1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/APFloat.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/Optional.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/iterator_range.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/CallSite.h"
39 #include "llvm/IR/Constant.h"
40 #include "llvm/IR/ConstantRange.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/DiagnosticInfo.h"
45 #include "llvm/IR/Dominators.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/GetElementPtrTypeIterator.h"
48 #include "llvm/IR/GlobalAlias.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InstrTypes.h"
52 #include "llvm/IR/Instruction.h"
53 #include "llvm/IR/Instructions.h"
54 #include "llvm/IR/IntrinsicInst.h"
55 #include "llvm/IR/Intrinsics.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 const unsigned MaxDepth = 6;
81 
82 // Controls the number of uses of the value searched for possible
83 // dominating comparisons.
84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
85                                               cl::Hidden, cl::init(20));
86 
87 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
88 /// returns the element type's bitwidth.
89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
90   if (unsigned BitWidth = Ty->getScalarSizeInBits())
91     return BitWidth;
92 
93   return DL.getIndexTypeSizeInBits(Ty);
94 }
95 
96 namespace {
97 
98 // Simplifying using an assume can only be done in a particular control-flow
99 // context (the context instruction provides that context). If an assume and
100 // the context instruction are not in the same block then the DT helps in
101 // figuring out if we can use it.
102 struct Query {
103   const DataLayout &DL;
104   AssumptionCache *AC;
105   const Instruction *CxtI;
106   const DominatorTree *DT;
107 
108   // Unlike the other analyses, this may be a nullptr because not all clients
109   // provide it currently.
110   OptimizationRemarkEmitter *ORE;
111 
112   /// Set of assumptions that should be excluded from further queries.
113   /// This is because of the potential for mutual recursion to cause
114   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
115   /// classic case of this is assume(x = y), which will attempt to determine
116   /// bits in x from bits in y, which will attempt to determine bits in y from
117   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
118   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
119   /// (all of which can call computeKnownBits), and so on.
120   std::array<const Value *, MaxDepth> Excluded;
121 
122   /// If true, it is safe to use metadata during simplification.
123   InstrInfoQuery IIQ;
124 
125   unsigned NumExcluded = 0;
126 
127   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
128         const DominatorTree *DT, bool UseInstrInfo,
129         OptimizationRemarkEmitter *ORE = nullptr)
130       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
131 
132   Query(const Query &Q, const Value *NewExcl)
133       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
134         NumExcluded(Q.NumExcluded) {
135     Excluded = Q.Excluded;
136     Excluded[NumExcluded++] = NewExcl;
137     assert(NumExcluded <= Excluded.size());
138   }
139 
140   bool isExcluded(const Value *Value) const {
141     if (NumExcluded == 0)
142       return false;
143     auto End = Excluded.begin() + NumExcluded;
144     return std::find(Excluded.begin(), End, Value) != End;
145   }
146 };
147 
148 } // end anonymous namespace
149 
150 // Given the provided Value and, potentially, a context instruction, return
151 // the preferred context instruction (if any).
152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
153   // If we've been provided with a context instruction, then use that (provided
154   // it has been inserted).
155   if (CxtI && CxtI->getParent())
156     return CxtI;
157 
158   // If the value is really an already-inserted instruction, then use that.
159   CxtI = dyn_cast<Instruction>(V);
160   if (CxtI && CxtI->getParent())
161     return CxtI;
162 
163   return nullptr;
164 }
165 
166 static void computeKnownBits(const Value *V, KnownBits &Known,
167                              unsigned Depth, const Query &Q);
168 
169 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
170                             const DataLayout &DL, unsigned Depth,
171                             AssumptionCache *AC, const Instruction *CxtI,
172                             const DominatorTree *DT,
173                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
174   ::computeKnownBits(V, Known, Depth,
175                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
176 }
177 
178 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
179                                   const Query &Q);
180 
181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
182                                  unsigned Depth, AssumptionCache *AC,
183                                  const Instruction *CxtI,
184                                  const DominatorTree *DT,
185                                  OptimizationRemarkEmitter *ORE,
186                                  bool UseInstrInfo) {
187   return ::computeKnownBits(
188       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
189 }
190 
191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
192                                const DataLayout &DL, AssumptionCache *AC,
193                                const Instruction *CxtI, const DominatorTree *DT,
194                                bool UseInstrInfo) {
195   assert(LHS->getType() == RHS->getType() &&
196          "LHS and RHS should have the same type");
197   assert(LHS->getType()->isIntOrIntVectorTy() &&
198          "LHS and RHS should be integers");
199   // Look for an inverted mask: (X & ~M) op (Y & M).
200   Value *M;
201   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
202       match(RHS, m_c_And(m_Specific(M), m_Value())))
203     return true;
204   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
205       match(LHS, m_c_And(m_Specific(M), m_Value())))
206     return true;
207   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
208   KnownBits LHSKnown(IT->getBitWidth());
209   KnownBits RHSKnown(IT->getBitWidth());
210   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
211   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
212   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
213 }
214 
215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
216   for (const User *U : CxtI->users()) {
217     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
218       if (IC->isEquality())
219         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
220           if (C->isNullValue())
221             continue;
222     return false;
223   }
224   return true;
225 }
226 
227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
228                                    const Query &Q);
229 
230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
231                                   bool OrZero, unsigned Depth,
232                                   AssumptionCache *AC, const Instruction *CxtI,
233                                   const DominatorTree *DT, bool UseInstrInfo) {
234   return ::isKnownToBeAPowerOfTwo(
235       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
236 }
237 
238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
239 
240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
241                           AssumptionCache *AC, const Instruction *CxtI,
242                           const DominatorTree *DT, bool UseInstrInfo) {
243   return ::isKnownNonZero(V, Depth,
244                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
245 }
246 
247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
248                               unsigned Depth, AssumptionCache *AC,
249                               const Instruction *CxtI, const DominatorTree *DT,
250                               bool UseInstrInfo) {
251   KnownBits Known =
252       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
253   return Known.isNonNegative();
254 }
255 
256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
257                            AssumptionCache *AC, const Instruction *CxtI,
258                            const DominatorTree *DT, bool UseInstrInfo) {
259   if (auto *CI = dyn_cast<ConstantInt>(V))
260     return CI->getValue().isStrictlyPositive();
261 
262   // TODO: We'd doing two recursive queries here.  We should factor this such
263   // that only a single query is needed.
264   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
265          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
266 }
267 
268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
269                            AssumptionCache *AC, const Instruction *CxtI,
270                            const DominatorTree *DT, bool UseInstrInfo) {
271   KnownBits Known =
272       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
273   return Known.isNegative();
274 }
275 
276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
277 
278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
279                            const DataLayout &DL, AssumptionCache *AC,
280                            const Instruction *CxtI, const DominatorTree *DT,
281                            bool UseInstrInfo) {
282   return ::isKnownNonEqual(V1, V2,
283                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
284                                  UseInstrInfo, /*ORE=*/nullptr));
285 }
286 
287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
288                               const Query &Q);
289 
290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
291                              const DataLayout &DL, unsigned Depth,
292                              AssumptionCache *AC, const Instruction *CxtI,
293                              const DominatorTree *DT, bool UseInstrInfo) {
294   return ::MaskedValueIsZero(
295       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
296 }
297 
298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
299                                    const Query &Q);
300 
301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
302                                   unsigned Depth, AssumptionCache *AC,
303                                   const Instruction *CxtI,
304                                   const DominatorTree *DT, bool UseInstrInfo) {
305   return ::ComputeNumSignBits(
306       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
307 }
308 
309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
310                                    bool NSW,
311                                    KnownBits &KnownOut, KnownBits &Known2,
312                                    unsigned Depth, const Query &Q) {
313   unsigned BitWidth = KnownOut.getBitWidth();
314 
315   // If an initial sequence of bits in the result is not needed, the
316   // corresponding bits in the operands are not needed.
317   KnownBits LHSKnown(BitWidth);
318   computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
319   computeKnownBits(Op1, Known2, Depth + 1, Q);
320 
321   KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
322 }
323 
324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
325                                 KnownBits &Known, KnownBits &Known2,
326                                 unsigned Depth, const Query &Q) {
327   unsigned BitWidth = Known.getBitWidth();
328   computeKnownBits(Op1, Known, Depth + 1, Q);
329   computeKnownBits(Op0, Known2, Depth + 1, Q);
330 
331   bool isKnownNegative = false;
332   bool isKnownNonNegative = false;
333   // If the multiplication is known not to overflow, compute the sign bit.
334   if (NSW) {
335     if (Op0 == Op1) {
336       // The product of a number with itself is non-negative.
337       isKnownNonNegative = true;
338     } else {
339       bool isKnownNonNegativeOp1 = Known.isNonNegative();
340       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
341       bool isKnownNegativeOp1 = Known.isNegative();
342       bool isKnownNegativeOp0 = Known2.isNegative();
343       // The product of two numbers with the same sign is non-negative.
344       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
345         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
346       // The product of a negative number and a non-negative number is either
347       // negative or zero.
348       if (!isKnownNonNegative)
349         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
350                            isKnownNonZero(Op0, Depth, Q)) ||
351                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
352                            isKnownNonZero(Op1, Depth, Q));
353     }
354   }
355 
356   assert(!Known.hasConflict() && !Known2.hasConflict());
357   // Compute a conservative estimate for high known-0 bits.
358   unsigned LeadZ =  std::max(Known.countMinLeadingZeros() +
359                              Known2.countMinLeadingZeros(),
360                              BitWidth) - BitWidth;
361   LeadZ = std::min(LeadZ, BitWidth);
362 
363   // The result of the bottom bits of an integer multiply can be
364   // inferred by looking at the bottom bits of both operands and
365   // multiplying them together.
366   // We can infer at least the minimum number of known trailing bits
367   // of both operands. Depending on number of trailing zeros, we can
368   // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
369   // a and b are divisible by m and n respectively.
370   // We then calculate how many of those bits are inferrable and set
371   // the output. For example, the i8 mul:
372   //  a = XXXX1100 (12)
373   //  b = XXXX1110 (14)
374   // We know the bottom 3 bits are zero since the first can be divided by
375   // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
376   // Applying the multiplication to the trimmed arguments gets:
377   //    XX11 (3)
378   //    X111 (7)
379   // -------
380   //    XX11
381   //   XX11
382   //  XX11
383   // XX11
384   // -------
385   // XXXXX01
386   // Which allows us to infer the 2 LSBs. Since we're multiplying the result
387   // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
388   // The proof for this can be described as:
389   // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
390   //      (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
391   //                    umin(countTrailingZeros(C2), C6) +
392   //                    umin(C5 - umin(countTrailingZeros(C1), C5),
393   //                         C6 - umin(countTrailingZeros(C2), C6)))) - 1)
394   // %aa = shl i8 %a, C5
395   // %bb = shl i8 %b, C6
396   // %aaa = or i8 %aa, C1
397   // %bbb = or i8 %bb, C2
398   // %mul = mul i8 %aaa, %bbb
399   // %mask = and i8 %mul, C7
400   //   =>
401   // %mask = i8 ((C1*C2)&C7)
402   // Where C5, C6 describe the known bits of %a, %b
403   // C1, C2 describe the known bottom bits of %a, %b.
404   // C7 describes the mask of the known bits of the result.
405   APInt Bottom0 = Known.One;
406   APInt Bottom1 = Known2.One;
407 
408   // How many times we'd be able to divide each argument by 2 (shr by 1).
409   // This gives us the number of trailing zeros on the multiplication result.
410   unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
411   unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
412   unsigned TrailZero0 = Known.countMinTrailingZeros();
413   unsigned TrailZero1 = Known2.countMinTrailingZeros();
414   unsigned TrailZ = TrailZero0 + TrailZero1;
415 
416   // Figure out the fewest known-bits operand.
417   unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
418                                       TrailBitsKnown1 - TrailZero1);
419   unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
420 
421   APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
422                       Bottom1.getLoBits(TrailBitsKnown1);
423 
424   Known.resetAll();
425   Known.Zero.setHighBits(LeadZ);
426   Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
427   Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
428 
429   // Only make use of no-wrap flags if we failed to compute the sign bit
430   // directly.  This matters if the multiplication always overflows, in
431   // which case we prefer to follow the result of the direct computation,
432   // though as the program is invoking undefined behaviour we can choose
433   // whatever we like here.
434   if (isKnownNonNegative && !Known.isNegative())
435     Known.makeNonNegative();
436   else if (isKnownNegative && !Known.isNonNegative())
437     Known.makeNegative();
438 }
439 
440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
441                                              KnownBits &Known) {
442   unsigned BitWidth = Known.getBitWidth();
443   unsigned NumRanges = Ranges.getNumOperands() / 2;
444   assert(NumRanges >= 1);
445 
446   Known.Zero.setAllBits();
447   Known.One.setAllBits();
448 
449   for (unsigned i = 0; i < NumRanges; ++i) {
450     ConstantInt *Lower =
451         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
452     ConstantInt *Upper =
453         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
454     ConstantRange Range(Lower->getValue(), Upper->getValue());
455 
456     // The first CommonPrefixBits of all values in Range are equal.
457     unsigned CommonPrefixBits =
458         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
459 
460     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
461     Known.One &= Range.getUnsignedMax() & Mask;
462     Known.Zero &= ~Range.getUnsignedMax() & Mask;
463   }
464 }
465 
466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
467   SmallVector<const Value *, 16> WorkSet(1, I);
468   SmallPtrSet<const Value *, 32> Visited;
469   SmallPtrSet<const Value *, 16> EphValues;
470 
471   // The instruction defining an assumption's condition itself is always
472   // considered ephemeral to that assumption (even if it has other
473   // non-ephemeral users). See r246696's test case for an example.
474   if (is_contained(I->operands(), E))
475     return true;
476 
477   while (!WorkSet.empty()) {
478     const Value *V = WorkSet.pop_back_val();
479     if (!Visited.insert(V).second)
480       continue;
481 
482     // If all uses of this value are ephemeral, then so is this value.
483     if (llvm::all_of(V->users(), [&](const User *U) {
484                                    return EphValues.count(U);
485                                  })) {
486       if (V == E)
487         return true;
488 
489       if (V == I || isSafeToSpeculativelyExecute(V)) {
490        EphValues.insert(V);
491        if (const User *U = dyn_cast<User>(V))
492          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
493               J != JE; ++J)
494            WorkSet.push_back(*J);
495       }
496     }
497   }
498 
499   return false;
500 }
501 
502 // Is this an intrinsic that cannot be speculated but also cannot trap?
503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
504   if (const CallInst *CI = dyn_cast<CallInst>(I))
505     if (Function *F = CI->getCalledFunction())
506       switch (F->getIntrinsicID()) {
507       default: break;
508       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
509       case Intrinsic::assume:
510       case Intrinsic::sideeffect:
511       case Intrinsic::dbg_declare:
512       case Intrinsic::dbg_value:
513       case Intrinsic::dbg_label:
514       case Intrinsic::invariant_start:
515       case Intrinsic::invariant_end:
516       case Intrinsic::lifetime_start:
517       case Intrinsic::lifetime_end:
518       case Intrinsic::objectsize:
519       case Intrinsic::ptr_annotation:
520       case Intrinsic::var_annotation:
521         return true;
522       }
523 
524   return false;
525 }
526 
527 bool llvm::isValidAssumeForContext(const Instruction *Inv,
528                                    const Instruction *CxtI,
529                                    const DominatorTree *DT) {
530   // There are two restrictions on the use of an assume:
531   //  1. The assume must dominate the context (or the control flow must
532   //     reach the assume whenever it reaches the context).
533   //  2. The context must not be in the assume's set of ephemeral values
534   //     (otherwise we will use the assume to prove that the condition
535   //     feeding the assume is trivially true, thus causing the removal of
536   //     the assume).
537 
538   if (DT) {
539     if (DT->dominates(Inv, CxtI))
540       return true;
541   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
542     // We don't have a DT, but this trivially dominates.
543     return true;
544   }
545 
546   // With or without a DT, the only remaining case we will check is if the
547   // instructions are in the same BB.  Give up if that is not the case.
548   if (Inv->getParent() != CxtI->getParent())
549     return false;
550 
551   // If we have a dom tree, then we now know that the assume doesn't dominate
552   // the other instruction.  If we don't have a dom tree then we can check if
553   // the assume is first in the BB.
554   if (!DT) {
555     // Search forward from the assume until we reach the context (or the end
556     // of the block); the common case is that the assume will come first.
557     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
558          IE = Inv->getParent()->end(); I != IE; ++I)
559       if (&*I == CxtI)
560         return true;
561   }
562 
563   // The context comes first, but they're both in the same block. Make sure
564   // there is nothing in between that might interrupt the control flow.
565   for (BasicBlock::const_iterator I =
566          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
567        I != IE; ++I)
568     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
569       return false;
570 
571   return !isEphemeralValueOf(Inv, CxtI);
572 }
573 
574 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
575                                        unsigned Depth, const Query &Q) {
576   // Use of assumptions is context-sensitive. If we don't have a context, we
577   // cannot use them!
578   if (!Q.AC || !Q.CxtI)
579     return;
580 
581   unsigned BitWidth = Known.getBitWidth();
582 
583   // Note that the patterns below need to be kept in sync with the code
584   // in AssumptionCache::updateAffectedValues.
585 
586   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
587     if (!AssumeVH)
588       continue;
589     CallInst *I = cast<CallInst>(AssumeVH);
590     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
591            "Got assumption for the wrong function!");
592     if (Q.isExcluded(I))
593       continue;
594 
595     // Warning: This loop can end up being somewhat performance sensitive.
596     // We're running this loop for once for each value queried resulting in a
597     // runtime of ~O(#assumes * #values).
598 
599     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
600            "must be an assume intrinsic");
601 
602     Value *Arg = I->getArgOperand(0);
603 
604     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       assert(BitWidth == 1 && "assume operand is not i1?");
606       Known.setAllOnes();
607       return;
608     }
609     if (match(Arg, m_Not(m_Specific(V))) &&
610         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
611       assert(BitWidth == 1 && "assume operand is not i1?");
612       Known.setAllZero();
613       return;
614     }
615 
616     // The remaining tests are all recursive, so bail out if we hit the limit.
617     if (Depth == MaxDepth)
618       continue;
619 
620     Value *A, *B;
621     auto m_V = m_CombineOr(m_Specific(V),
622                            m_CombineOr(m_PtrToInt(m_Specific(V)),
623                            m_BitCast(m_Specific(V))));
624 
625     CmpInst::Predicate Pred;
626     uint64_t C;
627     // assume(v = a)
628     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
629         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
630       KnownBits RHSKnown(BitWidth);
631       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
632       Known.Zero |= RHSKnown.Zero;
633       Known.One  |= RHSKnown.One;
634     // assume(v & b = a)
635     } else if (match(Arg,
636                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
637                Pred == ICmpInst::ICMP_EQ &&
638                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
639       KnownBits RHSKnown(BitWidth);
640       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
641       KnownBits MaskKnown(BitWidth);
642       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
643 
644       // For those bits in the mask that are known to be one, we can propagate
645       // known bits from the RHS to V.
646       Known.Zero |= RHSKnown.Zero & MaskKnown.One;
647       Known.One  |= RHSKnown.One  & MaskKnown.One;
648     // assume(~(v & b) = a)
649     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
650                                    m_Value(A))) &&
651                Pred == ICmpInst::ICMP_EQ &&
652                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
653       KnownBits RHSKnown(BitWidth);
654       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
655       KnownBits MaskKnown(BitWidth);
656       computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
657 
658       // For those bits in the mask that are known to be one, we can propagate
659       // inverted known bits from the RHS to V.
660       Known.Zero |= RHSKnown.One  & MaskKnown.One;
661       Known.One  |= RHSKnown.Zero & MaskKnown.One;
662     // assume(v | b = a)
663     } else if (match(Arg,
664                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       KnownBits RHSKnown(BitWidth);
668       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
669       KnownBits BKnown(BitWidth);
670       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
671 
672       // For those bits in B that are known to be zero, we can propagate known
673       // bits from the RHS to V.
674       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
675       Known.One  |= RHSKnown.One  & BKnown.Zero;
676     // assume(~(v | b) = a)
677     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
678                                    m_Value(A))) &&
679                Pred == ICmpInst::ICMP_EQ &&
680                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
681       KnownBits RHSKnown(BitWidth);
682       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
683       KnownBits BKnown(BitWidth);
684       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
685 
686       // For those bits in B that are known to be zero, we can propagate
687       // inverted known bits from the RHS to V.
688       Known.Zero |= RHSKnown.One  & BKnown.Zero;
689       Known.One  |= RHSKnown.Zero & BKnown.Zero;
690     // assume(v ^ b = a)
691     } else if (match(Arg,
692                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
693                Pred == ICmpInst::ICMP_EQ &&
694                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695       KnownBits RHSKnown(BitWidth);
696       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
697       KnownBits BKnown(BitWidth);
698       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
699 
700       // For those bits in B that are known to be zero, we can propagate known
701       // bits from the RHS to V. For those bits in B that are known to be one,
702       // we can propagate inverted known bits from the RHS to V.
