1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 append_range(WorkSet, U->operands()); 513 } 514 } 515 } 516 517 return false; 518 } 519 520 // Is this an intrinsic that cannot be speculated but also cannot trap? 521 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 522 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 523 return CI->isAssumeLikeIntrinsic(); 524 525 return false; 526 } 527 528 bool llvm::isValidAssumeForContext(const Instruction *Inv, 529 const Instruction *CxtI, 530 const DominatorTree *DT) { 531 // There are two restrictions on the use of an assume: 532 // 1. The assume must dominate the context (or the control flow must 533 // reach the assume whenever it reaches the context). 534 // 2. The context must not be in the assume's set of ephemeral values 535 // (otherwise we will use the assume to prove that the condition 536 // feeding the assume is trivially true, thus causing the removal of 537 // the assume). 538 539 if (Inv->getParent() == CxtI->getParent()) { 540 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 541 // in the BB. 542 if (Inv->comesBefore(CxtI)) 543 return true; 544 545 // Don't let an assume affect itself - this would cause the problems 546 // `isEphemeralValueOf` is trying to prevent, and it would also make 547 // the loop below go out of bounds. 548 if (Inv == CxtI) 549 return false; 550 551 // The context comes first, but they're both in the same block. 552 // Make sure there is nothing in between that might interrupt 553 // the control flow, not even CxtI itself. 554 // We limit the scan distance between the assume and its context instruction 555 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 556 // it can be adjusted if needed (could be turned into a cl::opt). 557 unsigned ScanLimit = 15; 558 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 559 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 // Inv and CxtI are in different blocks. 566 if (DT) { 567 if (DT->dominates(Inv, CxtI)) 568 return true; 569 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 570 // We don't have a DT, but this trivially dominates. 571 return true; 572 } 573 574 return false; 575 } 576 577 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 578 // v u> y implies v != 0. 579 if (Pred == ICmpInst::ICMP_UGT) 580 return true; 581 582 // Special-case v != 0 to also handle v != null. 583 if (Pred == ICmpInst::ICMP_NE) 584 return match(RHS, m_Zero()); 585 586 // All other predicates - rely on generic ConstantRange handling. 587 const APInt *C; 588 if (!match(RHS, m_APInt(C))) 589 return false; 590 591 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 592 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 593 } 594 595 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 596 // Use of assumptions is context-sensitive. If we don't have a context, we 597 // cannot use them! 598 if (!Q.AC || !Q.CxtI) 599 return false; 600 601 if (Q.CxtI && V->getType()->isPointerTy()) { 602 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 603 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 604 V->getType()->getPointerAddressSpace())) 605 AttrKinds.push_back(Attribute::Dereferenceable); 606 607 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 608 return true; 609 } 610 611 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 612 if (!AssumeVH) 613 continue; 614 CallInst *I = cast<CallInst>(AssumeVH); 615 assert(I->getFunction() == Q.CxtI->getFunction() && 616 "Got assumption for the wrong function!"); 617 if (Q.isExcluded(I)) 618 continue; 619 620 // Warning: This loop can end up being somewhat performance sensitive. 621 // We're running this loop for once for each value queried resulting in a 622 // runtime of ~O(#assumes * #values). 623 624 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 625 "must be an assume intrinsic"); 626 627 Value *RHS; 628 CmpInst::Predicate Pred; 629 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 630 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 631 return false; 632 633 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 634 return true; 635 } 636 637 return false; 638 } 639 640 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 641 unsigned Depth, const Query &Q) { 642 // Use of assumptions is context-sensitive. If we don't have a context, we 643 // cannot use them! 644 if (!Q.AC || !Q.CxtI) 645 return; 646 647 unsigned BitWidth = Known.getBitWidth(); 648 649 // Refine Known set if the pointer alignment is set by assume bundles. 650 if (V->getType()->isPointerTy()) { 651 if (RetainedKnowledge RK = getKnowledgeValidInContext( 652 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 653 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 654 } 655 } 656 657 // Note that the patterns below need to be kept in sync with the code 658 // in AssumptionCache::updateAffectedValues. 659 660 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 661 if (!AssumeVH) 662 continue; 663 CallInst *I = cast<CallInst>(AssumeVH); 664 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 665 "Got assumption for the wrong function!"); 666 if (Q.isExcluded(I)) 667 continue; 668 669 // Warning: This loop can end up being somewhat performance sensitive. 670 // We're running this loop for once for each value queried resulting in a 671 // runtime of ~O(#assumes * #values). 672 673 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 674 "must be an assume intrinsic"); 675 676 Value *Arg = I->getArgOperand(0); 677 678 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 679 assert(BitWidth == 1 && "assume operand is not i1?"); 680 Known.setAllOnes(); 681 return; 682 } 683 if (match(Arg, m_Not(m_Specific(V))) && 684 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 685 assert(BitWidth == 1 && "assume operand is not i1?"); 686 Known.setAllZero(); 687 return; 688 } 689 690 // The remaining tests are all recursive, so bail out if we hit the limit. 691 if (Depth == MaxAnalysisRecursionDepth) 692 continue; 693 694 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 695 if (!Cmp) 696 continue; 697 698 // Note that ptrtoint may change the bitwidth. 699 Value *A, *B; 700 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 701 702 CmpInst::Predicate Pred; 703 uint64_t C; 704 switch (Cmp->getPredicate()) { 705 default: 706 break; 707 case ICmpInst::ICMP_EQ: 708 // assume(v = a) 709 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 KnownBits RHSKnown = 712 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 713 Known.Zero |= RHSKnown.Zero; 714 Known.One |= RHSKnown.One; 715 // assume(v & b = a) 716 } else if (match(Cmp, 717 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 KnownBits RHSKnown = 720 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 721 KnownBits MaskKnown = 722 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 723 724 // For those bits in the mask that are known to be one, we can propagate 725 // known bits from the RHS to V. 726 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 727 Known.One |= RHSKnown.One & MaskKnown.One; 728 // assume(~(v & b) = a) 729 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 730 m_Value(A))) && 731 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 732 KnownBits RHSKnown = 733 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 734 KnownBits MaskKnown = 735 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 736 737 // For those bits in the mask that are known to be one, we can propagate 738 // inverted known bits from the RHS to V. 739 Known.Zero |= RHSKnown.One & MaskKnown.One; 740 Known.One |= RHSKnown.Zero & MaskKnown.One; 741 // assume(v | b = a) 742 } else if (match(Cmp, 743 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 744 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 745 KnownBits RHSKnown = 746 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 747 KnownBits BKnown = 748 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 749 750 // For those bits in B that are known to be zero, we can propagate known 751 // bits from the RHS to V. 752 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 753 Known.One |= RHSKnown.One & BKnown.Zero; 754 // assume(~(v | b) = a) 755 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 756 m_Value(A))) && 757 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 758 KnownBits RHSKnown = 759 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 760 KnownBits BKnown = 761 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 762 763 // For those bits in B that are known to be zero, we can propagate 764 // inverted known bits from the RHS to V. 765 Known.Zero |= RHSKnown.One & BKnown.Zero; 766 Known.One |= RHSKnown.Zero & BKnown.Zero; 767 // assume(v ^ b = a) 768 } else if (match(Cmp, 769 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 770 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 771 KnownBits RHSKnown = 772 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 773 KnownBits BKnown = 774 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 775 776 // For those bits in B that are known to be zero, we can propagate known 777 // bits from the RHS to V. For those bits in B that are known to be one, 778 // we can propagate inverted known bits from the RHS to V. 779 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 780 Known.One |= RHSKnown.One & BKnown.Zero; 781 Known.Zero |= RHSKnown.One & BKnown.One; 782 Known.One |= RHSKnown.Zero & BKnown.One; 783 // assume(~(v ^ b) = a) 784 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 785 m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate 793 // inverted known bits from the RHS to V. For those bits in B that are 794 // known to be one, we can propagate known bits from the RHS to V. 795 Known.Zero |= RHSKnown.One & BKnown.Zero; 796 Known.One |= RHSKnown.Zero & BKnown.Zero; 797 Known.Zero |= RHSKnown.Zero & BKnown.One; 798 Known.One |= RHSKnown.One & BKnown.One; 799 // assume(v << c = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 806 // For those bits in RHS that are known, we can propagate them to known 807 // bits in V shifted to the right by C. 808 RHSKnown.Zero.lshrInPlace(C); 809 Known.Zero |= RHSKnown.Zero; 810 RHSKnown.One.lshrInPlace(C); 811 Known.One |= RHSKnown.One; 812 // assume(~(v << c) = a) 813 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 814 m_Value(A))) && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 816 KnownBits RHSKnown = 817 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 818 // For those bits in RHS that are known, we can propagate them inverted 819 // to known bits in V shifted to the right by C. 820 RHSKnown.One.lshrInPlace(C); 821 Known.Zero |= RHSKnown.One; 822 RHSKnown.Zero.lshrInPlace(C); 823 Known.One |= RHSKnown.Zero; 824 // assume(v >> c = a) 825 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 826 m_Value(A))) && 827 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 828 KnownBits RHSKnown = 829 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 830 // For those bits in RHS that are known, we can propagate them to known 831 // bits in V shifted to the right by C. 832 Known.Zero |= RHSKnown.Zero << C; 833 Known.One |= RHSKnown.One << C; 834 // assume(~(v >> c) = a) 835 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 836 m_Value(A))) && 837 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 838 KnownBits RHSKnown = 839 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 840 // For those bits in RHS that are known, we can propagate them inverted 841 // to known bits in V shifted to the right by C. 842 Known.Zero |= RHSKnown.One << C; 843 Known.One |= RHSKnown.Zero << C; 844 } 845 break; 846 case ICmpInst::ICMP_SGE: 847 // assume(v >=_s c) where c is non-negative 848 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 849 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 850 KnownBits RHSKnown = 851 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 852 853 if (RHSKnown.isNonNegative()) { 854 // We know that the sign bit is zero. 855 Known.makeNonNegative(); 856 } 857 } 858 break; 859 case ICmpInst::ICMP_SGT: 860 // assume(v >_s c) where c is at least -1. 