provide it currently.
119   OptimizationRemarkEmitter *ORE;
120 
121   /// If true, it is safe to use metadata during simplification.
122   InstrInfoQuery IIQ;
123 
124   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
125         const DominatorTree *DT, bool UseInstrInfo,
126         OptimizationRemarkEmitter *ORE = nullptr)
127       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
128 };
129 
130 } // end anonymous namespace
131 
132 // Given the provided Value and, potentially, a context instruction, return
133 // the preferred context instruction (if any).
134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
135   // If we've been provided with a context instruction, then use that (provided
136   // it has been inserted).
137   if (CxtI && CxtI->getParent())
138     return CxtI;
139 
140   // If the value is really an already-inserted instruction, then use that.
141   CxtI = dyn_cast<Instruction>(V);
142   if (CxtI && CxtI->getParent())
143     return CxtI;
144 
145   return nullptr;
146 }
147 
148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) {
149   // If we've been provided with a context instruction, then use that (provided
150   // it has been inserted).
151   if (CxtI && CxtI->getParent())
152     return CxtI;
153 
154   // If the value is really an already-inserted instruction, then use that.
155   CxtI = dyn_cast<Instruction>(V1);
156   if (CxtI && CxtI->getParent())
157     return CxtI;
158 
159   CxtI = dyn_cast<Instruction>(V2);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
167                                    const APInt &DemandedElts,
168                                    APInt &DemandedLHS, APInt &DemandedRHS) {
169   // The length of scalable vectors is unknown at compile time, thus we
170   // cannot check their values
171   if (isa<ScalableVectorType>(Shuf->getType()))
172     return false;
173 
174   int NumElts =
175       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
176   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
177   DemandedLHS = DemandedRHS = APInt::getZero(NumElts);
178   if (DemandedElts.isZero())
179     return true;
180   // Simple case of a shuffle with zeroinitializer.
181   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
182     DemandedLHS.setBit(0);
183     return true;
184   }
185   for (int i = 0; i != NumMaskElts; ++i) {
186     if (!DemandedElts[i])
187       continue;
188     int M = Shuf->getMaskValue(i);
189     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
190 
191     // For undef elements, we don't know anything about the common state of
192     // the shuffle result.
193     if (M == -1)
194       return false;
195     if (M < NumElts)
196       DemandedLHS.setBit(M % NumElts);
197     else
198       DemandedRHS.setBit(M % NumElts);
199   }
200 
201   return true;
202 }
203 
204 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
205                              KnownBits &Known, unsigned Depth, const Query &Q);
206 
207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
208                              const Query &Q) {
209   // FIXME: We currently have no way to represent the DemandedElts of a scalable
210   // vector
211   if (isa<ScalableVectorType>(V->getType())) {
212     Known.resetAll();
213     return;
214   }
215 
216   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
217   APInt DemandedElts =
218       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
219   computeKnownBits(V, DemandedElts, Known, Depth, Q);
220 }
221 
222 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
223                             const DataLayout &DL, unsigned Depth,
224                             AssumptionCache *AC, const Instruction *CxtI,
225                             const DominatorTree *DT,
226                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
227   ::computeKnownBits(V, Known, Depth,
228                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
229 }
230 
231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
232                             KnownBits &Known, const DataLayout &DL,
233                             unsigned Depth, AssumptionCache *AC,
234                             const Instruction *CxtI, const DominatorTree *DT,
235                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
236   ::computeKnownBits(V, DemandedElts, Known, Depth,
237                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
238 }
239 
240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
241                                   unsigned Depth, const Query &Q);
242 
243 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
244                                   const Query &Q);
245 
246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
247                                  unsigned Depth, AssumptionCache *AC,
248                                  const Instruction *CxtI,
249                                  const DominatorTree *DT,
250                                  OptimizationRemarkEmitter *ORE,
251                                  bool UseInstrInfo) {
252   return ::computeKnownBits(
253       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
254 }
255 
256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
257                                  const DataLayout &DL, unsigned Depth,
258                                  AssumptionCache *AC, const Instruction *CxtI,
259                                  const DominatorTree *DT,
260                                  OptimizationRemarkEmitter *ORE,
261                                  bool UseInstrInfo) {
262   return ::computeKnownBits(
263       V, DemandedElts, Depth,
264       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
265 }
266 
267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
268                                const DataLayout &DL, AssumptionCache *AC,
269                                const Instruction *CxtI, const DominatorTree *DT,
270                                bool UseInstrInfo) {
271   assert(LHS->getType() == RHS->getType() &&
272          "LHS and RHS should have the same type");
273   assert(LHS->getType()->isIntOrIntVectorTy() &&
274          "LHS and RHS should be integers");
275   // Look for an inverted mask: (X & ~M) op (Y & M).
276   {
277     Value *M;
278     if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279         match(RHS, m_c_And(m_Specific(M), m_Value())))
280       return true;
281     if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
282         match(LHS, m_c_And(m_Specific(M), m_Value())))
283       return true;
284   }
285 
286   // X op (Y & ~X)
287   if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) ||
288       match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value())))
289     return true;
290 
291   // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern
292   // for constant Y.
293   Value *Y;
294   if (match(RHS,
295             m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) ||
296       match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y))))
297     return true;
298 
299   // Look for: (A & B) op ~(A | B)
300   {
301     Value *A, *B;
302     if (match(LHS, m_And(m_Value(A), m_Value(B))) &&
303         match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
304       return true;
305     if (match(RHS, m_And(m_Value(A), m_Value(B))) &&
306         match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
307       return true;
308   }
309   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
310   KnownBits LHSKnown(IT->getBitWidth());
311   KnownBits RHSKnown(IT->getBitWidth());
312   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
313   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
314   return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown);
315 }
316 
317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) {
318   return !I->user_empty() && all_of(I->users(), [](const User *U) {
319     ICmpInst::Predicate P;
320     return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P);
321   });
322 }
323 
324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
325                                    const Query &Q);
326 
327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
328                                   bool OrZero, unsigned Depth,
329                                   AssumptionCache *AC, const Instruction *CxtI,
330                                   const DominatorTree *DT, bool UseInstrInfo) {
331   return ::isKnownToBeAPowerOfTwo(
332       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
333 }
334 
335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
336                            unsigned Depth, const Query &Q);
337 
338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
339 
340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
341                           AssumptionCache *AC, const Instruction *CxtI,
342                           const DominatorTree *DT, bool UseInstrInfo) {
343   return ::isKnownNonZero(V, Depth,
344                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
345 }
346 
347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
348                               unsigned Depth, AssumptionCache *AC,
349                               const Instruction *CxtI, const DominatorTree *DT,
350                               bool UseInstrInfo) {
351   KnownBits Known =
352       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
353   return Known.isNonNegative();
354 }
355 
356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
357                            AssumptionCache *AC, const Instruction *CxtI,
358                            const DominatorTree *DT, bool UseInstrInfo) {
359   if (auto *CI = dyn_cast<ConstantInt>(V))
360     return CI->getValue().isStrictlyPositive();
361 
362   // TODO: We'd doing two recursive queries here.  We should factor this such
363   // that only a single query is needed.
364   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
365          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
366 }
367 
368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
369                            AssumptionCache *AC, const Instruction *CxtI,
370                            const DominatorTree *DT, bool UseInstrInfo) {
371   KnownBits Known =
372       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
373   return Known.isNegative();
374 }
375 
376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
377                             const Query &Q);
378 
379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
380                            const DataLayout &DL, AssumptionCache *AC,
381                            const Instruction *CxtI, const DominatorTree *DT,
382                            bool UseInstrInfo) {
383   return ::isKnownNonEqual(V1, V2, 0,
384                            Query(DL, AC, safeCxtI(V2, V1, CxtI), DT,
385                                  UseInstrInfo, /*ORE=*/nullptr));
386 }
387 
388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
389                               const Query &Q);
390 
391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
392                              const DataLayout &DL, unsigned Depth,
393                              AssumptionCache *AC, const Instruction *CxtI,
394                              const DominatorTree *DT, bool UseInstrInfo) {
395   return ::MaskedValueIsZero(
396       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
400                                    unsigned Depth, const Query &Q);
401 
402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
403                                    const Query &Q) {
404   // FIXME: We currently have no way to represent the DemandedElts of a scalable
405   // vector
406   if (isa<ScalableVectorType>(V->getType()))
407     return 1;
408 
409   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
410   APInt DemandedElts =
411       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
412   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
413 }
414 
415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
416                                   unsigned Depth, AssumptionCache *AC,
417                                   const Instruction *CxtI,
418                                   const DominatorTree *DT, bool UseInstrInfo) {
419   return ::ComputeNumSignBits(
420       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
421 }
422 
423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL,
424                                          unsigned Depth, AssumptionCache *AC,
425                                          const Instruction *CxtI,
426                                          const DominatorTree *DT) {
427   unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT);
428   return V->getType()->getScalarSizeInBits() - SignBits + 1;
429 }
430 
431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
432                                    bool NSW, const APInt &DemandedElts,
433                                    KnownBits &KnownOut, KnownBits &Known2,
434                                    unsigned Depth, const Query &Q) {
435   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
436 
437   // If one operand is unknown and we have no nowrap information,
438   // the result will be unknown independently of the second operand.
439   if (KnownOut.isUnknown() && !NSW)
440     return;
441 
442   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
443   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
444 }
445 
446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
447                                 const APInt &DemandedElts, KnownBits &Known,
448                                 KnownBits &Known2, unsigned Depth,
449                                 const Query &Q) {
450   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
451   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
452 
453   bool isKnownNegative = false;
454   bool isKnownNonNegative = false;
455   // If the multiplication is known not to overflow, compute the sign bit.
456   if (NSW) {
457     if (Op0 == Op1) {
458       // The product of a number with itself is non-negative.
459       isKnownNonNegative = true;
460     } else {
461       bool isKnownNonNegativeOp1 = Known.isNonNegative();
462       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
463       bool isKnownNegativeOp1 = Known.isNegative();
464       bool isKnownNegativeOp0 = Known2.isNegative();
465       // The product of two numbers with the same sign is non-negative.
466       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
467                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
468       // The product of a negative number and a non-negative number is either
469       // negative or zero.
470       if (!isKnownNonNegative)
471         isKnownNegative =
472             (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
473              Known2.isNonZero()) ||
474             (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero());
475     }
476   }
477 
478   bool SelfMultiply = Op0 == Op1;
479   // TODO: SelfMultiply can be poison, but not undef.
480   if (SelfMultiply)
481     SelfMultiply &=
482         isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1);
483   Known = KnownBits::mul(Known, Known2, SelfMultiply);
484 
485   // Only make use of no-wrap flags if we failed to compute the sign bit
486   // directly.  This matters if the multiplication always overflows, in
487   // which case we prefer to follow the result of the direct computation,
488   // though as the program is invoking undefined behaviour we can choose
489   // whatever we like here.
490   if (isKnownNonNegative && !Known.isNegative())
491     Known.makeNonNegative();
492   else if (isKnownNegative && !Known.isNonNegative())
493     Known.makeNegative();
494 }
495 
496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
497                                              KnownBits &Known) {
498   unsigned BitWidth = Known.getBitWidth();
499   unsigned NumRanges = Ranges.getNumOperands() / 2;
500   assert(NumRanges >= 1);
501 
502   Known.Zero.setAllBits();
503   Known.One.setAllBits();
504 
505   for (unsigned i = 0; i < NumRanges; ++i) {
506     ConstantInt *Lower =
507         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
508     ConstantInt *Upper =
509         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
510     ConstantRange Range(Lower->getValue(), Upper->getValue());
511 
512     // The first CommonPrefixBits of all values in Range are equal.
513     unsigned CommonPrefixBits =
514         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
515     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
516     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
517     Known.One &= UnsignedMax & Mask;
518     Known.Zero &= ~UnsignedMax & Mask;
519   }
520 }
521 
522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
523   SmallVector<const Value *, 16> WorkSet(1, I);
524   SmallPtrSet<const Value *, 32> Visited;
525   SmallPtrSet<const Value *, 16> EphValues;
526 
527   // The instruction defining an assumption's condition itself is always
528   // considered ephemeral to that assumption (even if it has other
529   // non-ephemeral users). See r246696's test case for an example.
530   if (is_contained(I->operands(), E))
531     return true;
532 
533   while (!WorkSet.empty()) {
534     const Value *V = WorkSet.pop_back_val();
535     if (!Visited.insert(V).second)
536       continue;
537 
538     // If all uses of this value are ephemeral, then so is this value.
539     if (llvm::all_of(V->users(), [&](const User *U) {
540                                    return EphValues.count(U);
541                                  })) {
542       if (V == E)
543         return true;
544 
545       if (V == I || (isa<Instruction>(V) &&
546                      !cast<Instruction>(V)->mayHaveSideEffects() &&
547                      !cast<Instruction>(V)->isTerminator())) {
548        EphValues.insert(V);
549        if (const User *U = dyn_cast<User>(V))
550          append_range(WorkSet, U->operands());
551       }
552     }
553   }
554 
555   return false;
556 }
557 
558 // Is this an intrinsic that cannot be speculated but also cannot trap?
559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
560   if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I))
561     return CI->isAssumeLikeIntrinsic();
562 
563   return false;
564 }
565 
566 bool llvm::isValidAssumeForContext(const Instruction *Inv,
567                                    const Instruction *CxtI,
568                                    const DominatorTree *DT) {
569   // There are two restrictions on the use of an assume:
570   //  1. The assume must dominate the context (or the control flow must
571   //     reach the assume whenever it reaches the context).
572   //  2. The context must not be in the assume's set of ephemeral values
573   //     (otherwise we will use the assume to prove that the condition
574   //     feeding the assume is trivially true, thus causing the removal of
575   //     the assume).
576 
577   if (Inv->getParent() == CxtI->getParent()) {
578     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
579     // in the BB.
580     if (Inv->comesBefore(CxtI))
581       return true;
582 
583     // Don't let an assume affect itself - this would cause the problems
584     // `isEphemeralValueOf` is trying to prevent, and it would also make
585     // the loop below go out of bounds.
586     if (Inv == CxtI)
587       return false;
588 
589     // The context comes first, but they're both in the same block.
590     // Make sure there is nothing in between that might interrupt
591     // the control flow, not even CxtI itself.
592     // We limit the scan distance between the assume and its context instruction
593     // to avoid a compile-time explosion. This limit is chosen arbitrarily, so
594     // it can be adjusted if needed (could be turned into a cl::opt).
595     auto Range = make_range(CxtI->getIterator(), Inv->getIterator());
596     if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15))
597       return false;
598 
599     return !isEphemeralValueOf(Inv, CxtI);
600   }
601 
602   // Inv and CxtI are in different blocks.
603   if (DT) {
604     if (DT->dominates(Inv, CxtI))
605       return true;
606   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
607     // We don't have a DT, but this trivially dominates.
608     return true;
609   }
610 
611   return false;
612 }
613 
614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) {
615   // v u> y implies v != 0.
616   if (Pred == ICmpInst::ICMP_UGT)
617     return true;
618 
619   // Special-case v != 0 to also handle v != null.
620   if (Pred == ICmpInst::ICMP_NE)
621     return match(RHS, m_Zero());
622 
623   // All other predicates - rely on generic ConstantRange handling.
624   const APInt *C;
625   if (!match(RHS, m_APInt(C)))
626     return false;
627 
628   ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C);
629   return !TrueValues.contains(APInt::getZero(C->getBitWidth()));
630 }
631 
632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
633   // Use of assumptions is context-sensitive. If we don't have a context, we
634   // cannot use them!
635   if (!Q.AC || !Q.CxtI)
636     return false;
637 
638   if (Q.CxtI && V->getType()->isPointerTy()) {
639     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
640     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
641                               V->getType()->getPointerAddressSpace()))
642       AttrKinds.push_back(Attribute::Dereferenceable);
643 
644     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
645       return true;
646   }
647 
648   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
649     if (!AssumeVH)
650       continue;
651     CallInst *I = cast<CallInst>(AssumeVH);
652     assert(I->getFunction() == Q.CxtI->getFunction() &&
653            "Got assumption for the wrong function!");
654 
655     // Warning: This loop can end up being somewhat performance sensitive.
656     // We're running this loop for once for each value queried resulting in a
657     // runtime of ~O(#assumes * #values).
658 
659     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
660            "must be an assume intrinsic");
661 
662     Value *RHS;
663     CmpInst::Predicate Pred;
664     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
665     if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS))))
666       return false;
667 
668     if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
669       return true;
670   }
671 
672   return false;
673 }
674 
675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
676                                        unsigned Depth, const Query &Q) {
677   // Use of assumptions is context-sensitive. If we don't have a context, we
678   // cannot use them!
679   if (!Q.AC || !Q.CxtI)
680     return;
681 
682   unsigned BitWidth = Known.getBitWidth();
683 
684   // Refine Known set if the pointer alignment is set by assume bundles.
685   if (V->getType()->isPointerTy()) {
686     if (RetainedKnowledge RK = getKnowledgeValidInContext(
687             V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) {
688       if (isPowerOf2_64(RK.ArgValue))
689         Known.Zero.setLowBits(Log2_64(RK.ArgValue));
690     }
691   }
692 
693   // Note that the patterns below need to be kept in sync with the code
694   // in AssumptionCache::updateAffectedValues.
695 
696   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
697     if (!AssumeVH)
698       continue;
699     CallInst *I = cast<CallInst>(AssumeVH);
700     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
701            "Got assumption for the wrong function!");
702 
703     // Warning: This loop can end up being somewhat performance sensitive.
704     // We're running this loop for once for each value queried resulting in a
705     // runtime of ~O(#assumes * #values).
706 
707     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
708            "must be an assume intrinsic");
709 
710     Value *Arg = I->getArgOperand(0);
711 
712     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
713       assert(BitWidth == 1 && "assume operand is not i1?");
714       Known.setAllOnes();
715       return;
716     }
717     if (match(Arg, m_Not(m_Specific(V))) &&
718         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
719       assert(BitWidth == 1 && "assume operand is not i1?");
720       Known.setAllZero();
721       return;
722     }
723 
724     // The remaining tests are all recursive, so bail out if we hit the limit.
725     if (Depth == MaxAnalysisRecursionDepth)
726       continue;
727 
728     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
729     if (!Cmp)
730       continue;
731 
732     // We are attempting to compute known bits for the operands of an assume.
733     // Do not try to use other assumptions for those recursive calls because
734     // that can lead to mutual recursion and a compile-time explosion.
735     // An example of the mutual recursion: computeKnownBits can call
736     // isKnownNonZero which calls computeKnownBitsFromAssume (this function)
737     // and so on.
738     Query QueryNoAC = Q;
739     QueryNoAC.AC = nullptr;
740 
741     // Note that ptrtoint may change the bitwidth.
742     Value *A, *B;
743     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
744 
745     CmpInst::Predicate Pred;
746     uint64_t C;
747     switch (Cmp->getPredicate()) {
748     default:
749       break;
750     case ICmpInst::ICMP_EQ:
751       // assume(v = a)
752       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
753           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
754         KnownBits RHSKnown =
755             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
756         Known.Zero |= RHSKnown.Zero;
757         Known.One  |= RHSKnown.One;
758       // assume(v & b = a)
759       } else if (match(Cmp,
760                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
761                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
762         KnownBits RHSKnown =
763             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
764         KnownBits MaskKnown =
765             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
766 
767         // For those bits in the mask that are known to be one, we can propagate
768         // known bits from the RHS to V.
769         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
770         Known.One  |= RHSKnown.One  & MaskKnown.One;
771       // assume(~(v & b) = a)
772       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
773                                      m_Value(A))) &&
774                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
775         KnownBits RHSKnown =
776             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
777         KnownBits MaskKnown =
778             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
779 
780         // For those bits in the mask that are known to be one, we can propagate
781         // inverted known bits from the RHS to V.
782         Known.Zero |= RHSKnown.One  & MaskKnown.One;
783         Known.One  |= RHSKnown.Zero & MaskKnown.One;
784       // assume(v | b = a)
785       } else if (match(Cmp,
786                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
787                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
788         KnownBits RHSKnown =
789             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
790         KnownBits BKnown =
791             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
792 
793         // For those bits in B that are known to be zero, we can propagate known
794         // bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797       // assume(~(v | b) = a)
798       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
799                                      m_Value(A))) &&
800                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
801         KnownBits RHSKnown =
802             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
803         KnownBits BKnown =
804             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
805 
806         // For those bits in B that are known to be zero, we can propagate
807         // inverted known bits from the RHS to V.
808         Known.Zero |= RHSKnown.One  & BKnown.Zero;
809         Known.One  |= RHSKnown.Zero & BKnown.Zero;
810       // assume(v ^ b = a)
811       } else if (match(Cmp,
812                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
813                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814         KnownBits RHSKnown =
815             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
816         KnownBits BKnown =
817             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
818 
819         // For those bits in B that are known to be zero, we can propagate known
820         // bits from the RHS to V. For those bits in B that are known to be one,
821         // we can propagate inverted known bits from the RHS to V.
822         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
823         Known.One  |= RHSKnown.One  & BKnown.Zero;
824         Known.Zero |= RHSKnown.One  & BKnown.One;
825         Known.One  |= RHSKnown.Zero & BKnown.One;
826       // assume(~(v ^ b) = a)
827       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
828                                      m_Value(A))) &&
829                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
830         KnownBits RHSKnown =
831             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
832         KnownBits BKnown =
833             computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
834 
835         // For those bits in B that are known to be zero, we can propagate
836         // inverted known bits from the RHS to V. For those bits in B that are
837         // known to be one, we can propagate known bits from the RHS to V.
838         Known.Zero |= RHSKnown.One  & BKnown.Zero;
839         Known.One  |= RHSKnown.Zero & BKnown.Zero;
840         Known.Zero |= RHSKnown.Zero & BKnown.One;
841         Known.One  |= RHSKnown.One  & BKnown.One;
842       // assume(v << c = a)
843       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
844                                      m_Value(A))) &&
845                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
846         KnownBits RHSKnown =
847             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
848 
849         // For those bits in RHS that are known, we can propagate them to known
850         // bits in V shifted to the right by C.
851         RHSKnown.Zero.lshrInPlace(C);
852         Known.Zero |= RHSKnown.Zero;
853         RHSKnown.One.lshrInPlace(C);
854         Known.One  |= RHSKnown.One;
855       // assume(~(v << c) = a)
856       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
857                                      m_Value(A))) &&
858                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
859         KnownBits RHSKnown =
860             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
861         // For those bits in RHS that are known, we can propagate them inverted
862         // to known bits in V shifted to the right by C.
863         RHSKnown.One.lshrInPlace(C);
864         Known.Zero |= RHSKnown.One;
865         RHSKnown.Zero.lshrInPlace(C);
866         Known.One  |= RHSKnown.Zero;
867       // assume(v >> c = a)
868       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
869                                      m_Value(A))) &&
870                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
871         KnownBits RHSKnown =
872             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
873         // For those bits in RHS that are known, we can propagate them to known
874         // bits in V shifted to the right by C.
875         Known.Zero |= RHSKnown.Zero << C;
876         Known.One  |= RHSKnown.One  << C;
877       // assume(~(v >> c) = a)
878       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
879                                      m_Value(A))) &&
880                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
881         KnownBits RHSKnown =
882             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
883         // For those bits in RHS that are known, we can propagate them inverted
884         // to known bits in V shifted to the right by C.
885         Known.Zero |= RHSKnown.One  << C;
886         Known.One  |= RHSKnown.Zero << C;
887       }
888       break;
889     case ICmpInst::ICMP_SGE:
890       // assume(v >=_s c) where c is non-negative
891       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
892           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
893         KnownBits RHSKnown =
894             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
895 
896         if (RHSKnown.isNonNegative()) {
897           // We know that the sign bit is zero.
898           Known.makeNonNegative();
899         }
900       }
901       break;
902     case ICmpInst::ICMP_SGT:
903       // assume(v >_s c) where c is at least -1.
904       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
905           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
906         KnownBits RHSKnown =
907             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
908 
909         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
910           // We know that the sign bit is zero.
911           Known.makeNonNegative();
912         }
913       }
914       break;
915     case ICmpInst::ICMP_SLE:
916       // assume(v <=_s c) where c is negative
917       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
918           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
919         KnownBits RHSKnown =
920             computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth);
921 
922         if (RHSKnown.isNegative()) {
923           // We know that the sign bit is one.
924           Known.makeNegative();
925         }
926       }
927       break;
928     case ICmpInst::ICMP_SLT:
929       // assume(v <_s c) where c is non-positive
930       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
931           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
932         KnownBits RHSKnown =
933             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
934 
935         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
936           // We know that the sign bit is one.
937           Known.makeNegative();
938         }
939       }
940       break;
941     case ICmpInst::ICMP_ULE:
942       // assume(v <=_u c)
943       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
944           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
945         KnownBits RHSKnown =
946             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
947 
948         // Whatever high bits in c are zero are known to be zero.
949         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
950       }
951       break;
952     case ICmpInst::ICMP_ULT:
953       // assume(v <_u c)
954       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
955           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
956         KnownBits RHSKnown =
957             computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth);
958 
959         // If the RHS is known zero, then this assumption must be wrong (nothing
960         // is unsigned less than zero). Signal a conflict and get out of here.
961         if (RHSKnown.isZero()) {
962           Known.Zero.setAllBits();
963           Known.One.setAllBits();
964           break;
965         }
966 
967         // Whatever high bits in c are zero are known to be zero (if c is a power
968         // of 2, then one more).
969         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC))
970           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
971         else
972           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
973       }
974       break;
975     }
976   }
977 
978   // If assumptions conflict with each other or previous known bits, then we
979   // have a logical fallacy. It's possible that the assumption is not reachable,
980   // so this isn't a real bug. On the other hand, the program may have undefined
981   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
982   // clear out the known bits, try to warn the user, and hope for the best.
983   if (Known.Zero.intersects(Known.One)) {
984     Known.resetAll();
985 
986     if (Q.ORE)
987       Q.ORE->emit([&]() {
988         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
989         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
990                                           CxtI)
991                << "Detected conflicting code assumptions. Program may "
992                   "have undefined behavior, or compiler may have "
993                   "internal error.";
994       });
995   }
996 }
997 
998 /// Compute known bits from a shift operator, including those with a
999 /// non-constant shift amount. Known is the output of this function. Known2 is a
1000 /// pre-allocated temporary with the same bit width as Known and on return
1001 /// contains the known bit of the shift value source. KF is an
1002 /// operator-specific function that, given the known-bits and a shift amount,
1003 /// compute the implied known-bits of the shift operator's result respectively
1004 /// for that shift amount. The results from calling KF are conservatively
1005 /// combined for all permitted shift amounts.
1006 static void computeKnownBitsFromShiftOperator(
1007     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
1008     KnownBits &Known2, unsigned Depth, const Query &Q,
1009     function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) {
1010   unsigned BitWidth = Known.getBitWidth();
1011   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1012   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1013 
1014   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1015   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1016   // limit value (which implies all bits are known).
1017   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1018   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1019   bool ShiftAmtIsConstant = Known.isConstant();
1020   bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth);
1021 
1022   if (ShiftAmtIsConstant) {
1023     Known = KF(Known2, Known);
1024 
1025     // If the known bits conflict, this must be an overflowing left shift, so
1026     // the shift result is poison. We can return anything we want. Choose 0 for
1027     // the best folding opportunity.
1028     if (Known.hasConflict())
1029       Known.setAllZero();
1030 
1031     return;
1032   }
1033 
1034   // If the shift amount could be greater than or equal to the bit-width of the
1035   // LHS, the value could be poison, but bail out because the check below is
1036   // expensive.
1037   // TODO: Should we just carry on?
1038   if (MaxShiftAmtIsOutOfRange) {
1039     Known.resetAll();
1040     return;
1041   }
1042 
1043   // It would be more-clearly correct to use the two temporaries for this
1044   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1045   Known.resetAll();
1046 
1047   // If we know the shifter operand is nonzero, we can sometimes infer more
1048   // known bits. However this is expensive to compute, so be lazy about it and
1049   // only compute it when absolutely necessary.
1050   Optional<bool> ShifterOperandIsNonZero;
1051 
1052   // Early exit if we can't constrain any well-defined shift amount.
1053   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1054       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1055     ShifterOperandIsNonZero =
1056         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1057     if (!*ShifterOperandIsNonZero)
1058       return;
1059   }
1060 
1061   Known.Zero.setAllBits();
1062   Known.One.setAllBits();
1063   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1064     // Combine the shifted known input bits only for those shift amounts
1065     // compatible with its known constraints.
1066     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1067       continue;
1068     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1069       continue;
1070     // If we know the shifter is nonzero, we may be able to infer more known
1071     // bits. This check is sunk down as far as possible to avoid the expensive
1072     // call to isKnownNonZero if the cheaper checks above fail.
1073     if (ShiftAmt == 0) {
1074       if (!ShifterOperandIsNonZero)
1075         ShifterOperandIsNonZero =
1076             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1077       if (*ShifterOperandIsNonZero)
1078         continue;
1079     }
1080 
1081     Known = KnownBits::commonBits(
1082         Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt))));
1083   }
1084 
1085   // If the known bits conflict, the result is poison. Return a 0 and hope the
1086   // caller can further optimize that.