703       Known.Zero |= RHSKnown.Zero & BKnown.Zero;
704       Known.One  |= RHSKnown.One  & BKnown.Zero;
705       Known.Zero |= RHSKnown.One  & BKnown.One;
706       Known.One  |= RHSKnown.Zero & BKnown.One;
707     // assume(~(v ^ b) = a)
708     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
709                                    m_Value(A))) &&
710                Pred == ICmpInst::ICMP_EQ &&
711                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
712       KnownBits RHSKnown(BitWidth);
713       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
714       KnownBits BKnown(BitWidth);
715       computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
716 
717       // For those bits in B that are known to be zero, we can propagate
718       // inverted known bits from the RHS to V. For those bits in B that are
719       // known to be one, we can propagate known bits from the RHS to V.
720       Known.Zero |= RHSKnown.One  & BKnown.Zero;
721       Known.One  |= RHSKnown.Zero & BKnown.Zero;
722       Known.Zero |= RHSKnown.Zero & BKnown.One;
723       Known.One  |= RHSKnown.One  & BKnown.One;
724     // assume(v << c = a)
725     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
726                                    m_Value(A))) &&
727                Pred == ICmpInst::ICMP_EQ &&
728                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
729                C < BitWidth) {
730       KnownBits RHSKnown(BitWidth);
731       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
732       // For those bits in RHS that are known, we can propagate them to known
733       // bits in V shifted to the right by C.
734       RHSKnown.Zero.lshrInPlace(C);
735       Known.Zero |= RHSKnown.Zero;
736       RHSKnown.One.lshrInPlace(C);
737       Known.One  |= RHSKnown.One;
738     // assume(~(v << c) = a)
739     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
740                                    m_Value(A))) &&
741                Pred == ICmpInst::ICMP_EQ &&
742                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
743                C < BitWidth) {
744       KnownBits RHSKnown(BitWidth);
745       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
746       // For those bits in RHS that are known, we can propagate them inverted
747       // to known bits in V shifted to the right by C.
748       RHSKnown.One.lshrInPlace(C);
749       Known.Zero |= RHSKnown.One;
750       RHSKnown.Zero.lshrInPlace(C);
751       Known.One  |= RHSKnown.Zero;
752     // assume(v >> c = a)
753     } else if (match(Arg,
754                      m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
755                               m_Value(A))) &&
756                Pred == ICmpInst::ICMP_EQ &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
758                C < BitWidth) {
759       KnownBits RHSKnown(BitWidth);
760       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
761       // For those bits in RHS that are known, we can propagate them to known
762       // bits in V shifted to the right by C.
763       Known.Zero |= RHSKnown.Zero << C;
764       Known.One  |= RHSKnown.One  << C;
765     // assume(~(v >> c) = a)
766     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
767                                    m_Value(A))) &&
768                Pred == ICmpInst::ICMP_EQ &&
769                isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
770                C < BitWidth) {
771       KnownBits RHSKnown(BitWidth);
772       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
773       // For those bits in RHS that are known, we can propagate them inverted
774       // to known bits in V shifted to the right by C.
775       Known.Zero |= RHSKnown.One  << C;
776       Known.One  |= RHSKnown.Zero << C;
777     // assume(v >=_s c) where c is non-negative
778     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
779                Pred == ICmpInst::ICMP_SGE &&
780                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
781       KnownBits RHSKnown(BitWidth);
782       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
783 
784       if (RHSKnown.isNonNegative()) {
785         // We know that the sign bit is zero.
786         Known.makeNonNegative();
787       }
788     // assume(v >_s c) where c is at least -1.
789     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
790                Pred == ICmpInst::ICMP_SGT &&
791                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
792       KnownBits RHSKnown(BitWidth);
793       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
794 
795       if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
796         // We know that the sign bit is zero.
797         Known.makeNonNegative();
798       }
799     // assume(v <=_s c) where c is negative
800     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
801                Pred == ICmpInst::ICMP_SLE &&
802                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803       KnownBits RHSKnown(BitWidth);
804       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
805 
806       if (RHSKnown.isNegative()) {
807         // We know that the sign bit is one.
808         Known.makeNegative();
809       }
810     // assume(v <_s c) where c is non-positive
811     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
812                Pred == ICmpInst::ICMP_SLT &&
813                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
814       KnownBits RHSKnown(BitWidth);
815       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
816 
817       if (RHSKnown.isZero() || RHSKnown.isNegative()) {
818         // We know that the sign bit is one.
819         Known.makeNegative();
820       }
821     // assume(v <=_u c)
822     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
823                Pred == ICmpInst::ICMP_ULE &&
824                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
825       KnownBits RHSKnown(BitWidth);
826       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
827 
828       // Whatever high bits in c are zero are known to be zero.
829       Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
830       // assume(v <_u c)
831     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
832                Pred == ICmpInst::ICMP_ULT &&
833                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
834       KnownBits RHSKnown(BitWidth);
835       computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
836 
837       // If the RHS is known zero, then this assumption must be wrong (nothing
838       // is unsigned less than zero). Signal a conflict and get out of here.
839       if (RHSKnown.isZero()) {
840         Known.Zero.setAllBits();
841         Known.One.setAllBits();
842         break;
843       }
844 
845       // Whatever high bits in c are zero are known to be zero (if c is a power
846       // of 2, then one more).
847       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
848         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
849       else
850         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
851     }
852   }
853 
854   // If assumptions conflict with each other or previous known bits, then we
855   // have a logical fallacy. It's possible that the assumption is not reachable,
856   // so this isn't a real bug. On the other hand, the program may have undefined
857   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
858   // clear out the known bits, try to warn the user, and hope for the best.
859   if (Known.Zero.intersects(Known.One)) {
860     Known.resetAll();
861 
862     if (Q.ORE)
863       Q.ORE->emit([&]() {
864         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
865         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
866                                           CxtI)
867                << "Detected conflicting code assumptions. Program may "
868                   "have undefined behavior, or compiler may have "
869                   "internal error.";
870       });
871   }
872 }
873 
874 /// Compute known bits from a shift operator, including those with a
875 /// non-constant shift amount. Known is the output of this function. Known2 is a
876 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
877 /// operator-specific functions that, given the known-zero or known-one bits
878 /// respectively, and a shift amount, compute the implied known-zero or
879 /// known-one bits of the shift operator's result respectively for that shift
880 /// amount. The results from calling KZF and KOF are conservatively combined for
881 /// all permitted shift amounts.
882 static void computeKnownBitsFromShiftOperator(
883     const Operator *I, KnownBits &Known, KnownBits &Known2,
884     unsigned Depth, const Query &Q,
885     function_ref<APInt(const APInt &, unsigned)> KZF,
886     function_ref<APInt(const APInt &, unsigned)> KOF) {
887   unsigned BitWidth = Known.getBitWidth();
888 
889   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
890     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
891 
892     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
893     Known.Zero = KZF(Known.Zero, ShiftAmt);
894     Known.One  = KOF(Known.One, ShiftAmt);
895     // If the known bits conflict, this must be an overflowing left shift, so
896     // the shift result is poison. We can return anything we want. Choose 0 for
897     // the best folding opportunity.
898     if (Known.hasConflict())
899       Known.setAllZero();
900 
901     return;
902   }
903 
904   computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
905 
906   // If the shift amount could be greater than or equal to the bit-width of the
907   // LHS, the value could be poison, but bail out because the check below is
908   // expensive. TODO: Should we just carry on?
909   if ((~Known.Zero).uge(BitWidth)) {
910     Known.resetAll();
911     return;
912   }
913 
914   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
915   // BitWidth > 64 and any upper bits are known, we'll end up returning the
916   // limit value (which implies all bits are known).
917   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
918   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
919 
920   // It would be more-clearly correct to use the two temporaries for this
921   // calculation. Reusing the APInts here to prevent unnecessary allocations.
922   Known.resetAll();
923 
924   // If we know the shifter operand is nonzero, we can sometimes infer more
925   // known bits. However this is expensive to compute, so be lazy about it and
926   // only compute it when absolutely necessary.
927   Optional<bool> ShifterOperandIsNonZero;
928 
929   // Early exit if we can't constrain any well-defined shift amount.
930   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
931       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
932     ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
933     if (!*ShifterOperandIsNonZero)
934       return;
935   }
936 
937   computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
938 
939   Known.Zero.setAllBits();
940   Known.One.setAllBits();
941   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
942     // Combine the shifted known input bits only for those shift amounts
943     // compatible with its known constraints.
944     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
945       continue;
946     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
947       continue;
948     // If we know the shifter is nonzero, we may be able to infer more known
949     // bits. This check is sunk down as far as possible to avoid the expensive
950     // call to isKnownNonZero if the cheaper checks above fail.
951     if (ShiftAmt == 0) {
952       if (!ShifterOperandIsNonZero.hasValue())
953         ShifterOperandIsNonZero =
954             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
955       if (*ShifterOperandIsNonZero)
956         continue;
957     }
958 
959     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
960     Known.One  &= KOF(Known2.One, ShiftAmt);
961   }
962 
963   // If the known bits conflict, the result is poison. Return a 0 and hope the
964   // caller can further optimize that.
965   if (Known.hasConflict())
966     Known.setAllZero();
967 }
968 
969 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
970                                          unsigned Depth, const Query &Q) {
971   unsigned BitWidth = Known.getBitWidth();
972 
973   KnownBits Known2(Known);
974   switch (I->getOpcode()) {
975   default: break;
976   case Instruction::Load:
977     if (MDNode *MD =
978             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
979       computeKnownBitsFromRangeMetadata(*MD, Known);
980     break;
981   case Instruction::And: {
982     // If either the LHS or the RHS are Zero, the result is zero.
983     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
984     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
985 
986     // Output known-1 bits are only known if set in both the LHS & RHS.
987     Known.One &= Known2.One;
988     // Output known-0 are known to be clear if zero in either the LHS | RHS.
989     Known.Zero |= Known2.Zero;
990 
991     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
992     // here we handle the more general case of adding any odd number by
993     // matching the form add(x, add(x, y)) where y is odd.
994     // TODO: This could be generalized to clearing any bit set in y where the
995     // following bit is known to be unset in y.
996     Value *X = nullptr, *Y = nullptr;
997     if (!Known.Zero[0] && !Known.One[0] &&
998         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
999       Known2.resetAll();
1000       computeKnownBits(Y, Known2, Depth + 1, Q);
1001       if (Known2.countMinTrailingOnes() > 0)
1002         Known.Zero.setBit(0);
1003     }
1004     break;
1005   }
1006   case Instruction::Or:
1007     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1008     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1009 
1010     // Output known-0 bits are only known if clear in both the LHS & RHS.
1011     Known.Zero &= Known2.Zero;
1012     // Output known-1 are known to be set if set in either the LHS | RHS.
1013     Known.One |= Known2.One;
1014     break;
1015   case Instruction::Xor: {
1016     computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
1017     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1018 
1019     // Output known-0 bits are known if clear or set in both the LHS & RHS.
1020     APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1021     // Output known-1 are known to be set if set in only one of the LHS, RHS.
1022     Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1023     Known.Zero = std::move(KnownZeroOut);
1024     break;
1025   }
1026   case Instruction::Mul: {
1027     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1028     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
1029                         Known2, Depth, Q);
1030     break;
1031   }
1032   case Instruction::UDiv: {
1033     // For the purposes of computing leading zeros we can conservatively
1034     // treat a udiv as a logical right shift by the power of 2 known to
1035     // be less than the denominator.
1036     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1037     unsigned LeadZ = Known2.countMinLeadingZeros();
1038 
1039     Known2.resetAll();
1040     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1041     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1042     if (RHSMaxLeadingZeros != BitWidth)
1043       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1044 
1045     Known.Zero.setHighBits(LeadZ);
1046     break;
1047   }
1048   case Instruction::Select: {
1049     const Value *LHS, *RHS;
1050     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1051     if (SelectPatternResult::isMinOrMax(SPF)) {
1052       computeKnownBits(RHS, Known, Depth + 1, Q);
1053       computeKnownBits(LHS, Known2, Depth + 1, Q);
1054     } else {
1055       computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1056       computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1057     }
1058 
1059     unsigned MaxHighOnes = 0;
1060     unsigned MaxHighZeros = 0;
1061     if (SPF == SPF_SMAX) {
1062       // If both sides are negative, the result is negative.
1063       if (Known.isNegative() && Known2.isNegative())
1064         // We can derive a lower bound on the result by taking the max of the
1065         // leading one bits.
1066         MaxHighOnes =
1067             std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1068       // If either side is non-negative, the result is non-negative.
1069       else if (Known.isNonNegative() || Known2.isNonNegative())
1070         MaxHighZeros = 1;
1071     } else if (SPF == SPF_SMIN) {
1072       // If both sides are non-negative, the result is non-negative.
1073       if (Known.isNonNegative() && Known2.isNonNegative())
1074         // We can derive an upper bound on the result by taking the max of the
1075         // leading zero bits.
1076         MaxHighZeros = std::max(Known.countMinLeadingZeros(),
1077                                 Known2.countMinLeadingZeros());
1078       // If either side is negative, the result is negative.
1079       else if (Known.isNegative() || Known2.isNegative())
1080         MaxHighOnes = 1;
1081     } else if (SPF == SPF_UMAX) {
1082       // We can derive a lower bound on the result by taking the max of the
1083       // leading one bits.
1084       MaxHighOnes =
1085           std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
1086     } else if (SPF == SPF_UMIN) {
1087       // We can derive an upper bound on the result by taking the max of the
1088       // leading zero bits.
1089       MaxHighZeros =
1090           std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1091     } else if (SPF == SPF_ABS) {
1092       // RHS from matchSelectPattern returns the negation part of abs pattern.
1093       // If the negate has an NSW flag we can assume the sign bit of the result
1094       // will be 0 because that makes abs(INT_MIN) undefined.
1095       if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1096         MaxHighZeros = 1;
1097     }
1098 
1099     // Only known if known in both the LHS and RHS.
1100     Known.One &= Known2.One;
1101     Known.Zero &= Known2.Zero;
1102     if (MaxHighOnes > 0)
1103       Known.One.setHighBits(MaxHighOnes);
1104     if (MaxHighZeros > 0)
1105       Known.Zero.setHighBits(MaxHighZeros);
1106     break;
1107   }
1108   case Instruction::FPTrunc:
1109   case Instruction::FPExt:
1110   case Instruction::FPToUI:
1111   case Instruction::FPToSI:
1112   case Instruction::SIToFP:
1113   case Instruction::UIToFP:
1114     break; // Can't work with floating point.
1115   case Instruction::PtrToInt:
1116   case Instruction::IntToPtr:
1117     // Fall through and handle them the same as zext/trunc.
1118     LLVM_FALLTHROUGH;
1119   case Instruction::ZExt:
1120   case Instruction::Trunc: {
1121     Type *SrcTy = I->getOperand(0)->getType();
1122 
1123     unsigned SrcBitWidth;
1124     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1125     // which fall through here.
1126     Type *ScalarTy = SrcTy->getScalarType();
1127     SrcBitWidth = ScalarTy->isPointerTy() ?
1128       Q.DL.getIndexTypeSizeInBits(ScalarTy) :
1129       Q.DL.getTypeSizeInBits(ScalarTy);
1130 
1131     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1132     Known = Known.zextOrTrunc(SrcBitWidth);
1133     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1134     Known = Known.zextOrTrunc(BitWidth);
1135     // Any top bits are known to be zero.
1136     if (BitWidth > SrcBitWidth)
1137       Known.Zero.setBitsFrom(SrcBitWidth);
1138     break;
1139   }
1140   case Instruction::BitCast: {
1141     Type *SrcTy = I->getOperand(0)->getType();
1142     if (SrcTy->isIntOrPtrTy() &&
1143         // TODO: For now, not handling conversions like:
1144         // (bitcast i64 %x to <2 x i32>)
1145         !I->getType()->isVectorTy()) {
1146       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1147       break;
1148     }
1149     break;
1150   }
1151   case Instruction::SExt: {
1152     // Compute the bits in the result that are not present in the input.
1153     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1154 
1155     Known = Known.trunc(SrcBitWidth);
1156     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1157     // If the sign bit of the input is known set or clear, then we know the
1158     // top bits of the result.
1159     Known = Known.sext(BitWidth);
1160     break;
1161   }
1162   case Instruction::Shl: {
1163     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1164     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1165     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1166       APInt KZResult = KnownZero << ShiftAmt;
1167       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1168       // If this shift has "nsw" keyword, then the result is either a poison
1169       // value or has the same sign bit as the first operand.
1170       if (NSW && KnownZero.isSignBitSet())
1171         KZResult.setSignBit();
1172       return KZResult;
1173     };
1174 
1175     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1176       APInt KOResult = KnownOne << ShiftAmt;
1177       if (NSW && KnownOne.isSignBitSet())
1178         KOResult.setSignBit();
1179       return KOResult;
1180     };
1181 
1182     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1183     break;
1184   }
1185   case Instruction::LShr: {
1186     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1187     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1188       APInt KZResult = KnownZero.lshr(ShiftAmt);
1189       // High bits known zero.
1190       KZResult.setHighBits(ShiftAmt);
1191       return KZResult;
1192     };
1193 
1194     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1195       return KnownOne.lshr(ShiftAmt);
1196     };
1197 
1198     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1199     break;
1200   }
1201   case Instruction::AShr: {
1202     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1203     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1204       return KnownZero.ashr(ShiftAmt);
1205     };
1206 
1207     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1208       return KnownOne.ashr(ShiftAmt);
1209     };
1210 
1211     computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
1212     break;
1213   }
1214   case Instruction::Sub: {
1215     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1216     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1217                            Known, Known2, Depth, Q);
1218     break;
1219   }
1220   case Instruction::Add: {
1221     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1222     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1223                            Known, Known2, Depth, Q);
1224     break;
1225   }
1226   case Instruction::SRem:
1227     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1228       APInt RA = Rem->getValue().abs();
1229       if (RA.isPowerOf2()) {
1230         APInt LowBits = RA - 1;
1231         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1232 
1233         // The low bits of the first operand are unchanged by the srem.
1234         Known.Zero = Known2.Zero & LowBits;
1235         Known.One = Known2.One & LowBits;
1236 
1237         // If the first operand is non-negative or has all low bits zero, then
1238         // the upper bits are all zero.
1239         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1240           Known.Zero |= ~LowBits;
1241 
1242         // If the first operand is negative and not all low bits are zero, then
1243         // the upper bits are all one.
1244         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1245           Known.One |= ~LowBits;
1246 
1247         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1248         break;
1249       }
1250     }
1251 
1252     // The sign bit is the LHS's sign bit, except when the result of the
1253     // remainder is zero.
1254     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1255     // If it's known zero, our sign bit is also zero.
1256     if (Known2.isNonNegative())
1257       Known.makeNonNegative();
1258 
1259     break;
1260   case Instruction::URem: {
1261     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1262       const APInt &RA = Rem->getValue();
1263       if (RA.isPowerOf2()) {
1264         APInt LowBits = (RA - 1);
1265         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1266         Known.Zero |= ~LowBits;
1267         Known.One &= LowBits;
1268         break;
1269       }
1270     }
1271 
1272     // Since the result is less than or equal to either operand, any leading
1273     // zero bits in either operand must also exist in the result.
1274     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1275     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1276 
1277     unsigned Leaders =
1278         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1279     Known.resetAll();
1280     Known.Zero.setHighBits(Leaders);
1281     break;
1282   }
1283 
1284   case Instruction::Alloca: {
1285     const AllocaInst *AI = cast<AllocaInst>(I);
1286     unsigned Align = AI->getAlignment();
1287     if (Align == 0)
1288       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1289 
1290     if (Align > 0)
1291       Known.Zero.setLowBits(countTrailingZeros(Align));
1292     break;
1293   }
1294   case Instruction::GetElementPtr: {
1295     // Analyze all of the subscripts of this getelementptr instruction
1296     // to determine if we can prove known low zero bits.
1297     KnownBits LocalKnown(BitWidth);
1298     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1299     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1300 
1301     gep_type_iterator GTI = gep_type_begin(I);
1302     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1303       Value *Index = I->getOperand(i);
1304       if (StructType *STy = GTI.getStructTypeOrNull()) {
1305         // Handle struct member offset arithmetic.
1306 
1307         // Handle case when index is vector zeroinitializer
1308         Constant *CIndex = cast<Constant>(Index);
1309         if (CIndex->isZeroValue())
1310           continue;
1311 
1312         if (CIndex->getType()->isVectorTy())
1313           Index = CIndex->getSplatValue();
1314 
1315         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1316         const StructLayout *SL = Q.DL.getStructLayout(STy);
1317         uint64_t Offset = SL->getElementOffset(Idx);
1318         TrailZ = std::min<unsigned>(TrailZ,
1319                                     countTrailingZeros(Offset));
1320       } else {
1321         // Handle array index arithmetic.