861 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 862 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 863 KnownBits RHSKnown = 864 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 865 866 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 867 // We know that the sign bit is zero. 868 Known.makeNonNegative(); 869 } 870 } 871 break; 872 case ICmpInst::ICMP_SLE: 873 // assume(v <=_s c) where c is negative 874 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 875 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 876 KnownBits RHSKnown = 877 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 878 879 if (RHSKnown.isNegative()) { 880 // We know that the sign bit is one. 881 Known.makeNegative(); 882 } 883 } 884 break; 885 case ICmpInst::ICMP_SLT: 886 // assume(v <_s c) where c is non-positive 887 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 888 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 889 KnownBits RHSKnown = 890 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 891 892 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 893 // We know that the sign bit is one. 894 Known.makeNegative(); 895 } 896 } 897 break; 898 case ICmpInst::ICMP_ULE: 899 // assume(v <=_u c) 900 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 901 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 902 KnownBits RHSKnown = 903 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 904 905 // Whatever high bits in c are zero are known to be zero. 906 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 907 } 908 break; 909 case ICmpInst::ICMP_ULT: 910 // assume(v <_u c) 911 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 912 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 913 KnownBits RHSKnown = 914 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 915 916 // If the RHS is known zero, then this assumption must be wrong (nothing 917 // is unsigned less than zero). Signal a conflict and get out of here. 918 if (RHSKnown.isZero()) { 919 Known.Zero.setAllBits(); 920 Known.One.setAllBits(); 921 break; 922 } 923 924 // Whatever high bits in c are zero are known to be zero (if c is a power 925 // of 2, then one more). 926 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 927 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 928 else 929 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 930 } 931 break; 932 } 933 } 934 935 // If assumptions conflict with each other or previous known bits, then we 936 // have a logical fallacy. It's possible that the assumption is not reachable, 937 // so this isn't a real bug. On the other hand, the program may have undefined 938 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 939 // clear out the known bits, try to warn the user, and hope for the best. 940 if (Known.Zero.intersects(Known.One)) { 941 Known.resetAll(); 942 943 if (Q.ORE) 944 Q.ORE->emit([&]() { 945 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 946 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 947 CxtI) 948 << "Detected conflicting code assumptions. Program may " 949 "have undefined behavior, or compiler may have " 950 "internal error."; 951 }); 952 } 953 } 954 955 /// Compute known bits from a shift operator, including those with a 956 /// non-constant shift amount. Known is the output of this function. Known2 is a 957 /// pre-allocated temporary with the same bit width as Known and on return 958 /// contains the known bit of the shift value source. KF is an 959 /// operator-specific function that, given the known-bits and a shift amount, 960 /// compute the implied known-bits of the shift operator's result respectively 961 /// for that shift amount. The results from calling KF are conservatively 962 /// combined for all permitted shift amounts. 963 static void computeKnownBitsFromShiftOperator( 964 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 965 KnownBits &Known2, unsigned Depth, const Query &Q, 966 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 967 unsigned BitWidth = Known.getBitWidth(); 968 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 969 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 970 971 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 972 // BitWidth > 64 and any upper bits are known, we'll end up returning the 973 // limit value (which implies all bits are known). 974 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 975 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 976 bool ShiftAmtIsConstant = Known.isConstant(); 977 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 978 979 if (ShiftAmtIsConstant) { 980 Known = KF(Known2, Known); 981 982 // If the known bits conflict, this must be an overflowing left shift, so 983 // the shift result is poison. We can return anything we want. Choose 0 for 984 // the best folding opportunity. 985 if (Known.hasConflict()) 986 Known.setAllZero(); 987 988 return; 989 } 990 991 // If the shift amount could be greater than or equal to the bit-width of the 992 // LHS, the value could be poison, but bail out because the check below is 993 // expensive. 994 // TODO: Should we just carry on? 995 if (MaxShiftAmtIsOutOfRange) { 996 Known.resetAll(); 997 return; 998 } 999 1000 // It would be more-clearly correct to use the two temporaries for this 1001 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1002 Known.resetAll(); 1003 1004 // If we know the shifter operand is nonzero, we can sometimes infer more 1005 // known bits. However this is expensive to compute, so be lazy about it and 1006 // only compute it when absolutely necessary. 1007 Optional<bool> ShifterOperandIsNonZero; 1008 1009 // Early exit if we can't constrain any well-defined shift amount. 1010 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1011 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1012 ShifterOperandIsNonZero = 1013 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1014 if (!*ShifterOperandIsNonZero) 1015 return; 1016 } 1017 1018 Known.Zero.setAllBits(); 1019 Known.One.setAllBits(); 1020 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1021 // Combine the shifted known input bits only for those shift amounts 1022 // compatible with its known constraints. 1023 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1024 continue; 1025 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1026 continue; 1027 // If we know the shifter is nonzero, we may be able to infer more known 1028 // bits. This check is sunk down as far as possible to avoid the expensive 1029 // call to isKnownNonZero if the cheaper checks above fail. 1030 if (ShiftAmt == 0) { 1031 if (!ShifterOperandIsNonZero.hasValue()) 1032 ShifterOperandIsNonZero = 1033 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1034 if (*ShifterOperandIsNonZero) 1035 continue; 1036 } 1037 1038 Known = KnownBits::commonBits( 1039 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1040 } 1041 1042 // If the known bits conflict, the result is poison. Return a 0 and hope the 1043 // caller can further optimize that. 1044 if (Known.hasConflict()) 1045 Known.setAllZero(); 1046 } 1047 1048 static void computeKnownBitsFromOperator(const Operator *I, 1049 const APInt &DemandedElts, 1050 KnownBits &Known, unsigned Depth, 1051 const Query &Q) { 1052 unsigned BitWidth = Known.getBitWidth(); 1053 1054 KnownBits Known2(BitWidth); 1055 switch (I->getOpcode()) { 1056 default: break; 1057 case Instruction::Load: 1058 if (MDNode *MD = 1059 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1060 computeKnownBitsFromRangeMetadata(*MD, Known); 1061 break; 1062 case Instruction::And: { 1063 // If either the LHS or the RHS are Zero, the result is zero. 1064 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1065 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1066 1067 Known &= Known2; 1068 1069 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1070 // here we handle the more general case of adding any odd number by 1071 // matching the form add(x, add(x, y)) where y is odd. 1072 // TODO: This could be generalized to clearing any bit set in y where the 1073 // following bit is known to be unset in y. 1074 Value *X = nullptr, *Y = nullptr; 1075 if (!Known.Zero[0] && !Known.One[0] && 1076 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1077 Known2.resetAll(); 1078 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1079 if (Known2.countMinTrailingOnes() > 0) 1080 Known.Zero.setBit(0); 1081 } 1082 break; 1083 } 1084 case Instruction::Or: 1085 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1086 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1087 1088 Known |= Known2; 1089 break; 1090 case Instruction::Xor: 1091 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1092 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1093 1094 Known ^= Known2; 1095 break; 1096 case Instruction::Mul: { 1097 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1098 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1099 Known, Known2, Depth, Q); 1100 break; 1101 } 1102 case Instruction::UDiv: { 1103 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1105 Known = KnownBits::udiv(Known, Known2); 1106 break; 1107 } 1108 case Instruction::Select: { 1109 const Value *LHS = nullptr, *RHS = nullptr; 1110 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1111 if (SelectPatternResult::isMinOrMax(SPF)) { 1112 computeKnownBits(RHS, Known, Depth + 1, Q); 1113 computeKnownBits(LHS, Known2, Depth + 1, Q); 1114 switch (SPF) { 1115 default: 1116 llvm_unreachable("Unhandled select pattern flavor!"); 1117 case SPF_SMAX: 1118 Known = KnownBits::smax(Known, Known2); 1119 break; 1120 case SPF_SMIN: 1121 Known = KnownBits::smin(Known, Known2); 1122 break; 1123 case SPF_UMAX: 1124 Known = KnownBits::umax(Known, Known2); 1125 break; 1126 case SPF_UMIN: 1127 Known = KnownBits::umin(Known, Known2); 1128 break; 1129 } 1130 break; 1131 } 1132 1133 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1134 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1135 1136 // Only known if known in both the LHS and RHS. 1137 Known = KnownBits::commonBits(Known, Known2); 1138 1139 if (SPF == SPF_ABS) { 1140 // RHS from matchSelectPattern returns the negation part of abs pattern. 1141 // If the negate has an NSW flag we can assume the sign bit of the result 1142 // will be 0 because that makes abs(INT_MIN) undefined. 1143 if (match(RHS, m_Neg(m_Specific(LHS))) && 1144 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1145 Known.Zero.setSignBit(); 1146 } 1147 1148 break; 1149 } 1150 case Instruction::FPTrunc: 1151 case Instruction::FPExt: 1152 case Instruction::FPToUI: 1153 case Instruction::FPToSI: 1154 case Instruction::SIToFP: 1155 case Instruction::UIToFP: 1156 break; // Can't work with floating point. 1157 case Instruction::PtrToInt: 1158 case Instruction::IntToPtr: 1159 // Fall through and handle them the same as zext/trunc. 1160 LLVM_FALLTHROUGH; 1161 case Instruction::ZExt: 1162 case Instruction::Trunc: { 1163 Type *SrcTy = I->getOperand(0)->getType(); 1164 1165 unsigned SrcBitWidth; 1166 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1167 // which fall through here. 1168 Type *ScalarTy = SrcTy->getScalarType(); 1169 SrcBitWidth = ScalarTy->isPointerTy() ? 1170 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1171 Q.DL.getTypeSizeInBits(ScalarTy); 1172 1173 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1174 Known = Known.anyextOrTrunc(SrcBitWidth); 1175 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1176 Known = Known.zextOrTrunc(BitWidth); 1177 break; 1178 } 1179 case Instruction::BitCast: { 1180 Type *SrcTy = I->getOperand(0)->getType(); 1181 if (SrcTy->isIntOrPtrTy() && 1182 // TODO: For now, not handling conversions like: 1183 // (bitcast i64 %x to <2 x i32>) 1184 !I->getType()->isVectorTy()) { 1185 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1186 break; 1187 } 1188 break; 1189 } 1190 case Instruction::SExt: { 1191 // Compute the bits in the result that are not present in the input. 1192 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1193 1194 Known = Known.trunc(SrcBitWidth); 1195 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1196 // If the sign bit of the input is known set or clear, then we know the 1197 // top bits of the result. 1198 Known = Known.sext(BitWidth); 1199 break; 1200 } 1201 case Instruction::Shl: { 1202 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1203 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1204 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1205 // If this shift has "nsw" keyword, then the result is either a poison 1206 // value or has the same sign bit as the first operand. 1207 if (NSW) { 1208 if (KnownVal.Zero.isSignBitSet()) 1209 Result.Zero.setSignBit(); 1210 if (KnownVal.One.isSignBitSet()) 1211 Result.One.setSignBit(); 1212 } 1213 return Result; 1214 }; 1215 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1216 KF); 1217 // Trailing zeros of a right-shifted constant never decrease. 1218 const APInt *C; 1219 if (match(I->getOperand(0), m_APInt(C))) 1220 Known.Zero.setLowBits(C->countTrailingZeros()); 1221 break; 1222 } 1223 case Instruction::LShr: { 1224 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1225 return KnownBits::lshr(KnownVal, KnownAmt); 1226 }; 1227 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1228 KF); 1229 // Leading zeros of a left-shifted constant never decrease. 1230 const APInt *C; 1231 if (match(I->getOperand(0), m_APInt(C))) 1232 Known.Zero.setHighBits(C->countLeadingZeros()); 1233 break; 1234 } 1235 case Instruction::AShr: { 1236 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1237 return KnownBits::ashr(KnownVal, KnownAmt); 1238 }; 1239 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1240 KF); 1241 break; 1242 } 1243 case Instruction::Sub: { 1244 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1245 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1246 DemandedElts, Known, Known2, Depth, Q); 1247 break; 1248 } 1249 case Instruction::Add: { 1250 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1251 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1252 DemandedElts, Known, Known2, Depth, Q); 1253 break; 1254 } 1255 case Instruction::SRem: 1256 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1257 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1258 Known = KnownBits::srem(Known, Known2); 1259 break; 1260 1261 case Instruction::URem: 1262 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1263 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1264 Known = KnownBits::urem(Known, Known2); 1265 break; 1266 case Instruction::Alloca: 1267 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1268 break; 1269 case Instruction::GetElementPtr: { 1270 // Analyze all of the subscripts of this getelementptr instruction 1271 // to determine if we can prove known low zero bits. 1272 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1273 // Accumulate the constant indices in a separate variable 1274 // to minimize the number of calls to computeForAddSub. 