1087   if (Known.hasConflict())
1088     Known.setAllZero();
1089 }
1090 
1091 static void computeKnownBitsFromOperator(const Operator *I,
1092                                          const APInt &DemandedElts,
1093                                          KnownBits &Known, unsigned Depth,
1094                                          const Query &Q) {
1095   unsigned BitWidth = Known.getBitWidth();
1096 
1097   KnownBits Known2(BitWidth);
1098   switch (I->getOpcode()) {
1099   default: break;
1100   case Instruction::Load:
1101     if (MDNode *MD =
1102             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1103       computeKnownBitsFromRangeMetadata(*MD, Known);
1104     break;
1105   case Instruction::And: {
1106     // If either the LHS or the RHS are Zero, the result is zero.
1107     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1108     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1109 
1110     Known &= Known2;
1111 
1112     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1113     // here we handle the more general case of adding any odd number by
1114     // matching the form add(x, add(x, y)) where y is odd.
1115     // TODO: This could be generalized to clearing any bit set in y where the
1116     // following bit is known to be unset in y.
1117     Value *X = nullptr, *Y = nullptr;
1118     if (!Known.Zero[0] && !Known.One[0] &&
1119         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1120       Known2.resetAll();
1121       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1122       if (Known2.countMinTrailingOnes() > 0)
1123         Known.Zero.setBit(0);
1124     }
1125     break;
1126   }
1127   case Instruction::Or:
1128     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1129     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1130 
1131     Known |= Known2;
1132     break;
1133   case Instruction::Xor:
1134     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1135     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1136 
1137     Known ^= Known2;
1138     break;
1139   case Instruction::Mul: {
1140     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1141     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1142                         Known, Known2, Depth, Q);
1143     break;
1144   }
1145   case Instruction::UDiv: {
1146     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1148     Known = KnownBits::udiv(Known, Known2);
1149     break;
1150   }
1151   case Instruction::Select: {
1152     const Value *LHS = nullptr, *RHS = nullptr;
1153     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1154     if (SelectPatternResult::isMinOrMax(SPF)) {
1155       computeKnownBits(RHS, Known, Depth + 1, Q);
1156       computeKnownBits(LHS, Known2, Depth + 1, Q);
1157       switch (SPF) {
1158       default:
1159         llvm_unreachable("Unhandled select pattern flavor!");
1160       case SPF_SMAX:
1161         Known = KnownBits::smax(Known, Known2);
1162         break;
1163       case SPF_SMIN:
1164         Known = KnownBits::smin(Known, Known2);
1165         break;
1166       case SPF_UMAX:
1167         Known = KnownBits::umax(Known, Known2);
1168         break;
1169       case SPF_UMIN:
1170         Known = KnownBits::umin(Known, Known2);
1171         break;
1172       }
1173       break;
1174     }
1175 
1176     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1177     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1178 
1179     // Only known if known in both the LHS and RHS.
1180     Known = KnownBits::commonBits(Known, Known2);
1181 
1182     if (SPF == SPF_ABS) {
1183       // RHS from matchSelectPattern returns the negation part of abs pattern.
1184       // If the negate has an NSW flag we can assume the sign bit of the result
1185       // will be 0 because that makes abs(INT_MIN) undefined.
1186       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1187           Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS)))
1188         Known.Zero.setSignBit();
1189     }
1190 
1191     break;
1192   }
1193   case Instruction::FPTrunc:
1194   case Instruction::FPExt:
1195   case Instruction::FPToUI:
1196   case Instruction::FPToSI:
1197   case Instruction::SIToFP:
1198   case Instruction::UIToFP:
1199     break; // Can't work with floating point.
1200   case Instruction::PtrToInt:
1201   case Instruction::IntToPtr:
1202     // Fall through and handle them the same as zext/trunc.
1203     LLVM_FALLTHROUGH;
1204   case Instruction::ZExt:
1205   case Instruction::Trunc: {
1206     Type *SrcTy = I->getOperand(0)->getType();
1207 
1208     unsigned SrcBitWidth;
1209     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1210     // which fall through here.
1211     Type *ScalarTy = SrcTy->getScalarType();
1212     SrcBitWidth = ScalarTy->isPointerTy() ?
1213       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1214       Q.DL.getTypeSizeInBits(ScalarTy);
1215 
1216     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1217     Known = Known.anyextOrTrunc(SrcBitWidth);
1218     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1219     Known = Known.zextOrTrunc(BitWidth);
1220     break;
1221   }
1222   case Instruction::BitCast: {
1223     Type *SrcTy = I->getOperand(0)->getType();
1224     if (SrcTy->isIntOrPtrTy() &&
1225         // TODO: For now, not handling conversions like:
1226         // (bitcast i64 %x to <2 x i32>)
1227         !I->getType()->isVectorTy()) {
1228       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1229       break;
1230     }
1231 
1232     // Handle cast from vector integer type to scalar or vector integer.
1233     auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy);
1234     if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() ||
1235         !I->getType()->isIntOrIntVectorTy())
1236       break;
1237 
1238     // Look through a cast from narrow vector elements to wider type.
1239     // Examples: v4i32 -> v2i64, v3i8 -> v24
1240     unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits();
1241     if (BitWidth % SubBitWidth == 0) {
1242       // Known bits are automatically intersected across demanded elements of a
1243       // vector. So for example, if a bit is computed as known zero, it must be
1244       // zero across all demanded elements of the vector.
1245       //
1246       // For this bitcast, each demanded element of the output is sub-divided
1247       // across a set of smaller vector elements in the source vector. To get
1248       // the known bits for an entire element of the output, compute the known
1249       // bits for each sub-element sequentially. This is done by shifting the
1250       // one-set-bit demanded elements parameter across the sub-elements for
1251       // consecutive calls to computeKnownBits. We are using the demanded
1252       // elements parameter as a mask operator.
1253       //
1254       // The known bits of each sub-element are then inserted into place
1255       // (dependent on endian) to form the full result of known bits.
1256       unsigned NumElts = DemandedElts.getBitWidth();
1257       unsigned SubScale = BitWidth / SubBitWidth;
1258       APInt SubDemandedElts = APInt::getZero(NumElts * SubScale);
1259       for (unsigned i = 0; i != NumElts; ++i) {
1260         if (DemandedElts[i])
1261           SubDemandedElts.setBit(i * SubScale);
1262       }
1263 
1264       KnownBits KnownSrc(SubBitWidth);
1265       for (unsigned i = 0; i != SubScale; ++i) {
1266         computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc,
1267                          Depth + 1, Q);
1268         unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i;
1269         Known.insertBits(KnownSrc, ShiftElt * SubBitWidth);
1270       }
1271     }
1272     break;
1273   }
1274   case Instruction::SExt: {
1275     // Compute the bits in the result that are not present in the input.
1276     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1277 
1278     Known = Known.trunc(SrcBitWidth);
1279     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1280     // If the sign bit of the input is known set or clear, then we know the
1281     // top bits of the result.
1282     Known = Known.sext(BitWidth);
1283     break;
1284   }
1285   case Instruction::Shl: {
1286     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1287     auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1288       KnownBits Result = KnownBits::shl(KnownVal, KnownAmt);
1289       // If this shift has "nsw" keyword, then the result is either a poison
1290       // value or has the same sign bit as the first operand.
1291       if (NSW) {
1292         if (KnownVal.Zero.isSignBitSet())
1293           Result.Zero.setSignBit();
1294         if (KnownVal.One.isSignBitSet())
1295           Result.One.setSignBit();
1296       }
1297       return Result;
1298     };
1299     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1300                                       KF);
1301     // Trailing zeros of a right-shifted constant never decrease.
1302     const APInt *C;
1303     if (match(I->getOperand(0), m_APInt(C)))
1304       Known.Zero.setLowBits(C->countTrailingZeros());
1305     break;
1306   }
1307   case Instruction::LShr: {
1308     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1309       return KnownBits::lshr(KnownVal, KnownAmt);
1310     };
1311     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1312                                       KF);
1313     // Leading zeros of a left-shifted constant never decrease.
1314     const APInt *C;
1315     if (match(I->getOperand(0), m_APInt(C)))
1316       Known.Zero.setHighBits(C->countLeadingZeros());
1317     break;
1318   }
1319   case Instruction::AShr: {
1320     auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) {
1321       return KnownBits::ashr(KnownVal, KnownAmt);
1322     };
1323     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1324                                       KF);
1325     break;
1326   }
1327   case Instruction::Sub: {
1328     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1329     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1330                            DemandedElts, Known, Known2, Depth, Q);
1331     break;
1332   }
1333   case Instruction::Add: {
1334     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1335     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1336                            DemandedElts, Known, Known2, Depth, Q);
1337     break;
1338   }
1339   case Instruction::SRem:
1340     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1341     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1342     Known = KnownBits::srem(Known, Known2);
1343     break;
1344 
1345   case Instruction::URem:
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348     Known = KnownBits::urem(Known, Known2);
1349     break;
1350   case Instruction::Alloca:
1351     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1352     break;
1353   case Instruction::GetElementPtr: {
1354     // Analyze all of the subscripts of this getelementptr instruction
1355     // to determine if we can prove known low zero bits.
1356     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1357     // Accumulate the constant indices in a separate variable
1358     // to minimize the number of calls to computeForAddSub.
1359     APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true);
1360 
1361     gep_type_iterator GTI = gep_type_begin(I);
1362     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1363       // TrailZ can only become smaller, short-circuit if we hit zero.
1364       if (Known.isUnknown())
1365         break;
1366 
1367       Value *Index = I->getOperand(i);
1368 
1369       // Handle case when index is zero.
1370       Constant *CIndex = dyn_cast<Constant>(Index);
1371       if (CIndex && CIndex->isZeroValue())
1372         continue;
1373 
1374       if (StructType *STy = GTI.getStructTypeOrNull()) {
1375         // Handle struct member offset arithmetic.
1376 
1377         assert(CIndex &&
1378                "Access to structure field must be known at compile time");
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         AccConstIndices += Offset;
1387         continue;
1388       }
1389 
1390       // Handle array index arithmetic.
1391       Type *IndexedTy = GTI.getIndexedType();
1392       if (!IndexedTy->isSized()) {
1393         Known.resetAll();
1394         break;
1395       }
1396 
1397       unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits();
1398       KnownBits IndexBits(IndexBitWidth);
1399       computeKnownBits(Index, IndexBits, Depth + 1, Q);
1400       TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1401       uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize();
1402       KnownBits ScalingFactor(IndexBitWidth);
1403       // Multiply by current sizeof type.
1404       // &A[i] == A + i * sizeof(*A[i]).
1405       if (IndexTypeSize.isScalable()) {
1406         // For scalable types the only thing we know about sizeof is
1407         // that this is a multiple of the minimum size.
1408         ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes));
1409       } else if (IndexBits.isConstant()) {
1410         APInt IndexConst = IndexBits.getConstant();
1411         APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes);
1412         IndexConst *= ScalingFactor;
1413         AccConstIndices += IndexConst.sextOrTrunc(BitWidth);
1414         continue;
1415       } else {
1416         ScalingFactor =
1417             KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes));
1418       }
1419       IndexBits = KnownBits::mul(IndexBits, ScalingFactor);
1420 
1421       // If the offsets have a different width from the pointer, according
1422       // to the language reference we need to sign-extend or truncate them
1423       // to the width of the pointer.
1424       IndexBits = IndexBits.sextOrTrunc(BitWidth);
1425 
1426       // Note that inbounds does *not* guarantee nsw for the addition, as only
1427       // the offset is signed, while the base address is unsigned.
1428       Known = KnownBits::computeForAddSub(
1429           /*Add=*/true, /*NSW=*/false, Known, IndexBits);
1430     }
1431     if (!Known.isUnknown() && !AccConstIndices.isZero()) {
1432       KnownBits Index = KnownBits::makeConstant(AccConstIndices);
1433       Known = KnownBits::computeForAddSub(
1434           /*Add=*/true, /*NSW=*/false, Known, Index);
1435     }
1436     break;
1437   }
1438   case Instruction::PHI: {
1439     const PHINode *P = cast<PHINode>(I);
1440     BinaryOperator *BO = nullptr;
1441     Value *R = nullptr, *L = nullptr;
1442     if (matchSimpleRecurrence(P, BO, R, L)) {
1443       // Handle the case of a simple two-predecessor recurrence PHI.
1444       // There's a lot more that could theoretically be done here, but
1445       // this is sufficient to catch some interesting cases.
1446       unsigned Opcode = BO->getOpcode();
1447 
1448       // If this is a shift recurrence, we know the bits being shifted in.
1449       // We can combine that with information about the start value of the
1450       // recurrence to conclude facts about the result.
1451       if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr ||
1452            Opcode == Instruction::Shl) &&
1453           BO->getOperand(0) == I) {
1454 
1455         // We have matched a recurrence of the form:
1456         // %iv = [R, %entry], [%iv.next, %backedge]
1457         // %iv.next = shift_op %iv, L
1458 
1459         // Recurse with the phi context to avoid concern about whether facts
1460         // inferred hold at original context instruction.  TODO: It may be
1461         // correct to use the original context.  IF warranted, explore and
1462         // add sufficient tests to cover.
1463         Query RecQ = Q;
1464         RecQ.CxtI = P;
1465         computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ);
1466         switch (Opcode) {
1467         case Instruction::Shl:
1468           // A shl recurrence will only increase the tailing zeros
1469           Known.Zero.setLowBits(Known2.countMinTrailingZeros());
1470           break;
1471         case Instruction::LShr:
1472           // A lshr recurrence will preserve the leading zeros of the
1473           // start value
1474           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1475           break;
1476         case Instruction::AShr:
1477           // An ashr recurrence will extend the initial sign bit
1478           Known.Zero.setHighBits(Known2.countMinLeadingZeros());
1479           Known.One.setHighBits(Known2.countMinLeadingOnes());
1480           break;
1481         };
1482       }
1483 
1484       // Check for operations that have the property that if
1485       // both their operands have low zero bits, the result
1486       // will have low zero bits.
1487       if (Opcode == Instruction::Add ||
1488           Opcode == Instruction::Sub ||
1489           Opcode == Instruction::And ||
1490           Opcode == Instruction::Or ||
1491           Opcode == Instruction::Mul) {
1492         // Change the context instruction to the "edge" that flows into the
1493         // phi. This is important because that is where the value is actually
1494         // "evaluated" even though it is used later somewhere else. (see also
1495         // D69571).
1496         Query RecQ = Q;
1497 
1498         unsigned OpNum = P->getOperand(0) == R ? 0 : 1;
1499         Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator();
1500         Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator();
1501 
1502         // Ok, we have a PHI of the form L op= R. Check for low
1503         // zero bits.
1504         RecQ.CxtI = RInst;
1505         computeKnownBits(R, Known2, Depth + 1, RecQ);
1506 
1507         // We need to take the minimum number of known bits
1508         KnownBits Known3(BitWidth);
1509         RecQ.CxtI = LInst;
1510         computeKnownBits(L, Known3, Depth + 1, RecQ);
1511 
1512         Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1513                                        Known3.countMinTrailingZeros()));
1514 
1515         auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO);
1516         if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1517           // If initial value of recurrence is nonnegative, and we are adding
1518           // a nonnegative number with nsw, the result can only be nonnegative
1519           // or poison value regardless of the number of times we execute the
1520           // add in phi recurrence. If initial value is negative and we are
1521           // adding a negative number with nsw, the result can only be
1522           // negative or poison value. Similar arguments apply to sub and mul.
1523           //
1524           // (add non-negative, non-negative) --> non-negative
1525           // (add negative, negative) --> negative
1526           if (Opcode == Instruction::Add) {
1527             if (Known2.isNonNegative() && Known3.isNonNegative())
1528               Known.makeNonNegative();
1529             else if (Known2.isNegative() && Known3.isNegative())
1530               Known.makeNegative();
1531           }
1532 
1533           // (sub nsw non-negative, negative) --> non-negative
1534           // (sub nsw negative, non-negative) --> negative
1535           else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) {
1536             if (Known2.isNonNegative() && Known3.isNegative())
1537               Known.makeNonNegative();
1538             else if (Known2.isNegative() && Known3.isNonNegative())
1539               Known.makeNegative();
1540           }
1541 
1542           // (mul nsw non-negative, non-negative) --> non-negative
1543           else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1544                    Known3.isNonNegative())
1545             Known.makeNonNegative();
1546         }
1547 
1548         break;
1549       }
1550     }
1551 
1552     // Unreachable blocks may have zero-operand PHI nodes.
1553     if (P->getNumIncomingValues() == 0)
1554       break;
1555 
1556     // Otherwise take the unions of the known bit sets of the operands,
1557     // taking conservative care to avoid excessive recursion.
1558     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1559       // Skip if every incoming value references to ourself.
1560       if (isa_and_nonnull<UndefValue>(P->hasConstantValue()))
1561         break;
1562 
1563       Known.Zero.setAllBits();
1564       Known.One.setAllBits();
1565       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1566         Value *IncValue = P->getIncomingValue(u);
1567         // Skip direct self references.
1568         if (IncValue == P) continue;
1569 
1570         // Change the context instruction to the "edge" that flows into the
1571         // phi. This is important because that is where the value is actually
1572         // "evaluated" even though it is used later somewhere else. (see also
1573         // D69571).
1574         Query RecQ = Q;
1575         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1576 
1577         Known2 = KnownBits(BitWidth);
1578         // Recurse, but cap the recursion to one level, because we don't
1579         // want to waste time spinning around in loops.
1580         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1581         Known = KnownBits::commonBits(Known, Known2);
1582         // If all bits have been ruled out, there's no need to check
1583         // more operands.
1584         if (Known.isUnknown())
1585           break;
1586       }
1587     }
1588     break;
1589   }
1590   case Instruction::Call:
1591   case Instruction::Invoke:
1592     // If range metadata is attached to this call, set known bits from that,
1593     // and then intersect with known bits based on other properties of the
1594     // function.
1595     if (MDNode *MD =
1596             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1597       computeKnownBitsFromRangeMetadata(*MD, Known);
1598     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1599       computeKnownBits(RV, Known2, Depth + 1, Q);
1600       Known.Zero |= Known2.Zero;
1601       Known.One |= Known2.One;
1602     }
1603     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1604       switch (II->getIntrinsicID()) {
1605       default: break;
1606       case Intrinsic::abs: {
1607         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1608         bool IntMinIsPoison = match(II->getArgOperand(1), m_One());
1609         Known = Known2.abs(IntMinIsPoison);
1610         break;
1611       }
1612       case Intrinsic::bitreverse:
1613         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1614         Known.Zero |= Known2.Zero.reverseBits();
1615         Known.One |= Known2.One.reverseBits();
1616         break;
1617       case Intrinsic::bswap:
1618         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1619         Known.Zero |= Known2.Zero.byteSwap();
1620         Known.One |= Known2.One.byteSwap();
1621         break;
1622       case Intrinsic::ctlz: {
1623         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1624         // If we have a known 1, its position is our upper bound.
1625         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1626         // If this call is poison for 0 input, the result will be less than 2^n.
1627         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1628           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1629         unsigned LowBits = Log2_32(PossibleLZ)+1;
1630         Known.Zero.setBitsFrom(LowBits);
1631         break;
1632       }
1633       case Intrinsic::cttz: {
1634         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1635         // If we have a known 1, its position is our upper bound.
1636         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1637         // If this call is poison for 0 input, the result will be less than 2^n.
1638         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1639           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1640         unsigned LowBits = Log2_32(PossibleTZ)+1;
1641         Known.Zero.setBitsFrom(LowBits);
1642         break;
1643       }
1644       case Intrinsic::ctpop: {
1645         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1646         // We can bound the space the count needs.  Also, bits known to be zero
1647         // can't contribute to the population.
1648         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1649         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1650         Known.Zero.setBitsFrom(LowBits);
1651         // TODO: we could bound KnownOne using the lower bound on the number
1652         // of bits which might be set provided by popcnt KnownOne2.
1653         break;
1654       }
1655       case Intrinsic::fshr:
1656       case Intrinsic::fshl: {
1657         const APInt *SA;
1658         if (!match(I->getOperand(2), m_APInt(SA)))
1659           break;
1660 
1661         // Normalize to funnel shift left.
1662         uint64_t ShiftAmt = SA->urem(BitWidth);
1663         if (II->getIntrinsicID() == Intrinsic::fshr)
1664           ShiftAmt = BitWidth - ShiftAmt;
1665 
1666         KnownBits Known3(BitWidth);
1667         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1668         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1669 
1670         Known.Zero =
1671             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1672         Known.One =
1673             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1674         break;
1675       }
1676       case Intrinsic::uadd_sat:
1677       case Intrinsic::usub_sat: {
1678         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1679         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1680         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1681 
1682         // Add: Leading ones of either operand are preserved.
1683         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1684         // as leading zeros in the result.
1685         unsigned LeadingKnown;
1686         if (IsAdd)
1687           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1688                                   Known2.countMinLeadingOnes());
1689         else
1690           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1691                                   Known2.countMinLeadingOnes());
1692 
1693         Known = KnownBits::computeForAddSub(
1694             IsAdd, /* NSW */ false, Known, Known2);
1695 
1696         // We select between the operation result and all-ones/zero
1697         // respectively, so we can preserve known ones/zeros.
1698         if (IsAdd) {
1699           Known.One.setHighBits(LeadingKnown);
1700           Known.Zero.clearAllBits();
1701         } else {
1702           Known.Zero.setHighBits(LeadingKnown);
1703           Known.One.clearAllBits();
1704         }
1705         break;
1706       }
1707       case Intrinsic::umin:
1708         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1709         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1710         Known = KnownBits::umin(Known, Known2);
1711         break;
1712       case Intrinsic::umax:
1713         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1714         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1715         Known = KnownBits::umax(Known, Known2);
1716         break;
1717       case Intrinsic::smin:
1718         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1719         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1720         Known = KnownBits::smin(Known, Known2);
1721         break;
1722       case Intrinsic::smax:
1723         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1724         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1725         Known = KnownBits::smax(Known, Known2);
1726         break;
1727       case Intrinsic::x86_sse42_crc32_64_64:
1728         Known.Zero.setBitsFrom(32);
1729         break;
1730       case Intrinsic::riscv_vsetvli:
1731       case Intrinsic::riscv_vsetvlimax:
1732         // Assume that VL output is positive and would fit in an int32_t.
1733         // TODO: VLEN might be capped at 16 bits in a future V spec update.
1734         if (BitWidth >= 32)
1735           Known.Zero.setBitsFrom(31);
1736         break;
1737       case Intrinsic::vscale: {
1738         if (!II->getParent() || !II->getFunction() ||
1739             !II->getFunction()->hasFnAttribute(Attribute::VScaleRange))
1740           break;
1741 
1742         auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange);
1743         Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax();
1744 
1745         if (!VScaleMax)
1746           break;
1747 
1748         unsigned VScaleMin = Attr.getVScaleRangeMin();
1749 
1750         // If vscale min = max then we know the exact value at compile time
1751         // and hence we know the exact bits.
1752         if (VScaleMin == VScaleMax) {
1753           Known.One = VScaleMin;
1754           Known.Zero = VScaleMin;
1755           Known.Zero.flipAllBits();
1756           break;
1757         }
1758 
1759         unsigned FirstZeroHighBit = 32 - countLeadingZeros(*VScaleMax);
1760         if (FirstZeroHighBit < BitWidth)
1761           Known.Zero.setBitsFrom(FirstZeroHighBit);
1762 
1763         break;
1764       }
1765       }
1766     }
1767     break;
1768   case Instruction::ShuffleVector: {
1769     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1770     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1771     if (!Shuf) {
1772       Known.resetAll();
1773       return;
1774     }
1775     // For undef elements, we don't know anything about the common state of
1776     // the shuffle result.
1777     APInt DemandedLHS, DemandedRHS;
1778     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1779       Known.resetAll();
1780       return;
1781     }
1782     Known.One.setAllBits();
1783     Known.Zero.setAllBits();
1784     if (!!DemandedLHS) {
1785       const Value *LHS = Shuf->getOperand(0);
1786       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1787       // If we don't know any bits, early out.
1788       if (Known.isUnknown())
1789         break;
1790     }
1791     if (!!DemandedRHS) {
1792       const Value *RHS = Shuf->getOperand(1);
1793       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1794       Known = KnownBits::commonBits(Known, Known2);
1795     }
1796     break;
1797   }
1798   case Instruction::InsertElement: {
1799     const Value *Vec = I->getOperand(0);
1800     const Value *Elt = I->getOperand(1);
1801     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1802     // Early out if the index is non-constant or out-of-range.
1803     unsigned NumElts = DemandedElts.getBitWidth();
1804     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1805       Known.resetAll();
1806       return;
1807     }
1808     Known.One.setAllBits();
1809     Known.Zero.setAllBits();
1810     unsigned EltIdx = CIdx->getZExtValue();
1811     // Do we demand the inserted element?
1812     if (DemandedElts[EltIdx]) {
1813       computeKnownBits(Elt, Known, Depth + 1, Q);
1814       // If we don't know any bits, early out.
1815       if (Known.isUnknown())
1816         break;
1817     }
1818     // We don't need the base vector element that has been inserted.
1819     APInt DemandedVecElts = DemandedElts;
1820     DemandedVecElts.clearBit(EltIdx);
1821     if (!!DemandedVecElts) {
1822       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1823       Known = KnownBits::commonBits(Known, Known2);
1824     }
1825     break;
1826   }
1827   case Instruction::ExtractElement: {
1828     // Look through extract element. If the index is non-constant or
1829     // out-of-range demand all elements, otherwise just the extracted element.
1830     const Value *Vec = I->getOperand(0);
1831     const Value *Idx = I->getOperand(1);
1832     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1833     if (isa<ScalableVectorType>(Vec->getType())) {
1834       // FIXME: there's probably *something* we can do with scalable vectors
1835       Known.resetAll();
1836       break;
1837     }
1838     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1839     APInt DemandedVecElts = APInt::getAllOnes(NumElts);
1840     if (CIdx && CIdx->getValue().ult(NumElts))
1841       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1842     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1843     break;
1844   }
1845   case Instruction::ExtractValue:
1846     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1847       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1848       if (EVI->getNumIndices() != 1) break;
1849       if (EVI->getIndices()[0] == 0) {
1850         switch (II->getIntrinsicID()) {
1851         default: break;
1852         case Intrinsic::uadd_with_overflow:
1853         case Intrinsic::sadd_with_overflow:
1854           computeKnownBitsAddSub(true, II->getArgOperand(0),
1855                                  II->getArgOperand(1), false, DemandedElts,
1856                                  Known, Known2, Depth, Q);
1857           break;
1858         case Intrinsic::usub_with_overflow:
1859         case Intrinsic::ssub_with_overflow:
1860           computeKnownBitsAddSub(false, II->getArgOperand(0),
1861                                  II->getArgOperand(1), false, DemandedElts,
1862                                  Known, Known2, Depth, Q);
1863           break;
1864         case Intrinsic::umul_with_overflow:
1865         case Intrinsic::smul_with_overflow:
1866           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1867                               DemandedElts, Known, Known2, Depth, Q);
1868           break;
1869         }
1870       }
1871     }
1872     break;
1873   case Instruction::Freeze:
1874     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1875                                   Depth + 1))
1876       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1877     break;
1878   }
1879 }
1880 
1881 /// Determine which bits of V are known to be either zero or one and return
1882 /// them.
1883 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1884                            unsigned Depth, const Query &Q) {
1885   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1886   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1887   return Known;
1888 }
1889 
1890 /// Determine which bits of V are known to be either zero or one and return
1891 /// them.
1892 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1893   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1894   computeKnownBits(V, Known, Depth, Q);
1895   return Known;
1896 }
1897 
1898 /// Determine which bits of V are known to be either zero or one and return
1899 /// them in the Known bit set.
1900 ///
1901 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1902 /// we cannot optimize based on the assumption that it is zero without changing
1903 /// it to be an explicit zero.  If we don't change it to zero, other code could
1904 /// optimized based on the contradictory assumption that it is non-zero.
1905 /// Because instcombine aggressively folds operations with undef args anyway,
1906 /// this won't lose us code quality.
1907 ///
1908 /// This function is defined on values with integer type, values with pointer
1909 /// type, and vectors of integers.  In the case
1910 /// where V is a vector, known zero, and known one values are the
1911 /// same width as the vector element, and the bit is set only if it is true
1912 /// for all of the demanded elements in the vector specified by DemandedElts.
1913 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1914                       KnownBits &Known, unsigned Depth, const Query &Q) {
1915   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1916     // No demanded elts or V is a scalable vector, better to assume we don't
1917     // know anything.