1322         Type *IndexedTy = GTI.getIndexedType();
1323         if (!IndexedTy->isSized()) {
1324           TrailZ = 0;
1325           break;
1326         }
1327         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1328         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1329         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1330         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1331         TrailZ = std::min(TrailZ,
1332                           unsigned(countTrailingZeros(TypeSize) +
1333                                    LocalKnown.countMinTrailingZeros()));
1334       }
1335     }
1336 
1337     Known.Zero.setLowBits(TrailZ);
1338     break;
1339   }
1340   case Instruction::PHI: {
1341     const PHINode *P = cast<PHINode>(I);
1342     // Handle the case of a simple two-predecessor recurrence PHI.
1343     // There's a lot more that could theoretically be done here, but
1344     // this is sufficient to catch some interesting cases.
1345     if (P->getNumIncomingValues() == 2) {
1346       for (unsigned i = 0; i != 2; ++i) {
1347         Value *L = P->getIncomingValue(i);
1348         Value *R = P->getIncomingValue(!i);
1349         Operator *LU = dyn_cast<Operator>(L);
1350         if (!LU)
1351           continue;
1352         unsigned Opcode = LU->getOpcode();
1353         // Check for operations that have the property that if
1354         // both their operands have low zero bits, the result
1355         // will have low zero bits.
1356         if (Opcode == Instruction::Add ||
1357             Opcode == Instruction::Sub ||
1358             Opcode == Instruction::And ||
1359             Opcode == Instruction::Or ||
1360             Opcode == Instruction::Mul) {
1361           Value *LL = LU->getOperand(0);
1362           Value *LR = LU->getOperand(1);
1363           // Find a recurrence.
1364           if (LL == I)
1365             L = LR;
1366           else if (LR == I)
1367             L = LL;
1368           else
1369             break;
1370           // Ok, we have a PHI of the form L op= R. Check for low
1371           // zero bits.
1372           computeKnownBits(R, Known2, Depth + 1, Q);
1373 
1374           // We need to take the minimum number of known bits
1375           KnownBits Known3(Known);
1376           computeKnownBits(L, Known3, Depth + 1, Q);
1377 
1378           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1379                                          Known3.countMinTrailingZeros()));
1380 
1381           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1382           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1383             // If initial value of recurrence is nonnegative, and we are adding
1384             // a nonnegative number with nsw, the result can only be nonnegative
1385             // or poison value regardless of the number of times we execute the
1386             // add in phi recurrence. If initial value is negative and we are
1387             // adding a negative number with nsw, the result can only be
1388             // negative or poison value. Similar arguments apply to sub and mul.
1389             //
1390             // (add non-negative, non-negative) --> non-negative
1391             // (add negative, negative) --> negative
1392             if (Opcode == Instruction::Add) {
1393               if (Known2.isNonNegative() && Known3.isNonNegative())
1394                 Known.makeNonNegative();
1395               else if (Known2.isNegative() && Known3.isNegative())
1396                 Known.makeNegative();
1397             }
1398 
1399             // (sub nsw non-negative, negative) --> non-negative
1400             // (sub nsw negative, non-negative) --> negative
1401             else if (Opcode == Instruction::Sub && LL == I) {
1402               if (Known2.isNonNegative() && Known3.isNegative())
1403                 Known.makeNonNegative();
1404               else if (Known2.isNegative() && Known3.isNonNegative())
1405                 Known.makeNegative();
1406             }
1407 
1408             // (mul nsw non-negative, non-negative) --> non-negative
1409             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1410                      Known3.isNonNegative())
1411               Known.makeNonNegative();
1412           }
1413 
1414           break;
1415         }
1416       }
1417     }
1418 
1419     // Unreachable blocks may have zero-operand PHI nodes.
1420     if (P->getNumIncomingValues() == 0)
1421       break;
1422 
1423     // Otherwise take the unions of the known bit sets of the operands,
1424     // taking conservative care to avoid excessive recursion.
1425     if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
1426       // Skip if every incoming value references to ourself.
1427       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1428         break;
1429 
1430       Known.Zero.setAllBits();
1431       Known.One.setAllBits();
1432       for (Value *IncValue : P->incoming_values()) {
1433         // Skip direct self references.
1434         if (IncValue == P) continue;
1435 
1436         Known2 = KnownBits(BitWidth);
1437         // Recurse, but cap the recursion to one level, because we don't
1438         // want to waste time spinning around in loops.
1439         computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
1440         Known.Zero &= Known2.Zero;
1441         Known.One &= Known2.One;
1442         // If all bits have been ruled out, there's no need to check
1443         // more operands.
1444         if (!Known.Zero && !Known.One)
1445           break;
1446       }
1447     }
1448     break;
1449   }
1450   case Instruction::Call:
1451   case Instruction::Invoke:
1452     // If range metadata is attached to this call, set known bits from that,
1453     // and then intersect with known bits based on other properties of the
1454     // function.
1455     if (MDNode *MD =
1456             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1457       computeKnownBitsFromRangeMetadata(*MD, Known);
1458     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1459       computeKnownBits(RV, Known2, Depth + 1, Q);
1460       Known.Zero |= Known2.Zero;
1461       Known.One |= Known2.One;
1462     }
1463     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1464       switch (II->getIntrinsicID()) {
1465       default: break;
1466       case Intrinsic::bitreverse:
1467         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1468         Known.Zero |= Known2.Zero.reverseBits();
1469         Known.One |= Known2.One.reverseBits();
1470         break;
1471       case Intrinsic::bswap:
1472         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1473         Known.Zero |= Known2.Zero.byteSwap();
1474         Known.One |= Known2.One.byteSwap();
1475         break;
1476       case Intrinsic::ctlz: {
1477         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1478         // If we have a known 1, its position is our upper bound.
1479         unsigned PossibleLZ = Known2.One.countLeadingZeros();
1480         // If this call is undefined for 0, the result will be less than 2^n.
1481         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1482           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1483         unsigned LowBits = Log2_32(PossibleLZ)+1;
1484         Known.Zero.setBitsFrom(LowBits);
1485         break;
1486       }
1487       case Intrinsic::cttz: {
1488         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1489         // If we have a known 1, its position is our upper bound.
1490         unsigned PossibleTZ = Known2.One.countTrailingZeros();
1491         // If this call is undefined for 0, the result will be less than 2^n.
1492         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1493           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1494         unsigned LowBits = Log2_32(PossibleTZ)+1;
1495         Known.Zero.setBitsFrom(LowBits);
1496         break;
1497       }
1498       case Intrinsic::ctpop: {
1499         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1500         // We can bound the space the count needs.  Also, bits known to be zero
1501         // can't contribute to the population.
1502         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1503         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1504         Known.Zero.setBitsFrom(LowBits);
1505         // TODO: we could bound KnownOne using the lower bound on the number
1506         // of bits which might be set provided by popcnt KnownOne2.
1507         break;
1508       }
1509       case Intrinsic::x86_sse42_crc32_64_64:
1510         Known.Zero.setBitsFrom(32);
1511         break;
1512       }
1513     }
1514     break;
1515   case Instruction::ExtractElement:
1516     // Look through extract element. At the moment we keep this simple and skip
1517     // tracking the specific element. But at least we might find information
1518     // valid for all elements of the vector (for example if vector is sign
1519     // extended, shifted, etc).
1520     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1521     break;
1522   case Instruction::ExtractValue:
1523     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1524       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1525       if (EVI->getNumIndices() != 1) break;
1526       if (EVI->getIndices()[0] == 0) {
1527         switch (II->getIntrinsicID()) {
1528         default: break;
1529         case Intrinsic::uadd_with_overflow:
1530         case Intrinsic::sadd_with_overflow:
1531           computeKnownBitsAddSub(true, II->getArgOperand(0),
1532                                  II->getArgOperand(1), false, Known, Known2,
1533                                  Depth, Q);
1534           break;
1535         case Intrinsic::usub_with_overflow:
1536         case Intrinsic::ssub_with_overflow:
1537           computeKnownBitsAddSub(false, II->getArgOperand(0),
1538                                  II->getArgOperand(1), false, Known, Known2,
1539                                  Depth, Q);
1540           break;
1541         case Intrinsic::umul_with_overflow:
1542         case Intrinsic::smul_with_overflow:
1543           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1544                               Known, Known2, Depth, Q);
1545           break;
1546         }
1547       }
1548     }
1549   }
1550 }
1551 
1552 /// Determine which bits of V are known to be either zero or one and return
1553 /// them.
1554 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1555   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1556   computeKnownBits(V, Known, Depth, Q);
1557   return Known;
1558 }
1559 
1560 /// Determine which bits of V are known to be either zero or one and return
1561 /// them in the Known bit set.
1562 ///
1563 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1564 /// we cannot optimize based on the assumption that it is zero without changing
1565 /// it to be an explicit zero.  If we don't change it to zero, other code could
1566 /// optimized based on the contradictory assumption that it is non-zero.
1567 /// Because instcombine aggressively folds operations with undef args anyway,
1568 /// this won't lose us code quality.
1569 ///
1570 /// This function is defined on values with integer type, values with pointer
1571 /// type, and vectors of integers.  In the case
1572 /// where V is a vector, known zero, and known one values are the
1573 /// same width as the vector element, and the bit is set only if it is true
1574 /// for all of the elements in the vector.
1575 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
1576                       const Query &Q) {
1577   assert(V && "No Value?");
1578   assert(Depth <= MaxDepth && "Limit Search Depth");
1579   unsigned BitWidth = Known.getBitWidth();
1580 
1581   assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
1582           V->getType()->isPtrOrPtrVectorTy()) &&
1583          "Not integer or pointer type!");
1584 
1585   Type *ScalarTy = V->getType()->getScalarType();
1586   unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
1587     Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
1588   assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
1589   (void)BitWidth;
1590   (void)ExpectedWidth;
1591 
1592   const APInt *C;
1593   if (match(V, m_APInt(C))) {
1594     // We know all of the bits for a scalar constant or a splat vector constant!
1595     Known.One = *C;
1596     Known.Zero = ~Known.One;
1597     return;
1598   }
1599   // Null and aggregate-zero are all-zeros.
1600   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1601     Known.setAllZero();
1602     return;
1603   }
1604   // Handle a constant vector by taking the intersection of the known bits of
1605   // each element.
1606   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1607     // We know that CDS must be a vector of integers. Take the intersection of
1608     // each element.
1609     Known.Zero.setAllBits(); Known.One.setAllBits();
1610     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1611       APInt Elt = CDS->getElementAsAPInt(i);
1612       Known.Zero &= ~Elt;
1613       Known.One &= Elt;
1614     }
1615     return;
1616   }
1617 
1618   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1619     // We know that CV must be a vector of integers. Take the intersection of
1620     // each element.
1621     Known.Zero.setAllBits(); Known.One.setAllBits();
1622     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1623       Constant *Element = CV->getAggregateElement(i);
1624       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1625       if (!ElementCI) {
1626         Known.resetAll();
1627         return;
1628       }
1629       const APInt &Elt = ElementCI->getValue();
1630       Known.Zero &= ~Elt;
1631       Known.One &= Elt;
1632     }
1633     return;
1634   }
1635 
1636   // Start out not knowing anything.
1637   Known.resetAll();
1638 
1639   // We can't imply anything about undefs.
1640   if (isa<UndefValue>(V))
1641     return;
1642 
1643   // There's no point in looking through other users of ConstantData for
1644   // assumptions.  Confirm that we've handled them all.
1645   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1646 
1647   // Limit search depth.
1648   // All recursive calls that increase depth must come after this.
1649   if (Depth == MaxDepth)
1650     return;
1651 
1652   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1653   // the bits of its aliasee.
1654   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1655     if (!GA->isInterposable())
1656       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1657     return;
1658   }
1659 
1660   if (const Operator *I = dyn_cast<Operator>(V))
1661     computeKnownBitsFromOperator(I, Known, Depth, Q);
1662 
1663   // Aligned pointers have trailing zeros - refine Known.Zero set
1664   if (V->getType()->isPointerTy()) {
1665     unsigned Align = V->getPointerAlignment(Q.DL);
1666     if (Align)
1667       Known.Zero.setLowBits(countTrailingZeros(Align));
1668   }
1669 
1670   // computeKnownBitsFromAssume strictly refines Known.
1671   // Therefore, we run them after computeKnownBitsFromOperator.
1672 
1673   // Check whether a nearby assume intrinsic can determine some known bits.
1674   computeKnownBitsFromAssume(V, Known, Depth, Q);
1675 
1676   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1677 }
1678 
1679 /// Return true if the given value is known to have exactly one
1680 /// bit set when defined. For vectors return true if every element is known to
1681 /// be a power of two when defined. Supports values with integer or pointer
1682 /// types and vectors of integers.
1683 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1684                             const Query &Q) {
1685   assert(Depth <= MaxDepth && "Limit Search Depth");
1686 
1687   // Attempt to match against constants.
1688   if (OrZero && match(V, m_Power2OrZero()))
1689       return true;
1690   if (match(V, m_Power2()))
1691       return true;
1692 
1693   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1694   // it is shifted off the end then the result is undefined.
1695   if (match(V, m_Shl(m_One(), m_Value())))
1696     return true;
1697 
1698   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1699   // the bottom.  If it is shifted off the bottom then the result is undefined.
1700   if (match(V, m_LShr(m_SignMask(), m_Value())))
1701     return true;
1702 
1703   // The remaining tests are all recursive, so bail out if we hit the limit.
1704   if (Depth++ == MaxDepth)
1705     return false;
1706 
1707   Value *X = nullptr, *Y = nullptr;
1708   // A shift left or a logical shift right of a power of two is a power of two
1709   // or zero.
1710   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1711                  match(V, m_LShr(m_Value(X), m_Value()))))
1712     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1713 
1714   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1715     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1716 
1717   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1718     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1719            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1720 
1721   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1722     // A power of two and'd with anything is a power of two or zero.
1723     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1724         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1725       return true;
1726     // X & (-X) is always a power of two or zero.
1727     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1728       return true;
1729     return false;
1730   }
1731 
1732   // Adding a power-of-two or zero to the same power-of-two or zero yields
1733   // either the original power-of-two, a larger power-of-two or zero.
1734   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1735     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1736     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
1737         Q.IIQ.hasNoSignedWrap(VOBO)) {
1738       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1739           match(X, m_And(m_Value(), m_Specific(Y))))
1740         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1741           return true;
1742       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1743           match(Y, m_And(m_Value(), m_Specific(X))))
1744         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1745           return true;
1746 
1747       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1748       KnownBits LHSBits(BitWidth);
1749       computeKnownBits(X, LHSBits, Depth, Q);
1750 
1751       KnownBits RHSBits(BitWidth);
1752       computeKnownBits(Y, RHSBits, Depth, Q);
1753       // If i8 V is a power of two or zero:
1754       //  ZeroBits: 1 1 1 0 1 1 1 1
1755       // ~ZeroBits: 0 0 0 1 0 0 0 0
1756       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
1757         // If OrZero isn't set, we cannot give back a zero result.
1758         // Make sure either the LHS or RHS has a bit set.
1759         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
1760           return true;
1761     }
1762   }
1763 
1764   // An exact divide or right shift can only shift off zero bits, so the result
1765   // is a power of two only if the first operand is a power of two and not
1766   // copying a sign bit (sdiv int_min, 2).
1767   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1768       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1769     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1770                                   Depth, Q);
1771   }
1772 
1773   return false;
1774 }
1775 
1776 /// Test whether a GEP's result is known to be non-null.
1777 ///
1778 /// Uses properties inherent in a GEP to try to determine whether it is known
1779 /// to be non-null.
1780 ///
1781 /// Currently this routine does not support vector GEPs.
1782 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1783                               const Query &Q) {
1784   const Function *F = nullptr;
1785   if (const Instruction *I = dyn_cast<Instruction>(GEP))
1786     F = I->getFunction();
1787 
1788   if (!GEP->isInBounds() ||
1789       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
1790     return false;
1791 
1792   // FIXME: Support vector-GEPs.
1793   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1794 
1795   // If the base pointer is non-null, we cannot walk to a null address with an
1796   // inbounds GEP in address space zero.
1797   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1798     return true;
1799 
1800   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1801   // If so, then the GEP cannot produce a null pointer, as doing so would
1802   // inherently violate the inbounds contract within address space zero.
1803   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1804        GTI != GTE; ++GTI) {
1805     // Struct types are easy -- they must always be indexed by a constant.
1806     if (StructType *STy = GTI.getStructTypeOrNull()) {
1807       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1808       unsigned ElementIdx = OpC->getZExtValue();
1809       const StructLayout *SL = Q.DL.getStructLayout(STy);
1810       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1811       if (ElementOffset > 0)
1812         return true;
1813       continue;
1814     }
1815 
1816     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1817     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1818       continue;
1819 
1820     // Fast path the constant operand case both for efficiency and so we don't
1821     // increment Depth when just zipping down an all-constant GEP.
1822     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1823       if (!OpC->isZero())
1824         return true;
1825       continue;
1826     }
1827 
1828     // We post-increment Depth here because while isKnownNonZero increments it
1829     // as well, when we pop back up that increment won't persist. We don't want
1830     // to recurse 10k times just because we have 10k GEP operands. We don't
1831     // bail completely out because we want to handle constant GEPs regardless
1832     // of depth.
1833     if (Depth++ >= MaxDepth)
1834       continue;
1835 
1836     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1837       return true;
1838   }
1839 
1840   return false;
1841 }
1842 
1843 static bool isKnownNonNullFromDominatingCondition(const Value *V,
1844                                                   const Instruction *CtxI,
1845                                                   const DominatorTree *DT) {
1846   assert(V->getType()->isPointerTy() && "V must be pointer type");
1847   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
1848 
1849   if (!CtxI || !DT)
1850     return false;
1851 
1852   unsigned NumUsesExplored = 0;
1853   for (auto *U : V->users()) {
1854     // Avoid massive lists
1855     if (NumUsesExplored >= DomConditionsMaxUses)
1856       break;
1857     NumUsesExplored++;
1858 
1859     // If the value is used as an argument to a call or invoke, then argument
1860     // attributes may provide an answer about null-ness.
1861     if (auto CS = ImmutableCallSite(U))
1862       if (auto *CalledFunc = CS.getCalledFunction())
1863         for (const Argument &Arg : CalledFunc->args())
1864           if (CS.getArgOperand(Arg.getArgNo()) == V &&
1865               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
1866             return true;
1867 
1868     // Consider only compare instructions uniquely controlling a branch
1869     CmpInst::Predicate Pred;
1870     if (!match(const_cast<User *>(U),
1871                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
1872         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
1873       continue;
1874 
1875     SmallVector<const User *, 4> WorkList;
1876     SmallPtrSet<const User *, 4> Visited;
1877     for (auto *CmpU : U->users()) {
1878       assert(WorkList.empty() && "Should be!");
1879       if (Visited.insert(CmpU).second)
1880         WorkList.push_back(CmpU);
1881 
1882       while (!WorkList.empty()) {
1883         auto *Curr = WorkList.pop_back_val();
1884 
1885         // If a user is an AND, add all its users to the work list. We only
1886         // propagate "pred != null" condition through AND because it is only
1887         // correct to assume that all conditions of AND are met in true branch.
1888         // TODO: Support similar logic of OR and EQ predicate?
1889         if (Pred == ICmpInst::ICMP_NE)
1890           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
1891             if (BO->getOpcode() == Instruction::And) {
1892               for (auto *BOU : BO->users())
1893                 if (Visited.insert(BOU).second)
1894                   WorkList.push_back(BOU);
1895               continue;
1896             }
1897 
1898         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
1899           assert(BI->isConditional() && "uses a comparison!");
1900 
1901           BasicBlock *NonNullSuccessor =
1902               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
1903           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
1904           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
1905             return true;
1906         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
1907                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
1908           return true;
1909         }
1910       }
1911     }
1912   }
1913 
1914   return false;
1915 }
1916 
1917 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1918 /// ensure that the value it's attached to is never Value?  'RangeType' is
1919 /// is the type of the value described by the range.
1920 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1921   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1922   assert(NumRanges >= 1);
1923   for (unsigned i = 0; i < NumRanges; ++i) {
1924     ConstantInt *Lower =
1925         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1926     ConstantInt *Upper =
1927         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1928     ConstantRange Range(Lower->getValue(), Upper->getValue());
1929     if (Range.contains(Value))
1930       return false;
1931   }
1932   return true;
1933 }
1934 
1935 /// Return true if the given value is known to be non-zero when defined. For
1936 /// vectors, return true if every element is known to be non-zero when
1937 /// defined. For pointers, if the context instruction and dominator tree are
1938 /// specified, perform context-sensitive analysis and return true if the
1939 /// pointer couldn't possibly be null at the specified instruction.
1940 /// Supports values with integer or pointer type and vectors of integers.
1941 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1942   if (auto *C = dyn_cast<Constant>(V)) {
1943     if (C->isNullValue())
1944       return false;
1945     if (isa<ConstantInt>(C))
1946       // Must be non-zero due to null test above.
