1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/CallSite.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/DiagnosticInfo.h" 45 #include "llvm/IR/Dominators.h" 46 #include "llvm/IR/Function.h" 47 #include "llvm/IR/GetElementPtrTypeIterator.h" 48 #include "llvm/IR/GlobalAlias.h" 49 #include "llvm/IR/GlobalValue.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/IntrinsicInst.h" 55 #include "llvm/IR/Intrinsics.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getIndexTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static void computeKnownBits(const Value *V, KnownBits &Known, 167 unsigned Depth, const Query &Q); 168 169 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 170 const DataLayout &DL, unsigned Depth, 171 AssumptionCache *AC, const Instruction *CxtI, 172 const DominatorTree *DT, 173 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 174 ::computeKnownBits(V, Known, Depth, 175 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 176 } 177 178 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 179 const Query &Q); 180 181 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 182 unsigned Depth, AssumptionCache *AC, 183 const Instruction *CxtI, 184 const DominatorTree *DT, 185 OptimizationRemarkEmitter *ORE, 186 bool UseInstrInfo) { 187 return ::computeKnownBits( 188 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 189 } 190 191 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 192 const DataLayout &DL, AssumptionCache *AC, 193 const Instruction *CxtI, const DominatorTree *DT, 194 bool UseInstrInfo) { 195 assert(LHS->getType() == RHS->getType() && 196 "LHS and RHS should have the same type"); 197 assert(LHS->getType()->isIntOrIntVectorTy() && 198 "LHS and RHS should be integers"); 199 // Look for an inverted mask: (X & ~M) op (Y & M). 200 Value *M; 201 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 202 match(RHS, m_c_And(m_Specific(M), m_Value()))) 203 return true; 204 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 205 match(LHS, m_c_And(m_Specific(M), m_Value()))) 206 return true; 207 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 208 KnownBits LHSKnown(IT->getBitWidth()); 209 KnownBits RHSKnown(IT->getBitWidth()); 210 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 211 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 212 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 213 } 214 215 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 216 for (const User *U : CxtI->users()) { 217 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 218 if (IC->isEquality()) 219 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 220 if (C->isNullValue()) 221 continue; 222 return false; 223 } 224 return true; 225 } 226 227 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 228 const Query &Q); 229 230 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 231 bool OrZero, unsigned Depth, 232 AssumptionCache *AC, const Instruction *CxtI, 233 const DominatorTree *DT, bool UseInstrInfo) { 234 return ::isKnownToBeAPowerOfTwo( 235 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 236 } 237 238 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 239 240 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 241 AssumptionCache *AC, const Instruction *CxtI, 242 const DominatorTree *DT, bool UseInstrInfo) { 243 return ::isKnownNonZero(V, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 245 } 246 247 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 248 unsigned Depth, AssumptionCache *AC, 249 const Instruction *CxtI, const DominatorTree *DT, 250 bool UseInstrInfo) { 251 KnownBits Known = 252 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 253 return Known.isNonNegative(); 254 } 255 256 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 257 AssumptionCache *AC, const Instruction *CxtI, 258 const DominatorTree *DT, bool UseInstrInfo) { 259 if (auto *CI = dyn_cast<ConstantInt>(V)) 260 return CI->getValue().isStrictlyPositive(); 261 262 // TODO: We'd doing two recursive queries here. We should factor this such 263 // that only a single query is needed. 264 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 265 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 266 } 267 268 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 269 AssumptionCache *AC, const Instruction *CxtI, 270 const DominatorTree *DT, bool UseInstrInfo) { 271 KnownBits Known = 272 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 273 return Known.isNegative(); 274 } 275 276 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 277 278 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 279 const DataLayout &DL, AssumptionCache *AC, 280 const Instruction *CxtI, const DominatorTree *DT, 281 bool UseInstrInfo) { 282 return ::isKnownNonEqual(V1, V2, 283 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 284 UseInstrInfo, /*ORE=*/nullptr)); 285 } 286 287 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 288 const Query &Q); 289 290 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 291 const DataLayout &DL, unsigned Depth, 292 AssumptionCache *AC, const Instruction *CxtI, 293 const DominatorTree *DT, bool UseInstrInfo) { 294 return ::MaskedValueIsZero( 295 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 296 } 297 298 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 299 const Query &Q); 300 301 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 302 unsigned Depth, AssumptionCache *AC, 303 const Instruction *CxtI, 304 const DominatorTree *DT, bool UseInstrInfo) { 305 return ::ComputeNumSignBits( 306 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 307 } 308 309 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 310 bool NSW, 311 KnownBits &KnownOut, KnownBits &Known2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownOut.getBitWidth(); 314 315 // If an initial sequence of bits in the result is not needed, the 316 // corresponding bits in the operands are not needed. 317 KnownBits LHSKnown(BitWidth); 318 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 319 computeKnownBits(Op1, Known2, Depth + 1, Q); 320 321 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 322 } 323 324 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 325 KnownBits &Known, KnownBits &Known2, 326 unsigned Depth, const Query &Q) { 327 unsigned BitWidth = Known.getBitWidth(); 328 computeKnownBits(Op1, Known, Depth + 1, Q); 329 computeKnownBits(Op0, Known2, Depth + 1, Q); 330 331 bool isKnownNegative = false; 332 bool isKnownNonNegative = false; 333 // If the multiplication is known not to overflow, compute the sign bit. 334 if (NSW) { 335 if (Op0 == Op1) { 336 // The product of a number with itself is non-negative. 337 isKnownNonNegative = true; 338 } else { 339 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 340 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 341 bool isKnownNegativeOp1 = Known.isNegative(); 342 bool isKnownNegativeOp0 = Known2.isNegative(); 343 // The product of two numbers with the same sign is non-negative. 344 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 345 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 346 // The product of a negative number and a non-negative number is either 347 // negative or zero. 348 if (!isKnownNonNegative) 349 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 350 isKnownNonZero(Op0, Depth, Q)) || 351 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 352 isKnownNonZero(Op1, Depth, Q)); 353 } 354 } 355 356 assert(!Known.hasConflict() && !Known2.hasConflict()); 357 // Compute a conservative estimate for high known-0 bits. 358 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 359 Known2.countMinLeadingZeros(), 360 BitWidth) - BitWidth; 361 LeadZ = std::min(LeadZ, BitWidth); 362 363 // The result of the bottom bits of an integer multiply can be 364 // inferred by looking at the bottom bits of both operands and 365 // multiplying them together. 366 // We can infer at least the minimum number of known trailing bits 367 // of both operands. Depending on number of trailing zeros, we can 368 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 369 // a and b are divisible by m and n respectively. 370 // We then calculate how many of those bits are inferrable and set 371 // the output. For example, the i8 mul: 372 // a = XXXX1100 (12) 373 // b = XXXX1110 (14) 374 // We know the bottom 3 bits are zero since the first can be divided by 375 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 376 // Applying the multiplication to the trimmed arguments gets: 377 // XX11 (3) 378 // X111 (7) 379 // ------- 380 // XX11 381 // XX11 382 // XX11 383 // XX11 384 // ------- 385 // XXXXX01 386 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 387 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 388 // The proof for this can be described as: 389 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 390 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 391 // umin(countTrailingZeros(C2), C6) + 392 // umin(C5 - umin(countTrailingZeros(C1), C5), 393 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 394 // %aa = shl i8 %a, C5 395 // %bb = shl i8 %b, C6 396 // %aaa = or i8 %aa, C1 397 // %bbb = or i8 %bb, C2 398 // %mul = mul i8 %aaa, %bbb 399 // %mask = and i8 %mul, C7 400 // => 401 // %mask = i8 ((C1*C2)&C7) 402 // Where C5, C6 describe the known bits of %a, %b 403 // C1, C2 describe the known bottom bits of %a, %b. 404 // C7 describes the mask of the known bits of the result. 405 APInt Bottom0 = Known.One; 406 APInt Bottom1 = Known2.One; 407 408 // How many times we'd be able to divide each argument by 2 (shr by 1). 409 // This gives us the number of trailing zeros on the multiplication result. 410 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 411 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 412 unsigned TrailZero0 = Known.countMinTrailingZeros(); 413 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 414 unsigned TrailZ = TrailZero0 + TrailZero1; 415 416 // Figure out the fewest known-bits operand. 417 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 418 TrailBitsKnown1 - TrailZero1); 419 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 420 421 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 422 Bottom1.getLoBits(TrailBitsKnown1); 423 424 Known.resetAll(); 425 Known.Zero.setHighBits(LeadZ); 426 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 427 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 428 429 // Only make use of no-wrap flags if we failed to compute the sign bit 430 // directly. This matters if the multiplication always overflows, in 431 // which case we prefer to follow the result of the direct computation, 432 // though as the program is invoking undefined behaviour we can choose 433 // whatever we like here. 434 if (isKnownNonNegative && !Known.isNegative()) 435 Known.makeNonNegative(); 436 else if (isKnownNegative && !Known.isNonNegative()) 437 Known.makeNegative(); 438 } 439 440 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 441 KnownBits &Known) { 442 unsigned BitWidth = Known.getBitWidth(); 443 unsigned NumRanges = Ranges.getNumOperands() / 2; 444 assert(NumRanges >= 1); 445 446 Known.Zero.setAllBits(); 447 Known.One.setAllBits(); 448 449 for (unsigned i = 0; i < NumRanges; ++i) { 450 ConstantInt *Lower = 451 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 452 ConstantInt *Upper = 453 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 454 ConstantRange Range(Lower->getValue(), Upper->getValue()); 455 456 // The first CommonPrefixBits of all values in Range are equal. 457 unsigned CommonPrefixBits = 458 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 459 460 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 461 Known.One &= Range.getUnsignedMax() & Mask; 462 Known.Zero &= ~Range.getUnsignedMax() & Mask; 463 } 464 } 465 466 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 467 SmallVector<const Value *, 16> WorkSet(1, I); 468 SmallPtrSet<const Value *, 32> Visited; 469 SmallPtrSet<const Value *, 16> EphValues; 470 471 // The instruction defining an assumption's condition itself is always 472 // considered ephemeral to that assumption (even if it has other 473 // non-ephemeral users). See r246696's test case for an example. 474 if (is_contained(I->operands(), E)) 475 return true; 476 477 while (!WorkSet.empty()) { 478 const Value *V = WorkSet.pop_back_val(); 479 if (!Visited.insert(V).second) 480 continue; 481 482 // If all uses of this value are ephemeral, then so is this value. 483 if (llvm::all_of(V->users(), [&](const User *U) { 484 return EphValues.count(U); 485 })) { 486 if (V == E) 487 return true; 488 489 if (V == I || isSafeToSpeculativelyExecute(V)) { 490 EphValues.insert(V); 491 if (const User *U = dyn_cast<User>(V)) 492 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 493 J != JE; ++J) 494 WorkSet.push_back(*J); 495 } 496 } 497 } 498 499 return false; 500 } 501 502 // Is this an intrinsic that cannot be speculated but also cannot trap? 503 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 504 if (const CallInst *CI = dyn_cast<CallInst>(I)) 505 if (Function *F = CI->getCalledFunction()) 506 switch (F->getIntrinsicID()) { 507 default: break; 508 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 509 case Intrinsic::assume: 510 case Intrinsic::sideeffect: 511 case Intrinsic::dbg_declare: 512 case Intrinsic::dbg_value: 513 case Intrinsic::dbg_label: 514 case Intrinsic::invariant_start: 515 case Intrinsic::invariant_end: 516 case Intrinsic::lifetime_start: 517 case Intrinsic::lifetime_end: 518 case Intrinsic::objectsize: 519 case Intrinsic::ptr_annotation: 520 case Intrinsic::var_annotation: 521 return true; 522 } 523 524 return false; 525 } 526 527 bool llvm::isValidAssumeForContext(const Instruction *Inv, 528 const Instruction *CxtI, 529 const DominatorTree *DT) { 530 // There are two restrictions on the use of an assume: 531 // 1. The assume must dominate the context (or the control flow must 532 // reach the assume whenever it reaches the context). 533 // 2. The context must not be in the assume's set of ephemeral values 534 // (otherwise we will use the assume to prove that the condition 535 // feeding the assume is trivially true, thus causing the removal of 536 // the assume). 537 538 if (DT) { 539 if (DT->dominates(Inv, CxtI)) 540 return true; 541 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 542 // We don't have a DT, but this trivially dominates. 543 return true; 544 } 545 546 // With or without a DT, the only remaining case we will check is if the 547 // instructions are in the same BB. Give up if that is not the case. 548 if (Inv->getParent() != CxtI->getParent()) 549 return false; 550 551 // If we have a dom tree, then we now know that the assume doesn't dominate 552 // the other instruction. If we don't have a dom tree then we can check if 553 // the assume is first in the BB. 554 if (!DT) { 555 // Search forward from the assume until we reach the context (or the end 556 // of the block); the common case is that the assume will come first. 557 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 558 IE = Inv->getParent()->end(); I != IE; ++I) 559 if (&*I == CxtI) 560 return true; 561 } 562 563 // The context comes first, but they're both in the same block. Make sure 564 // there is nothing in between that might interrupt the control flow. 565 for (BasicBlock::const_iterator I = 566 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 567 I != IE; ++I) 568 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 569 return false; 570 571 return !isEphemeralValueOf(Inv, CxtI); 572 } 573 574 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 575 unsigned Depth, const Query &Q) { 576 // Use of assumptions is context-sensitive. If we don't have a context, we 577 // cannot use them! 578 if (!Q.AC || !Q.CxtI) 579 return; 580 581 unsigned BitWidth = Known.getBitWidth(); 582 583 // Note that the patterns below need to be kept in sync with the code 584 // in AssumptionCache::updateAffectedValues. 585 586 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 587 if (!AssumeVH) 588 continue; 589 CallInst *I = cast<CallInst>(AssumeVH); 590 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 591 "Got assumption for the wrong function!"); 592 if (Q.isExcluded(I)) 593 continue; 594 595 // Warning: This loop can end up being somewhat performance sensitive. 596 // We're running this loop for once for each value queried resulting in a 597 // runtime of ~O(#assumes * #values). 598 599 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 600 "must be an assume intrinsic"); 601 602 Value *Arg = I->getArgOperand(0); 603 604 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 605 assert(BitWidth == 1 && "assume operand is not i1?"); 606 Known.setAllOnes(); 607 return; 608 } 609 if (match(Arg, m_Not(m_Specific(V))) && 610 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 611 assert(BitWidth == 1 && "assume operand is not i1?"); 612 Known.setAllZero(); 613 return; 614 } 615 616 // The remaining tests are all recursive, so bail out if we hit the limit. 617 if (Depth == MaxDepth) 618 continue; 619 620 Value *A, *B; 621 auto m_V = m_CombineOr(m_Specific(V), 622 m_CombineOr(m_PtrToInt(m_Specific(V)), 623 m_BitCast(m_Specific(V)))); 624 625 CmpInst::Predicate Pred; 626 uint64_t C; 627 // assume(v = a) 628 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 629 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 630 KnownBits RHSKnown(BitWidth); 631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 632 Known.Zero |= RHSKnown.Zero; 633 Known.One |= RHSKnown.One; 634 // assume(v & b = a) 635 } else if (match(Arg, 636 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 637 Pred == ICmpInst::ICMP_EQ && 638 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 639 KnownBits RHSKnown(BitWidth); 640 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 641 KnownBits MaskKnown(BitWidth); 642 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 643 644 // For those bits in the mask that are known to be one, we can propagate 645 // known bits from the RHS to V. 646 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 647 Known.One |= RHSKnown.One & MaskKnown.One; 648 // assume(~(v & b) = a) 649 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 650 m_Value(A))) && 651 Pred == ICmpInst::ICMP_EQ && 652 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 653 KnownBits RHSKnown(BitWidth); 654 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 655 KnownBits MaskKnown(BitWidth); 656 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 657 658 // For those bits in the mask that are known to be one, we can propagate 659 // inverted known bits from the RHS to V. 660 Known.Zero |= RHSKnown.One & MaskKnown.One; 661 Known.One |= RHSKnown.Zero & MaskKnown.One; 662 // assume(v | b = a) 663 } else if (match(Arg, 664 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 665 Pred == ICmpInst::ICMP_EQ && 666 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 667 KnownBits RHSKnown(BitWidth); 668 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 669 KnownBits BKnown(BitWidth); 670 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 671 672 // For those bits in B that are known to be zero, we can propagate known 673 // bits from the RHS to V. 674 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 675 Known.One |= RHSKnown.One & BKnown.Zero; 676 // assume(~(v | b) = a) 677 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 678 m_Value(A))) && 679 Pred == ICmpInst::ICMP_EQ && 680 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 681 KnownBits RHSKnown(BitWidth); 682 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 683 KnownBits BKnown(BitWidth); 684 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 685 686 // For those bits in B that are known to be zero, we can propagate 687 // inverted known bits from the RHS to V. 688 Known.Zero |= RHSKnown.One & BKnown.Zero; 689 Known.One |= RHSKnown.Zero & BKnown.Zero; 690 // assume(v ^ b = a) 691 } else if (match(Arg, 692 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 693 Pred == ICmpInst::ICMP_EQ && 694 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 KnownBits RHSKnown(BitWidth); 696 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 697 KnownBits BKnown(BitWidth); 698 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 699 700 // For those bits in B that are known to be zero, we can propagate known 701 // bits from the RHS to V. For those bits in B that are known to be one, 702 // we can propagate inverted known bits from the RHS to V. 703 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 704 Known.One |= RHSKnown.One & BKnown.Zero; 705 Known.Zero |= RHSKnown.One & BKnown.One; 706 Known.One |= RHSKnown.Zero & BKnown.One; 707 // assume(~(v ^ b) = a) 708 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 709 m_Value(A))) && 710 Pred == ICmpInst::ICMP_EQ && 711 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 712 KnownBits RHSKnown(BitWidth); 713 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 714 KnownBits BKnown(BitWidth); 715 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 716 717 // For those bits in B that are known to be zero, we can propagate 718 // inverted known bits from the RHS to V. For those bits in B that are 719 // known to be one, we can propagate known bits from the RHS to V. 720 Known.Zero |= RHSKnown.One & BKnown.Zero; 721 Known.One |= RHSKnown.Zero & BKnown.Zero; 722 Known.Zero |= RHSKnown.Zero & BKnown.One; 723 Known.One |= RHSKnown.One & BKnown.One; 724 // assume(v << c = a) 725 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 726 m_Value(A))) && 727 Pred == ICmpInst::ICMP_EQ && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 729 C < BitWidth) { 730 KnownBits RHSKnown(BitWidth); 731 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 732 // For those bits in RHS that are known, we can propagate them to known 733 // bits in V shifted to the right by C. 734 RHSKnown.Zero.lshrInPlace(C); 735 Known.Zero |= RHSKnown.Zero; 736 RHSKnown.One.lshrInPlace(C); 737 Known.One |= RHSKnown.One; 738 // assume(~(v << c) = a) 739 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 740 m_Value(A))) && 741 Pred == ICmpInst::ICMP_EQ && 742 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 743 C < BitWidth) { 744 KnownBits RHSKnown(BitWidth); 745 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 746 // For those bits in RHS that are known, we can propagate them inverted 747 // to known bits in V shifted to the right by C. 748 RHSKnown.One.lshrInPlace(C); 749 Known.Zero |= RHSKnown.One; 750 RHSKnown.Zero.lshrInPlace(C); 751 Known.One |= RHSKnown.Zero; 752 // assume(v >> c = a) 753 } else if (match(Arg, 754 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 755 m_Value(A))) && 756 Pred == ICmpInst::ICMP_EQ && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 758 C < BitWidth) { 759 KnownBits RHSKnown(BitWidth); 760 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 761 // For those bits in RHS that are known, we can propagate them to known 762 // bits in V shifted to the right by C. 763 Known.Zero |= RHSKnown.Zero << C; 764 Known.One |= RHSKnown.One << C; 765 // assume(~(v >> c) = a) 766 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 767 m_Value(A))) && 768 Pred == ICmpInst::ICMP_EQ && 769 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 770 C < BitWidth) { 771 KnownBits RHSKnown(BitWidth); 772 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 773 // For those bits in RHS that are known, we can propagate them inverted 774 // to known bits in V shifted to the right by C. 775 Known.Zero |= RHSKnown.One << C; 776 Known.One |= RHSKnown.Zero << C; 777 // assume(v >=_s c) where c is non-negative 778 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 779 Pred == ICmpInst::ICMP_SGE && 780 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 781 KnownBits RHSKnown(BitWidth); 782 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 783 784 if (RHSKnown.isNonNegative()) { 785 // We know that the sign bit is zero. 786 Known.makeNonNegative(); 787 } 788 // assume(v >_s c) where c is at least -1. 