1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getMask()->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 178 for (int i = 0; i != NumMaskElts; ++i) { 179 if (!DemandedElts[i]) 180 continue; 181 int M = Shuf->getMaskValue(i); 182 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 183 184 // For undef elements, we don't know anything about the common state of 185 // the shuffle result. 186 if (M == -1) 187 return false; 188 if (M < NumElts) 189 DemandedLHS.setBit(M % NumElts); 190 else 191 DemandedRHS.setBit(M % NumElts); 192 } 193 194 return true; 195 } 196 197 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 198 KnownBits &Known, unsigned Depth, const Query &Q); 199 200 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 201 const Query &Q) { 202 Type *Ty = V->getType(); 203 APInt DemandedElts = Ty->isVectorTy() 204 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 205 : APInt(1, 1); 206 computeKnownBits(V, DemandedElts, Known, Depth, Q); 207 } 208 209 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 210 const DataLayout &DL, unsigned Depth, 211 AssumptionCache *AC, const Instruction *CxtI, 212 const DominatorTree *DT, 213 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 214 ::computeKnownBits(V, Known, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 216 } 217 218 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 219 const Query &Q); 220 221 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, 226 bool UseInstrInfo) { 227 return ::computeKnownBits( 228 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 232 const DataLayout &DL, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 bool UseInstrInfo) { 235 assert(LHS->getType() == RHS->getType() && 236 "LHS and RHS should have the same type"); 237 assert(LHS->getType()->isIntOrIntVectorTy() && 238 "LHS and RHS should be integers"); 239 // Look for an inverted mask: (X & ~M) op (Y & M). 240 Value *M; 241 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 242 match(RHS, m_c_And(m_Specific(M), m_Value()))) 243 return true; 244 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 245 match(LHS, m_c_And(m_Specific(M), m_Value()))) 246 return true; 247 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 248 KnownBits LHSKnown(IT->getBitWidth()); 249 KnownBits RHSKnown(IT->getBitWidth()); 250 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 251 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 253 } 254 255 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 256 for (const User *U : CxtI->users()) { 257 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 258 if (IC->isEquality()) 259 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 260 if (C->isNullValue()) 261 continue; 262 return false; 263 } 264 return true; 265 } 266 267 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 268 const Query &Q); 269 270 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 271 bool OrZero, unsigned Depth, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT, bool UseInstrInfo) { 274 return ::isKnownToBeAPowerOfTwo( 275 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 276 } 277 278 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 279 280 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 281 AssumptionCache *AC, const Instruction *CxtI, 282 const DominatorTree *DT, bool UseInstrInfo) { 283 return ::isKnownNonZero(V, Depth, 284 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 285 } 286 287 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 288 unsigned Depth, AssumptionCache *AC, 289 const Instruction *CxtI, const DominatorTree *DT, 290 bool UseInstrInfo) { 291 KnownBits Known = 292 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 293 return Known.isNonNegative(); 294 } 295 296 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 297 AssumptionCache *AC, const Instruction *CxtI, 298 const DominatorTree *DT, bool UseInstrInfo) { 299 if (auto *CI = dyn_cast<ConstantInt>(V)) 300 return CI->getValue().isStrictlyPositive(); 301 302 // TODO: We'd doing two recursive queries here. We should factor this such 303 // that only a single query is needed. 304 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 305 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 306 } 307 308 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 309 AssumptionCache *AC, const Instruction *CxtI, 310 const DominatorTree *DT, bool UseInstrInfo) { 311 KnownBits Known = 312 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return Known.isNegative(); 314 } 315 316 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 317 318 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 319 const DataLayout &DL, AssumptionCache *AC, 320 const Instruction *CxtI, const DominatorTree *DT, 321 bool UseInstrInfo) { 322 return ::isKnownNonEqual(V1, V2, 323 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 324 UseInstrInfo, /*ORE=*/nullptr)); 325 } 326 327 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 328 const Query &Q); 329 330 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 331 const DataLayout &DL, unsigned Depth, 332 AssumptionCache *AC, const Instruction *CxtI, 333 const DominatorTree *DT, bool UseInstrInfo) { 334 return ::MaskedValueIsZero( 335 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 336 } 337 338 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 339 unsigned Depth, const Query &Q); 340 341 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 342 const Query &Q) { 343 Type *Ty = V->getType(); 344 APInt DemandedElts = Ty->isVectorTy() 345 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 346 : APInt(1, 1); 347 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 348 } 349 350 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 351 unsigned Depth, AssumptionCache *AC, 352 const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 return ::ComputeNumSignBits( 355 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 356 } 357 358 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 359 bool NSW, const APInt &DemandedElts, 360 KnownBits &KnownOut, KnownBits &Known2, 361 unsigned Depth, const Query &Q) { 362 unsigned BitWidth = KnownOut.getBitWidth(); 363 364 // If an initial sequence of bits in the result is not needed, the 365 // corresponding bits in the operands are not needed. 366 KnownBits LHSKnown(BitWidth); 367 computeKnownBits(Op0, DemandedElts, LHSKnown, Depth + 1, Q); 368 computeKnownBits(Op1, DemandedElts, Known2, Depth + 1, Q); 369 370 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 371 } 372 373 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 374 const APInt &DemandedElts, KnownBits &Known, 375 KnownBits &Known2, unsigned Depth, 376 const Query &Q) { 377 unsigned BitWidth = Known.getBitWidth(); 378 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 379 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 380 381 bool isKnownNegative = false; 382 bool isKnownNonNegative = false; 383 // If the multiplication is known not to overflow, compute the sign bit. 384 if (NSW) { 385 if (Op0 == Op1) { 386 // The product of a number with itself is non-negative. 387 isKnownNonNegative = true; 388 } else { 389 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 390 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 391 bool isKnownNegativeOp1 = Known.isNegative(); 392 bool isKnownNegativeOp0 = Known2.isNegative(); 393 // The product of two numbers with the same sign is non-negative. 394 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 395 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 396 // The product of a negative number and a non-negative number is either 397 // negative or zero. 398 if (!isKnownNonNegative) 399 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 400 isKnownNonZero(Op0, Depth, Q)) || 401 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 402 isKnownNonZero(Op1, Depth, Q)); 403 } 404 } 405 406 assert(!Known.hasConflict() && !Known2.hasConflict()); 407 // Compute a conservative estimate for high known-0 bits. 408 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 409 Known2.countMinLeadingZeros(), 410 BitWidth) - BitWidth; 411 LeadZ = std::min(LeadZ, BitWidth); 412 413 // The result of the bottom bits of an integer multiply can be 414 // inferred by looking at the bottom bits of both operands and 415 // multiplying them together. 416 // We can infer at least the minimum number of known trailing bits 417 // of both operands. Depending on number of trailing zeros, we can 418 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 419 // a and b are divisible by m and n respectively. 420 // We then calculate how many of those bits are inferrable and set 421 // the output. For example, the i8 mul: 422 // a = XXXX1100 (12) 423 // b = XXXX1110 (14) 424 // We know the bottom 3 bits are zero since the first can be divided by 425 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 426 // Applying the multiplication to the trimmed arguments gets: 427 // XX11 (3) 428 // X111 (7) 429 // ------- 430 // XX11 431 // XX11 432 // XX11 433 // XX11 434 // ------- 435 // XXXXX01 436 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 437 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 438 // The proof for this can be described as: 439 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 440 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 441 // umin(countTrailingZeros(C2), C6) + 442 // umin(C5 - umin(countTrailingZeros(C1), C5), 443 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 444 // %aa = shl i8 %a, C5 445 // %bb = shl i8 %b, C6 446 // %aaa = or i8 %aa, C1 447 // %bbb = or i8 %bb, C2 448 // %mul = mul i8 %aaa, %bbb 449 // %mask = and i8 %mul, C7 450 // => 451 // %mask = i8 ((C1*C2)&C7) 452 // Where C5, C6 describe the known bits of %a, %b 453 // C1, C2 describe the known bottom bits of %a, %b. 454 // C7 describes the mask of the known bits of the result. 455 APInt Bottom0 = Known.One; 456 APInt Bottom1 = Known2.One; 457 458 // How many times we'd be able to divide each argument by 2 (shr by 1). 459 // This gives us the number of trailing zeros on the multiplication result. 460 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 461 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 462 unsigned TrailZero0 = Known.countMinTrailingZeros(); 463 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 464 unsigned TrailZ = TrailZero0 + TrailZero1; 465 466 // Figure out the fewest known-bits operand. 467 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 468 TrailBitsKnown1 - TrailZero1); 469 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 470 471 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 472 Bottom1.getLoBits(TrailBitsKnown1); 473 474 Known.resetAll(); 475 Known.Zero.setHighBits(LeadZ); 476 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 477 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 478 479 // Only make use of no-wrap flags if we failed to compute the sign bit 480 // directly. This matters if the multiplication always overflows, in 481 // which case we prefer to follow the result of the direct computation, 482 // though as the program is invoking undefined behaviour we can choose 483 // whatever we like here. 484 if (isKnownNonNegative && !Known.isNegative()) 485 Known.makeNonNegative(); 486 else if (isKnownNegative && !Known.isNonNegative()) 487 Known.makeNegative(); 488 } 489 490 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 491 KnownBits &Known) { 492 unsigned BitWidth = Known.getBitWidth(); 493 unsigned NumRanges = Ranges.getNumOperands() / 2; 494 assert(NumRanges >= 1); 495 496 Known.Zero.setAllBits(); 497 Known.One.setAllBits(); 498 499 for (unsigned i = 0; i < NumRanges; ++i) { 500 ConstantInt *Lower = 501 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 502 ConstantInt *Upper = 503 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 504 ConstantRange Range(Lower->getValue(), Upper->getValue()); 505 506 // The first CommonPrefixBits of all values in Range are equal. 507 unsigned CommonPrefixBits = 508 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 509 510 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 511 Known.One &= Range.getUnsignedMax() & Mask; 512 Known.Zero &= ~Range.getUnsignedMax() & Mask; 513 } 514 } 515 516 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 517 SmallVector<const Value *, 16> WorkSet(1, I); 518 SmallPtrSet<const Value *, 32> Visited; 519 SmallPtrSet<const Value *, 16> EphValues; 520 521 // The instruction defining an assumption's condition itself is always 522 // considered ephemeral to that assumption (even if it has other 523 // non-ephemeral users). See r246696's test case for an example. 524 if (is_contained(I->operands(), E)) 525 return true; 526 527 while (!WorkSet.empty()) { 528 const Value *V = WorkSet.pop_back_val(); 529 if (!Visited.insert(V).second) 530 continue; 531 532 // If all uses of this value are ephemeral, then so is this value. 533 if (llvm::all_of(V->users(), [&](const User *U) { 534 return EphValues.count(U); 535 })) { 536 if (V == E) 537 return true; 538 539 if (V == I || isSafeToSpeculativelyExecute(V)) { 540 EphValues.insert(V); 541 if (const User *U = dyn_cast<User>(V)) 542 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 543 J != JE; ++J) 544 WorkSet.push_back(*J); 545 } 546 } 547 } 548 549 return false; 550 } 551 552 // Is this an intrinsic that cannot be speculated but also cannot trap? 553 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 554 if (const CallInst *CI = dyn_cast<CallInst>(I)) 555 if (Function *F = CI->getCalledFunction()) 556 switch (F->getIntrinsicID()) { 557 default: break; 558 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 559 case Intrinsic::assume: 560 case Intrinsic::sideeffect: 561 case Intrinsic::dbg_declare: 562 case Intrinsic::dbg_value: 563 case Intrinsic::dbg_label: 564 case Intrinsic::invariant_start: 565 case Intrinsic::invariant_end: 566 case Intrinsic::lifetime_start: 567 case Intrinsic::lifetime_end: 568 case Intrinsic::objectsize: 569 case Intrinsic::ptr_annotation: 570 case Intrinsic::var_annotation: 571 return true; 572 } 573 574 return false; 575 } 576 577 bool llvm::isValidAssumeForContext(const Instruction *Inv, 578 const Instruction *CxtI, 579 const DominatorTree *DT) { 580 // There are two restrictions on the use of an assume: 581 // 1. The assume must dominate the context (or the control flow must 582 // reach the assume whenever it reaches the context). 583 // 2. The context must not be in the assume's set of ephemeral values 584 // (otherwise we will use the assume to prove that the condition 585 // feeding the assume is trivially true, thus causing the removal of 586 // the assume). 587 588 if (DT) { 589 if (DT->dominates(Inv, CxtI)) 590 return true; 591 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 592 // We don't have a DT, but this trivially dominates. 593 return true; 594 } 595 596 // With or without a DT, the only remaining case we will check is if the 597 // instructions are in the same BB. Give up if that is not the case. 598 if (Inv->getParent() != CxtI->getParent()) 599 return false; 600 601 // If we have a dom tree, then we now know that the assume doesn't dominate 602 // the other instruction. If we don't have a dom tree then we can check if 603 // the assume is first in the BB. 604 if (!DT) { 605 // Search forward from the assume until we reach the context (or the end 606 // of the block); the common case is that the assume will come first. 607 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 608 IE = Inv->getParent()->end(); I != IE; ++I) 609 if (&*I == CxtI) 610 return true; 611 } 612 613 // Don't let an assume affect itself - this would cause the problems 614 // `isEphemeralValueOf` is trying to prevent, and it would also make 615 // the loop below go out of bounds. 616 if (Inv == CxtI) 617 return false; 618 619 // The context comes first, but they're both in the same block. 620 // Make sure there is nothing in between that might interrupt 621 // the control flow, not even CxtI itself. 622 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 623 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 624 return false; 625 626 return !isEphemeralValueOf(Inv, CxtI); 627 } 628 629 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 630 // Use of assumptions is context-sensitive. If we don't have a context, we 631 // cannot use them! 632 if (!Q.AC || !Q.CxtI) 633 return false; 634 635 // Note that the patterns below need to be kept in sync with the code 636 // in AssumptionCache::updateAffectedValues. 637 638 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 639 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 640 641 Value *RHS; 642 CmpInst::Predicate Pred; 643 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 644 return false; 645 // assume(v u> y) -> assume(v != 0) 646 if (Pred == ICmpInst::ICMP_UGT) 647 return true; 648 649 // assume(v != 0) 650 // We special-case this one to ensure that we handle `assume(v != null)`. 651 if (Pred == ICmpInst::ICMP_NE) 652 return match(RHS, m_Zero()); 653 654 // All other predicates - rely on generic ConstantRange handling. 655 ConstantInt *CI; 656 if (!match(RHS, m_ConstantInt(CI))) 657 return false; 658 ConstantRange RHSRange(CI->getValue()); 659 ConstantRange TrueValues = 660 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 661 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 662 }; 663 664 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 665 if (!AssumeVH) 666 continue; 667 CallInst *I = cast<CallInst>(AssumeVH); 668 assert(I->getFunction() == Q.CxtI->getFunction() && 669 "Got assumption for the wrong function!"); 670 if (Q.isExcluded(I)) 671 continue; 672 673 // Warning: This loop can end up being somewhat performance sensitive. 674 // We're running this loop for once for each value queried resulting in a 675 // runtime of ~O(#assumes * #values). 676 677 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 678 "must be an assume intrinsic"); 679 680 Value *Arg = I->getArgOperand(0); 681 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 682 if (!Cmp) 683 continue; 684 685 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 686 return true; 687 } 688 689 return false; 690 } 691 692 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 693 unsigned Depth, const Query &Q) { 694 // Use of assumptions is context-sensitive. If we don't have a context, we 695 // cannot use them! 696 if (!Q.AC || !Q.CxtI) 697 return; 698 699 unsigned BitWidth = Known.getBitWidth(); 700 701 // Note that the patterns below need to be kept in sync with the code 702 // in AssumptionCache::updateAffectedValues. 703 704 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 705 if (!AssumeVH) 706 continue; 707 CallInst *I = cast<CallInst>(AssumeVH); 708 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 709 "Got assumption for the wrong function!"); 710 if (Q.isExcluded(I)) 711 continue; 712 713 // Warning: This loop can end up being somewhat performance sensitive. 714 // We're running this loop for once for each value queried resulting in a 715 // runtime of ~O(#assumes * #values). 716 717 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 718 "must be an assume intrinsic"); 719 720 Value *Arg = I->getArgOperand(0); 721 722 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 723 assert(BitWidth == 1 && "assume operand is not i1?"); 724 Known.setAllOnes(); 725 return; 726 } 727 if (match(Arg, m_Not(m_Specific(V))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 assert(BitWidth == 1 && "assume operand is not i1?"); 730 Known.setAllZero(); 731 return; 732 } 733 734 // The remaining tests are all recursive, so bail out if we hit the limit. 735 if (Depth == MaxDepth) 736 continue; 737 738 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 739 if (!Cmp) 740 continue; 741 742 Value *A, *B; 743 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 744 745 CmpInst::Predicate Pred; 746 uint64_t C; 747 switch (Cmp->getPredicate()) { 748 default: 749 break; 750 case ICmpInst::ICMP_EQ: 751 // assume(v = a) 752 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 KnownBits RHSKnown(BitWidth); 755 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 756 Known.Zero |= RHSKnown.Zero; 757 Known.One |= RHSKnown.One; 758 // assume(v & b = a) 759 } else if (match(Cmp, 760 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown(BitWidth); 763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 764 KnownBits MaskKnown(BitWidth); 765 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 766 767 // For those bits in the mask that are known to be one, we can propagate 768 // known bits from the RHS to V. 769 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 770 Known.One |= RHSKnown.One & MaskKnown.One; 771 // assume(~(v & b) = a) 772 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 773 m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown(BitWidth); 776 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 777 KnownBits MaskKnown(BitWidth); 778 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 779 780 // For those bits in the mask that are known to be one, we can propagate 781 // inverted known bits from the RHS to V. 782 Known.Zero |= RHSKnown.One & MaskKnown.One; 783 Known.One |= RHSKnown.Zero & MaskKnown.One; 784 // assume(v | b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown(BitWidth); 789 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 790 KnownBits BKnown(BitWidth); 791 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 792 793 // For those bits in B that are known to be zero, we can propagate known 794 // bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 // assume(~(v | b) = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown(BitWidth); 802 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 803 KnownBits BKnown(BitWidth); 804 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 805 806 // For those bits in B that are known to be zero, we can propagate 807 // inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.One & BKnown.Zero; 809 Known.One |= RHSKnown.Zero & BKnown.Zero; 810 // assume(v ^ b = a) 811 } else if (match(Cmp, 812 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown(BitWidth); 815 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 816 KnownBits BKnown(BitWidth); 817 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 818 819 // For those bits in B that are known to be zero, we can propagate known 820 // bits from the RHS to V. For those bits in B that are known to be one, 821 // we can propagate inverted known bits from the RHS to V. 822 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 823 Known.One |= RHSKnown.One & BKnown.Zero; 824 Known.Zero |= RHSKnown.One & BKnown.One; 825 Known.One |= RHSKnown.Zero & BKnown.One; 826 // assume(~(v ^ b) = a) 827 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 828 m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown(BitWidth); 831 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 832 KnownBits BKnown(BitWidth); 833 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 834 835 // For those bits in B that are known to be zero, we can propagate 836 // inverted known bits from the RHS to V. For those bits in B that are 837 // known to be one, we can propagate known bits from the RHS to V. 838 Known.Zero |= RHSKnown.One & BKnown.Zero; 839 Known.One |= RHSKnown.Zero & BKnown.Zero; 840 Known.Zero |= RHSKnown.Zero & BKnown.One; 841 Known.One |= RHSKnown.One & BKnown.One; 842 // assume(v << c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown(BitWidth); 847 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 RHSKnown.Zero.lshrInPlace(C); 851 Known.Zero |= RHSKnown.Zero; 852 RHSKnown.One.lshrInPlace(C); 853 Known.One |= RHSKnown.One; 854 // assume(~(v << c) = a) 855 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 856 m_Value(A))) && 857 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 858 KnownBits RHSKnown(BitWidth); 859 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 860 // For those bits in RHS that are known, we can propagate them inverted 861 // to known bits in V shifted to the right by C. 862 RHSKnown.One.lshrInPlace(C); 863 Known.Zero |= RHSKnown.One; 864 RHSKnown.Zero.lshrInPlace(C); 865 Known.One |= RHSKnown.Zero; 866 // assume(v >> c = a) 867 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 868 m_Value(A))) && 869 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 870 KnownBits RHSKnown(BitWidth); 871 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 872 // For those bits in RHS that are known, we can propagate them to known 873 // bits in V shifted to the right by C. 874 Known.Zero |= RHSKnown.Zero << C; 875 Known.One |= RHSKnown.One << C; 876 // assume(~(v >> c) = a) 877 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 878 m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 880 KnownBits RHSKnown(BitWidth); 881 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 882 // For those bits in RHS that are known, we can propagate them inverted 883 // to known bits in V shifted to the right by C. 884 Known.Zero |= RHSKnown.One << C; 885 Known.One |= RHSKnown.Zero << C; 886 } 887 break; 888 case ICmpInst::ICMP_SGE: 889 // assume(v >=_s c) where c is non-negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown(BitWidth); 893 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 894 895 if (RHSKnown.isNonNegative()) { 896 // We know that the sign bit is zero. 897 Known.makeNonNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SGT: 902 // assume(v >_s c) where c is at least -1. 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown(BitWidth); 906 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 907 908 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 909 // We know that the sign bit is zero. 910 Known.makeNonNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_SLE: 915 // assume(v <=_s c) where c is negative 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown(BitWidth); 919 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 920 921 if (RHSKnown.isNegative()) { 922 // We know that the sign bit is one. 923 Known.makeNegative(); 924 } 925 } 926 break; 927 case ICmpInst::ICMP_SLT: 928 // assume(v <_s c) where c is non-positive 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown(BitWidth); 932 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 933 934 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 935 // We know that the sign bit is one. 936 Known.makeNegative(); 937 } 938 } 939 break; 940 case ICmpInst::ICMP_ULE: 941 // assume(v <=_u c) 942 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 943 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 944 KnownBits RHSKnown(BitWidth); 945 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 946 947 // Whatever high bits in c are zero are known to be zero. 948 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 949 } 950 break; 951 case ICmpInst::ICMP_ULT: 952 // assume(v <_u c) 953 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 954 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 955 KnownBits RHSKnown(BitWidth); 956 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 957 958 // If the RHS is known zero, then this assumption must be wrong (nothing 959 // is unsigned less than zero). Signal a conflict and get out of here. 960 if (RHSKnown.isZero()) { 961 Known.Zero.setAllBits(); 962 Known.One.setAllBits(); 963 break; 964 } 965 966 // Whatever high bits in c are zero are known to be zero (if c is a power 967 // of 2, then one more). 