1275 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1276 1277 gep_type_iterator GTI = gep_type_begin(I); 1278 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1279 // TrailZ can only become smaller, short-circuit if we hit zero. 1280 if (Known.isUnknown()) 1281 break; 1282 1283 Value *Index = I->getOperand(i); 1284 1285 // Handle case when index is zero. 1286 Constant *CIndex = dyn_cast<Constant>(Index); 1287 if (CIndex && CIndex->isZeroValue()) 1288 continue; 1289 1290 if (StructType *STy = GTI.getStructTypeOrNull()) { 1291 // Handle struct member offset arithmetic. 1292 1293 assert(CIndex && 1294 "Access to structure field must be known at compile time"); 1295 1296 if (CIndex->getType()->isVectorTy()) 1297 Index = CIndex->getSplatValue(); 1298 1299 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1300 const StructLayout *SL = Q.DL.getStructLayout(STy); 1301 uint64_t Offset = SL->getElementOffset(Idx); 1302 AccConstIndices += Offset; 1303 continue; 1304 } 1305 1306 // Handle array index arithmetic. 1307 Type *IndexedTy = GTI.getIndexedType(); 1308 if (!IndexedTy->isSized()) { 1309 Known.resetAll(); 1310 break; 1311 } 1312 1313 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1314 KnownBits IndexBits(IndexBitWidth); 1315 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1316 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1317 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1318 KnownBits ScalingFactor(IndexBitWidth); 1319 // Multiply by current sizeof type. 1320 // &A[i] == A + i * sizeof(*A[i]). 1321 if (IndexTypeSize.isScalable()) { 1322 // For scalable types the only thing we know about sizeof is 1323 // that this is a multiple of the minimum size. 1324 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1325 } else if (IndexBits.isConstant()) { 1326 APInt IndexConst = IndexBits.getConstant(); 1327 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1328 IndexConst *= ScalingFactor; 1329 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1330 continue; 1331 } else { 1332 ScalingFactor = 1333 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1334 } 1335 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1336 1337 // If the offsets have a different width from the pointer, according 1338 // to the language reference we need to sign-extend or truncate them 1339 // to the width of the pointer. 1340 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1341 1342 // Note that inbounds does *not* guarantee nsw for the addition, as only 1343 // the offset is signed, while the base address is unsigned. 1344 Known = KnownBits::computeForAddSub( 1345 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1346 } 1347 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1348 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1349 Known = KnownBits::computeForAddSub( 1350 /*Add=*/true, /*NSW=*/false, Known, Index); 1351 } 1352 break; 1353 } 1354 case Instruction::PHI: { 1355 const PHINode *P = cast<PHINode>(I); 1356 // Handle the case of a simple two-predecessor recurrence PHI. 1357 // There's a lot more that could theoretically be done here, but 1358 // this is sufficient to catch some interesting cases. 1359 if (P->getNumIncomingValues() == 2) { 1360 for (unsigned i = 0; i != 2; ++i) { 1361 Value *L = P->getIncomingValue(i); 1362 Value *R = P->getIncomingValue(!i); 1363 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1364 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1365 Operator *LU = dyn_cast<Operator>(L); 1366 if (!LU) 1367 continue; 1368 unsigned Opcode = LU->getOpcode(); 1369 1370 1371 // If this is a shift recurrence, we know the bits being shifted in. 1372 // We can combine that with information about the start value of the 1373 // recurrence to conclude facts about the result. 1374 if (Opcode == Instruction::LShr || 1375 Opcode == Instruction::AShr || 1376 Opcode == Instruction::Shl) { 1377 Value *LL = LU->getOperand(0); 1378 Value *LR = LU->getOperand(1); 1379 // Find a recurrence. 1380 if (LL == I) 1381 L = LR; 1382 else 1383 continue; // Check for recurrence with L and R flipped. 1384 1385 // We have matched a recurrence of the form: 1386 // %iv = [R, %entry], [%iv.next, %backedge] 1387 // %iv.next = shift_op %iv, L 1388 1389 // Recurse with the phi context to avoid concern about whether facts 1390 // inferred hold at original context instruction. TODO: It may be 1391 // correct to use the original context. IF warranted, explore and 1392 // add sufficient tests to cover. 1393 Query RecQ = Q; 1394 RecQ.CxtI = P; 1395 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1396 switch (Opcode) { 1397 case Instruction::Shl: 1398 // A shl recurrence will only increase the tailing zeros 1399 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1400 break; 1401 case Instruction::LShr: 1402 // A lshr recurrence will preserve the leading zeros of the 1403 // start value 1404 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1405 break; 1406 case Instruction::AShr: 1407 // An ashr recurrence will extend the initial sign bit 1408 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1409 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1410 break; 1411 }; 1412 } 1413 1414 // Check for operations that have the property that if 1415 // both their operands have low zero bits, the result 1416 // will have low zero bits. 1417 if (Opcode == Instruction::Add || 1418 Opcode == Instruction::Sub || 1419 Opcode == Instruction::And || 1420 Opcode == Instruction::Or || 1421 Opcode == Instruction::Mul) { 1422 Value *LL = LU->getOperand(0); 1423 Value *LR = LU->getOperand(1); 1424 // Find a recurrence. 1425 if (LL == I) 1426 L = LR; 1427 else if (LR == I) 1428 L = LL; 1429 else 1430 continue; // Check for recurrence with L and R flipped. 1431 1432 // Change the context instruction to the "edge" that flows into the 1433 // phi. This is important because that is where the value is actually 1434 // "evaluated" even though it is used later somewhere else. (see also 1435 // D69571). 1436 Query RecQ = Q; 1437 1438 // Ok, we have a PHI of the form L op= R. Check for low 1439 // zero bits. 1440 RecQ.CxtI = RInst; 1441 computeKnownBits(R, Known2, Depth + 1, RecQ); 1442 1443 // We need to take the minimum number of known bits 1444 KnownBits Known3(BitWidth); 1445 RecQ.CxtI = LInst; 1446 computeKnownBits(L, Known3, Depth + 1, RecQ); 1447 1448 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1449 Known3.countMinTrailingZeros())); 1450 1451 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1452 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1453 // If initial value of recurrence is nonnegative, and we are adding 1454 // a nonnegative number with nsw, the result can only be nonnegative 1455 // or poison value regardless of the number of times we execute the 1456 // add in phi recurrence. If initial value is negative and we are 1457 // adding a negative number with nsw, the result can only be 1458 // negative or poison value. Similar arguments apply to sub and mul. 1459 // 1460 // (add non-negative, non-negative) --> non-negative 1461 // (add negative, negative) --> negative 1462 if (Opcode == Instruction::Add) { 1463 if (Known2.isNonNegative() && Known3.isNonNegative()) 1464 Known.makeNonNegative(); 1465 else if (Known2.isNegative() && Known3.isNegative()) 1466 Known.makeNegative(); 1467 } 1468 1469 // (sub nsw non-negative, negative) --> non-negative 1470 // (sub nsw negative, non-negative) --> negative 1471 else if (Opcode == Instruction::Sub && LL == I) { 1472 if (Known2.isNonNegative() && Known3.isNegative()) 1473 Known.makeNonNegative(); 1474 else if (Known2.isNegative() && Known3.isNonNegative()) 1475 Known.makeNegative(); 1476 } 1477 1478 // (mul nsw non-negative, non-negative) --> non-negative 1479 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1480 Known3.isNonNegative()) 1481 Known.makeNonNegative(); 1482 } 1483 1484 break; 1485 } 1486 } 1487 } 1488 1489 // Unreachable blocks may have zero-operand PHI nodes. 1490 if (P->getNumIncomingValues() == 0) 1491 break; 1492 1493 // Otherwise take the unions of the known bit sets of the operands, 1494 // taking conservative care to avoid excessive recursion. 1495 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1496 // Skip if every incoming value references to ourself. 1497 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1498 break; 1499 1500 Known.Zero.setAllBits(); 1501 Known.One.setAllBits(); 1502 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1503 Value *IncValue = P->getIncomingValue(u); 1504 // Skip direct self references. 1505 if (IncValue == P) continue; 1506 1507 // Change the context instruction to the "edge" that flows into the 1508 // phi. This is important because that is where the value is actually 1509 // "evaluated" even though it is used later somewhere else. (see also 1510 // D69571). 1511 Query RecQ = Q; 1512 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1513 1514 Known2 = KnownBits(BitWidth); 1515 // Recurse, but cap the recursion to one level, because we don't 1516 // want to waste time spinning around in loops. 1517 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1518 Known = KnownBits::commonBits(Known, Known2); 1519 // If all bits have been ruled out, there's no need to check 1520 // more operands. 1521 if (Known.isUnknown()) 1522 break; 1523 } 1524 } 1525 break; 1526 } 1527 case Instruction::Call: 1528 case Instruction::Invoke: 1529 // If range metadata is attached to this call, set known bits from that, 1530 // and then intersect with known bits based on other properties of the 1531 // function. 1532 if (MDNode *MD = 1533 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1534 computeKnownBitsFromRangeMetadata(*MD, Known); 1535 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1536 computeKnownBits(RV, Known2, Depth + 1, Q); 1537 Known.Zero |= Known2.Zero; 1538 Known.One |= Known2.One; 1539 } 1540 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1541 switch (II->getIntrinsicID()) { 1542 default: break; 1543 case Intrinsic::abs: { 1544 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1545 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1546 Known = Known2.abs(IntMinIsPoison); 1547 break; 1548 } 1549 case Intrinsic::bitreverse: 1550 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1551 Known.Zero |= Known2.Zero.reverseBits(); 1552 Known.One |= Known2.One.reverseBits(); 1553 break; 1554 case Intrinsic::bswap: 1555 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1556 Known.Zero |= Known2.Zero.byteSwap(); 1557 Known.One |= Known2.One.byteSwap(); 1558 break; 1559 case Intrinsic::ctlz: { 1560 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1561 // If we have a known 1, its position is our upper bound. 1562 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1563 // If this call is undefined for 0, the result will be less than 2^n. 1564 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1565 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1566 unsigned LowBits = Log2_32(PossibleLZ)+1; 1567 Known.Zero.setBitsFrom(LowBits); 1568 break; 1569 } 1570 case Intrinsic::cttz: { 1571 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1572 // If we have a known 1, its position is our upper bound. 1573 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1574 // If this call is undefined for 0, the result will be less than 2^n. 1575 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1576 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1577 unsigned LowBits = Log2_32(PossibleTZ)+1; 1578 Known.Zero.setBitsFrom(LowBits); 1579 break; 1580 } 1581 case Intrinsic::ctpop: { 1582 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1583 // We can bound the space the count needs. Also, bits known to be zero 1584 // can't contribute to the population. 1585 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1586 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1587 Known.Zero.setBitsFrom(LowBits); 1588 // TODO: we could bound KnownOne using the lower bound on the number 1589 // of bits which might be set provided by popcnt KnownOne2. 