789 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 790 Pred == ICmpInst::ICMP_SGT && 791 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 792 KnownBits RHSKnown(BitWidth); 793 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 794 795 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 796 // We know that the sign bit is zero. 797 Known.makeNonNegative(); 798 } 799 // assume(v <=_s c) where c is negative 800 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 801 Pred == ICmpInst::ICMP_SLE && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown(BitWidth); 804 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 805 806 if (RHSKnown.isNegative()) { 807 // We know that the sign bit is one. 808 Known.makeNegative(); 809 } 810 // assume(v <_s c) where c is non-positive 811 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 812 Pred == ICmpInst::ICMP_SLT && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown(BitWidth); 815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 816 817 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 818 // We know that the sign bit is one. 819 Known.makeNegative(); 820 } 821 // assume(v <=_u c) 822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 823 Pred == ICmpInst::ICMP_ULE && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // Whatever high bits in c are zero are known to be zero. 829 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 830 // assume(v <_u c) 831 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 832 Pred == ICmpInst::ICMP_ULT && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 834 KnownBits RHSKnown(BitWidth); 835 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 836 837 // If the RHS is known zero, then this assumption must be wrong (nothing 838 // is unsigned less than zero). Signal a conflict and get out of here. 839 if (RHSKnown.isZero()) { 840 Known.Zero.setAllBits(); 841 Known.One.setAllBits(); 842 break; 843 } 844 845 // Whatever high bits in c are zero are known to be zero (if c is a power 846 // of 2, then one more). 847 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 848 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 849 else 850 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 851 } 852 } 853 854 // If assumptions conflict with each other or previous known bits, then we 855 // have a logical fallacy. It's possible that the assumption is not reachable, 856 // so this isn't a real bug. On the other hand, the program may have undefined 857 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 858 // clear out the known bits, try to warn the user, and hope for the best. 859 if (Known.Zero.intersects(Known.One)) { 860 Known.resetAll(); 861 862 if (Q.ORE) 863 Q.ORE->emit([&]() { 864 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 865 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 866 CxtI) 867 << "Detected conflicting code assumptions. Program may " 868 "have undefined behavior, or compiler may have " 869 "internal error."; 870 }); 871 } 872 } 873 874 /// Compute known bits from a shift operator, including those with a 875 /// non-constant shift amount. Known is the output of this function. Known2 is a 876 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 877 /// operator-specific functions that, given the known-zero or known-one bits 878 /// respectively, and a shift amount, compute the implied known-zero or 879 /// known-one bits of the shift operator's result respectively for that shift 880 /// amount. The results from calling KZF and KOF are conservatively combined for 881 /// all permitted shift amounts. 882 static void computeKnownBitsFromShiftOperator( 883 const Operator *I, KnownBits &Known, KnownBits &Known2, 884 unsigned Depth, const Query &Q, 885 function_ref<APInt(const APInt &, unsigned)> KZF, 886 function_ref<APInt(const APInt &, unsigned)> KOF) { 887 unsigned BitWidth = Known.getBitWidth(); 888 889 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 890 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 891 892 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 893 Known.Zero = KZF(Known.Zero, ShiftAmt); 894 Known.One = KOF(Known.One, ShiftAmt); 895 // If the known bits conflict, this must be an overflowing left shift, so 896 // the shift result is poison. We can return anything we want. Choose 0 for 897 // the best folding opportunity. 898 if (Known.hasConflict()) 899 Known.setAllZero(); 900 901 return; 902 } 903 904 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 905 906 // If the shift amount could be greater than or equal to the bit-width of the 907 // LHS, the value could be poison, but bail out because the check below is 908 // expensive. TODO: Should we just carry on? 909 if ((~Known.Zero).uge(BitWidth)) { 910 Known.resetAll(); 911 return; 912 } 913 914 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 915 // BitWidth > 64 and any upper bits are known, we'll end up returning the 916 // limit value (which implies all bits are known). 917 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 918 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 919 920 // It would be more-clearly correct to use the two temporaries for this 921 // calculation. Reusing the APInts here to prevent unnecessary allocations. 922 Known.resetAll(); 923 924 // If we know the shifter operand is nonzero, we can sometimes infer more 925 // known bits. However this is expensive to compute, so be lazy about it and 926 // only compute it when absolutely necessary. 927 Optional<bool> ShifterOperandIsNonZero; 928 929 // Early exit if we can't constrain any well-defined shift amount. 930 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 931 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 932 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 933 if (!*ShifterOperandIsNonZero) 934 return; 935 } 936 937 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 938 939 Known.Zero.setAllBits(); 940 Known.One.setAllBits(); 941 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 942 // Combine the shifted known input bits only for those shift amounts 943 // compatible with its known constraints. 944 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 945 continue; 946 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 947 continue; 948 // If we know the shifter is nonzero, we may be able to infer more known 949 // bits. This check is sunk down as far as possible to avoid the expensive 950 // call to isKnownNonZero if the cheaper checks above fail. 951 if (ShiftAmt == 0) { 952 if (!ShifterOperandIsNonZero.hasValue()) 953 ShifterOperandIsNonZero = 954 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 955 if (*ShifterOperandIsNonZero) 956 continue; 957 } 958 959 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 960 Known.One &= KOF(Known2.One, ShiftAmt); 961 } 962 963 // If the known bits conflict, the result is poison. Return a 0 and hope the 964 // caller can further optimize that. 965 if (Known.hasConflict()) 966 Known.setAllZero(); 967 } 968 969 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 970 unsigned Depth, const Query &Q) { 971 unsigned BitWidth = Known.getBitWidth(); 972 973 KnownBits Known2(Known); 974 switch (I->getOpcode()) { 975 default: break; 976 case Instruction::Load: 977 if (MDNode *MD = 978 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 979 computeKnownBitsFromRangeMetadata(*MD, Known); 980 break; 981 case Instruction::And: { 982 // If either the LHS or the RHS are Zero, the result is zero. 983 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 984 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 985 986 // Output known-1 bits are only known if set in both the LHS & RHS. 987 Known.One &= Known2.One; 988 // Output known-0 are known to be clear if zero in either the LHS | RHS. 989 Known.Zero |= Known2.Zero; 990 991 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 992 // here we handle the more general case of adding any odd number by 993 // matching the form add(x, add(x, y)) where y is odd. 994 // TODO: This could be generalized to clearing any bit set in y where the 995 // following bit is known to be unset in y. 996 Value *X = nullptr, *Y = nullptr; 997 if (!Known.Zero[0] && !Known.One[0] && 998 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 999 Known2.resetAll(); 1000 computeKnownBits(Y, Known2, Depth + 1, Q); 1001 if (Known2.countMinTrailingOnes() > 0) 1002 Known.Zero.setBit(0); 1003 } 1004 break; 1005 } 1006 case Instruction::Or: 1007 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1008 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1009 1010 // Output known-0 bits are only known if clear in both the LHS & RHS. 1011 Known.Zero &= Known2.Zero; 1012 // Output known-1 are known to be set if set in either the LHS | RHS. 1013 Known.One |= Known2.One; 1014 break; 1015 case Instruction::Xor: { 1016 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1017 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1018 1019 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1020 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1021 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1022 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1023 Known.Zero = std::move(KnownZeroOut); 1024 break; 1025 } 1026 case Instruction::Mul: { 1027 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1028 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1029 Known2, Depth, Q); 1030 break; 1031 } 1032 case Instruction::UDiv: { 1033 // For the purposes of computing leading zeros we can conservatively 1034 // treat a udiv as a logical right shift by the power of 2 known to 1035 // be less than the denominator. 1036 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1037 unsigned LeadZ = Known2.countMinLeadingZeros(); 1038 1039 Known2.resetAll(); 1040 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1041 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1042 if (RHSMaxLeadingZeros != BitWidth) 1043 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1044 1045 Known.Zero.setHighBits(LeadZ); 1046 break; 1047 } 1048 case Instruction::Select: { 1049 const Value *LHS, *RHS; 1050 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1051 if (SelectPatternResult::isMinOrMax(SPF)) { 1052 computeKnownBits(RHS, Known, Depth + 1, Q); 1053 computeKnownBits(LHS, Known2, Depth + 1, Q); 1054 } else { 1055 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1056 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1057 } 1058 1059 unsigned MaxHighOnes = 0; 1060 unsigned MaxHighZeros = 0; 1061 if (SPF == SPF_SMAX) { 1062 // If both sides are negative, the result is negative. 1063 if (Known.isNegative() && Known2.isNegative()) 1064 // We can derive a lower bound on the result by taking the max of the 1065 // leading one bits. 1066 MaxHighOnes = 1067 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1068 // If either side is non-negative, the result is non-negative. 1069 else if (Known.isNonNegative() || Known2.isNonNegative()) 1070 MaxHighZeros = 1; 1071 } else if (SPF == SPF_SMIN) { 1072 // If both sides are non-negative, the result is non-negative. 1073 if (Known.isNonNegative() && Known2.isNonNegative()) 1074 // We can derive an upper bound on the result by taking the max of the 1075 // leading zero bits. 1076 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1077 Known2.countMinLeadingZeros()); 1078 // If either side is negative, the result is negative. 1079 else if (Known.isNegative() || Known2.isNegative()) 1080 MaxHighOnes = 1; 1081 } else if (SPF == SPF_UMAX) { 1082 // We can derive a lower bound on the result by taking the max of the 1083 // leading one bits. 1084 MaxHighOnes = 1085 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1086 } else if (SPF == SPF_UMIN) { 1087 // We can derive an upper bound on the result by taking the max of the 1088 // leading zero bits. 1089 MaxHighZeros = 1090 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1091 } else if (SPF == SPF_ABS) { 1092 // RHS from matchSelectPattern returns the negation part of abs pattern. 1093 // If the negate has an NSW flag we can assume the sign bit of the result 1094 // will be 0 because that makes abs(INT_MIN) undefined. 1095 if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1096 MaxHighZeros = 1; 1097 } 1098 1099 // Only known if known in both the LHS and RHS. 1100 Known.One &= Known2.One; 1101 Known.Zero &= Known2.Zero; 1102 if (MaxHighOnes > 0) 1103 Known.One.setHighBits(MaxHighOnes); 1104 if (MaxHighZeros > 0) 1105 Known.Zero.setHighBits(MaxHighZeros); 1106 break; 1107 } 1108 case Instruction::FPTrunc: 1109 case Instruction::FPExt: 1110 case Instruction::FPToUI: 1111 case Instruction::FPToSI: 1112 case Instruction::SIToFP: 1113 case Instruction::UIToFP: 1114 break; // Can't work with floating point. 1115 case Instruction::PtrToInt: 1116 case Instruction::IntToPtr: 1117 // Fall through and handle them the same as zext/trunc. 1118 LLVM_FALLTHROUGH; 1119 case Instruction::ZExt: 1120 case Instruction::Trunc: { 1121 Type *SrcTy = I->getOperand(0)->getType(); 1122 1123 unsigned SrcBitWidth; 1124 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1125 // which fall through here. 1126 Type *ScalarTy = SrcTy->getScalarType(); 1127 SrcBitWidth = ScalarTy->isPointerTy() ? 1128 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1129 Q.DL.getTypeSizeInBits(ScalarTy); 1130 1131 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1132 Known = Known.zextOrTrunc(SrcBitWidth); 1133 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1134 Known = Known.zextOrTrunc(BitWidth); 1135 // Any top bits are known to be zero. 1136 if (BitWidth > SrcBitWidth) 1137 Known.Zero.setBitsFrom(SrcBitWidth); 1138 break; 1139 } 1140 case Instruction::BitCast: { 1141 Type *SrcTy = I->getOperand(0)->getType(); 1142 if (SrcTy->isIntOrPtrTy() && 1143 // TODO: For now, not handling conversions like: 1144 // (bitcast i64 %x to <2 x i32>) 1145 !I->getType()->isVectorTy()) { 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 break; 1148 } 1149 break; 1150 } 1151 case Instruction::SExt: { 1152 // Compute the bits in the result that are not present in the input. 1153 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1154 1155 Known = Known.trunc(SrcBitWidth); 1156 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1157 // If the sign bit of the input is known set or clear, then we know the 1158 // top bits of the result. 1159 Known = Known.sext(BitWidth); 1160 break; 1161 } 1162 case Instruction::Shl: { 1163 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1164 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1165 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1166 APInt KZResult = KnownZero << ShiftAmt; 1167 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1168 // If this shift has "nsw" keyword, then the result is either a poison 1169 // value or has the same sign bit as the first operand. 1170 if (NSW && KnownZero.isSignBitSet()) 1171 KZResult.setSignBit(); 1172 return KZResult; 1173 }; 1174 1175 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1176 APInt KOResult = KnownOne << ShiftAmt; 1177 if (NSW && KnownOne.isSignBitSet()) 1178 KOResult.setSignBit(); 1179 return KOResult; 1180 }; 1181 1182 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1183 break; 1184 } 1185 case Instruction::LShr: { 1186 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1187 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1188 APInt KZResult = KnownZero.lshr(ShiftAmt); 1189 // High bits known zero. 1190 KZResult.setHighBits(ShiftAmt); 1191 return KZResult; 1192 }; 1193 1194 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1195 return KnownOne.lshr(ShiftAmt); 1196 }; 1197 1198 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1199 break; 1200 } 1201 case Instruction::AShr: { 1202 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1203 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1204 return KnownZero.ashr(ShiftAmt); 1205 }; 1206 1207 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1208 return KnownOne.ashr(ShiftAmt); 1209 }; 1210 1211 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1212 break; 1213 } 1214 case Instruction::Sub: { 1215 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1216 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1217 Known, Known2, Depth, Q); 1218 break; 1219 } 1220 case Instruction::Add: { 1221 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1222 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1223 Known, Known2, Depth, Q); 1224 break; 1225 } 1226 case Instruction::SRem: 1227 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1228 APInt RA = Rem->getValue().abs(); 1229 if (RA.isPowerOf2()) { 1230 APInt LowBits = RA - 1; 1231 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1232 1233 // The low bits of the first operand are unchanged by the srem. 1234 Known.Zero = Known2.Zero & LowBits; 1235 Known.One = Known2.One & LowBits; 1236 1237 // If the first operand is non-negative or has all low bits zero, then 1238 // the upper bits are all zero. 1239 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1240 Known.Zero |= ~LowBits; 1241 1242 // If the first operand is negative and not all low bits are zero, then 1243 // the upper bits are all one. 1244 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1245 Known.One |= ~LowBits; 1246 1247 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1248 break; 1249 } 1250 } 1251 1252 // The sign bit is the LHS's sign bit, except when the result of the 1253 // remainder is zero. 1254 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1255 // If it's known zero, our sign bit is also zero. 1256 if (Known2.isNonNegative()) 1257 Known.makeNonNegative(); 1258 1259 break; 1260 case Instruction::URem: { 1261 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1262 const APInt &RA = Rem->getValue(); 1263 if (RA.isPowerOf2()) { 1264 APInt LowBits = (RA - 1); 1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1266 Known.Zero |= ~LowBits; 1267 Known.One &= LowBits; 1268 break; 1269 } 1270 } 1271 1272 // Since the result is less than or equal to either operand, any leading 1273 // zero bits in either operand must also exist in the result. 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 1277 unsigned Leaders = 1278 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1279 Known.resetAll(); 1280 Known.Zero.setHighBits(Leaders); 1281 break; 1282 } 1283 1284 case Instruction::Alloca: { 1285 const AllocaInst *AI = cast<AllocaInst>(I); 1286 unsigned Align = AI->getAlignment(); 1287 if (Align == 0) 1288 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1289 1290 if (Align > 0) 1291 Known.Zero.setLowBits(countTrailingZeros(Align)); 1292 break; 1293 } 1294 case Instruction::GetElementPtr: { 1295 // Analyze all of the subscripts of this getelementptr instruction 1296 // to determine if we can prove known low zero bits. 1297 KnownBits LocalKnown(BitWidth); 1298 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1299 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1300 1301 gep_type_iterator GTI = gep_type_begin(I); 1302 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1303 Value *Index = I->getOperand(i); 1304 if (StructType *STy = GTI.getStructTypeOrNull()) { 1305 // Handle struct member offset arithmetic. 1306 1307 // Handle case when index is vector zeroinitializer 1308 Constant *CIndex = cast<Constant>(Index); 1309 if (CIndex->isZeroValue()) 1310 continue; 1311 1312 if (CIndex->getType()->isVectorTy()) 1313 Index = CIndex->getSplatValue(); 1314 1315 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1316 const StructLayout *SL = Q.DL.getStructLayout(STy); 1317 uint64_t Offset = SL->getElementOffset(Idx); 1318 TrailZ = std::min<unsigned>(TrailZ, 1319 countTrailingZeros(Offset)); 1320 } else { 1321 // Handle array index arithmetic. 1322 Type *IndexedTy = GTI.getIndexedType(); 1323 if (!IndexedTy->isSized()) { 1324 TrailZ = 0; 1325 break; 1326 } 1327 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1328 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1329 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1330 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1331 TrailZ = std::min(TrailZ, 1332 unsigned(countTrailingZeros(TypeSize) + 1333 LocalKnown.countMinTrailingZeros())); 1334 } 1335 } 1336 1337 Known.Zero.setLowBits(TrailZ); 1338 break; 1339 } 1340 case Instruction::PHI: { 1341 const PHINode *P = cast<PHINode>(I); 1342 // Handle the case of a simple two-predecessor recurrence PHI. 1343 // There's a lot more that could theoretically be done here, but 1344 // this is sufficient to catch some interesting cases. 1345 if (P->getNumIncomingValues() == 2) { 1346 for (unsigned i = 0; i != 2; ++i) { 1347 Value *L = P->getIncomingValue(i); 1348 Value *R = P->getIncomingValue(!i); 1349 Operator *LU = dyn_cast<Operator>(L); 1350 if (!LU) 1351 continue; 1352 unsigned Opcode = LU->getOpcode(); 1353 // Check for operations that have the property that if 1354 // both their operands have low zero bits, the result 1355 // will have low zero bits. 1356 if (Opcode == Instruction::Add || 1357 Opcode == Instruction::Sub || 1358 Opcode == Instruction::And || 1359 Opcode == Instruction::Or || 1360 Opcode == Instruction::Mul) { 1361 Value *LL = LU->getOperand(0); 1362 Value *LR = LU->getOperand(1); 1363 // Find a recurrence. 1364 if (LL == I) 1365 L = LR; 1366 else if (LR == I) 1367 L = LL; 1368 else 1369 break; 1370 // Ok, we have a PHI of the form L op= R. Check for low 1371 // zero bits. 1372 computeKnownBits(R, Known2, Depth + 1, Q); 1373 1374 // We need to take the minimum number of known bits 1375 KnownBits Known3(Known); 1376 computeKnownBits(L, Known3, Depth + 1, Q); 1377 1378 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1379 Known3.countMinTrailingZeros())); 1380 1381 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1382 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1383 // If initial value of recurrence is nonnegative, and we are adding 1384 // a nonnegative number with nsw, the result can only be nonnegative 1385 // or poison value regardless of the number of times we execute the 1386 // add in phi recurrence. If initial value is negative and we are 1387 // adding a negative number with nsw, the result can only be 1388 // negative or poison value. Similar arguments apply to sub and mul. 1389 // 1390 // (add non-negative, non-negative) --> non-negative 1391 // (add negative, negative) --> negative 1392 if (Opcode == Instruction::Add) { 1393 if (Known2.isNonNegative() && Known3.isNonNegative()) 1394 Known.makeNonNegative(); 1395 else if (Known2.isNegative() && Known3.isNegative()) 1396 Known.makeNegative(); 1397 } 1398 1399 // (sub nsw non-negative, negative) --> non-negative 1400 // (sub nsw negative, non-negative) --> negative 1401 else if (Opcode == Instruction::Sub && LL == I) { 1402 if (Known2.isNonNegative() && Known3.isNegative()) 1403 Known.makeNonNegative(); 1404 else if (Known2.isNegative() && Known3.isNonNegative()) 1405 Known.makeNegative(); 1406 } 1407 1408 // (mul nsw non-negative, non-negative) --> non-negative 1409 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1410 Known3.isNonNegative()) 1411 Known.makeNonNegative(); 1412 } 1413 1414 break; 1415 } 1416 } 1417 } 1418 1419 // Unreachable blocks may have zero-operand PHI nodes. 