968 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 969 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 970 else 971 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 972 } 973 break; 974 } 975 } 976 977 // If assumptions conflict with each other or previous known bits, then we 978 // have a logical fallacy. It's possible that the assumption is not reachable, 979 // so this isn't a real bug. On the other hand, the program may have undefined 980 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 981 // clear out the known bits, try to warn the user, and hope for the best. 982 if (Known.Zero.intersects(Known.One)) { 983 Known.resetAll(); 984 985 if (Q.ORE) 986 Q.ORE->emit([&]() { 987 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 988 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 989 CxtI) 990 << "Detected conflicting code assumptions. Program may " 991 "have undefined behavior, or compiler may have " 992 "internal error."; 993 }); 994 } 995 } 996 997 /// Compute known bits from a shift operator, including those with a 998 /// non-constant shift amount. Known is the output of this function. Known2 is a 999 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1000 /// operator-specific functions that, given the known-zero or known-one bits 1001 /// respectively, and a shift amount, compute the implied known-zero or 1002 /// known-one bits of the shift operator's result respectively for that shift 1003 /// amount. The results from calling KZF and KOF are conservatively combined for 1004 /// all permitted shift amounts. 1005 static void computeKnownBitsFromShiftOperator( 1006 const Operator *I, KnownBits &Known, KnownBits &Known2, 1007 unsigned Depth, const Query &Q, 1008 function_ref<APInt(const APInt &, unsigned)> KZF, 1009 function_ref<APInt(const APInt &, unsigned)> KOF) { 1010 unsigned BitWidth = Known.getBitWidth(); 1011 1012 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1013 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1014 1015 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1016 Known.Zero = KZF(Known.Zero, ShiftAmt); 1017 Known.One = KOF(Known.One, ShiftAmt); 1018 // If the known bits conflict, this must be an overflowing left shift, so 1019 // the shift result is poison. We can return anything we want. Choose 0 for 1020 // the best folding opportunity. 1021 if (Known.hasConflict()) 1022 Known.setAllZero(); 1023 1024 return; 1025 } 1026 1027 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1028 1029 // If the shift amount could be greater than or equal to the bit-width of the 1030 // LHS, the value could be poison, but bail out because the check below is 1031 // expensive. TODO: Should we just carry on? 1032 if (Known.getMaxValue().uge(BitWidth)) { 1033 Known.resetAll(); 1034 return; 1035 } 1036 1037 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1038 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1039 // limit value (which implies all bits are known). 1040 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1041 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1042 1043 // It would be more-clearly correct to use the two temporaries for this 1044 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1045 Known.resetAll(); 1046 1047 // If we know the shifter operand is nonzero, we can sometimes infer more 1048 // known bits. However this is expensive to compute, so be lazy about it and 1049 // only compute it when absolutely necessary. 1050 Optional<bool> ShifterOperandIsNonZero; 1051 1052 // Early exit if we can't constrain any well-defined shift amount. 1053 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1054 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1055 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1056 if (!*ShifterOperandIsNonZero) 1057 return; 1058 } 1059 1060 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1061 1062 Known.Zero.setAllBits(); 1063 Known.One.setAllBits(); 1064 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1065 // Combine the shifted known input bits only for those shift amounts 1066 // compatible with its known constraints. 1067 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1068 continue; 1069 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1070 continue; 1071 // If we know the shifter is nonzero, we may be able to infer more known 1072 // bits. This check is sunk down as far as possible to avoid the expensive 1073 // call to isKnownNonZero if the cheaper checks above fail. 1074 if (ShiftAmt == 0) { 1075 if (!ShifterOperandIsNonZero.hasValue()) 1076 ShifterOperandIsNonZero = 1077 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1078 if (*ShifterOperandIsNonZero) 1079 continue; 1080 } 1081 1082 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1083 Known.One &= KOF(Known2.One, ShiftAmt); 1084 } 1085 1086 // If the known bits conflict, the result is poison. Return a 0 and hope the 1087 // caller can further optimize that. 1088 if (Known.hasConflict()) 1089 Known.setAllZero(); 1090 } 1091 1092 static void computeKnownBitsFromOperator(const Operator *I, 1093 const APInt &DemandedElts, 1094 KnownBits &Known, unsigned Depth, 1095 const Query &Q) { 1096 unsigned BitWidth = Known.getBitWidth(); 1097 1098 KnownBits Known2(Known); 1099 switch (I->getOpcode()) { 1100 default: break; 1101 case Instruction::Load: 1102 if (MDNode *MD = 1103 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1104 computeKnownBitsFromRangeMetadata(*MD, Known); 1105 break; 1106 case Instruction::And: { 1107 // If either the LHS or the RHS are Zero, the result is zero. 1108 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 // Output known-1 bits are only known if set in both the LHS & RHS. 1112 Known.One &= Known2.One; 1113 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1114 Known.Zero |= Known2.Zero; 1115 1116 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1117 // here we handle the more general case of adding any odd number by 1118 // matching the form add(x, add(x, y)) where y is odd. 1119 // TODO: This could be generalized to clearing any bit set in y where the 1120 // following bit is known to be unset in y. 1121 Value *X = nullptr, *Y = nullptr; 1122 if (!Known.Zero[0] && !Known.One[0] && 1123 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1124 Known2.resetAll(); 1125 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1126 if (Known2.countMinTrailingOnes() > 0) 1127 Known.Zero.setBit(0); 1128 } 1129 break; 1130 } 1131 case Instruction::Or: 1132 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1133 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1134 1135 // Output known-0 bits are only known if clear in both the LHS & RHS. 1136 Known.Zero &= Known2.Zero; 1137 // Output known-1 are known to be set if set in either the LHS | RHS. 1138 Known.One |= Known2.One; 1139 break; 1140 case Instruction::Xor: { 1141 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1142 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1143 1144 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1145 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1146 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1147 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1148 Known.Zero = std::move(KnownZeroOut); 1149 break; 1150 } 1151 case Instruction::Mul: { 1152 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1153 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1154 Known, Known2, Depth, Q); 1155 break; 1156 } 1157 case Instruction::UDiv: { 1158 // For the purposes of computing leading zeros we can conservatively 1159 // treat a udiv as a logical right shift by the power of 2 known to 1160 // be less than the denominator. 1161 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1162 unsigned LeadZ = Known2.countMinLeadingZeros(); 1163 1164 Known2.resetAll(); 1165 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1166 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1167 if (RHSMaxLeadingZeros != BitWidth) 1168 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1169 1170 Known.Zero.setHighBits(LeadZ); 1171 break; 1172 } 1173 case Instruction::Select: { 1174 const Value *LHS = nullptr, *RHS = nullptr; 1175 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1176 if (SelectPatternResult::isMinOrMax(SPF)) { 1177 computeKnownBits(RHS, Known, Depth + 1, Q); 1178 computeKnownBits(LHS, Known2, Depth + 1, Q); 1179 } else { 1180 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1181 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1182 } 1183 1184 unsigned MaxHighOnes = 0; 1185 unsigned MaxHighZeros = 0; 1186 if (SPF == SPF_SMAX) { 1187 // If both sides are negative, the result is negative. 1188 if (Known.isNegative() && Known2.isNegative()) 1189 // We can derive a lower bound on the result by taking the max of the 1190 // leading one bits. 1191 MaxHighOnes = 1192 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1193 // If either side is non-negative, the result is non-negative. 1194 else if (Known.isNonNegative() || Known2.isNonNegative()) 1195 MaxHighZeros = 1; 1196 } else if (SPF == SPF_SMIN) { 1197 // If both sides are non-negative, the result is non-negative. 1198 if (Known.isNonNegative() && Known2.isNonNegative()) 1199 // We can derive an upper bound on the result by taking the max of the 1200 // leading zero bits. 1201 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1202 Known2.countMinLeadingZeros()); 1203 // If either side is negative, the result is negative. 1204 else if (Known.isNegative() || Known2.isNegative()) 1205 MaxHighOnes = 1; 1206 } else if (SPF == SPF_UMAX) { 1207 // We can derive a lower bound on the result by taking the max of the 1208 // leading one bits. 1209 MaxHighOnes = 1210 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1211 } else if (SPF == SPF_UMIN) { 1212 // We can derive an upper bound on the result by taking the max of the 1213 // leading zero bits. 1214 MaxHighZeros = 1215 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1216 } else if (SPF == SPF_ABS) { 1217 // RHS from matchSelectPattern returns the negation part of abs pattern. 1218 // If the negate has an NSW flag we can assume the sign bit of the result 1219 // will be 0 because that makes abs(INT_MIN) undefined. 1220 if (match(RHS, m_Neg(m_Specific(LHS))) && 1221 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1222 MaxHighZeros = 1; 1223 } 1224 1225 // Only known if known in both the LHS and RHS. 1226 Known.One &= Known2.One; 1227 Known.Zero &= Known2.Zero; 1228 if (MaxHighOnes > 0) 1229 Known.One.setHighBits(MaxHighOnes); 1230 if (MaxHighZeros > 0) 1231 Known.Zero.setHighBits(MaxHighZeros); 1232 break; 1233 } 1234 case Instruction::FPTrunc: 1235 case Instruction::FPExt: 1236 case Instruction::FPToUI: 1237 case Instruction::FPToSI: 1238 case Instruction::SIToFP: 1239 case Instruction::UIToFP: 1240 break; // Can't work with floating point. 1241 case Instruction::PtrToInt: 1242 case Instruction::IntToPtr: 1243 // Fall through and handle them the same as zext/trunc. 1244 LLVM_FALLTHROUGH; 1245 case Instruction::ZExt: 1246 case Instruction::Trunc: { 1247 Type *SrcTy = I->getOperand(0)->getType(); 1248 1249 unsigned SrcBitWidth; 1250 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1251 // which fall through here. 1252 Type *ScalarTy = SrcTy->getScalarType(); 1253 SrcBitWidth = ScalarTy->isPointerTy() ? 1254 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1255 Q.DL.getTypeSizeInBits(ScalarTy); 1256 1257 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1258 Known = Known.anyextOrTrunc(SrcBitWidth); 1259 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1260 Known = Known.zextOrTrunc(BitWidth); 1261 break; 1262 } 1263 case Instruction::BitCast: { 1264 Type *SrcTy = I->getOperand(0)->getType(); 1265 if (SrcTy->isIntOrPtrTy() && 1266 // TODO: For now, not handling conversions like: 1267 // (bitcast i64 %x to <2 x i32>) 1268 !I->getType()->isVectorTy()) { 1269 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1270 break; 1271 } 1272 break; 1273 } 1274 case Instruction::SExt: { 1275 // Compute the bits in the result that are not present in the input. 1276 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1277 1278 Known = Known.trunc(SrcBitWidth); 1279 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1280 // If the sign bit of the input is known set or clear, then we know the 1281 // top bits of the result. 1282 Known = Known.sext(BitWidth); 1283 break; 1284 } 1285 case Instruction::Shl: { 1286 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1287 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1288 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1289 APInt KZResult = KnownZero << ShiftAmt; 1290 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1291 // If this shift has "nsw" keyword, then the result is either a poison 1292 // value or has the same sign bit as the first operand. 1293 if (NSW && KnownZero.isSignBitSet()) 1294 KZResult.setSignBit(); 1295 return KZResult; 1296 }; 1297 1298 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1299 APInt KOResult = KnownOne << ShiftAmt; 1300 if (NSW && KnownOne.isSignBitSet()) 1301 KOResult.setSignBit(); 1302 return KOResult; 1303 }; 1304 1305 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1306 break; 1307 } 1308 case Instruction::LShr: { 1309 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1310 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1311 APInt KZResult = KnownZero.lshr(ShiftAmt); 1312 // High bits known zero. 1313 KZResult.setHighBits(ShiftAmt); 1314 return KZResult; 1315 }; 1316 1317 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1318 return KnownOne.lshr(ShiftAmt); 1319 }; 1320 1321 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1322 break; 1323 } 1324 case Instruction::AShr: { 1325 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1326 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1327 return KnownZero.ashr(ShiftAmt); 1328 }; 1329 1330 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1331 return KnownOne.ashr(ShiftAmt); 1332 }; 1333 1334 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1335 break; 1336 } 1337 case Instruction::Sub: { 1338 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1339 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1340 DemandedElts, Known, Known2, Depth, Q); 1341 break; 1342 } 1343 case Instruction::Add: { 1344 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1345 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1346 DemandedElts, Known, Known2, Depth, Q); 1347 break; 1348 } 1349 case Instruction::SRem: 1350 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1351 APInt RA = Rem->getValue().abs(); 1352 if (RA.isPowerOf2()) { 1353 APInt LowBits = RA - 1; 1354 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1355 1356 // The low bits of the first operand are unchanged by the srem. 1357 Known.Zero = Known2.Zero & LowBits; 1358 Known.One = Known2.One & LowBits; 1359 1360 // If the first operand is non-negative or has all low bits zero, then 1361 // the upper bits are all zero. 1362 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1363 Known.Zero |= ~LowBits; 1364 1365 // If the first operand is negative and not all low bits are zero, then 1366 // the upper bits are all one. 1367 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1368 Known.One |= ~LowBits; 1369 1370 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1371 break; 1372 } 1373 } 1374 1375 // The sign bit is the LHS's sign bit, except when the result of the 1376 // remainder is zero. 1377 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1378 // If it's known zero, our sign bit is also zero. 1379 if (Known2.isNonNegative()) 1380 Known.makeNonNegative(); 1381 1382 break; 1383 case Instruction::URem: { 1384 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1385 const APInt &RA = Rem->getValue(); 1386 if (RA.isPowerOf2()) { 1387 APInt LowBits = (RA - 1); 1388 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1389 Known.Zero |= ~LowBits; 1390 Known.One &= LowBits; 1391 break; 1392 } 1393 } 1394 1395 // Since the result is less than or equal to either operand, any leading 1396 // zero bits in either operand must also exist in the result. 1397 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1398 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1399 1400 unsigned Leaders = 1401 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1402 Known.resetAll(); 1403 Known.Zero.setHighBits(Leaders); 1404 break; 1405 } 1406 1407 case Instruction::Alloca: { 1408 const AllocaInst *AI = cast<AllocaInst>(I); 1409 unsigned Align = AI->getAlignment(); 1410 if (Align == 0) 1411 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1412 1413 if (Align > 0) 1414 Known.Zero.setLowBits(countTrailingZeros(Align)); 1415 break; 1416 } 1417 case Instruction::GetElementPtr: { 1418 // Analyze all of the subscripts of this getelementptr instruction 1419 // to determine if we can prove known low zero bits. 1420 KnownBits LocalKnown(BitWidth); 1421 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1422 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1423 1424 gep_type_iterator GTI = gep_type_begin(I); 1425 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1426 Value *Index = I->getOperand(i); 1427 if (StructType *STy = GTI.getStructTypeOrNull()) { 1428 // Handle struct member offset arithmetic. 1429 1430 // Handle case when index is vector zeroinitializer 1431 Constant *CIndex = cast<Constant>(Index); 1432 if (CIndex->isZeroValue()) 1433 continue; 1434 1435 if (CIndex->getType()->isVectorTy()) 1436 Index = CIndex->getSplatValue(); 1437 1438 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1439 const StructLayout *SL = Q.DL.getStructLayout(STy); 1440 uint64_t Offset = SL->getElementOffset(Idx); 1441 TrailZ = std::min<unsigned>(TrailZ, 1442 countTrailingZeros(Offset)); 1443 } else { 1444 // Handle array index arithmetic. 1445 Type *IndexedTy = GTI.getIndexedType(); 1446 if (!IndexedTy->isSized()) { 1447 TrailZ = 0; 1448 break; 1449 } 1450 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1451 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1452 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1453 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1454 TrailZ = std::min(TrailZ, 1455 unsigned(countTrailingZeros(TypeSize) + 1456 LocalKnown.countMinTrailingZeros())); 1457 } 1458 } 1459 1460 Known.Zero.setLowBits(TrailZ); 1461 break; 1462 } 1463 case Instruction::PHI: { 1464 const PHINode *P = cast<PHINode>(I); 1465 // Handle the case of a simple two-predecessor recurrence PHI. 1466 // There's a lot more that could theoretically be done here, but 1467 // this is sufficient to catch some interesting cases. 1468 if (P->getNumIncomingValues() == 2) { 1469 for (unsigned i = 0; i != 2; ++i) { 1470 Value *L = P->getIncomingValue(i); 1471 Value *R = P->getIncomingValue(!i); 1472 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1473 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1474 Operator *LU = dyn_cast<Operator>(L); 1475 if (!LU) 1476 continue; 1477 unsigned Opcode = LU->getOpcode(); 1478 // Check for operations that have the property that if 1479 // both their operands have low zero bits, the result 1480 // will have low zero bits. 1481 if (Opcode == Instruction::Add || 1482 Opcode == Instruction::Sub || 1483 Opcode == Instruction::And || 1484 Opcode == Instruction::Or || 1485 Opcode == Instruction::Mul) { 1486 Value *LL = LU->getOperand(0); 1487 Value *LR = LU->getOperand(1); 1488 // Find a recurrence. 1489 if (LL == I) 1490 L = LR; 1491 else if (LR == I) 1492 L = LL; 1493 else 1494 continue; // Check for recurrence with L and R flipped. 1495 1496 // Change the context instruction to the "edge" that flows into the 1497 // phi. This is important because that is where the value is actually 1498 // "evaluated" even though it is used later somewhere else. (see also 1499 // D69571). 1500 Query RecQ = Q; 1501 1502 // Ok, we have a PHI of the form L op= R. Check for low 1503 // zero bits. 1504 RecQ.CxtI = RInst; 1505 computeKnownBits(R, Known2, Depth + 1, RecQ); 1506 1507 // We need to take the minimum number of known bits 1508 KnownBits Known3(Known); 1509 RecQ.CxtI = LInst; 1510 computeKnownBits(L, Known3, Depth + 1, RecQ); 1511 1512 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1513 Known3.countMinTrailingZeros())); 1514 1515 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1516 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1517 // If initial value of recurrence is nonnegative, and we are adding 1518 // a nonnegative number with nsw, the result can only be nonnegative 1519 // or poison value regardless of the number of times we execute the 1520 // add in phi recurrence. If initial value is negative and we are 1521 // adding a negative number with nsw, the result can only be 1522 // negative or poison value. Similar arguments apply to sub and mul. 1523 // 1524 // (add non-negative, non-negative) --> non-negative 1525 // (add negative, negative) --> negative 1526 if (Opcode == Instruction::Add) { 1527 if (Known2.isNonNegative() && Known3.isNonNegative()) 1528 Known.makeNonNegative(); 1529 else if (Known2.isNegative() && Known3.isNegative()) 1530 Known.makeNegative(); 1531 } 1532 1533 // (sub nsw non-negative, negative) --> non-negative 1534 // (sub nsw negative, non-negative) --> negative 1535 else if (Opcode == Instruction::Sub && LL == I) { 1536 if (Known2.isNonNegative() && Known3.isNegative()) 1537 Known.makeNonNegative(); 1538 else if (Known2.isNegative() && Known3.isNonNegative()) 1539 Known.makeNegative(); 1540 } 1541 1542 // (mul nsw non-negative, non-negative) --> non-negative 1543 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1544 Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 } 1547 1548 break; 1549 } 1550 } 1551 } 1552 1553 // Unreachable blocks may have zero-operand PHI nodes. 1554 if (P->getNumIncomingValues() == 0) 1555 break; 1556 1557 // Otherwise take the unions of the known bit sets of the operands, 1558 // taking conservative care to avoid excessive recursion. 1559 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1560 // Skip if every incoming value references to ourself. 1561 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1562 break; 1563 1564 Known.Zero.setAllBits(); 1565 Known.One.setAllBits(); 1566 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1567 Value *IncValue = P->getIncomingValue(u); 1568 // Skip direct self references. 1569 if (IncValue == P) continue; 1570 1571 // Change the context instruction to the "edge" that flows into the 1572 // phi. This is important because that is where the value is actually 1573 // "evaluated" even though it is used later somewhere else. (see also 1574 // D69571). 1575 Query RecQ = Q; 1576 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1577 1578 Known2 = KnownBits(BitWidth); 1579 // Recurse, but cap the recursion to one level, because we don't 1580 // want to waste time spinning around in loops. 1581 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1582 Known.Zero &= Known2.Zero; 1583 Known.One &= Known2.One; 1584 // If all bits have been ruled out, there's no need to check 1585 // more operands. 1586 if (!Known.Zero && !Known.One) 1587 break; 1588 } 1589 } 1590 break; 1591 } 1592 case Instruction::Call: 1593 case Instruction::Invoke: 1594 // If range metadata is attached to this call, set known bits from that, 1595 // and then intersect with known bits based on other properties of the 1596 // function. 1597 if (MDNode *MD = 1598 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1599 computeKnownBitsFromRangeMetadata(*MD, Known); 1600 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1601 computeKnownBits(RV, Known2, Depth + 1, Q); 1602 Known.Zero |= Known2.Zero; 1603 Known.One |= Known2.One; 1604 } 1605 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1606 switch (II->getIntrinsicID()) { 1607 default: break; 1608 case Intrinsic::bitreverse: 1609 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1610 Known.Zero |= Known2.Zero.reverseBits(); 1611 Known.One |= Known2.One.reverseBits(); 1612 break; 1613 case Intrinsic::bswap: 1614 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1615 Known.Zero |= Known2.Zero.byteSwap(); 1616 Known.One |= Known2.One.byteSwap(); 1617 break; 1618 case Intrinsic::ctlz: { 1619 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1620 // If we have a known 1, its position is our upper bound. 1621 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1622 // If this call is undefined for 0, the result will be less than 2^n. 1623 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1624 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1625 unsigned LowBits = Log2_32(PossibleLZ)+1; 1626 Known.Zero.setBitsFrom(LowBits); 1627 break; 1628 } 1629 case Intrinsic::cttz: { 1630 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1631 // If we have a known 1, its position is our upper bound. 1632 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1633 // If this call is undefined for 0, the result will be less than 2^n. 1634 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1635 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1636 unsigned LowBits = Log2_32(PossibleTZ)+1; 1637 Known.Zero.setBitsFrom(LowBits); 1638 break; 1639 } 1640 case Intrinsic::ctpop: { 1641 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1642 // We can bound the space the count needs. Also, bits known to be zero 1643 // can't contribute to the population. 1644 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1645 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1646 Known.Zero.setBitsFrom(LowBits); 1647 // TODO: we could bound KnownOne using the lower bound on the number 1648 // of bits which might be set provided by popcnt KnownOne2. 1649 break; 1650 } 1651 case Intrinsic::fshr: 1652 case Intrinsic::fshl: { 1653 const APInt *SA; 1654 if (!match(I->getOperand(2), m_APInt(SA))) 1655 break; 1656 1657 // Normalize to funnel shift left. 1658 uint64_t ShiftAmt = SA->urem(BitWidth); 1659 if (II->getIntrinsicID() == Intrinsic::fshr) 1660 ShiftAmt = BitWidth - ShiftAmt; 1661 1662 KnownBits Known3(Known); 1663 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1664 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1665 1666 Known.Zero = 1667 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1668 Known.One = 1669 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1670 break; 1671 } 1672 case Intrinsic::uadd_sat: 1673 case Intrinsic::usub_sat: { 1674 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1675 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1676 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1677 1678 // Add: Leading ones of either operand are preserved. 