1918     Known.resetAll();
1919     return;
1920   }
1921 
1922   assert(V && "No Value?");
1923   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1924 
1925 #ifndef NDEBUG
1926   Type *Ty = V->getType();
1927   unsigned BitWidth = Known.getBitWidth();
1928 
1929   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1930          "Not integer or pointer type!");
1931 
1932   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1933     assert(
1934         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1935         "DemandedElt width should equal the fixed vector number of elements");
1936   } else {
1937     assert(DemandedElts == APInt(1, 1) &&
1938            "DemandedElt width should be 1 for scalars");
1939   }
1940 
1941   Type *ScalarTy = Ty->getScalarType();
1942   if (ScalarTy->isPointerTy()) {
1943     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1944            "V and Known should have same BitWidth");
1945   } else {
1946     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1947            "V and Known should have same BitWidth");
1948   }
1949 #endif
1950 
1951   const APInt *C;
1952   if (match(V, m_APInt(C))) {
1953     // We know all of the bits for a scalar constant or a splat vector constant!
1954     Known = KnownBits::makeConstant(*C);
1955     return;
1956   }
1957   // Null and aggregate-zero are all-zeros.
1958   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1959     Known.setAllZero();
1960     return;
1961   }
1962   // Handle a constant vector by taking the intersection of the known bits of
1963   // each element.
1964   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1965     // We know that CDV must be a vector of integers. Take the intersection of
1966     // each element.
1967     Known.Zero.setAllBits(); Known.One.setAllBits();
1968     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1969       if (!DemandedElts[i])
1970         continue;
1971       APInt Elt = CDV->getElementAsAPInt(i);
1972       Known.Zero &= ~Elt;
1973       Known.One &= Elt;
1974     }
1975     return;
1976   }
1977 
1978   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1979     // We know that CV must be a vector of integers. Take the intersection of
1980     // each element.
1981     Known.Zero.setAllBits(); Known.One.setAllBits();
1982     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1983       if (!DemandedElts[i])
1984         continue;
1985       Constant *Element = CV->getAggregateElement(i);
1986       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1987       if (!ElementCI) {
1988         Known.resetAll();
1989         return;
1990       }
1991       const APInt &Elt = ElementCI->getValue();
1992       Known.Zero &= ~Elt;
1993       Known.One &= Elt;
1994     }
1995     return;
1996   }
1997 
1998   // Start out not knowing anything.
1999   Known.resetAll();
2000 
2001   // We can't imply anything about undefs.
2002   if (isa<UndefValue>(V))
2003     return;
2004 
2005   // There's no point in looking through other users of ConstantData for
2006   // assumptions.  Confirm that we've handled them all.
2007   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
2008 
2009   // All recursive calls that increase depth must come after this.
2010   if (Depth == MaxAnalysisRecursionDepth)
2011     return;
2012 
2013   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
2014   // the bits of its aliasee.
2015   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2016     if (!GA->isInterposable())
2017       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
2018     return;
2019   }
2020 
2021   if (const Operator *I = dyn_cast<Operator>(V))
2022     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
2023 
2024   // Aligned pointers have trailing zeros - refine Known.Zero set
2025   if (isa<PointerType>(V->getType())) {
2026     Align Alignment = V->getPointerAlignment(Q.DL);
2027     Known.Zero.setLowBits(Log2(Alignment));
2028   }
2029 
2030   // computeKnownBitsFromAssume strictly refines Known.
2031   // Therefore, we run them after computeKnownBitsFromOperator.
2032 
2033   // Check whether a nearby assume intrinsic can determine some known bits.
2034   computeKnownBitsFromAssume(V, Known, Depth, Q);
2035 
2036   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
2037 }
2038 
2039 /// Try to detect a recurrence that the value of the induction variable is
2040 /// always a power of two (or zero).
2041 static bool isPowerOfTwoRecurrence(const PHINode *PN, bool OrZero,
2042                                    unsigned Depth, Query &Q) {
2043   BinaryOperator *BO = nullptr;
2044   Value *Start = nullptr, *Step = nullptr;
2045   if (!matchSimpleRecurrence(PN, BO, Start, Step))
2046     return false;
2047 
2048   // Initial value must be a power of two.
2049   for (const Use &U : PN->operands()) {
2050     if (U.get() == Start) {
2051       // Initial value comes from a different BB, need to adjust context
2052       // instruction for analysis.
2053       Q.CxtI = PN->getIncomingBlock(U)->getTerminator();
2054       if (!isKnownToBeAPowerOfTwo(Start, OrZero, Depth, Q))
2055         return false;
2056     }
2057   }
2058 
2059   // Except for Mul, the induction variable must be on the left side of the
2060   // increment expression, otherwise its value can be arbitrary.
2061   if (BO->getOpcode() != Instruction::Mul && BO->getOperand(1) != Step)
2062     return false;
2063 
2064   Q.CxtI = BO->getParent()->getTerminator();
2065   switch (BO->getOpcode()) {
2066   case Instruction::Mul:
2067     // Power of two is closed under multiplication.
2068     return (OrZero || Q.IIQ.hasNoUnsignedWrap(BO) ||
2069             Q.IIQ.hasNoSignedWrap(BO)) &&
2070            isKnownToBeAPowerOfTwo(Step, OrZero, Depth, Q);
2071   case Instruction::SDiv:
2072     // Start value must not be signmask for signed division, so simply being a
2073     // power of two is not sufficient, and it has to be a constant.
2074     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2075       return false;
2076     LLVM_FALLTHROUGH;
2077   case Instruction::UDiv:
2078     // Divisor must be a power of two.
2079     // If OrZero is false, cannot guarantee induction variable is non-zero after
2080     // division, same for Shr, unless it is exact division.
2081     return (OrZero || Q.IIQ.isExact(BO)) &&
2082            isKnownToBeAPowerOfTwo(Step, false, Depth, Q);
2083   case Instruction::Shl:
2084     return OrZero || Q.IIQ.hasNoUnsignedWrap(BO) || Q.IIQ.hasNoSignedWrap(BO);
2085   case Instruction::AShr:
2086     if (!match(Start, m_Power2()) || match(Start, m_SignMask()))
2087       return false;
2088     LLVM_FALLTHROUGH;
2089   case Instruction::LShr:
2090     return OrZero || Q.IIQ.isExact(BO);
2091   default:
2092     return false;
2093   }
2094 }
2095 
2096 /// Return true if the given value is known to have exactly one
2097 /// bit set when defined. For vectors return true if every element is known to
2098 /// be a power of two when defined. Supports values with integer or pointer
2099 /// types and vectors of integers.
2100 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
2101                             const Query &Q) {
2102   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2103 
2104   // Attempt to match against constants.
2105   if (OrZero && match(V, m_Power2OrZero()))
2106       return true;
2107   if (match(V, m_Power2()))
2108       return true;
2109 
2110   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
2111   // it is shifted off the end then the result is undefined.
2112   if (match(V, m_Shl(m_One(), m_Value())))
2113     return true;
2114 
2115   // (signmask) >>l X is clearly a power of two if the one is not shifted off
2116   // the bottom.  If it is shifted off the bottom then the result is undefined.
2117   if (match(V, m_LShr(m_SignMask(), m_Value())))
2118     return true;
2119 
2120   // The remaining tests are all recursive, so bail out if we hit the limit.
2121   if (Depth++ == MaxAnalysisRecursionDepth)
2122     return false;
2123 
2124   Value *X = nullptr, *Y = nullptr;
2125   // A shift left or a logical shift right of a power of two is a power of two
2126   // or zero.
2127   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2128                  match(V, m_LShr(m_Value(X), m_Value()))))
2129     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2130 
2131   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2132     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2133 
2134   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2135     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2136            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2137 
2138   // Peek through min/max.
2139   if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) {
2140     return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) &&
2141            isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q);
2142   }
2143 
2144   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2145     // A power of two and'd with anything is a power of two or zero.
2146     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2147         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2148       return true;
2149     // X & (-X) is always a power of two or zero.
2150     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2151       return true;
2152     return false;
2153   }
2154 
2155   // Adding a power-of-two or zero to the same power-of-two or zero yields
2156   // either the original power-of-two, a larger power-of-two or zero.
2157   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2158     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2159     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2160         Q.IIQ.hasNoSignedWrap(VOBO)) {
2161       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2162           match(X, m_And(m_Value(), m_Specific(Y))))
2163         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2164           return true;
2165       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2166           match(Y, m_And(m_Value(), m_Specific(X))))
2167         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2168           return true;
2169 
2170       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2171       KnownBits LHSBits(BitWidth);
2172       computeKnownBits(X, LHSBits, Depth, Q);
2173 
2174       KnownBits RHSBits(BitWidth);
2175       computeKnownBits(Y, RHSBits, Depth, Q);
2176       // If i8 V is a power of two or zero:
2177       //  ZeroBits: 1 1 1 0 1 1 1 1
2178       // ~ZeroBits: 0 0 0 1 0 0 0 0
2179       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2180         // If OrZero isn't set, we cannot give back a zero result.
2181         // Make sure either the LHS or RHS has a bit set.
2182         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2183           return true;
2184     }
2185   }
2186 
2187   // A PHI node is power of two if all incoming values are power of two, or if
2188   // it is an induction variable where in each step its value is a power of two.
2189   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2190     Query RecQ = Q;
2191 
2192     // Check if it is an induction variable and always power of two.
2193     if (isPowerOfTwoRecurrence(PN, OrZero, Depth, RecQ))
2194       return true;
2195 
2196     // Recursively check all incoming values. Limit recursion to 2 levels, so
2197     // that search complexity is limited to number of operands^2.
2198     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2199     return llvm::all_of(PN->operands(), [&](const Use &U) {
2200       // Value is power of 2 if it is coming from PHI node itself by induction.
2201       if (U.get() == PN)
2202         return true;
2203 
2204       // Change the context instruction to the incoming block where it is
2205       // evaluated.
2206       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2207       return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ);
2208     });
2209   }
2210 
2211   // An exact divide or right shift can only shift off zero bits, so the result
2212   // is a power of two only if the first operand is a power of two and not
2213   // copying a sign bit (sdiv int_min, 2).
2214   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2215       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2216     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2217                                   Depth, Q);
2218   }
2219 
2220   return false;
2221 }
2222 
2223 /// Test whether a GEP's result is known to be non-null.
2224 ///
2225 /// Uses properties inherent in a GEP to try to determine whether it is known
2226 /// to be non-null.
2227 ///
2228 /// Currently this routine does not support vector GEPs.
2229 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2230                               const Query &Q) {
2231   const Function *F = nullptr;
2232   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2233     F = I->getFunction();
2234 
2235   if (!GEP->isInBounds() ||
2236       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2237     return false;
2238 
2239   // FIXME: Support vector-GEPs.
2240   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2241 
2242   // If the base pointer is non-null, we cannot walk to a null address with an
2243   // inbounds GEP in address space zero.
2244   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2245     return true;
2246 
2247   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2248   // If so, then the GEP cannot produce a null pointer, as doing so would
2249   // inherently violate the inbounds contract within address space zero.
2250   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2251        GTI != GTE; ++GTI) {
2252     // Struct types are easy -- they must always be indexed by a constant.
2253     if (StructType *STy = GTI.getStructTypeOrNull()) {
2254       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2255       unsigned ElementIdx = OpC->getZExtValue();
2256       const StructLayout *SL = Q.DL.getStructLayout(STy);
2257       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2258       if (ElementOffset > 0)
2259         return true;
2260       continue;
2261     }
2262 
2263     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2264     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2265       continue;
2266 
2267     // Fast path the constant operand case both for efficiency and so we don't
2268     // increment Depth when just zipping down an all-constant GEP.
2269     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2270       if (!OpC->isZero())
2271         return true;
2272       continue;
2273     }
2274 
2275     // We post-increment Depth here because while isKnownNonZero increments it
2276     // as well, when we pop back up that increment won't persist. We don't want
2277     // to recurse 10k times just because we have 10k GEP operands. We don't
2278     // bail completely out because we want to handle constant GEPs regardless
2279     // of depth.
2280     if (Depth++ >= MaxAnalysisRecursionDepth)
2281       continue;
2282 
2283     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2284       return true;
2285   }
2286 
2287   return false;
2288 }
2289 
2290 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2291                                                   const Instruction *CtxI,
2292                                                   const DominatorTree *DT) {
2293   if (isa<Constant>(V))
2294     return false;
2295 
2296   if (!CtxI || !DT)
2297     return false;
2298 
2299   unsigned NumUsesExplored = 0;
2300   for (auto *U : V->users()) {
2301     // Avoid massive lists
2302     if (NumUsesExplored >= DomConditionsMaxUses)
2303       break;
2304     NumUsesExplored++;
2305 
2306     // If the value is used as an argument to a call or invoke, then argument
2307     // attributes may provide an answer about null-ness.
2308     if (const auto *CB = dyn_cast<CallBase>(U))
2309       if (auto *CalledFunc = CB->getCalledFunction())
2310         for (const Argument &Arg : CalledFunc->args())
2311           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2312               Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) &&
2313               DT->dominates(CB, CtxI))
2314             return true;
2315 
2316     // If the value is used as a load/store, then the pointer must be non null.
2317     if (V == getLoadStorePointerOperand(U)) {
2318       const Instruction *I = cast<Instruction>(U);
2319       if (!NullPointerIsDefined(I->getFunction(),
2320                                 V->getType()->getPointerAddressSpace()) &&
2321           DT->dominates(I, CtxI))
2322         return true;
2323     }
2324 
2325     // Consider only compare instructions uniquely controlling a branch
2326     Value *RHS;
2327     CmpInst::Predicate Pred;
2328     if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS))))
2329       continue;
2330 
2331     bool NonNullIfTrue;
2332     if (cmpExcludesZero(Pred, RHS))
2333       NonNullIfTrue = true;
2334     else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS))
2335       NonNullIfTrue = false;
2336     else
2337       continue;
2338 
2339     SmallVector<const User *, 4> WorkList;
2340     SmallPtrSet<const User *, 4> Visited;
2341     for (auto *CmpU : U->users()) {
2342       assert(WorkList.empty() && "Should be!");
2343       if (Visited.insert(CmpU).second)
2344         WorkList.push_back(CmpU);
2345 
2346       while (!WorkList.empty()) {
2347         auto *Curr = WorkList.pop_back_val();
2348 
2349         // If a user is an AND, add all its users to the work list. We only
2350         // propagate "pred != null" condition through AND because it is only
2351         // correct to assume that all conditions of AND are met in true branch.
2352         // TODO: Support similar logic of OR and EQ predicate?
2353         if (NonNullIfTrue)
2354           if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) {
2355             for (auto *CurrU : Curr->users())
2356               if (Visited.insert(CurrU).second)
2357                 WorkList.push_back(CurrU);
2358             continue;
2359           }
2360 
2361         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2362           assert(BI->isConditional() && "uses a comparison!");
2363 
2364           BasicBlock *NonNullSuccessor =
2365               BI->getSuccessor(NonNullIfTrue ? 0 : 1);
2366           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2367           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2368             return true;
2369         } else if (NonNullIfTrue && isGuard(Curr) &&
2370                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2371           return true;
2372         }
2373       }
2374     }
2375   }
2376 
2377   return false;
2378 }
2379 
2380 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2381 /// ensure that the value it's attached to is never Value?  'RangeType' is
2382 /// is the type of the value described by the range.
2383 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2384   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2385   assert(NumRanges >= 1);
2386   for (unsigned i = 0; i < NumRanges; ++i) {
2387     ConstantInt *Lower =
2388         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2389     ConstantInt *Upper =
2390         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2391     ConstantRange Range(Lower->getValue(), Upper->getValue());
2392     if (Range.contains(Value))
2393       return false;
2394   }
2395   return true;
2396 }
2397 
2398 /// Try to detect a recurrence that monotonically increases/decreases from a
2399 /// non-zero starting value. These are common as induction variables.
2400 static bool isNonZeroRecurrence(const PHINode *PN) {
2401   BinaryOperator *BO = nullptr;
2402   Value *Start = nullptr, *Step = nullptr;
2403   const APInt *StartC, *StepC;
2404   if (!matchSimpleRecurrence(PN, BO, Start, Step) ||
2405       !match(Start, m_APInt(StartC)) || StartC->isZero())
2406     return false;
2407 
2408   switch (BO->getOpcode()) {
2409   case Instruction::Add:
2410     // Starting from non-zero and stepping away from zero can never wrap back
2411     // to zero.
2412     return BO->hasNoUnsignedWrap() ||
2413            (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) &&
2414             StartC->isNegative() == StepC->isNegative());
2415   case Instruction::Mul:
2416     return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) &&
2417            match(Step, m_APInt(StepC)) && !StepC->isZero();
2418   case Instruction::Shl:
2419     return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap();
2420   case Instruction::AShr:
2421   case Instruction::LShr:
2422     return BO->isExact();
2423   default:
2424     return false;
2425   }
2426 }
2427 
2428 /// Return true if the given value is known to be non-zero when defined. For
2429 /// vectors, return true if every demanded element is known to be non-zero when
2430 /// defined. For pointers, if the context instruction and dominator tree are
2431 /// specified, perform context-sensitive analysis and return true if the
2432 /// pointer couldn't possibly be null at the specified instruction.
2433 /// Supports values with integer or pointer type and vectors of integers.
2434 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2435                     const Query &Q) {
2436   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2437   // vector
2438   if (isa<ScalableVectorType>(V->getType()))
2439     return false;
2440 
2441   if (auto *C = dyn_cast<Constant>(V)) {
2442     if (C->isNullValue())
2443       return false;
2444     if (isa<ConstantInt>(C))
2445       // Must be non-zero due to null test above.
2446       return true;
2447 
2448     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2449       // See the comment for IntToPtr/PtrToInt instructions below.
2450       if (CE->getOpcode() == Instruction::IntToPtr ||
2451           CE->getOpcode() == Instruction::PtrToInt)
2452         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType())
2453                 .getFixedSize() <=
2454             Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize())
2455           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2456     }
2457 
2458     // For constant vectors, check that all elements are undefined or known
2459     // non-zero to determine that the whole vector is known non-zero.
2460     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2461       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2462         if (!DemandedElts[i])
2463           continue;
2464         Constant *Elt = C->getAggregateElement(i);
2465         if (!Elt || Elt->isNullValue())
2466           return false;
2467         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2468           return false;
2469       }
2470       return true;
2471     }
2472 
2473     // A global variable in address space 0 is non null unless extern weak
2474     // or an absolute symbol reference. Other address spaces may have null as a
2475     // valid address for a global, so we can't assume anything.
2476     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2477       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2478           GV->getType()->getAddressSpace() == 0)
2479         return true;
2480     } else
2481       return false;
2482   }
2483 
2484   if (auto *I = dyn_cast<Instruction>(V)) {
2485     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2486       // If the possible ranges don't contain zero, then the value is
2487       // definitely non-zero.
2488       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2489         const APInt ZeroValue(Ty->getBitWidth(), 0);
2490         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2491           return true;
2492       }
2493     }
2494   }
2495 
2496   if (isKnownNonZeroFromAssume(V, Q))
2497     return true;
2498 
2499   // Some of the tests below are recursive, so bail out if we hit the limit.
2500   if (Depth++ >= MaxAnalysisRecursionDepth)
2501     return false;
2502 
2503   // Check for pointer simplifications.
2504 
2505   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2506     // Alloca never returns null, malloc might.
2507     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2508       return true;
2509 
2510     // A byval, inalloca may not be null in a non-default addres space. A
2511     // nonnull argument is assumed never 0.
2512     if (const Argument *A = dyn_cast<Argument>(V)) {
2513       if (((A->hasPassPointeeByValueCopyAttr() &&
2514             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2515            A->hasNonNullAttr()))
2516         return true;
2517     }
2518 
2519     // A Load tagged with nonnull metadata is never null.
2520     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2521       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2522         return true;
2523 
2524     if (const auto *Call = dyn_cast<CallBase>(V)) {
2525       if (Call->isReturnNonNull())
2526         return true;
2527       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2528         return isKnownNonZero(RP, Depth, Q);
2529     }
2530   }
2531 
2532   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2533     return true;
2534 
2535   // Check for recursive pointer simplifications.
2536   if (V->getType()->isPointerTy()) {
2537     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2538     // do not alter the value, or at least not the nullness property of the
2539     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2540     //
2541     // Note that we have to take special care to avoid looking through
2542     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2543     // as casts that can alter the value, e.g., AddrSpaceCasts.
2544     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2545       return isGEPKnownNonNull(GEP, Depth, Q);
2546 
2547     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2548       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2549 
2550     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2551       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <=
2552           Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize())
2553         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2554   }
2555 
2556   // Similar to int2ptr above, we can look through ptr2int here if the cast
2557   // is a no-op or an extend and not a truncate.
2558   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2559     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <=
2560         Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize())
2561       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2562 
2563   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2564 
2565   // X | Y != 0 if X != 0 or Y != 0.
2566   Value *X = nullptr, *Y = nullptr;
2567   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2568     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2569            isKnownNonZero(Y, DemandedElts, Depth, Q);
2570 
2571   // ext X != 0 if X != 0.
2572   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2573     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2574 
2575   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2576   // if the lowest bit is shifted off the end.
2577   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2578     // shl nuw can't remove any non-zero bits.
2579     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2580     if (Q.IIQ.hasNoUnsignedWrap(BO))
2581       return isKnownNonZero(X, Depth, Q);
2582 
2583     KnownBits Known(BitWidth);
2584     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2585     if (Known.One[0])
2586       return true;
2587   }
2588   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2589   // defined if the sign bit is shifted off the end.
2590   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2591     // shr exact can only shift out zero bits.
2592     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2593     if (BO->isExact())
2594       return isKnownNonZero(X, Depth, Q);
2595 
2596     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2597     if (Known.isNegative())
2598       return true;
2599 
2600     // If the shifter operand is a constant, and all of the bits shifted
2601     // out are known to be zero, and X is known non-zero then at least one
2602     // non-zero bit must remain.
2603     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2604       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2605       // Is there a known one in the portion not shifted out?
2606       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2607         return true;
2608       // Are all the bits to be shifted out known zero?
2609       if (Known.countMinTrailingZeros() >= ShiftVal)
2610         return isKnownNonZero(X, DemandedElts, Depth, Q);
2611     }
2612   }
2613   // div exact can only produce a zero if the dividend is zero.
2614   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2615     return isKnownNonZero(X, DemandedElts, Depth, Q);
2616   }
2617   // X + Y.
2618   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2619     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2620     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2621 
2622     // If X and Y are both non-negative (as signed values) then their sum is not
2623     // zero unless both X and Y are zero.
2624     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2625       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2626           isKnownNonZero(Y, DemandedElts, Depth, Q))
2627         return true;
2628 
2629     // If X and Y are both negative (as signed values) then their sum is not
2630     // zero unless both X and Y equal INT_MIN.
2631     if (XKnown.isNegative() && YKnown.isNegative()) {
2632       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2633       // The sign bit of X is set.  If some other bit is set then X is not equal
2634       // to INT_MIN.
2635       if (XKnown.One.intersects(Mask))
2636         return true;
2637       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2638       // to INT_MIN.
2639       if (YKnown.One.intersects(Mask))
2640         return true;
2641     }
2642 
2643     // The sum of a non-negative number and a power of two is not zero.
2644     if (XKnown.isNonNegative() &&
2645         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2646       return true;
2647     if (YKnown.isNonNegative() &&
2648         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2649       return true;
2650   }
2651   // X * Y.
2652   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2653     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2654     // If X and Y are non-zero then so is X * Y as long as the multiplication
2655     // does not overflow.
2656     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2657         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2658         isKnownNonZero(Y, DemandedElts, Depth, Q))
2659       return true;
2660   }
2661   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2662   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2663     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2664         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2665       return true;
2666   }
2667   // PHI
2668   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2669     if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN))
2670       return true;
2671 
2672     // Check if all incoming values are non-zero using recursion.
2673     Query RecQ = Q;
2674     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2675     return llvm::all_of(PN->operands(), [&](const Use &U) {
2676       if (U.get() == PN)
2677         return true;
2678       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2679       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2680     });
2681   }
2682   // ExtractElement
2683   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2684     const Value *Vec = EEI->getVectorOperand();
2685     const Value *Idx = EEI->getIndexOperand();
2686     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2687     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2688       unsigned NumElts = VecTy->getNumElements();
2689       APInt DemandedVecElts = APInt::getAllOnes(NumElts);
2690       if (CIdx && CIdx->getValue().ult(NumElts))
2691         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2692       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2693     }
2694   }
2695   // Freeze
2696   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2697     auto *Op = FI->getOperand(0);
2698     if (isKnownNonZero(Op, Depth, Q) &&
2699         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2700       return true;
2701   }
2702 
2703   KnownBits Known(BitWidth);
2704   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2705   return Known.One != 0;
2706 }
2707 
2708 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2709   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2710   // vector
2711   if (isa<ScalableVectorType>(V->getType()))
2712     return false;
2713 
2714   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2715   APInt DemandedElts =
2716       FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1);
2717   return isKnownNonZero(V, DemandedElts, Depth, Q);
2718 }
2719 
2720 /// If the pair of operators are the same invertible function, return the
2721 /// the operands of the function corresponding to each input. Otherwise,
2722 /// return None.  An invertible function is one that is 1-to-1 and maps
2723 /// every input value to exactly one output value.  This is equivalent to
2724 /// saying that Op1 and Op2 are equal exactly when the specified pair of
2725 /// operands are equal, (except that Op1 and Op2 may be poison more often.)
2726 static Optional<std::pair<Value*, Value*>>
2727 getInvertibleOperands(const Operator *Op1,
2728                       const Operator *Op2) {
2729   if (Op1->getOpcode() != Op2->getOpcode())
2730     return None;
2731 
2732   auto getOperands = [&](unsigned OpNum) -> auto {
2733     return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum));
2734   };
2735 
2736   switch (Op1->getOpcode()) {
2737   default:
2738     break;
2739   case Instruction::Add:
2740   case Instruction::Sub:
2741     if (Op1->getOperand(0) == Op2->getOperand(0))
2742       return getOperands(1);
2743     if (Op1->getOperand(1) == Op2->getOperand(1))
2744       return getOperands(0);
2745     break;
2746   case Instruction::Mul: {
2747     // invertible if A * B == (A * B) mod 2^N where A, and B are integers
2748     // and N is the bitwdith.  The nsw case is non-obvious, but proven by
2749     // alive2: https://alive2.llvm.org/ce/z/Z6D5qK
2750     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2751     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2752     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2753         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2754       break;
2755 
2756     // Assume operand order has been canonicalized
2757     if (Op1->getOperand(1) == Op2->getOperand(1) &&
2758         isa<ConstantInt>(Op1->getOperand(1)) &&
2759         !cast<ConstantInt>(Op1->getOperand(1))->isZero())
2760       return getOperands(0);
2761     break;
2762   }
2763   case Instruction::Shl: {
2764     // Same as multiplies, with the difference that we don't need to check
2765     // for a non-zero multiply. Shifts always multiply by non-zero.
2766     auto *OBO1 = cast<OverflowingBinaryOperator>(Op1);
2767     auto *OBO2 = cast<OverflowingBinaryOperator>(Op2);
2768     if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) &&
2769         (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap()))
2770       break;
2771 
2772     if (Op1->getOperand(1) == Op2->getOperand(1))
2773       return getOperands(0);
2774     break;
2775   }
2776   case Instruction::AShr:
2777   case Instruction::LShr: {
2778     auto *PEO1 = cast<PossiblyExactOperator>(Op1);
2779     auto *PEO2 = cast<PossiblyExactOperator>(Op2);
2780     if (!PEO1->isExact() || !PEO2->isExact())
2781       break;
2782 
2783     if (Op1->getOperand(1) == Op2->getOperand(1))
2784       return getOperands(0);
2785     break;
2786   }
2787   case Instruction::SExt:
2788   case Instruction::ZExt:
2789     if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType())
2790       return getOperands(0);
2791     break;
2792   case Instruction::PHI: {
2793     const PHINode *PN1 = cast<PHINode>(Op1);
2794     const PHINode *PN2 = cast<PHINode>(Op2);
2795 
2796     // If PN1 and PN2 are both recurrences, can we prove the entire recurrences
2797     // are a single invertible function of the start values? Note that repeated
2798     // application of an invertible function is also invertible
2799     BinaryOperator *BO1 = nullptr;
2800     Value *Start1 = nullptr, *Step1 = nullptr;
2801     BinaryOperator *BO2 = nullptr;
2802     Value *Start2 = nullptr, *Step2 = nullptr;
2803     if (PN1->getParent() != PN2->getParent() ||
2804         !matchSimpleRecurrence(PN1, BO1, Start1, Step1) ||
2805         !matchSimpleRecurrence(PN2, BO2, Start2, Step2))
2806       break;
2807 
2808     auto Values = getInvertibleOperands(cast<Operator>(BO1),
2809                                         cast<Operator>(BO2));
2810     if (!Values)
2811        break;
2812 
2813     // We have to be careful of mutually defined recurrences here.  Ex:
2814     // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V
2815     // * X_i = Y_i = X_(i-1) OP Y_(i-1)
2816     // The invertibility of these is complicated, and not worth reasoning
2817     // about (yet?).
2818     if (Values->first != PN1 || Values->second != PN2)
2819       break;
2820 
2821     return std::make_pair(Start1, Start2);
2822   }
2823   }
2824   return None;
2825 }
2826 
2827 /// Return true if V2 == V1 + X, where X is known non-zero.