1420 if (P->getNumIncomingValues() == 0) 1421 break; 1422 1423 // Otherwise take the unions of the known bit sets of the operands, 1424 // taking conservative care to avoid excessive recursion. 1425 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1426 // Skip if every incoming value references to ourself. 1427 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1428 break; 1429 1430 Known.Zero.setAllBits(); 1431 Known.One.setAllBits(); 1432 for (Value *IncValue : P->incoming_values()) { 1433 // Skip direct self references. 1434 if (IncValue == P) continue; 1435 1436 Known2 = KnownBits(BitWidth); 1437 // Recurse, but cap the recursion to one level, because we don't 1438 // want to waste time spinning around in loops. 1439 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1440 Known.Zero &= Known2.Zero; 1441 Known.One &= Known2.One; 1442 // If all bits have been ruled out, there's no need to check 1443 // more operands. 1444 if (!Known.Zero && !Known.One) 1445 break; 1446 } 1447 } 1448 break; 1449 } 1450 case Instruction::Call: 1451 case Instruction::Invoke: 1452 // If range metadata is attached to this call, set known bits from that, 1453 // and then intersect with known bits based on other properties of the 1454 // function. 1455 if (MDNode *MD = 1456 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1457 computeKnownBitsFromRangeMetadata(*MD, Known); 1458 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1459 computeKnownBits(RV, Known2, Depth + 1, Q); 1460 Known.Zero |= Known2.Zero; 1461 Known.One |= Known2.One; 1462 } 1463 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1464 switch (II->getIntrinsicID()) { 1465 default: break; 1466 case Intrinsic::bitreverse: 1467 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1468 Known.Zero |= Known2.Zero.reverseBits(); 1469 Known.One |= Known2.One.reverseBits(); 1470 break; 1471 case Intrinsic::bswap: 1472 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1473 Known.Zero |= Known2.Zero.byteSwap(); 1474 Known.One |= Known2.One.byteSwap(); 1475 break; 1476 case Intrinsic::ctlz: { 1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1478 // If we have a known 1, its position is our upper bound. 1479 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1480 // If this call is undefined for 0, the result will be less than 2^n. 1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1482 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1483 unsigned LowBits = Log2_32(PossibleLZ)+1; 1484 Known.Zero.setBitsFrom(LowBits); 1485 break; 1486 } 1487 case Intrinsic::cttz: { 1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1489 // If we have a known 1, its position is our upper bound. 1490 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1491 // If this call is undefined for 0, the result will be less than 2^n. 1492 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1493 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1494 unsigned LowBits = Log2_32(PossibleTZ)+1; 1495 Known.Zero.setBitsFrom(LowBits); 1496 break; 1497 } 1498 case Intrinsic::ctpop: { 1499 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1500 // We can bound the space the count needs. Also, bits known to be zero 1501 // can't contribute to the population. 1502 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1503 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1504 Known.Zero.setBitsFrom(LowBits); 1505 // TODO: we could bound KnownOne using the lower bound on the number 1506 // of bits which might be set provided by popcnt KnownOne2. 1507 break; 1508 } 1509 case Intrinsic::x86_sse42_crc32_64_64: 1510 Known.Zero.setBitsFrom(32); 1511 break; 1512 } 1513 } 1514 break; 1515 case Instruction::ExtractElement: 1516 // Look through extract element. At the moment we keep this simple and skip 1517 // tracking the specific element. But at least we might find information 1518 // valid for all elements of the vector (for example if vector is sign 1519 // extended, shifted, etc). 1520 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1521 break; 1522 case Instruction::ExtractValue: 1523 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1524 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1525 if (EVI->getNumIndices() != 1) break; 1526 if (EVI->getIndices()[0] == 0) { 1527 switch (II->getIntrinsicID()) { 1528 default: break; 1529 case Intrinsic::uadd_with_overflow: 1530 case Intrinsic::sadd_with_overflow: 1531 computeKnownBitsAddSub(true, II->getArgOperand(0), 1532 II->getArgOperand(1), false, Known, Known2, 1533 Depth, Q); 1534 break; 1535 case Intrinsic::usub_with_overflow: 1536 case Intrinsic::ssub_with_overflow: 1537 computeKnownBitsAddSub(false, II->getArgOperand(0), 1538 II->getArgOperand(1), false, Known, Known2, 1539 Depth, Q); 1540 break; 1541 case Intrinsic::umul_with_overflow: 1542 case Intrinsic::smul_with_overflow: 1543 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1544 Known, Known2, Depth, Q); 1545 break; 1546 } 1547 } 1548 } 1549 } 1550 } 1551 1552 /// Determine which bits of V are known to be either zero or one and return 1553 /// them. 1554 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1555 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1556 computeKnownBits(V, Known, Depth, Q); 1557 return Known; 1558 } 1559 1560 /// Determine which bits of V are known to be either zero or one and return 1561 /// them in the Known bit set. 1562 /// 1563 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1564 /// we cannot optimize based on the assumption that it is zero without changing 1565 /// it to be an explicit zero. If we don't change it to zero, other code could 1566 /// optimized based on the contradictory assumption that it is non-zero. 1567 /// Because instcombine aggressively folds operations with undef args anyway, 1568 /// this won't lose us code quality. 1569 /// 1570 /// This function is defined on values with integer type, values with pointer 1571 /// type, and vectors of integers. In the case 1572 /// where V is a vector, known zero, and known one values are the 1573 /// same width as the vector element, and the bit is set only if it is true 1574 /// for all of the elements in the vector. 1575 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1576 const Query &Q) { 1577 assert(V && "No Value?"); 1578 assert(Depth <= MaxDepth && "Limit Search Depth"); 1579 unsigned BitWidth = Known.getBitWidth(); 1580 1581 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1582 V->getType()->isPtrOrPtrVectorTy()) && 1583 "Not integer or pointer type!"); 1584 1585 Type *ScalarTy = V->getType()->getScalarType(); 1586 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1587 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1588 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1589 (void)BitWidth; 1590 (void)ExpectedWidth; 1591 1592 const APInt *C; 1593 if (match(V, m_APInt(C))) { 1594 // We know all of the bits for a scalar constant or a splat vector constant! 1595 Known.One = *C; 1596 Known.Zero = ~Known.One; 1597 return; 1598 } 1599 // Null and aggregate-zero are all-zeros. 1600 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1601 Known.setAllZero(); 1602 return; 1603 } 1604 // Handle a constant vector by taking the intersection of the known bits of 1605 // each element. 1606 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1607 // We know that CDS must be a vector of integers. Take the intersection of 1608 // each element. 1609 Known.Zero.setAllBits(); Known.One.setAllBits(); 1610 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1611 APInt Elt = CDS->getElementAsAPInt(i); 1612 Known.Zero &= ~Elt; 1613 Known.One &= Elt; 1614 } 1615 return; 1616 } 1617 1618 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1619 // We know that CV must be a vector of integers. Take the intersection of 1620 // each element. 1621 Known.Zero.setAllBits(); Known.One.setAllBits(); 1622 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1623 Constant *Element = CV->getAggregateElement(i); 1624 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1625 if (!ElementCI) { 1626 Known.resetAll(); 1627 return; 1628 } 1629 const APInt &Elt = ElementCI->getValue(); 1630 Known.Zero &= ~Elt; 1631 Known.One &= Elt; 1632 } 1633 return; 1634 } 1635 1636 // Start out not knowing anything. 1637 Known.resetAll(); 1638 1639 // We can't imply anything about undefs. 1640 if (isa<UndefValue>(V)) 1641 return; 1642 1643 // There's no point in looking through other users of ConstantData for 1644 // assumptions. Confirm that we've handled them all. 1645 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1646 1647 // Limit search depth. 1648 // All recursive calls that increase depth must come after this. 1649 if (Depth == MaxDepth) 1650 return; 1651 1652 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1653 // the bits of its aliasee. 1654 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1655 if (!GA->isInterposable()) 1656 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1657 return; 1658 } 1659 1660 if (const Operator *I = dyn_cast<Operator>(V)) 1661 computeKnownBitsFromOperator(I, Known, Depth, Q); 1662 1663 // Aligned pointers have trailing zeros - refine Known.Zero set 1664 if (V->getType()->isPointerTy()) { 1665 unsigned Align = V->getPointerAlignment(Q.DL); 1666 if (Align) 1667 Known.Zero.setLowBits(countTrailingZeros(Align)); 1668 } 1669 1670 // computeKnownBitsFromAssume strictly refines Known. 1671 // Therefore, we run them after computeKnownBitsFromOperator. 1672 1673 // Check whether a nearby assume intrinsic can determine some known bits. 1674 computeKnownBitsFromAssume(V, Known, Depth, Q); 1675 1676 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1677 } 1678 1679 /// Return true if the given value is known to have exactly one 1680 /// bit set when defined. For vectors return true if every element is known to 1681 /// be a power of two when defined. Supports values with integer or pointer 1682 /// types and vectors of integers. 1683 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1684 const Query &Q) { 1685 assert(Depth <= MaxDepth && "Limit Search Depth"); 1686 1687 // Attempt to match against constants. 1688 if (OrZero && match(V, m_Power2OrZero())) 1689 return true; 1690 if (match(V, m_Power2())) 1691 return true; 1692 1693 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1694 // it is shifted off the end then the result is undefined. 1695 if (match(V, m_Shl(m_One(), m_Value()))) 1696 return true; 1697 1698 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1699 // the bottom. If it is shifted off the bottom then the result is undefined. 1700 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1701 return true; 1702 1703 // The remaining tests are all recursive, so bail out if we hit the limit. 1704 if (Depth++ == MaxDepth) 1705 return false; 1706 1707 Value *X = nullptr, *Y = nullptr; 1708 // A shift left or a logical shift right of a power of two is a power of two 1709 // or zero. 1710 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1711 match(V, m_LShr(m_Value(X), m_Value())))) 1712 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1713 1714 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1715 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1716 1717 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1718 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1719 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1720 1721 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1722 // A power of two and'd with anything is a power of two or zero. 1723 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1724 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1725 return true; 1726 // X & (-X) is always a power of two or zero. 1727 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1728 return true; 1729 return false; 1730 } 1731 1732 // Adding a power-of-two or zero to the same power-of-two or zero yields 1733 // either the original power-of-two, a larger power-of-two or zero. 1734 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1735 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1736 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1737 Q.IIQ.hasNoSignedWrap(VOBO)) { 1738 if (match(X, m_And(m_Specific(Y), m_Value())) || 1739 match(X, m_And(m_Value(), m_Specific(Y)))) 1740 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1741 return true; 1742 if (match(Y, m_And(m_Specific(X), m_Value())) || 1743 match(Y, m_And(m_Value(), m_Specific(X)))) 1744 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1745 return true; 1746 1747 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1748 KnownBits LHSBits(BitWidth); 1749 computeKnownBits(X, LHSBits, Depth, Q); 1750 1751 KnownBits RHSBits(BitWidth); 1752 computeKnownBits(Y, RHSBits, Depth, Q); 1753 // If i8 V is a power of two or zero: 1754 // ZeroBits: 1 1 1 0 1 1 1 1 1755 // ~ZeroBits: 0 0 0 1 0 0 0 0 1756 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1757 // If OrZero isn't set, we cannot give back a zero result. 1758 // Make sure either the LHS or RHS has a bit set. 1759 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1760 return true; 1761 } 1762 } 1763 1764 // An exact divide or right shift can only shift off zero bits, so the result 1765 // is a power of two only if the first operand is a power of two and not 1766 // copying a sign bit (sdiv int_min, 2). 1767 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1768 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1769 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1770 Depth, Q); 1771 } 1772 1773 return false; 1774 } 1775 1776 /// Test whether a GEP's result is known to be non-null. 1777 /// 1778 /// Uses properties inherent in a GEP to try to determine whether it is known 1779 /// to be non-null. 1780 /// 1781 /// Currently this routine does not support vector GEPs. 1782 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1783 const Query &Q) { 1784 const Function *F = nullptr; 1785 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1786 F = I->getFunction(); 1787 1788 if (!GEP->isInBounds() || 1789 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1790 return false; 1791 1792 // FIXME: Support vector-GEPs. 1793 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1794 1795 // If the base pointer is non-null, we cannot walk to a null address with an 1796 // inbounds GEP in address space zero. 1797 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1798 return true; 1799 1800 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1801 // If so, then the GEP cannot produce a null pointer, as doing so would 1802 // inherently violate the inbounds contract within address space zero. 1803 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1804 GTI != GTE; ++GTI) { 1805 // Struct types are easy -- they must always be indexed by a constant. 1806 if (StructType *STy = GTI.getStructTypeOrNull()) { 1807 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1808 unsigned ElementIdx = OpC->getZExtValue(); 1809 const StructLayout *SL = Q.DL.getStructLayout(STy); 1810 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1811 if (ElementOffset > 0) 1812 return true; 1813 continue; 1814 } 1815 1816 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1817 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1818 continue; 1819 1820 // Fast path the constant operand case both for efficiency and so we don't 1821 // increment Depth when just zipping down an all-constant GEP. 1822 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1823 if (!OpC->isZero()) 1824 return true; 1825 continue; 1826 } 1827 1828 // We post-increment Depth here because while isKnownNonZero increments it 1829 // as well, when we pop back up that increment won't persist. We don't want 1830 // to recurse 10k times just because we have 10k GEP operands. We don't 1831 // bail completely out because we want to handle constant GEPs regardless 1832 // of depth. 1833 if (Depth++ >= MaxDepth) 1834 continue; 1835 1836 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1837 return true; 1838 } 1839 1840 return false; 1841 } 1842 1843 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1844 const Instruction *CtxI, 1845 const DominatorTree *DT) { 1846 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1847 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1848 1849 if (!CtxI || !DT) 1850 return false; 1851 1852 unsigned NumUsesExplored = 0; 1853 for (auto *U : V->users()) { 1854 // Avoid massive lists 1855 if (NumUsesExplored >= DomConditionsMaxUses) 1856 break; 1857 NumUsesExplored++; 1858 1859 // If the value is used as an argument to a call or invoke, then argument 1860 // attributes may provide an answer about null-ness. 1861 if (auto CS = ImmutableCallSite(U)) 1862 if (auto *CalledFunc = CS.getCalledFunction()) 1863 for (const Argument &Arg : CalledFunc->args()) 1864 if (CS.getArgOperand(Arg.getArgNo()) == V && 1865 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1866 return true; 1867 1868 // Consider only compare instructions uniquely controlling a branch 1869 CmpInst::Predicate Pred; 1870 if (!match(const_cast<User *>(U), 1871 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1872 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1873 continue; 1874 1875 SmallVector<const User *, 4> WorkList; 1876 SmallPtrSet<const User *, 4> Visited; 1877 for (auto *CmpU : U->users()) { 1878 assert(WorkList.empty() && "Should be!"); 1879 if (Visited.insert(CmpU).second) 1880 WorkList.push_back(CmpU); 1881 1882 while (!WorkList.empty()) { 1883 auto *Curr = WorkList.pop_back_val(); 1884 1885 // If a user is an AND, add all its users to the work list. We only 1886 // propagate "pred != null" condition through AND because it is only 1887 // correct to assume that all conditions of AND are met in true branch. 1888 // TODO: Support similar logic of OR and EQ predicate? 1889 if (Pred == ICmpInst::ICMP_NE) 1890 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1891 if (BO->getOpcode() == Instruction::And) { 1892 for (auto *BOU : BO->users()) 1893 if (Visited.insert(BOU).second) 1894 WorkList.push_back(BOU); 1895 continue; 1896 } 1897 1898 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1899 assert(BI->isConditional() && "uses a comparison!"); 1900 1901 BasicBlock *NonNullSuccessor = 1902 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1903 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1904 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1905 return true; 1906 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 1907 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1908 return true; 1909 } 1910 } 1911 } 1912 } 1913 1914 return false; 1915 } 1916 1917 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1918 /// ensure that the value it's attached to is never Value? 'RangeType' is 1919 /// is the type of the value described by the range. 1920 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1921 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1922 assert(NumRanges >= 1); 1923 for (unsigned i = 0; i < NumRanges; ++i) { 1924 ConstantInt *Lower = 1925 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1926 ConstantInt *Upper = 1927 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1928 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1929 if (Range.contains(Value)) 1930 return false; 1931 } 1932 return true; 1933 } 1934 1935 /// Return true if the given value is known to be non-zero when defined. For 1936 /// vectors, return true if every element is known to be non-zero when 1937 /// defined. For pointers, if the context instruction and dominator tree are 1938 /// specified, perform context-sensitive analysis and return true if the 1939 /// pointer couldn't possibly be null at the specified instruction. 1940 /// Supports values with integer or pointer type and vectors of integers. 1941 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1942 if (auto *C = dyn_cast<Constant>(V)) { 1943 if (C->isNullValue()) 1944 return false; 1945 if (isa<ConstantInt>(C)) 1946 // Must be non-zero due to null test above. 1947 return true; 1948 1949 // For constant vectors, check that all elements are undefined or known 1950 // non-zero to determine that the whole vector is known non-zero. 1951 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1952 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1953 Constant *Elt = C->getAggregateElement(i); 1954 if (!Elt || Elt->isNullValue()) 1955 return false; 1956 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1957 return false; 1958 } 1959 return true; 1960 } 1961 1962 // A global variable in address space 0 is non null unless extern weak 1963 // or an absolute symbol reference. Other address spaces may have null as a 1964 // valid address for a global, so we can't assume anything. 1965 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1966 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1967 GV->getType()->getAddressSpace() == 0) 1968 return true; 1969 } else 1970 return false; 1971 } 1972 1973 if (auto *I = dyn_cast<Instruction>(V)) { 1974 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 1975 // If the possible ranges don't contain zero, then the value is 1976 // definitely non-zero. 1977 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1978 const APInt ZeroValue(Ty->getBitWidth(), 0); 1979 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1980 return true; 1981 } 1982 } 1983 } 1984 1985 // Some of the tests below are recursive, so bail out if we hit the limit. 1986 if (Depth++ >= MaxDepth) 1987 return false; 1988 1989 // Check for pointer simplifications. 1990 if (V->getType()->isPointerTy()) { 1991 // Alloca never returns null, malloc might. 1992 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1993 return true; 1994 1995 // A byval, inalloca, or nonnull argument is never null. 1996 if (const Argument *A = dyn_cast<Argument>(V)) 1997 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1998 return true; 1999 2000 // A Load tagged with nonnull metadata is never null. 2001 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2002 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2003 return true; 2004 2005 if (auto CS = ImmutableCallSite(V)) { 2006 if (CS.isReturnNonNull()) 2007 return true; 2008 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 2009 return isKnownNonZero(RP, Depth, Q); 2010 } 2011 } 2012 2013 2014 // Check for recursive pointer simplifications. 