1679 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1680 // as leading zeros in the result. 1681 unsigned LeadingKnown; 1682 if (IsAdd) 1683 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1684 Known2.countMinLeadingOnes()); 1685 else 1686 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1687 Known2.countMinLeadingOnes()); 1688 1689 Known = KnownBits::computeForAddSub( 1690 IsAdd, /* NSW */ false, Known, Known2); 1691 1692 // We select between the operation result and all-ones/zero 1693 // respectively, so we can preserve known ones/zeros. 1694 if (IsAdd) { 1695 Known.One.setHighBits(LeadingKnown); 1696 Known.Zero.clearAllBits(); 1697 } else { 1698 Known.Zero.setHighBits(LeadingKnown); 1699 Known.One.clearAllBits(); 1700 } 1701 break; 1702 } 1703 case Intrinsic::x86_sse42_crc32_64_64: 1704 Known.Zero.setBitsFrom(32); 1705 break; 1706 } 1707 } 1708 break; 1709 case Instruction::ShuffleVector: { 1710 auto *Shuf = cast<ShuffleVectorInst>(I); 1711 // For undef elements, we don't know anything about the common state of 1712 // the shuffle result. 1713 APInt DemandedLHS, DemandedRHS; 1714 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1715 Known.resetAll(); 1716 return; 1717 } 1718 Known.One.setAllBits(); 1719 Known.Zero.setAllBits(); 1720 if (!!DemandedLHS) { 1721 const Value *LHS = Shuf->getOperand(0); 1722 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1723 // If we don't know any bits, early out. 1724 if (Known.isUnknown()) 1725 break; 1726 } 1727 if (!!DemandedRHS) { 1728 const Value *RHS = Shuf->getOperand(1); 1729 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1730 Known.One &= Known2.One; 1731 Known.Zero &= Known2.Zero; 1732 } 1733 break; 1734 } 1735 case Instruction::InsertElement: { 1736 auto *IEI = cast<InsertElementInst>(I); 1737 Value *Vec = IEI->getOperand(0); 1738 Value *Elt = IEI->getOperand(1); 1739 auto *CIdx = dyn_cast<ConstantInt>(IEI->getOperand(2)); 1740 // Early out if the index is non-constant or out-of-range. 1741 unsigned NumElts = DemandedElts.getBitWidth(); 1742 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1743 Known.resetAll(); 1744 return; 1745 } 1746 Known.One.setAllBits(); 1747 Known.Zero.setAllBits(); 1748 unsigned EltIdx = CIdx->getZExtValue(); 1749 // Do we demand the inserted element? 1750 if (DemandedElts[EltIdx]) { 1751 computeKnownBits(Elt, Known, Depth + 1, Q); 1752 // If we don't know any bits, early out. 1753 if (Known.isUnknown()) 1754 break; 1755 } 1756 // We don't need the base vector element that has been inserted. 1757 APInt DemandedVecElts = DemandedElts; 1758 DemandedVecElts.clearBit(EltIdx); 1759 if (!!DemandedVecElts) { 1760 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1761 Known.One &= Known2.One; 1762 Known.Zero &= Known2.Zero; 1763 } 1764 break; 1765 } 1766 case Instruction::ExtractElement: { 1767 // Look through extract element. If the index is non-constant or 1768 // out-of-range demand all elements, otherwise just the extracted element. 1769 auto* EEI = cast<ExtractElementInst>(I); 1770 const Value* Vec = EEI->getVectorOperand(); 1771 const Value* Idx = EEI->getIndexOperand(); 1772 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1773 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1774 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1775 if (CIdx && CIdx->getValue().ult(NumElts)) 1776 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1777 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1778 break; 1779 } 1780 case Instruction::ExtractValue: 1781 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1782 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1783 if (EVI->getNumIndices() != 1) break; 1784 if (EVI->getIndices()[0] == 0) { 1785 switch (II->getIntrinsicID()) { 1786 default: break; 1787 case Intrinsic::uadd_with_overflow: 1788 case Intrinsic::sadd_with_overflow: 1789 computeKnownBitsAddSub(true, II->getArgOperand(0), 1790 II->getArgOperand(1), false, DemandedElts, 1791 Known, Known2, Depth, Q); 1792 break; 1793 case Intrinsic::usub_with_overflow: 1794 case Intrinsic::ssub_with_overflow: 1795 computeKnownBitsAddSub(false, II->getArgOperand(0), 1796 II->getArgOperand(1), false, DemandedElts, 1797 Known, Known2, Depth, Q); 1798 break; 1799 case Intrinsic::umul_with_overflow: 1800 case Intrinsic::smul_with_overflow: 1801 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1802 DemandedElts, Known, Known2, Depth, Q); 1803 break; 1804 } 1805 } 1806 } 1807 break; 1808 } 1809 } 1810 1811 /// Determine which bits of V are known to be either zero or one and return 1812 /// them. 1813 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1814 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1815 computeKnownBits(V, Known, Depth, Q); 1816 return Known; 1817 } 1818 1819 /// Determine which bits of V are known to be either zero or one and return 1820 /// them in the Known bit set. 1821 /// 1822 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1823 /// we cannot optimize based on the assumption that it is zero without changing 1824 /// it to be an explicit zero. If we don't change it to zero, other code could 1825 /// optimized based on the contradictory assumption that it is non-zero. 1826 /// Because instcombine aggressively folds operations with undef args anyway, 1827 /// this won't lose us code quality. 1828 /// 1829 /// This function is defined on values with integer type, values with pointer 1830 /// type, and vectors of integers. In the case 1831 /// where V is a vector, known zero, and known one values are the 1832 /// same width as the vector element, and the bit is set only if it is true 1833 /// for all of the demanded elements in the vector specified by DemandedElts. 1834 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1835 KnownBits &Known, unsigned Depth, const Query &Q) { 1836 assert(V && "No Value?"); 1837 assert(Depth <= MaxDepth && "Limit Search Depth"); 1838 unsigned BitWidth = Known.getBitWidth(); 1839 1840 Type *Ty = V->getType(); 1841 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1842 "Not integer or pointer type!"); 1843 assert(((Ty->isVectorTy() && 1844 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1845 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1846 "Unexpected vector size"); 1847 1848 Type *ScalarTy = Ty->getScalarType(); 1849 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1850 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1851 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1852 (void)BitWidth; 1853 (void)ExpectedWidth; 1854 1855 if (!DemandedElts) { 1856 // No demanded elts, better to assume we don't know anything. 1857 Known.resetAll(); 1858 return; 1859 } 1860 1861 const APInt *C; 1862 if (match(V, m_APInt(C))) { 1863 // We know all of the bits for a scalar constant or a splat vector constant! 1864 Known.One = *C; 1865 Known.Zero = ~Known.One; 1866 return; 1867 } 1868 // Null and aggregate-zero are all-zeros. 1869 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1870 Known.setAllZero(); 1871 return; 1872 } 1873 // Handle a constant vector by taking the intersection of the known bits of 1874 // each element. 1875 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1876 assert((!Ty->isVectorTy() || 1877 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1878 "Unexpected vector size"); 1879 // We know that CDS must be a vector of integers. Take the intersection of 1880 // each element. 1881 Known.Zero.setAllBits(); Known.One.setAllBits(); 1882 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1883 if (Ty->isVectorTy() && !DemandedElts[i]) 1884 continue; 1885 APInt Elt = CDS->getElementAsAPInt(i); 1886 Known.Zero &= ~Elt; 1887 Known.One &= Elt; 1888 } 1889 return; 1890 } 1891 1892 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1893 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1894 "Unexpected vector size"); 1895 // We know that CV must be a vector of integers. Take the intersection of 1896 // each element. 1897 Known.Zero.setAllBits(); Known.One.setAllBits(); 1898 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1899 if (!DemandedElts[i]) 1900 continue; 1901 Constant *Element = CV->getAggregateElement(i); 1902 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1903 if (!ElementCI) { 1904 Known.resetAll(); 1905 return; 1906 } 1907 const APInt &Elt = ElementCI->getValue(); 1908 Known.Zero &= ~Elt; 1909 Known.One &= Elt; 1910 } 1911 return; 1912 } 1913 1914 // Start out not knowing anything. 1915 Known.resetAll(); 1916 1917 // We can't imply anything about undefs. 1918 if (isa<UndefValue>(V)) 1919 return; 1920 1921 // There's no point in looking through other users of ConstantData for 1922 // assumptions. Confirm that we've handled them all. 1923 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1924 1925 // Limit search depth. 1926 // All recursive calls that increase depth must come after this. 1927 if (Depth == MaxDepth) 1928 return; 1929 1930 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1931 // the bits of its aliasee. 1932 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1933 if (!GA->isInterposable()) 1934 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1935 return; 1936 } 1937 1938 if (const Operator *I = dyn_cast<Operator>(V)) 1939 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1940 1941 // Aligned pointers have trailing zeros - refine Known.Zero set 1942 if (Ty->isPointerTy()) { 1943 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1944 if (Align) 1945 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1946 } 1947 1948 // computeKnownBitsFromAssume strictly refines Known. 1949 // Therefore, we run them after computeKnownBitsFromOperator. 1950 1951 // Check whether a nearby assume intrinsic can determine some known bits. 1952 computeKnownBitsFromAssume(V, Known, Depth, Q); 1953 1954 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1955 } 1956 1957 /// Return true if the given value is known to have exactly one 1958 /// bit set when defined. For vectors return true if every element is known to 1959 /// be a power of two when defined. Supports values with integer or pointer 1960 /// types and vectors of integers. 1961 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1962 const Query &Q) { 1963 assert(Depth <= MaxDepth && "Limit Search Depth"); 1964 1965 // Attempt to match against constants. 1966 if (OrZero && match(V, m_Power2OrZero())) 1967 return true; 1968 if (match(V, m_Power2())) 1969 return true; 1970 1971 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1972 // it is shifted off the end then the result is undefined. 1973 if (match(V, m_Shl(m_One(), m_Value()))) 1974 return true; 1975 1976 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1977 // the bottom. If it is shifted off the bottom then the result is undefined. 1978 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1979 return true; 1980 1981 // The remaining tests are all recursive, so bail out if we hit the limit. 1982 if (Depth++ == MaxDepth) 1983 return false; 1984 1985 Value *X = nullptr, *Y = nullptr; 1986 // A shift left or a logical shift right of a power of two is a power of two 1987 // or zero. 1988 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1989 match(V, m_LShr(m_Value(X), m_Value())))) 1990 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1991 1992 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1993 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1994 1995 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1996 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1997 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1998 1999 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2000 // A power of two and'd with anything is a power of two or zero. 2001 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2002 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2003 return true; 2004 // X & (-X) is always a power of two or zero. 2005 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2006 return true; 2007 return false; 2008 } 2009 2010 // Adding a power-of-two or zero to the same power-of-two or zero yields 2011 // either the original power-of-two, a larger power-of-two or zero. 2012 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2013 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2014 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2015 Q.IIQ.hasNoSignedWrap(VOBO)) { 2016 if (match(X, m_And(m_Specific(Y), m_Value())) || 2017 match(X, m_And(m_Value(), m_Specific(Y)))) 2018 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2019 return true; 2020 if (match(Y, m_And(m_Specific(X), m_Value())) || 2021 match(Y, m_And(m_Value(), m_Specific(X)))) 2022 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2023 return true; 2024 2025 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2026 KnownBits LHSBits(BitWidth); 2027 computeKnownBits(X, LHSBits, Depth, Q); 2028 2029 KnownBits RHSBits(BitWidth); 2030 computeKnownBits(Y, RHSBits, Depth, Q); 2031 // If i8 V is a power of two or zero: 2032 // ZeroBits: 1 1 1 0 1 1 1 1 2033 // ~ZeroBits: 0 0 0 1 0 0 0 0 2034 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2035 // If OrZero isn't set, we cannot give back a zero result. 2036 // Make sure either the LHS or RHS has a bit set. 2037 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2038 return true; 2039 } 2040 } 2041 2042 // An exact divide or right shift can only shift off zero bits, so the result 2043 // is a power of two only if the first operand is a power of two and not 2044 // copying a sign bit (sdiv int_min, 2). 2045 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2046 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2047 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2048 Depth, Q); 2049 } 2050 2051 return false; 2052 } 2053 2054 /// Test whether a GEP's result is known to be non-null. 2055 /// 2056 /// Uses properties inherent in a GEP to try to determine whether it is known 2057 /// to be non-null. 2058 /// 2059 /// Currently this routine does not support vector GEPs. 2060 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2061 const Query &Q) { 2062 const Function *F = nullptr; 2063 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2064 F = I->getFunction(); 2065 2066 if (!GEP->isInBounds() || 2067 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2068 return false; 2069 2070 // FIXME: Support vector-GEPs. 2071 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2072 2073 // If the base pointer is non-null, we cannot walk to a null address with an 2074 // inbounds GEP in address space zero. 2075 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2076 return true; 2077 2078 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2079 // If so, then the GEP cannot produce a null pointer, as doing so would 2080 // inherently violate the inbounds contract within address space zero. 2081 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2082 GTI != GTE; ++GTI) { 2083 // Struct types are easy -- they must always be indexed by a constant. 2084 if (StructType *STy = GTI.getStructTypeOrNull()) { 2085 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2086 unsigned ElementIdx = OpC->getZExtValue(); 2087 const StructLayout *SL = Q.DL.getStructLayout(STy); 2088 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2089 if (ElementOffset > 0) 2090 return true; 2091 continue; 2092 } 2093 2094 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2095 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2096 continue; 2097 2098 // Fast path the constant operand case both for efficiency and so we don't 2099 // increment Depth when just zipping down an all-constant GEP. 2100 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2101 if (!OpC->isZero()) 2102 return true; 2103 continue; 2104 } 2105 2106 // We post-increment Depth here because while isKnownNonZero increments it 2107 // as well, when we pop back up that increment won't persist. We don't want 2108 // to recurse 10k times just because we have 10k GEP operands. We don't 2109 // bail completely out because we want to handle constant GEPs regardless 2110 // of depth. 2111 if (Depth++ >= MaxDepth) 2112 continue; 2113 2114 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2115 return true; 2116 } 2117 2118 return false; 2119 } 2120 2121 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2122 const Instruction *CtxI, 2123 const DominatorTree *DT) { 2124 if (isa<Constant>(V)) 2125 return false; 2126 2127 if (!CtxI || !DT) 2128 return false; 2129 2130 unsigned NumUsesExplored = 0; 2131 for (auto *U : V->users()) { 2132 // Avoid massive lists 2133 if (NumUsesExplored >= DomConditionsMaxUses) 2134 break; 2135 NumUsesExplored++; 2136 2137 // If the value is used as an argument to a call or invoke, then argument 2138 // attributes may provide an answer about null-ness. 2139 if (auto CS = ImmutableCallSite(U)) 2140 if (auto *CalledFunc = CS.getCalledFunction()) 2141 for (const Argument &Arg : CalledFunc->args()) 2142 if (CS.getArgOperand(Arg.getArgNo()) == V && 2143 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2144 return true; 2145 2146 // If the value is used as a load/store, then the pointer must be non null. 2147 if (V == getLoadStorePointerOperand(U)) { 2148 const Instruction *I = cast<Instruction>(U); 2149 if (!NullPointerIsDefined(I->getFunction(), 2150 V->getType()->getPointerAddressSpace()) && 2151 DT->dominates(I, CtxI)) 2152 return true; 2153 } 2154 2155 // Consider only compare instructions uniquely controlling a branch 2156 CmpInst::Predicate Pred; 2157 if (!match(const_cast<User *>(U), 2158 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2159 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2160 continue; 2161 2162 SmallVector<const User *, 4> WorkList; 2163 SmallPtrSet<const User *, 4> Visited; 2164 for (auto *CmpU : U->users()) { 2165 assert(WorkList.empty() && "Should be!"); 2166 if (Visited.insert(CmpU).second) 2167 WorkList.push_back(CmpU); 2168 2169 while (!WorkList.empty()) { 2170 auto *Curr = WorkList.pop_back_val(); 2171 2172 // If a user is an AND, add all its users to the work list. We only 2173 // propagate "pred != null" condition through AND because it is only 2174 // correct to assume that all conditions of AND are met in true branch. 2175 // TODO: Support similar logic of OR and EQ predicate? 2176 if (Pred == ICmpInst::ICMP_NE) 2177 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2178 if (BO->getOpcode() == Instruction::And) { 2179 for (auto *BOU : BO->users()) 2180 if (Visited.insert(BOU).second) 2181 WorkList.push_back(BOU); 2182 continue; 2183 } 2184 2185 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2186 assert(BI->isConditional() && "uses a comparison!"); 2187 2188 BasicBlock *NonNullSuccessor = 2189 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2190 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2191 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2192 return true; 2193 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2194 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2195 return true; 2196 } 2197 } 2198 } 2199 } 2200 2201 return false; 2202 } 2203 2204 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2205 /// ensure that the value it's attached to is never Value? 'RangeType' is 2206 /// is the type of the value described by the range. 2207 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2208 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2209 assert(NumRanges >= 1); 2210 for (unsigned i = 0; i < NumRanges; ++i) { 2211 ConstantInt *Lower = 2212 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2213 ConstantInt *Upper = 2214 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2215 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2216 if (Range.contains(Value)) 2217 return false; 2218 } 2219 return true; 2220 } 2221 2222 /// Return true if the given value is known to be non-zero when defined. For 2223 /// vectors, return true if every element is known to be non-zero when 2224 /// defined. For pointers, if the context instruction and dominator tree are 2225 /// specified, perform context-sensitive analysis and return true if the 2226 /// pointer couldn't possibly be null at the specified instruction. 2227 /// Supports values with integer or pointer type and vectors of integers. 2228 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2229 if (auto *C = dyn_cast<Constant>(V)) { 2230 if (C->isNullValue()) 2231 return false; 2232 if (isa<ConstantInt>(C)) 2233 // Must be non-zero due to null test above. 2234 return true; 2235 2236 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2237 // See the comment for IntToPtr/PtrToInt instructions below. 2238 if (CE->getOpcode() == Instruction::IntToPtr || 2239 CE->getOpcode() == Instruction::PtrToInt) 2240 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2241 Q.DL.getTypeSizeInBits(CE->getType())) 2242 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2243 } 2244 2245 // For constant vectors, check that all elements are undefined or known 2246 // non-zero to determine that the whole vector is known non-zero. 2247 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2248 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2249 Constant *Elt = C->getAggregateElement(i); 2250 if (!Elt || Elt->isNullValue()) 2251 return false; 2252 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2253 return false; 2254 } 2255 return true; 2256 } 2257 2258 // A global variable in address space 0 is non null unless extern weak 2259 // or an absolute symbol reference. Other address spaces may have null as a 2260 // valid address for a global, so we can't assume anything. 2261 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2262 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2263 GV->getType()->getAddressSpace() == 0) 2264 return true; 2265 } else 2266 return false; 2267 } 2268 2269 if (auto *I = dyn_cast<Instruction>(V)) { 2270 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2271 // If the possible ranges don't contain zero, then the value is 2272 // definitely non-zero. 2273 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2274 const APInt ZeroValue(Ty->getBitWidth(), 0); 2275 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2276 return true; 2277 } 2278 } 2279 } 2280 2281 if (isKnownNonZeroFromAssume(V, Q)) 2282 return true; 2283 2284 // Some of the tests below are recursive, so bail out if we hit the limit. 2285 if (Depth++ >= MaxDepth) 2286 return false; 2287 2288 // Check for pointer simplifications. 2289 if (V->getType()->isPointerTy()) { 2290 // Alloca never returns null, malloc might. 2291 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2292 return true; 2293 2294 // A byval, inalloca, or nonnull argument is never null. 2295 if (const Argument *A = dyn_cast<Argument>(V)) 2296 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2297 return true; 2298 2299 // A Load tagged with nonnull metadata is never null. 2300 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2301 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2302 return true; 2303 2304 if (const auto *Call = dyn_cast<CallBase>(V)) { 2305 if (Call->isReturnNonNull()) 2306 return true; 2307 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2308 return isKnownNonZero(RP, Depth, Q); 2309 } 2310 } 2311 2312 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2313 return true; 2314 2315 // Check for recursive pointer simplifications. 2316 if (V->getType()->isPointerTy()) { 2317 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2318 // do not alter the value, or at least not the nullness property of the 2319 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2320 // 2321 // Note that we have to take special care to avoid looking through 2322 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2323 // as casts that can alter the value, e.g., AddrSpaceCasts. 2324 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2325 if (isGEPKnownNonNull(GEP, Depth, Q)) 2326 return true; 2327 2328 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2329 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2330 2331 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2332 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2333 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2334 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2335 } 2336 2337 // Similar to int2ptr above, we can look through ptr2int here if the cast 2338 // is a no-op or an extend and not a truncate. 2339 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2340 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2341 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2342 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2343 2344 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2345 2346 // X | Y != 0 if X != 0 or Y != 0. 2347 Value *X = nullptr, *Y = nullptr; 2348 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2349 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2350 2351 // ext X != 0 if X != 0. 2352 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2353 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2354 2355 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2356 // if the lowest bit is shifted off the end. 2357 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2358 // shl nuw can't remove any non-zero bits. 2359 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2360 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2361 return isKnownNonZero(X, Depth, Q); 2362 2363 KnownBits Known(BitWidth); 2364 computeKnownBits(X, Known, Depth, Q); 2365 if (Known.One[0]) 2366 return true; 2367 } 2368 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2369 // defined if the sign bit is shifted off the end. 2370 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2371 // shr exact can only shift out zero bits. 2372 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2373 if (BO->isExact()) 2374 return isKnownNonZero(X, Depth, Q); 2375 2376 KnownBits Known = computeKnownBits(X, Depth, Q); 2377 if (Known.isNegative()) 2378 return true; 2379 2380 // If the shifter operand is a constant, and all of the bits shifted 2381 // out are known to be zero, and X is known non-zero then at least one 2382 // non-zero bit must remain. 