1947       return true;
1948 
1949     // For constant vectors, check that all elements are undefined or known
1950     // non-zero to determine that the whole vector is known non-zero.
1951     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1952       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1953         Constant *Elt = C->getAggregateElement(i);
1954         if (!Elt || Elt->isNullValue())
1955           return false;
1956         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1957           return false;
1958       }
1959       return true;
1960     }
1961 
1962     // A global variable in address space 0 is non null unless extern weak
1963     // or an absolute symbol reference. Other address spaces may have null as a
1964     // valid address for a global, so we can't assume anything.
1965     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1966       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
1967           GV->getType()->getAddressSpace() == 0)
1968         return true;
1969     } else
1970       return false;
1971   }
1972 
1973   if (auto *I = dyn_cast<Instruction>(V)) {
1974     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
1975       // If the possible ranges don't contain zero, then the value is
1976       // definitely non-zero.
1977       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1978         const APInt ZeroValue(Ty->getBitWidth(), 0);
1979         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1980           return true;
1981       }
1982     }
1983   }
1984 
1985   // Some of the tests below are recursive, so bail out if we hit the limit.
1986   if (Depth++ >= MaxDepth)
1987     return false;
1988 
1989   // Check for pointer simplifications.
1990   if (V->getType()->isPointerTy()) {
1991     // Alloca never returns null, malloc might.
1992     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
1993       return true;
1994 
1995     // A byval, inalloca, or nonnull argument is never null.
1996     if (const Argument *A = dyn_cast<Argument>(V))
1997       if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
1998         return true;
1999 
2000     // A Load tagged with nonnull metadata is never null.
2001     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2002       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2003         return true;
2004 
2005     if (auto CS = ImmutableCallSite(V)) {
2006       if (CS.isReturnNonNull())
2007         return true;
2008       if (const auto *RP = getArgumentAliasingToReturnedPointer(CS))
2009         return isKnownNonZero(RP, Depth, Q);
2010     }
2011   }
2012 
2013 
2014   // Check for recursive pointer simplifications.
2015   if (V->getType()->isPointerTy()) {
2016     if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2017       return true;
2018 
2019     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2020       if (isGEPKnownNonNull(GEP, Depth, Q))
2021         return true;
2022   }
2023 
2024   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2025 
2026   // X | Y != 0 if X != 0 or Y != 0.
2027   Value *X = nullptr, *Y = nullptr;
2028   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2029     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
2030 
2031   // ext X != 0 if X != 0.
2032   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2033     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2034 
2035   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2036   // if the lowest bit is shifted off the end.
2037   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2038     // shl nuw can't remove any non-zero bits.
2039     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2040     if (Q.IIQ.hasNoUnsignedWrap(BO))
2041       return isKnownNonZero(X, Depth, Q);
2042 
2043     KnownBits Known(BitWidth);
2044     computeKnownBits(X, Known, Depth, Q);
2045     if (Known.One[0])
2046       return true;
2047   }
2048   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2049   // defined if the sign bit is shifted off the end.
2050   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2051     // shr exact can only shift out zero bits.
2052     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2053     if (BO->isExact())
2054       return isKnownNonZero(X, Depth, Q);
2055 
2056     KnownBits Known = computeKnownBits(X, Depth, Q);
2057     if (Known.isNegative())
2058       return true;
2059 
2060     // If the shifter operand is a constant, and all of the bits shifted
2061     // out are known to be zero, and X is known non-zero then at least one
2062     // non-zero bit must remain.
2063     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2064       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2065       // Is there a known one in the portion not shifted out?
2066       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2067         return true;
2068       // Are all the bits to be shifted out known zero?
2069       if (Known.countMinTrailingZeros() >= ShiftVal)
2070         return isKnownNonZero(X, Depth, Q);
2071     }
2072   }
2073   // div exact can only produce a zero if the dividend is zero.
2074   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2075     return isKnownNonZero(X, Depth, Q);
2076   }
2077   // X + Y.
2078   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2079     KnownBits XKnown = computeKnownBits(X, Depth, Q);
2080     KnownBits YKnown = computeKnownBits(Y, Depth, Q);
2081 
2082     // If X and Y are both non-negative (as signed values) then their sum is not
2083     // zero unless both X and Y are zero.
2084     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2085       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
2086         return true;
2087 
2088     // If X and Y are both negative (as signed values) then their sum is not
2089     // zero unless both X and Y equal INT_MIN.
2090     if (XKnown.isNegative() && YKnown.isNegative()) {
2091       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2092       // The sign bit of X is set.  If some other bit is set then X is not equal
2093       // to INT_MIN.
2094       if (XKnown.One.intersects(Mask))
2095         return true;
2096       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2097       // to INT_MIN.
2098       if (YKnown.One.intersects(Mask))
2099         return true;
2100     }
2101 
2102     // The sum of a non-negative number and a power of two is not zero.
2103     if (XKnown.isNonNegative() &&
2104         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2105       return true;
2106     if (YKnown.isNonNegative() &&
2107         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2108       return true;
2109   }
2110   // X * Y.
2111   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2112     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2113     // If X and Y are non-zero then so is X * Y as long as the multiplication
2114     // does not overflow.
2115     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2116         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
2117       return true;
2118   }
2119   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2120   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2121     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
2122         isKnownNonZero(SI->getFalseValue(), Depth, Q))
2123       return true;
2124   }
2125   // PHI
2126   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2127     // Try and detect a recurrence that monotonically increases from a
2128     // starting value, as these are common as induction variables.
2129     if (PN->getNumIncomingValues() == 2) {
2130       Value *Start = PN->getIncomingValue(0);
2131       Value *Induction = PN->getIncomingValue(1);
2132       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2133         std::swap(Start, Induction);
2134       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2135         if (!C->isZero() && !C->isNegative()) {
2136           ConstantInt *X;
2137           if (Q.IIQ.UseInstrInfo &&
2138               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2139                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2140               !X->isNegative())
2141             return true;
2142         }
2143       }
2144     }
2145     // Check if all incoming values are non-zero constant.
2146     bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
2147       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
2148     });
2149     if (AllNonZeroConstants)
2150       return true;
2151   }
2152 
2153   KnownBits Known(BitWidth);
2154   computeKnownBits(V, Known, Depth, Q);
2155   return Known.One != 0;
2156 }
2157 
2158 /// Return true if V2 == V1 + X, where X is known non-zero.
2159 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2160   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2161   if (!BO || BO->getOpcode() != Instruction::Add)
2162     return false;
2163   Value *Op = nullptr;
2164   if (V2 == BO->getOperand(0))
2165     Op = BO->getOperand(1);
2166   else if (V2 == BO->getOperand(1))
2167     Op = BO->getOperand(0);
2168   else
2169     return false;
2170   return isKnownNonZero(Op, 0, Q);
2171 }
2172 
2173 /// Return true if it is known that V1 != V2.
2174 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2175   if (V1 == V2)
2176     return false;
2177   if (V1->getType() != V2->getType())
2178     // We can't look through casts yet.
2179     return false;
2180   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2181     return true;
2182 
2183   if (V1->getType()->isIntOrIntVectorTy()) {
2184     // Are any known bits in V1 contradictory to known bits in V2? If V1
2185     // has a known zero where V2 has a known one, they must not be equal.
2186     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2187     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2188 
2189     if (Known1.Zero.intersects(Known2.One) ||
2190         Known2.Zero.intersects(Known1.One))
2191       return true;
2192   }
2193   return false;
2194 }
2195 
2196 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2197 /// simplify operations downstream. Mask is known to be zero for bits that V
2198 /// cannot have.
2199 ///
2200 /// This function is defined on values with integer type, values with pointer
2201 /// type, and vectors of integers.  In the case
2202 /// where V is a vector, the mask, known zero, and known one values are the
2203 /// same width as the vector element, and the bit is set only if it is true
2204 /// for all of the elements in the vector.
2205 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2206                        const Query &Q) {
2207   KnownBits Known(Mask.getBitWidth());
2208   computeKnownBits(V, Known, Depth, Q);
2209   return Mask.isSubsetOf(Known.Zero);
2210 }
2211 
2212 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2213 // Returns the input and lower/upper bounds.
2214 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2215                                 const APInt *&CLow, const APInt *&CHigh) {
2216   assert(isa<Operator>(Select) &&
2217          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2218          "Input should be a Select!");
2219 
2220   const Value *LHS, *RHS, *LHS2, *RHS2;
2221   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2222   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2223     return false;
2224 
2225   if (!match(RHS, m_APInt(CLow)))
2226     return false;
2227 
2228   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2229   if (getInverseMinMaxFlavor(SPF) != SPF2)
2230     return false;
2231 
2232   if (!match(RHS2, m_APInt(CHigh)))
2233     return false;
2234 
2235   if (SPF == SPF_SMIN)
2236     std::swap(CLow, CHigh);
2237 
2238   In = LHS2;
2239   return CLow->sle(*CHigh);
2240 }
2241 
2242 /// For vector constants, loop over the elements and find the constant with the
2243 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2244 /// or if any element was not analyzed; otherwise, return the count for the
2245 /// element with the minimum number of sign bits.
2246 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2247                                                  unsigned TyBits) {
2248   const auto *CV = dyn_cast<Constant>(V);
2249   if (!CV || !CV->getType()->isVectorTy())
2250     return 0;
2251 
2252   unsigned MinSignBits = TyBits;
2253   unsigned NumElts = CV->getType()->getVectorNumElements();
2254   for (unsigned i = 0; i != NumElts; ++i) {
2255     // If we find a non-ConstantInt, bail out.
2256     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2257     if (!Elt)
2258       return 0;
2259 
2260     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2261   }
2262 
2263   return MinSignBits;
2264 }
2265 
2266 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2267                                        const Query &Q);
2268 
2269 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2270                                    const Query &Q) {
2271   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2272   assert(Result > 0 && "At least one sign bit needs to be present!");
2273   return Result;
2274 }
2275 
2276 /// Return the number of times the sign bit of the register is replicated into
2277 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2278 /// (itself), but other cases can give us information. For example, immediately
2279 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2280 /// other, so we return 3. For vectors, return the number of sign bits for the
2281 /// vector element with the minimum number of known sign bits.
2282 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2283                                        const Query &Q) {
2284   assert(Depth <= MaxDepth && "Limit Search Depth");
2285 
2286   // We return the minimum number of sign bits that are guaranteed to be present
2287   // in V, so for undef we have to conservatively return 1.  We don't have the
2288   // same behavior for poison though -- that's a FIXME today.
2289 
2290   Type *ScalarTy = V->getType()->getScalarType();
2291   unsigned TyBits = ScalarTy->isPointerTy() ?
2292     Q.DL.getIndexTypeSizeInBits(ScalarTy) :
2293     Q.DL.getTypeSizeInBits(ScalarTy);
2294 
2295   unsigned Tmp, Tmp2;
2296   unsigned FirstAnswer = 1;
2297 
2298   // Note that ConstantInt is handled by the general computeKnownBits case
2299   // below.
2300 
2301   if (Depth == MaxDepth)
2302     return 1;  // Limit search depth.
2303 
2304   const Operator *U = dyn_cast<Operator>(V);
2305   switch (Operator::getOpcode(V)) {
2306   default: break;
2307   case Instruction::SExt:
2308     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2309     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2310 
2311   case Instruction::SDiv: {
2312     const APInt *Denominator;
2313     // sdiv X, C -> adds log(C) sign bits.
2314     if (match(U->getOperand(1), m_APInt(Denominator))) {
2315 
2316       // Ignore non-positive denominator.
2317       if (!Denominator->isStrictlyPositive())
2318         break;
2319 
2320       // Calculate the incoming numerator bits.
2321       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2322 
2323       // Add floor(log(C)) bits to the numerator bits.
2324       return std::min(TyBits, NumBits + Denominator->logBase2());
2325     }
2326     break;
2327   }
2328 
2329   case Instruction::SRem: {
2330     const APInt *Denominator;
2331     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2332     // positive constant.  This let us put a lower bound on the number of sign
2333     // bits.
2334     if (match(U->getOperand(1), m_APInt(Denominator))) {
2335 
2336       // Ignore non-positive denominator.
2337       if (!Denominator->isStrictlyPositive())
2338         break;
2339 
2340       // Calculate the incoming numerator bits. SRem by a positive constant
2341       // can't lower the number of sign bits.
2342       unsigned NumrBits =
2343           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2344 
2345       // Calculate the leading sign bit constraints by examining the
2346       // denominator.  Given that the denominator is positive, there are two
2347       // cases:
2348       //
2349       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2350       //     (1 << ceilLogBase2(C)).
2351       //
2352       //  2. the numerator is negative.  Then the result range is (-C,0] and
2353       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2354       //
2355       // Thus a lower bound on the number of sign bits is `TyBits -
2356       // ceilLogBase2(C)`.
2357 
2358       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2359       return std::max(NumrBits, ResBits);
2360     }
2361     break;
2362   }
2363 
2364   case Instruction::AShr: {
2365     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2366     // ashr X, C   -> adds C sign bits.  Vectors too.
2367     const APInt *ShAmt;
2368     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2369       if (ShAmt->uge(TyBits))
2370         break;  // Bad shift.
2371       unsigned ShAmtLimited = ShAmt->getZExtValue();
2372       Tmp += ShAmtLimited;
2373       if (Tmp > TyBits) Tmp = TyBits;
2374     }
2375     return Tmp;
2376   }
2377   case Instruction::Shl: {
2378     const APInt *ShAmt;
2379     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2380       // shl destroys sign bits.
2381       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2382       if (ShAmt->uge(TyBits) ||      // Bad shift.
2383           ShAmt->uge(Tmp)) break;    // Shifted all sign bits out.
2384       Tmp2 = ShAmt->getZExtValue();
2385       return Tmp - Tmp2;
2386     }
2387     break;
2388   }
2389   case Instruction::And:
2390   case Instruction::Or:
2391   case Instruction::Xor:    // NOT is handled here.
2392     // Logical binary ops preserve the number of sign bits at the worst.
2393     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2394     if (Tmp != 1) {
2395       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2396       FirstAnswer = std::min(Tmp, Tmp2);
2397       // We computed what we know about the sign bits as our first
2398       // answer. Now proceed to the generic code that uses
2399       // computeKnownBits, and pick whichever answer is better.
2400     }
2401     break;
2402 
2403   case Instruction::Select: {
2404     // If we have a clamp pattern, we know that the number of sign bits will be
2405     // the minimum of the clamp min/max range.
2406     const Value *X;
2407     const APInt *CLow, *CHigh;
2408     if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2409       return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2410 
2411     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2412     if (Tmp == 1) break;
2413     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2414     return std::min(Tmp, Tmp2);
2415   }
2416 
2417   case Instruction::Add:
2418     // Add can have at most one carry bit.  Thus we know that the output
2419     // is, at worst, one more bit than the inputs.
2420     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2421     if (Tmp == 1) break;
2422 
2423     // Special case decrementing a value (ADD X, -1):
2424     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2425       if (CRHS->isAllOnesValue()) {
2426         KnownBits Known(TyBits);
2427         computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2428 
2429         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2430         // sign bits set.
2431         if ((Known.Zero | 1).isAllOnesValue())
2432           return TyBits;
2433 
2434         // If we are subtracting one from a positive number, there is no carry
2435         // out of the result.
2436         if (Known.isNonNegative())
2437           return Tmp;
2438       }
2439 
2440     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2441     if (Tmp2 == 1) break;
2442     return std::min(Tmp, Tmp2)-1;
2443 
2444   case Instruction::Sub:
2445     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2446     if (Tmp2 == 1) break;
2447 
2448     // Handle NEG.
2449     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2450       if (CLHS->isNullValue()) {
2451         KnownBits Known(TyBits);
2452         computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2453         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2454         // sign bits set.
2455         if ((Known.Zero | 1).isAllOnesValue())
2456           return TyBits;
2457 
2458         // If the input is known to be positive (the sign bit is known clear),
2459         // the output of the NEG has the same number of sign bits as the input.
2460         if (Known.isNonNegative())
2461           return Tmp2;
2462 
2463         // Otherwise, we treat this like a SUB.
2464       }
2465 
2466     // Sub can have at most one carry bit.  Thus we know that the output
2467     // is, at worst, one more bit than the inputs.
2468     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2469     if (Tmp == 1) break;
2470     return std::min(Tmp, Tmp2)-1;
2471 
2472   case Instruction::Mul: {
2473     // The output of the Mul can be at most twice the valid bits in the inputs.
2474     unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2475     if (SignBitsOp0 == 1) break;
2476     unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2477     if (SignBitsOp1 == 1) break;
2478     unsigned OutValidBits =
2479         (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2480     return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2481   }
2482 
2483   case Instruction::PHI: {
2484     const PHINode *PN = cast<PHINode>(U);
2485     unsigned NumIncomingValues = PN->getNumIncomingValues();
2486     // Don't analyze large in-degree PHIs.
2487     if (NumIncomingValues > 4) break;
2488     // Unreachable blocks may have zero-operand PHI nodes.
2489     if (NumIncomingValues == 0) break;
2490 
2491     // Take the minimum of all incoming values.  This can't infinitely loop
2492     // because of our depth threshold.
2493     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2494     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2495       if (Tmp == 1) return Tmp;
2496       Tmp = std::min(
2497           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2498     }
2499     return Tmp;
2500   }
2501 
2502   case Instruction::Trunc:
2503     // FIXME: it's tricky to do anything useful for this, but it is an important
2504     // case for targets like X86.
2505     break;
2506 
2507   case Instruction::ExtractElement:
2508     // Look through extract element. At the moment we keep this simple and skip
2509     // tracking the specific element. But at least we might find information
2510     // valid for all elements of the vector (for example if vector is sign
2511     // extended, shifted, etc).
2512     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2513   }
2514 
2515   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2516   // use this information.
2517 
2518   // If we can examine all elements of a vector constant successfully, we're
2519   // done (we can't do any better than that). If not, keep trying.
2520   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2521     return VecSignBits;
2522 
2523   KnownBits Known(TyBits);
2524   computeKnownBits(V, Known, Depth, Q);
2525 
2526   // If we know that the sign bit is either zero or one, determine the number of
2527   // identical bits in the top of the input value.
2528   return std::max(FirstAnswer, Known.countMinSignBits());
2529 }
2530 
2531 /// This function computes the integer multiple of Base that equals V.
2532 /// If successful, it returns true and returns the multiple in
2533 /// Multiple. If unsuccessful, it returns false. It looks
2534 /// through SExt instructions only if LookThroughSExt is true.
2535 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2536                            bool LookThroughSExt, unsigned Depth) {
2537   const unsigned MaxDepth = 6;
2538 
2539   assert(V && "No Value?");
2540   assert(Depth <= MaxDepth && "Limit Search Depth");
2541   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2542 
2543   Type *T = V->getType();
2544 
2545   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2546 
2547   if (Base == 0)
2548     return false;
2549 
2550   if (Base == 1) {
2551     Multiple = V;
2552     return true;
2553   }
2554 
2555   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2556   Constant *BaseVal = ConstantInt::get(T, Base);
2557   if (CO && CO == BaseVal) {
2558     // Multiple is 1.
2559     Multiple = ConstantInt::get(T, 1);
2560     return true;
2561   }
2562 
2563   if (CI && CI->getZExtValue() % Base == 0) {
2564     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2565     return true;
2566   }
2567 
2568   if (Depth == MaxDepth) return false;  // Limit search depth.
2569 
2570   Operator *I = dyn_cast<Operator>(V);
2571   if (!I) return false;
2572 
2573   switch (I->getOpcode()) {
2574   default: break;
2575   case Instruction::SExt:
2576     if (!LookThroughSExt) return false;
2577     // otherwise fall through to ZExt
2578     LLVM_FALLTHROUGH;
2579   case Instruction::ZExt:
2580     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2581                            LookThroughSExt, Depth+1);
2582   case Instruction::Shl:
2583   case Instruction::Mul: {
2584     Value *Op0 = I->getOperand(0);
2585     Value *Op1 = I->getOperand(1);
2586 
2587     if (I->getOpcode() == Instruction::Shl) {
2588       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2589       if (!Op1CI) return false;
2590       // Turn Op0 << Op1 into Op0 * 2^Op1
2591       APInt Op1Int = Op1CI->getValue();
2592       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2593       APInt API(Op1Int.getBitWidth(), 0);
2594       API.setBit(BitToSet);
2595       Op1 = ConstantInt::get(V->getContext(), API);
2596     }
2597 
2598     Value *Mul0 = nullptr;
2599     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2600       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2601         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2602           if (Op1C->getType()->getPrimitiveSizeInBits() <
2603               MulC->getType()->getPrimitiveSizeInBits())
2604             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2605           if (Op1C->getType()->getPrimitiveSizeInBits() >
2606               MulC->getType()->getPrimitiveSizeInBits())
2607             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2608 
2609           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2610           Multiple = ConstantExpr::getMul(MulC, Op1C);
2611           return true;
2612         }
2613 
2614       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2615         if (Mul0CI->getValue() == 1) {
2616           // V == Base * Op1, so return Op1
2617           Multiple = Op1;
2618           return true;
2619         }
2620     }
2621 
2622     Value *Mul1 = nullptr;
2623     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2624       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2625         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2626           if (Op0C->getType()->getPrimitiveSizeInBits() <
2627               MulC->getType()->getPrimitiveSizeInBits())
2628             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2629           if (Op0C->getType()->getPrimitiveSizeInBits() >
2630               MulC->getType()->getPrimitiveSizeInBits())
2631             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2632 
2633           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2634           Multiple = ConstantExpr::getMul(MulC, Op0C);
2635           return true;
2636         }
2637 
2638       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2639         if (Mul1CI->getValue() == 1) {
2640           // V == Base * Op0, so return Op0
2641           Multiple = Op0;
2642           return true;
2643         }
2644     }
2645   }
2646   }
2647 
2648   // We could not determine if V is a multiple of Base.