2015 if (V->getType()->isPointerTy()) { 2016 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2017 return true; 2018 2019 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2020 if (isGEPKnownNonNull(GEP, Depth, Q)) 2021 return true; 2022 } 2023 2024 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2025 2026 // X | Y != 0 if X != 0 or Y != 0. 2027 Value *X = nullptr, *Y = nullptr; 2028 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2029 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2030 2031 // ext X != 0 if X != 0. 2032 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2033 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2034 2035 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2036 // if the lowest bit is shifted off the end. 2037 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2038 // shl nuw can't remove any non-zero bits. 2039 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2040 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2041 return isKnownNonZero(X, Depth, Q); 2042 2043 KnownBits Known(BitWidth); 2044 computeKnownBits(X, Known, Depth, Q); 2045 if (Known.One[0]) 2046 return true; 2047 } 2048 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2049 // defined if the sign bit is shifted off the end. 2050 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2051 // shr exact can only shift out zero bits. 2052 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2053 if (BO->isExact()) 2054 return isKnownNonZero(X, Depth, Q); 2055 2056 KnownBits Known = computeKnownBits(X, Depth, Q); 2057 if (Known.isNegative()) 2058 return true; 2059 2060 // If the shifter operand is a constant, and all of the bits shifted 2061 // out are known to be zero, and X is known non-zero then at least one 2062 // non-zero bit must remain. 2063 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2064 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2065 // Is there a known one in the portion not shifted out? 2066 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2067 return true; 2068 // Are all the bits to be shifted out known zero? 2069 if (Known.countMinTrailingZeros() >= ShiftVal) 2070 return isKnownNonZero(X, Depth, Q); 2071 } 2072 } 2073 // div exact can only produce a zero if the dividend is zero. 2074 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2075 return isKnownNonZero(X, Depth, Q); 2076 } 2077 // X + Y. 2078 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2079 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2080 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2081 2082 // If X and Y are both non-negative (as signed values) then their sum is not 2083 // zero unless both X and Y are zero. 2084 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2085 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2086 return true; 2087 2088 // If X and Y are both negative (as signed values) then their sum is not 2089 // zero unless both X and Y equal INT_MIN. 2090 if (XKnown.isNegative() && YKnown.isNegative()) { 2091 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2092 // The sign bit of X is set. If some other bit is set then X is not equal 2093 // to INT_MIN. 2094 if (XKnown.One.intersects(Mask)) 2095 return true; 2096 // The sign bit of Y is set. If some other bit is set then Y is not equal 2097 // to INT_MIN. 2098 if (YKnown.One.intersects(Mask)) 2099 return true; 2100 } 2101 2102 // The sum of a non-negative number and a power of two is not zero. 2103 if (XKnown.isNonNegative() && 2104 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2105 return true; 2106 if (YKnown.isNonNegative() && 2107 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2108 return true; 2109 } 2110 // X * Y. 2111 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2112 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2113 // If X and Y are non-zero then so is X * Y as long as the multiplication 2114 // does not overflow. 2115 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2116 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2117 return true; 2118 } 2119 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2120 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2121 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2122 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2123 return true; 2124 } 2125 // PHI 2126 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2127 // Try and detect a recurrence that monotonically increases from a 2128 // starting value, as these are common as induction variables. 2129 if (PN->getNumIncomingValues() == 2) { 2130 Value *Start = PN->getIncomingValue(0); 2131 Value *Induction = PN->getIncomingValue(1); 2132 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2133 std::swap(Start, Induction); 2134 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2135 if (!C->isZero() && !C->isNegative()) { 2136 ConstantInt *X; 2137 if (Q.IIQ.UseInstrInfo && 2138 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2139 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2140 !X->isNegative()) 2141 return true; 2142 } 2143 } 2144 } 2145 // Check if all incoming values are non-zero constant. 2146 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2147 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2148 }); 2149 if (AllNonZeroConstants) 2150 return true; 2151 } 2152 2153 KnownBits Known(BitWidth); 2154 computeKnownBits(V, Known, Depth, Q); 2155 return Known.One != 0; 2156 } 2157 2158 /// Return true if V2 == V1 + X, where X is known non-zero. 2159 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2160 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2161 if (!BO || BO->getOpcode() != Instruction::Add) 2162 return false; 2163 Value *Op = nullptr; 2164 if (V2 == BO->getOperand(0)) 2165 Op = BO->getOperand(1); 2166 else if (V2 == BO->getOperand(1)) 2167 Op = BO->getOperand(0); 2168 else 2169 return false; 2170 return isKnownNonZero(Op, 0, Q); 2171 } 2172 2173 /// Return true if it is known that V1 != V2. 2174 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2175 if (V1 == V2) 2176 return false; 2177 if (V1->getType() != V2->getType()) 2178 // We can't look through casts yet. 2179 return false; 2180 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2181 return true; 2182 2183 if (V1->getType()->isIntOrIntVectorTy()) { 2184 // Are any known bits in V1 contradictory to known bits in V2? If V1 2185 // has a known zero where V2 has a known one, they must not be equal. 2186 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2187 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2188 2189 if (Known1.Zero.intersects(Known2.One) || 2190 Known2.Zero.intersects(Known1.One)) 2191 return true; 2192 } 2193 return false; 2194 } 2195 2196 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2197 /// simplify operations downstream. Mask is known to be zero for bits that V 2198 /// cannot have. 2199 /// 2200 /// This function is defined on values with integer type, values with pointer 2201 /// type, and vectors of integers. In the case 2202 /// where V is a vector, the mask, known zero, and known one values are the 2203 /// same width as the vector element, and the bit is set only if it is true 2204 /// for all of the elements in the vector. 2205 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2206 const Query &Q) { 2207 KnownBits Known(Mask.getBitWidth()); 2208 computeKnownBits(V, Known, Depth, Q); 2209 return Mask.isSubsetOf(Known.Zero); 2210 } 2211 2212 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2213 // Returns the input and lower/upper bounds. 2214 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2215 const APInt *&CLow, const APInt *&CHigh) { 2216 assert(isa<Operator>(Select) && 2217 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2218 "Input should be a Select!"); 2219 2220 const Value *LHS, *RHS, *LHS2, *RHS2; 2221 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2222 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2223 return false; 2224 2225 if (!match(RHS, m_APInt(CLow))) 2226 return false; 2227 2228 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2229 if (getInverseMinMaxFlavor(SPF) != SPF2) 2230 return false; 2231 2232 if (!match(RHS2, m_APInt(CHigh))) 2233 return false; 2234 2235 if (SPF == SPF_SMIN) 2236 std::swap(CLow, CHigh); 2237 2238 In = LHS2; 2239 return CLow->sle(*CHigh); 2240 } 2241 2242 /// For vector constants, loop over the elements and find the constant with the 2243 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2244 /// or if any element was not analyzed; otherwise, return the count for the 2245 /// element with the minimum number of sign bits. 2246 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2247 unsigned TyBits) { 2248 const auto *CV = dyn_cast<Constant>(V); 2249 if (!CV || !CV->getType()->isVectorTy()) 2250 return 0; 2251 2252 unsigned MinSignBits = TyBits; 2253 unsigned NumElts = CV->getType()->getVectorNumElements(); 2254 for (unsigned i = 0; i != NumElts; ++i) { 2255 // If we find a non-ConstantInt, bail out. 2256 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2257 if (!Elt) 2258 return 0; 2259 2260 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2261 } 2262 2263 return MinSignBits; 2264 } 2265 2266 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2267 const Query &Q); 2268 2269 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2270 const Query &Q) { 2271 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2272 assert(Result > 0 && "At least one sign bit needs to be present!"); 2273 return Result; 2274 } 2275 2276 /// Return the number of times the sign bit of the register is replicated into 2277 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2278 /// (itself), but other cases can give us information. For example, immediately 2279 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2280 /// other, so we return 3. For vectors, return the number of sign bits for the 2281 /// vector element with the minimum number of known sign bits. 2282 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2283 const Query &Q) { 2284 assert(Depth <= MaxDepth && "Limit Search Depth"); 2285 2286 // We return the minimum number of sign bits that are guaranteed to be present 2287 // in V, so for undef we have to conservatively return 1. We don't have the 2288 // same behavior for poison though -- that's a FIXME today. 2289 2290 Type *ScalarTy = V->getType()->getScalarType(); 2291 unsigned TyBits = ScalarTy->isPointerTy() ? 2292 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2293 Q.DL.getTypeSizeInBits(ScalarTy); 2294 2295 unsigned Tmp, Tmp2; 2296 unsigned FirstAnswer = 1; 2297 2298 // Note that ConstantInt is handled by the general computeKnownBits case 2299 // below. 2300 2301 if (Depth == MaxDepth) 2302 return 1; // Limit search depth. 2303 2304 const Operator *U = dyn_cast<Operator>(V); 2305 switch (Operator::getOpcode(V)) { 2306 default: break; 2307 case Instruction::SExt: 2308 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2309 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2310 2311 case Instruction::SDiv: { 2312 const APInt *Denominator; 2313 // sdiv X, C -> adds log(C) sign bits. 2314 if (match(U->getOperand(1), m_APInt(Denominator))) { 2315 2316 // Ignore non-positive denominator. 2317 if (!Denominator->isStrictlyPositive()) 2318 break; 2319 2320 // Calculate the incoming numerator bits. 2321 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2322 2323 // Add floor(log(C)) bits to the numerator bits. 2324 return std::min(TyBits, NumBits + Denominator->logBase2()); 2325 } 2326 break; 2327 } 2328 2329 case Instruction::SRem: { 2330 const APInt *Denominator; 2331 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2332 // positive constant. This let us put a lower bound on the number of sign 2333 // bits. 2334 if (match(U->getOperand(1), m_APInt(Denominator))) { 2335 2336 // Ignore non-positive denominator. 2337 if (!Denominator->isStrictlyPositive()) 2338 break; 2339 2340 // Calculate the incoming numerator bits. SRem by a positive constant 2341 // can't lower the number of sign bits. 2342 unsigned NumrBits = 2343 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2344 2345 // Calculate the leading sign bit constraints by examining the 2346 // denominator. Given that the denominator is positive, there are two 2347 // cases: 2348 // 2349 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2350 // (1 << ceilLogBase2(C)). 2351 // 2352 // 2. the numerator is negative. Then the result range is (-C,0] and 2353 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2354 // 2355 // Thus a lower bound on the number of sign bits is `TyBits - 2356 // ceilLogBase2(C)`. 2357 2358 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2359 return std::max(NumrBits, ResBits); 2360 } 2361 break; 2362 } 2363 2364 case Instruction::AShr: { 2365 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2366 // ashr X, C -> adds C sign bits. Vectors too. 2367 const APInt *ShAmt; 2368 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2369 if (ShAmt->uge(TyBits)) 2370 break; // Bad shift. 2371 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2372 Tmp += ShAmtLimited; 2373 if (Tmp > TyBits) Tmp = TyBits; 2374 } 2375 return Tmp; 2376 } 2377 case Instruction::Shl: { 2378 const APInt *ShAmt; 2379 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2380 // shl destroys sign bits. 2381 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2382 if (ShAmt->uge(TyBits) || // Bad shift. 2383 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2384 Tmp2 = ShAmt->getZExtValue(); 2385 return Tmp - Tmp2; 2386 } 2387 break; 2388 } 2389 case Instruction::And: 2390 case Instruction::Or: 2391 case Instruction::Xor: // NOT is handled here. 2392 // Logical binary ops preserve the number of sign bits at the worst. 2393 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2394 if (Tmp != 1) { 2395 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2396 FirstAnswer = std::min(Tmp, Tmp2); 2397 // We computed what we know about the sign bits as our first 2398 // answer. Now proceed to the generic code that uses 2399 // computeKnownBits, and pick whichever answer is better. 2400 } 2401 break; 2402 2403 case Instruction::Select: { 2404 // If we have a clamp pattern, we know that the number of sign bits will be 2405 // the minimum of the clamp min/max range. 2406 const Value *X; 2407 const APInt *CLow, *CHigh; 2408 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2409 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2410 2411 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2412 if (Tmp == 1) break; 2413 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2414 return std::min(Tmp, Tmp2); 2415 } 2416 2417 case Instruction::Add: 2418 // Add can have at most one carry bit. Thus we know that the output 2419 // is, at worst, one more bit than the inputs. 2420 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2421 if (Tmp == 1) break; 2422 2423 // Special case decrementing a value (ADD X, -1): 2424 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2425 if (CRHS->isAllOnesValue()) { 2426 KnownBits Known(TyBits); 2427 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2428 2429 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2430 // sign bits set. 2431 if ((Known.Zero | 1).isAllOnesValue()) 2432 return TyBits; 2433 2434 // If we are subtracting one from a positive number, there is no carry 2435 // out of the result. 2436 if (Known.isNonNegative()) 2437 return Tmp; 2438 } 2439 2440 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2441 if (Tmp2 == 1) break; 2442 return std::min(Tmp, Tmp2)-1; 2443 2444 case Instruction::Sub: 2445 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2446 if (Tmp2 == 1) break; 2447 2448 // Handle NEG. 2449 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2450 if (CLHS->isNullValue()) { 2451 KnownBits Known(TyBits); 2452 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2453 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2454 // sign bits set. 2455 if ((Known.Zero | 1).isAllOnesValue()) 2456 return TyBits; 2457 2458 // If the input is known to be positive (the sign bit is known clear), 2459 // the output of the NEG has the same number of sign bits as the input. 2460 if (Known.isNonNegative()) 2461 return Tmp2; 2462 2463 // Otherwise, we treat this like a SUB. 2464 } 2465 2466 // Sub can have at most one carry bit. Thus we know that the output 2467 // is, at worst, one more bit than the inputs. 2468 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2469 if (Tmp == 1) break; 2470 return std::min(Tmp, Tmp2)-1; 2471 2472 case Instruction::Mul: { 2473 // The output of the Mul can be at most twice the valid bits in the inputs. 2474 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2475 if (SignBitsOp0 == 1) break; 2476 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2477 if (SignBitsOp1 == 1) break; 2478 unsigned OutValidBits = 2479 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2480 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2481 } 2482 2483 case Instruction::PHI: { 2484 const PHINode *PN = cast<PHINode>(U); 2485 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2486 // Don't analyze large in-degree PHIs. 2487 if (NumIncomingValues > 4) break; 2488 // Unreachable blocks may have zero-operand PHI nodes. 2489 if (NumIncomingValues == 0) break; 2490 2491 // Take the minimum of all incoming values. This can't infinitely loop 2492 // because of our depth threshold. 2493 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2494 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2495 if (Tmp == 1) return Tmp; 2496 Tmp = std::min( 2497 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2498 } 2499 return Tmp; 2500 } 2501 2502 case Instruction::Trunc: 2503 // FIXME: it's tricky to do anything useful for this, but it is an important 2504 // case for targets like X86. 2505 break; 2506 2507 case Instruction::ExtractElement: 2508 // Look through extract element. At the moment we keep this simple and skip 2509 // tracking the specific element. But at least we might find information 2510 // valid for all elements of the vector (for example if vector is sign 2511 // extended, shifted, etc). 2512 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2513 } 2514 2515 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2516 // use this information. 2517 2518 // If we can examine all elements of a vector constant successfully, we're 2519 // done (we can't do any better than that). If not, keep trying. 2520 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2521 return VecSignBits; 2522 2523 KnownBits Known(TyBits); 2524 computeKnownBits(V, Known, Depth, Q); 2525 2526 // If we know that the sign bit is either zero or one, determine the number of 2527 // identical bits in the top of the input value. 2528 return std::max(FirstAnswer, Known.countMinSignBits()); 2529 } 2530 2531 /// This function computes the integer multiple of Base that equals V. 2532 /// If successful, it returns true and returns the multiple in 2533 /// Multiple. If unsuccessful, it returns false. It looks 2534 /// through SExt instructions only if LookThroughSExt is true. 2535 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2536 bool LookThroughSExt, unsigned Depth) { 2537 const unsigned MaxDepth = 6; 2538 2539 assert(V && "No Value?"); 2540 assert(Depth <= MaxDepth && "Limit Search Depth"); 2541 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2542 2543 Type *T = V->getType(); 2544 2545 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2546 2547 if (Base == 0) 2548 return false; 2549 2550 if (Base == 1) { 2551 Multiple = V; 2552 return true; 2553 } 2554 2555 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2556 Constant *BaseVal = ConstantInt::get(T, Base); 2557 if (CO && CO == BaseVal) { 2558 // Multiple is 1. 2559 Multiple = ConstantInt::get(T, 1); 2560 return true; 2561 } 2562 2563 if (CI && CI->getZExtValue() % Base == 0) { 2564 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2565 return true; 2566 } 2567 2568 if (Depth == MaxDepth) return false; // Limit search depth. 2569 2570 Operator *I = dyn_cast<Operator>(V); 2571 if (!I) return false; 2572 2573 switch (I->getOpcode()) { 2574 default: break; 2575 case Instruction::SExt: 2576 if (!LookThroughSExt) return false; 2577 // otherwise fall through to ZExt 2578 LLVM_FALLTHROUGH; 2579 case Instruction::ZExt: 2580 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2581 LookThroughSExt, Depth+1); 2582 case Instruction::Shl: 2583 case Instruction::Mul: { 2584 Value *Op0 = I->getOperand(0); 2585 Value *Op1 = I->getOperand(1); 2586 2587 if (I->getOpcode() == Instruction::Shl) { 2588 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2589 if (!Op1CI) return false; 2590 // Turn Op0 << Op1 into Op0 * 2^Op1 2591 APInt Op1Int = Op1CI->getValue(); 2592 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2593 APInt API(Op1Int.getBitWidth(), 0); 2594 API.setBit(BitToSet); 2595 Op1 = ConstantInt::get(V->getContext(), API); 2596 } 2597 2598 Value *Mul0 = nullptr; 2599 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2600 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2601 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2602 if (Op1C->getType()->getPrimitiveSizeInBits() < 2603 MulC->getType()->getPrimitiveSizeInBits()) 2604 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2605 if (Op1C->getType()->getPrimitiveSizeInBits() > 2606 MulC->getType()->getPrimitiveSizeInBits()) 2607 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2608 2609 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2610 Multiple = ConstantExpr::getMul(MulC, Op1C); 2611 return true; 2612 } 2613 2614 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2615 if (Mul0CI->getValue() == 1) { 2616 // V == Base * Op1, so return Op1 2617 Multiple = Op1; 2618 return true; 2619 } 2620 } 2621 2622 Value *Mul1 = nullptr; 2623 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2624 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2625 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2626 if (Op0C->getType()->getPrimitiveSizeInBits() < 2627 MulC->getType()->getPrimitiveSizeInBits()) 2628 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2629 if (Op0C->getType()->getPrimitiveSizeInBits() > 2630 MulC->getType()->getPrimitiveSizeInBits()) 2631 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2632 2633 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2634 Multiple = ConstantExpr::getMul(MulC, Op0C); 2635 return true; 2636 } 2637 2638 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2639 if (Mul1CI->getValue() == 1) { 2640 // V == Base * Op0, so return Op0 2641 Multiple = Op0; 2642 return true; 2643 } 2644 } 2645 } 2646 } 2647 2648 // We could not determine if V is a multiple of Base. 2649 return false; 2650 } 2651 2652 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2653 const TargetLibraryInfo *TLI) { 2654 const Function *F = ICS.getCalledFunction(); 2655 if (!F) 2656 return Intrinsic::not_intrinsic; 2657 2658 if (F->isIntrinsic()) 2659 return F->getIntrinsicID(); 2660 2661 if (!TLI) 2662 return Intrinsic::not_intrinsic; 2663 2664 LibFunc Func; 2665 // We're going to make assumptions on the semantics of the functions, check 2666 // that the target knows that it's available in this environment and it does 2667 // not have local linkage. 