1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Constants.h" 18 #include "llvm/Instructions.h" 19 #include "llvm/GlobalVariable.h" 20 #include "llvm/GlobalAlias.h" 21 #include "llvm/IntrinsicInst.h" 22 #include "llvm/LLVMContext.h" 23 #include "llvm/Metadata.h" 24 #include "llvm/Operator.h" 25 #include "llvm/Target/TargetData.h" 26 #include "llvm/Support/ConstantRange.h" 27 #include "llvm/Support/GetElementPtrTypeIterator.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/PatternMatch.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include <cstring> 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 const unsigned MaxDepth = 6; 36 37 /// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if 38 /// unknown returns 0). For vector types, returns the element type's bitwidth. 39 static unsigned getBitWidth(Type *Ty, const TargetData *TD) { 40 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 41 return BitWidth; 42 assert(isa<PointerType>(Ty) && "Expected a pointer type!"); 43 return TD ? TD->getPointerSizeInBits() : 0; 44 } 45 46 static void ComputeMaskedBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 47 const APInt &Mask, 48 APInt &KnownZero, APInt &KnownOne, 49 APInt &KnownZero2, APInt &KnownOne2, 50 const TargetData *TD, unsigned Depth) { 51 if (!Add) { 52 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 53 // We know that the top bits of C-X are clear if X contains less bits 54 // than C (i.e. no wrap-around can happen). For example, 20-X is 55 // positive if we can prove that X is >= 0 and < 16. 56 if (!CLHS->getValue().isNegative()) { 57 unsigned BitWidth = Mask.getBitWidth(); 58 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 59 // NLZ can't be BitWidth with no sign bit 60 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 61 llvm::ComputeMaskedBits(Op1, MaskV, KnownZero2, KnownOne2, TD, Depth+1); 62 63 // If all of the MaskV bits are known to be zero, then we know the 64 // output top bits are zero, because we now know that the output is 65 // from [0-C]. 66 if ((KnownZero2 & MaskV) == MaskV) { 67 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 68 // Top bits known zero. 69 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask; 70 } 71 } 72 } 73 } 74 75 unsigned BitWidth = Mask.getBitWidth(); 76 77 // If one of the operands has trailing zeros, then the bits that the 78 // other operand has in those bit positions will be preserved in the 79 // result. For an add, this works with either operand. For a subtract, 80 // this only works if the known zeros are in the right operand. 81 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 82 APInt Mask2 = APInt::getLowBitsSet(BitWidth, 83 BitWidth - Mask.countLeadingZeros()); 84 llvm::ComputeMaskedBits(Op0, Mask2, LHSKnownZero, LHSKnownOne, TD, Depth+1); 85 assert((LHSKnownZero & LHSKnownOne) == 0 && 86 "Bits known to be one AND zero?"); 87 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes(); 88 89 llvm::ComputeMaskedBits(Op1, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 90 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 91 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes(); 92 93 // Determine which operand has more trailing zeros, and use that 94 // many bits from the other operand. 95 if (LHSKnownZeroOut > RHSKnownZeroOut) { 96 if (Add) { 97 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut); 98 KnownZero |= KnownZero2 & Mask; 99 KnownOne |= KnownOne2 & Mask; 100 } else { 101 // If the known zeros are in the left operand for a subtract, 102 // fall back to the minimum known zeros in both operands. 103 KnownZero |= APInt::getLowBitsSet(BitWidth, 104 std::min(LHSKnownZeroOut, 105 RHSKnownZeroOut)); 106 } 107 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) { 108 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut); 109 KnownZero |= LHSKnownZero & Mask; 110 KnownOne |= LHSKnownOne & Mask; 111 } 112 113 // Are we still trying to solve for the sign bit? 114 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()) { 115 if (NSW) { 116 if (Add) { 117 // Adding two positive numbers can't wrap into negative 118 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 119 KnownZero |= APInt::getSignBit(BitWidth); 120 // and adding two negative numbers can't wrap into positive. 121 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 122 KnownOne |= APInt::getSignBit(BitWidth); 123 } else { 124 // Subtracting a negative number from a positive one can't wrap 125 if (LHSKnownZero.isNegative() && KnownOne2.isNegative()) 126 KnownZero |= APInt::getSignBit(BitWidth); 127 // neither can subtracting a positive number from a negative one. 128 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative()) 129 KnownOne |= APInt::getSignBit(BitWidth); 130 } 131 } 132 } 133 } 134 135 static void ComputeMaskedBitsMul(Value *Op0, Value *Op1, bool NSW, 136 const APInt &Mask, 137 APInt &KnownZero, APInt &KnownOne, 138 APInt &KnownZero2, APInt &KnownOne2, 139 const TargetData *TD, unsigned Depth) { 140 unsigned BitWidth = Mask.getBitWidth(); 141 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 142 ComputeMaskedBits(Op1, Mask2, KnownZero, KnownOne, TD, Depth+1); 143 ComputeMaskedBits(Op0, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 144 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 145 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 146 147 bool isKnownNegative = false; 148 bool isKnownNonNegative = false; 149 // If the multiplication is known not to overflow, compute the sign bit. 150 if (Mask.isNegative() && NSW) { 151 if (Op0 == Op1) { 152 // The product of a number with itself is non-negative. 153 isKnownNonNegative = true; 154 } else { 155 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 156 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 157 bool isKnownNegativeOp1 = KnownOne.isNegative(); 158 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 159 // The product of two numbers with the same sign is non-negative. 160 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 161 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 162 // The product of a negative number and a non-negative number is either 163 // negative or zero. 164 if (!isKnownNonNegative) 165 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 166 isKnownNonZero(Op0, TD, Depth)) || 167 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 168 isKnownNonZero(Op1, TD, Depth)); 169 } 170 } 171 172 // If low bits are zero in either operand, output low known-0 bits. 173 // Also compute a conserative estimate for high known-0 bits. 174 // More trickiness is possible, but this is sufficient for the 175 // interesting case of alignment computation. 176 KnownOne.clearAllBits(); 177 unsigned TrailZ = KnownZero.countTrailingOnes() + 178 KnownZero2.countTrailingOnes(); 179 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 180 KnownZero2.countLeadingOnes(), 181 BitWidth) - BitWidth; 182 183 TrailZ = std::min(TrailZ, BitWidth); 184 LeadZ = std::min(LeadZ, BitWidth); 185 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 186 APInt::getHighBitsSet(BitWidth, LeadZ); 187 KnownZero &= Mask; 188 189 // Only make use of no-wrap flags if we failed to compute the sign bit 190 // directly. This matters if the multiplication always overflows, in 191 // which case we prefer to follow the result of the direct computation, 192 // though as the program is invoking undefined behaviour we can choose 193 // whatever we like here. 194 if (isKnownNonNegative && !KnownOne.isNegative()) 195 KnownZero.setBit(BitWidth - 1); 196 else if (isKnownNegative && !KnownZero.isNegative()) 197 KnownOne.setBit(BitWidth - 1); 198 } 199 200 void llvm::computeMaskedBitsLoad(const MDNode &Ranges, const APInt &Mask, 201 APInt &KnownZero) { 202 unsigned BitWidth = Mask.getBitWidth(); 203 unsigned NumRanges = Ranges.getNumOperands() / 2; 204 assert(NumRanges >= 1); 205 206 // Use the high end of the ranges to find leading zeros. 207 unsigned MinLeadingZeros = BitWidth; 208 for (unsigned i = 0; i < NumRanges; ++i) { 209 ConstantInt *Lower = cast<ConstantInt>(Ranges.getOperand(2*i + 0)); 210 ConstantInt *Upper = cast<ConstantInt>(Ranges.getOperand(2*i + 1)); 211 ConstantRange Range(Lower->getValue(), Upper->getValue()); 212 if (Range.isWrappedSet()) 213 MinLeadingZeros = 0; // -1 has no zeros 214 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 215 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 216 } 217 218 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 219 } 220 /// ComputeMaskedBits - Determine which of the bits specified in Mask are 221 /// known to be either zero or one and return them in the KnownZero/KnownOne 222 /// bit sets. This code only analyzes bits in Mask, in order to short-circuit 223 /// processing. 224 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 225 /// we cannot optimize based on the assumption that it is zero without changing 226 /// it to be an explicit zero. If we don't change it to zero, other code could 227 /// optimized based on the contradictory assumption that it is non-zero. 228 /// Because instcombine aggressively folds operations with undef args anyway, 229 /// this won't lose us code quality. 