1590 break; 1591 } 1592 case Intrinsic::fshr: 1593 case Intrinsic::fshl: { 1594 const APInt *SA; 1595 if (!match(I->getOperand(2), m_APInt(SA))) 1596 break; 1597 1598 // Normalize to funnel shift left. 1599 uint64_t ShiftAmt = SA->urem(BitWidth); 1600 if (II->getIntrinsicID() == Intrinsic::fshr) 1601 ShiftAmt = BitWidth - ShiftAmt; 1602 1603 KnownBits Known3(BitWidth); 1604 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1605 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1606 1607 Known.Zero = 1608 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1609 Known.One = 1610 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1611 break; 1612 } 1613 case Intrinsic::uadd_sat: 1614 case Intrinsic::usub_sat: { 1615 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1616 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1617 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1618 1619 // Add: Leading ones of either operand are preserved. 1620 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1621 // as leading zeros in the result. 1622 unsigned LeadingKnown; 1623 if (IsAdd) 1624 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1625 Known2.countMinLeadingOnes()); 1626 else 1627 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1628 Known2.countMinLeadingOnes()); 1629 1630 Known = KnownBits::computeForAddSub( 1631 IsAdd, /* NSW */ false, Known, Known2); 1632 1633 // We select between the operation result and all-ones/zero 1634 // respectively, so we can preserve known ones/zeros. 1635 if (IsAdd) { 1636 Known.One.setHighBits(LeadingKnown); 1637 Known.Zero.clearAllBits(); 1638 } else { 1639 Known.Zero.setHighBits(LeadingKnown); 1640 Known.One.clearAllBits(); 1641 } 1642 break; 1643 } 1644 case Intrinsic::umin: 1645 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1646 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1647 Known = KnownBits::umin(Known, Known2); 1648 break; 1649 case Intrinsic::umax: 1650 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1651 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1652 Known = KnownBits::umax(Known, Known2); 1653 break; 1654 case Intrinsic::smin: 1655 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1656 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1657 Known = KnownBits::smin(Known, Known2); 1658 break; 1659 case Intrinsic::smax: 1660 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1661 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1662 Known = KnownBits::smax(Known, Known2); 1663 break; 1664 case Intrinsic::x86_sse42_crc32_64_64: 1665 Known.Zero.setBitsFrom(32); 1666 break; 1667 } 1668 } 1669 break; 1670 case Instruction::ShuffleVector: { 1671 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1672 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1673 if (!Shuf) { 1674 Known.resetAll(); 1675 return; 1676 } 1677 // For undef elements, we don't know anything about the common state of 1678 // the shuffle result. 1679 APInt DemandedLHS, DemandedRHS; 1680 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1681 Known.resetAll(); 1682 return; 1683 } 1684 Known.One.setAllBits(); 1685 Known.Zero.setAllBits(); 1686 if (!!DemandedLHS) { 1687 const Value *LHS = Shuf->getOperand(0); 1688 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1689 // If we don't know any bits, early out. 1690 if (Known.isUnknown()) 1691 break; 1692 } 1693 if (!!DemandedRHS) { 1694 const Value *RHS = Shuf->getOperand(1); 1695 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1696 Known = KnownBits::commonBits(Known, Known2); 1697 } 1698 break; 1699 } 1700 case Instruction::InsertElement: { 1701 const Value *Vec = I->getOperand(0); 1702 const Value *Elt = I->getOperand(1); 1703 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1704 // Early out if the index is non-constant or out-of-range. 1705 unsigned NumElts = DemandedElts.getBitWidth(); 1706 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1707 Known.resetAll(); 1708 return; 1709 } 1710 Known.One.setAllBits(); 1711 Known.Zero.setAllBits(); 1712 unsigned EltIdx = CIdx->getZExtValue(); 1713 // Do we demand the inserted element? 1714 if (DemandedElts[EltIdx]) { 1715 computeKnownBits(Elt, Known, Depth + 1, Q); 1716 // If we don't know any bits, early out. 1717 if (Known.isUnknown()) 1718 break; 1719 } 1720 // We don't need the base vector element that has been inserted. 1721 APInt DemandedVecElts = DemandedElts; 1722 DemandedVecElts.clearBit(EltIdx); 1723 if (!!DemandedVecElts) { 1724 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1725 Known = KnownBits::commonBits(Known, Known2); 1726 } 1727 break; 1728 } 1729 case Instruction::ExtractElement: { 1730 // Look through extract element. If the index is non-constant or 1731 // out-of-range demand all elements, otherwise just the extracted element. 1732 const Value *Vec = I->getOperand(0); 1733 const Value *Idx = I->getOperand(1); 1734 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1735 if (isa<ScalableVectorType>(Vec->getType())) { 1736 // FIXME: there's probably *something* we can do with scalable vectors 1737 Known.resetAll(); 1738 break; 1739 } 1740 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1741 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1742 if (CIdx && CIdx->getValue().ult(NumElts)) 1743 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1744 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1745 break; 1746 } 1747 case Instruction::ExtractValue: 1748 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1749 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1750 if (EVI->getNumIndices() != 1) break; 1751 if (EVI->getIndices()[0] == 0) { 1752 switch (II->getIntrinsicID()) { 1753 default: break; 1754 case Intrinsic::uadd_with_overflow: 1755 case Intrinsic::sadd_with_overflow: 1756 computeKnownBitsAddSub(true, II->getArgOperand(0), 1757 II->getArgOperand(1), false, DemandedElts, 1758 Known, Known2, Depth, Q); 1759 break; 1760 case Intrinsic::usub_with_overflow: 1761 case Intrinsic::ssub_with_overflow: 1762 computeKnownBitsAddSub(false, II->getArgOperand(0), 1763 II->getArgOperand(1), false, DemandedElts, 1764 Known, Known2, Depth, Q); 1765 break; 1766 case Intrinsic::umul_with_overflow: 1767 case Intrinsic::smul_with_overflow: 1768 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1769 DemandedElts, Known, Known2, Depth, Q); 1770 break; 1771 } 1772 } 1773 } 1774 break; 1775 case Instruction::Freeze: 1776 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1777 Depth + 1)) 1778 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1779 break; 1780 } 1781 } 1782 1783 /// Determine which bits of V are known to be either zero or one and return 1784 /// them. 1785 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1786 unsigned Depth, const Query &Q) { 1787 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1788 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1789 return Known; 1790 } 1791 1792 /// Determine which bits of V are known to be either zero or one and return 1793 /// them. 1794 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1795 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1796 computeKnownBits(V, Known, Depth, Q); 1797 return Known; 1798 } 1799 1800 /// Determine which bits of V are known to be either zero or one and return 1801 /// them in the Known bit set. 1802 /// 1803 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1804 /// we cannot optimize based on the assumption that it is zero without changing 1805 /// it to be an explicit zero. If we don't change it to zero, other code could 1806 /// optimized based on the contradictory assumption that it is non-zero. 1807 /// Because instcombine aggressively folds operations with undef args anyway, 1808 /// this won't lose us code quality. 1809 /// 1810 /// This function is defined on values with integer type, values with pointer 1811 /// type, and vectors of integers. In the case 1812 /// where V is a vector, known zero, and known one values are the 1813 /// same width as the vector element, and the bit is set only if it is true 1814 /// for all of the demanded elements in the vector specified by DemandedElts. 1815 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1816 KnownBits &Known, unsigned Depth, const Query &Q) { 1817 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1818 // No demanded elts or V is a scalable vector, better to assume we don't 1819 // know anything. 1820 Known.resetAll(); 1821 return; 1822 } 1823 1824 assert(V && "No Value?"); 1825 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1826 1827 #ifndef NDEBUG 1828 Type *Ty = V->getType(); 1829 unsigned BitWidth = Known.getBitWidth(); 1830 1831 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1832 "Not integer or pointer type!"); 1833 1834 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1835 assert( 1836 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1837 "DemandedElt width should equal the fixed vector number of elements"); 1838 } else { 1839 assert(DemandedElts == APInt(1, 1) && 1840 "DemandedElt width should be 1 for scalars"); 1841 } 1842 1843 Type *ScalarTy = Ty->getScalarType(); 1844 if (ScalarTy->isPointerTy()) { 1845 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1846 "V and Known should have same BitWidth"); 1847 } else { 1848 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1849 "V and Known should have same BitWidth"); 1850 } 1851 #endif 1852 1853 const APInt *C; 1854 if (match(V, m_APInt(C))) { 1855 // We know all of the bits for a scalar constant or a splat vector constant! 1856 Known = KnownBits::makeConstant(*C); 1857 return; 1858 } 1859 // Null and aggregate-zero are all-zeros. 1860 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1861 Known.setAllZero(); 1862 return; 1863 } 1864 // Handle a constant vector by taking the intersection of the known bits of 1865 // each element. 1866 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1867 // We know that CDV must be a vector of integers. Take the intersection of 1868 // each element. 1869 Known.Zero.setAllBits(); Known.One.setAllBits(); 1870 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1871 if (!DemandedElts[i]) 1872 continue; 1873 APInt Elt = CDV->getElementAsAPInt(i); 1874 Known.Zero &= ~Elt; 1875 Known.One &= Elt; 1876 } 1877 return; 1878 } 1879 1880 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1881 // We know that CV must be a vector of integers. Take the intersection of 1882 // each element. 1883 Known.Zero.setAllBits(); Known.One.setAllBits(); 1884 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1885 if (!DemandedElts[i]) 1886 continue; 1887 Constant *Element = CV->getAggregateElement(i); 1888 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1889 if (!ElementCI) { 1890 Known.resetAll(); 1891 return; 1892 } 1893 const APInt &Elt = ElementCI->getValue(); 1894 Known.Zero &= ~Elt; 1895 Known.One &= Elt; 1896 } 1897 return; 1898 } 1899 1900 // Start out not knowing anything. 1901 Known.resetAll(); 1902 1903 // We can't imply anything about undefs. 1904 if (isa<UndefValue>(V)) 1905 return; 1906 1907 // There's no point in looking through other users of ConstantData for 1908 // assumptions. Confirm that we've handled them all. 1909 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1910 1911 // All recursive calls that increase depth must come after this. 1912 if (Depth == MaxAnalysisRecursionDepth) 1913 return; 1914 1915 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1916 // the bits of its aliasee. 1917 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1918 if (!GA->isInterposable()) 1919 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1920 return; 1921 } 1922 1923 if (const Operator *I = dyn_cast<Operator>(V)) 1924 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1925 1926 // Aligned pointers have trailing zeros - refine Known.Zero set 1927 if (isa<PointerType>(V->getType())) { 1928 Align Alignment = V->getPointerAlignment(Q.DL); 1929 Known.Zero.setLowBits(Log2(Alignment)); 1930 } 1931 1932 // computeKnownBitsFromAssume strictly refines Known. 1933 // Therefore, we run them after computeKnownBitsFromOperator. 1934 1935 // Check whether a nearby assume intrinsic can determine some known bits. 1936 computeKnownBitsFromAssume(V, Known, Depth, Q); 1937 1938 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1939 } 1940 1941 /// Return true if the given value is known to have exactly one 1942 /// bit set when defined. For vectors return true if every element is known to 1943 /// be a power of two when defined. Supports values with integer or pointer 1944 /// types and vectors of integers. 1945 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1946 const Query &Q) { 1947 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1948 1949 // Attempt to match against constants. 1950 if (OrZero && match(V, m_Power2OrZero())) 1951 return true; 1952 if (match(V, m_Power2())) 1953 return true; 1954 1955 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1956 // it is shifted off the end then the result is undefined. 1957 if (match(V, m_Shl(m_One(), m_Value()))) 1958 return true; 1959 1960 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1961 // the bottom. If it is shifted off the bottom then the result is undefined. 1962 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1963 return true; 1964 1965 // The remaining tests are all recursive, so bail out if we hit the limit. 