2668 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2669 return Intrinsic::not_intrinsic; 2670 2671 if (!ICS.onlyReadsMemory()) 2672 return Intrinsic::not_intrinsic; 2673 2674 // Otherwise check if we have a call to a function that can be turned into a 2675 // vector intrinsic. 2676 switch (Func) { 2677 default: 2678 break; 2679 case LibFunc_sin: 2680 case LibFunc_sinf: 2681 case LibFunc_sinl: 2682 return Intrinsic::sin; 2683 case LibFunc_cos: 2684 case LibFunc_cosf: 2685 case LibFunc_cosl: 2686 return Intrinsic::cos; 2687 case LibFunc_exp: 2688 case LibFunc_expf: 2689 case LibFunc_expl: 2690 return Intrinsic::exp; 2691 case LibFunc_exp2: 2692 case LibFunc_exp2f: 2693 case LibFunc_exp2l: 2694 return Intrinsic::exp2; 2695 case LibFunc_log: 2696 case LibFunc_logf: 2697 case LibFunc_logl: 2698 return Intrinsic::log; 2699 case LibFunc_log10: 2700 case LibFunc_log10f: 2701 case LibFunc_log10l: 2702 return Intrinsic::log10; 2703 case LibFunc_log2: 2704 case LibFunc_log2f: 2705 case LibFunc_log2l: 2706 return Intrinsic::log2; 2707 case LibFunc_fabs: 2708 case LibFunc_fabsf: 2709 case LibFunc_fabsl: 2710 return Intrinsic::fabs; 2711 case LibFunc_fmin: 2712 case LibFunc_fminf: 2713 case LibFunc_fminl: 2714 return Intrinsic::minnum; 2715 case LibFunc_fmax: 2716 case LibFunc_fmaxf: 2717 case LibFunc_fmaxl: 2718 return Intrinsic::maxnum; 2719 case LibFunc_copysign: 2720 case LibFunc_copysignf: 2721 case LibFunc_copysignl: 2722 return Intrinsic::copysign; 2723 case LibFunc_floor: 2724 case LibFunc_floorf: 2725 case LibFunc_floorl: 2726 return Intrinsic::floor; 2727 case LibFunc_ceil: 2728 case LibFunc_ceilf: 2729 case LibFunc_ceill: 2730 return Intrinsic::ceil; 2731 case LibFunc_trunc: 2732 case LibFunc_truncf: 2733 case LibFunc_truncl: 2734 return Intrinsic::trunc; 2735 case LibFunc_rint: 2736 case LibFunc_rintf: 2737 case LibFunc_rintl: 2738 return Intrinsic::rint; 2739 case LibFunc_nearbyint: 2740 case LibFunc_nearbyintf: 2741 case LibFunc_nearbyintl: 2742 return Intrinsic::nearbyint; 2743 case LibFunc_round: 2744 case LibFunc_roundf: 2745 case LibFunc_roundl: 2746 return Intrinsic::round; 2747 case LibFunc_pow: 2748 case LibFunc_powf: 2749 case LibFunc_powl: 2750 return Intrinsic::pow; 2751 case LibFunc_sqrt: 2752 case LibFunc_sqrtf: 2753 case LibFunc_sqrtl: 2754 return Intrinsic::sqrt; 2755 } 2756 2757 return Intrinsic::not_intrinsic; 2758 } 2759 2760 /// Return true if we can prove that the specified FP value is never equal to 2761 /// -0.0. 2762 /// 2763 /// NOTE: this function will need to be revisited when we support non-default 2764 /// rounding modes! 2765 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2766 unsigned Depth) { 2767 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2768 return !CFP->getValueAPF().isNegZero(); 2769 2770 // Limit search depth. 2771 if (Depth == MaxDepth) 2772 return false; 2773 2774 auto *Op = dyn_cast<Operator>(V); 2775 if (!Op) 2776 return false; 2777 2778 // Check if the nsz fast-math flag is set. 2779 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2780 if (FPO->hasNoSignedZeros()) 2781 return true; 2782 2783 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2784 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2785 return true; 2786 2787 // sitofp and uitofp turn into +0.0 for zero. 2788 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2789 return true; 2790 2791 if (auto *Call = dyn_cast<CallInst>(Op)) { 2792 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2793 switch (IID) { 2794 default: 2795 break; 2796 // sqrt(-0.0) = -0.0, no other negative results are possible. 2797 case Intrinsic::sqrt: 2798 case Intrinsic::canonicalize: 2799 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2800 // fabs(x) != -0.0 2801 case Intrinsic::fabs: 2802 return true; 2803 } 2804 } 2805 2806 return false; 2807 } 2808 2809 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2810 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2811 /// bit despite comparing equal. 2812 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2813 const TargetLibraryInfo *TLI, 2814 bool SignBitOnly, 2815 unsigned Depth) { 2816 // TODO: This function does not do the right thing when SignBitOnly is true 2817 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2818 // which flips the sign bits of NaNs. See 2819 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2820 2821 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2822 return !CFP->getValueAPF().isNegative() || 2823 (!SignBitOnly && CFP->getValueAPF().isZero()); 2824 } 2825 2826 // Handle vector of constants. 2827 if (auto *CV = dyn_cast<Constant>(V)) { 2828 if (CV->getType()->isVectorTy()) { 2829 unsigned NumElts = CV->getType()->getVectorNumElements(); 2830 for (unsigned i = 0; i != NumElts; ++i) { 2831 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2832 if (!CFP) 2833 return false; 2834 if (CFP->getValueAPF().isNegative() && 2835 (SignBitOnly || !CFP->getValueAPF().isZero())) 2836 return false; 2837 } 2838 2839 // All non-negative ConstantFPs. 2840 return true; 2841 } 2842 } 2843 2844 if (Depth == MaxDepth) 2845 return false; // Limit search depth. 2846 2847 const Operator *I = dyn_cast<Operator>(V); 2848 if (!I) 2849 return false; 2850 2851 switch (I->getOpcode()) { 2852 default: 2853 break; 2854 // Unsigned integers are always nonnegative. 2855 case Instruction::UIToFP: 2856 return true; 2857 case Instruction::FMul: 2858 // x*x is always non-negative or a NaN. 2859 if (I->getOperand(0) == I->getOperand(1) && 2860 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2861 return true; 2862 2863 LLVM_FALLTHROUGH; 2864 case Instruction::FAdd: 2865 case Instruction::FDiv: 2866 case Instruction::FRem: 2867 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2868 Depth + 1) && 2869 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2870 Depth + 1); 2871 case Instruction::Select: 2872 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2873 Depth + 1) && 2874 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2875 Depth + 1); 2876 case Instruction::FPExt: 2877 case Instruction::FPTrunc: 2878 // Widening/narrowing never change sign. 2879 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2880 Depth + 1); 2881 case Instruction::ExtractElement: 2882 // Look through extract element. At the moment we keep this simple and skip 2883 // tracking the specific element. But at least we might find information 2884 // valid for all elements of the vector. 2885 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2886 Depth + 1); 2887 case Instruction::Call: 2888 const auto *CI = cast<CallInst>(I); 2889 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2890 switch (IID) { 2891 default: 2892 break; 2893 case Intrinsic::maxnum: 2894 return (isKnownNeverNaN(I->getOperand(0), TLI) && 2895 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 2896 SignBitOnly, Depth + 1)) || 2897 (isKnownNeverNaN(I->getOperand(1), TLI) && 2898 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 2899 SignBitOnly, Depth + 1)); 2900 2901 case Intrinsic::minnum: 2902 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2903 Depth + 1) && 2904 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2905 Depth + 1); 2906 case Intrinsic::exp: 2907 case Intrinsic::exp2: 2908 case Intrinsic::fabs: 2909 return true; 2910 2911 case Intrinsic::sqrt: 2912 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2913 if (!SignBitOnly) 2914 return true; 2915 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2916 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2917 2918 case Intrinsic::powi: 2919 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2920 // powi(x,n) is non-negative if n is even. 2921 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2922 return true; 2923 } 2924 // TODO: This is not correct. Given that exp is an integer, here are the 2925 // ways that pow can return a negative value: 2926 // 2927 // pow(x, exp) --> negative if exp is odd and x is negative. 2928 // pow(-0, exp) --> -inf if exp is negative odd. 2929 // pow(-0, exp) --> -0 if exp is positive odd. 2930 // pow(-inf, exp) --> -0 if exp is negative odd. 2931 // pow(-inf, exp) --> -inf if exp is positive odd. 2932 // 2933 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2934 // but we must return false if x == -0. Unfortunately we do not currently 2935 // have a way of expressing this constraint. See details in 2936 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2937 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2938 Depth + 1); 2939 2940 case Intrinsic::fma: 2941 case Intrinsic::fmuladd: 2942 // x*x+y is non-negative if y is non-negative. 2943 return I->getOperand(0) == I->getOperand(1) && 2944 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2945 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2946 Depth + 1); 2947 } 2948 break; 2949 } 2950 return false; 2951 } 2952 2953 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2954 const TargetLibraryInfo *TLI) { 2955 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2956 } 2957 2958 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2959 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2960 } 2961 2962 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 2963 unsigned Depth) { 2964 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2965 2966 // If we're told that NaNs won't happen, assume they won't. 2967 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2968 if (FPMathOp->hasNoNaNs()) 2969 return true; 2970 2971 // Handle scalar constants. 2972 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2973 return !CFP->isNaN(); 2974 2975 if (Depth == MaxDepth) 2976 return false; 2977 2978 if (auto *Inst = dyn_cast<Instruction>(V)) { 2979 switch (Inst->getOpcode()) { 2980 case Instruction::FAdd: 2981 case Instruction::FMul: 2982 case Instruction::FSub: 2983 case Instruction::FDiv: 2984 case Instruction::FRem: { 2985 // TODO: Need isKnownNeverInfinity 2986 return false; 2987 } 2988 case Instruction::Select: { 2989 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 2990 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 2991 } 2992 case Instruction::SIToFP: 2993 case Instruction::UIToFP: 2994 return true; 2995 case Instruction::FPTrunc: 2996 case Instruction::FPExt: 2997 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 2998 default: 2999 break; 3000 } 3001 } 3002 3003 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3004 switch (II->getIntrinsicID()) { 3005 case Intrinsic::canonicalize: 3006 case Intrinsic::fabs: 3007 case Intrinsic::copysign: 3008 case Intrinsic::exp: 3009 case Intrinsic::exp2: 3010 case Intrinsic::floor: 3011 case Intrinsic::ceil: 3012 case Intrinsic::trunc: 3013 case Intrinsic::rint: 3014 case Intrinsic::nearbyint: 3015 case Intrinsic::round: 3016 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3017 case Intrinsic::sqrt: 3018 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3019 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3020 default: 3021 return false; 3022 } 3023 } 3024 3025 // Bail out for constant expressions, but try to handle vector constants. 3026 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3027 return false; 3028 3029 // For vectors, verify that each element is not NaN. 3030 unsigned NumElts = V->getType()->getVectorNumElements(); 3031 for (unsigned i = 0; i != NumElts; ++i) { 3032 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3033 if (!Elt) 3034 return false; 3035 if (isa<UndefValue>(Elt)) 3036 continue; 3037 auto *CElt = dyn_cast<ConstantFP>(Elt); 3038 if (!CElt || CElt->isNaN()) 3039 return false; 3040 } 3041 // All elements were confirmed not-NaN or undefined. 3042 return true; 3043 } 3044 3045 /// If the specified value can be set by repeating the same byte in memory, 3046 /// return the i8 value that it is represented with. This is 3047 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 3048 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 3049 /// byte store (e.g. i16 0x1234), return null. 3050 Value *llvm::isBytewiseValue(Value *V) { 3051 // All byte-wide stores are splatable, even of arbitrary variables. 3052 if (V->getType()->isIntegerTy(8)) return V; 3053 3054 // Handle 'null' ConstantArrayZero etc. 3055 if (Constant *C = dyn_cast<Constant>(V)) 3056 if (C->isNullValue()) 3057 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 3058 3059 // Constant float and double values can be handled as integer values if the 3060 // corresponding integer value is "byteable". An important case is 0.0. 3061 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3062 if (CFP->getType()->isFloatTy()) 3063 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 3064 if (CFP->getType()->isDoubleTy()) 3065 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 3066 // Don't handle long double formats, which have strange constraints. 3067 } 3068 3069 // We can handle constant integers that are multiple of 8 bits. 3070 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 3071 if (CI->getBitWidth() % 8 == 0) { 3072 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3073 3074 if (!CI->getValue().isSplat(8)) 3075 return nullptr; 3076 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 3077 } 3078 } 3079 3080 // A ConstantDataArray/Vector is splatable if all its members are equal and 3081 // also splatable. 3082 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 3083 Value *Elt = CA->getElementAsConstant(0); 3084 Value *Val = isBytewiseValue(Elt); 3085 if (!Val) 3086 return nullptr; 3087 3088 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 3089 if (CA->getElementAsConstant(I) != Elt) 3090 return nullptr; 3091 3092 return Val; 3093 } 3094 3095 // Conceptually, we could handle things like: 3096 // %a = zext i8 %X to i16 3097 // %b = shl i16 %a, 8 3098 // %c = or i16 %a, %b 3099 // but until there is an example that actually needs this, it doesn't seem 3100 // worth worrying about. 3101 return nullptr; 3102 } 3103 3104 // This is the recursive version of BuildSubAggregate. It takes a few different 3105 // arguments. Idxs is the index within the nested struct From that we are 3106 // looking at now (which is of type IndexedType). IdxSkip is the number of 3107 // indices from Idxs that should be left out when inserting into the resulting 3108 // struct. To is the result struct built so far, new insertvalue instructions 3109 // build on that. 3110 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3111 SmallVectorImpl<unsigned> &Idxs, 3112 unsigned IdxSkip, 3113 Instruction *InsertBefore) { 3114 StructType *STy = dyn_cast<StructType>(IndexedType); 3115 if (STy) { 3116 // Save the original To argument so we can modify it 3117 Value *OrigTo = To; 3118 // General case, the type indexed by Idxs is a struct 3119 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3120 // Process each struct element recursively 3121 Idxs.push_back(i); 3122 Value *PrevTo = To; 3123 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3124 InsertBefore); 3125 Idxs.pop_back(); 3126 if (!To) { 3127 // Couldn't find any inserted value for this index? Cleanup 3128 while (PrevTo != OrigTo) { 3129 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3130 PrevTo = Del->getAggregateOperand(); 3131 Del->eraseFromParent(); 3132 } 3133 // Stop processing elements 3134 break; 3135 } 3136 } 3137 // If we successfully found a value for each of our subaggregates 3138 if (To) 3139 return To; 3140 } 3141 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3142 // the struct's elements had a value that was inserted directly. In the latter 3143 // case, perhaps we can't determine each of the subelements individually, but 3144 // we might be able to find the complete struct somewhere. 3145 3146 // Find the value that is at that particular spot 3147 Value *V = FindInsertedValue(From, Idxs); 3148 3149 if (!V) 3150 return nullptr; 3151 3152 // Insert the value in the new (sub) aggregate 3153 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3154 "tmp", InsertBefore); 3155 } 3156 3157 // This helper takes a nested struct and extracts a part of it (which is again a 3158 // struct) into a new value. For example, given the struct: 3159 // { a, { b, { c, d }, e } } 3160 // and the indices "1, 1" this returns 3161 // { c, d }. 3162 // 3163 // It does this by inserting an insertvalue for each element in the resulting 3164 // struct, as opposed to just inserting a single struct. This will only work if 3165 // each of the elements of the substruct are known (ie, inserted into From by an 3166 // insertvalue instruction somewhere). 3167 // 3168 // All inserted insertvalue instructions are inserted before InsertBefore 3169 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3170 Instruction *InsertBefore) { 3171 assert(InsertBefore && "Must have someplace to insert!"); 3172 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3173 idx_range); 3174 Value *To = UndefValue::get(IndexedType); 3175 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3176 unsigned IdxSkip = Idxs.size(); 3177 3178 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3179 } 3180 3181 /// Given an aggregate and a sequence of indices, see if the scalar value 3182 /// indexed is already around as a register, for example if it was inserted 3183 /// directly into the aggregate. 3184 /// 3185 /// If InsertBefore is not null, this function will duplicate (modified) 3186 /// insertvalues when a part of a nested struct is extracted. 3187 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3188 Instruction *InsertBefore) { 3189 // Nothing to index? Just return V then (this is useful at the end of our 3190 // recursion). 3191 if (idx_range.empty()) 3192 return V; 3193 // We have indices, so V should have an indexable type. 3194 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3195 "Not looking at a struct or array?"); 3196 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3197 "Invalid indices for type?"); 3198 3199 if (Constant *C = dyn_cast<Constant>(V)) { 3200 C = C->getAggregateElement(idx_range[0]); 3201 if (!C) return nullptr; 3202 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3203 } 3204 3205 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3206 // Loop the indices for the insertvalue instruction in parallel with the 3207 // requested indices 3208 const unsigned *req_idx = idx_range.begin(); 3209 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3210 i != e; ++i, ++req_idx) { 3211 if (req_idx == idx_range.end()) { 3212 // We can't handle this without inserting insertvalues 3213 if (!InsertBefore) 3214 return nullptr; 3215 3216 // The requested index identifies a part of a nested aggregate. Handle 3217 // this specially. For example, 3218 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3219 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3220 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3221 // This can be changed into 3222 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3223 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3224 // which allows the unused 0,0 element from the nested struct to be 3225 // removed. 3226 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3227 InsertBefore); 3228 } 3229 3230 // This insert value inserts something else than what we are looking for. 3231 // See if the (aggregate) value inserted into has the value we are 3232 // looking for, then. 3233 if (*req_idx != *i) 3234 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3235 InsertBefore); 3236 } 3237 // If we end up here, the indices of the insertvalue match with those 3238 // requested (though possibly only partially). Now we recursively look at 3239 // the inserted value, passing any remaining indices. 3240 return FindInsertedValue(I->getInsertedValueOperand(), 3241 makeArrayRef(req_idx, idx_range.end()), 3242 InsertBefore); 3243 } 3244 3245 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3246 // If we're extracting a value from an aggregate that was extracted from 3247 // something else, we can extract from that something else directly instead. 3248 // However, we will need to chain I's indices with the requested indices. 3249 3250 // Calculate the number of indices required 3251 unsigned size = I->getNumIndices() + idx_range.size(); 3252 // Allocate some space to put the new indices in 3253 SmallVector<unsigned, 5> Idxs; 3254 Idxs.reserve(size); 3255 // Add indices from the extract value instruction 3256 Idxs.append(I->idx_begin(), I->idx_end()); 3257 3258 // Add requested indices 3259 Idxs.append(idx_range.begin(), idx_range.end()); 3260 3261 assert(Idxs.size() == size 3262 && "Number of indices added not correct?"); 3263 3264 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3265 } 3266 // Otherwise, we don't know (such as, extracting from a function return value 3267 // or load instruction) 3268 return nullptr; 3269 } 3270 3271 /// Analyze the specified pointer to see if it can be expressed as a base 3272 /// pointer plus a constant offset. Return the base and offset to the caller. 3273 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3274 const DataLayout &DL) { 3275 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3276 APInt ByteOffset(BitWidth, 0); 3277 3278 // We walk up the defs but use a visited set to handle unreachable code. In 3279 // that case, we stop after accumulating the cycle once (not that it 3280 // matters). 3281 SmallPtrSet<Value *, 16> Visited; 3282 while (Visited.insert(Ptr).second) { 3283 if (Ptr->getType()->isVectorTy()) 3284 break; 3285 3286 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3287 // If one of the values we have visited is an addrspacecast, then 3288 // the pointer type of this GEP may be different from the type 3289 // of the Ptr parameter which was passed to this function. This 3290 // means when we construct GEPOffset, we need to use the size 3291 // of GEP's pointer type rather than the size of the original 3292 // pointer type. 3293 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3294 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3295 break; 3296 3297 ByteOffset += GEPOffset.getSExtValue(); 3298 3299 Ptr = GEP->getPointerOperand(); 3300 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3301 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3302 Ptr = cast<Operator>(Ptr)->getOperand(0); 3303 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3304 if (GA->isInterposable()) 3305 break; 3306 Ptr = GA->getAliasee(); 3307 } else { 3308 break; 3309 } 3310 } 3311 Offset = ByteOffset.getSExtValue(); 3312 return Ptr; 3313 } 3314 3315 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3316 unsigned CharSize) { 3317 // Make sure the GEP has exactly three arguments. 3318 if (GEP->getNumOperands() != 3) 3319 return false; 3320 3321 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3322 // CharSize. 3323 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3324 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3325 return false; 3326 3327 // Check to make sure that the first operand of the GEP is an integer and 3328 // has value 0 so that we are sure we're indexing into the initializer. 