230 /// 231 /// This function is defined on values with integer type, values with pointer 232 /// type (but only if TD is non-null), and vectors of integers. In the case 233 /// where V is a vector, the mask, known zero, and known one values are the 234 /// same width as the vector element, and the bit is set only if it is true 235 /// for all of the elements in the vector. 236 void llvm::ComputeMaskedBits(Value *V, const APInt &Mask, 237 APInt &KnownZero, APInt &KnownOne, 238 const TargetData *TD, unsigned Depth) { 239 assert(V && "No Value?"); 240 assert(Depth <= MaxDepth && "Limit Search Depth"); 241 unsigned BitWidth = Mask.getBitWidth(); 242 assert((V->getType()->isIntOrIntVectorTy() || 243 V->getType()->getScalarType()->isPointerTy()) && 244 "Not integer or pointer type!"); 245 assert((!TD || 246 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 247 (!V->getType()->isIntOrIntVectorTy() || 248 V->getType()->getScalarSizeInBits() == BitWidth) && 249 KnownZero.getBitWidth() == BitWidth && 250 KnownOne.getBitWidth() == BitWidth && 251 "V, Mask, KnownOne and KnownZero should have same BitWidth"); 252 253 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 254 // We know all of the bits for a constant! 255 KnownOne = CI->getValue() & Mask; 256 KnownZero = ~KnownOne & Mask; 257 return; 258 } 259 // Null and aggregate-zero are all-zeros. 260 if (isa<ConstantPointerNull>(V) || 261 isa<ConstantAggregateZero>(V)) { 262 KnownOne.clearAllBits(); 263 KnownZero = Mask; 264 return; 265 } 266 // Handle a constant vector by taking the intersection of the known bits of 267 // each element. There is no real need to handle ConstantVector here, because 268 // we don't handle undef in any particularly useful way. 269 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 270 // We know that CDS must be a vector of integers. Take the intersection of 271 // each element. 272 KnownZero.setAllBits(); KnownOne.setAllBits(); 273 APInt Elt(KnownZero.getBitWidth(), 0); 274 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 275 Elt = CDS->getElementAsInteger(i); 276 KnownZero &= ~Elt; 277 KnownOne &= Elt; 278 } 279 return; 280 } 281 282 // The address of an aligned GlobalValue has trailing zeros. 283 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 284 unsigned Align = GV->getAlignment(); 285 if (Align == 0 && TD) { 286 if (GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) { 287 Type *ObjectType = GVar->getType()->getElementType(); 288 if (ObjectType->isSized()) { 289 // If the object is defined in the current Module, we'll be giving 290 // it the preferred alignment. Otherwise, we have to assume that it 291 // may only have the minimum ABI alignment. 292 if (!GVar->isDeclaration() && !GVar->isWeakForLinker()) 293 Align = TD->getPreferredAlignment(GVar); 294 else 295 Align = TD->getABITypeAlignment(ObjectType); 296 } 297 } 298 } 299 if (Align > 0) 300 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 301 CountTrailingZeros_32(Align)); 302 else 303 KnownZero.clearAllBits(); 304 KnownOne.clearAllBits(); 305 return; 306 } 307 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 308 // the bits of its aliasee. 309 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 310 if (GA->mayBeOverridden()) { 311 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 312 } else { 313 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne, 314 TD, Depth+1); 315 } 316 return; 317 } 318 319 if (Argument *A = dyn_cast<Argument>(V)) { 320 // Get alignment information off byval arguments if specified in the IR. 321 if (A->hasByValAttr()) 322 if (unsigned Align = A->getParamAlignment()) 323 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 324 CountTrailingZeros_32(Align)); 325 return; 326 } 327 328 // Start out not knowing anything. 329 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 330 331 if (Depth == MaxDepth || Mask == 0) 332 return; // Limit search depth. 333 334 Operator *I = dyn_cast<Operator>(V); 335 if (!I) return; 336 337 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 338 switch (I->getOpcode()) { 339 default: break; 340 case Instruction::Load: 341 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 342 computeMaskedBitsLoad(*MD, Mask, KnownZero); 343 return; 344 case Instruction::And: { 345 // If either the LHS or the RHS are Zero, the result is zero. 346 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 347 APInt Mask2(Mask & ~KnownZero); 348 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 349 Depth+1); 350 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 351 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 352 353 // Output known-1 bits are only known if set in both the LHS & RHS. 354 KnownOne &= KnownOne2; 355 // Output known-0 are known to be clear if zero in either the LHS | RHS. 356 KnownZero |= KnownZero2; 357 return; 358 } 359 case Instruction::Or: { 360 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 361 APInt Mask2(Mask & ~KnownOne); 362 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 363 Depth+1); 364 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 365 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 366 367 // Output known-0 bits are only known if clear in both the LHS & RHS. 368 KnownZero &= KnownZero2; 369 // Output known-1 are known to be set if set in either the LHS | RHS. 370 KnownOne |= KnownOne2; 371 return; 372 } 373 case Instruction::Xor: { 374 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1); 375 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD, 376 Depth+1); 377 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 378 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 379 380 // Output known-0 bits are known if clear or set in both the LHS & RHS. 381 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 382 // Output known-1 are known to be set if set in only one of the LHS, RHS. 383 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 384 KnownZero = KnownZeroOut; 385 return; 386 } 387 case Instruction::Mul: { 388 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 389 ComputeMaskedBitsMul(I->getOperand(0), I->getOperand(1), NSW, 390 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 391 TD, Depth); 392 break; 393 } 394 case Instruction::UDiv: { 395 // For the purposes of computing leading zeros we can conservatively 396 // treat a udiv as a logical right shift by the power of 2 known to 397 // be less than the denominator. 398 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 399 ComputeMaskedBits(I->getOperand(0), 400 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 401 unsigned LeadZ = KnownZero2.countLeadingOnes(); 402 403 KnownOne2.clearAllBits(); 404 KnownZero2.clearAllBits(); 405 ComputeMaskedBits(I->getOperand(1), 406 AllOnes, KnownZero2, KnownOne2, TD, Depth+1); 407 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 408 if (RHSUnknownLeadingOnes != BitWidth) 409 LeadZ = std::min(BitWidth, 410 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 411 412 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask; 413 return; 414 } 415 case Instruction::Select: 416 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1); 417 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD, 418 Depth+1); 419 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 420 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); 421 422 // Only known if known in both the LHS and RHS. 423 KnownOne &= KnownOne2; 424 KnownZero &= KnownZero2; 425 return; 426 case Instruction::FPTrunc: 427 case Instruction::FPExt: 428 case Instruction::FPToUI: 429 case Instruction::FPToSI: 430 case Instruction::SIToFP: 431 case Instruction::UIToFP: 432 return; // Can't work with floating point. 433 case Instruction::PtrToInt: 434 case Instruction::IntToPtr: 435 // We can't handle these if we don't know the pointer size. 436 if (!TD) return; 437 // FALL THROUGH and handle them the same as zext/trunc. 438 case Instruction::ZExt: 439 case Instruction::Trunc: { 440 Type *SrcTy = I->getOperand(0)->getType(); 441 442 unsigned SrcBitWidth; 443 // Note that we handle pointer operands here because of inttoptr/ptrtoint 444 // which fall through here. 445 if (SrcTy->isPointerTy()) 446 SrcBitWidth = TD->getTypeSizeInBits(SrcTy); 447 else 448 SrcBitWidth = SrcTy->getScalarSizeInBits(); 449 450 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth); 451 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 452 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 453 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 454 Depth+1); 455 KnownZero = KnownZero.zextOrTrunc(BitWidth); 456 KnownOne = KnownOne.zextOrTrunc(BitWidth); 457 // Any top bits are known to be zero. 458 if (BitWidth > SrcBitWidth) 459 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 460 return; 461 } 462 case Instruction::BitCast: { 463 Type *SrcTy = I->getOperand(0)->getType(); 464 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 465 // TODO: For now, not handling conversions like: 466 // (bitcast i64 %x to <2 x i32>) 467 !I->getType()->isVectorTy()) { 468 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD, 469 Depth+1); 470 return; 471 } 472 break; 473 } 474 case Instruction::SExt: { 475 // Compute the bits in the result that are not present in the input. 