2649   return false;
2650 }
2651 
2652 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2653                                             const TargetLibraryInfo *TLI) {
2654   const Function *F = ICS.getCalledFunction();
2655   if (!F)
2656     return Intrinsic::not_intrinsic;
2657 
2658   if (F->isIntrinsic())
2659     return F->getIntrinsicID();
2660 
2661   if (!TLI)
2662     return Intrinsic::not_intrinsic;
2663 
2664   LibFunc Func;
2665   // We're going to make assumptions on the semantics of the functions, check
2666   // that the target knows that it's available in this environment and it does
2667   // not have local linkage.
2668   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2669     return Intrinsic::not_intrinsic;
2670 
2671   if (!ICS.onlyReadsMemory())
2672     return Intrinsic::not_intrinsic;
2673 
2674   // Otherwise check if we have a call to a function that can be turned into a
2675   // vector intrinsic.
2676   switch (Func) {
2677   default:
2678     break;
2679   case LibFunc_sin:
2680   case LibFunc_sinf:
2681   case LibFunc_sinl:
2682     return Intrinsic::sin;
2683   case LibFunc_cos:
2684   case LibFunc_cosf:
2685   case LibFunc_cosl:
2686     return Intrinsic::cos;
2687   case LibFunc_exp:
2688   case LibFunc_expf:
2689   case LibFunc_expl:
2690     return Intrinsic::exp;
2691   case LibFunc_exp2:
2692   case LibFunc_exp2f:
2693   case LibFunc_exp2l:
2694     return Intrinsic::exp2;
2695   case LibFunc_log:
2696   case LibFunc_logf:
2697   case LibFunc_logl:
2698     return Intrinsic::log;
2699   case LibFunc_log10:
2700   case LibFunc_log10f:
2701   case LibFunc_log10l:
2702     return Intrinsic::log10;
2703   case LibFunc_log2:
2704   case LibFunc_log2f:
2705   case LibFunc_log2l:
2706     return Intrinsic::log2;
2707   case LibFunc_fabs:
2708   case LibFunc_fabsf:
2709   case LibFunc_fabsl:
2710     return Intrinsic::fabs;
2711   case LibFunc_fmin:
2712   case LibFunc_fminf:
2713   case LibFunc_fminl:
2714     return Intrinsic::minnum;
2715   case LibFunc_fmax:
2716   case LibFunc_fmaxf:
2717   case LibFunc_fmaxl:
2718     return Intrinsic::maxnum;
2719   case LibFunc_copysign:
2720   case LibFunc_copysignf:
2721   case LibFunc_copysignl:
2722     return Intrinsic::copysign;
2723   case LibFunc_floor:
2724   case LibFunc_floorf:
2725   case LibFunc_floorl:
2726     return Intrinsic::floor;
2727   case LibFunc_ceil:
2728   case LibFunc_ceilf:
2729   case LibFunc_ceill:
2730     return Intrinsic::ceil;
2731   case LibFunc_trunc:
2732   case LibFunc_truncf:
2733   case LibFunc_truncl:
2734     return Intrinsic::trunc;
2735   case LibFunc_rint:
2736   case LibFunc_rintf:
2737   case LibFunc_rintl:
2738     return Intrinsic::rint;
2739   case LibFunc_nearbyint:
2740   case LibFunc_nearbyintf:
2741   case LibFunc_nearbyintl:
2742     return Intrinsic::nearbyint;
2743   case LibFunc_round:
2744   case LibFunc_roundf:
2745   case LibFunc_roundl:
2746     return Intrinsic::round;
2747   case LibFunc_pow:
2748   case LibFunc_powf:
2749   case LibFunc_powl:
2750     return Intrinsic::pow;
2751   case LibFunc_sqrt:
2752   case LibFunc_sqrtf:
2753   case LibFunc_sqrtl:
2754     return Intrinsic::sqrt;
2755   }
2756 
2757   return Intrinsic::not_intrinsic;
2758 }
2759 
2760 /// Return true if we can prove that the specified FP value is never equal to
2761 /// -0.0.
2762 ///
2763 /// NOTE: this function will need to be revisited when we support non-default
2764 /// rounding modes!
2765 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2766                                 unsigned Depth) {
2767   if (auto *CFP = dyn_cast<ConstantFP>(V))
2768     return !CFP->getValueAPF().isNegZero();
2769 
2770   // Limit search depth.
2771   if (Depth == MaxDepth)
2772     return false;
2773 
2774   auto *Op = dyn_cast<Operator>(V);
2775   if (!Op)
2776     return false;
2777 
2778   // Check if the nsz fast-math flag is set.
2779   if (auto *FPO = dyn_cast<FPMathOperator>(Op))
2780     if (FPO->hasNoSignedZeros())
2781       return true;
2782 
2783   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
2784   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
2785     return true;
2786 
2787   // sitofp and uitofp turn into +0.0 for zero.
2788   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
2789     return true;
2790 
2791   if (auto *Call = dyn_cast<CallInst>(Op)) {
2792     Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
2793     switch (IID) {
2794     default:
2795       break;
2796     // sqrt(-0.0) = -0.0, no other negative results are possible.
2797     case Intrinsic::sqrt:
2798     case Intrinsic::canonicalize:
2799       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
2800     // fabs(x) != -0.0
2801     case Intrinsic::fabs:
2802       return true;
2803     }
2804   }
2805 
2806   return false;
2807 }
2808 
2809 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2810 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2811 /// bit despite comparing equal.
2812 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2813                                             const TargetLibraryInfo *TLI,
2814                                             bool SignBitOnly,
2815                                             unsigned Depth) {
2816   // TODO: This function does not do the right thing when SignBitOnly is true
2817   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2818   // which flips the sign bits of NaNs.  See
2819   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2820 
2821   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2822     return !CFP->getValueAPF().isNegative() ||
2823            (!SignBitOnly && CFP->getValueAPF().isZero());
2824   }
2825 
2826   // Handle vector of constants.
2827   if (auto *CV = dyn_cast<Constant>(V)) {
2828     if (CV->getType()->isVectorTy()) {
2829       unsigned NumElts = CV->getType()->getVectorNumElements();
2830       for (unsigned i = 0; i != NumElts; ++i) {
2831         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
2832         if (!CFP)
2833           return false;
2834         if (CFP->getValueAPF().isNegative() &&
2835             (SignBitOnly || !CFP->getValueAPF().isZero()))
2836           return false;
2837       }
2838 
2839       // All non-negative ConstantFPs.
2840       return true;
2841     }
2842   }
2843 
2844   if (Depth == MaxDepth)
2845     return false; // Limit search depth.
2846 
2847   const Operator *I = dyn_cast<Operator>(V);
2848   if (!I)
2849     return false;
2850 
2851   switch (I->getOpcode()) {
2852   default:
2853     break;
2854   // Unsigned integers are always nonnegative.
2855   case Instruction::UIToFP:
2856     return true;
2857   case Instruction::FMul:
2858     // x*x is always non-negative or a NaN.
2859     if (I->getOperand(0) == I->getOperand(1) &&
2860         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2861       return true;
2862 
2863     LLVM_FALLTHROUGH;
2864   case Instruction::FAdd:
2865   case Instruction::FDiv:
2866   case Instruction::FRem:
2867     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2868                                            Depth + 1) &&
2869            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2870                                            Depth + 1);
2871   case Instruction::Select:
2872     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2873                                            Depth + 1) &&
2874            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2875                                            Depth + 1);
2876   case Instruction::FPExt:
2877   case Instruction::FPTrunc:
2878     // Widening/narrowing never change sign.
2879     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2880                                            Depth + 1);
2881   case Instruction::ExtractElement:
2882     // Look through extract element. At the moment we keep this simple and skip
2883     // tracking the specific element. But at least we might find information
2884     // valid for all elements of the vector.
2885     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2886                                            Depth + 1);
2887   case Instruction::Call:
2888     const auto *CI = cast<CallInst>(I);
2889     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2890     switch (IID) {
2891     default:
2892       break;
2893     case Intrinsic::maxnum:
2894       return (isKnownNeverNaN(I->getOperand(0), TLI) &&
2895               cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
2896                                               SignBitOnly, Depth + 1)) ||
2897             (isKnownNeverNaN(I->getOperand(1), TLI) &&
2898               cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
2899                                               SignBitOnly, Depth + 1));
2900 
2901     case Intrinsic::minnum:
2902       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2903                                              Depth + 1) &&
2904              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2905                                              Depth + 1);
2906     case Intrinsic::exp:
2907     case Intrinsic::exp2:
2908     case Intrinsic::fabs:
2909       return true;
2910 
2911     case Intrinsic::sqrt:
2912       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2913       if (!SignBitOnly)
2914         return true;
2915       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2916                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2917 
2918     case Intrinsic::powi:
2919       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2920         // powi(x,n) is non-negative if n is even.
2921         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2922           return true;
2923       }
2924       // TODO: This is not correct.  Given that exp is an integer, here are the
2925       // ways that pow can return a negative value:
2926       //
2927       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2928       //   pow(-0, exp)   --> -inf if exp is negative odd.
2929       //   pow(-0, exp)   --> -0 if exp is positive odd.
2930       //   pow(-inf, exp) --> -0 if exp is negative odd.
2931       //   pow(-inf, exp) --> -inf if exp is positive odd.
2932       //
2933       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2934       // but we must return false if x == -0.  Unfortunately we do not currently
2935       // have a way of expressing this constraint.  See details in
2936       // https://llvm.org/bugs/show_bug.cgi?id=31702.
2937       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2938                                              Depth + 1);
2939 
2940     case Intrinsic::fma:
2941     case Intrinsic::fmuladd:
2942       // x*x+y is non-negative if y is non-negative.
2943       return I->getOperand(0) == I->getOperand(1) &&
2944              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2945              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2946                                              Depth + 1);
2947     }
2948     break;
2949   }
2950   return false;
2951 }
2952 
2953 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2954                                        const TargetLibraryInfo *TLI) {
2955   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2956 }
2957 
2958 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2959   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2960 }
2961 
2962 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
2963                            unsigned Depth) {
2964   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
2965 
2966   // If we're told that NaNs won't happen, assume they won't.
2967   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
2968     if (FPMathOp->hasNoNaNs())
2969       return true;
2970 
2971   // Handle scalar constants.
2972   if (auto *CFP = dyn_cast<ConstantFP>(V))
2973     return !CFP->isNaN();
2974 
2975   if (Depth == MaxDepth)
2976     return false;
2977 
2978   if (auto *Inst = dyn_cast<Instruction>(V)) {
2979     switch (Inst->getOpcode()) {
2980     case Instruction::FAdd:
2981     case Instruction::FMul:
2982     case Instruction::FSub:
2983     case Instruction::FDiv:
2984     case Instruction::FRem: {
2985       // TODO: Need isKnownNeverInfinity
2986       return false;
2987     }
2988     case Instruction::Select: {
2989       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
2990              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
2991     }
2992     case Instruction::SIToFP:
2993     case Instruction::UIToFP:
2994       return true;
2995     case Instruction::FPTrunc:
2996     case Instruction::FPExt:
2997       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
2998     default:
2999       break;
3000     }
3001   }
3002 
3003   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3004     switch (II->getIntrinsicID()) {
3005     case Intrinsic::canonicalize:
3006     case Intrinsic::fabs:
3007     case Intrinsic::copysign:
3008     case Intrinsic::exp:
3009     case Intrinsic::exp2:
3010     case Intrinsic::floor:
3011     case Intrinsic::ceil:
3012     case Intrinsic::trunc:
3013     case Intrinsic::rint:
3014     case Intrinsic::nearbyint:
3015     case Intrinsic::round:
3016       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3017     case Intrinsic::sqrt:
3018       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3019              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3020     default:
3021       return false;
3022     }
3023   }
3024 
3025   // Bail out for constant expressions, but try to handle vector constants.
3026   if (!V->getType()->isVectorTy() || !isa<Constant>(V))
3027     return false;
3028 
3029   // For vectors, verify that each element is not NaN.
3030   unsigned NumElts = V->getType()->getVectorNumElements();
3031   for (unsigned i = 0; i != NumElts; ++i) {
3032     Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3033     if (!Elt)
3034       return false;
3035     if (isa<UndefValue>(Elt))
3036       continue;
3037     auto *CElt = dyn_cast<ConstantFP>(Elt);
3038     if (!CElt || CElt->isNaN())
3039       return false;
3040   }
3041   // All elements were confirmed not-NaN or undefined.
3042   return true;
3043 }
3044 
3045 /// If the specified value can be set by repeating the same byte in memory,
3046 /// return the i8 value that it is represented with.  This is
3047 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
3048 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
3049 /// byte store (e.g. i16 0x1234), return null.
3050 Value *llvm::isBytewiseValue(Value *V) {
3051   // All byte-wide stores are splatable, even of arbitrary variables.
3052   if (V->getType()->isIntegerTy(8)) return V;
3053 
3054   // Handle 'null' ConstantArrayZero etc.
3055   if (Constant *C = dyn_cast<Constant>(V))
3056     if (C->isNullValue())
3057       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
3058 
3059   // Constant float and double values can be handled as integer values if the
3060   // corresponding integer value is "byteable".  An important case is 0.0.
3061   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3062     if (CFP->getType()->isFloatTy())
3063       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
3064     if (CFP->getType()->isDoubleTy())
3065       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
3066     // Don't handle long double formats, which have strange constraints.
3067   }
3068 
3069   // We can handle constant integers that are multiple of 8 bits.
3070   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
3071     if (CI->getBitWidth() % 8 == 0) {
3072       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3073 
3074       if (!CI->getValue().isSplat(8))
3075         return nullptr;
3076       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
3077     }
3078   }
3079 
3080   // A ConstantDataArray/Vector is splatable if all its members are equal and
3081   // also splatable.
3082   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
3083     Value *Elt = CA->getElementAsConstant(0);
3084     Value *Val = isBytewiseValue(Elt);
3085     if (!Val)
3086       return nullptr;
3087 
3088     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
3089       if (CA->getElementAsConstant(I) != Elt)
3090         return nullptr;
3091 
3092     return Val;
3093   }
3094 
3095   // Conceptually, we could handle things like:
3096   //   %a = zext i8 %X to i16
3097   //   %b = shl i16 %a, 8
3098   //   %c = or i16 %a, %b
3099   // but until there is an example that actually needs this, it doesn't seem
3100   // worth worrying about.
3101   return nullptr;
3102 }
3103 
3104 // This is the recursive version of BuildSubAggregate. It takes a few different
3105 // arguments. Idxs is the index within the nested struct From that we are
3106 // looking at now (which is of type IndexedType). IdxSkip is the number of
3107 // indices from Idxs that should be left out when inserting into the resulting
3108 // struct. To is the result struct built so far, new insertvalue instructions
3109 // build on that.
3110 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3111                                 SmallVectorImpl<unsigned> &Idxs,
3112                                 unsigned IdxSkip,
3113                                 Instruction *InsertBefore) {
3114   StructType *STy = dyn_cast<StructType>(IndexedType);
3115   if (STy) {
3116     // Save the original To argument so we can modify it
3117     Value *OrigTo = To;
3118     // General case, the type indexed by Idxs is a struct
3119     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3120       // Process each struct element recursively
3121       Idxs.push_back(i);
3122       Value *PrevTo = To;
3123       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3124                              InsertBefore);
3125       Idxs.pop_back();
3126       if (!To) {
3127         // Couldn't find any inserted value for this index? Cleanup
3128         while (PrevTo != OrigTo) {
3129           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3130           PrevTo = Del->getAggregateOperand();
3131           Del->eraseFromParent();
3132         }
3133         // Stop processing elements
3134         break;
3135       }
3136     }
3137     // If we successfully found a value for each of our subaggregates
3138     if (To)
3139       return To;
3140   }
3141   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3142   // the struct's elements had a value that was inserted directly. In the latter
3143   // case, perhaps we can't determine each of the subelements individually, but
3144   // we might be able to find the complete struct somewhere.
3145 
3146   // Find the value that is at that particular spot
3147   Value *V = FindInsertedValue(From, Idxs);
3148 
3149   if (!V)
3150     return nullptr;
3151 
3152   // Insert the value in the new (sub) aggregate
3153   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3154                                  "tmp", InsertBefore);
3155 }
3156 
3157 // This helper takes a nested struct and extracts a part of it (which is again a
3158 // struct) into a new value. For example, given the struct:
3159 // { a, { b, { c, d }, e } }
3160 // and the indices "1, 1" this returns
3161 // { c, d }.
3162 //
3163 // It does this by inserting an insertvalue for each element in the resulting
3164 // struct, as opposed to just inserting a single struct. This will only work if
3165 // each of the elements of the substruct are known (ie, inserted into From by an
3166 // insertvalue instruction somewhere).
3167 //
3168 // All inserted insertvalue instructions are inserted before InsertBefore
3169 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3170                                 Instruction *InsertBefore) {
3171   assert(InsertBefore && "Must have someplace to insert!");
3172   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3173                                                              idx_range);
3174   Value *To = UndefValue::get(IndexedType);
3175   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3176   unsigned IdxSkip = Idxs.size();
3177 
3178   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3179 }
3180 
3181 /// Given an aggregate and a sequence of indices, see if the scalar value
3182 /// indexed is already around as a register, for example if it was inserted
3183 /// directly into the aggregate.
3184 ///
3185 /// If InsertBefore is not null, this function will duplicate (modified)
3186 /// insertvalues when a part of a nested struct is extracted.
3187 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3188                                Instruction *InsertBefore) {
3189   // Nothing to index? Just return V then (this is useful at the end of our
3190   // recursion).
3191   if (idx_range.empty())
3192     return V;
3193   // We have indices, so V should have an indexable type.
3194   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3195          "Not looking at a struct or array?");
3196   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3197          "Invalid indices for type?");
3198 
3199   if (Constant *C = dyn_cast<Constant>(V)) {
3200     C = C->getAggregateElement(idx_range[0]);
3201     if (!C) return nullptr;
3202     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3203   }
3204 
3205   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3206     // Loop the indices for the insertvalue instruction in parallel with the
3207     // requested indices
3208     const unsigned *req_idx = idx_range.begin();
3209     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3210          i != e; ++i, ++req_idx) {
3211       if (req_idx == idx_range.end()) {
3212         // We can't handle this without inserting insertvalues
3213         if (!InsertBefore)
3214           return nullptr;
3215 
3216         // The requested index identifies a part of a nested aggregate. Handle
3217         // this specially. For example,
3218         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3219         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3220         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3221         // This can be changed into
3222         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3223         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3224         // which allows the unused 0,0 element from the nested struct to be
3225         // removed.
3226         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3227                                  InsertBefore);
3228       }
3229 
3230       // This insert value inserts something else than what we are looking for.
3231       // See if the (aggregate) value inserted into has the value we are
3232       // looking for, then.
3233       if (*req_idx != *i)
3234         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3235                                  InsertBefore);
3236     }
3237     // If we end up here, the indices of the insertvalue match with those
3238     // requested (though possibly only partially). Now we recursively look at
3239     // the inserted value, passing any remaining indices.
3240     return FindInsertedValue(I->getInsertedValueOperand(),
3241                              makeArrayRef(req_idx, idx_range.end()),
3242                              InsertBefore);
3243   }
3244 
3245   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3246     // If we're extracting a value from an aggregate that was extracted from
3247     // something else, we can extract from that something else directly instead.
3248     // However, we will need to chain I's indices with the requested indices.
3249 
3250     // Calculate the number of indices required
3251     unsigned size = I->getNumIndices() + idx_range.size();
3252     // Allocate some space to put the new indices in
3253     SmallVector<unsigned, 5> Idxs;
3254     Idxs.reserve(size);
3255     // Add indices from the extract value instruction
3256     Idxs.append(I->idx_begin(), I->idx_end());
3257 
3258     // Add requested indices
3259     Idxs.append(idx_range.begin(), idx_range.end());
3260 
3261     assert(Idxs.size() == size
3262            && "Number of indices added not correct?");
3263 
3264     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3265   }
3266   // Otherwise, we don't know (such as, extracting from a function return value
3267   // or load instruction)
3268   return nullptr;
3269 }
3270 
3271 /// Analyze the specified pointer to see if it can be expressed as a base
3272 /// pointer plus a constant offset. Return the base and offset to the caller.