2828 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth,
2829                            const Query &Q) {
2830   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2831   if (!BO || BO->getOpcode() != Instruction::Add)
2832     return false;
2833   Value *Op = nullptr;
2834   if (V2 == BO->getOperand(0))
2835     Op = BO->getOperand(1);
2836   else if (V2 == BO->getOperand(1))
2837     Op = BO->getOperand(0);
2838   else
2839     return false;
2840   return isKnownNonZero(Op, Depth + 1, Q);
2841 }
2842 
2843 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and
2844 /// the multiplication is nuw or nsw.
2845 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth,
2846                           const Query &Q) {
2847   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2848     const APInt *C;
2849     return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) &&
2850            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2851            !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q);
2852   }
2853   return false;
2854 }
2855 
2856 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and
2857 /// the shift is nuw or nsw.
2858 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth,
2859                           const Query &Q) {
2860   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) {
2861     const APInt *C;
2862     return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) &&
2863            (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) &&
2864            !C->isZero() && isKnownNonZero(V1, Depth + 1, Q);
2865   }
2866   return false;
2867 }
2868 
2869 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2,
2870                            unsigned Depth, const Query &Q) {
2871   // Check two PHIs are in same block.
2872   if (PN1->getParent() != PN2->getParent())
2873     return false;
2874 
2875   SmallPtrSet<const BasicBlock *, 8> VisitedBBs;
2876   bool UsedFullRecursion = false;
2877   for (const BasicBlock *IncomBB : PN1->blocks()) {
2878     if (!VisitedBBs.insert(IncomBB).second)
2879       continue; // Don't reprocess blocks that we have dealt with already.
2880     const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB);
2881     const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB);
2882     const APInt *C1, *C2;
2883     if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2)
2884       continue;
2885 
2886     // Only one pair of phi operands is allowed for full recursion.
2887     if (UsedFullRecursion)
2888       return false;
2889 
2890     Query RecQ = Q;
2891     RecQ.CxtI = IncomBB->getTerminator();
2892     if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ))
2893       return false;
2894     UsedFullRecursion = true;
2895   }
2896   return true;
2897 }
2898 
2899 /// Return true if it is known that V1 != V2.
2900 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth,
2901                             const Query &Q) {
2902   if (V1 == V2)
2903     return false;
2904   if (V1->getType() != V2->getType())
2905     // We can't look through casts yet.
2906     return false;
2907 
2908   if (Depth >= MaxAnalysisRecursionDepth)
2909     return false;
2910 
2911   // See if we can recurse through (exactly one of) our operands.  This
2912   // requires our operation be 1-to-1 and map every input value to exactly
2913   // one output value.  Such an operation is invertible.
2914   auto *O1 = dyn_cast<Operator>(V1);
2915   auto *O2 = dyn_cast<Operator>(V2);
2916   if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) {
2917     if (auto Values = getInvertibleOperands(O1, O2))
2918       return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q);
2919 
2920     if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) {
2921       const PHINode *PN2 = cast<PHINode>(V2);
2922       // FIXME: This is missing a generalization to handle the case where one is
2923       // a PHI and another one isn't.
2924       if (isNonEqualPHIs(PN1, PN2, Depth, Q))
2925         return true;
2926     };
2927   }
2928 
2929   if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q))
2930     return true;
2931 
2932   if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q))
2933     return true;
2934 
2935   if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q))
2936     return true;
2937 
2938   if (V1->getType()->isIntOrIntVectorTy()) {
2939     // Are any known bits in V1 contradictory to known bits in V2? If V1
2940     // has a known zero where V2 has a known one, they must not be equal.
2941     KnownBits Known1 = computeKnownBits(V1, Depth, Q);
2942     KnownBits Known2 = computeKnownBits(V2, Depth, Q);
2943 
2944     if (Known1.Zero.intersects(Known2.One) ||
2945         Known2.Zero.intersects(Known1.One))
2946       return true;
2947   }
2948   return false;
2949 }
2950 
2951 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2952 /// simplify operations downstream. Mask is known to be zero for bits that V
2953 /// cannot have.
2954 ///
2955 /// This function is defined on values with integer type, values with pointer
2956 /// type, and vectors of integers.  In the case
2957 /// where V is a vector, the mask, known zero, and known one values are the
2958 /// same width as the vector element, and the bit is set only if it is true
2959 /// for all of the elements in the vector.
2960 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2961                        const Query &Q) {
2962   KnownBits Known(Mask.getBitWidth());
2963   computeKnownBits(V, Known, Depth, Q);
2964   return Mask.isSubsetOf(Known.Zero);
2965 }
2966 
2967 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2968 // Returns the input and lower/upper bounds.
2969 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2970                                 const APInt *&CLow, const APInt *&CHigh) {
2971   assert(isa<Operator>(Select) &&
2972          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2973          "Input should be a Select!");
2974 
2975   const Value *LHS = nullptr, *RHS = nullptr;
2976   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2977   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2978     return false;
2979 
2980   if (!match(RHS, m_APInt(CLow)))
2981     return false;
2982 
2983   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2984   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2985   if (getInverseMinMaxFlavor(SPF) != SPF2)
2986     return false;
2987 
2988   if (!match(RHS2, m_APInt(CHigh)))
2989     return false;
2990 
2991   if (SPF == SPF_SMIN)
2992     std::swap(CLow, CHigh);
2993 
2994   In = LHS2;
2995   return CLow->sle(*CHigh);
2996 }
2997 
2998 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II,
2999                                          const APInt *&CLow,
3000                                          const APInt *&CHigh) {
3001   assert((II->getIntrinsicID() == Intrinsic::smin ||
3002           II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax");
3003 
3004   Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID());
3005   auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
3006   if (!InnerII || InnerII->getIntrinsicID() != InverseID ||
3007       !match(II->getArgOperand(1), m_APInt(CLow)) ||
3008       !match(InnerII->getArgOperand(1), m_APInt(CHigh)))
3009     return false;
3010 
3011   if (II->getIntrinsicID() == Intrinsic::smin)
3012     std::swap(CLow, CHigh);
3013   return CLow->sle(*CHigh);
3014 }
3015 
3016 /// For vector constants, loop over the elements and find the constant with the
3017 /// minimum number of sign bits. Return 0 if the value is not a vector constant
3018 /// or if any element was not analyzed; otherwise, return the count for the
3019 /// element with the minimum number of sign bits.
3020 static unsigned computeNumSignBitsVectorConstant(const Value *V,
3021                                                  const APInt &DemandedElts,
3022                                                  unsigned TyBits) {
3023   const auto *CV = dyn_cast<Constant>(V);
3024   if (!CV || !isa<FixedVectorType>(CV->getType()))
3025     return 0;
3026 
3027   unsigned MinSignBits = TyBits;
3028   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
3029   for (unsigned i = 0; i != NumElts; ++i) {
3030     if (!DemandedElts[i])
3031       continue;
3032     // If we find a non-ConstantInt, bail out.
3033     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
3034     if (!Elt)
3035       return 0;
3036 
3037     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
3038   }
3039 
3040   return MinSignBits;
3041 }
3042 
3043 static unsigned ComputeNumSignBitsImpl(const Value *V,
3044                                        const APInt &DemandedElts,
3045                                        unsigned Depth, const Query &Q);
3046 
3047 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
3048                                    unsigned Depth, const Query &Q) {
3049   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
3050   assert(Result > 0 && "At least one sign bit needs to be present!");
3051   return Result;
3052 }
3053 
3054 /// Return the number of times the sign bit of the register is replicated into
3055 /// the other bits. We know that at least 1 bit is always equal to the sign bit
3056 /// (itself), but other cases can give us information. For example, immediately
3057 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
3058 /// other, so we return 3. For vectors, return the number of sign bits for the
3059 /// vector element with the minimum number of known sign bits of the demanded
3060 /// elements in the vector specified by DemandedElts.
3061 static unsigned ComputeNumSignBitsImpl(const Value *V,
3062                                        const APInt &DemandedElts,
3063                                        unsigned Depth, const Query &Q) {
3064   Type *Ty = V->getType();
3065 
3066   // FIXME: We currently have no way to represent the DemandedElts of a scalable
3067   // vector
3068   if (isa<ScalableVectorType>(Ty))
3069     return 1;
3070 
3071 #ifndef NDEBUG
3072   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3073 
3074   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
3075     assert(
3076         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
3077         "DemandedElt width should equal the fixed vector number of elements");
3078   } else {
3079     assert(DemandedElts == APInt(1, 1) &&
3080            "DemandedElt width should be 1 for scalars");
3081   }
3082 #endif
3083 
3084   // We return the minimum number of sign bits that are guaranteed to be present
3085   // in V, so for undef we have to conservatively return 1.  We don't have the
3086   // same behavior for poison though -- that's a FIXME today.
3087 
3088   Type *ScalarTy = Ty->getScalarType();
3089   unsigned TyBits = ScalarTy->isPointerTy() ?
3090     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
3091     Q.DL.getTypeSizeInBits(ScalarTy);
3092 
3093   unsigned Tmp, Tmp2;
3094   unsigned FirstAnswer = 1;
3095 
3096   // Note that ConstantInt is handled by the general computeKnownBits case
3097   // below.
3098 
3099   if (Depth == MaxAnalysisRecursionDepth)
3100     return 1;
3101 
3102   if (auto *U = dyn_cast<Operator>(V)) {
3103     switch (Operator::getOpcode(V)) {
3104     default: break;
3105     case Instruction::SExt:
3106       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
3107       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
3108 
3109     case Instruction::SDiv: {
3110       const APInt *Denominator;
3111       // sdiv X, C -> adds log(C) sign bits.
3112       if (match(U->getOperand(1), m_APInt(Denominator))) {
3113 
3114         // Ignore non-positive denominator.
3115         if (!Denominator->isStrictlyPositive())
3116           break;
3117 
3118         // Calculate the incoming numerator bits.
3119         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3120 
3121         // Add floor(log(C)) bits to the numerator bits.
3122         return std::min(TyBits, NumBits + Denominator->logBase2());
3123       }
3124       break;
3125     }
3126 
3127     case Instruction::SRem: {
3128       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3129 
3130       const APInt *Denominator;
3131       // srem X, C -> we know that the result is within [-C+1,C) when C is a
3132       // positive constant.  This let us put a lower bound on the number of sign
3133       // bits.
3134       if (match(U->getOperand(1), m_APInt(Denominator))) {
3135 
3136         // Ignore non-positive denominator.
3137         if (Denominator->isStrictlyPositive()) {
3138           // Calculate the leading sign bit constraints by examining the
3139           // denominator.  Given that the denominator is positive, there are two
3140           // cases:
3141           //
3142           //  1. The numerator is positive. The result range is [0,C) and
3143           //     [0,C) u< (1 << ceilLogBase2(C)).
3144           //
3145           //  2. The numerator is negative. Then the result range is (-C,0] and
3146           //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
3147           //
3148           // Thus a lower bound on the number of sign bits is `TyBits -
3149           // ceilLogBase2(C)`.
3150 
3151           unsigned ResBits = TyBits - Denominator->ceilLogBase2();
3152           Tmp = std::max(Tmp, ResBits);
3153         }
3154       }
3155       return Tmp;
3156     }
3157 
3158     case Instruction::AShr: {
3159       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3160       // ashr X, C   -> adds C sign bits.  Vectors too.
3161       const APInt *ShAmt;
3162       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3163         if (ShAmt->uge(TyBits))
3164           break; // Bad shift.
3165         unsigned ShAmtLimited = ShAmt->getZExtValue();
3166         Tmp += ShAmtLimited;
3167         if (Tmp > TyBits) Tmp = TyBits;
3168       }
3169       return Tmp;
3170     }
3171     case Instruction::Shl: {
3172       const APInt *ShAmt;
3173       if (match(U->getOperand(1), m_APInt(ShAmt))) {
3174         // shl destroys sign bits.
3175         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3176         if (ShAmt->uge(TyBits) ||   // Bad shift.
3177             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
3178         Tmp2 = ShAmt->getZExtValue();
3179         return Tmp - Tmp2;
3180       }
3181       break;
3182     }
3183     case Instruction::And:
3184     case Instruction::Or:
3185     case Instruction::Xor: // NOT is handled here.
3186       // Logical binary ops preserve the number of sign bits at the worst.
3187       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3188       if (Tmp != 1) {
3189         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3190         FirstAnswer = std::min(Tmp, Tmp2);
3191         // We computed what we know about the sign bits as our first
3192         // answer. Now proceed to the generic code that uses
3193         // computeKnownBits, and pick whichever answer is better.
3194       }
3195       break;
3196 
3197     case Instruction::Select: {
3198       // If we have a clamp pattern, we know that the number of sign bits will
3199       // be the minimum of the clamp min/max range.
3200       const Value *X;
3201       const APInt *CLow, *CHigh;
3202       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
3203         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3204 
3205       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3206       if (Tmp == 1) break;
3207       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
3208       return std::min(Tmp, Tmp2);
3209     }
3210 
3211     case Instruction::Add:
3212       // Add can have at most one carry bit.  Thus we know that the output
3213       // is, at worst, one more bit than the inputs.
3214       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3215       if (Tmp == 1) break;
3216 
3217       // Special case decrementing a value (ADD X, -1):
3218       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
3219         if (CRHS->isAllOnesValue()) {
3220           KnownBits Known(TyBits);
3221           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
3222 
3223           // If the input is known to be 0 or 1, the output is 0/-1, which is
3224           // all sign bits set.
3225           if ((Known.Zero | 1).isAllOnes())
3226             return TyBits;
3227 
3228           // If we are subtracting one from a positive number, there is no carry
3229           // out of the result.
3230           if (Known.isNonNegative())
3231             return Tmp;
3232         }
3233 
3234       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3235       if (Tmp2 == 1) break;
3236       return std::min(Tmp, Tmp2) - 1;
3237 
3238     case Instruction::Sub:
3239       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3240       if (Tmp2 == 1) break;
3241 
3242       // Handle NEG.
3243       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
3244         if (CLHS->isNullValue()) {
3245           KnownBits Known(TyBits);
3246           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
3247           // If the input is known to be 0 or 1, the output is 0/-1, which is
3248           // all sign bits set.
3249           if ((Known.Zero | 1).isAllOnes())
3250             return TyBits;
3251 
3252           // If the input is known to be positive (the sign bit is known clear),
3253           // the output of the NEG has the same number of sign bits as the
3254           // input.
3255           if (Known.isNonNegative())
3256             return Tmp2;
3257 
3258           // Otherwise, we treat this like a SUB.
3259         }
3260 
3261       // Sub can have at most one carry bit.  Thus we know that the output
3262       // is, at worst, one more bit than the inputs.
3263       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3264       if (Tmp == 1) break;
3265       return std::min(Tmp, Tmp2) - 1;
3266 
3267     case Instruction::Mul: {
3268       // The output of the Mul can be at most twice the valid bits in the
3269       // inputs.
3270       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3271       if (SignBitsOp0 == 1) break;
3272       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
3273       if (SignBitsOp1 == 1) break;
3274       unsigned OutValidBits =
3275           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
3276       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
3277     }
3278 
3279     case Instruction::PHI: {
3280       const PHINode *PN = cast<PHINode>(U);
3281       unsigned NumIncomingValues = PN->getNumIncomingValues();
3282       // Don't analyze large in-degree PHIs.
3283       if (NumIncomingValues > 4) break;
3284       // Unreachable blocks may have zero-operand PHI nodes.
3285       if (NumIncomingValues == 0) break;
3286 
3287       // Take the minimum of all incoming values.  This can't infinitely loop
3288       // because of our depth threshold.
3289       Query RecQ = Q;
3290       Tmp = TyBits;
3291       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
3292         if (Tmp == 1) return Tmp;
3293         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
3294         Tmp = std::min(
3295             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
3296       }
3297       return Tmp;
3298     }
3299 
3300     case Instruction::Trunc:
3301       // FIXME: it's tricky to do anything useful for this, but it is an
3302       // important case for targets like X86.
3303       break;
3304 
3305     case Instruction::ExtractElement:
3306       // Look through extract element. At the moment we keep this simple and
3307       // skip tracking the specific element. But at least we might find
3308       // information valid for all elements of the vector (for example if vector
3309       // is sign extended, shifted, etc).
3310       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3311 
3312     case Instruction::ShuffleVector: {
3313       // Collect the minimum number of sign bits that are shared by every vector
3314       // element referenced by the shuffle.
3315       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
3316       if (!Shuf) {
3317         // FIXME: Add support for shufflevector constant expressions.
3318         return 1;
3319       }
3320       APInt DemandedLHS, DemandedRHS;
3321       // For undef elements, we don't know anything about the common state of
3322       // the shuffle result.
3323       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
3324         return 1;
3325       Tmp = std::numeric_limits<unsigned>::max();
3326       if (!!DemandedLHS) {
3327         const Value *LHS = Shuf->getOperand(0);
3328         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
3329       }
3330       // If we don't know anything, early out and try computeKnownBits
3331       // fall-back.
3332       if (Tmp == 1)
3333         break;
3334       if (!!DemandedRHS) {
3335         const Value *RHS = Shuf->getOperand(1);
3336         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
3337         Tmp = std::min(Tmp, Tmp2);
3338       }
3339       // If we don't know anything, early out and try computeKnownBits
3340       // fall-back.
3341       if (Tmp == 1)
3342         break;
3343       assert(Tmp <= TyBits && "Failed to determine minimum sign bits");
3344       return Tmp;
3345     }
3346     case Instruction::Call: {
3347       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
3348         switch (II->getIntrinsicID()) {
3349         default: break;
3350         case Intrinsic::abs:
3351           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
3352           if (Tmp == 1) break;
3353 
3354           // Absolute value reduces number of sign bits by at most 1.
3355           return Tmp - 1;
3356         case Intrinsic::smin:
3357         case Intrinsic::smax: {
3358           const APInt *CLow, *CHigh;
3359           if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh))
3360             return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
3361         }
3362         }
3363       }
3364     }
3365     }
3366   }
3367 
3368   // Finally, if we can prove that the top bits of the result are 0's or 1's,
3369   // use this information.
3370 
3371   // If we can examine all elements of a vector constant successfully, we're
3372   // done (we can't do any better than that). If not, keep trying.
3373   if (unsigned VecSignBits =
3374           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
3375     return VecSignBits;
3376 
3377   KnownBits Known(TyBits);
3378   computeKnownBits(V, DemandedElts, Known, Depth, Q);
3379 
3380   // If we know that the sign bit is either zero or one, determine the number of
3381   // identical bits in the top of the input value.
3382   return std::max(FirstAnswer, Known.countMinSignBits());
3383 }
3384 
3385 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3386                                             const TargetLibraryInfo *TLI) {
3387   const Function *F = CB.getCalledFunction();
3388   if (!F)
3389     return Intrinsic::not_intrinsic;
3390 
3391   if (F->isIntrinsic())
3392     return F->getIntrinsicID();
3393 
3394   // We are going to infer semantics of a library function based on mapping it
3395   // to an LLVM intrinsic. Check that the library function is available from
3396   // this callbase and in this environment.
3397   LibFunc Func;
3398   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3399       !CB.onlyReadsMemory())
3400     return Intrinsic::not_intrinsic;
3401 
3402   switch (Func) {
3403   default:
3404     break;
3405   case LibFunc_sin:
3406   case LibFunc_sinf:
3407   case LibFunc_sinl:
3408     return Intrinsic::sin;
3409   case LibFunc_cos:
3410   case LibFunc_cosf:
3411   case LibFunc_cosl:
3412     return Intrinsic::cos;
3413   case LibFunc_exp:
3414   case LibFunc_expf:
3415   case LibFunc_expl:
3416     return Intrinsic::exp;
3417   case LibFunc_exp2:
3418   case LibFunc_exp2f:
3419   case LibFunc_exp2l:
3420     return Intrinsic::exp2;
3421   case LibFunc_log:
3422   case LibFunc_logf:
3423   case LibFunc_logl:
3424     return Intrinsic::log;
3425   case LibFunc_log10:
3426   case LibFunc_log10f:
3427   case LibFunc_log10l:
3428     return Intrinsic::log10;
3429   case LibFunc_log2:
3430   case LibFunc_log2f:
3431   case LibFunc_log2l:
3432     return Intrinsic::log2;
3433   case LibFunc_fabs:
3434   case LibFunc_fabsf:
3435   case LibFunc_fabsl:
3436     return Intrinsic::fabs;
3437   case LibFunc_fmin:
3438   case LibFunc_fminf:
3439   case LibFunc_fminl:
3440     return Intrinsic::minnum;
3441   case LibFunc_fmax:
3442   case LibFunc_fmaxf:
3443   case LibFunc_fmaxl:
3444     return Intrinsic::maxnum;
3445   case LibFunc_copysign:
3446   case LibFunc_copysignf:
3447   case LibFunc_copysignl:
3448     return Intrinsic::copysign;
3449   case LibFunc_floor:
3450   case LibFunc_floorf:
3451   case LibFunc_floorl:
3452     return Intrinsic::floor;
3453   case LibFunc_ceil:
3454   case LibFunc_ceilf:
3455   case LibFunc_ceill:
3456     return Intrinsic::ceil;
3457   case LibFunc_trunc:
3458   case LibFunc_truncf:
3459   case LibFunc_truncl:
3460     return Intrinsic::trunc;
3461   case LibFunc_rint:
3462   case LibFunc_rintf:
3463   case LibFunc_rintl:
3464     return Intrinsic::rint;
3465   case LibFunc_nearbyint:
3466   case LibFunc_nearbyintf:
3467   case LibFunc_nearbyintl:
3468     return Intrinsic::nearbyint;
3469   case LibFunc_round:
3470   case LibFunc_roundf:
3471   case LibFunc_roundl:
3472     return Intrinsic::round;
3473   case LibFunc_roundeven:
3474   case LibFunc_roundevenf:
3475   case LibFunc_roundevenl:
3476     return Intrinsic::roundeven;
3477   case LibFunc_pow:
3478   case LibFunc_powf:
3479   case LibFunc_powl:
3480     return Intrinsic::pow;
3481   case LibFunc_sqrt:
3482   case LibFunc_sqrtf:
3483   case LibFunc_sqrtl:
3484     return Intrinsic::sqrt;
3485   }
3486 
3487   return Intrinsic::not_intrinsic;
3488 }
3489 
3490 /// Return true if we can prove that the specified FP value is never equal to
3491 /// -0.0.
3492 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3493 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3494 ///       the same as +0.0 in floating-point ops.
3495 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3496                                 unsigned Depth) {
3497   if (auto *CFP = dyn_cast<ConstantFP>(V))
3498     return !CFP->getValueAPF().isNegZero();
3499 
3500   if (Depth == MaxAnalysisRecursionDepth)
3501     return false;
3502 
3503   auto *Op = dyn_cast<Operator>(V);
3504   if (!Op)
3505     return false;
3506 
3507   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3508   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3509     return true;
3510 
3511   // sitofp and uitofp turn into +0.0 for zero.
3512   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3513     return true;
3514 
3515   if (auto *Call = dyn_cast<CallInst>(Op)) {
3516     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3517     switch (IID) {
3518     default:
3519       break;
3520     // sqrt(-0.0) = -0.0, no other negative results are possible.
3521     case Intrinsic::sqrt:
3522     case Intrinsic::canonicalize:
3523       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3524     case Intrinsic::experimental_constrained_sqrt: {
3525       // NOTE: This rounding mode restriction may be too strict.
3526       const auto *CI = cast<ConstrainedFPIntrinsic>(Call);
3527       if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven)
3528         return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3529       else
3530         return false;
3531     }
3532     // fabs(x) != -0.0
3533     case Intrinsic::fabs:
3534       return true;
3535     // sitofp and uitofp turn into +0.0 for zero.
3536     case Intrinsic::experimental_constrained_sitofp:
3537     case Intrinsic::experimental_constrained_uitofp:
3538       return true;
3539     }
3540   }
3541 
3542   return false;
3543 }
3544 
3545 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3546 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3547 /// bit despite comparing equal.
3548 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3549                                             const TargetLibraryInfo *TLI,
3550                                             bool SignBitOnly,
3551                                             unsigned Depth) {
3552   // TODO: This function does not do the right thing when SignBitOnly is true
3553   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3554   // which flips the sign bits of NaNs.  See
3555   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3556 
3557   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3558     return !CFP->getValueAPF().isNegative() ||
3559            (!SignBitOnly && CFP->getValueAPF().isZero());
3560   }
3561 
3562   // Handle vector of constants.
3563   if (auto *CV = dyn_cast<Constant>(V)) {
3564     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3565       unsigned NumElts = CVFVTy->getNumElements();
3566       for (unsigned i = 0; i != NumElts; ++i) {
3567         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3568         if (!CFP)
3569           return false;
3570         if (CFP->getValueAPF().isNegative() &&
3571             (SignBitOnly || !CFP->getValueAPF().isZero()))
3572           return false;
3573       }
3574 
3575       // All non-negative ConstantFPs.
3576       return true;
3577     }
3578   }
3579 
3580   if (Depth == MaxAnalysisRecursionDepth)
3581     return false;
3582 
3583   const Operator *I = dyn_cast<Operator>(V);
3584   if (!I)
3585     return false;
3586 
3587   switch (I->getOpcode()) {
3588   default:
3589     break;
3590   // Unsigned integers are always nonnegative.
3591   case Instruction::UIToFP:
3592     return true;
3593   case Instruction::FMul:
3594   case Instruction::FDiv:
3595     // X * X is always non-negative or a NaN.
3596     // X / X is always exactly 1.0 or a NaN.
3597     if (I->getOperand(0) == I->getOperand(1) &&
3598         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3599       return true;
3600 
3601     LLVM_FALLTHROUGH;
3602   case Instruction::FAdd:
3603   case Instruction::FRem:
3604     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3605                                            Depth + 1) &&
3606            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3607                                            Depth + 1);
3608   case Instruction::Select:
3609     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3610                                            Depth + 1) &&
3611            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3612                                            Depth + 1);
3613   case Instruction::FPExt:
3614   case Instruction::FPTrunc:
3615     // Widening/narrowing never change sign.
3616     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3617                                            Depth + 1);
3618   case Instruction::ExtractElement:
3619     // Look through extract element. At the moment we keep this simple and skip
3620     // tracking the specific element. But at least we might find information
3621     // valid for all elements of the vector.
3622     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3623                                            Depth + 1);
3624   case Instruction::Call:
3625     const auto *CI = cast<CallInst>(I);
3626     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3627     switch (IID) {
3628     default:
3629       break;
3630     case Intrinsic::maxnum: {
3631       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3632       auto isPositiveNum = [&](Value *V) {
3633         if (SignBitOnly) {
3634           // With SignBitOnly, this is tricky because the result of
3635           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3636           // a constant strictly greater than 0.0.
3637           const APFloat *C;
3638           return match(V, m_APFloat(C)) &&
3639                  *C > APFloat::getZero(C->getSemantics());
3640         }
3641 
3642         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3643         // maxnum can't be ordered-less-than-zero.
3644         return isKnownNeverNaN(V, TLI) &&
3645                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3646       };
3647 
3648       // TODO: This could be improved. We could also check that neither operand
3649       //       has its sign bit set (and at least 1 is not-NAN?).
3650       return isPositiveNum(V0) || isPositiveNum(V1);
3651     }
3652 
3653     case Intrinsic::maximum:
3654       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3655                                              Depth + 1) ||
3656              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3657                                              Depth + 1);
3658     case Intrinsic::minnum:
3659     case Intrinsic::minimum:
3660       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3661                                              Depth + 1) &&
3662              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3663                                              Depth + 1);
3664     case Intrinsic::exp:
3665     case Intrinsic::exp2:
3666     case Intrinsic::fabs:
3667       return true;
3668 
3669     case Intrinsic::sqrt:
3670       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3671       if (!SignBitOnly)
3672         return true;
3673       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3674                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3675 
3676     case Intrinsic::powi:
3677       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3678         // powi(x,n) is non-negative if n is even.
3679         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3680           return true;
3681       }
3682       // TODO: This is not correct.  Given that exp is an integer, here are the
3683       // ways that pow can return a negative value:
3684       //
3685       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3686       //   pow(-0, exp)   --> -inf if exp is negative odd.
3687       //   pow(-0, exp)   --> -0 if exp is positive odd.
3688       //   pow(-inf, exp) --> -0 if exp is negative odd.
3689       //   pow(-inf, exp) --> -inf if exp is positive odd.
3690       //
3691       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3692       // but we must return false if x == -0.  Unfortunately we do not currently
3693       // have a way of expressing this constraint.  See details in
3694       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3695       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3696                                              Depth + 1);
3697 
3698     case Intrinsic::fma:
3699     case Intrinsic::fmuladd:
3700       // x*x+y is non-negative if y is non-negative.
3701       return I->getOperand(0) == I->getOperand(1) &&
3702              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3703              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3704                                              Depth + 1);
3705     }
3706     break;
3707   }
3708   return false;
3709 }
3710 
3711 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3712                                        const TargetLibraryInfo *TLI) {
3713   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3714 }
3715 
3716 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3717   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3718 }
3719 
3720 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3721                                 unsigned Depth) {
3722   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3723 
3724   // If we're told that infinities won't happen, assume they won't.
3725   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3726     if (FPMathOp->hasNoInfs())
3727       return true;
3728 
3729   // Handle scalar constants.