476 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 477 478 APInt MaskIn = Mask.trunc(SrcBitWidth); 479 KnownZero = KnownZero.trunc(SrcBitWidth); 480 KnownOne = KnownOne.trunc(SrcBitWidth); 481 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD, 482 Depth+1); 483 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 484 KnownZero = KnownZero.zext(BitWidth); 485 KnownOne = KnownOne.zext(BitWidth); 486 487 // If the sign bit of the input is known set or clear, then we know the 488 // top bits of the result. 489 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 490 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 491 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 492 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 493 return; 494 } 495 case Instruction::Shl: 496 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 497 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 498 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 499 APInt Mask2(Mask.lshr(ShiftAmt)); 500 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 501 Depth+1); 502 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 503 KnownZero <<= ShiftAmt; 504 KnownOne <<= ShiftAmt; 505 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 506 return; 507 } 508 break; 509 case Instruction::LShr: 510 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 511 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 512 // Compute the new bits that are at the top now. 513 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 514 515 // Unsigned shift right. 516 APInt Mask2(Mask.shl(ShiftAmt)); 517 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD, 518 Depth+1); 519 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 520 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 521 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 522 // high bits known zero. 523 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 524 return; 525 } 526 break; 527 case Instruction::AShr: 528 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 529 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 530 // Compute the new bits that are at the top now. 531 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 532 533 // Signed shift right. 534 APInt Mask2(Mask.shl(ShiftAmt)); 535 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 536 Depth+1); 537 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 538 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 539 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 540 541 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 542 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 543 KnownZero |= HighBits; 544 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 545 KnownOne |= HighBits; 546 return; 547 } 548 break; 549 case Instruction::Sub: { 550 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 551 ComputeMaskedBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 552 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 553 TD, Depth); 554 break; 555 } 556 case Instruction::Add: { 557 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 558 ComputeMaskedBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 559 Mask, KnownZero, KnownOne, KnownZero2, KnownOne2, 560 TD, Depth); 561 break; 562 } 563 case Instruction::SRem: 564 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 565 APInt RA = Rem->getValue().abs(); 566 if (RA.isPowerOf2()) { 567 APInt LowBits = RA - 1; 568 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth); 569 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD, 570 Depth+1); 571 572 // The low bits of the first operand are unchanged by the srem. 573 KnownZero = KnownZero2 & LowBits; 574 KnownOne = KnownOne2 & LowBits; 575 576 // If the first operand is non-negative or has all low bits zero, then 577 // the upper bits are all zero. 578 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 579 KnownZero |= ~LowBits; 580 581 // If the first operand is negative and not all low bits are zero, then 582 // the upper bits are all one. 583 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 584 KnownOne |= ~LowBits; 585 586 KnownZero &= Mask; 587 KnownOne &= Mask; 588 589 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 590 } 591 } 592 593 // The sign bit is the LHS's sign bit, except when the result of the 594 // remainder is zero. 595 if (Mask.isNegative() && KnownZero.isNonNegative()) { 596 APInt Mask2 = APInt::getSignBit(BitWidth); 597 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 598 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD, 599 Depth+1); 600 // If it's known zero, our sign bit is also zero. 601 if (LHSKnownZero.isNegative()) 602 KnownZero |= LHSKnownZero; 603 } 604 605 break; 606 case Instruction::URem: { 607 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 608 APInt RA = Rem->getValue(); 609 if (RA.isPowerOf2()) { 610 APInt LowBits = (RA - 1); 611 APInt Mask2 = LowBits & Mask; 612 KnownZero |= ~LowBits & Mask; 613 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD, 614 Depth+1); 615 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 616 break; 617 } 618 } 619 620 // Since the result is less than or equal to either operand, any leading 621 // zero bits in either operand must also exist in the result. 622 APInt AllOnes = APInt::getAllOnesValue(BitWidth); 623 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne, 624 TD, Depth+1); 625 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2, 626 TD, Depth+1); 627 628 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 629 KnownZero2.countLeadingOnes()); 630 KnownOne.clearAllBits(); 631 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask; 632 break; 633 } 634 635 case Instruction::Alloca: { 636 AllocaInst *AI = cast<AllocaInst>(V); 637 unsigned Align = AI->getAlignment(); 638 if (Align == 0 && TD) 639 Align = TD->getABITypeAlignment(AI->getType()->getElementType()); 640 641 if (Align > 0) 642 KnownZero = Mask & APInt::getLowBitsSet(BitWidth, 643 CountTrailingZeros_32(Align)); 644 break; 645 } 646 case Instruction::GetElementPtr: { 647 // Analyze all of the subscripts of this getelementptr instruction 648 // to determine if we can prove known low zero bits. 649 APInt LocalMask = APInt::getAllOnesValue(BitWidth); 650 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 651 ComputeMaskedBits(I->getOperand(0), LocalMask, 652 LocalKnownZero, LocalKnownOne, TD, Depth+1); 653 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 654 655 gep_type_iterator GTI = gep_type_begin(I); 656 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 657 Value *Index = I->getOperand(i); 658 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 659 // Handle struct member offset arithmetic. 660 if (!TD) return; 661 const StructLayout *SL = TD->getStructLayout(STy); 662 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 663 uint64_t Offset = SL->getElementOffset(Idx); 664 TrailZ = std::min(TrailZ, 665 CountTrailingZeros_64(Offset)); 666 } else { 667 // Handle array index arithmetic. 668 Type *IndexedTy = GTI.getIndexedType(); 669 if (!IndexedTy->isSized()) return; 670 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 671 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1; 672 LocalMask = APInt::getAllOnesValue(GEPOpiBits); 673 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 674 ComputeMaskedBits(Index, LocalMask, 675 LocalKnownZero, LocalKnownOne, TD, Depth+1); 676 TrailZ = std::min(TrailZ, 677 unsigned(CountTrailingZeros_64(TypeSize) + 678 LocalKnownZero.countTrailingOnes())); 679 } 680 } 681 682 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask; 683 break; 684 } 685 case Instruction::PHI: { 686 PHINode *P = cast<PHINode>(I); 687 // Handle the case of a simple two-predecessor recurrence PHI. 688 // There's a lot more that could theoretically be done here, but 689 // this is sufficient to catch some interesting cases. 690 if (P->getNumIncomingValues() == 2) { 691 for (unsigned i = 0; i != 2; ++i) { 692 Value *L = P->getIncomingValue(i); 693 Value *R = P->getIncomingValue(!i); 694 Operator *LU = dyn_cast<Operator>(L); 695 if (!LU) 696 continue; 697 unsigned Opcode = LU->getOpcode(); 698 // Check for operations that have the property that if 699 // both their operands have low zero bits, the result 700 // will have low zero bits. 701 if (Opcode == Instruction::Add || 702 Opcode == Instruction::Sub || 703 Opcode == Instruction::And || 704 Opcode == Instruction::Or || 705 Opcode == Instruction::Mul) { 706 Value *LL = LU->getOperand(0); 707 Value *LR = LU->getOperand(1); 708 // Find a recurrence. 