3273 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
3274                                               const DataLayout &DL) {
3275   unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
3276   APInt ByteOffset(BitWidth, 0);
3277 
3278   // We walk up the defs but use a visited set to handle unreachable code. In
3279   // that case, we stop after accumulating the cycle once (not that it
3280   // matters).
3281   SmallPtrSet<Value *, 16> Visited;
3282   while (Visited.insert(Ptr).second) {
3283     if (Ptr->getType()->isVectorTy())
3284       break;
3285 
3286     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
3287       // If one of the values we have visited is an addrspacecast, then
3288       // the pointer type of this GEP may be different from the type
3289       // of the Ptr parameter which was passed to this function.  This
3290       // means when we construct GEPOffset, we need to use the size
3291       // of GEP's pointer type rather than the size of the original
3292       // pointer type.
3293       APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
3294       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
3295         break;
3296 
3297       ByteOffset += GEPOffset.getSExtValue();
3298 
3299       Ptr = GEP->getPointerOperand();
3300     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
3301                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3302       Ptr = cast<Operator>(Ptr)->getOperand(0);
3303     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3304       if (GA->isInterposable())
3305         break;
3306       Ptr = GA->getAliasee();
3307     } else {
3308       break;
3309     }
3310   }
3311   Offset = ByteOffset.getSExtValue();
3312   return Ptr;
3313 }
3314 
3315 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3316                                        unsigned CharSize) {
3317   // Make sure the GEP has exactly three arguments.
3318   if (GEP->getNumOperands() != 3)
3319     return false;
3320 
3321   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3322   // CharSize.
3323   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3324   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3325     return false;
3326 
3327   // Check to make sure that the first operand of the GEP is an integer and
3328   // has value 0 so that we are sure we're indexing into the initializer.
3329   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3330   if (!FirstIdx || !FirstIdx->isZero())
3331     return false;
3332 
3333   return true;
3334 }
3335 
3336 bool llvm::getConstantDataArrayInfo(const Value *V,
3337                                     ConstantDataArraySlice &Slice,
3338                                     unsigned ElementSize, uint64_t Offset) {
3339   assert(V);
3340 
3341   // Look through bitcast instructions and geps.
3342   V = V->stripPointerCasts();
3343 
3344   // If the value is a GEP instruction or constant expression, treat it as an
3345   // offset.
3346   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3347     // The GEP operator should be based on a pointer to string constant, and is
3348     // indexing into the string constant.
3349     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3350       return false;
3351 
3352     // If the second index isn't a ConstantInt, then this is a variable index
3353     // into the array.  If this occurs, we can't say anything meaningful about
3354     // the string.
3355     uint64_t StartIdx = 0;
3356     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3357       StartIdx = CI->getZExtValue();
3358     else
3359       return false;
3360     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3361                                     StartIdx + Offset);
3362   }
3363 
3364   // The GEP instruction, constant or instruction, must reference a global
3365   // variable that is a constant and is initialized. The referenced constant
3366   // initializer is the array that we'll use for optimization.
3367   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3368   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3369     return false;
3370 
3371   const ConstantDataArray *Array;
3372   ArrayType *ArrayTy;
3373   if (GV->getInitializer()->isNullValue()) {
3374     Type *GVTy = GV->getValueType();
3375     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3376       // A zeroinitializer for the array; there is no ConstantDataArray.
3377       Array = nullptr;
3378     } else {
3379       const DataLayout &DL = GV->getParent()->getDataLayout();
3380       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
3381       uint64_t Length = SizeInBytes / (ElementSize / 8);
3382       if (Length <= Offset)
3383         return false;
3384 
3385       Slice.Array = nullptr;
3386       Slice.Offset = 0;
3387       Slice.Length = Length - Offset;
3388       return true;
3389     }
3390   } else {
3391     // This must be a ConstantDataArray.
3392     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3393     if (!Array)
3394       return false;
3395     ArrayTy = Array->getType();
3396   }
3397   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3398     return false;
3399 
3400   uint64_t NumElts = ArrayTy->getArrayNumElements();
3401   if (Offset > NumElts)
3402     return false;
3403 
3404   Slice.Array = Array;
3405   Slice.Offset = Offset;
3406   Slice.Length = NumElts - Offset;
3407   return true;
3408 }
3409 
3410 /// This function computes the length of a null-terminated C string pointed to
3411 /// by V. If successful, it returns true and returns the string in Str.
3412 /// If unsuccessful, it returns false.
3413 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3414                                  uint64_t Offset, bool TrimAtNul) {
3415   ConstantDataArraySlice Slice;
3416   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3417     return false;
3418 
3419   if (Slice.Array == nullptr) {
3420     if (TrimAtNul) {
3421       Str = StringRef();
3422       return true;
3423     }
3424     if (Slice.Length == 1) {
3425       Str = StringRef("", 1);
3426       return true;
3427     }
3428     // We cannot instantiate a StringRef as we do not have an appropriate string
3429     // of 0s at hand.
3430     return false;
3431   }
3432 
3433   // Start out with the entire array in the StringRef.
3434   Str = Slice.Array->getAsString();
3435   // Skip over 'offset' bytes.
3436   Str = Str.substr(Slice.Offset);
3437 
3438   if (TrimAtNul) {
3439     // Trim off the \0 and anything after it.  If the array is not nul
3440     // terminated, we just return the whole end of string.  The client may know
3441     // some other way that the string is length-bound.
3442     Str = Str.substr(0, Str.find('\0'));
3443   }
3444   return true;
3445 }
3446 
3447 // These next two are very similar to the above, but also look through PHI
3448 // nodes.
3449 // TODO: See if we can integrate these two together.
3450 
3451 /// If we can compute the length of the string pointed to by
3452 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3453 static uint64_t GetStringLengthH(const Value *V,
3454                                  SmallPtrSetImpl<const PHINode*> &PHIs,
3455                                  unsigned CharSize) {
3456   // Look through noop bitcast instructions.
3457   V = V->stripPointerCasts();
3458 
3459   // If this is a PHI node, there are two cases: either we have already seen it
3460   // or we haven't.
3461   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3462     if (!PHIs.insert(PN).second)
3463       return ~0ULL;  // already in the set.
3464 
3465     // If it was new, see if all the input strings are the same length.
3466     uint64_t LenSoFar = ~0ULL;
3467     for (Value *IncValue : PN->incoming_values()) {
3468       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
3469       if (Len == 0) return 0; // Unknown length -> unknown.
3470 
3471       if (Len == ~0ULL) continue;
3472 
3473       if (Len != LenSoFar && LenSoFar != ~0ULL)
3474         return 0;    // Disagree -> unknown.
3475       LenSoFar = Len;
3476     }
3477 
3478     // Success, all agree.
3479     return LenSoFar;
3480   }
3481 
3482   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3483   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3484     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
3485     if (Len1 == 0) return 0;
3486     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
3487     if (Len2 == 0) return 0;
3488     if (Len1 == ~0ULL) return Len2;
3489     if (Len2 == ~0ULL) return Len1;
3490     if (Len1 != Len2) return 0;
3491     return Len1;
3492   }
3493 
3494   // Otherwise, see if we can read the string.
3495   ConstantDataArraySlice Slice;
3496   if (!getConstantDataArrayInfo(V, Slice, CharSize))
3497     return 0;
3498 
3499   if (Slice.Array == nullptr)
3500     return 1;
3501 
3502   // Search for nul characters
3503   unsigned NullIndex = 0;
3504   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
3505     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
3506       break;
3507   }
3508 
3509   return NullIndex + 1;
3510 }
3511 
3512 /// If we can compute the length of the string pointed to by
3513 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3514 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
3515   if (!V->getType()->isPointerTy())
3516     return 0;
3517 
3518   SmallPtrSet<const PHINode*, 32> PHIs;
3519   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
3520   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3521   // an empty string as a length.
3522   return Len == ~0ULL ? 1 : Len;
3523 }
3524 
3525 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) {
3526   assert(CS &&
3527          "getArgumentAliasingToReturnedPointer only works on nonnull CallSite");
3528   if (const Value *RV = CS.getReturnedArgOperand())
3529     return RV;
3530   // This can be used only as a aliasing property.
3531   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS))
3532     return CS.getArgOperand(0);
3533   return nullptr;
3534 }
3535 
3536 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
3537     ImmutableCallSite CS) {
3538   return CS.getIntrinsicID() == Intrinsic::launder_invariant_group ||
3539          CS.getIntrinsicID() == Intrinsic::strip_invariant_group;
3540 }
3541 
3542 /// \p PN defines a loop-variant pointer to an object.  Check if the
3543 /// previous iteration of the loop was referring to the same object as \p PN.
3544 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3545                                          const LoopInfo *LI) {
3546   // Find the loop-defined value.
3547   Loop *L = LI->getLoopFor(PN->getParent());
3548   if (PN->getNumIncomingValues() != 2)
3549     return true;
3550 
3551   // Find the value from previous iteration.
3552   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3553   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3554     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3555   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3556     return true;
3557 
3558   // If a new pointer is loaded in the loop, the pointer references a different
3559   // object in every iteration.  E.g.:
3560   //    for (i)
3561   //       int *p = a[i];
3562   //       ...
3563   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3564     if (!L->isLoopInvariant(Load->getPointerOperand()))
3565       return false;
3566   return true;
3567 }
3568 
3569 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3570                                  unsigned MaxLookup) {
3571   if (!V->getType()->isPointerTy())
3572     return V;
3573   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3574     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3575       V = GEP->getPointerOperand();
3576     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3577                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3578       V = cast<Operator>(V)->getOperand(0);
3579     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3580       if (GA->isInterposable())
3581         return V;
3582       V = GA->getAliasee();
3583     } else if (isa<AllocaInst>(V)) {
3584       // An alloca can't be further simplified.
3585       return V;
3586     } else {
3587       if (auto CS = CallSite(V)) {
3588         // CaptureTracking can know about special capturing properties of some
3589         // intrinsics like launder.invariant.group, that can't be expressed with
3590         // the attributes, but have properties like returning aliasing pointer.
3591         // Because some analysis may assume that nocaptured pointer is not
3592         // returned from some special intrinsic (because function would have to
3593         // be marked with returns attribute), it is crucial to use this function
3594         // because it should be in sync with CaptureTracking. Not using it may
3595         // cause weird miscompilations where 2 aliasing pointers are assumed to
3596         // noalias.
3597         if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) {
3598           V = RP;
3599           continue;
3600         }
3601       }
3602 
3603       // See if InstructionSimplify knows any relevant tricks.
3604       if (Instruction *I = dyn_cast<Instruction>(V))
3605         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3606         if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
3607           V = Simplified;
3608           continue;
3609         }
3610 
3611       return V;
3612     }
3613     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3614   }
3615   return V;
3616 }
3617 
3618 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3619                                 const DataLayout &DL, LoopInfo *LI,
3620                                 unsigned MaxLookup) {
3621   SmallPtrSet<Value *, 4> Visited;
3622   SmallVector<Value *, 4> Worklist;
3623   Worklist.push_back(V);
3624   do {
3625     Value *P = Worklist.pop_back_val();
3626     P = GetUnderlyingObject(P, DL, MaxLookup);
3627 
3628     if (!Visited.insert(P).second)
3629       continue;
3630 
3631     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3632       Worklist.push_back(SI->getTrueValue());
3633       Worklist.push_back(SI->getFalseValue());
3634       continue;
3635     }
3636 
3637     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3638       // If this PHI changes the underlying object in every iteration of the
3639       // loop, don't look through it.  Consider:
3640       //   int **A;
3641       //   for (i) {
3642       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3643       //     Curr = A[i];
3644       //     *Prev, *Curr;
3645       //
3646       // Prev is tracking Curr one iteration behind so they refer to different
3647       // underlying objects.
3648       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3649           isSameUnderlyingObjectInLoop(PN, LI))
3650         for (Value *IncValue : PN->incoming_values())
3651           Worklist.push_back(IncValue);
3652       continue;
3653     }
3654 
3655     Objects.push_back(P);
3656   } while (!Worklist.empty());
3657 }
3658 
3659 /// This is the function that does the work of looking through basic
3660 /// ptrtoint+arithmetic+inttoptr sequences.
3661 static const Value *getUnderlyingObjectFromInt(const Value *V) {
3662   do {
3663     if (const Operator *U = dyn_cast<Operator>(V)) {
3664       // If we find a ptrtoint, we can transfer control back to the
3665       // regular getUnderlyingObjectFromInt.
3666       if (U->getOpcode() == Instruction::PtrToInt)
3667         return U->getOperand(0);
3668       // If we find an add of a constant, a multiplied value, or a phi, it's
3669       // likely that the other operand will lead us to the base
3670       // object. We don't have to worry about the case where the
3671       // object address is somehow being computed by the multiply,
3672       // because our callers only care when the result is an
3673       // identifiable object.
3674       if (U->getOpcode() != Instruction::Add ||
3675           (!isa<ConstantInt>(U->getOperand(1)) &&
3676            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
3677            !isa<PHINode>(U->getOperand(1))))
3678         return V;
3679       V = U->getOperand(0);
3680     } else {
3681       return V;
3682     }
3683     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
3684   } while (true);
3685 }
3686 
3687 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
3688 /// ptrtoint+arithmetic+inttoptr sequences.
3689 /// It returns false if unidentified object is found in GetUnderlyingObjects.
3690 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
3691                           SmallVectorImpl<Value *> &Objects,
3692                           const DataLayout &DL) {
3693   SmallPtrSet<const Value *, 16> Visited;
3694   SmallVector<const Value *, 4> Working(1, V);
3695   do {
3696     V = Working.pop_back_val();
3697 
3698     SmallVector<Value *, 4> Objs;
3699     GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
3700 
3701     for (Value *V : Objs) {
3702       if (!Visited.insert(V).second)
3703         continue;
3704       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
3705         const Value *O =
3706           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
3707         if (O->getType()->isPointerTy()) {
3708           Working.push_back(O);
3709           continue;
3710         }
3711       }
3712       // If GetUnderlyingObjects fails to find an identifiable object,
3713       // getUnderlyingObjectsForCodeGen also fails for safety.
3714       if (!isIdentifiedObject(V)) {
3715         Objects.clear();
3716         return false;
3717       }
3718       Objects.push_back(const_cast<Value *>(V));
3719     }
3720   } while (!Working.empty());
3721   return true;
3722 }
3723 
3724 /// Return true if the only users of this pointer are lifetime markers.
3725 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3726   for (const User *U : V->users()) {
3727     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3728     if (!II) return false;
3729 
3730     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3731         II->getIntrinsicID() != Intrinsic::lifetime_end)
3732       return false;
3733   }
3734   return true;
3735 }
3736 
3737 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3738                                         const Instruction *CtxI,
3739                                         const DominatorTree *DT) {
3740   const Operator *Inst = dyn_cast<Operator>(V);
3741   if (!Inst)
3742     return false;
3743 
3744   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3745     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3746       if (C->canTrap())
3747         return false;
3748 
3749   switch (Inst->getOpcode()) {
3750   default:
3751     return true;
3752   case Instruction::UDiv:
3753   case Instruction::URem: {
3754     // x / y is undefined if y == 0.
3755     const APInt *V;
3756     if (match(Inst->getOperand(1), m_APInt(V)))
3757       return *V != 0;
3758     return false;
3759   }
3760   case Instruction::SDiv:
3761   case Instruction::SRem: {
3762     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3763     const APInt *Numerator, *Denominator;
3764     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3765       return false;
3766     // We cannot hoist this division if the denominator is 0.
3767     if (*Denominator == 0)
3768       return false;
3769     // It's safe to hoist if the denominator is not 0 or -1.
3770     if (*Denominator != -1)
3771       return true;
3772     // At this point we know that the denominator is -1.  It is safe to hoist as
3773     // long we know that the numerator is not INT_MIN.
3774     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3775       return !Numerator->isMinSignedValue();
3776     // The numerator *might* be MinSignedValue.
3777     return false;
3778   }
3779   case Instruction::Load: {
3780     const LoadInst *LI = cast<LoadInst>(Inst);
3781     if (!LI->isUnordered() ||
3782         // Speculative load may create a race that did not exist in the source.
3783         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3784         // Speculative load may load data from dirty regions.
3785         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
3786         LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
3787       return false;
3788     const DataLayout &DL = LI->getModule()->getDataLayout();
3789     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3790                                               LI->getAlignment(), DL, CtxI, DT);
3791   }
3792   case Instruction::Call: {
3793     auto *CI = cast<const CallInst>(Inst);
3794     const Function *Callee = CI->getCalledFunction();
3795 
3796     // The called function could have undefined behavior or side-effects, even
3797     // if marked readnone nounwind.
3798     return Callee && Callee->isSpeculatable();
3799   }
3800   case Instruction::VAArg:
3801   case Instruction::Alloca:
3802   case Instruction::Invoke:
3803   case Instruction::PHI:
3804   case Instruction::Store:
3805   case Instruction::Ret:
3806   case Instruction::Br:
3807   case Instruction::IndirectBr:
3808   case Instruction::Switch:
3809   case Instruction::Unreachable:
3810   case Instruction::Fence:
3811   case Instruction::AtomicRMW:
3812   case Instruction::AtomicCmpXchg:
3813   case Instruction::LandingPad:
3814   case Instruction::Resume:
3815   case Instruction::CatchSwitch:
3816   case Instruction::CatchPad:
3817   case Instruction::CatchRet:
3818   case Instruction::CleanupPad:
3819   case Instruction::CleanupRet:
3820     return false; // Misc instructions which have effects
3821   }
3822 }
3823 
3824 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3825   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3826 }
3827 
3828 OverflowResult llvm::computeOverflowForUnsignedMul(
3829     const Value *LHS, const Value *RHS, const DataLayout &DL,
3830     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3831     bool UseInstrInfo) {
3832   // Multiplying n * m significant bits yields a result of n + m significant
3833   // bits. If the total number of significant bits does not exceed the
3834   // result bit width (minus 1), there is no overflow.
3835   // This means if we have enough leading zero bits in the operands
3836   // we can guarantee that the result does not overflow.
3837   // Ref: "Hacker's Delight" by Henry Warren
3838   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3839   KnownBits LHSKnown(BitWidth);
3840   KnownBits RHSKnown(BitWidth);
3841   computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3842                    UseInstrInfo);
3843   computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
3844                    UseInstrInfo);
3845   // Note that underestimating the number of zero bits gives a more
3846   // conservative answer.
3847   unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
3848                       RHSKnown.countMinLeadingZeros();
3849   // First handle the easy case: if we have enough zero bits there's
3850   // definitely no overflow.
3851   if (ZeroBits >= BitWidth)
3852     return OverflowResult::NeverOverflows;
3853 
3854   // Get the largest possible values for each operand.
3855   APInt LHSMax = ~LHSKnown.Zero;
3856   APInt RHSMax = ~RHSKnown.Zero;
3857 
3858   // We know the multiply operation doesn't overflow if the maximum values for
3859   // each operand will not overflow after we multiply them together.
3860   bool MaxOverflow;
3861   (void)LHSMax.umul_ov(RHSMax, MaxOverflow);
3862   if (!MaxOverflow)
3863     return OverflowResult::NeverOverflows;
3864 
3865   // We know it always overflows if multiplying the smallest possible values for
3866   // the operands also results in overflow.
3867   bool MinOverflow;
3868   (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
3869   if (MinOverflow)
3870     return OverflowResult::AlwaysOverflows;
3871 
3872   return OverflowResult::MayOverflow;
3873 }
3874 
3875 OverflowResult
3876 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
3877                                   const DataLayout &DL, AssumptionCache *AC,
3878                                   const Instruction *CxtI,
3879                                   const DominatorTree *DT, bool UseInstrInfo) {
3880   // Multiplying n * m significant bits yields a result of n + m significant
3881   // bits. If the total number of significant bits does not exceed the
3882   // result bit width (minus 1), there is no overflow.
3883   // This means if we have enough leading sign bits in the operands
3884   // we can guarantee that the result does not overflow.
3885   // Ref: "Hacker's Delight" by Henry Warren
3886   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3887 
3888   // Note that underestimating the number of sign bits gives a more
3889   // conservative answer.
3890   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
3891                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
3892 
3893   // First handle the easy case: if we have enough sign bits there's
3894   // definitely no overflow.
3895   if (SignBits > BitWidth + 1)
3896     return OverflowResult::NeverOverflows;
3897 
3898   // There are two ambiguous cases where there can be no overflow:
3899   //   SignBits == BitWidth + 1    and
3900   //   SignBits == BitWidth
3901   // The second case is difficult to check, therefore we only handle the
3902   // first case.
3903   if (SignBits == BitWidth + 1) {
3904     // It overflows only when both arguments are negative and the true
3905     // product is exactly the minimum negative number.