3730   if (auto *CFP = dyn_cast<ConstantFP>(V))
3731     return !CFP->isInfinity();
3732 
3733   if (Depth == MaxAnalysisRecursionDepth)
3734     return false;
3735 
3736   if (auto *Inst = dyn_cast<Instruction>(V)) {
3737     switch (Inst->getOpcode()) {
3738     case Instruction::Select: {
3739       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3740              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3741     }
3742     case Instruction::SIToFP:
3743     case Instruction::UIToFP: {
3744       // Get width of largest magnitude integer (remove a bit if signed).
3745       // This still works for a signed minimum value because the largest FP
3746       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3747       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3748       if (Inst->getOpcode() == Instruction::SIToFP)
3749         --IntSize;
3750 
3751       // If the exponent of the largest finite FP value can hold the largest
3752       // integer, the result of the cast must be finite.
3753       Type *FPTy = Inst->getType()->getScalarType();
3754       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3755     }
3756     default:
3757       break;
3758     }
3759   }
3760 
3761   // try to handle fixed width vector constants
3762   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3763   if (VFVTy && isa<Constant>(V)) {
3764     // For vectors, verify that each element is not infinity.
3765     unsigned NumElts = VFVTy->getNumElements();
3766     for (unsigned i = 0; i != NumElts; ++i) {
3767       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3768       if (!Elt)
3769         return false;
3770       if (isa<UndefValue>(Elt))
3771         continue;
3772       auto *CElt = dyn_cast<ConstantFP>(Elt);
3773       if (!CElt || CElt->isInfinity())
3774         return false;
3775     }
3776     // All elements were confirmed non-infinity or undefined.
3777     return true;
3778   }
3779 
3780   // was not able to prove that V never contains infinity
3781   return false;
3782 }
3783 
3784 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3785                            unsigned Depth) {
3786   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3787 
3788   // If we're told that NaNs won't happen, assume they won't.
3789   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3790     if (FPMathOp->hasNoNaNs())
3791       return true;
3792 
3793   // Handle scalar constants.
3794   if (auto *CFP = dyn_cast<ConstantFP>(V))
3795     return !CFP->isNaN();
3796 
3797   if (Depth == MaxAnalysisRecursionDepth)
3798     return false;
3799 
3800   if (auto *Inst = dyn_cast<Instruction>(V)) {
3801     switch (Inst->getOpcode()) {
3802     case Instruction::FAdd:
3803     case Instruction::FSub:
3804       // Adding positive and negative infinity produces NaN.
3805       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3806              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3807              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3808               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3809 
3810     case Instruction::FMul:
3811       // Zero multiplied with infinity produces NaN.
3812       // FIXME: If neither side can be zero fmul never produces NaN.
3813       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3814              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3815              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3816              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3817 
3818     case Instruction::FDiv:
3819     case Instruction::FRem:
3820       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3821       return false;
3822 
3823     case Instruction::Select: {
3824       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3825              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3826     }
3827     case Instruction::SIToFP:
3828     case Instruction::UIToFP:
3829       return true;
3830     case Instruction::FPTrunc:
3831     case Instruction::FPExt:
3832       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3833     default:
3834       break;
3835     }
3836   }
3837 
3838   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3839     switch (II->getIntrinsicID()) {
3840     case Intrinsic::canonicalize:
3841     case Intrinsic::fabs:
3842     case Intrinsic::copysign:
3843     case Intrinsic::exp:
3844     case Intrinsic::exp2:
3845     case Intrinsic::floor:
3846     case Intrinsic::ceil:
3847     case Intrinsic::trunc:
3848     case Intrinsic::rint:
3849     case Intrinsic::nearbyint:
3850     case Intrinsic::round:
3851     case Intrinsic::roundeven:
3852       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3853     case Intrinsic::sqrt:
3854       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3855              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3856     case Intrinsic::minnum:
3857     case Intrinsic::maxnum:
3858       // If either operand is not NaN, the result is not NaN.
3859       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3860              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3861     default:
3862       return false;
3863     }
3864   }
3865 
3866   // Try to handle fixed width vector constants
3867   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3868   if (VFVTy && isa<Constant>(V)) {
3869     // For vectors, verify that each element is not NaN.
3870     unsigned NumElts = VFVTy->getNumElements();
3871     for (unsigned i = 0; i != NumElts; ++i) {
3872       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3873       if (!Elt)
3874         return false;
3875       if (isa<UndefValue>(Elt))
3876         continue;
3877       auto *CElt = dyn_cast<ConstantFP>(Elt);
3878       if (!CElt || CElt->isNaN())
3879         return false;
3880     }
3881     // All elements were confirmed not-NaN or undefined.
3882     return true;
3883   }
3884 
3885   // Was not able to prove that V never contains NaN
3886   return false;
3887 }
3888 
3889 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3890 
3891   // All byte-wide stores are splatable, even of arbitrary variables.
3892   if (V->getType()->isIntegerTy(8))
3893     return V;
3894 
3895   LLVMContext &Ctx = V->getContext();
3896 
3897   // Undef don't care.
3898   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3899   if (isa<UndefValue>(V))
3900     return UndefInt8;
3901 
3902   // Return Undef for zero-sized type.
3903   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3904     return UndefInt8;
3905 
3906   Constant *C = dyn_cast<Constant>(V);
3907   if (!C) {
3908     // Conceptually, we could handle things like:
3909     //   %a = zext i8 %X to i16
3910     //   %b = shl i16 %a, 8
3911     //   %c = or i16 %a, %b
3912     // but until there is an example that actually needs this, it doesn't seem
3913     // worth worrying about.
3914     return nullptr;
3915   }
3916 
3917   // Handle 'null' ConstantArrayZero etc.
3918   if (C->isNullValue())
3919     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3920 
3921   // Constant floating-point values can be handled as integer values if the
3922   // corresponding integer value is "byteable".  An important case is 0.0.
3923   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3924     Type *Ty = nullptr;
3925     if (CFP->getType()->isHalfTy())
3926       Ty = Type::getInt16Ty(Ctx);
3927     else if (CFP->getType()->isFloatTy())
3928       Ty = Type::getInt32Ty(Ctx);
3929     else if (CFP->getType()->isDoubleTy())
3930       Ty = Type::getInt64Ty(Ctx);
3931     // Don't handle long double formats, which have strange constraints.
3932     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3933               : nullptr;
3934   }
3935 
3936   // We can handle constant integers that are multiple of 8 bits.
3937   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3938     if (CI->getBitWidth() % 8 == 0) {
3939       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3940       if (!CI->getValue().isSplat(8))
3941         return nullptr;
3942       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3943     }
3944   }
3945 
3946   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3947     if (CE->getOpcode() == Instruction::IntToPtr) {
3948       if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) {
3949         unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace());
3950         return isBytewiseValue(
3951             ConstantExpr::getIntegerCast(CE->getOperand(0),
3952                                          Type::getIntNTy(Ctx, BitWidth), false),
3953             DL);
3954       }
3955     }
3956   }
3957 
3958   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3959     if (LHS == RHS)
3960       return LHS;
3961     if (!LHS || !RHS)
3962       return nullptr;
3963     if (LHS == UndefInt8)
3964       return RHS;
3965     if (RHS == UndefInt8)
3966       return LHS;
3967     return nullptr;
3968   };
3969 
3970   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3971     Value *Val = UndefInt8;
3972     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3973       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3974         return nullptr;
3975     return Val;
3976   }
3977 
3978   if (isa<ConstantAggregate>(C)) {
3979     Value *Val = UndefInt8;
3980     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3981       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3982         return nullptr;
3983     return Val;
3984   }
3985 
3986   // Don't try to handle the handful of other constants.
3987   return nullptr;
3988 }
3989 
3990 // This is the recursive version of BuildSubAggregate. It takes a few different
3991 // arguments. Idxs is the index within the nested struct From that we are
3992 // looking at now (which is of type IndexedType). IdxSkip is the number of
3993 // indices from Idxs that should be left out when inserting into the resulting
3994 // struct. To is the result struct built so far, new insertvalue instructions
3995 // build on that.
3996 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3997                                 SmallVectorImpl<unsigned> &Idxs,
3998                                 unsigned IdxSkip,
3999                                 Instruction *InsertBefore) {
4000   StructType *STy = dyn_cast<StructType>(IndexedType);
4001   if (STy) {
4002     // Save the original To argument so we can modify it
4003     Value *OrigTo = To;
4004     // General case, the type indexed by Idxs is a struct
4005     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4006       // Process each struct element recursively
4007       Idxs.push_back(i);
4008       Value *PrevTo = To;
4009       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
4010                              InsertBefore);
4011       Idxs.pop_back();
4012       if (!To) {
4013         // Couldn't find any inserted value for this index? Cleanup
4014         while (PrevTo != OrigTo) {
4015           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
4016           PrevTo = Del->getAggregateOperand();
4017           Del->eraseFromParent();
4018         }
4019         // Stop processing elements
4020         break;
4021       }
4022     }
4023     // If we successfully found a value for each of our subaggregates
4024     if (To)
4025       return To;
4026   }
4027   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
4028   // the struct's elements had a value that was inserted directly. In the latter
4029   // case, perhaps we can't determine each of the subelements individually, but
4030   // we might be able to find the complete struct somewhere.
4031 
4032   // Find the value that is at that particular spot
4033   Value *V = FindInsertedValue(From, Idxs);
4034 
4035   if (!V)
4036     return nullptr;
4037 
4038   // Insert the value in the new (sub) aggregate
4039   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
4040                                  "tmp", InsertBefore);
4041 }
4042 
4043 // This helper takes a nested struct and extracts a part of it (which is again a
4044 // struct) into a new value. For example, given the struct:
4045 // { a, { b, { c, d }, e } }
4046 // and the indices "1, 1" this returns
4047 // { c, d }.
4048 //
4049 // It does this by inserting an insertvalue for each element in the resulting
4050 // struct, as opposed to just inserting a single struct. This will only work if
4051 // each of the elements of the substruct are known (ie, inserted into From by an
4052 // insertvalue instruction somewhere).
4053 //
4054 // All inserted insertvalue instructions are inserted before InsertBefore
4055 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
4056                                 Instruction *InsertBefore) {
4057   assert(InsertBefore && "Must have someplace to insert!");
4058   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
4059                                                              idx_range);
4060   Value *To = UndefValue::get(IndexedType);
4061   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
4062   unsigned IdxSkip = Idxs.size();
4063 
4064   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
4065 }
4066 
4067 /// Given an aggregate and a sequence of indices, see if the scalar value
4068 /// indexed is already around as a register, for example if it was inserted
4069 /// directly into the aggregate.
4070 ///
4071 /// If InsertBefore is not null, this function will duplicate (modified)
4072 /// insertvalues when a part of a nested struct is extracted.
4073 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
4074                                Instruction *InsertBefore) {
4075   // Nothing to index? Just return V then (this is useful at the end of our
4076   // recursion).
4077   if (idx_range.empty())
4078     return V;
4079   // We have indices, so V should have an indexable type.
4080   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
4081          "Not looking at a struct or array?");
4082   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
4083          "Invalid indices for type?");
4084 
4085   if (Constant *C = dyn_cast<Constant>(V)) {
4086     C = C->getAggregateElement(idx_range[0]);
4087     if (!C) return nullptr;
4088     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
4089   }
4090 
4091   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
4092     // Loop the indices for the insertvalue instruction in parallel with the
4093     // requested indices
4094     const unsigned *req_idx = idx_range.begin();
4095     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
4096          i != e; ++i, ++req_idx) {
4097       if (req_idx == idx_range.end()) {
4098         // We can't handle this without inserting insertvalues
4099         if (!InsertBefore)
4100           return nullptr;
4101 
4102         // The requested index identifies a part of a nested aggregate. Handle
4103         // this specially. For example,
4104         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
4105         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
4106         // %C = extractvalue {i32, { i32, i32 } } %B, 1
4107         // This can be changed into
4108         // %A = insertvalue {i32, i32 } undef, i32 10, 0
4109         // %C = insertvalue {i32, i32 } %A, i32 11, 1
4110         // which allows the unused 0,0 element from the nested struct to be
4111         // removed.
4112         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
4113                                  InsertBefore);
4114       }
4115 
4116       // This insert value inserts something else than what we are looking for.
4117       // See if the (aggregate) value inserted into has the value we are
4118       // looking for, then.
4119       if (*req_idx != *i)
4120         return FindInsertedValue(I->getAggregateOperand(), idx_range,
4121                                  InsertBefore);
4122     }
4123     // If we end up here, the indices of the insertvalue match with those
4124     // requested (though possibly only partially). Now we recursively look at
4125     // the inserted value, passing any remaining indices.
4126     return FindInsertedValue(I->getInsertedValueOperand(),
4127                              makeArrayRef(req_idx, idx_range.end()),
4128                              InsertBefore);
4129   }
4130 
4131   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
4132     // If we're extracting a value from an aggregate that was extracted from
4133     // something else, we can extract from that something else directly instead.
4134     // However, we will need to chain I's indices with the requested indices.
4135 
4136     // Calculate the number of indices required
4137     unsigned size = I->getNumIndices() + idx_range.size();
4138     // Allocate some space to put the new indices in
4139     SmallVector<unsigned, 5> Idxs;
4140     Idxs.reserve(size);
4141     // Add indices from the extract value instruction
4142     Idxs.append(I->idx_begin(), I->idx_end());
4143 
4144     // Add requested indices
4145     Idxs.append(idx_range.begin(), idx_range.end());
4146 
4147     assert(Idxs.size() == size
4148            && "Number of indices added not correct?");
4149 
4150     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
4151   }
4152   // Otherwise, we don't know (such as, extracting from a function return value
4153   // or load instruction)
4154   return nullptr;
4155 }
4156 
4157 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
4158                                        unsigned CharSize) {
4159   // Make sure the GEP has exactly three arguments.
4160   if (GEP->getNumOperands() != 3)
4161     return false;
4162 
4163   // Make sure the index-ee is a pointer to array of \p CharSize integers.
4164   // CharSize.
4165   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
4166   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
4167     return false;
4168 
4169   // Check to make sure that the first operand of the GEP is an integer and
4170   // has value 0 so that we are sure we're indexing into the initializer.
4171   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4172   if (!FirstIdx || !FirstIdx->isZero())
4173     return false;
4174 
4175   return true;
4176 }
4177 
4178 // If V refers to an initialized global constant, set Slice either to
4179 // its initializer if the size of its elements equals ElementSize, or,
4180 // for ElementSize == 8, to its representation as an array of unsiged
4181 // char. Return true on success.
4182 bool llvm::getConstantDataArrayInfo(const Value *V,
4183                                     ConstantDataArraySlice &Slice,
4184                                     unsigned ElementSize, uint64_t Offset) {
4185   assert(V);
4186 
4187   // Look through bitcast instructions and geps.
4188   V = V->stripPointerCasts();
4189 
4190   // If the value is a GEP instruction or constant expression, treat it as an
4191   // offset.
4192   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4193     // Fail if the first GEP operand is not a constant zero and we're
4194     // not indexing into the initializer.
4195     const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
4196     if (!FirstIdx || !FirstIdx->isZero())
4197       return false;
4198 
4199     Value *Op0 = GEP->getOperand(0);
4200     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Op0);
4201     if (!GV)
4202       return false;
4203 
4204     // Fail if the offset into the initializer is not constant.
4205     const DataLayout &DL = GV->getParent()->getDataLayout();
4206     APInt Off(DL.getIndexSizeInBits(GEP->getPointerAddressSpace()), 0);
4207     if (!GEP->accumulateConstantOffset(DL, Off))
4208       return false;
4209 
4210     // Fail if the constant offset is excessive.
4211     uint64_t StartIdx = Off.getLimitedValue();
4212     if (StartIdx == UINT64_MAX)
4213       return false;
4214 
4215     return getConstantDataArrayInfo(Op0, Slice, ElementSize, StartIdx + Offset);
4216   }
4217 
4218   // The GEP instruction, constant or instruction, must reference a global
4219   // variable that is a constant and is initialized. The referenced constant
4220   // initializer is the array that we'll use for optimization.
4221   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
4222   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
4223     return false;
4224 
4225   const DataLayout &DL = GV->getParent()->getDataLayout();
4226   ConstantDataArray *Array = nullptr;
4227   ArrayType *ArrayTy = nullptr;
4228 
4229   if (GV->getInitializer()->isNullValue()) {
4230     Type *GVTy = GV->getValueType();
4231     uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
4232     uint64_t Length = SizeInBytes / (ElementSize / 8);
4233     if (Length <= Offset)
4234       // Bail on undersized constants to let sanitizers detect library
4235       // calls with them as arguments.
4236       return false;
4237 
4238     Slice.Array = nullptr;
4239     Slice.Offset = 0;
4240     Slice.Length = Length - Offset;
4241     return true;
4242   }
4243 
4244   auto *Init = const_cast<Constant *>(GV->getInitializer());
4245   if (auto *ArrayInit = dyn_cast<ConstantDataArray>(Init)) {
4246     Type *InitElTy = ArrayInit->getElementType();
4247     if (InitElTy->isIntegerTy(ElementSize)) {
4248       // If Init is an initializer for an array of the expected type
4249       // and size, use it as is.
4250       Array = ArrayInit;
4251       ArrayTy = ArrayInit->getType();
4252     }
4253   }
4254 
4255   if (!Array) {
4256     if (ElementSize != 8)
4257       // TODO: Handle conversions to larger integral types.
4258       return false;
4259 
4260     // Otherwise extract the portion of the initializer starting
4261     // at Offset as an array of bytes, and reset Offset.
4262     Init = ReadByteArrayFromGlobal(GV, Offset);
4263     if (!Init)
4264       return false;
4265 
4266     Offset = 0;
4267     Array = dyn_cast<ConstantDataArray>(Init);
4268     ArrayTy = dyn_cast<ArrayType>(Init->getType());
4269   }
4270 
4271   uint64_t NumElts = ArrayTy->getArrayNumElements();
4272   if (Offset > NumElts)
4273     return false;
4274 
4275   Slice.Array = Array;
4276   Slice.Offset = Offset;
4277   Slice.Length = NumElts - Offset;
4278   return true;
4279 }
4280 
4281 /// This function computes the length of a null-terminated C string pointed to
4282 /// by V. If successful, it returns true and returns the string in Str.
4283 /// If unsuccessful, it returns false.
4284 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
4285                                  uint64_t Offset, bool TrimAtNul) {
4286   ConstantDataArraySlice Slice;
4287   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
4288     return false;
4289 
4290   if (Slice.Array == nullptr) {
4291     if (TrimAtNul) {
4292       Str = StringRef();
4293       return true;
4294     }
4295     if (Slice.Length == 1) {
4296       Str = StringRef("", 1);
4297       return true;
4298     }
4299     // We cannot instantiate a StringRef as we do not have an appropriate string
4300     // of 0s at hand.
4301     return false;
4302   }
4303 
4304   // Start out with the entire array in the StringRef.
4305   Str = Slice.Array->getAsString();
4306   // Skip over 'offset' bytes.
4307   Str = Str.substr(Slice.Offset);
4308 
4309   if (TrimAtNul) {
4310     // Trim off the \0 and anything after it.  If the array is not nul
4311     // terminated, we just return the whole end of string.  The client may know
4312     // some other way that the string is length-bound.
4313     Str = Str.substr(0, Str.find('\0'));
4314   }
4315   return true;
4316 }
4317 
4318 // These next two are very similar to the above, but also look through PHI
4319 // nodes.
4320 // TODO: See if we can integrate these two together.
4321 
4322 /// If we can compute the length of the string pointed to by
4323 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4324 static uint64_t GetStringLengthH(const Value *V,
4325                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4326                                  unsigned CharSize) {
4327   // Look through noop bitcast instructions.
4328   V = V->stripPointerCasts();
4329 
4330   // If this is a PHI node, there are two cases: either we have already seen it
4331   // or we haven't.
4332   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4333     if (!PHIs.insert(PN).second)
4334       return ~0ULL;  // already in the set.
4335 
4336     // If it was new, see if all the input strings are the same length.
4337     uint64_t LenSoFar = ~0ULL;
4338     for (Value *IncValue : PN->incoming_values()) {
4339       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4340       if (Len == 0) return 0; // Unknown length -> unknown.
4341 
4342       if (Len == ~0ULL) continue;
4343 
4344       if (Len != LenSoFar && LenSoFar != ~0ULL)
4345         return 0;    // Disagree -> unknown.
4346       LenSoFar = Len;
4347     }
4348 
4349     // Success, all agree.
4350     return LenSoFar;
4351   }
4352 
4353   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4354   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4355     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4356     if (Len1 == 0) return 0;
4357     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4358     if (Len2 == 0) return 0;
4359     if (Len1 == ~0ULL) return Len2;
4360     if (Len2 == ~0ULL) return Len1;
4361     if (Len1 != Len2) return 0;
4362     return Len1;
4363   }
4364 
4365   // Otherwise, see if we can read the string.
4366   ConstantDataArraySlice Slice;
4367   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4368     return 0;
4369 
4370   if (Slice.Array == nullptr)
4371     return 1;
4372 
4373   // Search for nul characters
4374   unsigned NullIndex = 0;
4375   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4376     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4377       break;
4378   }
4379 
4380   return NullIndex + 1;
4381 }
4382 
4383 /// If we can compute the length of the string pointed to by
4384 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4385 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4386   if (!V->getType()->isPointerTy())
4387     return 0;
4388 
4389   SmallPtrSet<const PHINode*, 32> PHIs;
4390   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4391   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4392   // an empty string as a length.
4393   return Len == ~0ULL ? 1 : Len;
4394 }
4395 
4396 const Value *
4397 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4398                                            bool MustPreserveNullness) {
4399   assert(Call &&
4400          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4401   if (const Value *RV = Call->getReturnedArgOperand())
4402     return RV;
4403   // This can be used only as a aliasing property.
4404   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4405           Call, MustPreserveNullness))
4406     return Call->getArgOperand(0);
4407   return nullptr;
4408 }
4409 
4410 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4411     const CallBase *Call, bool MustPreserveNullness) {
4412   switch (Call->getIntrinsicID()) {
4413   case Intrinsic::launder_invariant_group:
4414   case Intrinsic::strip_invariant_group:
4415   case Intrinsic::aarch64_irg:
4416   case Intrinsic::aarch64_tagp:
4417     return true;
4418   case Intrinsic::ptrmask:
4419     return !MustPreserveNullness;
4420   default:
4421     return false;
4422   }
4423 }
4424 
4425 /// \p PN defines a loop-variant pointer to an object.  Check if the
4426 /// previous iteration of the loop was referring to the same object as \p PN.
4427 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4428                                          const LoopInfo *LI) {
4429   // Find the loop-defined value.
4430   Loop *L = LI->getLoopFor(PN->getParent());
4431   if (PN->getNumIncomingValues() != 2)
4432     return true;
4433 
4434   // Find the value from previous iteration.
4435   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4436   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4437     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4438   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4439     return true;
4440 
4441   // If a new pointer is loaded in the loop, the pointer references a different
4442   // object in every iteration.  E.g.:
4443   //    for (i)
4444   //       int *p = a[i];
4445   //       ...
4446   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4447     if (!L->isLoopInvariant(Load->getPointerOperand()))
4448       return false;
4449   return true;
4450 }
4451 
4452 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) {
4453   if (!V->getType()->isPointerTy())
4454     return V;
4455   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4456     if (auto *GEP = dyn_cast<GEPOperator>(V)) {
4457       V = GEP->getPointerOperand();
4458     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4459                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4460       V = cast<Operator>(V)->getOperand(0);
4461       if (!V->getType()->isPointerTy())
4462         return V;
4463     } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
4464       if (GA->isInterposable())
4465         return V;
4466       V = GA->getAliasee();
4467     } else {
4468       if (auto *PHI = dyn_cast<PHINode>(V)) {
4469         // Look through single-arg phi nodes created by LCSSA.
4470         if (PHI->getNumIncomingValues() == 1) {
4471           V = PHI->getIncomingValue(0);
4472           continue;
4473         }
4474       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4475         // CaptureTracking can know about special capturing properties of some
4476         // intrinsics like launder.invariant.group, that can't be expressed with
4477         // the attributes, but have properties like returning aliasing pointer.
4478         // Because some analysis may assume that nocaptured pointer is not
4479         // returned from some special intrinsic (because function would have to
4480         // be marked with returns attribute), it is crucial to use this function
4481         // because it should be in sync with CaptureTracking. Not using it may
4482         // cause weird miscompilations where 2 aliasing pointers are assumed to
4483         // noalias.
4484         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4485           V = RP;
4486           continue;
4487         }
4488       }
4489 
4490       return V;
4491     }
4492     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4493   }
4494   return V;
4495 }
4496 
4497 void llvm::getUnderlyingObjects(const Value *V,
4498                                 SmallVectorImpl<const Value *> &Objects,
4499                                 LoopInfo *LI, unsigned MaxLookup) {
4500   SmallPtrSet<const Value *, 4> Visited;
4501   SmallVector<const Value *, 4> Worklist;
4502   Worklist.push_back(V);
4503   do {
4504     const Value *P = Worklist.pop_back_val();
4505     P = getUnderlyingObject(P, MaxLookup);
4506 
4507     if (!Visited.insert(P).second)
4508       continue;
4509 
4510     if (auto *SI = dyn_cast<SelectInst>(P)) {
4511       Worklist.push_back(SI->getTrueValue());
4512       Worklist.push_back(SI->getFalseValue());
4513       continue;
4514     }
4515 
4516     if (auto *PN = dyn_cast<PHINode>(P)) {
4517       // If this PHI changes the underlying object in every iteration of the
4518       // loop, don't look through it.  Consider:
4519       //   int **A;
4520       //   for (i) {
4521       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4522       //     Curr = A[i];
4523       //     *Prev, *Curr;
4524       //
4525       // Prev is tracking Curr one iteration behind so they refer to different
4526       // underlying objects.
4527       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4528           isSameUnderlyingObjectInLoop(PN, LI))
4529         append_range(Worklist, PN->incoming_values());
4530       continue;
4531     }
4532 
4533     Objects.push_back(P);
4534   } while (!Worklist.empty());
4535 }
4536 
4537 /// This is the function that does the work of looking through basic
4538 /// ptrtoint+arithmetic+inttoptr sequences.
4539 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4540   do {
4541     if (const Operator *U = dyn_cast<Operator>(V)) {
4542       // If we find a ptrtoint, we can transfer control back to the
4543       // regular getUnderlyingObjectFromInt.
4544       if (U->getOpcode() == Instruction::PtrToInt)
4545         return U->getOperand(0);
4546       // If we find an add of a constant, a multiplied value, or a phi, it's
4547       // likely that the other operand will lead us to the base
4548       // object. We don't have to worry about the case where the
4549       // object address is somehow being computed by the multiply,
4550       // because our callers only care when the result is an
4551       // identifiable object.
4552       if (U->getOpcode() != Instruction::Add ||
4553           (!isa<ConstantInt>(U->getOperand(1)) &&
4554            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4555            !isa<PHINode>(U->getOperand(1))))
4556         return V;
4557       V = U->getOperand(0);
4558     } else {
4559       return V;
4560     }
4561     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4562   } while (true);
4563 }
4564 
4565 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4566 /// ptrtoint+arithmetic+inttoptr sequences.
4567 /// It returns false if unidentified object is found in getUnderlyingObjects.
4568 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4569                                           SmallVectorImpl<Value *> &Objects) {
4570   SmallPtrSet<const Value *, 16> Visited;
4571   SmallVector<const Value *, 4> Working(1, V);
4572   do {
4573     V = Working.pop_back_val();
4574 
4575     SmallVector<const Value *, 4> Objs;
4576     getUnderlyingObjects(V, Objs);
4577 
4578     for (const Value *V : Objs) {
4579       if (!Visited.insert(V).second)
4580         continue;
4581       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4582         const Value *O =
4583           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4584         if (O->getType()->isPointerTy()) {
4585           Working.push_back(O);
4586           continue;
4587         }
4588       }
4589       // If getUnderlyingObjects fails to find an identifiable object,
4590       // getUnderlyingObjectsForCodeGen also fails for safety.