709 if (LL == I) 710 L = LR; 711 else if (LR == I) 712 L = LL; 713 else 714 break; 715 // Ok, we have a PHI of the form L op= R. Check for low 716 // zero bits. 717 APInt Mask2 = APInt::getAllOnesValue(BitWidth); 718 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1); 719 Mask2 = APInt::getLowBitsSet(BitWidth, 720 KnownZero2.countTrailingOnes()); 721 722 // We need to take the minimum number of known bits 723 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 724 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1); 725 726 KnownZero = Mask & 727 APInt::getLowBitsSet(BitWidth, 728 std::min(KnownZero2.countTrailingOnes(), 729 KnownZero3.countTrailingOnes())); 730 break; 731 } 732 } 733 } 734 735 // Unreachable blocks may have zero-operand PHI nodes. 736 if (P->getNumIncomingValues() == 0) 737 return; 738 739 // Otherwise take the unions of the known bit sets of the operands, 740 // taking conservative care to avoid excessive recursion. 741 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 742 // Skip if every incoming value references to ourself. 743 if (P->hasConstantValue() == P) 744 break; 745 746 KnownZero = Mask; 747 KnownOne = Mask; 748 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { 749 // Skip direct self references. 750 if (P->getIncomingValue(i) == P) continue; 751 752 KnownZero2 = APInt(BitWidth, 0); 753 KnownOne2 = APInt(BitWidth, 0); 754 // Recurse, but cap the recursion to one level, because we don't 755 // want to waste time spinning around in loops. 756 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne, 757 KnownZero2, KnownOne2, TD, MaxDepth-1); 758 KnownZero &= KnownZero2; 759 KnownOne &= KnownOne2; 760 // If all bits have been ruled out, there's no need to check 761 // more operands. 762 if (!KnownZero && !KnownOne) 763 break; 764 } 765 } 766 break; 767 } 768 case Instruction::Call: 769 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 770 switch (II->getIntrinsicID()) { 771 default: break; 772 case Intrinsic::ctlz: 773 case Intrinsic::cttz: { 774 unsigned LowBits = Log2_32(BitWidth)+1; 775 // If this call is undefined for 0, the result will be less than 2^n. 776 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 777 LowBits -= 1; 778 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 779 break; 780 } 781 case Intrinsic::ctpop: { 782 unsigned LowBits = Log2_32(BitWidth)+1; 783 KnownZero = Mask & APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 784 break; 785 } 786 case Intrinsic::x86_sse42_crc32_64_8: 787 case Intrinsic::x86_sse42_crc32_64_64: 788 KnownZero = Mask & APInt::getHighBitsSet(64, 32); 789 break; 790 } 791 } 792 break; 793 case Instruction::ExtractValue: 794 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 795 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 796 if (EVI->getNumIndices() != 1) break; 797 if (EVI->getIndices()[0] == 0) { 798 switch (II->getIntrinsicID()) { 799 default: break; 800 case Intrinsic::uadd_with_overflow: 801 case Intrinsic::sadd_with_overflow: 802 ComputeMaskedBitsAddSub(true, II->getArgOperand(0), 803 II->getArgOperand(1), false, Mask, 804 KnownZero, KnownOne, KnownZero2, KnownOne2, 805 TD, Depth); 806 break; 807 case Intrinsic::usub_with_overflow: 808 case Intrinsic::ssub_with_overflow: 809 ComputeMaskedBitsAddSub(false, II->getArgOperand(0), 810 II->getArgOperand(1), false, Mask, 811 KnownZero, KnownOne, KnownZero2, KnownOne2, 812 TD, Depth); 813 break; 814 case Intrinsic::umul_with_overflow: 815 case Intrinsic::smul_with_overflow: 816 ComputeMaskedBitsMul(II->getArgOperand(0), II->getArgOperand(1), 817 false, Mask, KnownZero, KnownOne, 818 KnownZero2, KnownOne2, TD, Depth); 819 break; 820 } 821 } 822 } 823 } 824 } 825 826 /// ComputeSignBit - Determine whether the sign bit is known to be zero or 827 /// one. Convenience wrapper around ComputeMaskedBits. 828 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 829 const TargetData *TD, unsigned Depth) { 830 unsigned BitWidth = getBitWidth(V->getType(), TD); 831 if (!BitWidth) { 832 KnownZero = false; 833 KnownOne = false; 834 return; 835 } 836 APInt ZeroBits(BitWidth, 0); 837 APInt OneBits(BitWidth, 0); 838 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD, 839 Depth); 840 KnownOne = OneBits[BitWidth - 1]; 841 KnownZero = ZeroBits[BitWidth - 1]; 842 } 843 844 /// isPowerOfTwo - Return true if the given value is known to have exactly one 845 /// bit set when defined. For vectors return true if every element is known to 846 /// be a power of two when defined. Supports values with integer or pointer 847 /// types and vectors of integers. 848 bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero, 849 unsigned Depth) { 850 if (Constant *C = dyn_cast<Constant>(V)) { 851 if (C->isNullValue()) 852 return OrZero; 853 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 854 return CI->getValue().isPowerOf2(); 855 // TODO: Handle vector constants. 856 } 857 858 // 1 << X is clearly a power of two if the one is not shifted off the end. If 859 // it is shifted off the end then the result is undefined. 860 if (match(V, m_Shl(m_One(), m_Value()))) 861 return true; 862 863 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 864 // bottom. If it is shifted off the bottom then the result is undefined. 865 if (match(V, m_LShr(m_SignBit(), m_Value()))) 866 return true; 867 868 // The remaining tests are all recursive, so bail out if we hit the limit. 869 if (Depth++ == MaxDepth) 870 return false; 871 872 Value *X = 0, *Y = 0; 873 // A shift of a power of two is a power of two or zero. 874 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 875 match(V, m_Shr(m_Value(X), m_Value())))) 876 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth); 877 878 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 879 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth); 880 881 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 882 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) && 883 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth); 884 885 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 886 // A power of two and'd with anything is a power of two or zero. 887 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) || 888 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth)) 889 return true; 890 // X & (-X) is always a power of two or zero. 891 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 892 return true; 893 return false; 894 } 895 896 // An exact divide or right shift can only shift off zero bits, so the result 897 // is a power of two only if the first operand is a power of two and not 898 // copying a sign bit (sdiv int_min, 2). 899 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 900 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 901 return isPowerOfTwo(cast<Operator>(V)->getOperand(0), TD, OrZero, Depth); 902 } 903 904 return false; 905 } 906 907 /// isKnownNonZero - Return true if the given value is known to be non-zero 908 /// when defined. For vectors return true if every element is known to be 909 /// non-zero when defined. Supports values with integer or pointer type and 910 /// vectors of integers. 911 bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) { 912 if (Constant *C = dyn_cast<Constant>(V)) { 913 if (C->isNullValue()) 914 return false; 915 if (isa<ConstantInt>(C)) 916 // Must be non-zero due to null test above. 917 return true; 918 // TODO: Handle vectors 919 return false; 920 } 921 922 // The remaining tests are all recursive, so bail out if we hit the limit. 923 if (Depth++ >= MaxDepth) 924 return false; 925 926 unsigned BitWidth = getBitWidth(V->getType(), TD); 927 928 // X | Y != 0 if X != 0 or Y != 0. 929 Value *X = 0, *Y = 0; 930 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 931 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth); 932 933 // ext X != 0 if X != 0. 934 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 935 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth); 936 937 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 938 // if the lowest bit is shifted off the end. 939 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 940 // shl nuw can't remove any non-zero bits. 941 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 942 if (BO->hasNoUnsignedWrap()) 943 return isKnownNonZero(X, TD, Depth); 944 945 APInt KnownZero(BitWidth, 0); 946 APInt KnownOne(BitWidth, 0); 947 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth); 948 if (KnownOne[0]) 949 return true; 950 } 951 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 952 // defined if the sign bit is shifted off the end. 953 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 954 // shr exact can only shift out zero bits. 955 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 956 if (BO->isExact()) 957 return isKnownNonZero(X, TD, Depth); 958 959 bool XKnownNonNegative, XKnownNegative; 960 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 961 if (XKnownNegative) 962 return true; 963 } 964 // div exact can only produce a zero if the dividend is zero. 965 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 966 return isKnownNonZero(X, TD, Depth); 967 } 968 // X + Y. 969 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 970 bool XKnownNonNegative, XKnownNegative; 971 bool YKnownNonNegative, YKnownNegative; 