3329 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3330 if (!FirstIdx || !FirstIdx->isZero()) 3331 return false; 3332 3333 return true; 3334 } 3335 3336 bool llvm::getConstantDataArrayInfo(const Value *V, 3337 ConstantDataArraySlice &Slice, 3338 unsigned ElementSize, uint64_t Offset) { 3339 assert(V); 3340 3341 // Look through bitcast instructions and geps. 3342 V = V->stripPointerCasts(); 3343 3344 // If the value is a GEP instruction or constant expression, treat it as an 3345 // offset. 3346 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3347 // The GEP operator should be based on a pointer to string constant, and is 3348 // indexing into the string constant. 3349 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3350 return false; 3351 3352 // If the second index isn't a ConstantInt, then this is a variable index 3353 // into the array. If this occurs, we can't say anything meaningful about 3354 // the string. 3355 uint64_t StartIdx = 0; 3356 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3357 StartIdx = CI->getZExtValue(); 3358 else 3359 return false; 3360 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3361 StartIdx + Offset); 3362 } 3363 3364 // The GEP instruction, constant or instruction, must reference a global 3365 // variable that is a constant and is initialized. The referenced constant 3366 // initializer is the array that we'll use for optimization. 3367 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3368 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3369 return false; 3370 3371 const ConstantDataArray *Array; 3372 ArrayType *ArrayTy; 3373 if (GV->getInitializer()->isNullValue()) { 3374 Type *GVTy = GV->getValueType(); 3375 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3376 // A zeroinitializer for the array; there is no ConstantDataArray. 3377 Array = nullptr; 3378 } else { 3379 const DataLayout &DL = GV->getParent()->getDataLayout(); 3380 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3381 uint64_t Length = SizeInBytes / (ElementSize / 8); 3382 if (Length <= Offset) 3383 return false; 3384 3385 Slice.Array = nullptr; 3386 Slice.Offset = 0; 3387 Slice.Length = Length - Offset; 3388 return true; 3389 } 3390 } else { 3391 // This must be a ConstantDataArray. 3392 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3393 if (!Array) 3394 return false; 3395 ArrayTy = Array->getType(); 3396 } 3397 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3398 return false; 3399 3400 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3401 if (Offset > NumElts) 3402 return false; 3403 3404 Slice.Array = Array; 3405 Slice.Offset = Offset; 3406 Slice.Length = NumElts - Offset; 3407 return true; 3408 } 3409 3410 /// This function computes the length of a null-terminated C string pointed to 3411 /// by V. If successful, it returns true and returns the string in Str. 3412 /// If unsuccessful, it returns false. 3413 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3414 uint64_t Offset, bool TrimAtNul) { 3415 ConstantDataArraySlice Slice; 3416 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3417 return false; 3418 3419 if (Slice.Array == nullptr) { 3420 if (TrimAtNul) { 3421 Str = StringRef(); 3422 return true; 3423 } 3424 if (Slice.Length == 1) { 3425 Str = StringRef("", 1); 3426 return true; 3427 } 3428 // We cannot instantiate a StringRef as we do not have an appropriate string 3429 // of 0s at hand. 3430 return false; 3431 } 3432 3433 // Start out with the entire array in the StringRef. 3434 Str = Slice.Array->getAsString(); 3435 // Skip over 'offset' bytes. 3436 Str = Str.substr(Slice.Offset); 3437 3438 if (TrimAtNul) { 3439 // Trim off the \0 and anything after it. If the array is not nul 3440 // terminated, we just return the whole end of string. The client may know 3441 // some other way that the string is length-bound. 3442 Str = Str.substr(0, Str.find('\0')); 3443 } 3444 return true; 3445 } 3446 3447 // These next two are very similar to the above, but also look through PHI 3448 // nodes. 3449 // TODO: See if we can integrate these two together. 3450 3451 /// If we can compute the length of the string pointed to by 3452 /// the specified pointer, return 'len+1'. If we can't, return 0. 3453 static uint64_t GetStringLengthH(const Value *V, 3454 SmallPtrSetImpl<const PHINode*> &PHIs, 3455 unsigned CharSize) { 3456 // Look through noop bitcast instructions. 3457 V = V->stripPointerCasts(); 3458 3459 // If this is a PHI node, there are two cases: either we have already seen it 3460 // or we haven't. 3461 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3462 if (!PHIs.insert(PN).second) 3463 return ~0ULL; // already in the set. 3464 3465 // If it was new, see if all the input strings are the same length. 3466 uint64_t LenSoFar = ~0ULL; 3467 for (Value *IncValue : PN->incoming_values()) { 3468 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3469 if (Len == 0) return 0; // Unknown length -> unknown. 3470 3471 if (Len == ~0ULL) continue; 3472 3473 if (Len != LenSoFar && LenSoFar != ~0ULL) 3474 return 0; // Disagree -> unknown. 3475 LenSoFar = Len; 3476 } 3477 3478 // Success, all agree. 3479 return LenSoFar; 3480 } 3481 3482 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3483 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3484 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3485 if (Len1 == 0) return 0; 3486 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3487 if (Len2 == 0) return 0; 3488 if (Len1 == ~0ULL) return Len2; 3489 if (Len2 == ~0ULL) return Len1; 3490 if (Len1 != Len2) return 0; 3491 return Len1; 3492 } 3493 3494 // Otherwise, see if we can read the string. 3495 ConstantDataArraySlice Slice; 3496 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3497 return 0; 3498 3499 if (Slice.Array == nullptr) 3500 return 1; 3501 3502 // Search for nul characters 3503 unsigned NullIndex = 0; 3504 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3505 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3506 break; 3507 } 3508 3509 return NullIndex + 1; 3510 } 3511 3512 /// If we can compute the length of the string pointed to by 3513 /// the specified pointer, return 'len+1'. If we can't, return 0. 3514 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3515 if (!V->getType()->isPointerTy()) 3516 return 0; 3517 3518 SmallPtrSet<const PHINode*, 32> PHIs; 3519 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3520 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3521 // an empty string as a length. 3522 return Len == ~0ULL ? 1 : Len; 3523 } 3524 3525 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3526 assert(CS && 3527 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3528 if (const Value *RV = CS.getReturnedArgOperand()) 3529 return RV; 3530 // This can be used only as a aliasing property. 3531 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3532 return CS.getArgOperand(0); 3533 return nullptr; 3534 } 3535 3536 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3537 ImmutableCallSite CS) { 3538 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group || 3539 CS.getIntrinsicID() == Intrinsic::strip_invariant_group; 3540 } 3541 3542 /// \p PN defines a loop-variant pointer to an object. Check if the 3543 /// previous iteration of the loop was referring to the same object as \p PN. 3544 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3545 const LoopInfo *LI) { 3546 // Find the loop-defined value. 3547 Loop *L = LI->getLoopFor(PN->getParent()); 3548 if (PN->getNumIncomingValues() != 2) 3549 return true; 3550 3551 // Find the value from previous iteration. 3552 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3553 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3554 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3555 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3556 return true; 3557 3558 // If a new pointer is loaded in the loop, the pointer references a different 3559 // object in every iteration. E.g.: 3560 // for (i) 3561 // int *p = a[i]; 3562 // ... 3563 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3564 if (!L->isLoopInvariant(Load->getPointerOperand())) 3565 return false; 3566 return true; 3567 } 3568 3569 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3570 unsigned MaxLookup) { 3571 if (!V->getType()->isPointerTy()) 3572 return V; 3573 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3574 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3575 V = GEP->getPointerOperand(); 3576 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3577 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3578 V = cast<Operator>(V)->getOperand(0); 3579 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3580 if (GA->isInterposable()) 3581 return V; 3582 V = GA->getAliasee(); 3583 } else if (isa<AllocaInst>(V)) { 3584 // An alloca can't be further simplified. 3585 return V; 3586 } else { 3587 if (auto CS = CallSite(V)) { 3588 // CaptureTracking can know about special capturing properties of some 3589 // intrinsics like launder.invariant.group, that can't be expressed with 3590 // the attributes, but have properties like returning aliasing pointer. 3591 // Because some analysis may assume that nocaptured pointer is not 3592 // returned from some special intrinsic (because function would have to 3593 // be marked with returns attribute), it is crucial to use this function 3594 // because it should be in sync with CaptureTracking. Not using it may 3595 // cause weird miscompilations where 2 aliasing pointers are assumed to 3596 // noalias. 3597 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3598 V = RP; 3599 continue; 3600 } 3601 } 3602 3603 // See if InstructionSimplify knows any relevant tricks. 3604 if (Instruction *I = dyn_cast<Instruction>(V)) 3605 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3606 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3607 V = Simplified; 3608 continue; 3609 } 3610 3611 return V; 3612 } 3613 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3614 } 3615 return V; 3616 } 3617 3618 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3619 const DataLayout &DL, LoopInfo *LI, 3620 unsigned MaxLookup) { 3621 SmallPtrSet<Value *, 4> Visited; 3622 SmallVector<Value *, 4> Worklist; 3623 Worklist.push_back(V); 3624 do { 3625 Value *P = Worklist.pop_back_val(); 3626 P = GetUnderlyingObject(P, DL, MaxLookup); 3627 3628 if (!Visited.insert(P).second) 3629 continue; 3630 3631 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3632 Worklist.push_back(SI->getTrueValue()); 3633 Worklist.push_back(SI->getFalseValue()); 3634 continue; 3635 } 3636 3637 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3638 // If this PHI changes the underlying object in every iteration of the 3639 // loop, don't look through it. Consider: 3640 // int **A; 3641 // for (i) { 3642 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3643 // Curr = A[i]; 3644 // *Prev, *Curr; 3645 // 3646 // Prev is tracking Curr one iteration behind so they refer to different 3647 // underlying objects. 3648 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3649 isSameUnderlyingObjectInLoop(PN, LI)) 3650 for (Value *IncValue : PN->incoming_values()) 3651 Worklist.push_back(IncValue); 3652 continue; 3653 } 3654 3655 Objects.push_back(P); 3656 } while (!Worklist.empty()); 3657 } 3658 3659 /// This is the function that does the work of looking through basic 3660 /// ptrtoint+arithmetic+inttoptr sequences. 3661 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3662 do { 3663 if (const Operator *U = dyn_cast<Operator>(V)) { 3664 // If we find a ptrtoint, we can transfer control back to the 3665 // regular getUnderlyingObjectFromInt. 3666 if (U->getOpcode() == Instruction::PtrToInt) 3667 return U->getOperand(0); 3668 // If we find an add of a constant, a multiplied value, or a phi, it's 3669 // likely that the other operand will lead us to the base 3670 // object. We don't have to worry about the case where the 3671 // object address is somehow being computed by the multiply, 3672 // because our callers only care when the result is an 3673 // identifiable object. 3674 if (U->getOpcode() != Instruction::Add || 3675 (!isa<ConstantInt>(U->getOperand(1)) && 3676 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3677 !isa<PHINode>(U->getOperand(1)))) 3678 return V; 3679 V = U->getOperand(0); 3680 } else { 3681 return V; 3682 } 3683 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3684 } while (true); 3685 } 3686 3687 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3688 /// ptrtoint+arithmetic+inttoptr sequences. 3689 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3690 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3691 SmallVectorImpl<Value *> &Objects, 3692 const DataLayout &DL) { 3693 SmallPtrSet<const Value *, 16> Visited; 3694 SmallVector<const Value *, 4> Working(1, V); 3695 do { 3696 V = Working.pop_back_val(); 3697 3698 SmallVector<Value *, 4> Objs; 3699 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3700 3701 for (Value *V : Objs) { 3702 if (!Visited.insert(V).second) 3703 continue; 3704 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3705 const Value *O = 3706 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3707 if (O->getType()->isPointerTy()) { 3708 Working.push_back(O); 3709 continue; 3710 } 3711 } 3712 // If GetUnderlyingObjects fails to find an identifiable object, 3713 // getUnderlyingObjectsForCodeGen also fails for safety. 3714 if (!isIdentifiedObject(V)) { 3715 Objects.clear(); 3716 return false; 3717 } 3718 Objects.push_back(const_cast<Value *>(V)); 3719 } 3720 } while (!Working.empty()); 3721 return true; 3722 } 3723 3724 /// Return true if the only users of this pointer are lifetime markers. 3725 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3726 for (const User *U : V->users()) { 3727 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3728 if (!II) return false; 3729 3730 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3731 II->getIntrinsicID() != Intrinsic::lifetime_end) 3732 return false; 3733 } 3734 return true; 3735 } 3736 3737 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3738 const Instruction *CtxI, 3739 const DominatorTree *DT) { 3740 const Operator *Inst = dyn_cast<Operator>(V); 3741 if (!Inst) 3742 return false; 3743 3744 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3745 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3746 if (C->canTrap()) 3747 return false; 3748 3749 switch (Inst->getOpcode()) { 3750 default: 3751 return true; 3752 case Instruction::UDiv: 3753 case Instruction::URem: { 3754 // x / y is undefined if y == 0. 3755 const APInt *V; 3756 if (match(Inst->getOperand(1), m_APInt(V))) 3757 return *V != 0; 3758 return false; 3759 } 3760 case Instruction::SDiv: 3761 case Instruction::SRem: { 3762 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3763 const APInt *Numerator, *Denominator; 3764 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3765 return false; 3766 // We cannot hoist this division if the denominator is 0. 3767 if (*Denominator == 0) 3768 return false; 3769 // It's safe to hoist if the denominator is not 0 or -1. 3770 if (*Denominator != -1) 3771 return true; 3772 // At this point we know that the denominator is -1. It is safe to hoist as 3773 // long we know that the numerator is not INT_MIN. 3774 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3775 return !Numerator->isMinSignedValue(); 3776 // The numerator *might* be MinSignedValue. 3777 return false; 3778 } 3779 case Instruction::Load: { 3780 const LoadInst *LI = cast<LoadInst>(Inst); 3781 if (!LI->isUnordered() || 3782 // Speculative load may create a race that did not exist in the source. 3783 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3784 // Speculative load may load data from dirty regions. 3785 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3786 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3787 return false; 3788 const DataLayout &DL = LI->getModule()->getDataLayout(); 3789 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3790 LI->getAlignment(), DL, CtxI, DT); 3791 } 3792 case Instruction::Call: { 3793 auto *CI = cast<const CallInst>(Inst); 3794 const Function *Callee = CI->getCalledFunction(); 3795 3796 // The called function could have undefined behavior or side-effects, even 3797 // if marked readnone nounwind. 3798 return Callee && Callee->isSpeculatable(); 3799 } 3800 case Instruction::VAArg: 3801 case Instruction::Alloca: 3802 case Instruction::Invoke: 3803 case Instruction::PHI: 3804 case Instruction::Store: 3805 case Instruction::Ret: 3806 case Instruction::Br: 3807 case Instruction::IndirectBr: 3808 case Instruction::Switch: 3809 case Instruction::Unreachable: 3810 case Instruction::Fence: 3811 case Instruction::AtomicRMW: 3812 case Instruction::AtomicCmpXchg: 3813 case Instruction::LandingPad: 3814 case Instruction::Resume: 3815 case Instruction::CatchSwitch: 3816 case Instruction::CatchPad: 3817 case Instruction::CatchRet: 3818 case Instruction::CleanupPad: 3819 case Instruction::CleanupRet: 3820 return false; // Misc instructions which have effects 3821 } 3822 } 3823 3824 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3825 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3826 } 3827 3828 OverflowResult llvm::computeOverflowForUnsignedMul( 3829 const Value *LHS, const Value *RHS, const DataLayout &DL, 3830 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3831 bool UseInstrInfo) { 3832 // Multiplying n * m significant bits yields a result of n + m significant 3833 // bits. If the total number of significant bits does not exceed the 3834 // result bit width (minus 1), there is no overflow. 3835 // This means if we have enough leading zero bits in the operands 3836 // we can guarantee that the result does not overflow. 3837 // Ref: "Hacker's Delight" by Henry Warren 3838 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3839 KnownBits LHSKnown(BitWidth); 3840 KnownBits RHSKnown(BitWidth); 3841 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3842 UseInstrInfo); 3843 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr, 3844 UseInstrInfo); 3845 // Note that underestimating the number of zero bits gives a more 3846 // conservative answer. 3847 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3848 RHSKnown.countMinLeadingZeros(); 3849 // First handle the easy case: if we have enough zero bits there's 3850 // definitely no overflow. 3851 if (ZeroBits >= BitWidth) 3852 return OverflowResult::NeverOverflows; 3853 3854 // Get the largest possible values for each operand. 3855 APInt LHSMax = ~LHSKnown.Zero; 3856 APInt RHSMax = ~RHSKnown.Zero; 3857 3858 // We know the multiply operation doesn't overflow if the maximum values for 3859 // each operand will not overflow after we multiply them together. 3860 bool MaxOverflow; 3861 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3862 if (!MaxOverflow) 3863 return OverflowResult::NeverOverflows; 3864 3865 // We know it always overflows if multiplying the smallest possible values for 3866 // the operands also results in overflow. 3867 bool MinOverflow; 3868 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3869 if (MinOverflow) 3870 return OverflowResult::AlwaysOverflows; 3871 3872 return OverflowResult::MayOverflow; 3873 } 3874 3875 OverflowResult 3876 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 3877 const DataLayout &DL, AssumptionCache *AC, 3878 const Instruction *CxtI, 3879 const DominatorTree *DT, bool UseInstrInfo) { 3880 // Multiplying n * m significant bits yields a result of n + m significant 3881 // bits. If the total number of significant bits does not exceed the 3882 // result bit width (minus 1), there is no overflow. 3883 // This means if we have enough leading sign bits in the operands 3884 // we can guarantee that the result does not overflow. 3885 // Ref: "Hacker's Delight" by Henry Warren 3886 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3887 3888 // Note that underestimating the number of sign bits gives a more 3889 // conservative answer. 3890 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3891 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3892 3893 // First handle the easy case: if we have enough sign bits there's 3894 // definitely no overflow. 3895 if (SignBits > BitWidth + 1) 3896 return OverflowResult::NeverOverflows; 3897 3898 // There are two ambiguous cases where there can be no overflow: 3899 // SignBits == BitWidth + 1 and 3900 // SignBits == BitWidth 3901 // The second case is difficult to check, therefore we only handle the 3902 // first case. 3903 if (SignBits == BitWidth + 1) { 3904 // It overflows only when both arguments are negative and the true 3905 // product is exactly the minimum negative number. 3906 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3907 // For simplicity we just check if at least one side is not negative. 3908 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 3909 nullptr, UseInstrInfo); 3910 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 3911 nullptr, UseInstrInfo); 3912 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3913 return OverflowResult::NeverOverflows; 3914 } 3915 return OverflowResult::MayOverflow; 3916 } 3917 3918 OverflowResult llvm::computeOverflowForUnsignedAdd( 3919 const Value *LHS, const Value *RHS, const DataLayout &DL, 3920 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 3921 bool UseInstrInfo) { 3922 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 3923 nullptr, UseInstrInfo); 3924 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3925 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 3926 nullptr, UseInstrInfo); 3927 3928 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3929 // The sign bit is set in both cases: this MUST overflow. 3930 // Create a simple add instruction, and insert it into the struct. 3931 return OverflowResult::AlwaysOverflows; 3932 } 3933 3934 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3935 // The sign bit is clear in both cases: this CANNOT overflow. 3936 // Create a simple add instruction, and insert it into the struct. 3937 return OverflowResult::NeverOverflows; 3938 } 3939 } 3940 3941 return OverflowResult::MayOverflow; 3942 } 3943 3944 /// Return true if we can prove that adding the two values of the 3945 /// knownbits will not overflow. 3946 /// Otherwise return false. 3947 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3948 const KnownBits &RHSKnown) { 3949 // Addition of two 2's complement numbers having opposite signs will never 3950 // overflow. 