1966 if (Depth++ == MaxAnalysisRecursionDepth) 1967 return false; 1968 1969 Value *X = nullptr, *Y = nullptr; 1970 // A shift left or a logical shift right of a power of two is a power of two 1971 // or zero. 1972 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1973 match(V, m_LShr(m_Value(X), m_Value())))) 1974 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1975 1976 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1977 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1978 1979 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1980 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1981 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1982 1983 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1984 // A power of two and'd with anything is a power of two or zero. 1985 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1986 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1987 return true; 1988 // X & (-X) is always a power of two or zero. 1989 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1990 return true; 1991 return false; 1992 } 1993 1994 // Adding a power-of-two or zero to the same power-of-two or zero yields 1995 // either the original power-of-two, a larger power-of-two or zero. 1996 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1997 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1998 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1999 Q.IIQ.hasNoSignedWrap(VOBO)) { 2000 if (match(X, m_And(m_Specific(Y), m_Value())) || 2001 match(X, m_And(m_Value(), m_Specific(Y)))) 2002 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2003 return true; 2004 if (match(Y, m_And(m_Specific(X), m_Value())) || 2005 match(Y, m_And(m_Value(), m_Specific(X)))) 2006 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2007 return true; 2008 2009 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2010 KnownBits LHSBits(BitWidth); 2011 computeKnownBits(X, LHSBits, Depth, Q); 2012 2013 KnownBits RHSBits(BitWidth); 2014 computeKnownBits(Y, RHSBits, Depth, Q); 2015 // If i8 V is a power of two or zero: 2016 // ZeroBits: 1 1 1 0 1 1 1 1 2017 // ~ZeroBits: 0 0 0 1 0 0 0 0 2018 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2019 // If OrZero isn't set, we cannot give back a zero result. 2020 // Make sure either the LHS or RHS has a bit set. 2021 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2022 return true; 2023 } 2024 } 2025 2026 // An exact divide or right shift can only shift off zero bits, so the result 2027 // is a power of two only if the first operand is a power of two and not 2028 // copying a sign bit (sdiv int_min, 2). 2029 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2030 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2031 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2032 Depth, Q); 2033 } 2034 2035 return false; 2036 } 2037 2038 /// Test whether a GEP's result is known to be non-null. 2039 /// 2040 /// Uses properties inherent in a GEP to try to determine whether it is known 2041 /// to be non-null. 2042 /// 2043 /// Currently this routine does not support vector GEPs. 2044 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2045 const Query &Q) { 2046 const Function *F = nullptr; 2047 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2048 F = I->getFunction(); 2049 2050 if (!GEP->isInBounds() || 2051 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2052 return false; 2053 2054 // FIXME: Support vector-GEPs. 2055 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2056 2057 // If the base pointer is non-null, we cannot walk to a null address with an 2058 // inbounds GEP in address space zero. 2059 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2060 return true; 2061 2062 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2063 // If so, then the GEP cannot produce a null pointer, as doing so would 2064 // inherently violate the inbounds contract within address space zero. 2065 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2066 GTI != GTE; ++GTI) { 2067 // Struct types are easy -- they must always be indexed by a constant. 2068 if (StructType *STy = GTI.getStructTypeOrNull()) { 2069 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2070 unsigned ElementIdx = OpC->getZExtValue(); 2071 const StructLayout *SL = Q.DL.getStructLayout(STy); 2072 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2073 if (ElementOffset > 0) 2074 return true; 2075 continue; 2076 } 2077 2078 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2079 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2080 continue; 2081 2082 // Fast path the constant operand case both for efficiency and so we don't 2083 // increment Depth when just zipping down an all-constant GEP. 2084 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2085 if (!OpC->isZero()) 2086 return true; 2087 continue; 2088 } 2089 2090 // We post-increment Depth here because while isKnownNonZero increments it 2091 // as well, when we pop back up that increment won't persist. We don't want 2092 // to recurse 10k times just because we have 10k GEP operands. We don't 2093 // bail completely out because we want to handle constant GEPs regardless 2094 // of depth. 2095 if (Depth++ >= MaxAnalysisRecursionDepth) 2096 continue; 2097 2098 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2099 return true; 2100 } 2101 2102 return false; 2103 } 2104 2105 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2106 const Instruction *CtxI, 2107 const DominatorTree *DT) { 2108 if (isa<Constant>(V)) 2109 return false; 2110 2111 if (!CtxI || !DT) 2112 return false; 2113 2114 unsigned NumUsesExplored = 0; 2115 for (auto *U : V->users()) { 2116 // Avoid massive lists 2117 if (NumUsesExplored >= DomConditionsMaxUses) 2118 break; 2119 NumUsesExplored++; 2120 2121 // If the value is used as an argument to a call or invoke, then argument 2122 // attributes may provide an answer about null-ness. 2123 if (const auto *CB = dyn_cast<CallBase>(U)) 2124 if (auto *CalledFunc = CB->getCalledFunction()) 2125 for (const Argument &Arg : CalledFunc->args()) 2126 if (CB->getArgOperand(Arg.getArgNo()) == V && 2127 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2128 DT->dominates(CB, CtxI)) 2129 return true; 2130 2131 // If the value is used as a load/store, then the pointer must be non null. 2132 if (V == getLoadStorePointerOperand(U)) { 2133 const Instruction *I = cast<Instruction>(U); 2134 if (!NullPointerIsDefined(I->getFunction(), 2135 V->getType()->getPointerAddressSpace()) && 2136 DT->dominates(I, CtxI)) 2137 return true; 2138 } 2139 2140 // Consider only compare instructions uniquely controlling a branch 2141 Value *RHS; 2142 CmpInst::Predicate Pred; 2143 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2144 continue; 2145 2146 bool NonNullIfTrue; 2147 if (cmpExcludesZero(Pred, RHS)) 2148 NonNullIfTrue = true; 2149 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2150 NonNullIfTrue = false; 2151 else 2152 continue; 2153 2154 SmallVector<const User *, 4> WorkList; 2155 SmallPtrSet<const User *, 4> Visited; 2156 for (auto *CmpU : U->users()) { 2157 assert(WorkList.empty() && "Should be!"); 2158 if (Visited.insert(CmpU).second) 2159 WorkList.push_back(CmpU); 2160 2161 while (!WorkList.empty()) { 2162 auto *Curr = WorkList.pop_back_val(); 2163 2164 // If a user is an AND, add all its users to the work list. We only 2165 // propagate "pred != null" condition through AND because it is only 2166 // correct to assume that all conditions of AND are met in true branch. 2167 // TODO: Support similar logic of OR and EQ predicate? 2168 if (NonNullIfTrue) 2169 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2170 for (auto *CurrU : Curr->users()) 2171 if (Visited.insert(CurrU).second) 2172 WorkList.push_back(CurrU); 2173 continue; 2174 } 2175 2176 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2177 assert(BI->isConditional() && "uses a comparison!"); 2178 2179 BasicBlock *NonNullSuccessor = 2180 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2181 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2182 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2183 return true; 2184 } else if (NonNullIfTrue && isGuard(Curr) && 2185 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2186 return true; 2187 } 2188 } 2189 } 2190 } 2191 2192 return false; 2193 } 2194 2195 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2196 /// ensure that the value it's attached to is never Value? 'RangeType' is 2197 /// is the type of the value described by the range. 2198 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2199 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2200 assert(NumRanges >= 1); 2201 for (unsigned i = 0; i < NumRanges; ++i) { 2202 ConstantInt *Lower = 2203 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2204 ConstantInt *Upper = 2205 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2206 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2207 if (Range.contains(Value)) 2208 return false; 2209 } 2210 return true; 2211 } 2212 2213 /// Return true if the given value is known to be non-zero when defined. For 2214 /// vectors, return true if every demanded element is known to be non-zero when 2215 /// defined. For pointers, if the context instruction and dominator tree are 2216 /// specified, perform context-sensitive analysis and return true if the 2217 /// pointer couldn't possibly be null at the specified instruction. 2218 /// Supports values with integer or pointer type and vectors of integers. 2219 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2220 const Query &Q) { 2221 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2222 // vector 2223 if (isa<ScalableVectorType>(V->getType())) 2224 return false; 2225 2226 if (auto *C = dyn_cast<Constant>(V)) { 2227 if (C->isNullValue()) 2228 return false; 2229 if (isa<ConstantInt>(C)) 2230 // Must be non-zero due to null test above. 2231 return true; 2232 2233 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2234 // See the comment for IntToPtr/PtrToInt instructions below. 2235 if (CE->getOpcode() == Instruction::IntToPtr || 2236 CE->getOpcode() == Instruction::PtrToInt) 2237 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2238 .getFixedSize() <= 2239 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2240 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2241 } 2242 2243 // For constant vectors, check that all elements are undefined or known 2244 // non-zero to determine that the whole vector is known non-zero. 2245 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2246 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2247 if (!DemandedElts[i]) 2248 continue; 2249 Constant *Elt = C->getAggregateElement(i); 2250 if (!Elt || Elt->isNullValue()) 2251 return false; 2252 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2253 return false; 2254 } 2255 return true; 2256 } 2257 2258 // A global variable in address space 0 is non null unless extern weak 2259 // or an absolute symbol reference. Other address spaces may have null as a 2260 // valid address for a global, so we can't assume anything. 2261 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2262 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2263 GV->getType()->getAddressSpace() == 0) 2264 return true; 2265 } else 2266 return false; 2267 } 2268 2269 if (auto *I = dyn_cast<Instruction>(V)) { 2270 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2271 // If the possible ranges don't contain zero, then the value is 2272 // definitely non-zero. 2273 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2274 const APInt ZeroValue(Ty->getBitWidth(), 0); 2275 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2276 return true; 2277 } 2278 } 2279 } 2280 2281 if (isKnownNonZeroFromAssume(V, Q)) 2282 return true; 2283 2284 // Some of the tests below are recursive, so bail out if we hit the limit. 2285 if (Depth++ >= MaxAnalysisRecursionDepth) 2286 return false; 2287 2288 // Check for pointer simplifications. 2289 2290 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2291 // Alloca never returns null, malloc might. 2292 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2293 return true; 2294 2295 // A byval, inalloca may not be null in a non-default addres space. A 2296 // nonnull argument is assumed never 0. 2297 if (const Argument *A = dyn_cast<Argument>(V)) { 2298 if (((A->hasPassPointeeByValueCopyAttr() && 2299 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2300 A->hasNonNullAttr())) 2301 return true; 2302 } 2303 2304 // A Load tagged with nonnull metadata is never null. 2305 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2306 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2307 return true; 2308 2309 if (const auto *Call = dyn_cast<CallBase>(V)) { 2310 if (Call->isReturnNonNull()) 2311 return true; 2312 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2313 return isKnownNonZero(RP, Depth, Q); 2314 } 2315 } 2316 2317 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2318 return true; 2319 2320 // Check for recursive pointer simplifications. 