972 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth); 973 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth); 974 975 // If X and Y are both non-negative (as signed values) then their sum is not 976 // zero unless both X and Y are zero. 977 if (XKnownNonNegative && YKnownNonNegative) 978 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth)) 979 return true; 980 981 // If X and Y are both negative (as signed values) then their sum is not 982 // zero unless both X and Y equal INT_MIN. 983 if (BitWidth && XKnownNegative && YKnownNegative) { 984 APInt KnownZero(BitWidth, 0); 985 APInt KnownOne(BitWidth, 0); 986 APInt Mask = APInt::getSignedMaxValue(BitWidth); 987 // The sign bit of X is set. If some other bit is set then X is not equal 988 // to INT_MIN. 989 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth); 990 if ((KnownOne & Mask) != 0) 991 return true; 992 // The sign bit of Y is set. If some other bit is set then Y is not equal 993 // to INT_MIN. 994 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth); 995 if ((KnownOne & Mask) != 0) 996 return true; 997 } 998 999 // The sum of a non-negative number and a power of two is not zero. 1000 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth)) 1001 return true; 1002 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth)) 1003 return true; 1004 } 1005 // X * Y. 1006 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1007 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1008 // If X and Y are non-zero then so is X * Y as long as the multiplication 1009 // does not overflow. 1010 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1011 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth)) 1012 return true; 1013 } 1014 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1015 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1016 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) && 1017 isKnownNonZero(SI->getFalseValue(), TD, Depth)) 1018 return true; 1019 } 1020 1021 if (!BitWidth) return false; 1022 APInt KnownZero(BitWidth, 0); 1023 APInt KnownOne(BitWidth, 0); 1024 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne, 1025 TD, Depth); 1026 return KnownOne != 0; 1027 } 1028 1029 /// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use 1030 /// this predicate to simplify operations downstream. Mask is known to be zero 1031 /// for bits that V cannot have. 1032 /// 1033 /// This function is defined on values with integer type, values with pointer 1034 /// type (but only if TD is non-null), and vectors of integers. In the case 1035 /// where V is a vector, the mask, known zero, and known one values are the 1036 /// same width as the vector element, and the bit is set only if it is true 1037 /// for all of the elements in the vector. 1038 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, 1039 const TargetData *TD, unsigned Depth) { 1040 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 1041 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1042 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1043 return (KnownZero & Mask) == Mask; 1044 } 1045 1046 1047 1048 /// ComputeNumSignBits - Return the number of times the sign bit of the 1049 /// register is replicated into the other bits. We know that at least 1 bit 1050 /// is always equal to the sign bit (itself), but other cases can give us 1051 /// information. For example, immediately after an "ashr X, 2", we know that 1052 /// the top 3 bits are all equal to each other, so we return 3. 1053 /// 1054 /// 'Op' must have a scalar integer type. 1055 /// 1056 unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD, 1057 unsigned Depth) { 1058 assert((TD || V->getType()->isIntOrIntVectorTy()) && 1059 "ComputeNumSignBits requires a TargetData object to operate " 1060 "on non-integer values!"); 1061 Type *Ty = V->getType(); 1062 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) : 1063 Ty->getScalarSizeInBits(); 1064 unsigned Tmp, Tmp2; 1065 unsigned FirstAnswer = 1; 1066 1067 // Note that ConstantInt is handled by the general ComputeMaskedBits case 1068 // below. 1069 1070 if (Depth == 6) 1071 return 1; // Limit search depth. 1072 1073 Operator *U = dyn_cast<Operator>(V); 1074 switch (Operator::getOpcode(V)) { 1075 default: break; 1076 case Instruction::SExt: 1077 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 1078 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp; 1079 1080 case Instruction::AShr: { 1081 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1082 // ashr X, C -> adds C sign bits. Vectors too. 1083 const APInt *ShAmt; 1084 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1085 Tmp += ShAmt->getZExtValue(); 1086 if (Tmp > TyBits) Tmp = TyBits; 1087 } 1088 return Tmp; 1089 } 1090 case Instruction::Shl: { 1091 const APInt *ShAmt; 1092 if (match(U->getOperand(1), m_APInt(ShAmt))) { 1093 // shl destroys sign bits. 1094 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1095 Tmp2 = ShAmt->getZExtValue(); 1096 if (Tmp2 >= TyBits || // Bad shift. 1097 Tmp2 >= Tmp) break; // Shifted all sign bits out. 1098 return Tmp - Tmp2; 1099 } 1100 break; 1101 } 1102 case Instruction::And: 1103 case Instruction::Or: 1104 case Instruction::Xor: // NOT is handled here. 1105 // Logical binary ops preserve the number of sign bits at the worst. 1106 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1107 if (Tmp != 1) { 1108 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1109 FirstAnswer = std::min(Tmp, Tmp2); 1110 // We computed what we know about the sign bits as our first 1111 // answer. Now proceed to the generic code that uses 1112 // ComputeMaskedBits, and pick whichever answer is better. 1113 } 1114 break; 1115 1116 case Instruction::Select: 1117 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1118 if (Tmp == 1) return 1; // Early out. 1119 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1); 1120 return std::min(Tmp, Tmp2); 1121 1122 case Instruction::Add: 1123 // Add can have at most one carry bit. Thus we know that the output 1124 // is, at worst, one more bit than the inputs. 1125 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1126 if (Tmp == 1) return 1; // Early out. 1127 1128 // Special case decrementing a value (ADD X, -1): 1129 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1))) 1130 if (CRHS->isAllOnesValue()) { 1131 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1132 APInt Mask = APInt::getAllOnesValue(TyBits); 1133 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD, 1134 Depth+1); 1135 1136 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1137 // sign bits set. 1138 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1139 return TyBits; 1140 1141 // If we are subtracting one from a positive number, there is no carry 1142 // out of the result. 1143 if (KnownZero.isNegative()) 1144 return Tmp; 1145 } 1146 1147 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1148 if (Tmp2 == 1) return 1; 1149 return std::min(Tmp, Tmp2)-1; 1150 1151 case Instruction::Sub: 1152 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1); 1153 if (Tmp2 == 1) return 1; 1154 1155 // Handle NEG. 1156 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0))) 1157 if (CLHS->isNullValue()) { 1158 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1159 APInt Mask = APInt::getAllOnesValue(TyBits); 1160 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne, 1161 TD, Depth+1); 1162 // If the input is known to be 0 or 1, the output is 0/-1, which is all 1163 // sign bits set. 1164 if ((KnownZero | APInt(TyBits, 1)) == Mask) 1165 return TyBits; 1166 1167 // If the input is known to be positive (the sign bit is known clear), 1168 // the output of the NEG has the same number of sign bits as the input. 1169 if (KnownZero.isNegative()) 1170 return Tmp2; 1171 1172 // Otherwise, we treat this like a SUB. 1173 } 1174 1175 // Sub can have at most one carry bit. Thus we know that the output 1176 // is, at worst, one more bit than the inputs. 1177 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1); 1178 if (Tmp == 1) return 1; // Early out. 1179 return std::min(Tmp, Tmp2)-1; 1180 1181 case Instruction::PHI: { 1182 PHINode *PN = cast<PHINode>(U); 1183 // Don't analyze large in-degree PHIs. 1184 if (PN->getNumIncomingValues() > 4) break; 1185 1186 // Take the minimum of all incoming values. This can't infinitely loop 1187 // because of our depth threshold. 1188 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1); 1189 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) { 1190 if (Tmp == 1) return Tmp; 1191 Tmp = std::min(Tmp, 1192 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1)); 1193 } 1194 return Tmp; 1195 } 1196 1197 case Instruction::Trunc: 1198 // FIXME: it's tricky to do anything useful for this, but it is an important 1199 // case for targets like X86. 1200 break; 1201 } 1202 1203 // Finally, if we can prove that the top bits of the result are 0's or 1's, 1204 // use this information. 