2383 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2384 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2385 // Is there a known one in the portion not shifted out? 2386 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2387 return true; 2388 // Are all the bits to be shifted out known zero? 2389 if (Known.countMinTrailingZeros() >= ShiftVal) 2390 return isKnownNonZero(X, Depth, Q); 2391 } 2392 } 2393 // div exact can only produce a zero if the dividend is zero. 2394 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2395 return isKnownNonZero(X, Depth, Q); 2396 } 2397 // X + Y. 2398 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2399 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2400 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2401 2402 // If X and Y are both non-negative (as signed values) then their sum is not 2403 // zero unless both X and Y are zero. 2404 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2405 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2406 return true; 2407 2408 // If X and Y are both negative (as signed values) then their sum is not 2409 // zero unless both X and Y equal INT_MIN. 2410 if (XKnown.isNegative() && YKnown.isNegative()) { 2411 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2412 // The sign bit of X is set. If some other bit is set then X is not equal 2413 // to INT_MIN. 2414 if (XKnown.One.intersects(Mask)) 2415 return true; 2416 // The sign bit of Y is set. If some other bit is set then Y is not equal 2417 // to INT_MIN. 2418 if (YKnown.One.intersects(Mask)) 2419 return true; 2420 } 2421 2422 // The sum of a non-negative number and a power of two is not zero. 2423 if (XKnown.isNonNegative() && 2424 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2425 return true; 2426 if (YKnown.isNonNegative() && 2427 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2428 return true; 2429 } 2430 // X * Y. 2431 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2432 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2433 // If X and Y are non-zero then so is X * Y as long as the multiplication 2434 // does not overflow. 2435 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2436 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2437 return true; 2438 } 2439 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2440 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2441 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2442 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2443 return true; 2444 } 2445 // PHI 2446 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2447 // Try and detect a recurrence that monotonically increases from a 2448 // starting value, as these are common as induction variables. 2449 if (PN->getNumIncomingValues() == 2) { 2450 Value *Start = PN->getIncomingValue(0); 2451 Value *Induction = PN->getIncomingValue(1); 2452 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2453 std::swap(Start, Induction); 2454 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2455 if (!C->isZero() && !C->isNegative()) { 2456 ConstantInt *X; 2457 if (Q.IIQ.UseInstrInfo && 2458 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2459 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2460 !X->isNegative()) 2461 return true; 2462 } 2463 } 2464 } 2465 // Check if all incoming values are non-zero constant. 2466 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2467 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2468 }); 2469 if (AllNonZeroConstants) 2470 return true; 2471 } 2472 2473 KnownBits Known(BitWidth); 2474 computeKnownBits(V, Known, Depth, Q); 2475 return Known.One != 0; 2476 } 2477 2478 /// Return true if V2 == V1 + X, where X is known non-zero. 2479 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2480 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2481 if (!BO || BO->getOpcode() != Instruction::Add) 2482 return false; 2483 Value *Op = nullptr; 2484 if (V2 == BO->getOperand(0)) 2485 Op = BO->getOperand(1); 2486 else if (V2 == BO->getOperand(1)) 2487 Op = BO->getOperand(0); 2488 else 2489 return false; 2490 return isKnownNonZero(Op, 0, Q); 2491 } 2492 2493 /// Return true if it is known that V1 != V2. 2494 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2495 if (V1 == V2) 2496 return false; 2497 if (V1->getType() != V2->getType()) 2498 // We can't look through casts yet. 2499 return false; 2500 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2501 return true; 2502 2503 if (V1->getType()->isIntOrIntVectorTy()) { 2504 // Are any known bits in V1 contradictory to known bits in V2? If V1 2505 // has a known zero where V2 has a known one, they must not be equal. 2506 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2507 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2508 2509 if (Known1.Zero.intersects(Known2.One) || 2510 Known2.Zero.intersects(Known1.One)) 2511 return true; 2512 } 2513 return false; 2514 } 2515 2516 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2517 /// simplify operations downstream. Mask is known to be zero for bits that V 2518 /// cannot have. 2519 /// 2520 /// This function is defined on values with integer type, values with pointer 2521 /// type, and vectors of integers. In the case 2522 /// where V is a vector, the mask, known zero, and known one values are the 2523 /// same width as the vector element, and the bit is set only if it is true 2524 /// for all of the elements in the vector. 2525 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2526 const Query &Q) { 2527 KnownBits Known(Mask.getBitWidth()); 2528 computeKnownBits(V, Known, Depth, Q); 2529 return Mask.isSubsetOf(Known.Zero); 2530 } 2531 2532 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2533 // Returns the input and lower/upper bounds. 2534 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2535 const APInt *&CLow, const APInt *&CHigh) { 2536 assert(isa<Operator>(Select) && 2537 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2538 "Input should be a Select!"); 2539 2540 const Value *LHS = nullptr, *RHS = nullptr; 2541 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2542 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2543 return false; 2544 2545 if (!match(RHS, m_APInt(CLow))) 2546 return false; 2547 2548 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2549 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2550 if (getInverseMinMaxFlavor(SPF) != SPF2) 2551 return false; 2552 2553 if (!match(RHS2, m_APInt(CHigh))) 2554 return false; 2555 2556 if (SPF == SPF_SMIN) 2557 std::swap(CLow, CHigh); 2558 2559 In = LHS2; 2560 return CLow->sle(*CHigh); 2561 } 2562 2563 /// For vector constants, loop over the elements and find the constant with the 2564 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2565 /// or if any element was not analyzed; otherwise, return the count for the 2566 /// element with the minimum number of sign bits. 2567 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2568 const APInt &DemandedElts, 2569 unsigned TyBits) { 2570 const auto *CV = dyn_cast<Constant>(V); 2571 if (!CV || !CV->getType()->isVectorTy()) 2572 return 0; 2573 2574 unsigned MinSignBits = TyBits; 2575 unsigned NumElts = CV->getType()->getVectorNumElements(); 2576 for (unsigned i = 0; i != NumElts; ++i) { 2577 if (!DemandedElts[i]) 2578 continue; 2579 // If we find a non-ConstantInt, bail out. 2580 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2581 if (!Elt) 2582 return 0; 2583 2584 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2585 } 2586 2587 return MinSignBits; 2588 } 2589 2590 static unsigned ComputeNumSignBitsImpl(const Value *V, 2591 const APInt &DemandedElts, 2592 unsigned Depth, const Query &Q); 2593 2594 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2595 unsigned Depth, const Query &Q) { 2596 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2597 assert(Result > 0 && "At least one sign bit needs to be present!"); 2598 return Result; 2599 } 2600 2601 /// Return the number of times the sign bit of the register is replicated into 2602 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2603 /// (itself), but other cases can give us information. For example, immediately 2604 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2605 /// other, so we return 3. For vectors, return the number of sign bits for the 2606 /// vector element with the minimum number of known sign bits of the demanded 2607 /// elements in the vector specified by DemandedElts. 2608 static unsigned ComputeNumSignBitsImpl(const Value *V, 2609 const APInt &DemandedElts, 2610 unsigned Depth, const Query &Q) { 2611 assert(Depth <= MaxDepth && "Limit Search Depth"); 2612 2613 // We return the minimum number of sign bits that are guaranteed to be present 2614 // in V, so for undef we have to conservatively return 1. We don't have the 2615 // same behavior for poison though -- that's a FIXME today. 2616 2617 Type *Ty = V->getType(); 2618 assert(((Ty->isVectorTy() && 2619 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2620 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2621 "Unexpected vector size"); 2622 2623 Type *ScalarTy = Ty->getScalarType(); 2624 unsigned TyBits = ScalarTy->isPointerTy() ? 2625 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2626 Q.DL.getTypeSizeInBits(ScalarTy); 2627 2628 unsigned Tmp, Tmp2; 2629 unsigned FirstAnswer = 1; 2630 2631 // Note that ConstantInt is handled by the general computeKnownBits case 2632 // below. 2633 2634 if (Depth == MaxDepth) 2635 return 1; // Limit search depth. 2636 2637 if (auto *U = dyn_cast<Operator>(V)) { 2638 switch (Operator::getOpcode(V)) { 2639 default: break; 2640 case Instruction::SExt: 2641 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2642 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2643 2644 case Instruction::SDiv: { 2645 const APInt *Denominator; 2646 // sdiv X, C -> adds log(C) sign bits. 2647 if (match(U->getOperand(1), m_APInt(Denominator))) { 2648 2649 // Ignore non-positive denominator. 2650 if (!Denominator->isStrictlyPositive()) 2651 break; 2652 2653 // Calculate the incoming numerator bits. 2654 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2655 2656 // Add floor(log(C)) bits to the numerator bits. 2657 return std::min(TyBits, NumBits + Denominator->logBase2()); 2658 } 2659 break; 2660 } 2661 2662 case Instruction::SRem: { 2663 const APInt *Denominator; 2664 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2665 // positive constant. This let us put a lower bound on the number of sign 2666 // bits. 2667 if (match(U->getOperand(1), m_APInt(Denominator))) { 2668 2669 // Ignore non-positive denominator. 2670 if (!Denominator->isStrictlyPositive()) 2671 break; 2672 2673 // Calculate the incoming numerator bits. SRem by a positive constant 2674 // can't lower the number of sign bits. 2675 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2676 2677 // Calculate the leading sign bit constraints by examining the 2678 // denominator. Given that the denominator is positive, there are two 2679 // cases: 2680 // 2681 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2682 // (1 << ceilLogBase2(C)). 2683 // 2684 // 2. the numerator is negative. Then the result range is (-C,0] and 2685 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2686 // 2687 // Thus a lower bound on the number of sign bits is `TyBits - 2688 // ceilLogBase2(C)`. 2689 2690 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2691 return std::max(NumrBits, ResBits); 2692 } 2693 break; 2694 } 2695 2696 case Instruction::AShr: { 2697 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2698 // ashr X, C -> adds C sign bits. Vectors too. 2699 const APInt *ShAmt; 2700 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2701 if (ShAmt->uge(TyBits)) 2702 break; // Bad shift. 2703 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2704 Tmp += ShAmtLimited; 2705 if (Tmp > TyBits) Tmp = TyBits; 2706 } 2707 return Tmp; 2708 } 2709 case Instruction::Shl: { 2710 const APInt *ShAmt; 2711 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2712 // shl destroys sign bits. 2713 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2714 if (ShAmt->uge(TyBits) || // Bad shift. 2715 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2716 Tmp2 = ShAmt->getZExtValue(); 2717 return Tmp - Tmp2; 2718 } 2719 break; 2720 } 2721 case Instruction::And: 2722 case Instruction::Or: 2723 case Instruction::Xor: // NOT is handled here. 2724 // Logical binary ops preserve the number of sign bits at the worst. 2725 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2726 if (Tmp != 1) { 2727 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2728 FirstAnswer = std::min(Tmp, Tmp2); 2729 // We computed what we know about the sign bits as our first 2730 // answer. Now proceed to the generic code that uses 2731 // computeKnownBits, and pick whichever answer is better. 2732 } 2733 break; 2734 2735 case Instruction::Select: { 2736 // If we have a clamp pattern, we know that the number of sign bits will 2737 // be the minimum of the clamp min/max range. 2738 const Value *X; 2739 const APInt *CLow, *CHigh; 2740 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2741 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2742 2743 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2744 if (Tmp == 1) break; 2745 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2746 return std::min(Tmp, Tmp2); 2747 } 2748 2749 case Instruction::Add: 2750 // Add can have at most one carry bit. Thus we know that the output 2751 // is, at worst, one more bit than the inputs. 2752 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2753 if (Tmp == 1) break; 2754 2755 // Special case decrementing a value (ADD X, -1): 2756 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2757 if (CRHS->isAllOnesValue()) { 2758 KnownBits Known(TyBits); 2759 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2760 2761 // If the input is known to be 0 or 1, the output is 0/-1, which is 2762 // all sign bits set. 2763 if ((Known.Zero | 1).isAllOnesValue()) 2764 return TyBits; 2765 2766 // If we are subtracting one from a positive number, there is no carry 2767 // out of the result. 2768 if (Known.isNonNegative()) 2769 return Tmp; 2770 } 2771 2772 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2773 if (Tmp2 == 1) break; 2774 return std::min(Tmp, Tmp2) - 1; 2775 2776 case Instruction::Sub: 2777 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2778 if (Tmp2 == 1) break; 2779 2780 // Handle NEG. 2781 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2782 if (CLHS->isNullValue()) { 2783 KnownBits Known(TyBits); 2784 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2785 // If the input is known to be 0 or 1, the output is 0/-1, which is 2786 // all sign bits set. 2787 if ((Known.Zero | 1).isAllOnesValue()) 2788 return TyBits; 2789 2790 // If the input is known to be positive (the sign bit is known clear), 2791 // the output of the NEG has the same number of sign bits as the 2792 // input. 2793 if (Known.isNonNegative()) 2794 return Tmp2; 2795 2796 // Otherwise, we treat this like a SUB. 2797 } 2798 2799 // Sub can have at most one carry bit. Thus we know that the output 2800 // is, at worst, one more bit than the inputs. 2801 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2802 if (Tmp == 1) break; 2803 return std::min(Tmp, Tmp2) - 1; 2804 2805 case Instruction::Mul: { 2806 // The output of the Mul can be at most twice the valid bits in the 2807 // inputs. 2808 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2809 if (SignBitsOp0 == 1) break; 2810 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2811 if (SignBitsOp1 == 1) break; 2812 unsigned OutValidBits = 2813 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2814 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2815 } 2816 2817 case Instruction::PHI: { 2818 const PHINode *PN = cast<PHINode>(U); 2819 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2820 // Don't analyze large in-degree PHIs. 2821 if (NumIncomingValues > 4) break; 2822 // Unreachable blocks may have zero-operand PHI nodes. 2823 if (NumIncomingValues == 0) break; 2824 2825 // Take the minimum of all incoming values. This can't infinitely loop 2826 // because of our depth threshold. 2827 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2828 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2829 if (Tmp == 1) return Tmp; 2830 Tmp = std::min( 2831 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2832 } 2833 return Tmp; 2834 } 2835 2836 case Instruction::Trunc: 2837 // FIXME: it's tricky to do anything useful for this, but it is an 2838 // important case for targets like X86. 2839 break; 2840 2841 case Instruction::ExtractElement: 2842 // Look through extract element. At the moment we keep this simple and 2843 // skip tracking the specific element. But at least we might find 2844 // information valid for all elements of the vector (for example if vector 2845 // is sign extended, shifted, etc). 2846 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2847 2848 case Instruction::ShuffleVector: { 2849 // Collect the minimum number of sign bits that are shared by every vector 2850 // element referenced by the shuffle. 2851 auto *Shuf = cast<ShuffleVectorInst>(U); 2852 APInt DemandedLHS, DemandedRHS; 2853 // For undef elements, we don't know anything about the common state of 2854 // the shuffle result. 2855 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2856 return 1; 2857 Tmp = std::numeric_limits<unsigned>::max(); 2858 if (!!DemandedLHS) { 2859 const Value *LHS = Shuf->getOperand(0); 2860 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2861 } 2862 // If we don't know anything, early out and try computeKnownBits 2863 // fall-back. 2864 if (Tmp == 1) 2865 break; 2866 if (!!DemandedRHS) { 2867 const Value *RHS = Shuf->getOperand(1); 2868 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2869 Tmp = std::min(Tmp, Tmp2); 2870 } 2871 // If we don't know anything, early out and try computeKnownBits 2872 // fall-back. 2873 if (Tmp == 1) 2874 break; 2875 assert(Tmp <= Ty->getScalarSizeInBits() && 2876 "Failed to determine minimum sign bits"); 2877 return Tmp; 2878 } 2879 } 2880 } 2881 2882 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2883 // use this information. 2884 2885 // If we can examine all elements of a vector constant successfully, we're 2886 // done (we can't do any better than that). If not, keep trying. 2887 if (unsigned VecSignBits = 2888 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2889 return VecSignBits; 2890 2891 KnownBits Known(TyBits); 2892 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2893 2894 // If we know that the sign bit is either zero or one, determine the number of 2895 // identical bits in the top of the input value. 2896 return std::max(FirstAnswer, Known.countMinSignBits()); 2897 } 2898 2899 /// This function computes the integer multiple of Base that equals V. 2900 /// If successful, it returns true and returns the multiple in 2901 /// Multiple. If unsuccessful, it returns false. It looks 2902 /// through SExt instructions only if LookThroughSExt is true. 2903 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2904 bool LookThroughSExt, unsigned Depth) { 2905 assert(V && "No Value?"); 2906 assert(Depth <= MaxDepth && "Limit Search Depth"); 2907 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2908 2909 Type *T = V->getType(); 2910 2911 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2912 2913 if (Base == 0) 2914 return false; 2915 2916 if (Base == 1) { 2917 Multiple = V; 2918 return true; 2919 } 2920 2921 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2922 Constant *BaseVal = ConstantInt::get(T, Base); 2923 if (CO && CO == BaseVal) { 2924 // Multiple is 1. 2925 Multiple = ConstantInt::get(T, 1); 2926 return true; 2927 } 2928 2929 if (CI && CI->getZExtValue() % Base == 0) { 2930 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2931 return true; 2932 } 2933 2934 if (Depth == MaxDepth) return false; // Limit search depth. 2935 2936 Operator *I = dyn_cast<Operator>(V); 2937 if (!I) return false; 2938 2939 switch (I->getOpcode()) { 2940 default: break; 2941 case Instruction::SExt: 2942 if (!LookThroughSExt) return false; 2943 // otherwise fall through to ZExt 2944 LLVM_FALLTHROUGH; 2945 case Instruction::ZExt: 2946 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2947 LookThroughSExt, Depth+1); 2948 case Instruction::Shl: 2949 case Instruction::Mul: { 2950 Value *Op0 = I->getOperand(0); 2951 Value *Op1 = I->getOperand(1); 2952 2953 if (I->getOpcode() == Instruction::Shl) { 2954 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2955 if (!Op1CI) return false; 2956 // Turn Op0 << Op1 into Op0 * 2^Op1 2957 APInt Op1Int = Op1CI->getValue(); 2958 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2959 APInt API(Op1Int.getBitWidth(), 0); 2960 API.setBit(BitToSet); 2961 Op1 = ConstantInt::get(V->getContext(), API); 2962 } 2963 2964 Value *Mul0 = nullptr; 2965 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2966 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2967 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2968 if (Op1C->getType()->getPrimitiveSizeInBits() < 2969 MulC->getType()->getPrimitiveSizeInBits()) 2970 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2971 if (Op1C->getType()->getPrimitiveSizeInBits() > 2972 MulC->getType()->getPrimitiveSizeInBits()) 2973 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2974 2975 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2976 Multiple = ConstantExpr::getMul(MulC, Op1C); 2977 return true; 2978 } 2979 2980 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2981 if (Mul0CI->getValue() == 1) { 2982 // V == Base * Op1, so return Op1 2983 Multiple = Op1; 2984 return true; 2985 } 2986 } 2987 2988 Value *Mul1 = nullptr; 2989 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2990 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2991 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2992 if (Op0C->getType()->getPrimitiveSizeInBits() < 2993 MulC->getType()->getPrimitiveSizeInBits()) 2994 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2995 if (Op0C->getType()->getPrimitiveSizeInBits() > 2996 MulC->getType()->getPrimitiveSizeInBits()) 2997 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2998 2999 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3000 Multiple = ConstantExpr::getMul(MulC, Op0C); 3001 return true; 3002 } 3003 3004 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3005 if (Mul1CI->getValue() == 1) { 3006 // V == Base * Op0, so return Op0 3007 Multiple = Op0; 3008 return true; 3009 } 3010 } 3011 } 3012 } 3013 3014 // We could not determine if V is a multiple of Base. 3015 return false; 3016 } 3017 3018 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3019 const TargetLibraryInfo *TLI) { 3020 const Function *F = ICS.getCalledFunction(); 3021 if (!F) 3022 return Intrinsic::not_intrinsic; 3023 3024 if (F->isIntrinsic()) 3025 return F->getIntrinsicID(); 3026 3027 if (!TLI) 3028 return Intrinsic::not_intrinsic; 3029 3030 LibFunc Func; 3031 // We're going to make assumptions on the semantics of the functions, check 3032 // that the target knows that it's available in this environment and it does 3033 // not have local linkage. 3034 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3035 return Intrinsic::not_intrinsic; 3036 3037 if (!ICS.onlyReadsMemory()) 3038 return Intrinsic::not_intrinsic; 3039 3040 // Otherwise check if we have a call to a function that can be turned into a 3041 // vector intrinsic. 3042 switch (Func) { 3043 default: 3044 break; 3045 case LibFunc_sin: 3046 case LibFunc_sinf: 3047 case LibFunc_sinl: 3048 return Intrinsic::sin; 3049 case LibFunc_cos: 3050 case LibFunc_cosf: 3051 case LibFunc_cosl: 3052 return Intrinsic::cos; 3053 case LibFunc_exp: 3054 case LibFunc_expf: 3055 case LibFunc_expl: 3056 return Intrinsic::exp; 3057 case LibFunc_exp2: 3058 case LibFunc_exp2f: 3059 case LibFunc_exp2l: 3060 return Intrinsic::exp2; 3061 case LibFunc_log: 3062 case LibFunc_logf: 3063 case LibFunc_logl: 3064 return Intrinsic::log; 3065 case LibFunc_log10: 3066 case LibFunc_log10f: 3067 case LibFunc_log10l: 3068 return Intrinsic::log10; 3069 case LibFunc_log2: 3070 case LibFunc_log2f: 3071 case LibFunc_log2l: 3072 return Intrinsic::log2; 3073 case LibFunc_fabs: 3074 case LibFunc_fabsf: 3075 case LibFunc_fabsl: 3076 return Intrinsic::fabs; 3077 case LibFunc_fmin: 3078 case LibFunc_fminf: 3079 case LibFunc_fminl: 3080 return Intrinsic::minnum; 3081 case LibFunc_fmax: 3082 case LibFunc_fmaxf: 3083 case LibFunc_fmaxl: 3084 return Intrinsic::maxnum; 3085 case LibFunc_copysign: 3086 case LibFunc_copysignf: 3087 case LibFunc_copysignl: 3088 return Intrinsic::copysign; 3089 case LibFunc_floor: 3090 case LibFunc_floorf: 3091 case LibFunc_floorl: 3092 return Intrinsic::floor; 3093 case LibFunc_ceil: 3094 case LibFunc_ceilf: 3095 case LibFunc_ceill: 3096 return Intrinsic::ceil; 3097 case LibFunc_trunc: 3098 case LibFunc_truncf: 3099 case LibFunc_truncl: 3100 return Intrinsic::trunc; 3101 case LibFunc_rint: 3102 case LibFunc_rintf: 3103 case LibFunc_rintl: 3104 return Intrinsic::rint; 3105 case LibFunc_nearbyint: 3106 case LibFunc_nearbyintf: 3107 case LibFunc_nearbyintl: 3108 return Intrinsic::nearbyint; 3109 case LibFunc_round: 3110 case LibFunc_roundf: 3111 case LibFunc_roundl: 3112 return Intrinsic::round; 3113 case LibFunc_pow: 3114 case LibFunc_powf: 3115 case LibFunc_powl: 3116 return Intrinsic::pow; 3117 case LibFunc_sqrt: 3118 case LibFunc_sqrtf: 3119 case LibFunc_sqrtl: 3120 return Intrinsic::sqrt; 3121 } 3122 3123 return Intrinsic::not_intrinsic; 3124 } 3125 3126 /// Return true if we can prove that the specified FP value is never equal to 3127 /// -0.0. 3128 /// 3129 /// NOTE: this function will need to be revisited when we support non-default 3130 /// rounding modes! 3131 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3132 unsigned Depth) { 3133 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3134 return !CFP->getValueAPF().isNegZero(); 3135 3136 // Limit search depth. 3137 if (Depth == MaxDepth) 3138 return false; 3139 3140 auto *Op = dyn_cast<Operator>(V); 3141 if (!Op) 3142 return false; 3143 3144 // Check if the nsz fast-math flag is set. 3145 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3146 if (FPO->hasNoSignedZeros()) 3147 return true; 3148 3149 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3150 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3151 return true; 3152 3153 // sitofp and uitofp turn into +0.0 for zero. 3154 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3155 return true; 3156 3157 if (auto *Call = dyn_cast<CallInst>(Op)) { 3158 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3159 switch (IID) { 3160 default: 3161 break; 3162 // sqrt(-0.0) = -0.0, no other negative results are possible. 3163 case Intrinsic::sqrt: 3164 case Intrinsic::canonicalize: 3165 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3166 // fabs(x) != -0.0 3167 case Intrinsic::fabs: 3168 return true; 3169 } 3170 } 3171 3172 return false; 3173 } 3174 3175 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3176 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3177 /// bit despite comparing equal. 