2321 if (V->getType()->isPointerTy()) { 2322 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2323 // do not alter the value, or at least not the nullness property of the 2324 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2325 // 2326 // Note that we have to take special care to avoid looking through 2327 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2328 // as casts that can alter the value, e.g., AddrSpaceCasts. 2329 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2330 return isGEPKnownNonNull(GEP, Depth, Q); 2331 2332 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2333 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2334 2335 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2336 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2337 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2338 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2339 } 2340 2341 // Similar to int2ptr above, we can look through ptr2int here if the cast 2342 // is a no-op or an extend and not a truncate. 2343 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2344 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2345 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2346 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2347 2348 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2349 2350 // X | Y != 0 if X != 0 or Y != 0. 2351 Value *X = nullptr, *Y = nullptr; 2352 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2353 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2354 isKnownNonZero(Y, DemandedElts, Depth, Q); 2355 2356 // ext X != 0 if X != 0. 2357 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2358 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2359 2360 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2361 // if the lowest bit is shifted off the end. 2362 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2363 // shl nuw can't remove any non-zero bits. 2364 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2365 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2366 return isKnownNonZero(X, Depth, Q); 2367 2368 KnownBits Known(BitWidth); 2369 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2370 if (Known.One[0]) 2371 return true; 2372 } 2373 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2374 // defined if the sign bit is shifted off the end. 2375 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2376 // shr exact can only shift out zero bits. 2377 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2378 if (BO->isExact()) 2379 return isKnownNonZero(X, Depth, Q); 2380 2381 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2382 if (Known.isNegative()) 2383 return true; 2384 2385 // If the shifter operand is a constant, and all of the bits shifted 2386 // out are known to be zero, and X is known non-zero then at least one 2387 // non-zero bit must remain. 2388 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2389 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2390 // Is there a known one in the portion not shifted out? 2391 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2392 return true; 2393 // Are all the bits to be shifted out known zero? 2394 if (Known.countMinTrailingZeros() >= ShiftVal) 2395 return isKnownNonZero(X, DemandedElts, Depth, Q); 2396 } 2397 } 2398 // div exact can only produce a zero if the dividend is zero. 2399 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2400 return isKnownNonZero(X, DemandedElts, Depth, Q); 2401 } 2402 // X + Y. 2403 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2404 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2405 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2406 2407 // If X and Y are both non-negative (as signed values) then their sum is not 2408 // zero unless both X and Y are zero. 2409 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2410 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2411 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2412 return true; 2413 2414 // If X and Y are both negative (as signed values) then their sum is not 2415 // zero unless both X and Y equal INT_MIN. 2416 if (XKnown.isNegative() && YKnown.isNegative()) { 2417 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2418 // The sign bit of X is set. If some other bit is set then X is not equal 2419 // to INT_MIN. 2420 if (XKnown.One.intersects(Mask)) 2421 return true; 2422 // The sign bit of Y is set. If some other bit is set then Y is not equal 2423 // to INT_MIN. 2424 if (YKnown.One.intersects(Mask)) 2425 return true; 2426 } 2427 2428 // The sum of a non-negative number and a power of two is not zero. 2429 if (XKnown.isNonNegative() && 2430 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2431 return true; 2432 if (YKnown.isNonNegative() && 2433 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2434 return true; 2435 } 2436 // X * Y. 2437 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2438 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2439 // If X and Y are non-zero then so is X * Y as long as the multiplication 2440 // does not overflow. 2441 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2442 isKnownNonZero(X, DemandedElts, Depth, Q) && 2443 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2444 return true; 2445 } 2446 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2447 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2448 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2449 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2450 return true; 2451 } 2452 // PHI 2453 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2454 // Try and detect a recurrence that monotonically increases from a 2455 // starting value, as these are common as induction variables. 2456 if (PN->getNumIncomingValues() == 2) { 2457 Value *Start = PN->getIncomingValue(0); 2458 Value *Induction = PN->getIncomingValue(1); 2459 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2460 std::swap(Start, Induction); 2461 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2462 if (!C->isZero() && !C->isNegative()) { 2463 ConstantInt *X; 2464 if (Q.IIQ.UseInstrInfo && 2465 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2466 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2467 !X->isNegative()) 2468 return true; 2469 } 2470 } 2471 } 2472 // Check if all incoming values are non-zero using recursion. 2473 Query RecQ = Q; 2474 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2475 return llvm::all_of(PN->operands(), [&](const Use &U) { 2476 if (U.get() == PN) 2477 return true; 2478 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2479 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2480 }); 2481 } 2482 // ExtractElement 2483 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2484 const Value *Vec = EEI->getVectorOperand(); 2485 const Value *Idx = EEI->getIndexOperand(); 2486 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2487 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2488 unsigned NumElts = VecTy->getNumElements(); 2489 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2490 if (CIdx && CIdx->getValue().ult(NumElts)) 2491 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2492 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2493 } 2494 } 2495 // Freeze 2496 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2497 auto *Op = FI->getOperand(0); 2498 if (isKnownNonZero(Op, Depth, Q) && 2499 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2500 return true; 2501 } 2502 2503 KnownBits Known(BitWidth); 2504 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2505 return Known.One != 0; 2506 } 2507 2508 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2509 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2510 // vector 2511 if (isa<ScalableVectorType>(V->getType())) 2512 return false; 2513 2514 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2515 APInt DemandedElts = 2516 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2517 return isKnownNonZero(V, DemandedElts, Depth, Q); 2518 } 2519 2520 /// Return true if V2 == V1 + X, where X is known non-zero. 2521 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2522 const Query &Q) { 2523 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2524 if (!BO || BO->getOpcode() != Instruction::Add) 2525 return false; 2526 Value *Op = nullptr; 2527 if (V2 == BO->getOperand(0)) 2528 Op = BO->getOperand(1); 2529 else if (V2 == BO->getOperand(1)) 2530 Op = BO->getOperand(0); 2531 else 2532 return false; 2533 return isKnownNonZero(Op, Depth + 1, Q); 2534 } 2535 2536 2537 /// Return true if it is known that V1 != V2. 2538 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2539 const Query &Q) { 2540 if (V1 == V2) 2541 return false; 2542 if (V1->getType() != V2->getType()) 2543 // We can't look through casts yet. 2544 return false; 2545 2546 if (Depth >= MaxAnalysisRecursionDepth) 2547 return false; 2548 2549 // See if we can recurse through (exactly one of) our operands. This 2550 // requires our operation be 1-to-1 and map every input value to exactly 2551 // one output value. Such an operation is invertible. 2552 auto *O1 = dyn_cast<Operator>(V1); 2553 auto *O2 = dyn_cast<Operator>(V2); 2554 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2555 switch (O1->getOpcode()) { 2556 default: break; 2557 case Instruction::Add: 2558 case Instruction::Sub: 2559 // Assume operand order has been canonicalized 2560 if (O1->getOperand(0) == O2->getOperand(0)) 2561 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2562 Depth + 1, Q); 2563 if (O1->getOperand(1) == O2->getOperand(1)) 2564 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2565 Depth + 1, Q); 2566 break; 2567 case Instruction::Mul: { 2568 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2569 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2570 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2571 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2572 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2573 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2574 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2575 break; 2576 2577 // Assume operand order has been canonicalized 2578 if (O1->getOperand(1) == O2->getOperand(1) && 2579 isa<ConstantInt>(O1->getOperand(1)) && 2580 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2581 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2582 Depth + 1, Q); 2583 break; 2584 } 2585 case Instruction::SExt: 2586 case Instruction::ZExt: 2587 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2588 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2589 Depth + 1, Q); 2590 break; 2591 }; 2592 } 2593 2594 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2595 return true; 2596 2597 if (V1->getType()->isIntOrIntVectorTy()) { 2598 // Are any known bits in V1 contradictory to known bits in V2? If V1 2599 // has a known zero where V2 has a known one, they must not be equal. 2600 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2601 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2602 2603 if (Known1.Zero.intersects(Known2.One) || 2604 Known2.Zero.intersects(Known1.One)) 2605 return true; 2606 } 2607 return false; 2608 } 2609 2610 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2611 /// simplify operations downstream. Mask is known to be zero for bits that V 2612 /// cannot have. 2613 /// 2614 /// This function is defined on values with integer type, values with pointer 2615 /// type, and vectors of integers. In the case 2616 /// where V is a vector, the mask, known zero, and known one values are the 2617 /// same width as the vector element, and the bit is set only if it is true 2618 /// for all of the elements in the vector. 2619 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2620 const Query &Q) { 2621 KnownBits Known(Mask.getBitWidth()); 2622 computeKnownBits(V, Known, Depth, Q); 2623 return Mask.isSubsetOf(Known.Zero); 2624 } 2625 2626 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2627 // Returns the input and lower/upper bounds. 