1205 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 1206 APInt Mask = APInt::getAllOnesValue(TyBits); 1207 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth); 1208 1209 if (KnownZero.isNegative()) { // sign bit is 0 1210 Mask = KnownZero; 1211 } else if (KnownOne.isNegative()) { // sign bit is 1; 1212 Mask = KnownOne; 1213 } else { 1214 // Nothing known. 1215 return FirstAnswer; 1216 } 1217 1218 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 1219 // the number of identical bits in the top of the input value. 1220 Mask = ~Mask; 1221 Mask <<= Mask.getBitWidth()-TyBits; 1222 // Return # leading zeros. We use 'min' here in case Val was zero before 1223 // shifting. We don't want to return '64' as for an i32 "0". 1224 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 1225 } 1226 1227 /// ComputeMultiple - This function computes the integer multiple of Base that 1228 /// equals V. If successful, it returns true and returns the multiple in 1229 /// Multiple. If unsuccessful, it returns false. It looks 1230 /// through SExt instructions only if LookThroughSExt is true. 1231 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 1232 bool LookThroughSExt, unsigned Depth) { 1233 const unsigned MaxDepth = 6; 1234 1235 assert(V && "No Value?"); 1236 assert(Depth <= MaxDepth && "Limit Search Depth"); 1237 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 1238 1239 Type *T = V->getType(); 1240 1241 ConstantInt *CI = dyn_cast<ConstantInt>(V); 1242 1243 if (Base == 0) 1244 return false; 1245 1246 if (Base == 1) { 1247 Multiple = V; 1248 return true; 1249 } 1250 1251 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 1252 Constant *BaseVal = ConstantInt::get(T, Base); 1253 if (CO && CO == BaseVal) { 1254 // Multiple is 1. 1255 Multiple = ConstantInt::get(T, 1); 1256 return true; 1257 } 1258 1259 if (CI && CI->getZExtValue() % Base == 0) { 1260 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 1261 return true; 1262 } 1263 1264 if (Depth == MaxDepth) return false; // Limit search depth. 1265 1266 Operator *I = dyn_cast<Operator>(V); 1267 if (!I) return false; 1268 1269 switch (I->getOpcode()) { 1270 default: break; 1271 case Instruction::SExt: 1272 if (!LookThroughSExt) return false; 1273 // otherwise fall through to ZExt 1274 case Instruction::ZExt: 1275 return ComputeMultiple(I->getOperand(0), Base, Multiple, 1276 LookThroughSExt, Depth+1); 1277 case Instruction::Shl: 1278 case Instruction::Mul: { 1279 Value *Op0 = I->getOperand(0); 1280 Value *Op1 = I->getOperand(1); 1281 1282 if (I->getOpcode() == Instruction::Shl) { 1283 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 1284 if (!Op1CI) return false; 1285 // Turn Op0 << Op1 into Op0 * 2^Op1 1286 APInt Op1Int = Op1CI->getValue(); 1287 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 1288 APInt API(Op1Int.getBitWidth(), 0); 1289 API.setBit(BitToSet); 1290 Op1 = ConstantInt::get(V->getContext(), API); 1291 } 1292 1293 Value *Mul0 = NULL; 1294 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 1295 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 1296 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 1297 if (Op1C->getType()->getPrimitiveSizeInBits() < 1298 MulC->getType()->getPrimitiveSizeInBits()) 1299 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 1300 if (Op1C->getType()->getPrimitiveSizeInBits() > 1301 MulC->getType()->getPrimitiveSizeInBits()) 1302 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 1303 1304 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 1305 Multiple = ConstantExpr::getMul(MulC, Op1C); 1306 return true; 1307 } 1308 1309 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 1310 if (Mul0CI->getValue() == 1) { 1311 // V == Base * Op1, so return Op1 1312 Multiple = Op1; 1313 return true; 1314 } 1315 } 1316 1317 Value *Mul1 = NULL; 1318 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 1319 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 1320 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 1321 if (Op0C->getType()->getPrimitiveSizeInBits() < 1322 MulC->getType()->getPrimitiveSizeInBits()) 1323 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 1324 if (Op0C->getType()->getPrimitiveSizeInBits() > 1325 MulC->getType()->getPrimitiveSizeInBits()) 1326 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 1327 1328 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 1329 Multiple = ConstantExpr::getMul(MulC, Op0C); 1330 return true; 1331 } 1332 1333 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 1334 if (Mul1CI->getValue() == 1) { 1335 // V == Base * Op0, so return Op0 1336 Multiple = Op0; 1337 return true; 1338 } 1339 } 1340 } 1341 } 1342 1343 // We could not determine if V is a multiple of Base. 1344 return false; 1345 } 1346 1347 /// CannotBeNegativeZero - Return true if we can prove that the specified FP 1348 /// value is never equal to -0.0. 1349 /// 1350 /// NOTE: this function will need to be revisited when we support non-default 1351 /// rounding modes! 1352 /// 1353 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 1354 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 1355 return !CFP->getValueAPF().isNegZero(); 1356 1357 if (Depth == 6) 1358 return 1; // Limit search depth. 1359 1360 const Operator *I = dyn_cast<Operator>(V); 1361 if (I == 0) return false; 1362 1363 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 1364 if (I->getOpcode() == Instruction::FAdd && 1365 isa<ConstantFP>(I->getOperand(1)) && 1366 cast<ConstantFP>(I->getOperand(1))->isNullValue()) 1367 return true; 1368 1369 // sitofp and uitofp turn into +0.0 for zero. 1370 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 1371 return true; 1372 1373 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 1374 // sqrt(-0.0) = -0.0, no other negative results are possible. 1375 if (II->getIntrinsicID() == Intrinsic::sqrt) 1376 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 1377 1378 if (const CallInst *CI = dyn_cast<CallInst>(I)) 1379 if (const Function *F = CI->getCalledFunction()) { 1380 if (F->isDeclaration()) { 1381 // abs(x) != -0.0 1382 if (F->getName() == "abs") return true; 1383 // fabs[lf](x) != -0.0 1384 if (F->getName() == "fabs") return true; 1385 if (F->getName() == "fabsf") return true; 1386 if (F->getName() == "fabsl") return true; 1387 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 1388 F->getName() == "sqrtl") 1389 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 1390 } 1391 } 1392 1393 return false; 1394 } 1395 1396 /// isBytewiseValue - If the specified value can be set by repeating the same 1397 /// byte in memory, return the i8 value that it is represented with. This is 1398 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 1399 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 1400 /// byte store (e.g. i16 0x1234), return null. 1401 Value *llvm::isBytewiseValue(Value *V) { 1402 // All byte-wide stores are splatable, even of arbitrary variables. 1403 if (V->getType()->isIntegerTy(8)) return V; 1404 1405 // Handle 'null' ConstantArrayZero etc. 1406 if (Constant *C = dyn_cast<Constant>(V)) 1407 if (C->isNullValue()) 1408 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 1409 1410 // Constant float and double values can be handled as integer values if the 1411 // corresponding integer value is "byteable". An important case is 0.0. 1412 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1413 if (CFP->getType()->isFloatTy()) 1414 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 1415 if (CFP->getType()->isDoubleTy()) 1416 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 1417 // Don't handle long double formats, which have strange constraints. 1418 } 1419 1420 // We can handle constant integers that are power of two in size and a 1421 // multiple of 8 bits. 1422 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1423 unsigned Width = CI->getBitWidth(); 1424 if (isPowerOf2_32(Width) && Width > 8) { 1425 // We can handle this value if the recursive binary decomposition is the 1426 // same at all levels. 1427 APInt Val = CI->getValue(); 1428 APInt Val2; 1429 while (Val.getBitWidth() != 8) { 1430 unsigned NextWidth = Val.getBitWidth()/2; 1431 Val2 = Val.lshr(NextWidth); 1432 Val2 = Val2.trunc(Val.getBitWidth()/2); 1433 Val = Val.trunc(Val.getBitWidth()/2); 1434 1435 // If the top/bottom halves aren't the same, reject it. 1436 if (Val != Val2) 1437 return 0; 1438 } 1439 return ConstantInt::get(V->getContext(), Val); 1440 } 1441 } 1442 1443 // A ConstantDataArray/Vector is splatable if all its members are equal and 1444 // also splatable. 1445 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 1446 Value *Elt = CA->getElementAsConstant(0); 1447 Value *Val = isBytewiseValue(Elt); 1448 if (!Val) 1449 return 0; 1450 1451 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 1452 if (CA->getElementAsConstant(I) != Elt) 1453 return 0; 1454 1455 return Val; 1456 } 1457 1458 // Conceptually, we could handle things like: 1459 // %a = zext i8 %X to i16 1460 // %b = shl i16 %a, 8 1461 // %c = or i16 %a, %b 1462 // but until there is an example that actually needs this, it doesn't seem 1463 // worth worrying about. 