3906     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
3907     // For simplicity we just check if at least one side is not negative.
3908     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3909                                           nullptr, UseInstrInfo);
3910     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3911                                           nullptr, UseInstrInfo);
3912     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
3913       return OverflowResult::NeverOverflows;
3914   }
3915   return OverflowResult::MayOverflow;
3916 }
3917 
3918 OverflowResult llvm::computeOverflowForUnsignedAdd(
3919     const Value *LHS, const Value *RHS, const DataLayout &DL,
3920     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
3921     bool UseInstrInfo) {
3922   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
3923                                         nullptr, UseInstrInfo);
3924   if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
3925     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
3926                                           nullptr, UseInstrInfo);
3927 
3928     if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
3929       // The sign bit is set in both cases: this MUST overflow.
3930       // Create a simple add instruction, and insert it into the struct.
3931       return OverflowResult::AlwaysOverflows;
3932     }
3933 
3934     if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
3935       // The sign bit is clear in both cases: this CANNOT overflow.
3936       // Create a simple add instruction, and insert it into the struct.
3937       return OverflowResult::NeverOverflows;
3938     }
3939   }
3940 
3941   return OverflowResult::MayOverflow;
3942 }
3943 
3944 /// Return true if we can prove that adding the two values of the
3945 /// knownbits will not overflow.
3946 /// Otherwise return false.
3947 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
3948                                     const KnownBits &RHSKnown) {
3949   // Addition of two 2's complement numbers having opposite signs will never
3950   // overflow.
3951   if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
3952       (LHSKnown.isNonNegative() && RHSKnown.isNegative()))
3953     return true;
3954 
3955   // If either of the values is known to be non-negative, adding them can only
3956   // overflow if the second is also non-negative, so we can assume that.
3957   // Two non-negative numbers will only overflow if there is a carry to the
3958   // sign bit, so we can check if even when the values are as big as possible
3959   // there is no overflow to the sign bit.
3960   if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
3961     APInt MaxLHS = ~LHSKnown.Zero;
3962     MaxLHS.clearSignBit();
3963     APInt MaxRHS = ~RHSKnown.Zero;
3964     MaxRHS.clearSignBit();
3965     APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
3966     return Result.isSignBitClear();
3967   }
3968 
3969   // If either of the values is known to be negative, adding them can only
3970   // overflow if the second is also negative, so we can assume that.
3971   // Two negative number will only overflow if there is no carry to the sign
3972   // bit, so we can check if even when the values are as small as possible
3973   // there is overflow to the sign bit.
3974   if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
3975     APInt MinLHS = LHSKnown.One;
3976     MinLHS.clearSignBit();
3977     APInt MinRHS = RHSKnown.One;
3978     MinRHS.clearSignBit();
3979     APInt Result = std::move(MinLHS) + std::move(MinRHS);
3980     return Result.isSignBitSet();
3981   }
3982 
3983   // If we reached here it means that we know nothing about the sign bits.
3984   // In this case we can't know if there will be an overflow, since by
3985   // changing the sign bits any two values can be made to overflow.
3986   return false;
3987 }
3988 
3989 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3990                                                   const Value *RHS,
3991                                                   const AddOperator *Add,
3992                                                   const DataLayout &DL,
3993                                                   AssumptionCache *AC,
3994                                                   const Instruction *CxtI,
3995                                                   const DominatorTree *DT) {
3996   if (Add && Add->hasNoSignedWrap()) {
3997     return OverflowResult::NeverOverflows;
3998   }
3999 
4000   // If LHS and RHS each have at least two sign bits, the addition will look
4001   // like
4002   //
4003   // XX..... +
4004   // YY.....
4005   //
4006   // If the carry into the most significant position is 0, X and Y can't both
4007   // be 1 and therefore the carry out of the addition is also 0.
4008   //
4009   // If the carry into the most significant position is 1, X and Y can't both
4010   // be 0 and therefore the carry out of the addition is also 1.
4011   //
4012   // Since the carry into the most significant position is always equal to
4013   // the carry out of the addition, there is no signed overflow.
4014   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4015       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4016     return OverflowResult::NeverOverflows;
4017 
4018   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4019   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4020 
4021   if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
4022     return OverflowResult::NeverOverflows;
4023 
4024   // The remaining code needs Add to be available. Early returns if not so.
4025   if (!Add)
4026     return OverflowResult::MayOverflow;
4027 
4028   // If the sign of Add is the same as at least one of the operands, this add
4029   // CANNOT overflow. This is particularly useful when the sum is
4030   // @llvm.assume'ed non-negative rather than proved so from analyzing its
4031   // operands.
4032   bool LHSOrRHSKnownNonNegative =
4033       (LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
4034   bool LHSOrRHSKnownNegative =
4035       (LHSKnown.isNegative() || RHSKnown.isNegative());
4036   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4037     KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
4038     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4039         (AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
4040       return OverflowResult::NeverOverflows;
4041     }
4042   }
4043 
4044   return OverflowResult::MayOverflow;
4045 }
4046 
4047 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4048                                                    const Value *RHS,
4049                                                    const DataLayout &DL,
4050                                                    AssumptionCache *AC,
4051                                                    const Instruction *CxtI,
4052                                                    const DominatorTree *DT) {
4053   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
4054   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
4055   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
4056   if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
4057     return OverflowResult::NeverOverflows;
4058 
4059   return OverflowResult::MayOverflow;
4060 }
4061 
4062 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4063                                                  const Value *RHS,
4064                                                  const DataLayout &DL,
4065                                                  AssumptionCache *AC,
4066                                                  const Instruction *CxtI,
4067                                                  const DominatorTree *DT) {
4068   // If LHS and RHS each have at least two sign bits, the subtraction
4069   // cannot overflow.
4070   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4071       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4072     return OverflowResult::NeverOverflows;
4073 
4074   KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
4075 
4076   KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
4077 
4078   // Subtraction of two 2's complement numbers having identical signs will
4079   // never overflow.
4080   if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
4081       (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
4082     return OverflowResult::NeverOverflows;
4083 
4084   // TODO: implement logic similar to checkRippleForAdd
4085   return OverflowResult::MayOverflow;
4086 }
4087 
4088 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
4089                                      const DominatorTree &DT) {
4090 #ifndef NDEBUG
4091   auto IID = II->getIntrinsicID();
4092   assert((IID == Intrinsic::sadd_with_overflow ||
4093           IID == Intrinsic::uadd_with_overflow ||
4094           IID == Intrinsic::ssub_with_overflow ||
4095           IID == Intrinsic::usub_with_overflow ||
4096           IID == Intrinsic::smul_with_overflow ||
4097           IID == Intrinsic::umul_with_overflow) &&
4098          "Not an overflow intrinsic!");
4099 #endif
4100 
4101   SmallVector<const BranchInst *, 2> GuardingBranches;
4102   SmallVector<const ExtractValueInst *, 2> Results;
4103 
4104   for (const User *U : II->users()) {
4105     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4106       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4107 
4108       if (EVI->getIndices()[0] == 0)
4109         Results.push_back(EVI);
4110       else {
4111         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4112 
4113         for (const auto *U : EVI->users())
4114           if (const auto *B = dyn_cast<BranchInst>(U)) {
4115             assert(B->isConditional() && "How else is it using an i1?");
4116             GuardingBranches.push_back(B);
4117           }
4118       }
4119     } else {
4120       // We are using the aggregate directly in a way we don't want to analyze
4121       // here (storing it to a global, say).
4122       return false;
4123     }
4124   }
4125 
4126   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4127     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4128     if (!NoWrapEdge.isSingleEdge())
4129       return false;
4130 
4131     // Check if all users of the add are provably no-wrap.
4132     for (const auto *Result : Results) {
4133       // If the extractvalue itself is not executed on overflow, the we don't
4134       // need to check each use separately, since domination is transitive.
4135       if (DT.dominates(NoWrapEdge, Result->getParent()))
4136         continue;
4137 
4138       for (auto &RU : Result->uses())
4139         if (!DT.dominates(NoWrapEdge, RU))
4140           return false;
4141     }
4142 
4143     return true;
4144   };
4145 
4146   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4147 }
4148 
4149 
4150 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4151                                                  const DataLayout &DL,
4152                                                  AssumptionCache *AC,
4153                                                  const Instruction *CxtI,
4154                                                  const DominatorTree *DT) {
4155   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4156                                        Add, DL, AC, CxtI, DT);
4157 }
4158 
4159 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4160                                                  const Value *RHS,
4161                                                  const DataLayout &DL,
4162                                                  AssumptionCache *AC,
4163                                                  const Instruction *CxtI,
4164                                                  const DominatorTree *DT) {
4165   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4166 }
4167 
4168 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4169   // A memory operation returns normally if it isn't volatile. A volatile
4170   // operation is allowed to trap.
4171   //
4172   // An atomic operation isn't guaranteed to return in a reasonable amount of
4173   // time because it's possible for another thread to interfere with it for an
4174   // arbitrary length of time, but programs aren't allowed to rely on that.
4175   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
4176     return !LI->isVolatile();
4177   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
4178     return !SI->isVolatile();
4179   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
4180     return !CXI->isVolatile();
4181   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
4182     return !RMWI->isVolatile();
4183   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
4184     return !MII->isVolatile();
4185 
4186   // If there is no successor, then execution can't transfer to it.
4187   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4188     return !CRI->unwindsToCaller();
4189   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4190     return !CatchSwitch->unwindsToCaller();
4191   if (isa<ResumeInst>(I))
4192     return false;
4193   if (isa<ReturnInst>(I))
4194     return false;
4195   if (isa<UnreachableInst>(I))
4196     return false;
4197 
4198   // Calls can throw, or contain an infinite loop, or kill the process.
4199   if (auto CS = ImmutableCallSite(I)) {
4200     // Call sites that throw have implicit non-local control flow.
4201     if (!CS.doesNotThrow())
4202       return false;
4203 
4204     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
4205     // etc. and thus not return.  However, LLVM already assumes that
4206     //
4207     //  - Thread exiting actions are modeled as writes to memory invisible to
4208     //    the program.
4209     //
4210     //  - Loops that don't have side effects (side effects are volatile/atomic
4211     //    stores and IO) always terminate (see http://llvm.org/PR965).
4212     //    Furthermore IO itself is also modeled as writes to memory invisible to
4213     //    the program.
4214     //
4215     // We rely on those assumptions here, and use the memory effects of the call
4216     // target as a proxy for checking that it always returns.
4217 
4218     // FIXME: This isn't aggressive enough; a call which only writes to a global
4219     // is guaranteed to return.
4220     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
4221            match(I, m_Intrinsic<Intrinsic::assume>()) ||
4222            match(I, m_Intrinsic<Intrinsic::sideeffect>());
4223   }
4224 
4225   // Other instructions return normally.
4226   return true;
4227 }
4228 
4229 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
4230   // TODO: This is slightly consdervative for invoke instruction since exiting
4231   // via an exception *is* normal control for them.
4232   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
4233     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
4234       return false;
4235   return true;
4236 }
4237 
4238 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
4239                                                   const Loop *L) {
4240   // The loop header is guaranteed to be executed for every iteration.
4241   //
4242   // FIXME: Relax this constraint to cover all basic blocks that are
4243   // guaranteed to be executed at every iteration.
4244   if (I->getParent() != L->getHeader()) return false;
4245 
4246   for (const Instruction &LI : *L->getHeader()) {
4247     if (&LI == I) return true;
4248     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
4249   }
4250   llvm_unreachable("Instruction not contained in its own parent basic block.");
4251 }
4252 
4253 bool llvm::propagatesFullPoison(const Instruction *I) {
4254   switch (I->getOpcode()) {
4255   case Instruction::Add:
4256   case Instruction::Sub:
4257   case Instruction::Xor:
4258   case Instruction::Trunc:
4259   case Instruction::BitCast:
4260   case Instruction::AddrSpaceCast:
4261   case Instruction::Mul:
4262   case Instruction::Shl:
4263   case Instruction::GetElementPtr:
4264     // These operations all propagate poison unconditionally. Note that poison
4265     // is not any particular value, so xor or subtraction of poison with
4266     // itself still yields poison, not zero.
4267     return true;
4268 
4269   case Instruction::AShr:
4270   case Instruction::SExt:
4271     // For these operations, one bit of the input is replicated across
4272     // multiple output bits. A replicated poison bit is still poison.
4273     return true;
4274 
4275   case Instruction::ICmp:
4276     // Comparing poison with any value yields poison.  This is why, for
4277     // instance, x s< (x +nsw 1) can be folded to true.
4278     return true;
4279 
4280   default:
4281     return false;
4282   }
4283 }
4284 
4285 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
4286   switch (I->getOpcode()) {
4287     case Instruction::Store:
4288       return cast<StoreInst>(I)->getPointerOperand();
4289 
4290     case Instruction::Load:
4291       return cast<LoadInst>(I)->getPointerOperand();
4292 
4293     case Instruction::AtomicCmpXchg:
4294       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
4295 
4296     case Instruction::AtomicRMW:
4297       return cast<AtomicRMWInst>(I)->getPointerOperand();
4298 
4299     case Instruction::UDiv:
4300     case Instruction::SDiv:
4301     case Instruction::URem:
4302     case Instruction::SRem:
4303       return I->getOperand(1);
4304 
4305     default:
4306       return nullptr;
4307   }
4308 }
4309 
4310 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
4311   // We currently only look for uses of poison values within the same basic
4312   // block, as that makes it easier to guarantee that the uses will be
4313   // executed given that PoisonI is executed.
4314   //
4315   // FIXME: Expand this to consider uses beyond the same basic block. To do
4316   // this, look out for the distinction between post-dominance and strong
4317   // post-dominance.
4318   const BasicBlock *BB = PoisonI->getParent();
4319 
4320   // Set of instructions that we have proved will yield poison if PoisonI
4321   // does.
4322   SmallSet<const Value *, 16> YieldsPoison;
4323   SmallSet<const BasicBlock *, 4> Visited;
4324   YieldsPoison.insert(PoisonI);
4325   Visited.insert(PoisonI->getParent());
4326 
4327   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
4328 
4329   unsigned Iter = 0;
4330   while (Iter++ < MaxDepth) {
4331     for (auto &I : make_range(Begin, End)) {
4332       if (&I != PoisonI) {
4333         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
4334         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
4335           return true;
4336         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
4337           return false;
4338       }
4339 
4340       // Mark poison that propagates from I through uses of I.
4341       if (YieldsPoison.count(&I)) {
4342         for (const User *User : I.users()) {
4343           const Instruction *UserI = cast<Instruction>(User);
4344           if (propagatesFullPoison(UserI))
4345             YieldsPoison.insert(User);
4346         }
4347       }
4348     }
4349 
4350     if (auto *NextBB = BB->getSingleSuccessor()) {
4351       if (Visited.insert(NextBB).second) {
4352         BB = NextBB;
4353         Begin = BB->getFirstNonPHI()->getIterator();
4354         End = BB->end();
4355         continue;
4356       }
4357     }
4358 
4359     break;
4360   }
4361   return false;
4362 }
4363 
4364 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
4365   if (FMF.noNaNs())
4366     return true;
4367 
4368   if (auto *C = dyn_cast<ConstantFP>(V))
4369     return !C->isNaN();
4370   return false;
4371 }
4372 
4373 static bool isKnownNonZero(const Value *V) {
4374   if (auto *C = dyn_cast<ConstantFP>(V))
4375     return !C->isZero();
4376   return false;
4377 }
4378 
4379 /// Match clamp pattern for float types without care about NaNs or signed zeros.
4380 /// Given non-min/max outer cmp/select from the clamp pattern this
4381 /// function recognizes if it can be substitued by a "canonical" min/max
4382 /// pattern.
4383 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
4384                                                Value *CmpLHS, Value *CmpRHS,
4385                                                Value *TrueVal, Value *FalseVal,
4386                                                Value *&LHS, Value *&RHS) {
4387   // Try to match
4388   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
4389   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
4390   // and return description of the outer Max/Min.
4391 
4392   // First, check if select has inverse order:
4393   if (CmpRHS == FalseVal) {
4394     std::swap(TrueVal, FalseVal);
4395     Pred = CmpInst::getInversePredicate(Pred);
4396   }
4397 
4398   // Assume success now. If there's no match, callers should not use these anyway.
4399   LHS = TrueVal;
4400   RHS = FalseVal;
4401 
4402   const APFloat *FC1;
4403   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
4404     return {SPF_UNKNOWN, SPNB_NA, false};
4405 
4406   const APFloat *FC2;
4407   switch (Pred) {
4408   case CmpInst::FCMP_OLT:
4409   case CmpInst::FCMP_OLE:
4410   case CmpInst::FCMP_ULT:
4411   case CmpInst::FCMP_ULE:
4412     if (match(FalseVal,
4413               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
4414                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4415         FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
4416       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
4417     break;
4418   case CmpInst::FCMP_OGT:
4419   case CmpInst::FCMP_OGE:
4420   case CmpInst::FCMP_UGT:
4421   case CmpInst::FCMP_UGE:
4422     if (match(FalseVal,
4423               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
4424                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
4425         FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
4426       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
4427     break;
4428   default:
4429     break;
4430   }
4431 
4432   return {SPF_UNKNOWN, SPNB_NA, false};
4433 }
4434 
4435 /// Recognize variations of:
4436 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
4437 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
4438                                       Value *CmpLHS, Value *CmpRHS,
4439                                       Value *TrueVal, Value *FalseVal) {
4440   // Swap the select operands and predicate to match the patterns below.
4441   if (CmpRHS != TrueVal) {
4442     Pred = ICmpInst::getSwappedPredicate(Pred);
4443     std::swap(TrueVal, FalseVal);
4444   }
4445   const APInt *C1;
4446   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
4447     const APInt *C2;
4448     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
4449     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4450         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
4451       return {SPF_SMAX, SPNB_NA, false};
4452 
4453     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
4454     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4455         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
4456       return {SPF_SMIN, SPNB_NA, false};
4457 
4458     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
4459     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
4460         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
4461       return {SPF_UMAX, SPNB_NA, false};
4462 
4463     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
4464     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
4465         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
4466       return {SPF_UMIN, SPNB_NA, false};
4467   }
4468   return {SPF_UNKNOWN, SPNB_NA, false};
4469 }
4470 
4471 /// Recognize variations of:
4472 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
4473 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
4474                                                Value *CmpLHS, Value *CmpRHS,
4475                                                Value *TVal, Value *FVal,
4476                                                unsigned Depth) {
4477   // TODO: Allow FP min/max with nnan/nsz.
4478   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
4479 
4480   Value *A, *B;
4481   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
4482   if (!SelectPatternResult::isMinOrMax(L.Flavor))
4483     return {SPF_UNKNOWN, SPNB_NA, false};
4484 
4485   Value *C, *D;
4486   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
4487   if (L.Flavor != R.Flavor)
4488     return {SPF_UNKNOWN, SPNB_NA, false};
4489 
4490   // We have something like: x Pred y ? min(a, b) : min(c, d).
4491   // Try to match the compare to the min/max operations of the select operands.
4492   // First, make sure we have the right compare predicate.
4493   switch (L.Flavor) {
4494   case SPF_SMIN:
4495     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
4496       Pred = ICmpInst::getSwappedPredicate(Pred);
4497       std::swap(CmpLHS, CmpRHS);
4498     }
4499     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
4500       break;
4501     return {SPF_UNKNOWN, SPNB_NA, false};
4502   case SPF_SMAX:
4503     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
4504       Pred = ICmpInst::getSwappedPredicate(Pred);
4505       std::swap(CmpLHS, CmpRHS);
4506     }
4507     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
4508       break;
4509     return {SPF_UNKNOWN, SPNB_NA, false};
4510   case SPF_UMIN:
4511     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
4512       Pred = ICmpInst::getSwappedPredicate(Pred);
4513       std::swap(CmpLHS, CmpRHS);
4514     }
4515     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
4516       break;
4517     return {SPF_UNKNOWN, SPNB_NA, false};
4518   case SPF_UMAX:
4519     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
4520       Pred = ICmpInst::getSwappedPredicate(Pred);
4521       std::swap(CmpLHS, CmpRHS);
4522     }
4523     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
4524       break;
4525     return {SPF_UNKNOWN, SPNB_NA, false};
4526   default:
4527     return {SPF_UNKNOWN, SPNB_NA, false};
4528   }
4529 
4530   // If there is a common operand in the already matched min/max and the other
4531   // min/max operands match the compare operands (either directly or inverted),
4532   // then this is min/max of the same flavor.