3178 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3179 const TargetLibraryInfo *TLI, 3180 bool SignBitOnly, 3181 unsigned Depth) { 3182 // TODO: This function does not do the right thing when SignBitOnly is true 3183 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3184 // which flips the sign bits of NaNs. See 3185 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3186 3187 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3188 return !CFP->getValueAPF().isNegative() || 3189 (!SignBitOnly && CFP->getValueAPF().isZero()); 3190 } 3191 3192 // Handle vector of constants. 3193 if (auto *CV = dyn_cast<Constant>(V)) { 3194 if (CV->getType()->isVectorTy()) { 3195 unsigned NumElts = CV->getType()->getVectorNumElements(); 3196 for (unsigned i = 0; i != NumElts; ++i) { 3197 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3198 if (!CFP) 3199 return false; 3200 if (CFP->getValueAPF().isNegative() && 3201 (SignBitOnly || !CFP->getValueAPF().isZero())) 3202 return false; 3203 } 3204 3205 // All non-negative ConstantFPs. 3206 return true; 3207 } 3208 } 3209 3210 if (Depth == MaxDepth) 3211 return false; // Limit search depth. 3212 3213 const Operator *I = dyn_cast<Operator>(V); 3214 if (!I) 3215 return false; 3216 3217 switch (I->getOpcode()) { 3218 default: 3219 break; 3220 // Unsigned integers are always nonnegative. 3221 case Instruction::UIToFP: 3222 return true; 3223 case Instruction::FMul: 3224 // x*x is always non-negative or a NaN. 3225 if (I->getOperand(0) == I->getOperand(1) && 3226 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3227 return true; 3228 3229 LLVM_FALLTHROUGH; 3230 case Instruction::FAdd: 3231 case Instruction::FDiv: 3232 case Instruction::FRem: 3233 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3234 Depth + 1) && 3235 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3236 Depth + 1); 3237 case Instruction::Select: 3238 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3239 Depth + 1) && 3240 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3241 Depth + 1); 3242 case Instruction::FPExt: 3243 case Instruction::FPTrunc: 3244 // Widening/narrowing never change sign. 3245 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3246 Depth + 1); 3247 case Instruction::ExtractElement: 3248 // Look through extract element. At the moment we keep this simple and skip 3249 // tracking the specific element. But at least we might find information 3250 // valid for all elements of the vector. 3251 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3252 Depth + 1); 3253 case Instruction::Call: 3254 const auto *CI = cast<CallInst>(I); 3255 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3256 switch (IID) { 3257 default: 3258 break; 3259 case Intrinsic::maxnum: 3260 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3261 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3262 SignBitOnly, Depth + 1)) || 3263 (isKnownNeverNaN(I->getOperand(1), TLI) && 3264 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3265 SignBitOnly, Depth + 1)); 3266 3267 case Intrinsic::maximum: 3268 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3269 Depth + 1) || 3270 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3271 Depth + 1); 3272 case Intrinsic::minnum: 3273 case Intrinsic::minimum: 3274 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3275 Depth + 1) && 3276 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3277 Depth + 1); 3278 case Intrinsic::exp: 3279 case Intrinsic::exp2: 3280 case Intrinsic::fabs: 3281 return true; 3282 3283 case Intrinsic::sqrt: 3284 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3285 if (!SignBitOnly) 3286 return true; 3287 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3288 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3289 3290 case Intrinsic::powi: 3291 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3292 // powi(x,n) is non-negative if n is even. 3293 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3294 return true; 3295 } 3296 // TODO: This is not correct. Given that exp is an integer, here are the 3297 // ways that pow can return a negative value: 3298 // 3299 // pow(x, exp) --> negative if exp is odd and x is negative. 3300 // pow(-0, exp) --> -inf if exp is negative odd. 3301 // pow(-0, exp) --> -0 if exp is positive odd. 3302 // pow(-inf, exp) --> -0 if exp is negative odd. 3303 // pow(-inf, exp) --> -inf if exp is positive odd. 3304 // 3305 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3306 // but we must return false if x == -0. Unfortunately we do not currently 3307 // have a way of expressing this constraint. See details in 3308 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3309 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3310 Depth + 1); 3311 3312 case Intrinsic::fma: 3313 case Intrinsic::fmuladd: 3314 // x*x+y is non-negative if y is non-negative. 3315 return I->getOperand(0) == I->getOperand(1) && 3316 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3317 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3318 Depth + 1); 3319 } 3320 break; 3321 } 3322 return false; 3323 } 3324 3325 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3326 const TargetLibraryInfo *TLI) { 3327 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3328 } 3329 3330 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3331 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3332 } 3333 3334 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3335 unsigned Depth) { 3336 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3337 3338 // If we're told that infinities won't happen, assume they won't. 3339 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3340 if (FPMathOp->hasNoInfs()) 3341 return true; 3342 3343 // Handle scalar constants. 3344 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3345 return !CFP->isInfinity(); 3346 3347 if (Depth == MaxDepth) 3348 return false; 3349 3350 if (auto *Inst = dyn_cast<Instruction>(V)) { 3351 switch (Inst->getOpcode()) { 3352 case Instruction::Select: { 3353 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3354 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3355 } 3356 case Instruction::UIToFP: 3357 // If the input type fits into the floating type the result is finite. 3358 return ilogb(APFloat::getLargest( 3359 Inst->getType()->getScalarType()->getFltSemantics())) >= 3360 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3361 default: 3362 break; 3363 } 3364 } 3365 3366 // Bail out for constant expressions, but try to handle vector constants. 3367 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3368 return false; 3369 3370 // For vectors, verify that each element is not infinity. 3371 unsigned NumElts = V->getType()->getVectorNumElements(); 3372 for (unsigned i = 0; i != NumElts; ++i) { 3373 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3374 if (!Elt) 3375 return false; 3376 if (isa<UndefValue>(Elt)) 3377 continue; 3378 auto *CElt = dyn_cast<ConstantFP>(Elt); 3379 if (!CElt || CElt->isInfinity()) 3380 return false; 3381 } 3382 // All elements were confirmed non-infinity or undefined. 3383 return true; 3384 } 3385 3386 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3387 unsigned Depth) { 3388 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3389 3390 // If we're told that NaNs won't happen, assume they won't. 3391 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3392 if (FPMathOp->hasNoNaNs()) 3393 return true; 3394 3395 // Handle scalar constants. 3396 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3397 return !CFP->isNaN(); 3398 3399 if (Depth == MaxDepth) 3400 return false; 3401 3402 if (auto *Inst = dyn_cast<Instruction>(V)) { 3403 switch (Inst->getOpcode()) { 3404 case Instruction::FAdd: 3405 case Instruction::FSub: 3406 // Adding positive and negative infinity produces NaN. 3407 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3408 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3409 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3410 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3411 3412 case Instruction::FMul: 3413 // Zero multiplied with infinity produces NaN. 3414 // FIXME: If neither side can be zero fmul never produces NaN. 3415 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3416 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3417 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3418 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3419 3420 case Instruction::FDiv: 3421 case Instruction::FRem: 3422 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3423 return false; 3424 3425 case Instruction::Select: { 3426 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3427 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3428 } 3429 case Instruction::SIToFP: 3430 case Instruction::UIToFP: 3431 return true; 3432 case Instruction::FPTrunc: 3433 case Instruction::FPExt: 3434 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3435 default: 3436 break; 3437 } 3438 } 3439 3440 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3441 switch (II->getIntrinsicID()) { 3442 case Intrinsic::canonicalize: 3443 case Intrinsic::fabs: 3444 case Intrinsic::copysign: 3445 case Intrinsic::exp: 3446 case Intrinsic::exp2: 3447 case Intrinsic::floor: 3448 case Intrinsic::ceil: 3449 case Intrinsic::trunc: 3450 case Intrinsic::rint: 3451 case Intrinsic::nearbyint: 3452 case Intrinsic::round: 3453 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3454 case Intrinsic::sqrt: 3455 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3456 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3457 case Intrinsic::minnum: 3458 case Intrinsic::maxnum: 3459 // If either operand is not NaN, the result is not NaN. 3460 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3461 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3462 default: 3463 return false; 3464 } 3465 } 3466 3467 // Bail out for constant expressions, but try to handle vector constants. 3468 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3469 return false; 3470 3471 // For vectors, verify that each element is not NaN. 3472 unsigned NumElts = V->getType()->getVectorNumElements(); 3473 for (unsigned i = 0; i != NumElts; ++i) { 3474 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3475 if (!Elt) 3476 return false; 3477 if (isa<UndefValue>(Elt)) 3478 continue; 3479 auto *CElt = dyn_cast<ConstantFP>(Elt); 3480 if (!CElt || CElt->isNaN()) 3481 return false; 3482 } 3483 // All elements were confirmed not-NaN or undefined. 3484 return true; 3485 } 3486 3487 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3488 3489 // All byte-wide stores are splatable, even of arbitrary variables. 3490 if (V->getType()->isIntegerTy(8)) 3491 return V; 3492 3493 LLVMContext &Ctx = V->getContext(); 3494 3495 // Undef don't care. 3496 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3497 if (isa<UndefValue>(V)) 3498 return UndefInt8; 3499 3500 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3501 if (!Size) 3502 return UndefInt8; 3503 3504 Constant *C = dyn_cast<Constant>(V); 3505 if (!C) { 3506 // Conceptually, we could handle things like: 3507 // %a = zext i8 %X to i16 3508 // %b = shl i16 %a, 8 3509 // %c = or i16 %a, %b 3510 // but until there is an example that actually needs this, it doesn't seem 3511 // worth worrying about. 3512 return nullptr; 3513 } 3514 3515 // Handle 'null' ConstantArrayZero etc. 3516 if (C->isNullValue()) 3517 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3518 3519 // Constant floating-point values can be handled as integer values if the 3520 // corresponding integer value is "byteable". An important case is 0.0. 3521 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3522 Type *Ty = nullptr; 3523 if (CFP->getType()->isHalfTy()) 3524 Ty = Type::getInt16Ty(Ctx); 3525 else if (CFP->getType()->isFloatTy()) 3526 Ty = Type::getInt32Ty(Ctx); 3527 else if (CFP->getType()->isDoubleTy()) 3528 Ty = Type::getInt64Ty(Ctx); 3529 // Don't handle long double formats, which have strange constraints. 3530 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3531 : nullptr; 3532 } 3533 3534 // We can handle constant integers that are multiple of 8 bits. 3535 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3536 if (CI->getBitWidth() % 8 == 0) { 3537 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3538 if (!CI->getValue().isSplat(8)) 3539 return nullptr; 3540 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3541 } 3542 } 3543 3544 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3545 if (CE->getOpcode() == Instruction::IntToPtr) { 3546 auto PS = DL.getPointerSizeInBits( 3547 cast<PointerType>(CE->getType())->getAddressSpace()); 3548 return isBytewiseValue( 3549 ConstantExpr::getIntegerCast(CE->getOperand(0), 3550 Type::getIntNTy(Ctx, PS), false), 3551 DL); 3552 } 3553 } 3554 3555 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3556 if (LHS == RHS) 3557 return LHS; 3558 if (!LHS || !RHS) 3559 return nullptr; 3560 if (LHS == UndefInt8) 3561 return RHS; 3562 if (RHS == UndefInt8) 3563 return LHS; 3564 return nullptr; 3565 }; 3566 3567 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3568 Value *Val = UndefInt8; 3569 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3570 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3571 return nullptr; 3572 return Val; 3573 } 3574 3575 if (isa<ConstantAggregate>(C)) { 3576 Value *Val = UndefInt8; 3577 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3578 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3579 return nullptr; 3580 return Val; 3581 } 3582 3583 // Don't try to handle the handful of other constants. 3584 return nullptr; 3585 } 3586 3587 // This is the recursive version of BuildSubAggregate. It takes a few different 3588 // arguments. Idxs is the index within the nested struct From that we are 3589 // looking at now (which is of type IndexedType). IdxSkip is the number of 3590 // indices from Idxs that should be left out when inserting into the resulting 3591 // struct. To is the result struct built so far, new insertvalue instructions 3592 // build on that. 3593 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3594 SmallVectorImpl<unsigned> &Idxs, 3595 unsigned IdxSkip, 3596 Instruction *InsertBefore) { 3597 StructType *STy = dyn_cast<StructType>(IndexedType); 3598 if (STy) { 3599 // Save the original To argument so we can modify it 3600 Value *OrigTo = To; 3601 // General case, the type indexed by Idxs is a struct 3602 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3603 // Process each struct element recursively 3604 Idxs.push_back(i); 3605 Value *PrevTo = To; 3606 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3607 InsertBefore); 3608 Idxs.pop_back(); 3609 if (!To) { 3610 // Couldn't find any inserted value for this index? Cleanup 3611 while (PrevTo != OrigTo) { 3612 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3613 PrevTo = Del->getAggregateOperand(); 3614 Del->eraseFromParent(); 3615 } 3616 // Stop processing elements 3617 break; 3618 } 3619 } 3620 // If we successfully found a value for each of our subaggregates 3621 if (To) 3622 return To; 3623 } 3624 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3625 // the struct's elements had a value that was inserted directly. In the latter 3626 // case, perhaps we can't determine each of the subelements individually, but 3627 // we might be able to find the complete struct somewhere. 3628 3629 // Find the value that is at that particular spot 3630 Value *V = FindInsertedValue(From, Idxs); 3631 3632 if (!V) 3633 return nullptr; 3634 3635 // Insert the value in the new (sub) aggregate 3636 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3637 "tmp", InsertBefore); 3638 } 3639 3640 // This helper takes a nested struct and extracts a part of it (which is again a 3641 // struct) into a new value. For example, given the struct: 3642 // { a, { b, { c, d }, e } } 3643 // and the indices "1, 1" this returns 3644 // { c, d }. 3645 // 3646 // It does this by inserting an insertvalue for each element in the resulting 3647 // struct, as opposed to just inserting a single struct. This will only work if 3648 // each of the elements of the substruct are known (ie, inserted into From by an 3649 // insertvalue instruction somewhere). 3650 // 3651 // All inserted insertvalue instructions are inserted before InsertBefore 3652 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3653 Instruction *InsertBefore) { 3654 assert(InsertBefore && "Must have someplace to insert!"); 3655 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3656 idx_range); 3657 Value *To = UndefValue::get(IndexedType); 3658 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3659 unsigned IdxSkip = Idxs.size(); 3660 3661 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3662 } 3663 3664 /// Given an aggregate and a sequence of indices, see if the scalar value 3665 /// indexed is already around as a register, for example if it was inserted 3666 /// directly into the aggregate. 3667 /// 3668 /// If InsertBefore is not null, this function will duplicate (modified) 3669 /// insertvalues when a part of a nested struct is extracted. 3670 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3671 Instruction *InsertBefore) { 3672 // Nothing to index? Just return V then (this is useful at the end of our 3673 // recursion). 3674 if (idx_range.empty()) 3675 return V; 3676 // We have indices, so V should have an indexable type. 3677 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3678 "Not looking at a struct or array?"); 3679 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3680 "Invalid indices for type?"); 3681 3682 if (Constant *C = dyn_cast<Constant>(V)) { 3683 C = C->getAggregateElement(idx_range[0]); 3684 if (!C) return nullptr; 3685 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3686 } 3687 3688 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3689 // Loop the indices for the insertvalue instruction in parallel with the 3690 // requested indices 3691 const unsigned *req_idx = idx_range.begin(); 3692 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3693 i != e; ++i, ++req_idx) { 3694 if (req_idx == idx_range.end()) { 3695 // We can't handle this without inserting insertvalues 3696 if (!InsertBefore) 3697 return nullptr; 3698 3699 // The requested index identifies a part of a nested aggregate. Handle 3700 // this specially. For example, 3701 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3702 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3703 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3704 // This can be changed into 3705 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3706 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3707 // which allows the unused 0,0 element from the nested struct to be 3708 // removed. 3709 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3710 InsertBefore); 3711 } 3712 3713 // This insert value inserts something else than what we are looking for. 3714 // See if the (aggregate) value inserted into has the value we are 3715 // looking for, then. 3716 if (*req_idx != *i) 3717 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3718 InsertBefore); 3719 } 3720 // If we end up here, the indices of the insertvalue match with those 3721 // requested (though possibly only partially). Now we recursively look at 3722 // the inserted value, passing any remaining indices. 3723 return FindInsertedValue(I->getInsertedValueOperand(), 3724 makeArrayRef(req_idx, idx_range.end()), 3725 InsertBefore); 3726 } 3727 3728 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3729 // If we're extracting a value from an aggregate that was extracted from 3730 // something else, we can extract from that something else directly instead. 3731 // However, we will need to chain I's indices with the requested indices. 3732 3733 // Calculate the number of indices required 3734 unsigned size = I->getNumIndices() + idx_range.size(); 3735 // Allocate some space to put the new indices in 3736 SmallVector<unsigned, 5> Idxs; 3737 Idxs.reserve(size); 3738 // Add indices from the extract value instruction 3739 Idxs.append(I->idx_begin(), I->idx_end()); 3740 3741 // Add requested indices 3742 Idxs.append(idx_range.begin(), idx_range.end()); 3743 3744 assert(Idxs.size() == size 3745 && "Number of indices added not correct?"); 3746 3747 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3748 } 3749 // Otherwise, we don't know (such as, extracting from a function return value 3750 // or load instruction) 3751 return nullptr; 3752 } 3753 3754 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3755 unsigned CharSize) { 3756 // Make sure the GEP has exactly three arguments. 3757 if (GEP->getNumOperands() != 3) 3758 return false; 3759 3760 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3761 // CharSize. 3762 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3763 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3764 return false; 3765 3766 // Check to make sure that the first operand of the GEP is an integer and 3767 // has value 0 so that we are sure we're indexing into the initializer. 3768 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3769 if (!FirstIdx || !FirstIdx->isZero()) 3770 return false; 3771 3772 return true; 3773 } 3774 3775 bool llvm::getConstantDataArrayInfo(const Value *V, 3776 ConstantDataArraySlice &Slice, 3777 unsigned ElementSize, uint64_t Offset) { 3778 assert(V); 3779 3780 // Look through bitcast instructions and geps. 3781 V = V->stripPointerCasts(); 3782 3783 // If the value is a GEP instruction or constant expression, treat it as an 3784 // offset. 3785 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3786 // The GEP operator should be based on a pointer to string constant, and is 3787 // indexing into the string constant. 3788 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3789 return false; 3790 3791 // If the second index isn't a ConstantInt, then this is a variable index 3792 // into the array. If this occurs, we can't say anything meaningful about 3793 // the string. 3794 uint64_t StartIdx = 0; 3795 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3796 StartIdx = CI->getZExtValue(); 3797 else 3798 return false; 3799 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3800 StartIdx + Offset); 3801 } 3802 3803 // The GEP instruction, constant or instruction, must reference a global 3804 // variable that is a constant and is initialized. The referenced constant 3805 // initializer is the array that we'll use for optimization. 3806 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3807 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3808 return false; 3809 3810 const ConstantDataArray *Array; 3811 ArrayType *ArrayTy; 3812 if (GV->getInitializer()->isNullValue()) { 3813 Type *GVTy = GV->getValueType(); 3814 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3815 // A zeroinitializer for the array; there is no ConstantDataArray. 3816 Array = nullptr; 3817 } else { 3818 const DataLayout &DL = GV->getParent()->getDataLayout(); 3819 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3820 uint64_t Length = SizeInBytes / (ElementSize / 8); 3821 if (Length <= Offset) 3822 return false; 3823 3824 Slice.Array = nullptr; 3825 Slice.Offset = 0; 3826 Slice.Length = Length - Offset; 3827 return true; 3828 } 3829 } else { 3830 // This must be a ConstantDataArray. 3831 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3832 if (!Array) 3833 return false; 3834 ArrayTy = Array->getType(); 3835 } 3836 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3837 return false; 3838 3839 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3840 if (Offset > NumElts) 3841 return false; 3842 3843 Slice.Array = Array; 3844 Slice.Offset = Offset; 3845 Slice.Length = NumElts - Offset; 3846 return true; 3847 } 3848 3849 /// This function computes the length of a null-terminated C string pointed to 3850 /// by V. If successful, it returns true and returns the string in Str. 3851 /// If unsuccessful, it returns false. 3852 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3853 uint64_t Offset, bool TrimAtNul) { 3854 ConstantDataArraySlice Slice; 3855 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3856 return false; 3857 3858 if (Slice.Array == nullptr) { 3859 if (TrimAtNul) { 3860 Str = StringRef(); 3861 return true; 3862 } 3863 if (Slice.Length == 1) { 3864 Str = StringRef("", 1); 3865 return true; 3866 } 3867 // We cannot instantiate a StringRef as we do not have an appropriate string 3868 // of 0s at hand. 3869 return false; 3870 } 3871 3872 // Start out with the entire array in the StringRef. 3873 Str = Slice.Array->getAsString(); 3874 // Skip over 'offset' bytes. 3875 Str = Str.substr(Slice.Offset); 3876 3877 if (TrimAtNul) { 3878 // Trim off the \0 and anything after it. If the array is not nul 3879 // terminated, we just return the whole end of string. The client may know 3880 // some other way that the string is length-bound. 3881 Str = Str.substr(0, Str.find('\0')); 3882 } 3883 return true; 3884 } 3885 3886 // These next two are very similar to the above, but also look through PHI 3887 // nodes. 3888 // TODO: See if we can integrate these two together. 3889 3890 /// If we can compute the length of the string pointed to by 3891 /// the specified pointer, return 'len+1'. If we can't, return 0. 3892 static uint64_t GetStringLengthH(const Value *V, 3893 SmallPtrSetImpl<const PHINode*> &PHIs, 3894 unsigned CharSize) { 3895 // Look through noop bitcast instructions. 3896 V = V->stripPointerCasts(); 3897 3898 // If this is a PHI node, there are two cases: either we have already seen it 3899 // or we haven't. 3900 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3901 if (!PHIs.insert(PN).second) 3902 return ~0ULL; // already in the set. 3903 3904 // If it was new, see if all the input strings are the same length. 3905 uint64_t LenSoFar = ~0ULL; 3906 for (Value *IncValue : PN->incoming_values()) { 3907 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3908 if (Len == 0) return 0; // Unknown length -> unknown. 3909 3910 if (Len == ~0ULL) continue; 3911 3912 if (Len != LenSoFar && LenSoFar != ~0ULL) 3913 return 0; // Disagree -> unknown. 3914 LenSoFar = Len; 3915 } 3916 3917 // Success, all agree. 3918 return LenSoFar; 3919 } 3920 3921 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3922 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3923 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3924 if (Len1 == 0) return 0; 3925 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3926 if (Len2 == 0) return 0; 3927 if (Len1 == ~0ULL) return Len2; 3928 if (Len2 == ~0ULL) return Len1; 3929 if (Len1 != Len2) return 0; 3930 return Len1; 3931 } 3932 3933 // Otherwise, see if we can read the string. 