1464 return 0; 1465 } 1466 1467 1468 // This is the recursive version of BuildSubAggregate. It takes a few different 1469 // arguments. Idxs is the index within the nested struct From that we are 1470 // looking at now (which is of type IndexedType). IdxSkip is the number of 1471 // indices from Idxs that should be left out when inserting into the resulting 1472 // struct. To is the result struct built so far, new insertvalue instructions 1473 // build on that. 1474 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 1475 SmallVector<unsigned, 10> &Idxs, 1476 unsigned IdxSkip, 1477 Instruction *InsertBefore) { 1478 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType); 1479 if (STy) { 1480 // Save the original To argument so we can modify it 1481 Value *OrigTo = To; 1482 // General case, the type indexed by Idxs is a struct 1483 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1484 // Process each struct element recursively 1485 Idxs.push_back(i); 1486 Value *PrevTo = To; 1487 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 1488 InsertBefore); 1489 Idxs.pop_back(); 1490 if (!To) { 1491 // Couldn't find any inserted value for this index? Cleanup 1492 while (PrevTo != OrigTo) { 1493 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 1494 PrevTo = Del->getAggregateOperand(); 1495 Del->eraseFromParent(); 1496 } 1497 // Stop processing elements 1498 break; 1499 } 1500 } 1501 // If we successfully found a value for each of our subaggregates 1502 if (To) 1503 return To; 1504 } 1505 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 1506 // the struct's elements had a value that was inserted directly. In the latter 1507 // case, perhaps we can't determine each of the subelements individually, but 1508 // we might be able to find the complete struct somewhere. 1509 1510 // Find the value that is at that particular spot 1511 Value *V = FindInsertedValue(From, Idxs); 1512 1513 if (!V) 1514 return NULL; 1515 1516 // Insert the value in the new (sub) aggregrate 1517 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 1518 "tmp", InsertBefore); 1519 } 1520 1521 // This helper takes a nested struct and extracts a part of it (which is again a 1522 // struct) into a new value. For example, given the struct: 1523 // { a, { b, { c, d }, e } } 1524 // and the indices "1, 1" this returns 1525 // { c, d }. 1526 // 1527 // It does this by inserting an insertvalue for each element in the resulting 1528 // struct, as opposed to just inserting a single struct. This will only work if 1529 // each of the elements of the substruct are known (ie, inserted into From by an 1530 // insertvalue instruction somewhere). 1531 // 1532 // All inserted insertvalue instructions are inserted before InsertBefore 1533 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 1534 Instruction *InsertBefore) { 1535 assert(InsertBefore && "Must have someplace to insert!"); 1536 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 1537 idx_range); 1538 Value *To = UndefValue::get(IndexedType); 1539 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 1540 unsigned IdxSkip = Idxs.size(); 1541 1542 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 1543 } 1544 1545 /// FindInsertedValue - Given an aggregrate and an sequence of indices, see if 1546 /// the scalar value indexed is already around as a register, for example if it 1547 /// were inserted directly into the aggregrate. 1548 /// 1549 /// If InsertBefore is not null, this function will duplicate (modified) 1550 /// insertvalues when a part of a nested struct is extracted. 1551 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 1552 Instruction *InsertBefore) { 1553 // Nothing to index? Just return V then (this is useful at the end of our 1554 // recursion). 1555 if (idx_range.empty()) 1556 return V; 1557 // We have indices, so V should have an indexable type. 1558 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 1559 "Not looking at a struct or array?"); 1560 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 1561 "Invalid indices for type?"); 1562 1563 if (Constant *C = dyn_cast<Constant>(V)) { 1564 C = C->getAggregateElement(idx_range[0]); 1565 if (C == 0) return 0; 1566 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 1567 } 1568 1569 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 1570 // Loop the indices for the insertvalue instruction in parallel with the 1571 // requested indices 1572 const unsigned *req_idx = idx_range.begin(); 1573 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 1574 i != e; ++i, ++req_idx) { 1575 if (req_idx == idx_range.end()) { 1576 // We can't handle this without inserting insertvalues 1577 if (!InsertBefore) 1578 return 0; 1579 1580 // The requested index identifies a part of a nested aggregate. Handle 1581 // this specially. For example, 1582 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 1583 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 1584 // %C = extractvalue {i32, { i32, i32 } } %B, 1 1585 // This can be changed into 1586 // %A = insertvalue {i32, i32 } undef, i32 10, 0 1587 // %C = insertvalue {i32, i32 } %A, i32 11, 1 1588 // which allows the unused 0,0 element from the nested struct to be 1589 // removed. 1590 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 1591 InsertBefore); 1592 } 1593 1594 // This insert value inserts something else than what we are looking for. 1595 // See if the (aggregrate) value inserted into has the value we are 1596 // looking for, then. 1597 if (*req_idx != *i) 1598 return FindInsertedValue(I->getAggregateOperand(), idx_range, 1599 InsertBefore); 1600 } 1601 // If we end up here, the indices of the insertvalue match with those 1602 // requested (though possibly only partially). Now we recursively look at 1603 // the inserted value, passing any remaining indices. 1604 return FindInsertedValue(I->getInsertedValueOperand(), 1605 makeArrayRef(req_idx, idx_range.end()), 1606 InsertBefore); 1607 } 1608 1609 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 1610 // If we're extracting a value from an aggregrate that was extracted from 1611 // something else, we can extract from that something else directly instead. 1612 // However, we will need to chain I's indices with the requested indices. 1613 1614 // Calculate the number of indices required 1615 unsigned size = I->getNumIndices() + idx_range.size(); 1616 // Allocate some space to put the new indices in 1617 SmallVector<unsigned, 5> Idxs; 1618 Idxs.reserve(size); 1619 // Add indices from the extract value instruction 1620 Idxs.append(I->idx_begin(), I->idx_end()); 1621 1622 // Add requested indices 1623 Idxs.append(idx_range.begin(), idx_range.end()); 1624 1625 assert(Idxs.size() == size 1626 && "Number of indices added not correct?"); 1627 1628 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 1629 } 1630 // Otherwise, we don't know (such as, extracting from a function return value 1631 // or load instruction) 1632 return 0; 1633 } 1634 1635 /// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if 1636 /// it can be expressed as a base pointer plus a constant offset. Return the 1637 /// base and offset to the caller. 1638 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 1639 const TargetData &TD) { 1640 Operator *PtrOp = dyn_cast<Operator>(Ptr); 1641 if (PtrOp == 0 || Ptr->getType()->isVectorTy()) 1642 return Ptr; 1643 1644 // Just look through bitcasts. 1645 if (PtrOp->getOpcode() == Instruction::BitCast) 1646 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD); 1647 1648 // If this is a GEP with constant indices, we can look through it. 1649 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp); 1650 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr; 1651 1652 gep_type_iterator GTI = gep_type_begin(GEP); 1653 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E; 1654 ++I, ++GTI) { 1655 ConstantInt *OpC = cast<ConstantInt>(*I); 1656 if (OpC->isZero()) continue; 1657 1658 // Handle a struct and array indices which add their offset to the pointer. 1659 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1660 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 1661 } else { 1662 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()); 1663 Offset += OpC->getSExtValue()*Size; 1664 } 1665 } 1666 1667 // Re-sign extend from the pointer size if needed to get overflow edge cases 1668 // right. 1669 unsigned PtrSize = TD.getPointerSizeInBits(); 1670 if (PtrSize < 64) 1671 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize); 1672 1673 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD); 1674 } 1675 1676 1677 /// getConstantStringInfo - This function computes the length of a 1678 /// null-terminated C string pointed to by V. If successful, it returns true 1679 /// and returns the string in Str. If unsuccessful, it returns false. 1680 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 1681 uint64_t Offset, bool TrimAtNul) { 1682 assert(V); 1683 1684 // Look through bitcast instructions and geps. 1685 V = V->stripPointerCasts(); 1686 1687 // If the value is a GEP instructionor constant expression, treat it as an 1688 // offset. 