2628 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2629 const APInt *&CLow, const APInt *&CHigh) { 2630 assert(isa<Operator>(Select) && 2631 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2632 "Input should be a Select!"); 2633 2634 const Value *LHS = nullptr, *RHS = nullptr; 2635 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2636 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2637 return false; 2638 2639 if (!match(RHS, m_APInt(CLow))) 2640 return false; 2641 2642 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2643 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2644 if (getInverseMinMaxFlavor(SPF) != SPF2) 2645 return false; 2646 2647 if (!match(RHS2, m_APInt(CHigh))) 2648 return false; 2649 2650 if (SPF == SPF_SMIN) 2651 std::swap(CLow, CHigh); 2652 2653 In = LHS2; 2654 return CLow->sle(*CHigh); 2655 } 2656 2657 /// For vector constants, loop over the elements and find the constant with the 2658 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2659 /// or if any element was not analyzed; otherwise, return the count for the 2660 /// element with the minimum number of sign bits. 2661 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2662 const APInt &DemandedElts, 2663 unsigned TyBits) { 2664 const auto *CV = dyn_cast<Constant>(V); 2665 if (!CV || !isa<FixedVectorType>(CV->getType())) 2666 return 0; 2667 2668 unsigned MinSignBits = TyBits; 2669 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2670 for (unsigned i = 0; i != NumElts; ++i) { 2671 if (!DemandedElts[i]) 2672 continue; 2673 // If we find a non-ConstantInt, bail out. 2674 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2675 if (!Elt) 2676 return 0; 2677 2678 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2679 } 2680 2681 return MinSignBits; 2682 } 2683 2684 static unsigned ComputeNumSignBitsImpl(const Value *V, 2685 const APInt &DemandedElts, 2686 unsigned Depth, const Query &Q); 2687 2688 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2689 unsigned Depth, const Query &Q) { 2690 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2691 assert(Result > 0 && "At least one sign bit needs to be present!"); 2692 return Result; 2693 } 2694 2695 /// Return the number of times the sign bit of the register is replicated into 2696 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2697 /// (itself), but other cases can give us information. For example, immediately 2698 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2699 /// other, so we return 3. For vectors, return the number of sign bits for the 2700 /// vector element with the minimum number of known sign bits of the demanded 2701 /// elements in the vector specified by DemandedElts. 2702 static unsigned ComputeNumSignBitsImpl(const Value *V, 2703 const APInt &DemandedElts, 2704 unsigned Depth, const Query &Q) { 2705 Type *Ty = V->getType(); 2706 2707 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2708 // vector 2709 if (isa<ScalableVectorType>(Ty)) 2710 return 1; 2711 2712 #ifndef NDEBUG 2713 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2714 2715 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2716 assert( 2717 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2718 "DemandedElt width should equal the fixed vector number of elements"); 2719 } else { 2720 assert(DemandedElts == APInt(1, 1) && 2721 "DemandedElt width should be 1 for scalars"); 2722 } 2723 #endif 2724 2725 // We return the minimum number of sign bits that are guaranteed to be present 2726 // in V, so for undef we have to conservatively return 1. We don't have the 2727 // same behavior for poison though -- that's a FIXME today. 2728 2729 Type *ScalarTy = Ty->getScalarType(); 2730 unsigned TyBits = ScalarTy->isPointerTy() ? 2731 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2732 Q.DL.getTypeSizeInBits(ScalarTy); 2733 2734 unsigned Tmp, Tmp2; 2735 unsigned FirstAnswer = 1; 2736 2737 // Note that ConstantInt is handled by the general computeKnownBits case 2738 // below. 2739 2740 if (Depth == MaxAnalysisRecursionDepth) 2741 return 1; 2742 2743 if (auto *U = dyn_cast<Operator>(V)) { 2744 switch (Operator::getOpcode(V)) { 2745 default: break; 2746 case Instruction::SExt: 2747 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2748 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2749 2750 case Instruction::SDiv: { 2751 const APInt *Denominator; 2752 // sdiv X, C -> adds log(C) sign bits. 2753 if (match(U->getOperand(1), m_APInt(Denominator))) { 2754 2755 // Ignore non-positive denominator. 2756 if (!Denominator->isStrictlyPositive()) 2757 break; 2758 2759 // Calculate the incoming numerator bits. 2760 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2761 2762 // Add floor(log(C)) bits to the numerator bits. 2763 return std::min(TyBits, NumBits + Denominator->logBase2()); 2764 } 2765 break; 2766 } 2767 2768 case Instruction::SRem: { 2769 const APInt *Denominator; 2770 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2771 // positive constant. This let us put a lower bound on the number of sign 2772 // bits. 2773 if (match(U->getOperand(1), m_APInt(Denominator))) { 2774 2775 // Ignore non-positive denominator. 2776 if (!Denominator->isStrictlyPositive()) 2777 break; 2778 2779 // Calculate the incoming numerator bits. SRem by a positive constant 2780 // can't lower the number of sign bits. 2781 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2782 2783 // Calculate the leading sign bit constraints by examining the 2784 // denominator. Given that the denominator is positive, there are two 2785 // cases: 2786 // 2787 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2788 // (1 << ceilLogBase2(C)). 2789 // 2790 // 2. the numerator is negative. Then the result range is (-C,0] and 2791 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2792 // 2793 // Thus a lower bound on the number of sign bits is `TyBits - 2794 // ceilLogBase2(C)`. 2795 2796 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2797 return std::max(NumrBits, ResBits); 2798 } 2799 break; 2800 } 2801 2802 case Instruction::AShr: { 2803 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2804 // ashr X, C -> adds C sign bits. Vectors too. 2805 const APInt *ShAmt; 2806 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2807 if (ShAmt->uge(TyBits)) 2808 break; // Bad shift. 2809 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2810 Tmp += ShAmtLimited; 2811 if (Tmp > TyBits) Tmp = TyBits; 2812 } 2813 return Tmp; 2814 } 2815 case Instruction::Shl: { 2816 const APInt *ShAmt; 2817 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2818 // shl destroys sign bits. 2819 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2820 if (ShAmt->uge(TyBits) || // Bad shift. 2821 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2822 Tmp2 = ShAmt->getZExtValue(); 2823 return Tmp - Tmp2; 2824 } 2825 break; 2826 } 2827 case Instruction::And: 2828 case Instruction::Or: 2829 case Instruction::Xor: // NOT is handled here. 2830 // Logical binary ops preserve the number of sign bits at the worst. 2831 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2832 if (Tmp != 1) { 2833 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2834 FirstAnswer = std::min(Tmp, Tmp2); 2835 // We computed what we know about the sign bits as our first 2836 // answer. Now proceed to the generic code that uses 2837 // computeKnownBits, and pick whichever answer is better. 2838 } 2839 break; 2840 2841 case Instruction::Select: { 2842 // If we have a clamp pattern, we know that the number of sign bits will 2843 // be the minimum of the clamp min/max range. 2844 const Value *X; 2845 const APInt *CLow, *CHigh; 2846 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2847 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2848 2849 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2850 if (Tmp == 1) break; 2851 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2852 return std::min(Tmp, Tmp2); 2853 } 2854 2855 case Instruction::Add: 2856 // Add can have at most one carry bit. Thus we know that the output 2857 // is, at worst, one more bit than the inputs. 2858 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2859 if (Tmp == 1) break; 2860 2861 // Special case decrementing a value (ADD X, -1): 2862 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2863 if (CRHS->isAllOnesValue()) { 2864 KnownBits Known(TyBits); 2865 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2866 2867 // If the input is known to be 0 or 1, the output is 0/-1, which is 2868 // all sign bits set. 2869 if ((Known.Zero | 1).isAllOnesValue()) 2870 return TyBits; 2871 2872 // If we are subtracting one from a positive number, there is no carry 2873 // out of the result. 2874 if (Known.isNonNegative()) 2875 return Tmp; 2876 } 2877 2878 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2879 if (Tmp2 == 1) break; 2880 return std::min(Tmp, Tmp2) - 1; 2881 2882 case Instruction::Sub: 2883 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2884 if (Tmp2 == 1) break; 2885 2886 // Handle NEG. 2887 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2888 if (CLHS->isNullValue()) { 2889 KnownBits Known(TyBits); 2890 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2891 // If the input is known to be 0 or 1, the output is 0/-1, which is 2892 // all sign bits set. 2893 if ((Known.Zero | 1).isAllOnesValue()) 2894 return TyBits; 2895 2896 // If the input is known to be positive (the sign bit is known clear), 2897 // the output of the NEG has the same number of sign bits as the 2898 // input. 2899 if (Known.isNonNegative()) 2900 return Tmp2; 2901 2902 // Otherwise, we treat this like a SUB. 2903 } 2904 2905 // Sub can have at most one carry bit. Thus we know that the output 2906 // is, at worst, one more bit than the inputs. 2907 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2908 if (Tmp == 1) break; 2909 return std::min(Tmp, Tmp2) - 1; 2910 2911 case Instruction::Mul: { 2912 // The output of the Mul can be at most twice the valid bits in the 2913 // inputs. 2914 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2915 if (SignBitsOp0 == 1) break; 2916 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2917 if (SignBitsOp1 == 1) break; 2918 unsigned OutValidBits = 2919 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2920 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2921 } 2922 2923 case Instruction::PHI: { 2924 const PHINode *PN = cast<PHINode>(U); 2925 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2926 // Don't analyze large in-degree PHIs. 2927 if (NumIncomingValues > 4) break; 2928 // Unreachable blocks may have zero-operand PHI nodes. 2929 if (NumIncomingValues == 0) break; 2930 2931 // Take the minimum of all incoming values. This can't infinitely loop 2932 // because of our depth threshold. 2933 Query RecQ = Q; 2934 Tmp = TyBits; 2935 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2936 if (Tmp == 1) return Tmp; 2937 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2938 Tmp = std::min( 2939 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2940 } 2941 return Tmp; 2942 } 2943 2944 case Instruction::Trunc: 2945 // FIXME: it's tricky to do anything useful for this, but it is an 2946 // important case for targets like X86. 2947 break; 2948 2949 case Instruction::ExtractElement: 2950 // Look through extract element. At the moment we keep this simple and 2951 // skip tracking the specific element. But at least we might find 2952 // information valid for all elements of the vector (for example if vector 2953 // is sign extended, shifted, etc). 2954 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2955 2956 case Instruction::ShuffleVector: { 2957 // Collect the minimum number of sign bits that are shared by every vector 2958 // element referenced by the shuffle. 2959 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2960 if (!Shuf) { 2961 // FIXME: Add support for shufflevector constant expressions. 2962 return 1; 2963 } 2964 APInt DemandedLHS, DemandedRHS; 2965 // For undef elements, we don't know anything about the common state of 2966 // the shuffle result. 2967 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2968 return 1; 2969 Tmp = std::numeric_limits<unsigned>::max(); 2970 if (!!DemandedLHS) { 2971 const Value *LHS = Shuf->getOperand(0); 2972 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2973 } 2974 // If we don't know anything, early out and try computeKnownBits 2975 // fall-back. 2976 if (Tmp == 1) 2977 break; 2978 if (!!DemandedRHS) { 2979 const Value *RHS = Shuf->getOperand(1); 2980 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2981 Tmp = std::min(Tmp, Tmp2); 2982 } 2983 // If we don't know anything, early out and try computeKnownBits 2984 // fall-back. 2985 if (Tmp == 1) 2986 break; 2987 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2988 return Tmp; 2989 } 2990 case Instruction::Call: { 2991 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2992 switch (II->getIntrinsicID()) { 2993 default: break; 2994 case Intrinsic::abs: 2995 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2996 if (Tmp == 1) break; 2997 2998 // Absolute value reduces number of sign bits by at most 1. 2999 return Tmp - 1; 3000 } 3001 } 3002 } 3003 } 3004 } 3005 3006 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3007 // use this information. 3008 3009 // If we can examine all elements of a vector constant successfully, we're 3010 // done (we can't do any better than that). If not, keep trying. 3011 if (unsigned VecSignBits = 3012 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3013 return VecSignBits; 3014 3015 KnownBits Known(TyBits); 3016 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3017 3018 // If we know that the sign bit is either zero or one, determine the number of 3019 // identical bits in the top of the input value. 3020 return std::max(FirstAnswer, Known.countMinSignBits()); 3021 } 3022 3023 /// This function computes the integer multiple of Base that equals V. 3024 /// If successful, it returns true and returns the multiple in 3025 /// Multiple. If unsuccessful, it returns false. It looks 3026 /// through SExt instructions only if LookThroughSExt is true. 3027 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3028 bool LookThroughSExt, unsigned Depth) { 3029 assert(V && "No Value?"); 3030 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3031 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3032 3033 Type *T = V->getType(); 3034 3035 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3036 3037 if (Base == 0) 3038 return false; 3039 3040 if (Base == 1) { 3041 Multiple = V; 3042 return true; 3043 } 3044 3045 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3046 Constant *BaseVal = ConstantInt::get(T, Base); 3047 if (CO && CO == BaseVal) { 3048 // Multiple is 1. 