3934 ConstantDataArraySlice Slice; 3935 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3936 return 0; 3937 3938 if (Slice.Array == nullptr) 3939 return 1; 3940 3941 // Search for nul characters 3942 unsigned NullIndex = 0; 3943 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3944 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3945 break; 3946 } 3947 3948 return NullIndex + 1; 3949 } 3950 3951 /// If we can compute the length of the string pointed to by 3952 /// the specified pointer, return 'len+1'. If we can't, return 0. 3953 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3954 if (!V->getType()->isPointerTy()) 3955 return 0; 3956 3957 SmallPtrSet<const PHINode*, 32> PHIs; 3958 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3959 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3960 // an empty string as a length. 3961 return Len == ~0ULL ? 1 : Len; 3962 } 3963 3964 const Value * 3965 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3966 bool MustPreserveNullness) { 3967 assert(Call && 3968 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3969 if (const Value *RV = Call->getReturnedArgOperand()) 3970 return RV; 3971 // This can be used only as a aliasing property. 3972 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3973 Call, MustPreserveNullness)) 3974 return Call->getArgOperand(0); 3975 return nullptr; 3976 } 3977 3978 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3979 const CallBase *Call, bool MustPreserveNullness) { 3980 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3981 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3982 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3983 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3984 (!MustPreserveNullness && 3985 Call->getIntrinsicID() == Intrinsic::ptrmask); 3986 } 3987 3988 /// \p PN defines a loop-variant pointer to an object. Check if the 3989 /// previous iteration of the loop was referring to the same object as \p PN. 3990 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3991 const LoopInfo *LI) { 3992 // Find the loop-defined value. 3993 Loop *L = LI->getLoopFor(PN->getParent()); 3994 if (PN->getNumIncomingValues() != 2) 3995 return true; 3996 3997 // Find the value from previous iteration. 3998 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3999 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4000 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4001 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4002 return true; 4003 4004 // If a new pointer is loaded in the loop, the pointer references a different 4005 // object in every iteration. E.g.: 4006 // for (i) 4007 // int *p = a[i]; 4008 // ... 4009 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4010 if (!L->isLoopInvariant(Load->getPointerOperand())) 4011 return false; 4012 return true; 4013 } 4014 4015 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4016 unsigned MaxLookup) { 4017 if (!V->getType()->isPointerTy()) 4018 return V; 4019 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4020 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4021 V = GEP->getPointerOperand(); 4022 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4023 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4024 V = cast<Operator>(V)->getOperand(0); 4025 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4026 if (GA->isInterposable()) 4027 return V; 4028 V = GA->getAliasee(); 4029 } else if (isa<AllocaInst>(V)) { 4030 // An alloca can't be further simplified. 4031 return V; 4032 } else { 4033 if (auto *Call = dyn_cast<CallBase>(V)) { 4034 // CaptureTracking can know about special capturing properties of some 4035 // intrinsics like launder.invariant.group, that can't be expressed with 4036 // the attributes, but have properties like returning aliasing pointer. 4037 // Because some analysis may assume that nocaptured pointer is not 4038 // returned from some special intrinsic (because function would have to 4039 // be marked with returns attribute), it is crucial to use this function 4040 // because it should be in sync with CaptureTracking. Not using it may 4041 // cause weird miscompilations where 2 aliasing pointers are assumed to 4042 // noalias. 4043 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4044 V = RP; 4045 continue; 4046 } 4047 } 4048 4049 // See if InstructionSimplify knows any relevant tricks. 4050 if (Instruction *I = dyn_cast<Instruction>(V)) 4051 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4052 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4053 V = Simplified; 4054 continue; 4055 } 4056 4057 return V; 4058 } 4059 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4060 } 4061 return V; 4062 } 4063 4064 void llvm::GetUnderlyingObjects(const Value *V, 4065 SmallVectorImpl<const Value *> &Objects, 4066 const DataLayout &DL, LoopInfo *LI, 4067 unsigned MaxLookup) { 4068 SmallPtrSet<const Value *, 4> Visited; 4069 SmallVector<const Value *, 4> Worklist; 4070 Worklist.push_back(V); 4071 do { 4072 const Value *P = Worklist.pop_back_val(); 4073 P = GetUnderlyingObject(P, DL, MaxLookup); 4074 4075 if (!Visited.insert(P).second) 4076 continue; 4077 4078 if (auto *SI = dyn_cast<SelectInst>(P)) { 4079 Worklist.push_back(SI->getTrueValue()); 4080 Worklist.push_back(SI->getFalseValue()); 4081 continue; 4082 } 4083 4084 if (auto *PN = dyn_cast<PHINode>(P)) { 4085 // If this PHI changes the underlying object in every iteration of the 4086 // loop, don't look through it. Consider: 4087 // int **A; 4088 // for (i) { 4089 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4090 // Curr = A[i]; 4091 // *Prev, *Curr; 4092 // 4093 // Prev is tracking Curr one iteration behind so they refer to different 4094 // underlying objects. 4095 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4096 isSameUnderlyingObjectInLoop(PN, LI)) 4097 for (Value *IncValue : PN->incoming_values()) 4098 Worklist.push_back(IncValue); 4099 continue; 4100 } 4101 4102 Objects.push_back(P); 4103 } while (!Worklist.empty()); 4104 } 4105 4106 /// This is the function that does the work of looking through basic 4107 /// ptrtoint+arithmetic+inttoptr sequences. 4108 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4109 do { 4110 if (const Operator *U = dyn_cast<Operator>(V)) { 4111 // If we find a ptrtoint, we can transfer control back to the 4112 // regular getUnderlyingObjectFromInt. 4113 if (U->getOpcode() == Instruction::PtrToInt) 4114 return U->getOperand(0); 4115 // If we find an add of a constant, a multiplied value, or a phi, it's 4116 // likely that the other operand will lead us to the base 4117 // object. We don't have to worry about the case where the 4118 // object address is somehow being computed by the multiply, 4119 // because our callers only care when the result is an 4120 // identifiable object. 4121 if (U->getOpcode() != Instruction::Add || 4122 (!isa<ConstantInt>(U->getOperand(1)) && 4123 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4124 !isa<PHINode>(U->getOperand(1)))) 4125 return V; 4126 V = U->getOperand(0); 4127 } else { 4128 return V; 4129 } 4130 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4131 } while (true); 4132 } 4133 4134 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4135 /// ptrtoint+arithmetic+inttoptr sequences. 4136 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4137 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4138 SmallVectorImpl<Value *> &Objects, 4139 const DataLayout &DL) { 4140 SmallPtrSet<const Value *, 16> Visited; 4141 SmallVector<const Value *, 4> Working(1, V); 4142 do { 4143 V = Working.pop_back_val(); 4144 4145 SmallVector<const Value *, 4> Objs; 4146 GetUnderlyingObjects(V, Objs, DL); 4147 4148 for (const Value *V : Objs) { 4149 if (!Visited.insert(V).second) 4150 continue; 4151 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4152 const Value *O = 4153 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4154 if (O->getType()->isPointerTy()) { 4155 Working.push_back(O); 4156 continue; 4157 } 4158 } 4159 // If GetUnderlyingObjects fails to find an identifiable object, 4160 // getUnderlyingObjectsForCodeGen also fails for safety. 4161 if (!isIdentifiedObject(V)) { 4162 Objects.clear(); 4163 return false; 4164 } 4165 Objects.push_back(const_cast<Value *>(V)); 4166 } 4167 } while (!Working.empty()); 4168 return true; 4169 } 4170 4171 /// Return true if the only users of this pointer are lifetime markers. 4172 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4173 for (const User *U : V->users()) { 4174 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4175 if (!II) return false; 4176 4177 if (!II->isLifetimeStartOrEnd()) 4178 return false; 4179 } 4180 return true; 4181 } 4182 4183 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4184 if (!LI.isUnordered()) 4185 return true; 4186 const Function &F = *LI.getFunction(); 4187 // Speculative load may create a race that did not exist in the source. 4188 return F.hasFnAttribute(Attribute::SanitizeThread) || 4189 // Speculative load may load data from dirty regions. 4190 F.hasFnAttribute(Attribute::SanitizeAddress) || 4191 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4192 } 4193 4194 4195 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4196 const Instruction *CtxI, 4197 const DominatorTree *DT) { 4198 const Operator *Inst = dyn_cast<Operator>(V); 4199 if (!Inst) 4200 return false; 4201 4202 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4203 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4204 if (C->canTrap()) 4205 return false; 4206 4207 switch (Inst->getOpcode()) { 4208 default: 4209 return true; 4210 case Instruction::UDiv: 4211 case Instruction::URem: { 4212 // x / y is undefined if y == 0. 4213 const APInt *V; 4214 if (match(Inst->getOperand(1), m_APInt(V))) 4215 return *V != 0; 4216 return false; 4217 } 4218 case Instruction::SDiv: 4219 case Instruction::SRem: { 4220 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4221 const APInt *Numerator, *Denominator; 4222 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4223 return false; 4224 // We cannot hoist this division if the denominator is 0. 4225 if (*Denominator == 0) 4226 return false; 4227 // It's safe to hoist if the denominator is not 0 or -1. 4228 if (*Denominator != -1) 4229 return true; 4230 // At this point we know that the denominator is -1. It is safe to hoist as 4231 // long we know that the numerator is not INT_MIN. 4232 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4233 return !Numerator->isMinSignedValue(); 4234 // The numerator *might* be MinSignedValue. 4235 return false; 4236 } 4237 case Instruction::Load: { 4238 const LoadInst *LI = cast<LoadInst>(Inst); 4239 if (mustSuppressSpeculation(*LI)) 4240 return false; 4241 const DataLayout &DL = LI->getModule()->getDataLayout(); 4242 return isDereferenceableAndAlignedPointer( 4243 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4244 DL, CtxI, DT); 4245 } 4246 case Instruction::Call: { 4247 auto *CI = cast<const CallInst>(Inst); 4248 const Function *Callee = CI->getCalledFunction(); 4249 4250 // The called function could have undefined behavior or side-effects, even 4251 // if marked readnone nounwind. 4252 return Callee && Callee->isSpeculatable(); 4253 } 4254 case Instruction::VAArg: 4255 case Instruction::Alloca: 4256 case Instruction::Invoke: 4257 case Instruction::CallBr: 4258 case Instruction::PHI: 4259 case Instruction::Store: 4260 case Instruction::Ret: 4261 case Instruction::Br: 4262 case Instruction::IndirectBr: 4263 case Instruction::Switch: 4264 case Instruction::Unreachable: 4265 case Instruction::Fence: 4266 case Instruction::AtomicRMW: 4267 case Instruction::AtomicCmpXchg: 4268 case Instruction::LandingPad: 4269 case Instruction::Resume: 4270 case Instruction::CatchSwitch: 4271 case Instruction::CatchPad: 4272 case Instruction::CatchRet: 4273 case Instruction::CleanupPad: 4274 case Instruction::CleanupRet: 4275 return false; // Misc instructions which have effects 4276 } 4277 } 4278 4279 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4280 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4281 } 4282 4283 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4284 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4285 switch (OR) { 4286 case ConstantRange::OverflowResult::MayOverflow: 4287 return OverflowResult::MayOverflow; 4288 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4289 return OverflowResult::AlwaysOverflowsLow; 4290 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4291 return OverflowResult::AlwaysOverflowsHigh; 4292 case ConstantRange::OverflowResult::NeverOverflows: 4293 return OverflowResult::NeverOverflows; 4294 } 4295 llvm_unreachable("Unknown OverflowResult"); 4296 } 4297 4298 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4299 static ConstantRange computeConstantRangeIncludingKnownBits( 4300 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4301 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4302 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4303 KnownBits Known = computeKnownBits( 4304 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4305 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4306 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4307 ConstantRange::PreferredRangeType RangeType = 4308 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4309 return CR1.intersectWith(CR2, RangeType); 4310 } 4311 4312 OverflowResult llvm::computeOverflowForUnsignedMul( 4313 const Value *LHS, const Value *RHS, const DataLayout &DL, 4314 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4315 bool UseInstrInfo) { 4316 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4317 nullptr, UseInstrInfo); 4318 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4319 nullptr, UseInstrInfo); 4320 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4321 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4322 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4323 } 4324 4325 OverflowResult 4326 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4327 const DataLayout &DL, AssumptionCache *AC, 4328 const Instruction *CxtI, 4329 const DominatorTree *DT, bool UseInstrInfo) { 4330 // Multiplying n * m significant bits yields a result of n + m significant 4331 // bits. If the total number of significant bits does not exceed the 4332 // result bit width (minus 1), there is no overflow. 4333 // This means if we have enough leading sign bits in the operands 4334 // we can guarantee that the result does not overflow. 4335 // Ref: "Hacker's Delight" by Henry Warren 4336 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4337 4338 // Note that underestimating the number of sign bits gives a more 4339 // conservative answer. 4340 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4341 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4342 4343 // First handle the easy case: if we have enough sign bits there's 4344 // definitely no overflow. 4345 if (SignBits > BitWidth + 1) 4346 return OverflowResult::NeverOverflows; 4347 4348 // There are two ambiguous cases where there can be no overflow: 4349 // SignBits == BitWidth + 1 and 4350 // SignBits == BitWidth 4351 // The second case is difficult to check, therefore we only handle the 4352 // first case. 4353 if (SignBits == BitWidth + 1) { 4354 // It overflows only when both arguments are negative and the true 4355 // product is exactly the minimum negative number. 4356 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4357 // For simplicity we just check if at least one side is not negative. 4358 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4359 nullptr, UseInstrInfo); 4360 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4361 nullptr, UseInstrInfo); 4362 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4363 return OverflowResult::NeverOverflows; 4364 } 4365 return OverflowResult::MayOverflow; 4366 } 4367 4368 OverflowResult llvm::computeOverflowForUnsignedAdd( 4369 const Value *LHS, const Value *RHS, const DataLayout &DL, 4370 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4371 bool UseInstrInfo) { 4372 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4373 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4374 nullptr, UseInstrInfo); 4375 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4376 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4377 nullptr, UseInstrInfo); 4378 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4379 } 4380 4381 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4382 const Value *RHS, 4383 const AddOperator *Add, 4384 const DataLayout &DL, 4385 AssumptionCache *AC, 4386 const Instruction *CxtI, 4387 const DominatorTree *DT) { 4388 if (Add && Add->hasNoSignedWrap()) { 4389 return OverflowResult::NeverOverflows; 4390 } 4391 4392 // If LHS and RHS each have at least two sign bits, the addition will look 4393 // like 4394 // 4395 // XX..... + 4396 // YY..... 4397 // 4398 // If the carry into the most significant position is 0, X and Y can't both 4399 // be 1 and therefore the carry out of the addition is also 0. 4400 // 4401 // If the carry into the most significant position is 1, X and Y can't both 4402 // be 0 and therefore the carry out of the addition is also 1. 4403 // 4404 // Since the carry into the most significant position is always equal to 4405 // the carry out of the addition, there is no signed overflow. 4406 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4407 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4408 return OverflowResult::NeverOverflows; 4409 4410 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4411 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4412 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4413 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4414 OverflowResult OR = 4415 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4416 if (OR != OverflowResult::MayOverflow) 4417 return OR; 4418 4419 // The remaining code needs Add to be available. Early returns if not so. 4420 if (!Add) 4421 return OverflowResult::MayOverflow; 4422 4423 // If the sign of Add is the same as at least one of the operands, this add 4424 // CANNOT overflow. If this can be determined from the known bits of the 4425 // operands the above signedAddMayOverflow() check will have already done so. 4426 // The only other way to improve on the known bits is from an assumption, so 4427 // call computeKnownBitsFromAssume() directly. 4428 bool LHSOrRHSKnownNonNegative = 4429 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4430 bool LHSOrRHSKnownNegative = 4431 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4432 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4433 KnownBits AddKnown(LHSRange.getBitWidth()); 4434 computeKnownBitsFromAssume( 4435 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4436 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4437 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4438 return OverflowResult::NeverOverflows; 4439 } 4440 4441 return OverflowResult::MayOverflow; 4442 } 4443 4444 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4445 const Value *RHS, 4446 const DataLayout &DL, 4447 AssumptionCache *AC, 4448 const Instruction *CxtI, 4449 const DominatorTree *DT) { 4450 // Checking for conditions implied by dominating conditions may be expensive. 4451 // Limit it to usub_with_overflow calls for now. 4452 if (match(CxtI, 4453 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4454 if (auto C = 4455 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4456 if (*C) 4457 return OverflowResult::NeverOverflows; 4458 return OverflowResult::AlwaysOverflowsLow; 4459 } 4460 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4461 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4462 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4463 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4464 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4465 } 4466 4467 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4468 const Value *RHS, 4469 const DataLayout &DL, 4470 AssumptionCache *AC, 4471 const Instruction *CxtI, 4472 const DominatorTree *DT) { 4473 // If LHS and RHS each have at least two sign bits, the subtraction 4474 // cannot overflow. 4475 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4476 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4477 return OverflowResult::NeverOverflows; 4478 4479 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4480 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4481 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4482 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4483 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4484 } 4485 4486 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4487 const DominatorTree &DT) { 4488 SmallVector<const BranchInst *, 2> GuardingBranches; 4489 SmallVector<const ExtractValueInst *, 2> Results; 4490 4491 for (const User *U : WO->users()) { 4492 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4493 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4494 4495 if (EVI->getIndices()[0] == 0) 4496 Results.push_back(EVI); 4497 else { 4498 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4499 4500 for (const auto *U : EVI->users()) 4501 if (const auto *B = dyn_cast<BranchInst>(U)) { 4502 assert(B->isConditional() && "How else is it using an i1?"); 4503 GuardingBranches.push_back(B); 4504 } 4505 } 4506 } else { 4507 // We are using the aggregate directly in a way we don't want to analyze 4508 // here (storing it to a global, say). 4509 return false; 4510 } 4511 } 4512 4513 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4514 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4515 if (!NoWrapEdge.isSingleEdge()) 4516 return false; 4517 4518 // Check if all users of the add are provably no-wrap. 4519 for (const auto *Result : Results) { 4520 // If the extractvalue itself is not executed on overflow, the we don't 4521 // need to check each use separately, since domination is transitive. 4522 if (DT.dominates(NoWrapEdge, Result->getParent())) 4523 continue; 4524 4525 for (auto &RU : Result->uses()) 4526 if (!DT.dominates(NoWrapEdge, RU)) 4527 return false; 4528 } 4529 4530 return true; 4531 }; 4532 4533 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4534 } 4535 4536 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4537 const Instruction *CtxI, 4538 const DominatorTree *DT) { 4539 // If the value is a freeze instruction, then it can never 4540 // be undef or poison. 4541 if (isa<FreezeInst>(V)) 4542 return true; 4543 // TODO: Some instructions are guaranteed to return neither undef 4544 // nor poison if their arguments are not poison/undef. 4545 4546 // TODO: Deal with other Constant subclasses. 4547 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4548 return true; 4549 4550 if (auto PN = dyn_cast<PHINode>(V)) { 4551 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4552 return isa<ConstantInt>(U.get()); 4553 })) 4554 return true; 4555 } 4556 4557 if (auto II = dyn_cast<ICmpInst>(V)) { 4558 if (llvm::all_of(II->operands(), [](const Value *V) { 4559 return isGuaranteedNotToBeUndefOrPoison(V); 4560 })) 4561 return true; 4562 } 4563 4564 if (auto I = dyn_cast<Instruction>(V)) { 4565 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4566 // Note: once we have an agreement that poison is a value-wise concept, 4567 // we can remove the isIntegerTy(1) constraint. 4568 return true; 4569 } 4570 4571 // CxtI may be null or a cloned instruction. 4572 if (!CtxI || !CtxI->getParent() || !DT) 4573 return false; 4574 4575 // If V is used as a branch condition before reaching CtxI, V cannot be 4576 // undef or poison. 4577 // br V, BB1, BB2 4578 // BB1: 4579 // CtxI ; V cannot be undef or poison here 4580 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4581 while (Dominator) { 4582 auto *TI = Dominator->getBlock()->getTerminator(); 4583 4584 if (auto BI = dyn_cast<BranchInst>(TI)) { 4585 if (BI->isConditional() && BI->getCondition() == V) 4586 return true; 4587 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4588 if (SI->getCondition() == V) 4589 return true; 4590 } 4591 4592 Dominator = Dominator->getIDom(); 4593 } 4594 4595 return false; 4596 } 4597 4598 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4599 const DataLayout &DL, 4600 AssumptionCache *AC, 4601 const Instruction *CxtI, 4602 const DominatorTree *DT) { 4603 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4604 Add, DL, AC, CxtI, DT); 4605 } 4606 4607 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4608 const Value *RHS, 4609 const DataLayout &DL, 4610 AssumptionCache *AC, 4611 const Instruction *CxtI, 4612 const DominatorTree *DT) { 4613 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4614 } 4615 4616 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4617 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4618 // of time because it's possible for another thread to interfere with it for an 4619 // arbitrary length of time, but programs aren't allowed to rely on that. 4620 4621 // If there is no successor, then execution can't transfer to it. 4622 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4623 return !CRI->unwindsToCaller(); 4624 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4625 return !CatchSwitch->unwindsToCaller(); 4626 if (isa<ResumeInst>(I)) 4627 return false; 4628 if (isa<ReturnInst>(I)) 4629 return false; 4630 if (isa<UnreachableInst>(I)) 4631 return false; 4632 4633 // Calls can throw, or contain an infinite loop, or kill the process. 4634 if (auto CS = ImmutableCallSite(I)) { 4635 // Call sites that throw have implicit non-local control flow. 4636 if (!CS.doesNotThrow()) 4637 return false; 4638 4639 // A function which doens't throw and has "willreturn" attribute will 4640 // always return. 4641 if (CS.hasFnAttr(Attribute::WillReturn)) 4642 return true; 4643 4644 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4645 // etc. and thus not return. However, LLVM already assumes that 4646 // 4647 // - Thread exiting actions are modeled as writes to memory invisible to 4648 // the program. 4649 // 4650 // - Loops that don't have side effects (side effects are volatile/atomic 4651 // stores and IO) always terminate (see http://llvm.org/PR965). 4652 // Furthermore IO itself is also modeled as writes to memory invisible to 4653 // the program. 4654 // 4655 // We rely on those assumptions here, and use the memory effects of the call 4656 // target as a proxy for checking that it always returns. 4657 4658 // FIXME: This isn't aggressive enough; a call which only writes to a global 4659 // is guaranteed to return. 4660 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4661 } 4662 4663 // Other instructions return normally. 4664 return true; 4665 } 4666 4667 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4668 // TODO: This is slightly conservative for invoke instruction since exiting 4669 // via an exception *is* normal control for them. 4670 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4671 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4672 return false; 4673 return true; 4674 } 4675 4676 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4677 const Loop *L) { 4678 // The loop header is guaranteed to be executed for every iteration. 