1689 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1690 // Make sure the GEP has exactly three arguments. 1691 if (GEP->getNumOperands() != 3) 1692 return false; 1693 1694 // Make sure the index-ee is a pointer to array of i8. 1695 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 1696 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 1697 if (AT == 0 || !AT->getElementType()->isIntegerTy(8)) 1698 return false; 1699 1700 // Check to make sure that the first operand of the GEP is an integer and 1701 // has value 0 so that we are sure we're indexing into the initializer. 1702 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 1703 if (FirstIdx == 0 || !FirstIdx->isZero()) 1704 return false; 1705 1706 // If the second index isn't a ConstantInt, then this is a variable index 1707 // into the array. If this occurs, we can't say anything meaningful about 1708 // the string. 1709 uint64_t StartIdx = 0; 1710 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 1711 StartIdx = CI->getZExtValue(); 1712 else 1713 return false; 1714 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset); 1715 } 1716 1717 // The GEP instruction, constant or instruction, must reference a global 1718 // variable that is a constant and is initialized. The referenced constant 1719 // initializer is the array that we'll use for optimization. 1720 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 1721 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 1722 return false; 1723 1724 // Handle the all-zeros case 1725 if (GV->getInitializer()->isNullValue()) { 1726 // This is a degenerate case. The initializer is constant zero so the 1727 // length of the string must be zero. 1728 Str = ""; 1729 return true; 1730 } 1731 1732 // Must be a Constant Array 1733 const ConstantDataArray *Array = 1734 dyn_cast<ConstantDataArray>(GV->getInitializer()); 1735 if (Array == 0 || !Array->isString()) 1736 return false; 1737 1738 // Get the number of elements in the array 1739 uint64_t NumElts = Array->getType()->getArrayNumElements(); 1740 1741 // Start out with the entire array in the StringRef. 1742 Str = Array->getAsString(); 1743 1744 if (Offset > NumElts) 1745 return false; 1746 1747 // Skip over 'offset' bytes. 1748 Str = Str.substr(Offset); 1749 1750 if (TrimAtNul) { 1751 // Trim off the \0 and anything after it. If the array is not nul 1752 // terminated, we just return the whole end of string. The client may know 1753 // some other way that the string is length-bound. 1754 Str = Str.substr(0, Str.find('\0')); 1755 } 1756 return true; 1757 } 1758 1759 // These next two are very similar to the above, but also look through PHI 1760 // nodes. 1761 // TODO: See if we can integrate these two together. 1762 1763 /// GetStringLengthH - If we can compute the length of the string pointed to by 1764 /// the specified pointer, return 'len+1'. If we can't, return 0. 1765 static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) { 1766 // Look through noop bitcast instructions. 1767 V = V->stripPointerCasts(); 1768 1769 // If this is a PHI node, there are two cases: either we have already seen it 1770 // or we haven't. 1771 if (PHINode *PN = dyn_cast<PHINode>(V)) { 1772 if (!PHIs.insert(PN)) 1773 return ~0ULL; // already in the set. 1774 1775 // If it was new, see if all the input strings are the same length. 1776 uint64_t LenSoFar = ~0ULL; 1777 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1778 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs); 1779 if (Len == 0) return 0; // Unknown length -> unknown. 1780 1781 if (Len == ~0ULL) continue; 1782 1783 if (Len != LenSoFar && LenSoFar != ~0ULL) 1784 return 0; // Disagree -> unknown. 1785 LenSoFar = Len; 1786 } 1787 1788 // Success, all agree. 1789 return LenSoFar; 1790 } 1791 1792 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 1793 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1794 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 1795 if (Len1 == 0) return 0; 1796 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 1797 if (Len2 == 0) return 0; 1798 if (Len1 == ~0ULL) return Len2; 1799 if (Len2 == ~0ULL) return Len1; 1800 if (Len1 != Len2) return 0; 1801 return Len1; 1802 } 1803 1804 // Otherwise, see if we can read the string. 1805 StringRef StrData; 1806 if (!getConstantStringInfo(V, StrData)) 1807 return 0; 1808 1809 return StrData.size()+1; 1810 } 1811 1812 /// GetStringLength - If we can compute the length of the string pointed to by 1813 /// the specified pointer, return 'len+1'. If we can't, return 0. 1814 uint64_t llvm::GetStringLength(Value *V) { 1815 if (!V->getType()->isPointerTy()) return 0; 1816 1817 SmallPtrSet<PHINode*, 32> PHIs; 1818 uint64_t Len = GetStringLengthH(V, PHIs); 1819 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 1820 // an empty string as a length. 1821 return Len == ~0ULL ? 1 : Len; 1822 } 1823 1824 Value * 1825 llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) { 1826 if (!V->getType()->isPointerTy()) 1827 return V; 1828 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 1829 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 1830 V = GEP->getPointerOperand(); 1831 } else if (Operator::getOpcode(V) == Instruction::BitCast) { 1832 V = cast<Operator>(V)->getOperand(0); 1833 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1834 if (GA->mayBeOverridden()) 1835 return V; 1836 V = GA->getAliasee(); 1837 } else { 1838 // See if InstructionSimplify knows any relevant tricks. 1839 if (Instruction *I = dyn_cast<Instruction>(V)) 1840 // TODO: Acquire a DominatorTree and use it. 1841 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) { 1842 V = Simplified; 1843 continue; 1844 } 1845 1846 return V; 1847 } 1848 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 1849 } 1850 return V; 1851 } 1852 1853 /// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer 1854 /// are lifetime markers. 1855 /// 1856 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 1857 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); 1858 UI != UE; ++UI) { 1859 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI); 1860 if (!II) return false; 1861 1862 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 1863 II->getIntrinsicID() != Intrinsic::lifetime_end) 1864 return false; 1865 } 1866 return true; 1867 } 1868 1869 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 1870 const TargetData *TD) { 1871 const Operator *Inst = dyn_cast<Operator>(V); 1872 if (!Inst) 1873 return false; 1874 1875 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 1876 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 1877 if (C->canTrap()) 1878 return false; 1879 1880 switch (Inst->getOpcode()) { 1881 default: 1882 return true; 1883 case Instruction::UDiv: 1884 case Instruction::URem: 1885 // x / y is undefined if y == 0, but calcuations like x / 3 are safe. 1886 return isKnownNonZero(Inst->getOperand(1), TD); 1887 case Instruction::SDiv: 1888 case Instruction::SRem: { 1889 Value *Op = Inst->getOperand(1); 1890 // x / y is undefined if y == 0 1891 if (!isKnownNonZero(Op, TD)) 1892 return false; 1893 // x / y might be undefined if y == -1 1894 unsigned BitWidth = getBitWidth(Op->getType(), TD); 1895 if (BitWidth == 0) 1896 return false; 1897 APInt KnownZero(BitWidth, 0); 1898 APInt KnownOne(BitWidth, 0); 1899 ComputeMaskedBits(Op, APInt::getAllOnesValue(BitWidth), 1900 KnownZero, KnownOne, TD); 1901 return !!KnownZero; 1902 } 1903 case Instruction::Load: { 1904 const LoadInst *LI = cast<LoadInst>(Inst); 1905 if (!LI->isUnordered()) 1906 return false; 1907 return LI->getPointerOperand()->isDereferenceablePointer(); 1908 } 1909 case Instruction::Call: { 1910 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 1911 switch (II->getIntrinsicID()) { 1912 case Intrinsic::bswap: 1913 case Intrinsic::ctlz: 1914 case Intrinsic::ctpop: 1915 case Intrinsic::cttz: 1916 case Intrinsic::objectsize: 1917 case Intrinsic::sadd_with_overflow: 1918 case Intrinsic::smul_with_overflow: 1919 case Intrinsic::ssub_with_overflow: 1920 case Intrinsic::uadd_with_overflow: 1921 case Intrinsic::umul_with_overflow: 1922 case Intrinsic::usub_with_overflow: 1923 return true; 1924 // TODO: some fp intrinsics are marked as having the same error handling 1925 // as libm. They're safe to speculate when they won't error. 1926 // TODO: are convert_{from,to}_fp16 safe? 1927 // TODO: can we list target-specific intrinsics here? 1928 default: break; 1929 } 1930 } 1931 return false; // The called function could have undefined behavior or 1932 // side-effects, even if marked readnone nounwind. 1933 } 1934 case Instruction::VAArg: 1935 case Instruction::Alloca: 1936 case Instruction::Invoke: 1937 case Instruction::PHI: 1938 case Instruction::Store: 1939 case Instruction::Ret: 1940 case Instruction::Br: 1941 case Instruction::IndirectBr: 1942 case Instruction::Switch: 1943 case Instruction::Unreachable: 1944 case Instruction::Fence: 1945 case Instruction::LandingPad: 1946 case Instruction::AtomicRMW: 1947 case Instruction::AtomicCmpXchg: 1948 case Instruction::Resume: 1949 return false; // Misc instructions which have effects 1950 } 1951 } 1952