3951 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3952 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3953 return true; 3954 3955 // If either of the values is known to be non-negative, adding them can only 3956 // overflow if the second is also non-negative, so we can assume that. 3957 // Two non-negative numbers will only overflow if there is a carry to the 3958 // sign bit, so we can check if even when the values are as big as possible 3959 // there is no overflow to the sign bit. 3960 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3961 APInt MaxLHS = ~LHSKnown.Zero; 3962 MaxLHS.clearSignBit(); 3963 APInt MaxRHS = ~RHSKnown.Zero; 3964 MaxRHS.clearSignBit(); 3965 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3966 return Result.isSignBitClear(); 3967 } 3968 3969 // If either of the values is known to be negative, adding them can only 3970 // overflow if the second is also negative, so we can assume that. 3971 // Two negative number will only overflow if there is no carry to the sign 3972 // bit, so we can check if even when the values are as small as possible 3973 // there is overflow to the sign bit. 3974 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3975 APInt MinLHS = LHSKnown.One; 3976 MinLHS.clearSignBit(); 3977 APInt MinRHS = RHSKnown.One; 3978 MinRHS.clearSignBit(); 3979 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3980 return Result.isSignBitSet(); 3981 } 3982 3983 // If we reached here it means that we know nothing about the sign bits. 3984 // In this case we can't know if there will be an overflow, since by 3985 // changing the sign bits any two values can be made to overflow. 3986 return false; 3987 } 3988 3989 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3990 const Value *RHS, 3991 const AddOperator *Add, 3992 const DataLayout &DL, 3993 AssumptionCache *AC, 3994 const Instruction *CxtI, 3995 const DominatorTree *DT) { 3996 if (Add && Add->hasNoSignedWrap()) { 3997 return OverflowResult::NeverOverflows; 3998 } 3999 4000 // If LHS and RHS each have at least two sign bits, the addition will look 4001 // like 4002 // 4003 // XX..... + 4004 // YY..... 4005 // 4006 // If the carry into the most significant position is 0, X and Y can't both 4007 // be 1 and therefore the carry out of the addition is also 0. 4008 // 4009 // If the carry into the most significant position is 1, X and Y can't both 4010 // be 0 and therefore the carry out of the addition is also 1. 4011 // 4012 // Since the carry into the most significant position is always equal to 4013 // the carry out of the addition, there is no signed overflow. 4014 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4015 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4016 return OverflowResult::NeverOverflows; 4017 4018 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 4019 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 4020 4021 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 4022 return OverflowResult::NeverOverflows; 4023 4024 // The remaining code needs Add to be available. Early returns if not so. 4025 if (!Add) 4026 return OverflowResult::MayOverflow; 4027 4028 // If the sign of Add is the same as at least one of the operands, this add 4029 // CANNOT overflow. This is particularly useful when the sum is 4030 // @llvm.assume'ed non-negative rather than proved so from analyzing its 4031 // operands. 4032 bool LHSOrRHSKnownNonNegative = 4033 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 4034 bool LHSOrRHSKnownNegative = 4035 (LHSKnown.isNegative() || RHSKnown.isNegative()); 4036 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4037 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 4038 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4039 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 4040 return OverflowResult::NeverOverflows; 4041 } 4042 } 4043 4044 return OverflowResult::MayOverflow; 4045 } 4046 4047 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4048 const Value *RHS, 4049 const DataLayout &DL, 4050 AssumptionCache *AC, 4051 const Instruction *CxtI, 4052 const DominatorTree *DT) { 4053 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 4054 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 4055 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 4056 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 4057 return OverflowResult::NeverOverflows; 4058 4059 return OverflowResult::MayOverflow; 4060 } 4061 4062 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4063 const Value *RHS, 4064 const DataLayout &DL, 4065 AssumptionCache *AC, 4066 const Instruction *CxtI, 4067 const DominatorTree *DT) { 4068 // If LHS and RHS each have at least two sign bits, the subtraction 4069 // cannot overflow. 4070 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4071 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4072 return OverflowResult::NeverOverflows; 4073 4074 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 4075 4076 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 4077 4078 // Subtraction of two 2's complement numbers having identical signs will 4079 // never overflow. 4080 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 4081 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 4082 return OverflowResult::NeverOverflows; 4083 4084 // TODO: implement logic similar to checkRippleForAdd 4085 return OverflowResult::MayOverflow; 4086 } 4087 4088 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 4089 const DominatorTree &DT) { 4090 #ifndef NDEBUG 4091 auto IID = II->getIntrinsicID(); 4092 assert((IID == Intrinsic::sadd_with_overflow || 4093 IID == Intrinsic::uadd_with_overflow || 4094 IID == Intrinsic::ssub_with_overflow || 4095 IID == Intrinsic::usub_with_overflow || 4096 IID == Intrinsic::smul_with_overflow || 4097 IID == Intrinsic::umul_with_overflow) && 4098 "Not an overflow intrinsic!"); 4099 #endif 4100 4101 SmallVector<const BranchInst *, 2> GuardingBranches; 4102 SmallVector<const ExtractValueInst *, 2> Results; 4103 4104 for (const User *U : II->users()) { 4105 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4106 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4107 4108 if (EVI->getIndices()[0] == 0) 4109 Results.push_back(EVI); 4110 else { 4111 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4112 4113 for (const auto *U : EVI->users()) 4114 if (const auto *B = dyn_cast<BranchInst>(U)) { 4115 assert(B->isConditional() && "How else is it using an i1?"); 4116 GuardingBranches.push_back(B); 4117 } 4118 } 4119 } else { 4120 // We are using the aggregate directly in a way we don't want to analyze 4121 // here (storing it to a global, say). 4122 return false; 4123 } 4124 } 4125 4126 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4127 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4128 if (!NoWrapEdge.isSingleEdge()) 4129 return false; 4130 4131 // Check if all users of the add are provably no-wrap. 4132 for (const auto *Result : Results) { 4133 // If the extractvalue itself is not executed on overflow, the we don't 4134 // need to check each use separately, since domination is transitive. 4135 if (DT.dominates(NoWrapEdge, Result->getParent())) 4136 continue; 4137 4138 for (auto &RU : Result->uses()) 4139 if (!DT.dominates(NoWrapEdge, RU)) 4140 return false; 4141 } 4142 4143 return true; 4144 }; 4145 4146 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4147 } 4148 4149 4150 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4151 const DataLayout &DL, 4152 AssumptionCache *AC, 4153 const Instruction *CxtI, 4154 const DominatorTree *DT) { 4155 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4156 Add, DL, AC, CxtI, DT); 4157 } 4158 4159 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4160 const Value *RHS, 4161 const DataLayout &DL, 4162 AssumptionCache *AC, 4163 const Instruction *CxtI, 4164 const DominatorTree *DT) { 4165 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4166 } 4167 4168 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4169 // A memory operation returns normally if it isn't volatile. A volatile 4170 // operation is allowed to trap. 4171 // 4172 // An atomic operation isn't guaranteed to return in a reasonable amount of 4173 // time because it's possible for another thread to interfere with it for an 4174 // arbitrary length of time, but programs aren't allowed to rely on that. 4175 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4176 return !LI->isVolatile(); 4177 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4178 return !SI->isVolatile(); 4179 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4180 return !CXI->isVolatile(); 4181 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4182 return !RMWI->isVolatile(); 4183 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4184 return !MII->isVolatile(); 4185 4186 // If there is no successor, then execution can't transfer to it. 4187 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4188 return !CRI->unwindsToCaller(); 4189 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4190 return !CatchSwitch->unwindsToCaller(); 4191 if (isa<ResumeInst>(I)) 4192 return false; 4193 if (isa<ReturnInst>(I)) 4194 return false; 4195 if (isa<UnreachableInst>(I)) 4196 return false; 4197 4198 // Calls can throw, or contain an infinite loop, or kill the process. 4199 if (auto CS = ImmutableCallSite(I)) { 4200 // Call sites that throw have implicit non-local control flow. 4201 if (!CS.doesNotThrow()) 4202 return false; 4203 4204 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4205 // etc. and thus not return. However, LLVM already assumes that 4206 // 4207 // - Thread exiting actions are modeled as writes to memory invisible to 4208 // the program. 4209 // 4210 // - Loops that don't have side effects (side effects are volatile/atomic 4211 // stores and IO) always terminate (see http://llvm.org/PR965). 4212 // Furthermore IO itself is also modeled as writes to memory invisible to 4213 // the program. 4214 // 4215 // We rely on those assumptions here, and use the memory effects of the call 4216 // target as a proxy for checking that it always returns. 4217 4218 // FIXME: This isn't aggressive enough; a call which only writes to a global 4219 // is guaranteed to return. 4220 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4221 match(I, m_Intrinsic<Intrinsic::assume>()) || 4222 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4223 } 4224 4225 // Other instructions return normally. 4226 return true; 4227 } 4228 4229 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4230 // TODO: This is slightly consdervative for invoke instruction since exiting 4231 // via an exception *is* normal control for them. 4232 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4233 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4234 return false; 4235 return true; 4236 } 4237 4238 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4239 const Loop *L) { 4240 // The loop header is guaranteed to be executed for every iteration. 4241 // 4242 // FIXME: Relax this constraint to cover all basic blocks that are 4243 // guaranteed to be executed at every iteration. 4244 if (I->getParent() != L->getHeader()) return false; 4245 4246 for (const Instruction &LI : *L->getHeader()) { 4247 if (&LI == I) return true; 4248 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4249 } 4250 llvm_unreachable("Instruction not contained in its own parent basic block."); 4251 } 4252 4253 bool llvm::propagatesFullPoison(const Instruction *I) { 4254 switch (I->getOpcode()) { 4255 case Instruction::Add: 4256 case Instruction::Sub: 4257 case Instruction::Xor: 4258 case Instruction::Trunc: 4259 case Instruction::BitCast: 4260 case Instruction::AddrSpaceCast: 4261 case Instruction::Mul: 4262 case Instruction::Shl: 4263 case Instruction::GetElementPtr: 4264 // These operations all propagate poison unconditionally. Note that poison 4265 // is not any particular value, so xor or subtraction of poison with 4266 // itself still yields poison, not zero. 4267 return true; 4268 4269 case Instruction::AShr: 4270 case Instruction::SExt: 4271 // For these operations, one bit of the input is replicated across 4272 // multiple output bits. A replicated poison bit is still poison. 4273 return true; 4274 4275 case Instruction::ICmp: 4276 // Comparing poison with any value yields poison. This is why, for 4277 // instance, x s< (x +nsw 1) can be folded to true. 4278 return true; 4279 4280 default: 4281 return false; 4282 } 4283 } 4284 4285 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4286 switch (I->getOpcode()) { 4287 case Instruction::Store: 4288 return cast<StoreInst>(I)->getPointerOperand(); 4289 4290 case Instruction::Load: 4291 return cast<LoadInst>(I)->getPointerOperand(); 4292 4293 case Instruction::AtomicCmpXchg: 4294 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4295 4296 case Instruction::AtomicRMW: 4297 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4298 4299 case Instruction::UDiv: 4300 case Instruction::SDiv: 4301 case Instruction::URem: 4302 case Instruction::SRem: 4303 return I->getOperand(1); 4304 4305 default: 4306 return nullptr; 4307 } 4308 } 4309 4310 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4311 // We currently only look for uses of poison values within the same basic 4312 // block, as that makes it easier to guarantee that the uses will be 4313 // executed given that PoisonI is executed. 4314 // 4315 // FIXME: Expand this to consider uses beyond the same basic block. To do 4316 // this, look out for the distinction between post-dominance and strong 4317 // post-dominance. 4318 const BasicBlock *BB = PoisonI->getParent(); 4319 4320 // Set of instructions that we have proved will yield poison if PoisonI 4321 // does. 4322 SmallSet<const Value *, 16> YieldsPoison; 4323 SmallSet<const BasicBlock *, 4> Visited; 4324 YieldsPoison.insert(PoisonI); 4325 Visited.insert(PoisonI->getParent()); 4326 4327 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4328 4329 unsigned Iter = 0; 4330 while (Iter++ < MaxDepth) { 4331 for (auto &I : make_range(Begin, End)) { 4332 if (&I != PoisonI) { 4333 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4334 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4335 return true; 4336 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4337 return false; 4338 } 4339 4340 // Mark poison that propagates from I through uses of I. 4341 if (YieldsPoison.count(&I)) { 4342 for (const User *User : I.users()) { 4343 const Instruction *UserI = cast<Instruction>(User); 4344 if (propagatesFullPoison(UserI)) 4345 YieldsPoison.insert(User); 4346 } 4347 } 4348 } 4349 4350 if (auto *NextBB = BB->getSingleSuccessor()) { 4351 if (Visited.insert(NextBB).second) { 4352 BB = NextBB; 4353 Begin = BB->getFirstNonPHI()->getIterator(); 4354 End = BB->end(); 4355 continue; 4356 } 4357 } 4358 4359 break; 4360 } 4361 return false; 4362 } 4363 4364 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4365 if (FMF.noNaNs()) 4366 return true; 4367 4368 if (auto *C = dyn_cast<ConstantFP>(V)) 4369 return !C->isNaN(); 4370 return false; 4371 } 4372 4373 static bool isKnownNonZero(const Value *V) { 4374 if (auto *C = dyn_cast<ConstantFP>(V)) 4375 return !C->isZero(); 4376 return false; 4377 } 4378 4379 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4380 /// Given non-min/max outer cmp/select from the clamp pattern this 4381 /// function recognizes if it can be substitued by a "canonical" min/max 4382 /// pattern. 4383 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4384 Value *CmpLHS, Value *CmpRHS, 4385 Value *TrueVal, Value *FalseVal, 4386 Value *&LHS, Value *&RHS) { 4387 // Try to match 4388 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4389 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4390 // and return description of the outer Max/Min. 4391 4392 // First, check if select has inverse order: 4393 if (CmpRHS == FalseVal) { 4394 std::swap(TrueVal, FalseVal); 4395 Pred = CmpInst::getInversePredicate(Pred); 4396 } 4397 4398 // Assume success now. If there's no match, callers should not use these anyway. 4399 LHS = TrueVal; 4400 RHS = FalseVal; 4401 4402 const APFloat *FC1; 4403 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4404 return {SPF_UNKNOWN, SPNB_NA, false}; 4405 4406 const APFloat *FC2; 4407 switch (Pred) { 4408 case CmpInst::FCMP_OLT: 4409 case CmpInst::FCMP_OLE: 4410 case CmpInst::FCMP_ULT: 4411 case CmpInst::FCMP_ULE: 4412 if (match(FalseVal, 4413 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4414 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4415 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4416 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4417 break; 4418 case CmpInst::FCMP_OGT: 4419 case CmpInst::FCMP_OGE: 4420 case CmpInst::FCMP_UGT: 4421 case CmpInst::FCMP_UGE: 4422 if (match(FalseVal, 4423 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4424 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4425 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4426 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4427 break; 4428 default: 4429 break; 4430 } 4431 4432 return {SPF_UNKNOWN, SPNB_NA, false}; 4433 } 4434 4435 /// Recognize variations of: 4436 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4437 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4438 Value *CmpLHS, Value *CmpRHS, 4439 Value *TrueVal, Value *FalseVal) { 4440 // Swap the select operands and predicate to match the patterns below. 4441 if (CmpRHS != TrueVal) { 4442 Pred = ICmpInst::getSwappedPredicate(Pred); 4443 std::swap(TrueVal, FalseVal); 4444 } 4445 const APInt *C1; 4446 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4447 const APInt *C2; 4448 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4449 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4450 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4451 return {SPF_SMAX, SPNB_NA, false}; 4452 4453 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4454 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4455 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4456 return {SPF_SMIN, SPNB_NA, false}; 4457 4458 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4459 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4460 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4461 return {SPF_UMAX, SPNB_NA, false}; 4462 4463 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4464 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4465 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4466 return {SPF_UMIN, SPNB_NA, false}; 4467 } 4468 return {SPF_UNKNOWN, SPNB_NA, false}; 4469 } 4470 4471 /// Recognize variations of: 4472 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4473 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4474 Value *CmpLHS, Value *CmpRHS, 4475 Value *TVal, Value *FVal, 4476 unsigned Depth) { 4477 // TODO: Allow FP min/max with nnan/nsz. 4478 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4479 4480 Value *A, *B; 4481 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4482 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4483 return {SPF_UNKNOWN, SPNB_NA, false}; 4484 4485 Value *C, *D; 4486 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4487 if (L.Flavor != R.Flavor) 4488 return {SPF_UNKNOWN, SPNB_NA, false}; 4489 4490 // We have something like: x Pred y ? min(a, b) : min(c, d). 4491 // Try to match the compare to the min/max operations of the select operands. 4492 // First, make sure we have the right compare predicate. 4493 switch (L.Flavor) { 4494 case SPF_SMIN: 4495 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4496 Pred = ICmpInst::getSwappedPredicate(Pred); 4497 std::swap(CmpLHS, CmpRHS); 4498 } 4499 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4500 break; 4501 return {SPF_UNKNOWN, SPNB_NA, false}; 4502 case SPF_SMAX: 4503 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4504 Pred = ICmpInst::getSwappedPredicate(Pred); 4505 std::swap(CmpLHS, CmpRHS); 4506 } 4507 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4508 break; 4509 return {SPF_UNKNOWN, SPNB_NA, false}; 4510 case SPF_UMIN: 4511 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4512 Pred = ICmpInst::getSwappedPredicate(Pred); 4513 std::swap(CmpLHS, CmpRHS); 4514 } 4515 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4516 break; 4517 return {SPF_UNKNOWN, SPNB_NA, false}; 4518 case SPF_UMAX: 4519 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4520 Pred = ICmpInst::getSwappedPredicate(Pred); 4521 std::swap(CmpLHS, CmpRHS); 4522 } 4523 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4524 break; 4525 return {SPF_UNKNOWN, SPNB_NA, false}; 4526 default: 4527 return {SPF_UNKNOWN, SPNB_NA, false}; 4528 } 4529 4530 // If there is a common operand in the already matched min/max and the other 4531 // min/max operands match the compare operands (either directly or inverted), 4532 // then this is min/max of the same flavor. 4533 4534 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4535 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4536 if (D == B) { 4537 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4538 match(A, m_Not(m_Specific(CmpRHS))))) 4539 return {L.Flavor, SPNB_NA, false}; 4540 } 4541 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4542 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4543 if (C == B) { 4544 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4545 match(A, m_Not(m_Specific(CmpRHS))))) 4546 return {L.Flavor, SPNB_NA, false}; 4547 } 4548 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4549 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4550 if (D == A) { 4551 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4552 match(B, m_Not(m_Specific(CmpRHS))))) 4553 return {L.Flavor, SPNB_NA, false}; 4554 } 4555 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4556 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4557 if (C == A) { 4558 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4559 match(B, m_Not(m_Specific(CmpRHS))))) 4560 return {L.Flavor, SPNB_NA, false}; 4561 } 4562 4563 return {SPF_UNKNOWN, SPNB_NA, false}; 4564 } 4565 4566 /// Match non-obvious integer minimum and maximum sequences. 4567 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4568 Value *CmpLHS, Value *CmpRHS, 4569 Value *TrueVal, Value *FalseVal, 4570 Value *&LHS, Value *&RHS, 4571 unsigned Depth) { 4572 // Assume success. If there's no match, callers should not use these anyway. 4573 LHS = TrueVal; 4574 RHS = FalseVal; 4575 4576 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4577 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4578 return SPR; 4579 4580 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4581 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4582 return SPR; 4583 4584 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4585 return {SPF_UNKNOWN, SPNB_NA, false}; 4586 4587 // Z = X -nsw Y 4588 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4589 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4590 if (match(TrueVal, m_Zero()) && 4591 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4592 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4593 4594 // Z = X -nsw Y 4595 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4596 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4597 if (match(FalseVal, m_Zero()) && 4598 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4599 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4600 4601 const APInt *C1; 4602 if (!match(CmpRHS, m_APInt(C1))) 4603 return {SPF_UNKNOWN, SPNB_NA, false}; 4604 4605 // An unsigned min/max can be written with a signed compare. 4606 const APInt *C2; 4607 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4608 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4609 // Is the sign bit set? 4610 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4611 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4612 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4613 C2->isMaxSignedValue()) 4614 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4615 4616 // Is the sign bit clear? 