4591       if (!isIdentifiedObject(V)) {
4592         Objects.clear();
4593         return false;
4594       }
4595       Objects.push_back(const_cast<Value *>(V));
4596     }
4597   } while (!Working.empty());
4598   return true;
4599 }
4600 
4601 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4602   AllocaInst *Result = nullptr;
4603   SmallPtrSet<Value *, 4> Visited;
4604   SmallVector<Value *, 4> Worklist;
4605 
4606   auto AddWork = [&](Value *V) {
4607     if (Visited.insert(V).second)
4608       Worklist.push_back(V);
4609   };
4610 
4611   AddWork(V);
4612   do {
4613     V = Worklist.pop_back_val();
4614     assert(Visited.count(V));
4615 
4616     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4617       if (Result && Result != AI)
4618         return nullptr;
4619       Result = AI;
4620     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4621       AddWork(CI->getOperand(0));
4622     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4623       for (Value *IncValue : PN->incoming_values())
4624         AddWork(IncValue);
4625     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4626       AddWork(SI->getTrueValue());
4627       AddWork(SI->getFalseValue());
4628     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4629       if (OffsetZero && !GEP->hasAllZeroIndices())
4630         return nullptr;
4631       AddWork(GEP->getPointerOperand());
4632     } else if (CallBase *CB = dyn_cast<CallBase>(V)) {
4633       Value *Returned = CB->getReturnedArgOperand();
4634       if (Returned)
4635         AddWork(Returned);
4636       else
4637         return nullptr;
4638     } else {
4639       return nullptr;
4640     }
4641   } while (!Worklist.empty());
4642 
4643   return Result;
4644 }
4645 
4646 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4647     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4648   for (const User *U : V->users()) {
4649     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4650     if (!II)
4651       return false;
4652 
4653     if (AllowLifetime && II->isLifetimeStartOrEnd())
4654       continue;
4655 
4656     if (AllowDroppable && II->isDroppable())
4657       continue;
4658 
4659     return false;
4660   }
4661   return true;
4662 }
4663 
4664 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4665   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4666       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4667 }
4668 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4669   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4670       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4671 }
4672 
4673 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4674   if (!LI.isUnordered())
4675     return true;
4676   const Function &F = *LI.getFunction();
4677   // Speculative load may create a race that did not exist in the source.
4678   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4679     // Speculative load may load data from dirty regions.
4680     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4681     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4682 }
4683 
4684 
4685 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4686                                         const Instruction *CtxI,
4687                                         const DominatorTree *DT,
4688                                         const TargetLibraryInfo *TLI) {
4689   const Operator *Inst = dyn_cast<Operator>(V);
4690   if (!Inst)
4691     return false;
4692   return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI);
4693 }
4694 
4695 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode,
4696                                         const Operator *Inst,
4697                                         const Instruction *CtxI,
4698                                         const DominatorTree *DT,
4699                                         const TargetLibraryInfo *TLI) {
4700 #ifndef NDEBUG
4701   if (Inst->getOpcode() != Opcode) {
4702     // Check that the operands are actually compatible with the Opcode override.
4703     auto hasEqualReturnAndLeadingOperandTypes =
4704         [](const Operator *Inst, unsigned NumLeadingOperands) {
4705           if (Inst->getNumOperands() < NumLeadingOperands)
4706             return false;
4707           const Type *ExpectedType = Inst->getType();
4708           for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp)
4709             if (Inst->getOperand(ItOp)->getType() != ExpectedType)
4710               return false;
4711           return true;
4712         };
4713     assert(!Instruction::isBinaryOp(Opcode) ||
4714            hasEqualReturnAndLeadingOperandTypes(Inst, 2));
4715     assert(!Instruction::isUnaryOp(Opcode) ||
4716            hasEqualReturnAndLeadingOperandTypes(Inst, 1));
4717   }
4718 #endif
4719 
4720   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4721     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4722       if (C->canTrap())
4723         return false;
4724 
4725   switch (Opcode) {
4726   default:
4727     return true;
4728   case Instruction::UDiv:
4729   case Instruction::URem: {
4730     // x / y is undefined if y == 0.
4731     const APInt *V;
4732     if (match(Inst->getOperand(1), m_APInt(V)))
4733       return *V != 0;
4734     return false;
4735   }
4736   case Instruction::SDiv:
4737   case Instruction::SRem: {
4738     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4739     const APInt *Numerator, *Denominator;
4740     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4741       return false;
4742     // We cannot hoist this division if the denominator is 0.
4743     if (*Denominator == 0)
4744       return false;
4745     // It's safe to hoist if the denominator is not 0 or -1.
4746     if (!Denominator->isAllOnes())
4747       return true;
4748     // At this point we know that the denominator is -1.  It is safe to hoist as
4749     // long we know that the numerator is not INT_MIN.
4750     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4751       return !Numerator->isMinSignedValue();
4752     // The numerator *might* be MinSignedValue.
4753     return false;
4754   }
4755   case Instruction::Load: {
4756     const LoadInst *LI = dyn_cast<LoadInst>(Inst);
4757     if (!LI)
4758       return false;
4759     if (mustSuppressSpeculation(*LI))
4760       return false;
4761     const DataLayout &DL = LI->getModule()->getDataLayout();
4762     return isDereferenceableAndAlignedPointer(
4763         LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT,
4764         TLI);
4765   }
4766   case Instruction::Call: {
4767     auto *CI = dyn_cast<const CallInst>(Inst);
4768     if (!CI)
4769       return false;
4770     const Function *Callee = CI->getCalledFunction();
4771 
4772     // The called function could have undefined behavior or side-effects, even
4773     // if marked readnone nounwind.
4774     return Callee && Callee->isSpeculatable();
4775   }
4776   case Instruction::VAArg:
4777   case Instruction::Alloca:
4778   case Instruction::Invoke:
4779   case Instruction::CallBr:
4780   case Instruction::PHI:
4781   case Instruction::Store:
4782   case Instruction::Ret:
4783   case Instruction::Br:
4784   case Instruction::IndirectBr:
4785   case Instruction::Switch:
4786   case Instruction::Unreachable:
4787   case Instruction::Fence:
4788   case Instruction::AtomicRMW:
4789   case Instruction::AtomicCmpXchg:
4790   case Instruction::LandingPad:
4791   case Instruction::Resume:
4792   case Instruction::CatchSwitch:
4793   case Instruction::CatchPad:
4794   case Instruction::CatchRet:
4795   case Instruction::CleanupPad:
4796   case Instruction::CleanupRet:
4797     return false; // Misc instructions which have effects
4798   }
4799 }
4800 
4801 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) {
4802   if (I.mayReadOrWriteMemory())
4803     // Memory dependency possible
4804     return true;
4805   if (!isSafeToSpeculativelyExecute(&I))
4806     // Can't move above a maythrow call or infinite loop.  Or if an
4807     // inalloca alloca, above a stacksave call.
4808     return true;
4809   if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4810     // 1) Can't reorder two inf-loop calls, even if readonly
4811     // 2) Also can't reorder an inf-loop call below a instruction which isn't
4812     //    safe to speculative execute.  (Inverse of above)
4813     return true;
4814   return false;
4815 }
4816 
4817 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4818 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4819   switch (OR) {
4820     case ConstantRange::OverflowResult::MayOverflow:
4821       return OverflowResult::MayOverflow;
4822     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4823       return OverflowResult::AlwaysOverflowsLow;
4824     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4825       return OverflowResult::AlwaysOverflowsHigh;
4826     case ConstantRange::OverflowResult::NeverOverflows:
4827       return OverflowResult::NeverOverflows;
4828   }
4829   llvm_unreachable("Unknown OverflowResult");
4830 }
4831 
4832 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4833 static ConstantRange computeConstantRangeIncludingKnownBits(
4834     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4835     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4836     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4837   KnownBits Known = computeKnownBits(
4838       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4839   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4840   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4841   ConstantRange::PreferredRangeType RangeType =
4842       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4843   return CR1.intersectWith(CR2, RangeType);
4844 }
4845 
4846 OverflowResult llvm::computeOverflowForUnsignedMul(
4847     const Value *LHS, const Value *RHS, const DataLayout &DL,
4848     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4849     bool UseInstrInfo) {
4850   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4851                                         nullptr, UseInstrInfo);
4852   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4853                                         nullptr, UseInstrInfo);
4854   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4855   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4856   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4857 }
4858 
4859 OverflowResult
4860 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4861                                   const DataLayout &DL, AssumptionCache *AC,
4862                                   const Instruction *CxtI,
4863                                   const DominatorTree *DT, bool UseInstrInfo) {
4864   // Multiplying n * m significant bits yields a result of n + m significant
4865   // bits. If the total number of significant bits does not exceed the
4866   // result bit width (minus 1), there is no overflow.
4867   // This means if we have enough leading sign bits in the operands
4868   // we can guarantee that the result does not overflow.
4869   // Ref: "Hacker's Delight" by Henry Warren
4870   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4871 
4872   // Note that underestimating the number of sign bits gives a more
4873   // conservative answer.
4874   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4875                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4876 
4877   // First handle the easy case: if we have enough sign bits there's
4878   // definitely no overflow.
4879   if (SignBits > BitWidth + 1)
4880     return OverflowResult::NeverOverflows;
4881 
4882   // There are two ambiguous cases where there can be no overflow:
4883   //   SignBits == BitWidth + 1    and
4884   //   SignBits == BitWidth
4885   // The second case is difficult to check, therefore we only handle the
4886   // first case.
4887   if (SignBits == BitWidth + 1) {
4888     // It overflows only when both arguments are negative and the true
4889     // product is exactly the minimum negative number.
4890     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4891     // For simplicity we just check if at least one side is not negative.
4892     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4893                                           nullptr, UseInstrInfo);
4894     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4895                                           nullptr, UseInstrInfo);
4896     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4897       return OverflowResult::NeverOverflows;
4898   }
4899   return OverflowResult::MayOverflow;
4900 }
4901 
4902 OverflowResult llvm::computeOverflowForUnsignedAdd(
4903     const Value *LHS, const Value *RHS, const DataLayout &DL,
4904     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4905     bool UseInstrInfo) {
4906   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4907       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4908       nullptr, UseInstrInfo);
4909   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4910       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4911       nullptr, UseInstrInfo);
4912   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4913 }
4914 
4915 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4916                                                   const Value *RHS,
4917                                                   const AddOperator *Add,
4918                                                   const DataLayout &DL,
4919                                                   AssumptionCache *AC,
4920                                                   const Instruction *CxtI,
4921                                                   const DominatorTree *DT) {
4922   if (Add && Add->hasNoSignedWrap()) {
4923     return OverflowResult::NeverOverflows;
4924   }
4925 
4926   // If LHS and RHS each have at least two sign bits, the addition will look
4927   // like
4928   //
4929   // XX..... +
4930   // YY.....
4931   //
4932   // If the carry into the most significant position is 0, X and Y can't both
4933   // be 1 and therefore the carry out of the addition is also 0.
4934   //
4935   // If the carry into the most significant position is 1, X and Y can't both
4936   // be 0 and therefore the carry out of the addition is also 1.
4937   //
4938   // Since the carry into the most significant position is always equal to
4939   // the carry out of the addition, there is no signed overflow.
4940   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4941       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4942     return OverflowResult::NeverOverflows;
4943 
4944   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4945       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4946   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4947       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4948   OverflowResult OR =
4949       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4950   if (OR != OverflowResult::MayOverflow)
4951     return OR;
4952 
4953   // The remaining code needs Add to be available. Early returns if not so.
4954   if (!Add)
4955     return OverflowResult::MayOverflow;
4956 
4957   // If the sign of Add is the same as at least one of the operands, this add
4958   // CANNOT overflow. If this can be determined from the known bits of the
4959   // operands the above signedAddMayOverflow() check will have already done so.
4960   // The only other way to improve on the known bits is from an assumption, so
4961   // call computeKnownBitsFromAssume() directly.
4962   bool LHSOrRHSKnownNonNegative =
4963       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4964   bool LHSOrRHSKnownNegative =
4965       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4966   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4967     KnownBits AddKnown(LHSRange.getBitWidth());
4968     computeKnownBitsFromAssume(
4969         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4970     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4971         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4972       return OverflowResult::NeverOverflows;
4973   }
4974 
4975   return OverflowResult::MayOverflow;
4976 }
4977 
4978 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4979                                                    const Value *RHS,
4980                                                    const DataLayout &DL,
4981                                                    AssumptionCache *AC,
4982                                                    const Instruction *CxtI,
4983                                                    const DominatorTree *DT) {
4984   // X - (X % ?)
4985   // The remainder of a value can't have greater magnitude than itself,
4986   // so the subtraction can't overflow.
4987 
4988   // X - (X -nuw ?)
4989   // In the minimal case, this would simplify to "?", so there's no subtract
4990   // at all. But if this analysis is used to peek through casts, for example,
4991   // then determining no-overflow may allow other transforms.
4992 
4993   // TODO: There are other patterns like this.
4994   //       See simplifyICmpWithBinOpOnLHS() for candidates.
4995   if (match(RHS, m_URem(m_Specific(LHS), m_Value())) ||
4996       match(RHS, m_NUWSub(m_Specific(LHS), m_Value())))
4997     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
4998       return OverflowResult::NeverOverflows;
4999 
5000   // Checking for conditions implied by dominating conditions may be expensive.
5001   // Limit it to usub_with_overflow calls for now.
5002   if (match(CxtI,
5003             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
5004     if (auto C =
5005             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
5006       if (*C)
5007         return OverflowResult::NeverOverflows;
5008       return OverflowResult::AlwaysOverflowsLow;
5009     }
5010   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5011       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5012   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5013       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
5014   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
5015 }
5016 
5017 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
5018                                                  const Value *RHS,
5019                                                  const DataLayout &DL,
5020                                                  AssumptionCache *AC,
5021                                                  const Instruction *CxtI,
5022                                                  const DominatorTree *DT) {
5023   // X - (X % ?)
5024   // The remainder of a value can't have greater magnitude than itself,
5025   // so the subtraction can't overflow.
5026 
5027   // X - (X -nsw ?)
5028   // In the minimal case, this would simplify to "?", so there's no subtract
5029   // at all. But if this analysis is used to peek through casts, for example,
5030   // then determining no-overflow may allow other transforms.
5031   if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) ||
5032       match(RHS, m_NSWSub(m_Specific(LHS), m_Value())))
5033     if (isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT))
5034       return OverflowResult::NeverOverflows;
5035 
5036   // If LHS and RHS each have at least two sign bits, the subtraction
5037   // cannot overflow.
5038   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
5039       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
5040     return OverflowResult::NeverOverflows;
5041 
5042   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
5043       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5044   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
5045       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
5046   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
5047 }
5048 
5049 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
5050                                      const DominatorTree &DT) {
5051   SmallVector<const BranchInst *, 2> GuardingBranches;
5052   SmallVector<const ExtractValueInst *, 2> Results;
5053 
5054   for (const User *U : WO->users()) {
5055     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
5056       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
5057 
5058       if (EVI->getIndices()[0] == 0)
5059         Results.push_back(EVI);
5060       else {
5061         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
5062 
5063         for (const auto *U : EVI->users())
5064           if (const auto *B = dyn_cast<BranchInst>(U)) {
5065             assert(B->isConditional() && "How else is it using an i1?");
5066             GuardingBranches.push_back(B);
5067           }
5068       }
5069     } else {
5070       // We are using the aggregate directly in a way we don't want to analyze
5071       // here (storing it to a global, say).
5072       return false;
5073     }
5074   }
5075 
5076   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
5077     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
5078     if (!NoWrapEdge.isSingleEdge())
5079       return false;
5080 
5081     // Check if all users of the add are provably no-wrap.
5082     for (const auto *Result : Results) {
5083       // If the extractvalue itself is not executed on overflow, the we don't
5084       // need to check each use separately, since domination is transitive.
5085       if (DT.dominates(NoWrapEdge, Result->getParent()))
5086         continue;
5087 
5088       for (auto &RU : Result->uses())
5089         if (!DT.dominates(NoWrapEdge, RU))
5090           return false;
5091     }
5092 
5093     return true;
5094   };
5095 
5096   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
5097 }
5098 
5099 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly,
5100                                    bool ConsiderFlags) {
5101 
5102   if (ConsiderFlags && Op->hasPoisonGeneratingFlags())
5103     return true;
5104 
5105   unsigned Opcode = Op->getOpcode();
5106 
5107   // Check whether opcode is a poison/undef-generating operation
5108   switch (Opcode) {
5109   case Instruction::Shl:
5110   case Instruction::AShr:
5111   case Instruction::LShr: {
5112     // Shifts return poison if shiftwidth is larger than the bitwidth.
5113     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
5114       SmallVector<Constant *, 4> ShiftAmounts;
5115       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
5116         unsigned NumElts = FVTy->getNumElements();
5117         for (unsigned i = 0; i < NumElts; ++i)
5118           ShiftAmounts.push_back(C->getAggregateElement(i));
5119       } else if (isa<ScalableVectorType>(C->getType()))
5120         return true; // Can't tell, just return true to be safe
5121       else
5122         ShiftAmounts.push_back(C);
5123 
5124       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
5125         auto *CI = dyn_cast_or_null<ConstantInt>(C);
5126         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
5127       });
5128       return !Safe;
5129     }
5130     return true;
5131   }
5132   case Instruction::FPToSI:
5133   case Instruction::FPToUI:
5134     // fptosi/ui yields poison if the resulting value does not fit in the
5135     // destination type.
5136     return true;
5137   case Instruction::Call:
5138     if (auto *II = dyn_cast<IntrinsicInst>(Op)) {
5139       switch (II->getIntrinsicID()) {
5140       // TODO: Add more intrinsics.
5141       case Intrinsic::ctpop:
5142       case Intrinsic::sadd_with_overflow:
5143       case Intrinsic::ssub_with_overflow:
5144       case Intrinsic::smul_with_overflow:
5145       case Intrinsic::uadd_with_overflow:
5146       case Intrinsic::usub_with_overflow:
5147       case Intrinsic::umul_with_overflow:
5148         return false;
5149       }
5150     }
5151     LLVM_FALLTHROUGH;
5152   case Instruction::CallBr:
5153   case Instruction::Invoke: {
5154     const auto *CB = cast<CallBase>(Op);
5155     return !CB->hasRetAttr(Attribute::NoUndef);
5156   }
5157   case Instruction::InsertElement:
5158   case Instruction::ExtractElement: {
5159     // If index exceeds the length of the vector, it returns poison
5160     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
5161     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
5162     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
5163     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
5164       return true;
5165     return false;
5166   }
5167   case Instruction::ShuffleVector: {
5168     // shufflevector may return undef.
5169     if (PoisonOnly)
5170       return false;
5171     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
5172                              ? cast<ConstantExpr>(Op)->getShuffleMask()
5173                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
5174     return is_contained(Mask, UndefMaskElem);
5175   }
5176   case Instruction::FNeg:
5177   case Instruction::PHI:
5178   case Instruction::Select:
5179   case Instruction::URem:
5180   case Instruction::SRem:
5181   case Instruction::ExtractValue:
5182   case Instruction::InsertValue:
5183   case Instruction::Freeze:
5184   case Instruction::ICmp:
5185   case Instruction::FCmp:
5186     return false;
5187   case Instruction::GetElementPtr:
5188     // inbounds is handled above
5189     // TODO: what about inrange on constexpr?
5190     return false;
5191   default: {
5192     const auto *CE = dyn_cast<ConstantExpr>(Op);
5193     if (isa<CastInst>(Op) || (CE && CE->isCast()))
5194       return false;
5195     else if (Instruction::isBinaryOp(Opcode))
5196       return false;
5197     // Be conservative and return true.
5198     return true;
5199   }
5200   }
5201 }
5202 
5203 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) {
5204   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags);
5205 }
5206 
5207 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) {
5208   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags);
5209 }
5210 
5211 static bool directlyImpliesPoison(const Value *ValAssumedPoison,
5212                                   const Value *V, unsigned Depth) {
5213   if (ValAssumedPoison == V)
5214     return true;
5215 
5216   const unsigned MaxDepth = 2;
5217   if (Depth >= MaxDepth)
5218     return false;
5219 
5220   if (const auto *I = dyn_cast<Instruction>(V)) {
5221     if (propagatesPoison(cast<Operator>(I)))
5222       return any_of(I->operands(), [=](const Value *Op) {
5223         return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1);
5224       });
5225 
5226     // 'select ValAssumedPoison, _, _' is poison.
5227     if (const auto *SI = dyn_cast<SelectInst>(I))
5228       return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(),
5229                                    Depth + 1);
5230     // V  = extractvalue V0, idx
5231     // V2 = extractvalue V0, idx2
5232     // V0's elements are all poison or not. (e.g., add_with_overflow)
5233     const WithOverflowInst *II;
5234     if (match(I, m_ExtractValue(m_WithOverflowInst(II))) &&
5235         (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) ||
5236          llvm::is_contained(II->args(), ValAssumedPoison)))
5237       return true;
5238   }
5239   return false;
5240 }
5241 
5242 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V,
5243                           unsigned Depth) {
5244   if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison))
5245     return true;
5246 
5247   if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0))
5248     return true;
5249 
5250   const unsigned MaxDepth = 2;
5251   if (Depth >= MaxDepth)
5252     return false;
5253 
5254   const auto *I = dyn_cast<Instruction>(ValAssumedPoison);
5255   if (I && !canCreatePoison(cast<Operator>(I))) {
5256     return all_of(I->operands(), [=](const Value *Op) {
5257       return impliesPoison(Op, V, Depth + 1);
5258     });
5259   }
5260   return false;
5261 }
5262 
5263 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) {
5264   return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0);
5265 }
5266 
5267 static bool programUndefinedIfUndefOrPoison(const Value *V,
5268                                             bool PoisonOnly);
5269 
5270 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
5271                                              AssumptionCache *AC,
5272                                              const Instruction *CtxI,
5273                                              const DominatorTree *DT,
5274                                              unsigned Depth, bool PoisonOnly) {
5275   if (Depth >= MaxAnalysisRecursionDepth)
5276     return false;
5277 
5278   if (isa<MetadataAsValue>(V))
5279     return false;
5280 
5281   if (const auto *A = dyn_cast<Argument>(V)) {
5282     if (A->hasAttribute(Attribute::NoUndef))
5283       return true;
5284   }
5285 
5286   if (auto *C = dyn_cast<Constant>(V)) {
5287     if (isa<UndefValue>(C))
5288       return PoisonOnly && !isa<PoisonValue>(C);
5289 
5290     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
5291         isa<ConstantPointerNull>(C) || isa<Function>(C))
5292       return true;
5293 
5294     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
5295       return (PoisonOnly ? !C->containsPoisonElement()
5296                          : !C->containsUndefOrPoisonElement()) &&
5297              !C->containsConstantExpression();
5298   }
5299 
5300   // Strip cast operations from a pointer value.
5301   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
5302   // inbounds with zero offset. To guarantee that the result isn't poison, the
5303   // stripped pointer is checked as it has to be pointing into an allocated
5304   // object or be null `null` to ensure `inbounds` getelement pointers with a
5305   // zero offset could not produce poison.
5306   // It can strip off addrspacecast that do not change bit representation as
5307   // well. We believe that such addrspacecast is equivalent to no-op.
5308   auto *StrippedV = V->stripPointerCastsSameRepresentation();
5309   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
5310       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
5311     return true;
5312 
5313   auto OpCheck = [&](const Value *V) {
5314     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
5315                                             PoisonOnly);
5316   };
5317 
5318   if (auto *Opr = dyn_cast<Operator>(V)) {
5319     // If the value is a freeze instruction, then it can never
5320     // be undef or poison.
5321     if (isa<FreezeInst>(V))
5322       return true;
5323 
5324     if (const auto *CB = dyn_cast<CallBase>(V)) {
5325       if (CB->hasRetAttr(Attribute::NoUndef))
5326         return true;
5327     }
5328 
5329     if (const auto *PN = dyn_cast<PHINode>(V)) {
5330       unsigned Num = PN->getNumIncomingValues();
5331       bool IsWellDefined = true;
5332       for (unsigned i = 0; i < Num; ++i) {
5333         auto *TI = PN->getIncomingBlock(i)->getTerminator();
5334         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
5335                                               DT, Depth + 1, PoisonOnly)) {
5336           IsWellDefined = false;
5337           break;
5338         }
5339       }
5340       if (IsWellDefined)
5341         return true;
5342     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
5343       return true;
5344   }
5345 
5346   if (auto *I = dyn_cast<LoadInst>(V))
5347     if (I->hasMetadata(LLVMContext::MD_noundef) ||
5348         I->hasMetadata(LLVMContext::MD_dereferenceable) ||
5349         I->hasMetadata(LLVMContext::MD_dereferenceable_or_null))
5350       return true;
5351 
5352   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
5353     return true;
5354 
5355   // CxtI may be null or a cloned instruction.
5356   if (!CtxI || !CtxI->getParent() || !DT)
5357     return false;
5358 
5359   auto *DNode = DT->getNode(CtxI->getParent());
5360   if (!DNode)
5361     // Unreachable block
5362     return false;
5363 
5364   // If V is used as a branch condition before reaching CtxI, V cannot be
5365   // undef or poison.
5366   //   br V, BB1, BB2
5367   // BB1:
5368   //   CtxI ; V cannot be undef or poison here
5369   auto *Dominator = DNode->getIDom();
5370   while (Dominator) {
5371     auto *TI = Dominator->getBlock()->getTerminator();
5372 
5373     Value *Cond = nullptr;
5374     if (auto BI = dyn_cast_or_null<BranchInst>(TI)) {
5375       if (BI->isConditional())
5376         Cond = BI->getCondition();
5377     } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) {
5378       Cond = SI->getCondition();
5379     }
5380 
5381     if (Cond) {
5382       if (Cond == V)
5383         return true;
5384       else if (PoisonOnly && isa<Operator>(Cond)) {
5385         // For poison, we can analyze further
5386         auto *Opr = cast<Operator>(Cond);
5387         if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V))
5388           return true;
5389       }
5390     }
5391 
5392     Dominator = Dominator->getIDom();
5393   }
5394 
5395   if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC))
5396     return true;
5397 
5398   return false;
5399 }
5400 
5401 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
5402                                             const Instruction *CtxI,
5403                                             const DominatorTree *DT,
5404                                             unsigned Depth) {
5405   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
5406 }
5407 
5408 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
5409                                      const Instruction *CtxI,
5410                                      const DominatorTree *DT, unsigned Depth) {
5411   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
5412 }
5413 
5414 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
5415                                                  const DataLayout &DL,
5416                                                  AssumptionCache *AC,
5417                                                  const Instruction *CxtI,
5418                                                  const DominatorTree *DT) {
5419   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
5420                                        Add, DL, AC, CxtI, DT);
5421 }
5422 
5423 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
5424                                                  const Value *RHS,
5425                                                  const DataLayout &DL,
5426                                                  AssumptionCache *AC,
5427                                                  const Instruction *CxtI,
5428                                                  const DominatorTree *DT) {
5429   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
5430 }
5431 
5432 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
5433   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
5434   // of time because it's possible for another thread to interfere with it for an
5435   // arbitrary length of time, but programs aren't allowed to rely on that.
5436 
5437   // If there is no successor, then execution can't transfer to it.
5438   if (isa<ReturnInst>(I))
5439     return false;
5440   if (isa<UnreachableInst>(I))
5441     return false;
5442 
5443   // Note: Do not add new checks here; instead, change Instruction::mayThrow or
5444   // Instruction::willReturn.
5445   //
5446   // FIXME: Move this check into Instruction::willReturn.
5447   if (isa<CatchPadInst>(I)) {
5448     switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) {
5449     default:
5450       // A catchpad may invoke exception object constructors and such, which
5451       // in some languages can be arbitrary code, so be conservative by default.
5452       return false;
5453     case EHPersonality::CoreCLR:
5454       // For CoreCLR, it just involves a type test.
5455       return true;
5456     }
5457   }
5458 
5459   // An instruction that returns without throwing must transfer control flow
5460   // to a successor.
5461   return !I->mayThrow() && I->willReturn();
5462 }
5463 
5464 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5465   // TODO: This is slightly conservative for invoke instruction since exiting
5466   // via an exception *is* normal control for them.
5467   for (const Instruction &I : *BB)
5468     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5469       return false;
5470   return true;
5471 }
5472 
5473 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5474    BasicBlock::const_iterator Begin, BasicBlock::const_iterator End,
5475    unsigned ScanLimit) {
5476   return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End),
5477                                                     ScanLimit);
5478 }
5479 
5480 bool llvm::isGuaranteedToTransferExecutionToSuccessor(
5481    iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) {
5482   assert(ScanLimit && "scan limit must be non-zero");
5483   for (const Instruction &I : Range) {
5484     if (isa<DbgInfoIntrinsic>(I))
5485         continue;
5486     if (--ScanLimit == 0)
5487       return false;
5488     if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5489       return false;
5490   }
5491   return true;
5492 }
5493 
5494 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5495                                                   const Loop *L) {
5496   // The loop header is guaranteed to be executed for every iteration.
5497   //
5498   // FIXME: Relax this constraint to cover all basic blocks that are
5499   // guaranteed to be executed at every iteration.
5500   if (I->getParent() != L->getHeader()) return false;
5501 
5502   for (const Instruction &LI : *L->getHeader()) {
5503     if (&LI == I) return true;
5504     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5505   }
5506   llvm_unreachable("Instruction not contained in its own parent basic block.");
5507 }
5508 
5509 bool llvm::propagatesPoison(const Operator *I) {
5510   switch (I->getOpcode()) {
5511   case Instruction::Freeze:
5512   case Instruction::Select:
5513   case Instruction::PHI:
5514   case Instruction::Invoke:
5515     return false;
5516   case Instruction::Call:
5517     if (auto *II = dyn_cast<IntrinsicInst>(I)) {
5518       switch (II->getIntrinsicID()) {
5519       // TODO: Add more intrinsics.
5520       case Intrinsic::sadd_with_overflow:
5521       case Intrinsic::ssub_with_overflow:
5522       case Intrinsic::smul_with_overflow:
5523       case Intrinsic::uadd_with_overflow:
5524       case Intrinsic::usub_with_overflow:
5525       case Intrinsic::umul_with_overflow:
5526         // If an input is a vector containing a poison element, the
5527         // two output vectors (calculated results, overflow bits)'
5528         // corresponding lanes are poison.