4679 // 4680 // FIXME: Relax this constraint to cover all basic blocks that are 4681 // guaranteed to be executed at every iteration. 4682 if (I->getParent() != L->getHeader()) return false; 4683 4684 for (const Instruction &LI : *L->getHeader()) { 4685 if (&LI == I) return true; 4686 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4687 } 4688 llvm_unreachable("Instruction not contained in its own parent basic block."); 4689 } 4690 4691 bool llvm::propagatesFullPoison(const Instruction *I) { 4692 // TODO: This should include all instructions apart from phis, selects and 4693 // call-like instructions. 4694 switch (I->getOpcode()) { 4695 case Instruction::Add: 4696 case Instruction::Sub: 4697 case Instruction::Xor: 4698 case Instruction::Trunc: 4699 case Instruction::BitCast: 4700 case Instruction::AddrSpaceCast: 4701 case Instruction::Mul: 4702 case Instruction::Shl: 4703 case Instruction::GetElementPtr: 4704 // These operations all propagate poison unconditionally. Note that poison 4705 // is not any particular value, so xor or subtraction of poison with 4706 // itself still yields poison, not zero. 4707 return true; 4708 4709 case Instruction::AShr: 4710 case Instruction::SExt: 4711 // For these operations, one bit of the input is replicated across 4712 // multiple output bits. A replicated poison bit is still poison. 4713 return true; 4714 4715 case Instruction::ICmp: 4716 // Comparing poison with any value yields poison. This is why, for 4717 // instance, x s< (x +nsw 1) can be folded to true. 4718 return true; 4719 4720 default: 4721 return false; 4722 } 4723 } 4724 4725 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4726 switch (I->getOpcode()) { 4727 case Instruction::Store: 4728 return cast<StoreInst>(I)->getPointerOperand(); 4729 4730 case Instruction::Load: 4731 return cast<LoadInst>(I)->getPointerOperand(); 4732 4733 case Instruction::AtomicCmpXchg: 4734 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4735 4736 case Instruction::AtomicRMW: 4737 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4738 4739 case Instruction::UDiv: 4740 case Instruction::SDiv: 4741 case Instruction::URem: 4742 case Instruction::SRem: 4743 return I->getOperand(1); 4744 4745 case Instruction::Call: 4746 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4747 switch (II->getIntrinsicID()) { 4748 case Intrinsic::assume: 4749 return II->getArgOperand(0); 4750 default: 4751 return nullptr; 4752 } 4753 } 4754 return nullptr; 4755 4756 default: 4757 return nullptr; 4758 } 4759 } 4760 4761 bool llvm::mustTriggerUB(const Instruction *I, 4762 const SmallSet<const Value *, 16>& KnownPoison) { 4763 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4764 return (NotPoison && KnownPoison.count(NotPoison)); 4765 } 4766 4767 4768 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4769 // We currently only look for uses of poison values within the same basic 4770 // block, as that makes it easier to guarantee that the uses will be 4771 // executed given that PoisonI is executed. 4772 // 4773 // FIXME: Expand this to consider uses beyond the same basic block. To do 4774 // this, look out for the distinction between post-dominance and strong 4775 // post-dominance. 4776 const BasicBlock *BB = PoisonI->getParent(); 4777 4778 // Set of instructions that we have proved will yield poison if PoisonI 4779 // does. 4780 SmallSet<const Value *, 16> YieldsPoison; 4781 SmallSet<const BasicBlock *, 4> Visited; 4782 YieldsPoison.insert(PoisonI); 4783 Visited.insert(PoisonI->getParent()); 4784 4785 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4786 4787 unsigned Iter = 0; 4788 while (Iter++ < MaxDepth) { 4789 for (auto &I : make_range(Begin, End)) { 4790 if (&I != PoisonI) { 4791 if (mustTriggerUB(&I, YieldsPoison)) 4792 return true; 4793 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4794 return false; 4795 } 4796 4797 // Mark poison that propagates from I through uses of I. 4798 if (YieldsPoison.count(&I)) { 4799 for (const User *User : I.users()) { 4800 const Instruction *UserI = cast<Instruction>(User); 4801 if (propagatesFullPoison(UserI)) 4802 YieldsPoison.insert(User); 4803 } 4804 } 4805 } 4806 4807 if (auto *NextBB = BB->getSingleSuccessor()) { 4808 if (Visited.insert(NextBB).second) { 4809 BB = NextBB; 4810 Begin = BB->getFirstNonPHI()->getIterator(); 4811 End = BB->end(); 4812 continue; 4813 } 4814 } 4815 4816 break; 4817 } 4818 return false; 4819 } 4820 4821 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4822 if (FMF.noNaNs()) 4823 return true; 4824 4825 if (auto *C = dyn_cast<ConstantFP>(V)) 4826 return !C->isNaN(); 4827 4828 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4829 if (!C->getElementType()->isFloatingPointTy()) 4830 return false; 4831 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4832 if (C->getElementAsAPFloat(I).isNaN()) 4833 return false; 4834 } 4835 return true; 4836 } 4837 4838 if (isa<ConstantAggregateZero>(V)) 4839 return true; 4840 4841 return false; 4842 } 4843 4844 static bool isKnownNonZero(const Value *V) { 4845 if (auto *C = dyn_cast<ConstantFP>(V)) 4846 return !C->isZero(); 4847 4848 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4849 if (!C->getElementType()->isFloatingPointTy()) 4850 return false; 4851 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4852 if (C->getElementAsAPFloat(I).isZero()) 4853 return false; 4854 } 4855 return true; 4856 } 4857 4858 return false; 4859 } 4860 4861 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4862 /// Given non-min/max outer cmp/select from the clamp pattern this 4863 /// function recognizes if it can be substitued by a "canonical" min/max 4864 /// pattern. 4865 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4866 Value *CmpLHS, Value *CmpRHS, 4867 Value *TrueVal, Value *FalseVal, 4868 Value *&LHS, Value *&RHS) { 4869 // Try to match 4870 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4871 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4872 // and return description of the outer Max/Min. 4873 4874 // First, check if select has inverse order: 4875 if (CmpRHS == FalseVal) { 4876 std::swap(TrueVal, FalseVal); 4877 Pred = CmpInst::getInversePredicate(Pred); 4878 } 4879 4880 // Assume success now. If there's no match, callers should not use these anyway. 4881 LHS = TrueVal; 4882 RHS = FalseVal; 4883 4884 const APFloat *FC1; 4885 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4886 return {SPF_UNKNOWN, SPNB_NA, false}; 4887 4888 const APFloat *FC2; 4889 switch (Pred) { 4890 case CmpInst::FCMP_OLT: 4891 case CmpInst::FCMP_OLE: 4892 case CmpInst::FCMP_ULT: 4893 case CmpInst::FCMP_ULE: 4894 if (match(FalseVal, 4895 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4896 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4897 *FC1 < *FC2) 4898 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4899 break; 4900 case CmpInst::FCMP_OGT: 4901 case CmpInst::FCMP_OGE: 4902 case CmpInst::FCMP_UGT: 4903 case CmpInst::FCMP_UGE: 4904 if (match(FalseVal, 4905 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4906 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4907 *FC1 > *FC2) 4908 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4909 break; 4910 default: 4911 break; 4912 } 4913 4914 return {SPF_UNKNOWN, SPNB_NA, false}; 4915 } 4916 4917 /// Recognize variations of: 4918 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4919 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4920 Value *CmpLHS, Value *CmpRHS, 4921 Value *TrueVal, Value *FalseVal) { 4922 // Swap the select operands and predicate to match the patterns below. 4923 if (CmpRHS != TrueVal) { 4924 Pred = ICmpInst::getSwappedPredicate(Pred); 4925 std::swap(TrueVal, FalseVal); 4926 } 4927 const APInt *C1; 4928 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4929 const APInt *C2; 4930 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4931 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4932 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4933 return {SPF_SMAX, SPNB_NA, false}; 4934 4935 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4936 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4937 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4938 return {SPF_SMIN, SPNB_NA, false}; 4939 4940 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4941 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4942 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4943 return {SPF_UMAX, SPNB_NA, false}; 4944 4945 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4946 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4947 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4948 return {SPF_UMIN, SPNB_NA, false}; 4949 } 4950 return {SPF_UNKNOWN, SPNB_NA, false}; 4951 } 4952 4953 /// Recognize variations of: 4954 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4955 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4956 Value *CmpLHS, Value *CmpRHS, 4957 Value *TVal, Value *FVal, 4958 unsigned Depth) { 4959 // TODO: Allow FP min/max with nnan/nsz. 4960 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4961 4962 Value *A = nullptr, *B = nullptr; 4963 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4964 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4965 return {SPF_UNKNOWN, SPNB_NA, false}; 4966 4967 Value *C = nullptr, *D = nullptr; 4968 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4969 if (L.Flavor != R.Flavor) 4970 return {SPF_UNKNOWN, SPNB_NA, false}; 4971 4972 // We have something like: x Pred y ? min(a, b) : min(c, d). 4973 // Try to match the compare to the min/max operations of the select operands. 4974 // First, make sure we have the right compare predicate. 4975 switch (L.Flavor) { 4976 case SPF_SMIN: 4977 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4978 Pred = ICmpInst::getSwappedPredicate(Pred); 4979 std::swap(CmpLHS, CmpRHS); 4980 } 4981 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4982 break; 4983 return {SPF_UNKNOWN, SPNB_NA, false}; 4984 case SPF_SMAX: 4985 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4986 Pred = ICmpInst::getSwappedPredicate(Pred); 4987 std::swap(CmpLHS, CmpRHS); 4988 } 4989 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4990 break; 4991 return {SPF_UNKNOWN, SPNB_NA, false}; 4992 case SPF_UMIN: 4993 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4994 Pred = ICmpInst::getSwappedPredicate(Pred); 4995 std::swap(CmpLHS, CmpRHS); 4996 } 4997 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4998 break; 4999 return {SPF_UNKNOWN, SPNB_NA, false}; 5000 case SPF_UMAX: 5001 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5002 Pred = ICmpInst::getSwappedPredicate(Pred); 5003 std::swap(CmpLHS, CmpRHS); 5004 } 5005 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5006 break; 5007 return {SPF_UNKNOWN, SPNB_NA, false}; 5008 default: 5009 return {SPF_UNKNOWN, SPNB_NA, false}; 5010 } 5011 5012 // If there is a common operand in the already matched min/max and the other 5013 // min/max operands match the compare operands (either directly or inverted), 5014 // then this is min/max of the same flavor. 5015 5016 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5017 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5018 if (D == B) { 5019 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5020 match(A, m_Not(m_Specific(CmpRHS))))) 5021 return {L.Flavor, SPNB_NA, false}; 5022 } 5023 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5024 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5025 if (C == B) { 5026 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5027 match(A, m_Not(m_Specific(CmpRHS))))) 5028 return {L.Flavor, SPNB_NA, false}; 5029 } 5030 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5031 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5032 if (D == A) { 5033 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5034 match(B, m_Not(m_Specific(CmpRHS))))) 5035 return {L.Flavor, SPNB_NA, false}; 5036 } 5037 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5038 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5039 if (C == A) { 5040 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5041 match(B, m_Not(m_Specific(CmpRHS))))) 5042 return {L.Flavor, SPNB_NA, false}; 5043 } 5044 5045 return {SPF_UNKNOWN, SPNB_NA, false}; 5046 } 5047 5048 /// Match non-obvious integer minimum and maximum sequences. 5049 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5050 Value *CmpLHS, Value *CmpRHS, 5051 Value *TrueVal, Value *FalseVal, 5052 Value *&LHS, Value *&RHS, 5053 unsigned Depth) { 5054 // Assume success. If there's no match, callers should not use these anyway. 5055 LHS = TrueVal; 5056 RHS = FalseVal; 5057 5058 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5059 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5060 return SPR; 5061 5062 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5063 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5064 return SPR; 5065 5066 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5067 return {SPF_UNKNOWN, SPNB_NA, false}; 5068 5069 // Z = X -nsw Y 5070 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5071 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5072 if (match(TrueVal, m_Zero()) && 5073 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5074 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5075 5076 // Z = X -nsw Y 5077 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5078 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5079 if (match(FalseVal, m_Zero()) && 5080 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5081 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5082 5083 const APInt *C1; 5084 if (!match(CmpRHS, m_APInt(C1))) 5085 return {SPF_UNKNOWN, SPNB_NA, false}; 5086 5087 // An unsigned min/max can be written with a signed compare. 5088 const APInt *C2; 5089 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5090 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5091 // Is the sign bit set? 5092 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5093 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5094 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5095 C2->isMaxSignedValue()) 5096 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5097 5098 // Is the sign bit clear? 5099 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5100 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5101 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5102 C2->isMinSignedValue()) 5103 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5104 } 5105 5106 // Look through 'not' ops to find disguised signed min/max. 5107 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5108 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5109 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5110 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5111 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5112 5113 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5114 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5115 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5116 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5117 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5118 5119 return {SPF_UNKNOWN, SPNB_NA, false}; 5120 } 5121 5122 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5123 assert(X && Y && "Invalid operand"); 5124 5125 // X = sub (0, Y) || X = sub nsw (0, Y) 5126 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5127 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5128 return true; 5129 5130 // Y = sub (0, X) || Y = sub nsw (0, X) 5131 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5132 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5133 return true; 5134 5135 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5136 Value *A, *B; 5137 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5138 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5139 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5140 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5141 } 5142 5143 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5144 FastMathFlags FMF, 5145 Value *CmpLHS, Value *CmpRHS, 5146 Value *TrueVal, Value *FalseVal, 5147 Value *&LHS, Value *&RHS, 5148 unsigned Depth) { 5149 if (CmpInst::isFPPredicate(Pred)) { 5150 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5151 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5152 // purpose of identifying min/max. Disregard vector constants with undefined 5153 // elements because those can not be back-propagated for analysis. 5154 Value *OutputZeroVal = nullptr; 5155 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5156 !cast<Constant>(TrueVal)->containsUndefElement()) 5157 OutputZeroVal = TrueVal; 5158 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5159 !cast<Constant>(FalseVal)->containsUndefElement()) 5160 OutputZeroVal = FalseVal; 5161 5162 if (OutputZeroVal) { 5163 if (match(CmpLHS, m_AnyZeroFP())) 5164 CmpLHS = OutputZeroVal; 5165 if (match(CmpRHS, m_AnyZeroFP())) 5166 CmpRHS = OutputZeroVal; 5167 } 5168 } 5169 5170 LHS = CmpLHS; 5171 RHS = CmpRHS; 5172 5173 // Signed zero may return inconsistent results between implementations. 5174 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5175 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5176 // Therefore, we behave conservatively and only proceed if at least one of the 5177 // operands is known to not be zero or if we don't care about signed zero. 5178 switch (Pred) { 5179 default: break; 5180 // FIXME: Include OGT/OLT/UGT/ULT. 5181 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5182 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5183 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5184 !isKnownNonZero(CmpRHS)) 5185 return {SPF_UNKNOWN, SPNB_NA, false}; 5186 } 5187 5188 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5189 bool Ordered = false; 5190 5191 // When given one NaN and one non-NaN input: 5192 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5193 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5194 // ordered comparison fails), which could be NaN or non-NaN. 5195 // so here we discover exactly what NaN behavior is required/accepted. 5196 if (CmpInst::isFPPredicate(Pred)) { 5197 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5198 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5199 5200 if (LHSSafe && RHSSafe) { 5201 // Both operands are known non-NaN. 5202 NaNBehavior = SPNB_RETURNS_ANY; 5203 } else if (CmpInst::isOrdered(Pred)) { 5204 // An ordered comparison will return false when given a NaN, so it 5205 // returns the RHS. 5206 Ordered = true; 5207 if (LHSSafe) 5208 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5209 NaNBehavior = SPNB_RETURNS_NAN; 5210 else if (RHSSafe) 5211 NaNBehavior = SPNB_RETURNS_OTHER; 5212 else 5213 // Completely unsafe. 5214 return {SPF_UNKNOWN, SPNB_NA, false}; 5215 } else { 5216 Ordered = false; 5217 // An unordered comparison will return true when given a NaN, so it 5218 // returns the LHS. 5219 if (LHSSafe) 5220 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5221 NaNBehavior = SPNB_RETURNS_OTHER; 5222 else if (RHSSafe) 5223 NaNBehavior = SPNB_RETURNS_NAN; 5224 else 5225 // Completely unsafe. 5226 return {SPF_UNKNOWN, SPNB_NA, false}; 5227 } 5228 } 5229 5230 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5231 std::swap(CmpLHS, CmpRHS); 5232 Pred = CmpInst::getSwappedPredicate(Pred); 5233 if (NaNBehavior == SPNB_RETURNS_NAN) 5234 NaNBehavior = SPNB_RETURNS_OTHER; 5235 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5236 NaNBehavior = SPNB_RETURNS_NAN; 5237 Ordered = !Ordered; 5238 } 5239 5240 // ([if]cmp X, Y) ? X : Y 5241 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5242 switch (Pred) { 5243 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5244 case ICmpInst::ICMP_UGT: 5245 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5246 case ICmpInst::ICMP_SGT: 5247 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5248 case ICmpInst::ICMP_ULT: 5249 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5250 case ICmpInst::ICMP_SLT: 5251 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5252 case FCmpInst::FCMP_UGT: 5253 case FCmpInst::FCMP_UGE: 5254 case FCmpInst::FCMP_OGT: 5255 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5256 case FCmpInst::FCMP_ULT: 5257 case FCmpInst::FCMP_ULE: 5258 case FCmpInst::FCMP_OLT: 5259 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5260 } 5261 } 5262 5263 if (isKnownNegation(TrueVal, FalseVal)) { 5264 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5265 // match against either LHS or sext(LHS). 5266 auto MaybeSExtCmpLHS = 5267 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5268 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5269 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5270 if (match(TrueVal, MaybeSExtCmpLHS)) { 5271 // Set the return values. If the compare uses the negated value (-X >s 0), 5272 // swap the return values because the negated value is always 'RHS'. 5273 LHS = TrueVal; 5274 RHS = FalseVal; 5275 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5276 std::swap(LHS, RHS); 5277 5278 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5279 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5280 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5281 return {SPF_ABS, SPNB_NA, false}; 5282 5283 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5284 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5285 return {SPF_ABS, SPNB_NA, false}; 5286 5287 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5288 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5289 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5290 return {SPF_NABS, SPNB_NA, false}; 5291 } 5292 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5293 // Set the return values. If the compare uses the negated value (-X >s 0), 5294 // swap the return values because the negated value is always 'RHS'. 5295 LHS = FalseVal; 5296 RHS = TrueVal; 5297 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5298 std::swap(LHS, RHS); 5299 5300 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5301 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5302 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5303 return {SPF_NABS, SPNB_NA, false}; 5304 5305 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5306 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5307 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5308 return {SPF_ABS, SPNB_NA, false}; 5309 } 5310 } 5311 5312 if (CmpInst::isIntPredicate(Pred)) 5313 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5314 5315 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5316 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5317 // semantics than minNum. Be conservative in such case. 5318 if (NaNBehavior != SPNB_RETURNS_ANY || 5319 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5320 !isKnownNonZero(CmpRHS))) 5321 return {SPF_UNKNOWN, SPNB_NA, false}; 5322 5323 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5324 } 5325 5326 /// Helps to match a select pattern in case of a type mismatch. 5327 /// 5328 /// The function processes the case when type of true and false values of a 5329 /// select instruction differs from type of the cmp instruction operands because 5330 /// of a cast instruction. The function checks if it is legal to move the cast 5331 /// operation after "select". If yes, it returns the new second value of 5332 /// "select" (with the assumption that cast is moved): 5333 /// 1. As operand of cast instruction when both values of "select" are same cast 5334 /// instructions. 5335 /// 2. As restored constant (by applying reverse cast operation) when the first 5336 /// value of the "select" is a cast operation and the second value is a 5337 /// constant. 5338 /// NOTE: We return only the new second value because the first value could be 5339 /// accessed as operand of cast instruction. 5340 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5341 Instruction::CastOps *CastOp) { 5342 auto *Cast1 = dyn_cast<CastInst>(V1); 5343 if (!Cast1) 5344 return nullptr; 5345 5346 *CastOp = Cast1->getOpcode(); 5347 Type *SrcTy = Cast1->getSrcTy(); 5348 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5349 // If V1 and V2 are both the same cast from the same type, look through V1. 5350 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5351 return Cast2->getOperand(0); 5352 return nullptr; 5353 } 5354 5355 auto *C = dyn_cast<Constant>(V2); 5356 if (!C) 5357 return nullptr; 5358 5359 Constant *CastedTo = nullptr; 5360 switch (*CastOp) { 5361 case Instruction::ZExt: 5362 if (CmpI->isUnsigned()) 5363 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5364 break; 5365 case Instruction::SExt: 5366 if (CmpI->isSigned()) 5367 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5368 break; 5369 case Instruction::Trunc: 5370 Constant *CmpConst; 5371 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5372 CmpConst->getType() == SrcTy) { 5373 // Here we have the following case: 5374 // 5375 // %cond = cmp iN %x, CmpConst 5376 // %tr = trunc iN %x to iK 5377 // %narrowsel = select i1 %cond, iK %t, iK C 5378 // 5379 // We can always move trunc after select operation: 5380 // 5381 // %cond = cmp iN %x, CmpConst 5382 // %widesel = select i1 %cond, iN %x, iN CmpConst 5383 // %tr = trunc iN %widesel to iK 5384 // 5385 // Note that C could be extended in any way because we don't care about 5386 // upper bits after truncation. It can't be abs pattern, because it would 5387 // look like: 5388 // 5389 // select i1 %cond, x, -x. 5390 // 5391 // So only min/max pattern could be matched. Such match requires widened C 5392 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5393 // CmpConst == C is checked below. 5394 CastedTo = CmpConst; 5395 } else { 5396 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5397 } 5398 break; 5399 case Instruction::FPTrunc: 5400 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5401 break; 5402 case Instruction::FPExt: 5403 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5404 break; 5405 case Instruction::FPToUI: 5406 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5407 break; 5408 case Instruction::FPToSI: 5409 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5410 break; 5411 case Instruction::UIToFP: 5412 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5413 break; 5414 case Instruction::SIToFP: 5415 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5416 break; 5417 default: 5418 break; 5419 } 5420 5421 if (!CastedTo) 5422 return nullptr; 5423 5424 // Make sure the cast doesn't lose any information. 