4617 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4618 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4619 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4620 C2->isMinSignedValue()) 4621 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4622 } 4623 4624 // Look through 'not' ops to find disguised signed min/max. 4625 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4626 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4627 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4628 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4629 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4630 4631 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4632 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4633 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4634 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4635 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4636 4637 return {SPF_UNKNOWN, SPNB_NA, false}; 4638 } 4639 4640 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4641 assert(X && Y && "Invalid operand"); 4642 4643 // X = sub (0, Y) || X = sub nsw (0, Y) 4644 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4645 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4646 return true; 4647 4648 // Y = sub (0, X) || Y = sub nsw (0, X) 4649 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4650 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4651 return true; 4652 4653 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4654 Value *A, *B; 4655 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4656 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4657 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4658 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4659 } 4660 4661 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4662 FastMathFlags FMF, 4663 Value *CmpLHS, Value *CmpRHS, 4664 Value *TrueVal, Value *FalseVal, 4665 Value *&LHS, Value *&RHS, 4666 unsigned Depth) { 4667 LHS = CmpLHS; 4668 RHS = CmpRHS; 4669 4670 // Signed zero may return inconsistent results between implementations. 4671 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4672 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4673 // Therefore, we behave conservatively and only proceed if at least one of the 4674 // operands is known to not be zero or if we don't care about signed zero. 4675 switch (Pred) { 4676 default: break; 4677 // FIXME: Include OGT/OLT/UGT/ULT. 4678 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4679 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4680 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4681 !isKnownNonZero(CmpRHS)) 4682 return {SPF_UNKNOWN, SPNB_NA, false}; 4683 } 4684 4685 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4686 bool Ordered = false; 4687 4688 // When given one NaN and one non-NaN input: 4689 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4690 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4691 // ordered comparison fails), which could be NaN or non-NaN. 4692 // so here we discover exactly what NaN behavior is required/accepted. 4693 if (CmpInst::isFPPredicate(Pred)) { 4694 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4695 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4696 4697 if (LHSSafe && RHSSafe) { 4698 // Both operands are known non-NaN. 4699 NaNBehavior = SPNB_RETURNS_ANY; 4700 } else if (CmpInst::isOrdered(Pred)) { 4701 // An ordered comparison will return false when given a NaN, so it 4702 // returns the RHS. 4703 Ordered = true; 4704 if (LHSSafe) 4705 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4706 NaNBehavior = SPNB_RETURNS_NAN; 4707 else if (RHSSafe) 4708 NaNBehavior = SPNB_RETURNS_OTHER; 4709 else 4710 // Completely unsafe. 4711 return {SPF_UNKNOWN, SPNB_NA, false}; 4712 } else { 4713 Ordered = false; 4714 // An unordered comparison will return true when given a NaN, so it 4715 // returns the LHS. 4716 if (LHSSafe) 4717 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4718 NaNBehavior = SPNB_RETURNS_OTHER; 4719 else if (RHSSafe) 4720 NaNBehavior = SPNB_RETURNS_NAN; 4721 else 4722 // Completely unsafe. 4723 return {SPF_UNKNOWN, SPNB_NA, false}; 4724 } 4725 } 4726 4727 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4728 std::swap(CmpLHS, CmpRHS); 4729 Pred = CmpInst::getSwappedPredicate(Pred); 4730 if (NaNBehavior == SPNB_RETURNS_NAN) 4731 NaNBehavior = SPNB_RETURNS_OTHER; 4732 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4733 NaNBehavior = SPNB_RETURNS_NAN; 4734 Ordered = !Ordered; 4735 } 4736 4737 // ([if]cmp X, Y) ? X : Y 4738 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4739 switch (Pred) { 4740 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4741 case ICmpInst::ICMP_UGT: 4742 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4743 case ICmpInst::ICMP_SGT: 4744 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4745 case ICmpInst::ICMP_ULT: 4746 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4747 case ICmpInst::ICMP_SLT: 4748 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4749 case FCmpInst::FCMP_UGT: 4750 case FCmpInst::FCMP_UGE: 4751 case FCmpInst::FCMP_OGT: 4752 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4753 case FCmpInst::FCMP_ULT: 4754 case FCmpInst::FCMP_ULE: 4755 case FCmpInst::FCMP_OLT: 4756 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4757 } 4758 } 4759 4760 if (isKnownNegation(TrueVal, FalseVal)) { 4761 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4762 // match against either LHS or sext(LHS). 4763 auto MaybeSExtCmpLHS = 4764 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4765 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4766 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4767 if (match(TrueVal, MaybeSExtCmpLHS)) { 4768 // Set the return values. If the compare uses the negated value (-X >s 0), 4769 // swap the return values because the negated value is always 'RHS'. 4770 LHS = TrueVal; 4771 RHS = FalseVal; 4772 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4773 std::swap(LHS, RHS); 4774 4775 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4776 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4777 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4778 return {SPF_ABS, SPNB_NA, false}; 4779 4780 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4781 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4782 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4783 return {SPF_NABS, SPNB_NA, false}; 4784 } 4785 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4786 // Set the return values. If the compare uses the negated value (-X >s 0), 4787 // swap the return values because the negated value is always 'RHS'. 4788 LHS = FalseVal; 4789 RHS = TrueVal; 4790 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4791 std::swap(LHS, RHS); 4792 4793 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4794 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4795 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4796 return {SPF_NABS, SPNB_NA, false}; 4797 4798 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4799 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4800 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4801 return {SPF_ABS, SPNB_NA, false}; 4802 } 4803 } 4804 4805 if (CmpInst::isIntPredicate(Pred)) 4806 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4807 4808 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4809 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4810 // semantics than minNum. Be conservative in such case. 4811 if (NaNBehavior != SPNB_RETURNS_ANY || 4812 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4813 !isKnownNonZero(CmpRHS))) 4814 return {SPF_UNKNOWN, SPNB_NA, false}; 4815 4816 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4817 } 4818 4819 /// Helps to match a select pattern in case of a type mismatch. 4820 /// 4821 /// The function processes the case when type of true and false values of a 4822 /// select instruction differs from type of the cmp instruction operands because 4823 /// of a cast instruction. The function checks if it is legal to move the cast 4824 /// operation after "select". If yes, it returns the new second value of 4825 /// "select" (with the assumption that cast is moved): 4826 /// 1. As operand of cast instruction when both values of "select" are same cast 4827 /// instructions. 4828 /// 2. As restored constant (by applying reverse cast operation) when the first 4829 /// value of the "select" is a cast operation and the second value is a 4830 /// constant. 4831 /// NOTE: We return only the new second value because the first value could be 4832 /// accessed as operand of cast instruction. 4833 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4834 Instruction::CastOps *CastOp) { 4835 auto *Cast1 = dyn_cast<CastInst>(V1); 4836 if (!Cast1) 4837 return nullptr; 4838 4839 *CastOp = Cast1->getOpcode(); 4840 Type *SrcTy = Cast1->getSrcTy(); 4841 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4842 // If V1 and V2 are both the same cast from the same type, look through V1. 4843 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4844 return Cast2->getOperand(0); 4845 return nullptr; 4846 } 4847 4848 auto *C = dyn_cast<Constant>(V2); 4849 if (!C) 4850 return nullptr; 4851 4852 Constant *CastedTo = nullptr; 4853 switch (*CastOp) { 4854 case Instruction::ZExt: 4855 if (CmpI->isUnsigned()) 4856 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4857 break; 4858 case Instruction::SExt: 4859 if (CmpI->isSigned()) 4860 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4861 break; 4862 case Instruction::Trunc: 4863 Constant *CmpConst; 4864 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4865 CmpConst->getType() == SrcTy) { 4866 // Here we have the following case: 4867 // 4868 // %cond = cmp iN %x, CmpConst 4869 // %tr = trunc iN %x to iK 4870 // %narrowsel = select i1 %cond, iK %t, iK C 4871 // 4872 // We can always move trunc after select operation: 4873 // 4874 // %cond = cmp iN %x, CmpConst 4875 // %widesel = select i1 %cond, iN %x, iN CmpConst 4876 // %tr = trunc iN %widesel to iK 4877 // 4878 // Note that C could be extended in any way because we don't care about 4879 // upper bits after truncation. It can't be abs pattern, because it would 4880 // look like: 4881 // 4882 // select i1 %cond, x, -x. 4883 // 4884 // So only min/max pattern could be matched. Such match requires widened C 4885 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4886 // CmpConst == C is checked below. 4887 CastedTo = CmpConst; 4888 } else { 4889 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4890 } 4891 break; 4892 case Instruction::FPTrunc: 4893 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4894 break; 4895 case Instruction::FPExt: 4896 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4897 break; 4898 case Instruction::FPToUI: 4899 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4900 break; 4901 case Instruction::FPToSI: 4902 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4903 break; 4904 case Instruction::UIToFP: 4905 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4906 break; 4907 case Instruction::SIToFP: 4908 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4909 break; 4910 default: 4911 break; 4912 } 4913 4914 if (!CastedTo) 4915 return nullptr; 4916 4917 // Make sure the cast doesn't lose any information. 4918 Constant *CastedBack = 4919 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4920 if (CastedBack != C) 4921 return nullptr; 4922 4923 return CastedTo; 4924 } 4925 4926 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4927 Instruction::CastOps *CastOp, 4928 unsigned Depth) { 4929 if (Depth >= MaxDepth) 4930 return {SPF_UNKNOWN, SPNB_NA, false}; 4931 4932 SelectInst *SI = dyn_cast<SelectInst>(V); 4933 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4934 4935 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4936 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4937 4938 CmpInst::Predicate Pred = CmpI->getPredicate(); 4939 Value *CmpLHS = CmpI->getOperand(0); 4940 Value *CmpRHS = CmpI->getOperand(1); 4941 Value *TrueVal = SI->getTrueValue(); 4942 Value *FalseVal = SI->getFalseValue(); 4943 FastMathFlags FMF; 4944 if (isa<FPMathOperator>(CmpI)) 4945 FMF = CmpI->getFastMathFlags(); 4946 4947 // Bail out early. 4948 if (CmpI->isEquality()) 4949 return {SPF_UNKNOWN, SPNB_NA, false}; 4950 4951 // Deal with type mismatches. 4952 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4953 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4954 // If this is a potential fmin/fmax with a cast to integer, then ignore 4955 // -0.0 because there is no corresponding integer value. 4956 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4957 FMF.setNoSignedZeros(); 4958 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4959 cast<CastInst>(TrueVal)->getOperand(0), C, 4960 LHS, RHS, Depth); 4961 } 4962 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4963 // If this is a potential fmin/fmax with a cast to integer, then ignore 4964 // -0.0 because there is no corresponding integer value. 4965 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4966 FMF.setNoSignedZeros(); 4967 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4968 C, cast<CastInst>(FalseVal)->getOperand(0), 4969 LHS, RHS, Depth); 4970 } 4971 } 4972 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4973 LHS, RHS, Depth); 4974 } 4975 4976 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4977 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4978 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4979 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4980 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4981 if (SPF == SPF_FMINNUM) 4982 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4983 if (SPF == SPF_FMAXNUM) 4984 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4985 llvm_unreachable("unhandled!"); 4986 } 4987 4988 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4989 if (SPF == SPF_SMIN) return SPF_SMAX; 4990 if (SPF == SPF_UMIN) return SPF_UMAX; 4991 if (SPF == SPF_SMAX) return SPF_SMIN; 4992 if (SPF == SPF_UMAX) return SPF_UMIN; 4993 llvm_unreachable("unhandled!"); 4994 } 4995 4996 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4997 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4998 } 4999 5000 /// Return true if "icmp Pred LHS RHS" is always true. 5001 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5002 const Value *RHS, const DataLayout &DL, 5003 unsigned Depth) { 5004 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5005 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5006 return true; 5007 5008 switch (Pred) { 5009 default: 5010 return false; 5011 5012 case CmpInst::ICMP_SLE: { 5013 const APInt *C; 5014 5015 // LHS s<= LHS +_{nsw} C if C >= 0 5016 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5017 return !C->isNegative(); 5018 return false; 5019 } 5020 5021 case CmpInst::ICMP_ULE: { 5022 const APInt *C; 5023 5024 // LHS u<= LHS +_{nuw} C for any C 5025 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5026 return true; 5027 5028 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5029 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5030 const Value *&X, 5031 const APInt *&CA, const APInt *&CB) { 5032 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5033 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5034 return true; 5035 5036 // If X & C == 0 then (X | C) == X +_{nuw} C 5037 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5038 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5039 KnownBits Known(CA->getBitWidth()); 5040 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5041 /*CxtI*/ nullptr, /*DT*/ nullptr); 5042 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5043 return true; 5044 } 5045 5046 return false; 5047 }; 5048 5049 const Value *X; 5050 const APInt *CLHS, *CRHS; 5051 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5052 return CLHS->ule(*CRHS); 5053 5054 return false; 5055 } 5056 } 5057 } 5058 5059 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5060 /// ALHS ARHS" is true. Otherwise, return None. 5061 static Optional<bool> 5062 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5063 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5064 const DataLayout &DL, unsigned Depth) { 5065 switch (Pred) { 5066 default: 5067 return None; 5068 5069 case CmpInst::ICMP_SLT: 5070 case CmpInst::ICMP_SLE: 5071 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5072 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5073 return true; 5074 return None; 5075 5076 case CmpInst::ICMP_ULT: 5077 case CmpInst::ICMP_ULE: 5078 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5079 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5080 return true; 5081 return None; 5082 } 5083 } 5084 5085 /// Return true if the operands of the two compares match. IsSwappedOps is true 5086 /// when the operands match, but are swapped. 5087 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5088 const Value *BLHS, const Value *BRHS, 5089 bool &IsSwappedOps) { 5090 5091 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5092 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5093 return IsMatchingOps || IsSwappedOps; 5094 } 5095 5096 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 5097 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 5098 /// BRHS" is false. Otherwise, return None if we can't infer anything. 5099 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5100 const Value *ALHS, 5101 const Value *ARHS, 5102 CmpInst::Predicate BPred, 5103 const Value *BLHS, 5104 const Value *BRHS, 5105 bool IsSwappedOps) { 5106 // Canonicalize the operands so they're matching. 5107 if (IsSwappedOps) { 5108 std::swap(BLHS, BRHS); 5109 BPred = ICmpInst::getSwappedPredicate(BPred); 5110 } 5111 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5112 return true; 5113 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5114 return false; 5115 5116 return None; 5117 } 5118 5119 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 5120 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 5121 /// C2" is false. Otherwise, return None if we can't infer anything. 5122 static Optional<bool> 5123 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 5124 const ConstantInt *C1, 5125 CmpInst::Predicate BPred, 5126 const Value *BLHS, const ConstantInt *C2) { 5127 assert(ALHS == BLHS && "LHS operands must match."); 5128 ConstantRange DomCR = 5129 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5130 ConstantRange CR = 5131 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5132 ConstantRange Intersection = DomCR.intersectWith(CR); 5133 ConstantRange Difference = DomCR.difference(CR); 5134 if (Intersection.isEmptySet()) 5135 return false; 5136 if (Difference.isEmptySet()) 5137 return true; 5138 return None; 5139 } 5140 5141 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5142 /// false. Otherwise, return None if we can't infer anything. 5143 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5144 const ICmpInst *RHS, 5145 const DataLayout &DL, bool LHSIsTrue, 5146 unsigned Depth) { 5147 Value *ALHS = LHS->getOperand(0); 5148 Value *ARHS = LHS->getOperand(1); 5149 // The rest of the logic assumes the LHS condition is true. If that's not the 5150 // case, invert the predicate to make it so. 5151 ICmpInst::Predicate APred = 5152 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5153 5154 Value *BLHS = RHS->getOperand(0); 5155 Value *BRHS = RHS->getOperand(1); 5156 ICmpInst::Predicate BPred = RHS->getPredicate(); 5157 5158 // Can we infer anything when the two compares have matching operands? 5159 bool IsSwappedOps; 5160 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 5161 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5162 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 5163 return Implication; 5164 // No amount of additional analysis will infer the second condition, so 5165 // early exit. 5166 return None; 5167 } 5168 5169 // Can we infer anything when the LHS operands match and the RHS operands are 5170 // constants (not necessarily matching)? 5171 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5172 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5173 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 5174 cast<ConstantInt>(BRHS))) 5175 return Implication; 5176 // No amount of additional analysis will infer the second condition, so 5177 // early exit. 5178 return None; 5179 } 5180 5181 if (APred == BPred) 5182 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5183 return None; 5184 } 5185 5186 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5187 /// false. Otherwise, return None if we can't infer anything. We expect the 5188 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5189 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5190 const ICmpInst *RHS, 5191 const DataLayout &DL, bool LHSIsTrue, 5192 unsigned Depth) { 5193 // The LHS must be an 'or' or an 'and' instruction. 5194 assert((LHS->getOpcode() == Instruction::And || 5195 LHS->getOpcode() == Instruction::Or) && 5196 "Expected LHS to be 'and' or 'or'."); 5197 5198 assert(Depth <= MaxDepth && "Hit recursion limit"); 5199 5200 // If the result of an 'or' is false, then we know both legs of the 'or' are 5201 // false. Similarly, if the result of an 'and' is true, then we know both 5202 // legs of the 'and' are true. 5203 Value *ALHS, *ARHS; 5204 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5205 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5206 // FIXME: Make this non-recursion. 5207 if (Optional<bool> Implication = 5208 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5209 return Implication; 5210 if (Optional<bool> Implication = 5211 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5212 return Implication; 5213 return None; 5214 } 5215 return None; 5216 } 5217 5218 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5219 const DataLayout &DL, bool LHSIsTrue, 5220 unsigned Depth) { 5221 // Bail out when we hit the limit. 5222 if (Depth == MaxDepth) 5223 return None; 5224 5225 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5226 // example. 5227 if (LHS->getType() != RHS->getType()) 5228 return None; 5229 5230 Type *OpTy = LHS->getType(); 5231 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5232 5233 // LHS ==> RHS by definition 5234 if (LHS == RHS) 5235 return LHSIsTrue; 5236 5237 // FIXME: Extending the code below to handle vectors. 5238 if (OpTy->isVectorTy()) 5239 return None; 5240 5241 assert(OpTy->isIntegerTy(1) && "implied by above"); 5242 5243 // Both LHS and RHS are icmps. 5244 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5245 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5246 if (LHSCmp && RHSCmp) 5247 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5248 5249 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5250 // an icmp. FIXME: Add support for and/or on the RHS. 5251 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5252 if (LHSBO && RHSCmp) { 5253 if ((LHSBO->getOpcode() == Instruction::And || 5254 LHSBO->getOpcode() == Instruction::Or)) 5255 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5256 } 5257 return None; 5258 } 5259