5529         return true;
5530       case Intrinsic::ctpop:
5531         return true;
5532       }
5533     }
5534     return false;
5535   case Instruction::ICmp:
5536   case Instruction::FCmp:
5537   case Instruction::GetElementPtr:
5538     return true;
5539   default:
5540     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5541       return true;
5542 
5543     // Be conservative and return false.
5544     return false;
5545   }
5546 }
5547 
5548 void llvm::getGuaranteedWellDefinedOps(
5549     const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) {
5550   switch (I->getOpcode()) {
5551     case Instruction::Store:
5552       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5553       break;
5554 
5555     case Instruction::Load:
5556       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5557       break;
5558 
5559     // Since dereferenceable attribute imply noundef, atomic operations
5560     // also implicitly have noundef pointers too
5561     case Instruction::AtomicCmpXchg:
5562       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5563       break;
5564 
5565     case Instruction::AtomicRMW:
5566       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5567       break;
5568 
5569     case Instruction::Call:
5570     case Instruction::Invoke: {
5571       const CallBase *CB = cast<CallBase>(I);
5572       if (CB->isIndirectCall())
5573         Operands.insert(CB->getCalledOperand());
5574       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5575         if (CB->paramHasAttr(i, Attribute::NoUndef) ||
5576             CB->paramHasAttr(i, Attribute::Dereferenceable))
5577           Operands.insert(CB->getArgOperand(i));
5578       }
5579       break;
5580     }
5581     case Instruction::Ret:
5582       if (I->getFunction()->hasRetAttribute(Attribute::NoUndef))
5583         Operands.insert(I->getOperand(0));
5584       break;
5585     default:
5586       break;
5587   }
5588 }
5589 
5590 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5591                                      SmallPtrSetImpl<const Value *> &Operands) {
5592   getGuaranteedWellDefinedOps(I, Operands);
5593   switch (I->getOpcode()) {
5594   // Divisors of these operations are allowed to be partially undef.
5595   case Instruction::UDiv:
5596   case Instruction::SDiv:
5597   case Instruction::URem:
5598   case Instruction::SRem:
5599     Operands.insert(I->getOperand(1));
5600     break;
5601   case Instruction::Switch:
5602     if (BranchOnPoisonAsUB)
5603       Operands.insert(cast<SwitchInst>(I)->getCondition());
5604     break;
5605   case Instruction::Br: {
5606     auto *BR = cast<BranchInst>(I);
5607     if (BranchOnPoisonAsUB && BR->isConditional())
5608       Operands.insert(BR->getCondition());
5609     break;
5610   }
5611   default:
5612     break;
5613   }
5614 }
5615 
5616 bool llvm::mustTriggerUB(const Instruction *I,
5617                          const SmallSet<const Value *, 16>& KnownPoison) {
5618   SmallPtrSet<const Value *, 4> NonPoisonOps;
5619   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5620 
5621   for (const auto *V : NonPoisonOps)
5622     if (KnownPoison.count(V))
5623       return true;
5624 
5625   return false;
5626 }
5627 
5628 static bool programUndefinedIfUndefOrPoison(const Value *V,
5629                                             bool PoisonOnly) {
5630   // We currently only look for uses of values within the same basic
5631   // block, as that makes it easier to guarantee that the uses will be
5632   // executed given that Inst is executed.
5633   //
5634   // FIXME: Expand this to consider uses beyond the same basic block. To do
5635   // this, look out for the distinction between post-dominance and strong
5636   // post-dominance.
5637   const BasicBlock *BB = nullptr;
5638   BasicBlock::const_iterator Begin;
5639   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5640     BB = Inst->getParent();
5641     Begin = Inst->getIterator();
5642     Begin++;
5643   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5644     BB = &Arg->getParent()->getEntryBlock();
5645     Begin = BB->begin();
5646   } else {
5647     return false;
5648   }
5649 
5650   // Limit number of instructions we look at, to avoid scanning through large
5651   // blocks. The current limit is chosen arbitrarily.
5652   unsigned ScanLimit = 32;
5653   BasicBlock::const_iterator End = BB->end();
5654 
5655   if (!PoisonOnly) {
5656     // Since undef does not propagate eagerly, be conservative & just check
5657     // whether a value is directly passed to an instruction that must take
5658     // well-defined operands.
5659 
5660     for (auto &I : make_range(Begin, End)) {
5661       if (isa<DbgInfoIntrinsic>(I))
5662         continue;
5663       if (--ScanLimit == 0)
5664         break;
5665 
5666       SmallPtrSet<const Value *, 4> WellDefinedOps;
5667       getGuaranteedWellDefinedOps(&I, WellDefinedOps);
5668       if (WellDefinedOps.contains(V))
5669         return true;
5670 
5671       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5672         break;
5673     }
5674     return false;
5675   }
5676 
5677   // Set of instructions that we have proved will yield poison if Inst
5678   // does.
5679   SmallSet<const Value *, 16> YieldsPoison;
5680   SmallSet<const BasicBlock *, 4> Visited;
5681 
5682   YieldsPoison.insert(V);
5683   auto Propagate = [&](const User *User) {
5684     if (propagatesPoison(cast<Operator>(User)))
5685       YieldsPoison.insert(User);
5686   };
5687   for_each(V->users(), Propagate);
5688   Visited.insert(BB);
5689 
5690   while (true) {
5691     for (auto &I : make_range(Begin, End)) {
5692       if (isa<DbgInfoIntrinsic>(I))
5693         continue;
5694       if (--ScanLimit == 0)
5695         return false;
5696       if (mustTriggerUB(&I, YieldsPoison))
5697         return true;
5698       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5699         return false;
5700 
5701       // Mark poison that propagates from I through uses of I.
5702       if (YieldsPoison.count(&I))
5703         for_each(I.users(), Propagate);
5704     }
5705 
5706     BB = BB->getSingleSuccessor();
5707     if (!BB || !Visited.insert(BB).second)
5708       break;
5709 
5710     Begin = BB->getFirstNonPHI()->getIterator();
5711     End = BB->end();
5712   }
5713   return false;
5714 }
5715 
5716 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5717   return ::programUndefinedIfUndefOrPoison(Inst, false);
5718 }
5719 
5720 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5721   return ::programUndefinedIfUndefOrPoison(Inst, true);
5722 }
5723 
5724 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5725   if (FMF.noNaNs())
5726     return true;
5727 
5728   if (auto *C = dyn_cast<ConstantFP>(V))
5729     return !C->isNaN();
5730 
5731   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5732     if (!C->getElementType()->isFloatingPointTy())
5733       return false;
5734     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5735       if (C->getElementAsAPFloat(I).isNaN())
5736         return false;
5737     }
5738     return true;
5739   }
5740 
5741   if (isa<ConstantAggregateZero>(V))
5742     return true;
5743 
5744   return false;
5745 }
5746 
5747 static bool isKnownNonZero(const Value *V) {
5748   if (auto *C = dyn_cast<ConstantFP>(V))
5749     return !C->isZero();
5750 
5751   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5752     if (!C->getElementType()->isFloatingPointTy())
5753       return false;
5754     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5755       if (C->getElementAsAPFloat(I).isZero())
5756         return false;
5757     }
5758     return true;
5759   }
5760 
5761   return false;
5762 }
5763 
5764 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5765 /// Given non-min/max outer cmp/select from the clamp pattern this
5766 /// function recognizes if it can be substitued by a "canonical" min/max
5767 /// pattern.
5768 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5769                                                Value *CmpLHS, Value *CmpRHS,
5770                                                Value *TrueVal, Value *FalseVal,
5771                                                Value *&LHS, Value *&RHS) {
5772   // Try to match
5773   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5774   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5775   // and return description of the outer Max/Min.
5776 
5777   // First, check if select has inverse order:
5778   if (CmpRHS == FalseVal) {
5779     std::swap(TrueVal, FalseVal);
5780     Pred = CmpInst::getInversePredicate(Pred);
5781   }
5782 
5783   // Assume success now. If there's no match, callers should not use these anyway.
5784   LHS = TrueVal;
5785   RHS = FalseVal;
5786 
5787   const APFloat *FC1;
5788   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5789     return {SPF_UNKNOWN, SPNB_NA, false};
5790 
5791   const APFloat *FC2;
5792   switch (Pred) {
5793   case CmpInst::FCMP_OLT:
5794   case CmpInst::FCMP_OLE:
5795   case CmpInst::FCMP_ULT:
5796   case CmpInst::FCMP_ULE:
5797     if (match(FalseVal,
5798               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5799                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5800         *FC1 < *FC2)
5801       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5802     break;
5803   case CmpInst::FCMP_OGT:
5804   case CmpInst::FCMP_OGE:
5805   case CmpInst::FCMP_UGT:
5806   case CmpInst::FCMP_UGE:
5807     if (match(FalseVal,
5808               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5809                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5810         *FC1 > *FC2)
5811       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5812     break;
5813   default:
5814     break;
5815   }
5816 
5817   return {SPF_UNKNOWN, SPNB_NA, false};
5818 }
5819 
5820 /// Recognize variations of:
5821 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5822 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5823                                       Value *CmpLHS, Value *CmpRHS,
5824                                       Value *TrueVal, Value *FalseVal) {
5825   // Swap the select operands and predicate to match the patterns below.
5826   if (CmpRHS != TrueVal) {
5827     Pred = ICmpInst::getSwappedPredicate(Pred);
5828     std::swap(TrueVal, FalseVal);
5829   }
5830   const APInt *C1;
5831   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5832     const APInt *C2;
5833     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5834     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5835         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5836       return {SPF_SMAX, SPNB_NA, false};
5837 
5838     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5839     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5840         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5841       return {SPF_SMIN, SPNB_NA, false};
5842 
5843     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5844     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5845         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5846       return {SPF_UMAX, SPNB_NA, false};
5847 
5848     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5849     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5850         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5851       return {SPF_UMIN, SPNB_NA, false};
5852   }
5853   return {SPF_UNKNOWN, SPNB_NA, false};
5854 }
5855 
5856 /// Recognize variations of:
5857 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5858 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5859                                                Value *CmpLHS, Value *CmpRHS,
5860                                                Value *TVal, Value *FVal,
5861                                                unsigned Depth) {
5862   // TODO: Allow FP min/max with nnan/nsz.
5863   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5864 
5865   Value *A = nullptr, *B = nullptr;
5866   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5867   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5868     return {SPF_UNKNOWN, SPNB_NA, false};
5869 
5870   Value *C = nullptr, *D = nullptr;
5871   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5872   if (L.Flavor != R.Flavor)
5873     return {SPF_UNKNOWN, SPNB_NA, false};
5874 
5875   // We have something like: x Pred y ? min(a, b) : min(c, d).
5876   // Try to match the compare to the min/max operations of the select operands.
5877   // First, make sure we have the right compare predicate.
5878   switch (L.Flavor) {
5879   case SPF_SMIN:
5880     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5881       Pred = ICmpInst::getSwappedPredicate(Pred);
5882       std::swap(CmpLHS, CmpRHS);
5883     }
5884     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5885       break;
5886     return {SPF_UNKNOWN, SPNB_NA, false};
5887   case SPF_SMAX:
5888     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5889       Pred = ICmpInst::getSwappedPredicate(Pred);
5890       std::swap(CmpLHS, CmpRHS);
5891     }
5892     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5893       break;
5894     return {SPF_UNKNOWN, SPNB_NA, false};
5895   case SPF_UMIN:
5896     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5897       Pred = ICmpInst::getSwappedPredicate(Pred);
5898       std::swap(CmpLHS, CmpRHS);
5899     }
5900     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5901       break;
5902     return {SPF_UNKNOWN, SPNB_NA, false};
5903   case SPF_UMAX:
5904     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5905       Pred = ICmpInst::getSwappedPredicate(Pred);
5906       std::swap(CmpLHS, CmpRHS);
5907     }
5908     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5909       break;
5910     return {SPF_UNKNOWN, SPNB_NA, false};
5911   default:
5912     return {SPF_UNKNOWN, SPNB_NA, false};
5913   }
5914 
5915   // If there is a common operand in the already matched min/max and the other
5916   // min/max operands match the compare operands (either directly or inverted),
5917   // then this is min/max of the same flavor.
5918 
5919   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5920   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5921   if (D == B) {
5922     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5923                                          match(A, m_Not(m_Specific(CmpRHS)))))
5924       return {L.Flavor, SPNB_NA, false};
5925   }
5926   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5927   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5928   if (C == B) {
5929     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5930                                          match(A, m_Not(m_Specific(CmpRHS)))))
5931       return {L.Flavor, SPNB_NA, false};
5932   }
5933   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5934   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5935   if (D == A) {
5936     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5937                                          match(B, m_Not(m_Specific(CmpRHS)))))
5938       return {L.Flavor, SPNB_NA, false};
5939   }
5940   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5941   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5942   if (C == A) {
5943     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5944                                          match(B, m_Not(m_Specific(CmpRHS)))))
5945       return {L.Flavor, SPNB_NA, false};
5946   }
5947 
5948   return {SPF_UNKNOWN, SPNB_NA, false};
5949 }
5950 
5951 /// If the input value is the result of a 'not' op, constant integer, or vector
5952 /// splat of a constant integer, return the bitwise-not source value.
5953 /// TODO: This could be extended to handle non-splat vector integer constants.
5954 static Value *getNotValue(Value *V) {
5955   Value *NotV;
5956   if (match(V, m_Not(m_Value(NotV))))
5957     return NotV;
5958 
5959   const APInt *C;
5960   if (match(V, m_APInt(C)))
5961     return ConstantInt::get(V->getType(), ~(*C));
5962 
5963   return nullptr;
5964 }
5965 
5966 /// Match non-obvious integer minimum and maximum sequences.
5967 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5968                                        Value *CmpLHS, Value *CmpRHS,
5969                                        Value *TrueVal, Value *FalseVal,
5970                                        Value *&LHS, Value *&RHS,
5971                                        unsigned Depth) {
5972   // Assume success. If there's no match, callers should not use these anyway.
5973   LHS = TrueVal;
5974   RHS = FalseVal;
5975 
5976   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5977   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5978     return SPR;
5979 
5980   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5981   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5982     return SPR;
5983 
5984   // Look through 'not' ops to find disguised min/max.
5985   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5986   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5987   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5988     switch (Pred) {
5989     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5990     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5991     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5992     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5993     default: break;
5994     }
5995   }
5996 
5997   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5998   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5999   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
6000     switch (Pred) {
6001     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
6002     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
6003     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
6004     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
6005     default: break;
6006     }
6007   }
6008 
6009   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
6010     return {SPF_UNKNOWN, SPNB_NA, false};
6011 
6012   const APInt *C1;
6013   if (!match(CmpRHS, m_APInt(C1)))
6014     return {SPF_UNKNOWN, SPNB_NA, false};
6015 
6016   // An unsigned min/max can be written with a signed compare.
6017   const APInt *C2;
6018   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
6019       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
6020     // Is the sign bit set?
6021     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
6022     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
6023     if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue())
6024       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6025 
6026     // Is the sign bit clear?
6027     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
6028     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
6029     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue())
6030       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
6031   }
6032 
6033   return {SPF_UNKNOWN, SPNB_NA, false};
6034 }
6035 
6036 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
6037   assert(X && Y && "Invalid operand");
6038 
6039   // X = sub (0, Y) || X = sub nsw (0, Y)
6040   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
6041       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
6042     return true;
6043 
6044   // Y = sub (0, X) || Y = sub nsw (0, X)
6045   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
6046       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
6047     return true;
6048 
6049   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
6050   Value *A, *B;
6051   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
6052                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
6053          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
6054                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
6055 }
6056 
6057 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
6058                                               FastMathFlags FMF,
6059                                               Value *CmpLHS, Value *CmpRHS,
6060                                               Value *TrueVal, Value *FalseVal,
6061                                               Value *&LHS, Value *&RHS,
6062                                               unsigned Depth) {
6063   if (CmpInst::isFPPredicate(Pred)) {
6064     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
6065     // 0.0 operand, set the compare's 0.0 operands to that same value for the
6066     // purpose of identifying min/max. Disregard vector constants with undefined
6067     // elements because those can not be back-propagated for analysis.
6068     Value *OutputZeroVal = nullptr;
6069     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
6070         !cast<Constant>(TrueVal)->containsUndefOrPoisonElement())
6071       OutputZeroVal = TrueVal;
6072     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
6073              !cast<Constant>(FalseVal)->containsUndefOrPoisonElement())
6074       OutputZeroVal = FalseVal;
6075 
6076     if (OutputZeroVal) {
6077       if (match(CmpLHS, m_AnyZeroFP()))
6078         CmpLHS = OutputZeroVal;
6079       if (match(CmpRHS, m_AnyZeroFP()))
6080         CmpRHS = OutputZeroVal;
6081     }
6082   }
6083 
6084   LHS = CmpLHS;
6085   RHS = CmpRHS;
6086 
6087   // Signed zero may return inconsistent results between implementations.
6088   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
6089   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
6090   // Therefore, we behave conservatively and only proceed if at least one of the
6091   // operands is known to not be zero or if we don't care about signed zero.
6092   switch (Pred) {
6093   default: break;
6094   // FIXME: Include OGT/OLT/UGT/ULT.
6095   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
6096   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
6097     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6098         !isKnownNonZero(CmpRHS))
6099       return {SPF_UNKNOWN, SPNB_NA, false};
6100   }
6101 
6102   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
6103   bool Ordered = false;
6104 
6105   // When given one NaN and one non-NaN input:
6106   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
6107   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
6108   //     ordered comparison fails), which could be NaN or non-NaN.
6109   // so here we discover exactly what NaN behavior is required/accepted.
6110   if (CmpInst::isFPPredicate(Pred)) {
6111     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
6112     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
6113 
6114     if (LHSSafe && RHSSafe) {
6115       // Both operands are known non-NaN.
6116       NaNBehavior = SPNB_RETURNS_ANY;
6117     } else if (CmpInst::isOrdered(Pred)) {
6118       // An ordered comparison will return false when given a NaN, so it
6119       // returns the RHS.
6120       Ordered = true;
6121       if (LHSSafe)
6122         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
6123         NaNBehavior = SPNB_RETURNS_NAN;
6124       else if (RHSSafe)
6125         NaNBehavior = SPNB_RETURNS_OTHER;
6126       else
6127         // Completely unsafe.
6128         return {SPF_UNKNOWN, SPNB_NA, false};
6129     } else {
6130       Ordered = false;
6131       // An unordered comparison will return true when given a NaN, so it
6132       // returns the LHS.
6133       if (LHSSafe)
6134         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
6135         NaNBehavior = SPNB_RETURNS_OTHER;
6136       else if (RHSSafe)
6137         NaNBehavior = SPNB_RETURNS_NAN;
6138       else
6139         // Completely unsafe.
6140         return {SPF_UNKNOWN, SPNB_NA, false};
6141     }
6142   }
6143 
6144   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
6145     std::swap(CmpLHS, CmpRHS);
6146     Pred = CmpInst::getSwappedPredicate(Pred);
6147     if (NaNBehavior == SPNB_RETURNS_NAN)
6148       NaNBehavior = SPNB_RETURNS_OTHER;
6149     else if (NaNBehavior == SPNB_RETURNS_OTHER)
6150       NaNBehavior = SPNB_RETURNS_NAN;
6151     Ordered = !Ordered;
6152   }
6153 
6154   // ([if]cmp X, Y) ? X : Y
6155   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
6156     switch (Pred) {
6157     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
6158     case ICmpInst::ICMP_UGT:
6159     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
6160     case ICmpInst::ICMP_SGT:
6161     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
6162     case ICmpInst::ICMP_ULT:
6163     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
6164     case ICmpInst::ICMP_SLT:
6165     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
6166     case FCmpInst::FCMP_UGT:
6167     case FCmpInst::FCMP_UGE:
6168     case FCmpInst::FCMP_OGT:
6169     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
6170     case FCmpInst::FCMP_ULT:
6171     case FCmpInst::FCMP_ULE:
6172     case FCmpInst::FCMP_OLT:
6173     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
6174     }
6175   }
6176 
6177   if (isKnownNegation(TrueVal, FalseVal)) {
6178     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
6179     // match against either LHS or sext(LHS).
6180     auto MaybeSExtCmpLHS =
6181         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
6182     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
6183     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
6184     if (match(TrueVal, MaybeSExtCmpLHS)) {
6185       // Set the return values. If the compare uses the negated value (-X >s 0),
6186       // swap the return values because the negated value is always 'RHS'.
6187       LHS = TrueVal;
6188       RHS = FalseVal;
6189       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
6190         std::swap(LHS, RHS);
6191 
6192       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
6193       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
6194       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6195         return {SPF_ABS, SPNB_NA, false};
6196 
6197       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
6198       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
6199         return {SPF_ABS, SPNB_NA, false};
6200 
6201       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
6202       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
6203       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6204         return {SPF_NABS, SPNB_NA, false};
6205     }
6206     else if (match(FalseVal, MaybeSExtCmpLHS)) {
6207       // Set the return values. If the compare uses the negated value (-X >s 0),
6208       // swap the return values because the negated value is always 'RHS'.
6209       LHS = FalseVal;
6210       RHS = TrueVal;
6211       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
6212         std::swap(LHS, RHS);
6213 
6214       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
6215       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
6216       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
6217         return {SPF_NABS, SPNB_NA, false};
6218 
6219       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
6220       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
6221       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
6222         return {SPF_ABS, SPNB_NA, false};
6223     }
6224   }
6225 
6226   if (CmpInst::isIntPredicate(Pred))
6227     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
6228 
6229   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
6230   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
6231   // semantics than minNum. Be conservative in such case.
6232   if (NaNBehavior != SPNB_RETURNS_ANY ||
6233       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
6234        !isKnownNonZero(CmpRHS)))
6235     return {SPF_UNKNOWN, SPNB_NA, false};
6236 
6237   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
6238 }
6239 
6240 /// Helps to match a select pattern in case of a type mismatch.
6241 ///
6242 /// The function processes the case when type of true and false values of a
6243 /// select instruction differs from type of the cmp instruction operands because
6244 /// of a cast instruction. The function checks if it is legal to move the cast
6245 /// operation after "select". If yes, it returns the new second value of
6246 /// "select" (with the assumption that cast is moved):
6247 /// 1. As operand of cast instruction when both values of "select" are same cast
6248 /// instructions.
6249 /// 2. As restored constant (by applying reverse cast operation) when the first
6250 /// value of the "select" is a cast operation and the second value is a
6251 /// constant.
6252 /// NOTE: We return only the new second value because the first value could be
6253 /// accessed as operand of cast instruction.
6254 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
6255                               Instruction::CastOps *CastOp) {
6256   auto *Cast1 = dyn_cast<CastInst>(V1);
6257   if (!Cast1)
6258     return nullptr;
6259 
6260   *CastOp = Cast1->getOpcode();
6261   Type *SrcTy = Cast1->getSrcTy();
6262   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
6263     // If V1 and V2 are both the same cast from the same type, look through V1.
6264     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
6265       return Cast2->getOperand(0);
6266     return nullptr;
6267   }
6268 
6269   auto *C = dyn_cast<Constant>(V2);
6270   if (!C)
6271     return nullptr;
6272 
6273   Constant *CastedTo = nullptr;
6274   switch (*CastOp) {
6275   case Instruction::ZExt:
6276     if (CmpI->isUnsigned())
6277       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
6278     break;
6279   case Instruction::SExt:
6280     if (CmpI->isSigned())
6281       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
6282     break;
6283   case Instruction::Trunc:
6284     Constant *CmpConst;
6285     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
6286         CmpConst->getType() == SrcTy) {
6287       // Here we have the following case:
6288       //
6289       //   %cond = cmp iN %x, CmpConst
6290       //   %tr = trunc iN %x to iK
6291       //   %narrowsel = select i1 %cond, iK %t, iK C
6292       //
6293       // We can always move trunc after select operation:
6294       //
6295       //   %cond = cmp iN %x, CmpConst
6296       //   %widesel = select i1 %cond, iN %x, iN CmpConst
6297       //   %tr = trunc iN %widesel to iK
6298       //
6299       // Note that C could be extended in any way because we don't care about
6300       // upper bits after truncation. It can't be abs pattern, because it would
6301       // look like:
6302       //
6303       //   select i1 %cond, x, -x.
6304       //
6305       // So only min/max pattern could be matched. Such match requires widened C
6306       // == CmpConst. That is why set widened C = CmpConst, condition trunc
6307       // CmpConst == C is checked below.
6308       CastedTo = CmpConst;
6309     } else {
6310       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
6311     }
6312     break;
6313   case Instruction::FPTrunc:
6314     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
6315     break;
6316   case Instruction::FPExt:
6317     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
6318     break;
6319   case Instruction::FPToUI:
6320     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
6321     break;
6322   case Instruction::FPToSI:
6323     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
6324     break;
6325   case Instruction::UIToFP:
6326     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
6327     break;
6328   case Instruction::SIToFP:
6329     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
6330     break;
6331   default:
6332     break;
6333   }
6334 
6335   if (!CastedTo)
6336     return nullptr;
6337 
6338   // Make sure the cast doesn't lose any information.
6339   Constant *CastedBack =
6340       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
6341   if (CastedBack != C)
6342     return nullptr;
6343 
6344   return CastedTo;
6345 }
6346 
6347 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
6348                                              Instruction::CastOps *CastOp,
6349                                              unsigned Depth) {
6350   if (Depth >= MaxAnalysisRecursionDepth)
6351     return {SPF_UNKNOWN, SPNB_NA, false};
6352 
6353   SelectInst *SI = dyn_cast<SelectInst>(V);
6354   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
6355 
6356   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
6357   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
6358 
6359   Value *TrueVal = SI->getTrueValue();
6360   Value *FalseVal = SI->getFalseValue();
6361 
6362   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
6363                                             CastOp, Depth);
6364 }
6365 
6366 SelectPatternResult llvm::matchDecomposedSelectPattern(
6367     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
6368     Instruction::CastOps *CastOp, unsigned Depth) {
6369   CmpInst::Predicate Pred = CmpI->getPredicate();
6370   Value *CmpLHS = CmpI->getOperand(0);
6371   Value *CmpRHS = CmpI->getOperand(1);
6372   FastMathFlags FMF;
6373   if (isa<FPMathOperator>(CmpI))
6374     FMF = CmpI->getFastMathFlags();
6375 
6376   // Bail out early.
6377   if (CmpI->isEquality())
6378     return {SPF_UNKNOWN, SPNB_NA, false};
6379 
6380   // Deal with type mismatches.
6381   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
6382     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
6383       // If this is a potential fmin/fmax with a cast to integer, then ignore
6384       // -0.0 because there is no corresponding integer value.
6385       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6386         FMF.setNoSignedZeros();
6387       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6388                                   cast<CastInst>(TrueVal)->getOperand(0), C,
6389                                   LHS, RHS, Depth);
6390     }
6391     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
6392       // If this is a potential fmin/fmax with a cast to integer, then ignore
6393       // -0.0 because there is no corresponding integer value.
6394       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
6395         FMF.setNoSignedZeros();
6396       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
6397                                   C, cast<CastInst>(FalseVal)->getOperand(0),
6398                                   LHS, RHS, Depth);
6399     }
6400   }
6401   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
6402                               LHS, RHS, Depth);
6403 }
6404 
6405 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
6406   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
6407   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
6408   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
6409   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
6410   if (SPF == SPF_FMINNUM)
6411     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
6412   if (SPF == SPF_FMAXNUM)
6413     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
6414   llvm_unreachable("unhandled!");
6415 }
6416 
6417 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
6418   if (SPF == SPF_SMIN) return SPF_SMAX;
6419   if (SPF == SPF_UMIN) return SPF_UMAX;
6420   if (SPF == SPF_SMAX) return SPF_SMIN;
6421   if (SPF == SPF_UMAX) return SPF_UMIN;
6422   llvm_unreachable("unhandled!");
6423 }
6424 
6425 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) {
6426   switch (MinMaxID) {
6427   case Intrinsic::smax: return Intrinsic::smin;
6428   case Intrinsic::smin: return Intrinsic::smax;
6429   case Intrinsic::umax: return Intrinsic::umin;
6430   case Intrinsic::umin: return Intrinsic::umax;
6431   default: llvm_unreachable("Unexpected intrinsic");
6432   }
6433 }
6434 
6435 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
6436   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
6437 }
6438 
6439 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) {
6440   switch (SPF) {
6441   case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth);
6442   case SPF_SMIN: return APInt::getSignedMinValue(BitWidth);
6443   case SPF_UMAX: return APInt::getMaxValue(BitWidth);
6444   case SPF_UMIN: return APInt::getMinValue(BitWidth);
6445   default: llvm_unreachable("Unexpected flavor");
6446   }
6447 }
6448 
6449 std::pair<Intrinsic::ID, bool>
6450 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) {
6451   // Check if VL contains select instructions that can be folded into a min/max
6452   // vector intrinsic and return the intrinsic if it is possible.
6453   // TODO: Support floating point min/max.