5425 Constant *CastedBack = 5426 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5427 if (CastedBack != C) 5428 return nullptr; 5429 5430 return CastedTo; 5431 } 5432 5433 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5434 Instruction::CastOps *CastOp, 5435 unsigned Depth) { 5436 if (Depth >= MaxDepth) 5437 return {SPF_UNKNOWN, SPNB_NA, false}; 5438 5439 SelectInst *SI = dyn_cast<SelectInst>(V); 5440 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5441 5442 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5443 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5444 5445 Value *TrueVal = SI->getTrueValue(); 5446 Value *FalseVal = SI->getFalseValue(); 5447 5448 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5449 CastOp, Depth); 5450 } 5451 5452 SelectPatternResult llvm::matchDecomposedSelectPattern( 5453 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5454 Instruction::CastOps *CastOp, unsigned Depth) { 5455 CmpInst::Predicate Pred = CmpI->getPredicate(); 5456 Value *CmpLHS = CmpI->getOperand(0); 5457 Value *CmpRHS = CmpI->getOperand(1); 5458 FastMathFlags FMF; 5459 if (isa<FPMathOperator>(CmpI)) 5460 FMF = CmpI->getFastMathFlags(); 5461 5462 // Bail out early. 5463 if (CmpI->isEquality()) 5464 return {SPF_UNKNOWN, SPNB_NA, false}; 5465 5466 // Deal with type mismatches. 5467 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5468 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5469 // If this is a potential fmin/fmax with a cast to integer, then ignore 5470 // -0.0 because there is no corresponding integer value. 5471 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5472 FMF.setNoSignedZeros(); 5473 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5474 cast<CastInst>(TrueVal)->getOperand(0), C, 5475 LHS, RHS, Depth); 5476 } 5477 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5478 // If this is a potential fmin/fmax with a cast to integer, then ignore 5479 // -0.0 because there is no corresponding integer value. 5480 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5481 FMF.setNoSignedZeros(); 5482 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5483 C, cast<CastInst>(FalseVal)->getOperand(0), 5484 LHS, RHS, Depth); 5485 } 5486 } 5487 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5488 LHS, RHS, Depth); 5489 } 5490 5491 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5492 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5493 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5494 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5495 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5496 if (SPF == SPF_FMINNUM) 5497 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5498 if (SPF == SPF_FMAXNUM) 5499 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5500 llvm_unreachable("unhandled!"); 5501 } 5502 5503 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5504 if (SPF == SPF_SMIN) return SPF_SMAX; 5505 if (SPF == SPF_UMIN) return SPF_UMAX; 5506 if (SPF == SPF_SMAX) return SPF_SMIN; 5507 if (SPF == SPF_UMAX) return SPF_UMIN; 5508 llvm_unreachable("unhandled!"); 5509 } 5510 5511 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5512 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5513 } 5514 5515 /// Return true if "icmp Pred LHS RHS" is always true. 5516 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5517 const Value *RHS, const DataLayout &DL, 5518 unsigned Depth) { 5519 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5520 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5521 return true; 5522 5523 switch (Pred) { 5524 default: 5525 return false; 5526 5527 case CmpInst::ICMP_SLE: { 5528 const APInt *C; 5529 5530 // LHS s<= LHS +_{nsw} C if C >= 0 5531 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5532 return !C->isNegative(); 5533 return false; 5534 } 5535 5536 case CmpInst::ICMP_ULE: { 5537 const APInt *C; 5538 5539 // LHS u<= LHS +_{nuw} C for any C 5540 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5541 return true; 5542 5543 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5544 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5545 const Value *&X, 5546 const APInt *&CA, const APInt *&CB) { 5547 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5548 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5549 return true; 5550 5551 // If X & C == 0 then (X | C) == X +_{nuw} C 5552 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5553 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5554 KnownBits Known(CA->getBitWidth()); 5555 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5556 /*CxtI*/ nullptr, /*DT*/ nullptr); 5557 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5558 return true; 5559 } 5560 5561 return false; 5562 }; 5563 5564 const Value *X; 5565 const APInt *CLHS, *CRHS; 5566 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5567 return CLHS->ule(*CRHS); 5568 5569 return false; 5570 } 5571 } 5572 } 5573 5574 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5575 /// ALHS ARHS" is true. Otherwise, return None. 5576 static Optional<bool> 5577 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5578 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5579 const DataLayout &DL, unsigned Depth) { 5580 switch (Pred) { 5581 default: 5582 return None; 5583 5584 case CmpInst::ICMP_SLT: 5585 case CmpInst::ICMP_SLE: 5586 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5587 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5588 return true; 5589 return None; 5590 5591 case CmpInst::ICMP_ULT: 5592 case CmpInst::ICMP_ULE: 5593 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5594 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5595 return true; 5596 return None; 5597 } 5598 } 5599 5600 /// Return true if the operands of the two compares match. IsSwappedOps is true 5601 /// when the operands match, but are swapped. 5602 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5603 const Value *BLHS, const Value *BRHS, 5604 bool &IsSwappedOps) { 5605 5606 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5607 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5608 return IsMatchingOps || IsSwappedOps; 5609 } 5610 5611 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5612 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5613 /// Otherwise, return None if we can't infer anything. 5614 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5615 CmpInst::Predicate BPred, 5616 bool AreSwappedOps) { 5617 // Canonicalize the predicate as if the operands were not commuted. 5618 if (AreSwappedOps) 5619 BPred = ICmpInst::getSwappedPredicate(BPred); 5620 5621 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5622 return true; 5623 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5624 return false; 5625 5626 return None; 5627 } 5628 5629 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5630 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5631 /// Otherwise, return None if we can't infer anything. 5632 static Optional<bool> 5633 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5634 const ConstantInt *C1, 5635 CmpInst::Predicate BPred, 5636 const ConstantInt *C2) { 5637 ConstantRange DomCR = 5638 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5639 ConstantRange CR = 5640 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5641 ConstantRange Intersection = DomCR.intersectWith(CR); 5642 ConstantRange Difference = DomCR.difference(CR); 5643 if (Intersection.isEmptySet()) 5644 return false; 5645 if (Difference.isEmptySet()) 5646 return true; 5647 return None; 5648 } 5649 5650 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5651 /// false. Otherwise, return None if we can't infer anything. 5652 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5653 CmpInst::Predicate BPred, 5654 const Value *BLHS, const Value *BRHS, 5655 const DataLayout &DL, bool LHSIsTrue, 5656 unsigned Depth) { 5657 Value *ALHS = LHS->getOperand(0); 5658 Value *ARHS = LHS->getOperand(1); 5659 5660 // The rest of the logic assumes the LHS condition is true. If that's not the 5661 // case, invert the predicate to make it so. 5662 CmpInst::Predicate APred = 5663 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5664 5665 // Can we infer anything when the two compares have matching operands? 5666 bool AreSwappedOps; 5667 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5668 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5669 APred, BPred, AreSwappedOps)) 5670 return Implication; 5671 // No amount of additional analysis will infer the second condition, so 5672 // early exit. 5673 return None; 5674 } 5675 5676 // Can we infer anything when the LHS operands match and the RHS operands are 5677 // constants (not necessarily matching)? 5678 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5679 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5680 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5681 return Implication; 5682 // No amount of additional analysis will infer the second condition, so 5683 // early exit. 5684 return None; 5685 } 5686 5687 if (APred == BPred) 5688 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5689 return None; 5690 } 5691 5692 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5693 /// false. Otherwise, return None if we can't infer anything. We expect the 5694 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5695 static Optional<bool> 5696 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5697 const Value *RHSOp0, const Value *RHSOp1, 5698 5699 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5700 // The LHS must be an 'or' or an 'and' instruction. 5701 assert((LHS->getOpcode() == Instruction::And || 5702 LHS->getOpcode() == Instruction::Or) && 5703 "Expected LHS to be 'and' or 'or'."); 5704 5705 assert(Depth <= MaxDepth && "Hit recursion limit"); 5706 5707 // If the result of an 'or' is false, then we know both legs of the 'or' are 5708 // false. Similarly, if the result of an 'and' is true, then we know both 5709 // legs of the 'and' are true. 5710 Value *ALHS, *ARHS; 5711 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5712 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5713 // FIXME: Make this non-recursion. 5714 if (Optional<bool> Implication = isImpliedCondition( 5715 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5716 return Implication; 5717 if (Optional<bool> Implication = isImpliedCondition( 5718 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5719 return Implication; 5720 return None; 5721 } 5722 return None; 5723 } 5724 5725 Optional<bool> 5726 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5727 const Value *RHSOp0, const Value *RHSOp1, 5728 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5729 // Bail out when we hit the limit. 5730 if (Depth == MaxDepth) 5731 return None; 5732 5733 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5734 // example. 5735 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5736 return None; 5737 5738 Type *OpTy = LHS->getType(); 5739 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5740 5741 // FIXME: Extending the code below to handle vectors. 5742 if (OpTy->isVectorTy()) 5743 return None; 5744 5745 assert(OpTy->isIntegerTy(1) && "implied by above"); 5746 5747 // Both LHS and RHS are icmps. 5748 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5749 if (LHSCmp) 5750 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5751 Depth); 5752 5753 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5754 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5755 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5756 if (LHSBO) { 5757 if ((LHSBO->getOpcode() == Instruction::And || 5758 LHSBO->getOpcode() == Instruction::Or)) 5759 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5760 Depth); 5761 } 5762 return None; 5763 } 5764 5765 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5766 const DataLayout &DL, bool LHSIsTrue, 5767 unsigned Depth) { 5768 // LHS ==> RHS by definition 5769 if (LHS == RHS) 5770 return LHSIsTrue; 5771 5772 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5773 if (RHSCmp) 5774 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5775 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5776 LHSIsTrue, Depth); 5777 return None; 5778 } 5779 5780 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5781 // condition dominating ContextI or nullptr, if no condition is found. 5782 static std::pair<Value *, bool> 5783 getDomPredecessorCondition(const Instruction *ContextI) { 5784 if (!ContextI || !ContextI->getParent()) 5785 return {nullptr, false}; 5786 5787 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5788 // dominator tree (eg, from a SimplifyQuery) instead? 5789 const BasicBlock *ContextBB = ContextI->getParent(); 5790 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5791 if (!PredBB) 5792 return {nullptr, false}; 5793 5794 // We need a conditional branch in the predecessor. 5795 Value *PredCond; 5796 BasicBlock *TrueBB, *FalseBB; 5797 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5798 return {nullptr, false}; 5799 5800 // The branch should get simplified. Don't bother simplifying this condition. 5801 if (TrueBB == FalseBB) 5802 return {nullptr, false}; 5803 5804 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5805 "Predecessor block does not point to successor?"); 5806 5807 // Is this condition implied by the predecessor condition? 5808 return {PredCond, TrueBB == ContextBB}; 5809 } 5810 5811 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5812 const Instruction *ContextI, 5813 const DataLayout &DL) { 5814 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5815 auto PredCond = getDomPredecessorCondition(ContextI); 5816 if (PredCond.first) 5817 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5818 return None; 5819 } 5820 5821 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5822 const Value *LHS, const Value *RHS, 5823 const Instruction *ContextI, 5824 const DataLayout &DL) { 5825 auto PredCond = getDomPredecessorCondition(ContextI); 5826 if (PredCond.first) 5827 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5828 PredCond.second); 5829 return None; 5830 } 5831 5832 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5833 APInt &Upper, const InstrInfoQuery &IIQ) { 5834 unsigned Width = Lower.getBitWidth(); 5835 const APInt *C; 5836 switch (BO.getOpcode()) { 5837 case Instruction::Add: 5838 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5839 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5840 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5841 // 'add nuw x, C' produces [C, UINT_MAX]. 5842 Lower = *C; 5843 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5844 if (C->isNegative()) { 5845 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5846 Lower = APInt::getSignedMinValue(Width); 5847 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5848 } else { 5849 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5850 Lower = APInt::getSignedMinValue(Width) + *C; 5851 Upper = APInt::getSignedMaxValue(Width) + 1; 5852 } 5853 } 5854 } 5855 break; 5856 5857 case Instruction::And: 5858 if (match(BO.getOperand(1), m_APInt(C))) 5859 // 'and x, C' produces [0, C]. 5860 Upper = *C + 1; 5861 break; 5862 5863 case Instruction::Or: 5864 if (match(BO.getOperand(1), m_APInt(C))) 5865 // 'or x, C' produces [C, UINT_MAX]. 5866 Lower = *C; 5867 break; 5868 5869 case Instruction::AShr: 5870 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5871 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5872 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5873 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5874 } else if (match(BO.getOperand(0), m_APInt(C))) { 5875 unsigned ShiftAmount = Width - 1; 5876 if (!C->isNullValue() && IIQ.isExact(&BO)) 5877 ShiftAmount = C->countTrailingZeros(); 5878 if (C->isNegative()) { 5879 // 'ashr C, x' produces [C, C >> (Width-1)] 5880 Lower = *C; 5881 Upper = C->ashr(ShiftAmount) + 1; 5882 } else { 5883 // 'ashr C, x' produces [C >> (Width-1), C] 5884 Lower = C->ashr(ShiftAmount); 5885 Upper = *C + 1; 5886 } 5887 } 5888 break; 5889 5890 case Instruction::LShr: 5891 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5892 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5893 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5894 } else if (match(BO.getOperand(0), m_APInt(C))) { 5895 // 'lshr C, x' produces [C >> (Width-1), C]. 5896 unsigned ShiftAmount = Width - 1; 5897 if (!C->isNullValue() && IIQ.isExact(&BO)) 5898 ShiftAmount = C->countTrailingZeros(); 5899 Lower = C->lshr(ShiftAmount); 5900 Upper = *C + 1; 5901 } 5902 break; 5903 5904 case Instruction::Shl: 5905 if (match(BO.getOperand(0), m_APInt(C))) { 5906 if (IIQ.hasNoUnsignedWrap(&BO)) { 5907 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5908 Lower = *C; 5909 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5910 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5911 if (C->isNegative()) { 5912 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5913 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5914 Lower = C->shl(ShiftAmount); 5915 Upper = *C + 1; 5916 } else { 5917 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5918 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5919 Lower = *C; 5920 Upper = C->shl(ShiftAmount) + 1; 5921 } 5922 } 5923 } 5924 break; 5925 5926 case Instruction::SDiv: 5927 if (match(BO.getOperand(1), m_APInt(C))) { 5928 APInt IntMin = APInt::getSignedMinValue(Width); 5929 APInt IntMax = APInt::getSignedMaxValue(Width); 5930 if (C->isAllOnesValue()) { 5931 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5932 // where C != -1 and C != 0 and C != 1 5933 Lower = IntMin + 1; 5934 Upper = IntMax + 1; 5935 } else if (C->countLeadingZeros() < Width - 1) { 5936 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5937 // where C != -1 and C != 0 and C != 1 5938 Lower = IntMin.sdiv(*C); 5939 Upper = IntMax.sdiv(*C); 5940 if (Lower.sgt(Upper)) 5941 std::swap(Lower, Upper); 5942 Upper = Upper + 1; 5943 assert(Upper != Lower && "Upper part of range has wrapped!"); 5944 } 5945 } else if (match(BO.getOperand(0), m_APInt(C))) { 5946 if (C->isMinSignedValue()) { 5947 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5948 Lower = *C; 5949 Upper = Lower.lshr(1) + 1; 5950 } else { 5951 // 'sdiv C, x' produces [-|C|, |C|]. 5952 Upper = C->abs() + 1; 5953 Lower = (-Upper) + 1; 5954 } 5955 } 5956 break; 5957 5958 case Instruction::UDiv: 5959 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5960 // 'udiv x, C' produces [0, UINT_MAX / C]. 5961 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5962 } else if (match(BO.getOperand(0), m_APInt(C))) { 5963 // 'udiv C, x' produces [0, C]. 5964 Upper = *C + 1; 5965 } 5966 break; 5967 5968 case Instruction::SRem: 5969 if (match(BO.getOperand(1), m_APInt(C))) { 5970 // 'srem x, C' produces (-|C|, |C|). 5971 Upper = C->abs(); 5972 Lower = (-Upper) + 1; 5973 } 5974 break; 5975 5976 case Instruction::URem: 5977 if (match(BO.getOperand(1), m_APInt(C))) 5978 // 'urem x, C' produces [0, C). 5979 Upper = *C; 5980 break; 5981 5982 default: 5983 break; 5984 } 5985 } 5986 5987 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5988 APInt &Upper) { 5989 unsigned Width = Lower.getBitWidth(); 5990 const APInt *C; 5991 switch (II.getIntrinsicID()) { 5992 case Intrinsic::uadd_sat: 5993 // uadd.sat(x, C) produces [C, UINT_MAX]. 5994 if (match(II.getOperand(0), m_APInt(C)) || 5995 match(II.getOperand(1), m_APInt(C))) 5996 Lower = *C; 5997 break; 5998 case Intrinsic::sadd_sat: 5999 if (match(II.getOperand(0), m_APInt(C)) || 6000 match(II.getOperand(1), m_APInt(C))) { 6001 if (C->isNegative()) { 6002 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6003 Lower = APInt::getSignedMinValue(Width); 6004 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6005 } else { 6006 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6007 Lower = APInt::getSignedMinValue(Width) + *C; 6008 Upper = APInt::getSignedMaxValue(Width) + 1; 6009 } 6010 } 6011 break; 6012 case Intrinsic::usub_sat: 6013 // usub.sat(C, x) produces [0, C]. 6014 if (match(II.getOperand(0), m_APInt(C))) 6015 Upper = *C + 1; 6016 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6017 else if (match(II.getOperand(1), m_APInt(C))) 6018 Upper = APInt::getMaxValue(Width) - *C + 1; 6019 break; 6020 case Intrinsic::ssub_sat: 6021 if (match(II.getOperand(0), m_APInt(C))) { 6022 if (C->isNegative()) { 6023 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6024 Lower = APInt::getSignedMinValue(Width); 6025 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6026 } else { 6027 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6028 Lower = *C - APInt::getSignedMaxValue(Width); 6029 Upper = APInt::getSignedMaxValue(Width) + 1; 6030 } 6031 } else if (match(II.getOperand(1), m_APInt(C))) { 6032 if (C->isNegative()) { 6033 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6034 Lower = APInt::getSignedMinValue(Width) - *C; 6035 Upper = APInt::getSignedMaxValue(Width) + 1; 6036 } else { 6037 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6038 Lower = APInt::getSignedMinValue(Width); 6039 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6040 } 6041 } 6042 break; 6043 default: 6044 break; 6045 } 6046 } 6047 6048 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6049 APInt &Upper, const InstrInfoQuery &IIQ) { 6050 const Value *LHS = nullptr, *RHS = nullptr; 6051 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6052 if (R.Flavor == SPF_UNKNOWN) 6053 return; 6054 6055 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6056 6057 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6058 // If the negation part of the abs (in RHS) has the NSW flag, 6059 // then the result of abs(X) is [0..SIGNED_MAX], 6060 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6061 Lower = APInt::getNullValue(BitWidth); 6062 if (match(RHS, m_Neg(m_Specific(LHS))) && 6063 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6064 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6065 else 6066 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6067 return; 6068 } 6069 6070 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6071 // The result of -abs(X) is <= 0. 6072 Lower = APInt::getSignedMinValue(BitWidth); 6073 Upper = APInt(BitWidth, 1); 6074 return; 6075 } 6076 6077 const APInt *C; 6078 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6079 return; 6080 6081 switch (R.Flavor) { 6082 case SPF_UMIN: 6083 Upper = *C + 1; 6084 break; 6085 case SPF_UMAX: 6086 Lower = *C; 6087 break; 6088 case SPF_SMIN: 6089 Lower = APInt::getSignedMinValue(BitWidth); 6090 Upper = *C + 1; 6091 break; 6092 case SPF_SMAX: 6093 Lower = *C; 6094 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6095 break; 6096 default: 6097 break; 6098 } 6099 } 6100 6101 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6102 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6103 6104 const APInt *C; 6105 if (match(V, m_APInt(C))) 6106 return ConstantRange(*C); 6107 6108 InstrInfoQuery IIQ(UseInstrInfo); 6109 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6110 APInt Lower = APInt(BitWidth, 0); 6111 APInt Upper = APInt(BitWidth, 0); 6112 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6113 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6114 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6115 setLimitsForIntrinsic(*II, Lower, Upper); 6116 else if (auto *SI = dyn_cast<SelectInst>(V)) 6117 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6118 6119 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6120 6121 if (auto *I = dyn_cast<Instruction>(V)) 6122 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6123 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6124 6125 return CR; 6126 } 6127 6128 static Optional<int64_t> 6129 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6130 // Skip over the first indices. 6131 gep_type_iterator GTI = gep_type_begin(GEP); 6132 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6133 /*skip along*/; 6134 6135 // Compute the offset implied by the rest of the indices. 6136 int64_t Offset = 0; 6137 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6138 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6139 if (!OpC) 6140 return None; 6141 if (OpC->isZero()) 6142 continue; // No offset. 6143 6144 // Handle struct indices, which add their field offset to the pointer. 6145 if (StructType *STy = GTI.getStructTypeOrNull()) { 6146 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6147 continue; 6148 } 6149 6150 // Otherwise, we have a sequential type like an array or vector. Multiply 6151 // the index by the ElementSize. 6152 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6153 Offset += Size * OpC->getSExtValue(); 6154 } 6155 6156 return Offset; 6157 } 6158 6159 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6160 const DataLayout &DL) { 6161 Ptr1 = Ptr1->stripPointerCasts(); 6162 Ptr2 = Ptr2->stripPointerCasts(); 6163 6164 // Handle the trivial case first. 6165 if (Ptr1 == Ptr2) { 6166 return 0; 6167 } 6168 6169 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6170 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6171 6172 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6173 // as in "P" and "gep P, 1". 6174 // Also do this iteratively to handle the the following case: 6175 // Ptr_t1 = GEP Ptr1, c1 6176 // Ptr_t2 = GEP Ptr_t1, c2 6177 // Ptr2 = GEP Ptr_t2, c3 6178 // where we will return c1+c2+c3. 6179 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6180 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6181 // are the same, and return the difference between offsets. 6182 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6183 const Value *Ptr) -> Optional<int64_t> { 6184 const GEPOperator *GEP_T = GEP; 6185 int64_t OffsetVal = 0; 6186 bool HasSameBase = false; 6187 while (GEP_T) { 6188 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6189 if (!Offset) 6190 return None; 6191 OffsetVal += *Offset; 6192 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6193 if (Op0 == Ptr) { 6194 HasSameBase = true; 6195 break; 6196 } 6197 GEP_T = dyn_cast<GEPOperator>(Op0); 6198 } 6199 if (!HasSameBase) 6200 return None; 6201 return OffsetVal; 6202 }; 6203 6204 if (GEP1) { 6205 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6206 if (Offset) 6207 return -*Offset; 6208 } 6209 if (GEP2) { 6210 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6211 if (Offset) 6212 return Offset; 6213 } 6214 6215 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6216 // base. After that base, they may have some number of common (and 6217 // potentially variable) indices. After that they handle some constant 6218 // offset, which determines their offset from each other. At this point, we 6219 // handle no other case. 6220 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6221 return None; 6222 6223 // Skip any common indices and track the GEP types. 6224 unsigned Idx = 1; 6225 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6226 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6227 break; 6228 6229 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6230 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6231 if (!Offset1 || !Offset2) 6232 return None; 6233 return *Offset2 - *Offset1; 6234 } 6235