4533 
4534   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4535   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
4536   if (D == B) {
4537     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4538                                          match(A, m_Not(m_Specific(CmpRHS)))))
4539       return {L.Flavor, SPNB_NA, false};
4540   }
4541   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4542   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
4543   if (C == B) {
4544     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4545                                          match(A, m_Not(m_Specific(CmpRHS)))))
4546       return {L.Flavor, SPNB_NA, false};
4547   }
4548   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4549   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
4550   if (D == A) {
4551     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
4552                                          match(B, m_Not(m_Specific(CmpRHS)))))
4553       return {L.Flavor, SPNB_NA, false};
4554   }
4555   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4556   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
4557   if (C == A) {
4558     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
4559                                          match(B, m_Not(m_Specific(CmpRHS)))))
4560       return {L.Flavor, SPNB_NA, false};
4561   }
4562 
4563   return {SPF_UNKNOWN, SPNB_NA, false};
4564 }
4565 
4566 /// Match non-obvious integer minimum and maximum sequences.
4567 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
4568                                        Value *CmpLHS, Value *CmpRHS,
4569                                        Value *TrueVal, Value *FalseVal,
4570                                        Value *&LHS, Value *&RHS,
4571                                        unsigned Depth) {
4572   // Assume success. If there's no match, callers should not use these anyway.
4573   LHS = TrueVal;
4574   RHS = FalseVal;
4575 
4576   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
4577   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4578     return SPR;
4579 
4580   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
4581   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
4582     return SPR;
4583 
4584   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
4585     return {SPF_UNKNOWN, SPNB_NA, false};
4586 
4587   // Z = X -nsw Y
4588   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
4589   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
4590   if (match(TrueVal, m_Zero()) &&
4591       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4592     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4593 
4594   // Z = X -nsw Y
4595   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
4596   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
4597   if (match(FalseVal, m_Zero()) &&
4598       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
4599     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4600 
4601   const APInt *C1;
4602   if (!match(CmpRHS, m_APInt(C1)))
4603     return {SPF_UNKNOWN, SPNB_NA, false};
4604 
4605   // An unsigned min/max can be written with a signed compare.
4606   const APInt *C2;
4607   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
4608       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
4609     // Is the sign bit set?
4610     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
4611     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
4612     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
4613         C2->isMaxSignedValue())
4614       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4615 
4616     // Is the sign bit clear?
4617     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4618     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4619     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4620         C2->isMinSignedValue())
4621       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4622   }
4623 
4624   // Look through 'not' ops to find disguised signed min/max.
4625   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4626   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4627   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4628       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4629     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4630 
4631   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4632   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4633   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4634       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4635     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4636 
4637   return {SPF_UNKNOWN, SPNB_NA, false};
4638 }
4639 
4640 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
4641   assert(X && Y && "Invalid operand");
4642 
4643   // X = sub (0, Y) || X = sub nsw (0, Y)
4644   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
4645       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
4646     return true;
4647 
4648   // Y = sub (0, X) || Y = sub nsw (0, X)
4649   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
4650       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
4651     return true;
4652 
4653   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
4654   Value *A, *B;
4655   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
4656                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
4657          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
4658                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
4659 }
4660 
4661 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4662                                               FastMathFlags FMF,
4663                                               Value *CmpLHS, Value *CmpRHS,
4664                                               Value *TrueVal, Value *FalseVal,
4665                                               Value *&LHS, Value *&RHS,
4666                                               unsigned Depth) {
4667   LHS = CmpLHS;
4668   RHS = CmpRHS;
4669 
4670   // Signed zero may return inconsistent results between implementations.
4671   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4672   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4673   // Therefore, we behave conservatively and only proceed if at least one of the
4674   // operands is known to not be zero or if we don't care about signed zero.
4675   switch (Pred) {
4676   default: break;
4677   // FIXME: Include OGT/OLT/UGT/ULT.
4678   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4679   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4680     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4681         !isKnownNonZero(CmpRHS))
4682       return {SPF_UNKNOWN, SPNB_NA, false};
4683   }
4684 
4685   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4686   bool Ordered = false;
4687 
4688   // When given one NaN and one non-NaN input:
4689   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4690   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4691   //     ordered comparison fails), which could be NaN or non-NaN.
4692   // so here we discover exactly what NaN behavior is required/accepted.
4693   if (CmpInst::isFPPredicate(Pred)) {
4694     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4695     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4696 
4697     if (LHSSafe && RHSSafe) {
4698       // Both operands are known non-NaN.
4699       NaNBehavior = SPNB_RETURNS_ANY;
4700     } else if (CmpInst::isOrdered(Pred)) {
4701       // An ordered comparison will return false when given a NaN, so it
4702       // returns the RHS.
4703       Ordered = true;
4704       if (LHSSafe)
4705         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4706         NaNBehavior = SPNB_RETURNS_NAN;
4707       else if (RHSSafe)
4708         NaNBehavior = SPNB_RETURNS_OTHER;
4709       else
4710         // Completely unsafe.
4711         return {SPF_UNKNOWN, SPNB_NA, false};
4712     } else {
4713       Ordered = false;
4714       // An unordered comparison will return true when given a NaN, so it
4715       // returns the LHS.
4716       if (LHSSafe)
4717         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4718         NaNBehavior = SPNB_RETURNS_OTHER;
4719       else if (RHSSafe)
4720         NaNBehavior = SPNB_RETURNS_NAN;
4721       else
4722         // Completely unsafe.
4723         return {SPF_UNKNOWN, SPNB_NA, false};
4724     }
4725   }
4726 
4727   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4728     std::swap(CmpLHS, CmpRHS);
4729     Pred = CmpInst::getSwappedPredicate(Pred);
4730     if (NaNBehavior == SPNB_RETURNS_NAN)
4731       NaNBehavior = SPNB_RETURNS_OTHER;
4732     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4733       NaNBehavior = SPNB_RETURNS_NAN;
4734     Ordered = !Ordered;
4735   }
4736 
4737   // ([if]cmp X, Y) ? X : Y
4738   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4739     switch (Pred) {
4740     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4741     case ICmpInst::ICMP_UGT:
4742     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4743     case ICmpInst::ICMP_SGT:
4744     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4745     case ICmpInst::ICMP_ULT:
4746     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4747     case ICmpInst::ICMP_SLT:
4748     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4749     case FCmpInst::FCMP_UGT:
4750     case FCmpInst::FCMP_UGE:
4751     case FCmpInst::FCMP_OGT:
4752     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4753     case FCmpInst::FCMP_ULT:
4754     case FCmpInst::FCMP_ULE:
4755     case FCmpInst::FCMP_OLT:
4756     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4757     }
4758   }
4759 
4760   if (isKnownNegation(TrueVal, FalseVal)) {
4761     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
4762     // match against either LHS or sext(LHS).
4763     auto MaybeSExtCmpLHS =
4764         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
4765     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
4766     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
4767     if (match(TrueVal, MaybeSExtCmpLHS)) {
4768       // Set the return values. If the compare uses the negated value (-X >s 0),
4769       // swap the return values because the negated value is always 'RHS'.
4770       LHS = TrueVal;
4771       RHS = FalseVal;
4772       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
4773         std::swap(LHS, RHS);
4774 
4775       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
4776       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
4777       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4778         return {SPF_ABS, SPNB_NA, false};
4779 
4780       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
4781       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
4782       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4783         return {SPF_NABS, SPNB_NA, false};
4784     }
4785     else if (match(FalseVal, MaybeSExtCmpLHS)) {
4786       // Set the return values. If the compare uses the negated value (-X >s 0),
4787       // swap the return values because the negated value is always 'RHS'.
4788       LHS = FalseVal;
4789       RHS = TrueVal;
4790       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
4791         std::swap(LHS, RHS);
4792 
4793       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
4794       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
4795       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
4796         return {SPF_NABS, SPNB_NA, false};
4797 
4798       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
4799       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
4800       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
4801         return {SPF_ABS, SPNB_NA, false};
4802     }
4803   }
4804 
4805   if (CmpInst::isIntPredicate(Pred))
4806     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
4807 
4808   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
4809   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
4810   // semantics than minNum. Be conservative in such case.
4811   if (NaNBehavior != SPNB_RETURNS_ANY ||
4812       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4813        !isKnownNonZero(CmpRHS)))
4814     return {SPF_UNKNOWN, SPNB_NA, false};
4815 
4816   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4817 }
4818 
4819 /// Helps to match a select pattern in case of a type mismatch.
4820 ///
4821 /// The function processes the case when type of true and false values of a
4822 /// select instruction differs from type of the cmp instruction operands because
4823 /// of a cast instruction. The function checks if it is legal to move the cast
4824 /// operation after "select". If yes, it returns the new second value of
4825 /// "select" (with the assumption that cast is moved):
4826 /// 1. As operand of cast instruction when both values of "select" are same cast
4827 /// instructions.
4828 /// 2. As restored constant (by applying reverse cast operation) when the first
4829 /// value of the "select" is a cast operation and the second value is a
4830 /// constant.
4831 /// NOTE: We return only the new second value because the first value could be
4832 /// accessed as operand of cast instruction.
4833 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4834                               Instruction::CastOps *CastOp) {
4835   auto *Cast1 = dyn_cast<CastInst>(V1);
4836   if (!Cast1)
4837     return nullptr;
4838 
4839   *CastOp = Cast1->getOpcode();
4840   Type *SrcTy = Cast1->getSrcTy();
4841   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4842     // If V1 and V2 are both the same cast from the same type, look through V1.
4843     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4844       return Cast2->getOperand(0);
4845     return nullptr;
4846   }
4847 
4848   auto *C = dyn_cast<Constant>(V2);
4849   if (!C)
4850     return nullptr;
4851 
4852   Constant *CastedTo = nullptr;
4853   switch (*CastOp) {
4854   case Instruction::ZExt:
4855     if (CmpI->isUnsigned())
4856       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4857     break;
4858   case Instruction::SExt:
4859     if (CmpI->isSigned())
4860       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4861     break;
4862   case Instruction::Trunc:
4863     Constant *CmpConst;
4864     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
4865         CmpConst->getType() == SrcTy) {
4866       // Here we have the following case:
4867       //
4868       //   %cond = cmp iN %x, CmpConst
4869       //   %tr = trunc iN %x to iK
4870       //   %narrowsel = select i1 %cond, iK %t, iK C
4871       //
4872       // We can always move trunc after select operation:
4873       //
4874       //   %cond = cmp iN %x, CmpConst
4875       //   %widesel = select i1 %cond, iN %x, iN CmpConst
4876       //   %tr = trunc iN %widesel to iK
4877       //
4878       // Note that C could be extended in any way because we don't care about
4879       // upper bits after truncation. It can't be abs pattern, because it would
4880       // look like:
4881       //
4882       //   select i1 %cond, x, -x.
4883       //
4884       // So only min/max pattern could be matched. Such match requires widened C
4885       // == CmpConst. That is why set widened C = CmpConst, condition trunc
4886       // CmpConst == C is checked below.
4887       CastedTo = CmpConst;
4888     } else {
4889       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4890     }
4891     break;
4892   case Instruction::FPTrunc:
4893     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4894     break;
4895   case Instruction::FPExt:
4896     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4897     break;
4898   case Instruction::FPToUI:
4899     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4900     break;
4901   case Instruction::FPToSI:
4902     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4903     break;
4904   case Instruction::UIToFP:
4905     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4906     break;
4907   case Instruction::SIToFP:
4908     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4909     break;
4910   default:
4911     break;
4912   }
4913 
4914   if (!CastedTo)
4915     return nullptr;
4916 
4917   // Make sure the cast doesn't lose any information.
4918   Constant *CastedBack =
4919       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4920   if (CastedBack != C)
4921     return nullptr;
4922 
4923   return CastedTo;
4924 }
4925 
4926 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4927                                              Instruction::CastOps *CastOp,
4928                                              unsigned Depth) {
4929   if (Depth >= MaxDepth)
4930     return {SPF_UNKNOWN, SPNB_NA, false};
4931 
4932   SelectInst *SI = dyn_cast<SelectInst>(V);
4933   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4934 
4935   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4936   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4937 
4938   CmpInst::Predicate Pred = CmpI->getPredicate();
4939   Value *CmpLHS = CmpI->getOperand(0);
4940   Value *CmpRHS = CmpI->getOperand(1);
4941   Value *TrueVal = SI->getTrueValue();
4942   Value *FalseVal = SI->getFalseValue();
4943   FastMathFlags FMF;
4944   if (isa<FPMathOperator>(CmpI))
4945     FMF = CmpI->getFastMathFlags();
4946 
4947   // Bail out early.
4948   if (CmpI->isEquality())
4949     return {SPF_UNKNOWN, SPNB_NA, false};
4950 
4951   // Deal with type mismatches.
4952   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4953     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
4954       // If this is a potential fmin/fmax with a cast to integer, then ignore
4955       // -0.0 because there is no corresponding integer value.
4956       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4957         FMF.setNoSignedZeros();
4958       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4959                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4960                                   LHS, RHS, Depth);
4961     }
4962     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
4963       // If this is a potential fmin/fmax with a cast to integer, then ignore
4964       // -0.0 because there is no corresponding integer value.
4965       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
4966         FMF.setNoSignedZeros();
4967       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4968                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4969                                   LHS, RHS, Depth);
4970     }
4971   }
4972   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4973                               LHS, RHS, Depth);
4974 }
4975 
4976 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
4977   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
4978   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
4979   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
4980   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
4981   if (SPF == SPF_FMINNUM)
4982     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
4983   if (SPF == SPF_FMAXNUM)
4984     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
4985   llvm_unreachable("unhandled!");
4986 }
4987 
4988 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
4989   if (SPF == SPF_SMIN) return SPF_SMAX;
4990   if (SPF == SPF_UMIN) return SPF_UMAX;
4991   if (SPF == SPF_SMAX) return SPF_SMIN;
4992   if (SPF == SPF_UMAX) return SPF_UMIN;
4993   llvm_unreachable("unhandled!");
4994 }
4995 
4996 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
4997   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
4998 }
4999 
5000 /// Return true if "icmp Pred LHS RHS" is always true.
5001 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5002                             const Value *RHS, const DataLayout &DL,
5003                             unsigned Depth) {
5004   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5005   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5006     return true;
5007 
5008   switch (Pred) {
5009   default:
5010     return false;
5011 
5012   case CmpInst::ICMP_SLE: {
5013     const APInt *C;
5014 
5015     // LHS s<= LHS +_{nsw} C   if C >= 0
5016     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5017       return !C->isNegative();
5018     return false;
5019   }
5020 
5021   case CmpInst::ICMP_ULE: {
5022     const APInt *C;
5023 
5024     // LHS u<= LHS +_{nuw} C   for any C
5025     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5026       return true;
5027 
5028     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5029     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5030                                        const Value *&X,
5031                                        const APInt *&CA, const APInt *&CB) {
5032       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5033           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5034         return true;
5035 
5036       // If X & C == 0 then (X | C) == X +_{nuw} C
5037       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5038           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5039         KnownBits Known(CA->getBitWidth());
5040         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5041                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5042         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5043           return true;
5044       }
5045 
5046       return false;
5047     };
5048 
5049     const Value *X;
5050     const APInt *CLHS, *CRHS;
5051     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5052       return CLHS->ule(*CRHS);
5053 
5054     return false;
5055   }
5056   }
5057 }
5058 
5059 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
5060 /// ALHS ARHS" is true.  Otherwise, return None.
5061 static Optional<bool>
5062 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
5063                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
5064                       const DataLayout &DL, unsigned Depth) {
5065   switch (Pred) {
5066   default:
5067     return None;
5068 
5069   case CmpInst::ICMP_SLT:
5070   case CmpInst::ICMP_SLE:
5071     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
5072         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
5073       return true;
5074     return None;
5075 
5076   case CmpInst::ICMP_ULT:
5077   case CmpInst::ICMP_ULE:
5078     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
5079         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
5080       return true;
5081     return None;
5082   }
5083 }
5084 
5085 /// Return true if the operands of the two compares match.  IsSwappedOps is true
5086 /// when the operands match, but are swapped.
5087 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
5088                           const Value *BLHS, const Value *BRHS,
5089                           bool &IsSwappedOps) {
5090 
5091   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
5092   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
5093   return IsMatchingOps || IsSwappedOps;
5094 }
5095 
5096 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
5097 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
5098 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
5099 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
5100                                                     const Value *ALHS,
5101                                                     const Value *ARHS,
5102                                                     CmpInst::Predicate BPred,
5103                                                     const Value *BLHS,
5104                                                     const Value *BRHS,
5105                                                     bool IsSwappedOps) {
5106   // Canonicalize the operands so they're matching.
5107   if (IsSwappedOps) {
5108     std::swap(BLHS, BRHS);
5109     BPred = ICmpInst::getSwappedPredicate(BPred);
5110   }
5111   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
5112     return true;
5113   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
5114     return false;
5115 
5116   return None;
5117 }
5118 
5119 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
5120 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
5121 /// C2" is false.  Otherwise, return None if we can't infer anything.
5122 static Optional<bool>
5123 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
5124                                  const ConstantInt *C1,
5125                                  CmpInst::Predicate BPred,
5126                                  const Value *BLHS, const ConstantInt *C2) {
5127   assert(ALHS == BLHS && "LHS operands must match.");
5128   ConstantRange DomCR =
5129       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
5130   ConstantRange CR =
5131       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
5132   ConstantRange Intersection = DomCR.intersectWith(CR);
5133   ConstantRange Difference = DomCR.difference(CR);
5134   if (Intersection.isEmptySet())
5135     return false;
5136   if (Difference.isEmptySet())
5137     return true;
5138   return None;
5139 }
5140 
5141 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5142 /// false.  Otherwise, return None if we can't infer anything.
5143 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
5144                                          const ICmpInst *RHS,
5145                                          const DataLayout &DL, bool LHSIsTrue,
5146                                          unsigned Depth) {
5147   Value *ALHS = LHS->getOperand(0);
5148   Value *ARHS = LHS->getOperand(1);
5149   // The rest of the logic assumes the LHS condition is true.  If that's not the
5150   // case, invert the predicate to make it so.
5151   ICmpInst::Predicate APred =
5152       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
5153 
5154   Value *BLHS = RHS->getOperand(0);
5155   Value *BRHS = RHS->getOperand(1);
5156   ICmpInst::Predicate BPred = RHS->getPredicate();
5157 
5158   // Can we infer anything when the two compares have matching operands?
5159   bool IsSwappedOps;
5160   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
5161     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
5162             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
5163       return Implication;
5164     // No amount of additional analysis will infer the second condition, so
5165     // early exit.
5166     return None;
5167   }
5168 
5169   // Can we infer anything when the LHS operands match and the RHS operands are
5170   // constants (not necessarily matching)?
5171   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
5172     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
5173             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
5174             cast<ConstantInt>(BRHS)))
5175       return Implication;
5176     // No amount of additional analysis will infer the second condition, so
5177     // early exit.
5178     return None;
5179   }
5180 
5181   if (APred == BPred)
5182     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
5183   return None;
5184 }
5185 
5186 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
5187 /// false.  Otherwise, return None if we can't infer anything.  We expect the
5188 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
5189 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
5190                                          const ICmpInst *RHS,
5191                                          const DataLayout &DL, bool LHSIsTrue,
5192                                          unsigned Depth) {
5193   // The LHS must be an 'or' or an 'and' instruction.
5194   assert((LHS->getOpcode() == Instruction::And ||
5195           LHS->getOpcode() == Instruction::Or) &&
5196          "Expected LHS to be 'and' or 'or'.");
5197 
5198   assert(Depth <= MaxDepth && "Hit recursion limit");
5199 
5200   // If the result of an 'or' is false, then we know both legs of the 'or' are
5201   // false.  Similarly, if the result of an 'and' is true, then we know both
5202   // legs of the 'and' are true.
5203   Value *ALHS, *ARHS;
5204   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
5205       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
5206     // FIXME: Make this non-recursion.
5207     if (Optional<bool> Implication =
5208             isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
5209       return Implication;
5210     if (Optional<bool> Implication =
5211             isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
5212       return Implication;
5213     return None;
5214   }
5215   return None;
5216 }
5217 
5218 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
5219                                         const DataLayout &DL, bool LHSIsTrue,
5220                                         unsigned Depth) {
5221   // Bail out when we hit the limit.
5222   if (Depth == MaxDepth)
5223     return None;
5224 
5225   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
5226   // example.
5227   if (LHS->getType() != RHS->getType())
5228     return None;
5229 
5230   Type *OpTy = LHS->getType();
5231   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
5232 
5233   // LHS ==> RHS by definition
5234   if (LHS == RHS)
5235     return LHSIsTrue;
5236 
5237   // FIXME: Extending the code below to handle vectors.
5238   if (OpTy->isVectorTy())
5239     return None;
5240 
5241   assert(OpTy->isIntegerTy(1) && "implied by above");
5242 
5243   // Both LHS and RHS are icmps.
5244   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
5245   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
5246   if (LHSCmp && RHSCmp)
5247     return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
5248 
5249   // The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to be
5250   // an icmp. FIXME: Add support for and/or on the RHS.
5251   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
5252   if (LHSBO && RHSCmp) {
5253     if ((LHSBO->getOpcode() == Instruction::And ||
5254          LHSBO->getOpcode() == Instruction::Or))
5255       return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
5256   }
5257   return None;
5258 }
5259