6454   bool AllCmpSingleUse = true;
6455   SelectPatternResult SelectPattern;
6456   SelectPattern.Flavor = SPF_UNKNOWN;
6457   if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) {
6458         Value *LHS, *RHS;
6459         auto CurrentPattern = matchSelectPattern(I, LHS, RHS);
6460         if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) ||
6461             CurrentPattern.Flavor == SPF_FMINNUM ||
6462             CurrentPattern.Flavor == SPF_FMAXNUM ||
6463             !I->getType()->isIntOrIntVectorTy())
6464           return false;
6465         if (SelectPattern.Flavor != SPF_UNKNOWN &&
6466             SelectPattern.Flavor != CurrentPattern.Flavor)
6467           return false;
6468         SelectPattern = CurrentPattern;
6469         AllCmpSingleUse &=
6470             match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value()));
6471         return true;
6472       })) {
6473     switch (SelectPattern.Flavor) {
6474     case SPF_SMIN:
6475       return {Intrinsic::smin, AllCmpSingleUse};
6476     case SPF_UMIN:
6477       return {Intrinsic::umin, AllCmpSingleUse};
6478     case SPF_SMAX:
6479       return {Intrinsic::smax, AllCmpSingleUse};
6480     case SPF_UMAX:
6481       return {Intrinsic::umax, AllCmpSingleUse};
6482     default:
6483       llvm_unreachable("unexpected select pattern flavor");
6484     }
6485   }
6486   return {Intrinsic::not_intrinsic, false};
6487 }
6488 
6489 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO,
6490                                  Value *&Start, Value *&Step) {
6491   // Handle the case of a simple two-predecessor recurrence PHI.
6492   // There's a lot more that could theoretically be done here, but
6493   // this is sufficient to catch some interesting cases.
6494   if (P->getNumIncomingValues() != 2)
6495     return false;
6496 
6497   for (unsigned i = 0; i != 2; ++i) {
6498     Value *L = P->getIncomingValue(i);
6499     Value *R = P->getIncomingValue(!i);
6500     Operator *LU = dyn_cast<Operator>(L);
6501     if (!LU)
6502       continue;
6503     unsigned Opcode = LU->getOpcode();
6504 
6505     switch (Opcode) {
6506     default:
6507       continue;
6508     // TODO: Expand list -- xor, div, gep, uaddo, etc..
6509     case Instruction::LShr:
6510     case Instruction::AShr:
6511     case Instruction::Shl:
6512     case Instruction::Add:
6513     case Instruction::Sub:
6514     case Instruction::And:
6515     case Instruction::Or:
6516     case Instruction::Mul: {
6517       Value *LL = LU->getOperand(0);
6518       Value *LR = LU->getOperand(1);
6519       // Find a recurrence.
6520       if (LL == P)
6521         L = LR;
6522       else if (LR == P)
6523         L = LL;
6524       else
6525         continue; // Check for recurrence with L and R flipped.
6526 
6527       break; // Match!
6528     }
6529     };
6530 
6531     // We have matched a recurrence of the form:
6532     //   %iv = [R, %entry], [%iv.next, %backedge]
6533     //   %iv.next = binop %iv, L
6534     // OR
6535     //   %iv = [R, %entry], [%iv.next, %backedge]
6536     //   %iv.next = binop L, %iv
6537     BO = cast<BinaryOperator>(LU);
6538     Start = R;
6539     Step = L;
6540     return true;
6541   }
6542   return false;
6543 }
6544 
6545 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P,
6546                                  Value *&Start, Value *&Step) {
6547   BinaryOperator *BO = nullptr;
6548   P = dyn_cast<PHINode>(I->getOperand(0));
6549   if (!P)
6550     P = dyn_cast<PHINode>(I->getOperand(1));
6551   return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I;
6552 }
6553 
6554 /// Return true if "icmp Pred LHS RHS" is always true.
6555 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
6556                             const Value *RHS, const DataLayout &DL,
6557                             unsigned Depth) {
6558   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
6559   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
6560     return true;
6561 
6562   switch (Pred) {
6563   default:
6564     return false;
6565 
6566   case CmpInst::ICMP_SLE: {
6567     const APInt *C;
6568 
6569     // LHS s<= LHS +_{nsw} C   if C >= 0
6570     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
6571       return !C->isNegative();
6572     return false;
6573   }
6574 
6575   case CmpInst::ICMP_ULE: {
6576     const APInt *C;
6577 
6578     // LHS u<= LHS +_{nuw} C   for any C
6579     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
6580       return true;
6581 
6582     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
6583     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
6584                                        const Value *&X,
6585                                        const APInt *&CA, const APInt *&CB) {
6586       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
6587           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
6588         return true;
6589 
6590       // If X & C == 0 then (X | C) == X +_{nuw} C
6591       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
6592           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
6593         KnownBits Known(CA->getBitWidth());
6594         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
6595                          /*CxtI*/ nullptr, /*DT*/ nullptr);
6596         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
6597           return true;
6598       }
6599 
6600       return false;
6601     };
6602 
6603     const Value *X;
6604     const APInt *CLHS, *CRHS;
6605     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
6606       return CLHS->ule(*CRHS);
6607 
6608     return false;
6609   }
6610   }
6611 }
6612 
6613 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6614 /// ALHS ARHS" is true.  Otherwise, return None.
6615 static Optional<bool>
6616 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6617                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6618                       const DataLayout &DL, unsigned Depth) {
6619   switch (Pred) {
6620   default:
6621     return None;
6622 
6623   case CmpInst::ICMP_SLT:
6624   case CmpInst::ICMP_SLE:
6625     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6626         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6627       return true;
6628     return None;
6629 
6630   case CmpInst::ICMP_ULT:
6631   case CmpInst::ICMP_ULE:
6632     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6633         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6634       return true;
6635     return None;
6636   }
6637 }
6638 
6639 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6640 /// when the operands match, but are swapped.
6641 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6642                           const Value *BLHS, const Value *BRHS,
6643                           bool &IsSwappedOps) {
6644 
6645   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6646   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6647   return IsMatchingOps || IsSwappedOps;
6648 }
6649 
6650 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6651 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6652 /// Otherwise, return None if we can't infer anything.
6653 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6654                                                     CmpInst::Predicate BPred,
6655                                                     bool AreSwappedOps) {
6656   // Canonicalize the predicate as if the operands were not commuted.
6657   if (AreSwappedOps)
6658     BPred = ICmpInst::getSwappedPredicate(BPred);
6659 
6660   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6661     return true;
6662   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6663     return false;
6664 
6665   return None;
6666 }
6667 
6668 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6669 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6670 /// Otherwise, return None if we can't infer anything.
6671 static Optional<bool>
6672 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6673                                  const ConstantInt *C1,
6674                                  CmpInst::Predicate BPred,
6675                                  const ConstantInt *C2) {
6676   ConstantRange DomCR =
6677       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6678   ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue());
6679   ConstantRange Intersection = DomCR.intersectWith(CR);
6680   ConstantRange Difference = DomCR.difference(CR);
6681   if (Intersection.isEmptySet())
6682     return false;
6683   if (Difference.isEmptySet())
6684     return true;
6685   return None;
6686 }
6687 
6688 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6689 /// false.  Otherwise, return None if we can't infer anything.
6690 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6691                                          CmpInst::Predicate BPred,
6692                                          const Value *BLHS, const Value *BRHS,
6693                                          const DataLayout &DL, bool LHSIsTrue,
6694                                          unsigned Depth) {
6695   Value *ALHS = LHS->getOperand(0);
6696   Value *ARHS = LHS->getOperand(1);
6697 
6698   // The rest of the logic assumes the LHS condition is true.  If that's not the
6699   // case, invert the predicate to make it so.
6700   CmpInst::Predicate APred =
6701       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6702 
6703   // Can we infer anything when the two compares have matching operands?
6704   bool AreSwappedOps;
6705   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6706     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6707             APred, BPred, AreSwappedOps))
6708       return Implication;
6709     // No amount of additional analysis will infer the second condition, so
6710     // early exit.
6711     return None;
6712   }
6713 
6714   // Can we infer anything when the LHS operands match and the RHS operands are
6715   // constants (not necessarily matching)?
6716   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6717     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6718             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6719       return Implication;
6720     // No amount of additional analysis will infer the second condition, so
6721     // early exit.
6722     return None;
6723   }
6724 
6725   if (APred == BPred)
6726     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6727   return None;
6728 }
6729 
6730 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6731 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6732 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction.
6733 static Optional<bool>
6734 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred,
6735                    const Value *RHSOp0, const Value *RHSOp1,
6736                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6737   // The LHS must be an 'or', 'and', or a 'select' instruction.
6738   assert((LHS->getOpcode() == Instruction::And ||
6739           LHS->getOpcode() == Instruction::Or ||
6740           LHS->getOpcode() == Instruction::Select) &&
6741          "Expected LHS to be 'and', 'or', or 'select'.");
6742 
6743   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6744 
6745   // If the result of an 'or' is false, then we know both legs of the 'or' are
6746   // false.  Similarly, if the result of an 'and' is true, then we know both
6747   // legs of the 'and' are true.
6748   const Value *ALHS, *ARHS;
6749   if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) ||
6750       (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) {
6751     // FIXME: Make this non-recursion.
6752     if (Optional<bool> Implication = isImpliedCondition(
6753             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6754       return Implication;
6755     if (Optional<bool> Implication = isImpliedCondition(
6756             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6757       return Implication;
6758     return None;
6759   }
6760   return None;
6761 }
6762 
6763 Optional<bool>
6764 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6765                          const Value *RHSOp0, const Value *RHSOp1,
6766                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6767   // Bail out when we hit the limit.
6768   if (Depth == MaxAnalysisRecursionDepth)
6769     return None;
6770 
6771   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6772   // example.
6773   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6774     return None;
6775 
6776   Type *OpTy = LHS->getType();
6777   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6778 
6779   // FIXME: Extending the code below to handle vectors.
6780   if (OpTy->isVectorTy())
6781     return None;
6782 
6783   assert(OpTy->isIntegerTy(1) && "implied by above");
6784 
6785   // Both LHS and RHS are icmps.
6786   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6787   if (LHSCmp)
6788     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6789                               Depth);
6790 
6791   /// The LHS should be an 'or', 'and', or a 'select' instruction.  We expect
6792   /// the RHS to be an icmp.
6793   /// FIXME: Add support for and/or/select on the RHS.
6794   if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
6795     if ((LHSI->getOpcode() == Instruction::And ||
6796          LHSI->getOpcode() == Instruction::Or ||
6797          LHSI->getOpcode() == Instruction::Select))
6798       return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6799                                 Depth);
6800   }
6801   return None;
6802 }
6803 
6804 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6805                                         const DataLayout &DL, bool LHSIsTrue,
6806                                         unsigned Depth) {
6807   // LHS ==> RHS by definition
6808   if (LHS == RHS)
6809     return LHSIsTrue;
6810 
6811   if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS))
6812     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6813                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6814                               LHSIsTrue, Depth);
6815 
6816   if (Depth == MaxAnalysisRecursionDepth)
6817     return None;
6818 
6819   // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2
6820   // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2
6821   const Value *RHS1, *RHS2;
6822   if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) {
6823     if (Optional<bool> Imp =
6824             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6825       if (*Imp == true)
6826         return true;
6827     if (Optional<bool> Imp =
6828             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6829       if (*Imp == true)
6830         return true;
6831   }
6832   if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) {
6833     if (Optional<bool> Imp =
6834             isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1))
6835       if (*Imp == false)
6836         return false;
6837     if (Optional<bool> Imp =
6838             isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1))
6839       if (*Imp == false)
6840         return false;
6841   }
6842 
6843   return None;
6844 }
6845 
6846 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6847 // condition dominating ContextI or nullptr, if no condition is found.
6848 static std::pair<Value *, bool>
6849 getDomPredecessorCondition(const Instruction *ContextI) {
6850   if (!ContextI || !ContextI->getParent())
6851     return {nullptr, false};
6852 
6853   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6854   // dominator tree (eg, from a SimplifyQuery) instead?
6855   const BasicBlock *ContextBB = ContextI->getParent();
6856   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6857   if (!PredBB)
6858     return {nullptr, false};
6859 
6860   // We need a conditional branch in the predecessor.
6861   Value *PredCond;
6862   BasicBlock *TrueBB, *FalseBB;
6863   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6864     return {nullptr, false};
6865 
6866   // The branch should get simplified. Don't bother simplifying this condition.
6867   if (TrueBB == FalseBB)
6868     return {nullptr, false};
6869 
6870   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6871          "Predecessor block does not point to successor?");
6872 
6873   // Is this condition implied by the predecessor condition?
6874   return {PredCond, TrueBB == ContextBB};
6875 }
6876 
6877 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6878                                              const Instruction *ContextI,
6879                                              const DataLayout &DL) {
6880   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6881   auto PredCond = getDomPredecessorCondition(ContextI);
6882   if (PredCond.first)
6883     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6884   return None;
6885 }
6886 
6887 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6888                                              const Value *LHS, const Value *RHS,
6889                                              const Instruction *ContextI,
6890                                              const DataLayout &DL) {
6891   auto PredCond = getDomPredecessorCondition(ContextI);
6892   if (PredCond.first)
6893     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6894                               PredCond.second);
6895   return None;
6896 }
6897 
6898 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6899                               APInt &Upper, const InstrInfoQuery &IIQ,
6900                               bool PreferSignedRange) {
6901   unsigned Width = Lower.getBitWidth();
6902   const APInt *C;
6903   switch (BO.getOpcode()) {
6904   case Instruction::Add:
6905     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
6906       bool HasNSW = IIQ.hasNoSignedWrap(&BO);
6907       bool HasNUW = IIQ.hasNoUnsignedWrap(&BO);
6908 
6909       // If the caller expects a signed compare, then try to use a signed range.
6910       // Otherwise if both no-wraps are set, use the unsigned range because it
6911       // is never larger than the signed range. Example:
6912       // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125].
6913       if (PreferSignedRange && HasNSW && HasNUW)
6914         HasNUW = false;
6915 
6916       if (HasNUW) {
6917         // 'add nuw x, C' produces [C, UINT_MAX].
6918         Lower = *C;
6919       } else if (HasNSW) {
6920         if (C->isNegative()) {
6921           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6922           Lower = APInt::getSignedMinValue(Width);
6923           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6924         } else {
6925           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6926           Lower = APInt::getSignedMinValue(Width) + *C;
6927           Upper = APInt::getSignedMaxValue(Width) + 1;
6928         }
6929       }
6930     }
6931     break;
6932 
6933   case Instruction::And:
6934     if (match(BO.getOperand(1), m_APInt(C)))
6935       // 'and x, C' produces [0, C].
6936       Upper = *C + 1;
6937     break;
6938 
6939   case Instruction::Or:
6940     if (match(BO.getOperand(1), m_APInt(C)))
6941       // 'or x, C' produces [C, UINT_MAX].
6942       Lower = *C;
6943     break;
6944 
6945   case Instruction::AShr:
6946     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6947       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6948       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6949       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6950     } else if (match(BO.getOperand(0), m_APInt(C))) {
6951       unsigned ShiftAmount = Width - 1;
6952       if (!C->isZero() && IIQ.isExact(&BO))
6953         ShiftAmount = C->countTrailingZeros();
6954       if (C->isNegative()) {
6955         // 'ashr C, x' produces [C, C >> (Width-1)]
6956         Lower = *C;
6957         Upper = C->ashr(ShiftAmount) + 1;
6958       } else {
6959         // 'ashr C, x' produces [C >> (Width-1), C]
6960         Lower = C->ashr(ShiftAmount);
6961         Upper = *C + 1;
6962       }
6963     }
6964     break;
6965 
6966   case Instruction::LShr:
6967     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6968       // 'lshr x, C' produces [0, UINT_MAX >> C].
6969       Upper = APInt::getAllOnes(Width).lshr(*C) + 1;
6970     } else if (match(BO.getOperand(0), m_APInt(C))) {
6971       // 'lshr C, x' produces [C >> (Width-1), C].
6972       unsigned ShiftAmount = Width - 1;
6973       if (!C->isZero() && IIQ.isExact(&BO))
6974         ShiftAmount = C->countTrailingZeros();
6975       Lower = C->lshr(ShiftAmount);
6976       Upper = *C + 1;
6977     }
6978     break;
6979 
6980   case Instruction::Shl:
6981     if (match(BO.getOperand(0), m_APInt(C))) {
6982       if (IIQ.hasNoUnsignedWrap(&BO)) {
6983         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6984         Lower = *C;
6985         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6986       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6987         if (C->isNegative()) {
6988           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6989           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6990           Lower = C->shl(ShiftAmount);
6991           Upper = *C + 1;
6992         } else {
6993           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6994           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6995           Lower = *C;
6996           Upper = C->shl(ShiftAmount) + 1;
6997         }
6998       }
6999     }
7000     break;
7001 
7002   case Instruction::SDiv:
7003     if (match(BO.getOperand(1), m_APInt(C))) {
7004       APInt IntMin = APInt::getSignedMinValue(Width);
7005       APInt IntMax = APInt::getSignedMaxValue(Width);
7006       if (C->isAllOnes()) {
7007         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
7008         //    where C != -1 and C != 0 and C != 1
7009         Lower = IntMin + 1;
7010         Upper = IntMax + 1;
7011       } else if (C->countLeadingZeros() < Width - 1) {
7012         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
7013         //    where C != -1 and C != 0 and C != 1
7014         Lower = IntMin.sdiv(*C);
7015         Upper = IntMax.sdiv(*C);
7016         if (Lower.sgt(Upper))
7017           std::swap(Lower, Upper);
7018         Upper = Upper + 1;
7019         assert(Upper != Lower && "Upper part of range has wrapped!");
7020       }
7021     } else if (match(BO.getOperand(0), m_APInt(C))) {
7022       if (C->isMinSignedValue()) {
7023         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
7024         Lower = *C;
7025         Upper = Lower.lshr(1) + 1;
7026       } else {
7027         // 'sdiv C, x' produces [-|C|, |C|].
7028         Upper = C->abs() + 1;
7029         Lower = (-Upper) + 1;
7030       }
7031     }
7032     break;
7033 
7034   case Instruction::UDiv:
7035     if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) {
7036       // 'udiv x, C' produces [0, UINT_MAX / C].
7037       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
7038     } else if (match(BO.getOperand(0), m_APInt(C))) {
7039       // 'udiv C, x' produces [0, C].
7040       Upper = *C + 1;
7041     }
7042     break;
7043 
7044   case Instruction::SRem:
7045     if (match(BO.getOperand(1), m_APInt(C))) {
7046       // 'srem x, C' produces (-|C|, |C|).
7047       Upper = C->abs();
7048       Lower = (-Upper) + 1;
7049     }
7050     break;
7051 
7052   case Instruction::URem:
7053     if (match(BO.getOperand(1), m_APInt(C)))
7054       // 'urem x, C' produces [0, C).
7055       Upper = *C;
7056     break;
7057 
7058   default:
7059     break;
7060   }
7061 }
7062 
7063 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
7064                                   APInt &Upper) {
7065   unsigned Width = Lower.getBitWidth();
7066   const APInt *C;
7067   switch (II.getIntrinsicID()) {
7068   case Intrinsic::ctpop:
7069   case Intrinsic::ctlz:
7070   case Intrinsic::cttz:
7071     // Maximum of set/clear bits is the bit width.
7072     assert(Lower == 0 && "Expected lower bound to be zero");
7073     Upper = Width + 1;
7074     break;
7075   case Intrinsic::uadd_sat:
7076     // uadd.sat(x, C) produces [C, UINT_MAX].
7077     if (match(II.getOperand(0), m_APInt(C)) ||
7078         match(II.getOperand(1), m_APInt(C)))
7079       Lower = *C;
7080     break;
7081   case Intrinsic::sadd_sat:
7082     if (match(II.getOperand(0), m_APInt(C)) ||
7083         match(II.getOperand(1), m_APInt(C))) {
7084       if (C->isNegative()) {
7085         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
7086         Lower = APInt::getSignedMinValue(Width);
7087         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
7088       } else {
7089         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
7090         Lower = APInt::getSignedMinValue(Width) + *C;
7091         Upper = APInt::getSignedMaxValue(Width) + 1;
7092       }
7093     }
7094     break;
7095   case Intrinsic::usub_sat:
7096     // usub.sat(C, x) produces [0, C].
7097     if (match(II.getOperand(0), m_APInt(C)))
7098       Upper = *C + 1;
7099     // usub.sat(x, C) produces [0, UINT_MAX - C].
7100     else if (match(II.getOperand(1), m_APInt(C)))
7101       Upper = APInt::getMaxValue(Width) - *C + 1;
7102     break;
7103   case Intrinsic::ssub_sat:
7104     if (match(II.getOperand(0), m_APInt(C))) {
7105       if (C->isNegative()) {
7106         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
7107         Lower = APInt::getSignedMinValue(Width);
7108         Upper = *C - APInt::getSignedMinValue(Width) + 1;
7109       } else {
7110         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
7111         Lower = *C - APInt::getSignedMaxValue(Width);
7112         Upper = APInt::getSignedMaxValue(Width) + 1;
7113       }
7114     } else if (match(II.getOperand(1), m_APInt(C))) {
7115       if (C->isNegative()) {
7116         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
7117         Lower = APInt::getSignedMinValue(Width) - *C;
7118         Upper = APInt::getSignedMaxValue(Width) + 1;
7119       } else {
7120         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
7121         Lower = APInt::getSignedMinValue(Width);
7122         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
7123       }
7124     }
7125     break;
7126   case Intrinsic::umin:
7127   case Intrinsic::umax:
7128   case Intrinsic::smin:
7129   case Intrinsic::smax:
7130     if (!match(II.getOperand(0), m_APInt(C)) &&
7131         !match(II.getOperand(1), m_APInt(C)))
7132       break;
7133 
7134     switch (II.getIntrinsicID()) {
7135     case Intrinsic::umin:
7136       Upper = *C + 1;
7137       break;
7138     case Intrinsic::umax:
7139       Lower = *C;
7140       break;
7141     case Intrinsic::smin:
7142       Lower = APInt::getSignedMinValue(Width);
7143       Upper = *C + 1;
7144       break;
7145     case Intrinsic::smax:
7146       Lower = *C;
7147       Upper = APInt::getSignedMaxValue(Width) + 1;
7148       break;
7149     default:
7150       llvm_unreachable("Must be min/max intrinsic");
7151     }
7152     break;
7153   case Intrinsic::abs:
7154     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
7155     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7156     if (match(II.getOperand(1), m_One()))
7157       Upper = APInt::getSignedMaxValue(Width) + 1;
7158     else
7159       Upper = APInt::getSignedMinValue(Width) + 1;
7160     break;
7161   default:
7162     break;
7163   }
7164 }
7165 
7166 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
7167                                       APInt &Upper, const InstrInfoQuery &IIQ) {
7168   const Value *LHS = nullptr, *RHS = nullptr;
7169   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
7170   if (R.Flavor == SPF_UNKNOWN)
7171     return;
7172 
7173   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
7174 
7175   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
7176     // If the negation part of the abs (in RHS) has the NSW flag,
7177     // then the result of abs(X) is [0..SIGNED_MAX],
7178     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
7179     Lower = APInt::getZero(BitWidth);
7180     if (match(RHS, m_Neg(m_Specific(LHS))) &&
7181         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
7182       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7183     else
7184       Upper = APInt::getSignedMinValue(BitWidth) + 1;
7185     return;
7186   }
7187 
7188   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
7189     // The result of -abs(X) is <= 0.
7190     Lower = APInt::getSignedMinValue(BitWidth);
7191     Upper = APInt(BitWidth, 1);
7192     return;
7193   }
7194 
7195   const APInt *C;
7196   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
7197     return;
7198 
7199   switch (R.Flavor) {
7200     case SPF_UMIN:
7201       Upper = *C + 1;
7202       break;
7203     case SPF_UMAX:
7204       Lower = *C;
7205       break;
7206     case SPF_SMIN:
7207       Lower = APInt::getSignedMinValue(BitWidth);
7208       Upper = *C + 1;
7209       break;
7210     case SPF_SMAX:
7211       Lower = *C;
7212       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
7213       break;
7214     default:
7215       break;
7216   }
7217 }
7218 
7219 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) {
7220   // The maximum representable value of a half is 65504. For floats the maximum
7221   // value is 3.4e38 which requires roughly 129 bits.
7222   unsigned BitWidth = I->getType()->getScalarSizeInBits();
7223   if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy())
7224     return;
7225   if (isa<FPToSIInst>(I) && BitWidth >= 17) {
7226     Lower = APInt(BitWidth, -65504);
7227     Upper = APInt(BitWidth, 65505);
7228   }
7229 
7230   if (isa<FPToUIInst>(I) && BitWidth >= 16) {
7231     // For a fptoui the lower limit is left as 0.
7232     Upper = APInt(BitWidth, 65505);
7233   }
7234 }
7235 
7236 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned,
7237                                          bool UseInstrInfo, AssumptionCache *AC,
7238                                          const Instruction *CtxI,
7239                                          const DominatorTree *DT,
7240                                          unsigned Depth) {
7241   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
7242 
7243   if (Depth == MaxAnalysisRecursionDepth)
7244     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
7245 
7246   const APInt *C;
7247   if (match(V, m_APInt(C)))
7248     return ConstantRange(*C);
7249 
7250   InstrInfoQuery IIQ(UseInstrInfo);
7251   unsigned BitWidth = V->getType()->getScalarSizeInBits();
7252   APInt Lower = APInt(BitWidth, 0);
7253   APInt Upper = APInt(BitWidth, 0);
7254   if (auto *BO = dyn_cast<BinaryOperator>(V))
7255     setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned);
7256   else if (auto *II = dyn_cast<IntrinsicInst>(V))
7257     setLimitsForIntrinsic(*II, Lower, Upper);
7258   else if (auto *SI = dyn_cast<SelectInst>(V))
7259     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
7260   else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V))
7261     setLimitForFPToI(cast<Instruction>(V), Lower, Upper);
7262 
7263   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
7264 
7265   if (auto *I = dyn_cast<Instruction>(V))
7266     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
7267       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
7268 
7269   if (CtxI && AC) {
7270     // Try to restrict the range based on information from assumptions.
7271     for (auto &AssumeVH : AC->assumptionsFor(V)) {
7272       if (!AssumeVH)
7273         continue;
7274       CallInst *I = cast<CallInst>(AssumeVH);
7275       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
7276              "Got assumption for the wrong function!");
7277       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
7278              "must be an assume intrinsic");
7279 
7280       if (!isValidAssumeForContext(I, CtxI, DT))
7281         continue;
7282       Value *Arg = I->getArgOperand(0);
7283       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
7284       // Currently we just use information from comparisons.
7285       if (!Cmp || Cmp->getOperand(0) != V)
7286         continue;
7287       // TODO: Set "ForSigned" parameter via Cmp->isSigned()?
7288       ConstantRange RHS =
7289           computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false,
7290                                UseInstrInfo, AC, I, DT, Depth + 1);
7291       CR = CR.intersectWith(
7292           ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS));
7293     }
7294   }
7295 
7296   return CR;
7297 }
7298 
7299 static Optional<int64_t>
7300 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
7301   // Skip over the first indices.
7302   gep_type_iterator GTI = gep_type_begin(GEP);
7303   for (unsigned i = 1; i != Idx; ++i, ++GTI)
7304     /*skip along*/;
7305 
7306   // Compute the offset implied by the rest of the indices.
7307   int64_t Offset = 0;
7308   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
7309     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
7310     if (!OpC)
7311       return None;
7312     if (OpC->isZero())
7313       continue; // No offset.
7314 
7315     // Handle struct indices, which add their field offset to the pointer.
7316     if (StructType *STy = GTI.getStructTypeOrNull()) {
7317       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
7318       continue;
7319     }
7320 
7321     // Otherwise, we have a sequential type like an array or fixed-length
7322     // vector. Multiply the index by the ElementSize.
7323     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
7324     if (Size.isScalable())
7325       return None;
7326     Offset += Size.getFixedSize() * OpC->getSExtValue();
7327   }
7328 
7329   return Offset;
7330 }
7331 
7332 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
7333                                         const DataLayout &DL) {
7334   APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0);
7335   APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0);
7336   Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true);
7337   Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true);
7338 
7339   // Handle the trivial case first.
7340   if (Ptr1 == Ptr2)
7341     return Offset2.getSExtValue() - Offset1.getSExtValue();
7342 
7343   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
7344   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
7345 
7346   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
7347   // base.  After that base, they may have some number of common (and
7348   // potentially variable) indices.  After that they handle some constant
7349   // offset, which determines their offset from each other.  At this point, we
7350   // handle no other case.
7351   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) ||
7352       GEP1->getSourceElementType() != GEP2->getSourceElementType())
7353     return None;
7354 
7355   // Skip any common indices and track the GEP types.
7356   unsigned Idx = 1;
7357   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
7358     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
7359       break;
7360 
7361   auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL);
7362   auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL);
7363   if (!IOffset1 || !IOffset2)
7364     return None;
7365   return *IOffset2 - *IOffset1 + Offset2.getSExtValue() -
7366          Offset1.getSExtValue();
7367 }
7368