3049 Multiple = ConstantInt::get(T, 1); 3050 return true; 3051 } 3052 3053 if (CI && CI->getZExtValue() % Base == 0) { 3054 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3055 return true; 3056 } 3057 3058 if (Depth == MaxAnalysisRecursionDepth) return false; 3059 3060 Operator *I = dyn_cast<Operator>(V); 3061 if (!I) return false; 3062 3063 switch (I->getOpcode()) { 3064 default: break; 3065 case Instruction::SExt: 3066 if (!LookThroughSExt) return false; 3067 // otherwise fall through to ZExt 3068 LLVM_FALLTHROUGH; 3069 case Instruction::ZExt: 3070 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3071 LookThroughSExt, Depth+1); 3072 case Instruction::Shl: 3073 case Instruction::Mul: { 3074 Value *Op0 = I->getOperand(0); 3075 Value *Op1 = I->getOperand(1); 3076 3077 if (I->getOpcode() == Instruction::Shl) { 3078 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3079 if (!Op1CI) return false; 3080 // Turn Op0 << Op1 into Op0 * 2^Op1 3081 APInt Op1Int = Op1CI->getValue(); 3082 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3083 APInt API(Op1Int.getBitWidth(), 0); 3084 API.setBit(BitToSet); 3085 Op1 = ConstantInt::get(V->getContext(), API); 3086 } 3087 3088 Value *Mul0 = nullptr; 3089 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3090 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3091 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3092 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3093 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3094 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3095 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3096 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3097 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3098 3099 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3100 Multiple = ConstantExpr::getMul(MulC, Op1C); 3101 return true; 3102 } 3103 3104 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3105 if (Mul0CI->getValue() == 1) { 3106 // V == Base * Op1, so return Op1 3107 Multiple = Op1; 3108 return true; 3109 } 3110 } 3111 3112 Value *Mul1 = nullptr; 3113 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3114 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3115 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3116 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3117 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3118 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3119 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3120 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3121 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3122 3123 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3124 Multiple = ConstantExpr::getMul(MulC, Op0C); 3125 return true; 3126 } 3127 3128 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3129 if (Mul1CI->getValue() == 1) { 3130 // V == Base * Op0, so return Op0 3131 Multiple = Op0; 3132 return true; 3133 } 3134 } 3135 } 3136 } 3137 3138 // We could not determine if V is a multiple of Base. 3139 return false; 3140 } 3141 3142 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3143 const TargetLibraryInfo *TLI) { 3144 const Function *F = CB.getCalledFunction(); 3145 if (!F) 3146 return Intrinsic::not_intrinsic; 3147 3148 if (F->isIntrinsic()) 3149 return F->getIntrinsicID(); 3150 3151 // We are going to infer semantics of a library function based on mapping it 3152 // to an LLVM intrinsic. Check that the library function is available from 3153 // this callbase and in this environment. 3154 LibFunc Func; 3155 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3156 !CB.onlyReadsMemory()) 3157 return Intrinsic::not_intrinsic; 3158 3159 switch (Func) { 3160 default: 3161 break; 3162 case LibFunc_sin: 3163 case LibFunc_sinf: 3164 case LibFunc_sinl: 3165 return Intrinsic::sin; 3166 case LibFunc_cos: 3167 case LibFunc_cosf: 3168 case LibFunc_cosl: 3169 return Intrinsic::cos; 3170 case LibFunc_exp: 3171 case LibFunc_expf: 3172 case LibFunc_expl: 3173 return Intrinsic::exp; 3174 case LibFunc_exp2: 3175 case LibFunc_exp2f: 3176 case LibFunc_exp2l: 3177 return Intrinsic::exp2; 3178 case LibFunc_log: 3179 case LibFunc_logf: 3180 case LibFunc_logl: 3181 return Intrinsic::log; 3182 case LibFunc_log10: 3183 case LibFunc_log10f: 3184 case LibFunc_log10l: 3185 return Intrinsic::log10; 3186 case LibFunc_log2: 3187 case LibFunc_log2f: 3188 case LibFunc_log2l: 3189 return Intrinsic::log2; 3190 case LibFunc_fabs: 3191 case LibFunc_fabsf: 3192 case LibFunc_fabsl: 3193 return Intrinsic::fabs; 3194 case LibFunc_fmin: 3195 case LibFunc_fminf: 3196 case LibFunc_fminl: 3197 return Intrinsic::minnum; 3198 case LibFunc_fmax: 3199 case LibFunc_fmaxf: 3200 case LibFunc_fmaxl: 3201 return Intrinsic::maxnum; 3202 case LibFunc_copysign: 3203 case LibFunc_copysignf: 3204 case LibFunc_copysignl: 3205 return Intrinsic::copysign; 3206 case LibFunc_floor: 3207 case LibFunc_floorf: 3208 case LibFunc_floorl: 3209 return Intrinsic::floor; 3210 case LibFunc_ceil: 3211 case LibFunc_ceilf: 3212 case LibFunc_ceill: 3213 return Intrinsic::ceil; 3214 case LibFunc_trunc: 3215 case LibFunc_truncf: 3216 case LibFunc_truncl: 3217 return Intrinsic::trunc; 3218 case LibFunc_rint: 3219 case LibFunc_rintf: 3220 case LibFunc_rintl: 3221 return Intrinsic::rint; 3222 case LibFunc_nearbyint: 3223 case LibFunc_nearbyintf: 3224 case LibFunc_nearbyintl: 3225 return Intrinsic::nearbyint; 3226 case LibFunc_round: 3227 case LibFunc_roundf: 3228 case LibFunc_roundl: 3229 return Intrinsic::round; 3230 case LibFunc_roundeven: 3231 case LibFunc_roundevenf: 3232 case LibFunc_roundevenl: 3233 return Intrinsic::roundeven; 3234 case LibFunc_pow: 3235 case LibFunc_powf: 3236 case LibFunc_powl: 3237 return Intrinsic::pow; 3238 case LibFunc_sqrt: 3239 case LibFunc_sqrtf: 3240 case LibFunc_sqrtl: 3241 return Intrinsic::sqrt; 3242 } 3243 3244 return Intrinsic::not_intrinsic; 3245 } 3246 3247 /// Return true if we can prove that the specified FP value is never equal to 3248 /// -0.0. 3249 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3250 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3251 /// the same as +0.0 in floating-point ops. 3252 /// 3253 /// NOTE: this function will need to be revisited when we support non-default 3254 /// rounding modes! 3255 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3256 unsigned Depth) { 3257 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3258 return !CFP->getValueAPF().isNegZero(); 3259 3260 if (Depth == MaxAnalysisRecursionDepth) 3261 return false; 3262 3263 auto *Op = dyn_cast<Operator>(V); 3264 if (!Op) 3265 return false; 3266 3267 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3268 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3269 return true; 3270 3271 // sitofp and uitofp turn into +0.0 for zero. 3272 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3273 return true; 3274 3275 if (auto *Call = dyn_cast<CallInst>(Op)) { 3276 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3277 switch (IID) { 3278 default: 3279 break; 3280 // sqrt(-0.0) = -0.0, no other negative results are possible. 3281 case Intrinsic::sqrt: 3282 case Intrinsic::canonicalize: 3283 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3284 // fabs(x) != -0.0 3285 case Intrinsic::fabs: 3286 return true; 3287 } 3288 } 3289 3290 return false; 3291 } 3292 3293 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3294 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3295 /// bit despite comparing equal. 3296 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3297 const TargetLibraryInfo *TLI, 3298 bool SignBitOnly, 3299 unsigned Depth) { 3300 // TODO: This function does not do the right thing when SignBitOnly is true 3301 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3302 // which flips the sign bits of NaNs. See 3303 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3304 3305 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3306 return !CFP->getValueAPF().isNegative() || 3307 (!SignBitOnly && CFP->getValueAPF().isZero()); 3308 } 3309 3310 // Handle vector of constants. 3311 if (auto *CV = dyn_cast<Constant>(V)) { 3312 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3313 unsigned NumElts = CVFVTy->getNumElements(); 3314 for (unsigned i = 0; i != NumElts; ++i) { 3315 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3316 if (!CFP) 3317 return false; 3318 if (CFP->getValueAPF().isNegative() && 3319 (SignBitOnly || !CFP->getValueAPF().isZero())) 3320 return false; 3321 } 3322 3323 // All non-negative ConstantFPs. 3324 return true; 3325 } 3326 } 3327 3328 if (Depth == MaxAnalysisRecursionDepth) 3329 return false; 3330 3331 const Operator *I = dyn_cast<Operator>(V); 3332 if (!I) 3333 return false; 3334 3335 switch (I->getOpcode()) { 3336 default: 3337 break; 3338 // Unsigned integers are always nonnegative. 3339 case Instruction::UIToFP: 3340 return true; 3341 case Instruction::FMul: 3342 case Instruction::FDiv: 3343 // X * X is always non-negative or a NaN. 3344 // X / X is always exactly 1.0 or a NaN. 3345 if (I->getOperand(0) == I->getOperand(1) && 3346 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3347 return true; 3348 3349 LLVM_FALLTHROUGH; 3350 case Instruction::FAdd: 3351 case Instruction::FRem: 3352 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3353 Depth + 1) && 3354 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3355 Depth + 1); 3356 case Instruction::Select: 3357 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3358 Depth + 1) && 3359 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3360 Depth + 1); 3361 case Instruction::FPExt: 3362 case Instruction::FPTrunc: 3363 // Widening/narrowing never change sign. 3364 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3365 Depth + 1); 3366 case Instruction::ExtractElement: 3367 // Look through extract element. At the moment we keep this simple and skip 3368 // tracking the specific element. But at least we might find information 3369 // valid for all elements of the vector. 3370 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3371 Depth + 1); 3372 case Instruction::Call: 3373 const auto *CI = cast<CallInst>(I); 3374 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3375 switch (IID) { 3376 default: 3377 break; 3378 case Intrinsic::maxnum: { 3379 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3380 auto isPositiveNum = [&](Value *V) { 3381 if (SignBitOnly) { 3382 // With SignBitOnly, this is tricky because the result of 3383 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3384 // a constant strictly greater than 0.0. 3385 const APFloat *C; 3386 return match(V, m_APFloat(C)) && 3387 *C > APFloat::getZero(C->getSemantics()); 3388 } 3389 3390 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3391 // maxnum can't be ordered-less-than-zero. 3392 return isKnownNeverNaN(V, TLI) && 3393 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3394 }; 3395 3396 // TODO: This could be improved. We could also check that neither operand 3397 // has its sign bit set (and at least 1 is not-NAN?). 3398 return isPositiveNum(V0) || isPositiveNum(V1); 3399 } 3400 3401 case Intrinsic::maximum: 3402 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3403 Depth + 1) || 3404 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3405 Depth + 1); 3406 case Intrinsic::minnum: 3407 case Intrinsic::minimum: 3408 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3409 Depth + 1) && 3410 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3411 Depth + 1); 3412 case Intrinsic::exp: 3413 case Intrinsic::exp2: 3414 case Intrinsic::fabs: 3415 return true; 3416 3417 case Intrinsic::sqrt: 3418 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3419 if (!SignBitOnly) 3420 return true; 3421 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3422 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3423 3424 case Intrinsic::powi: 3425 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3426 // powi(x,n) is non-negative if n is even. 3427 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3428 return true; 3429 } 3430 // TODO: This is not correct. Given that exp is an integer, here are the 3431 // ways that pow can return a negative value: 3432 // 3433 // pow(x, exp) --> negative if exp is odd and x is negative. 3434 // pow(-0, exp) --> -inf if exp is negative odd. 3435 // pow(-0, exp) --> -0 if exp is positive odd. 3436 // pow(-inf, exp) --> -0 if exp is negative odd. 3437 // pow(-inf, exp) --> -inf if exp is positive odd. 3438 // 3439 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3440 // but we must return false if x == -0. Unfortunately we do not currently 3441 // have a way of expressing this constraint. See details in 3442 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3443 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3444 Depth + 1); 3445 3446 case Intrinsic::fma: 3447 case Intrinsic::fmuladd: 3448 // x*x+y is non-negative if y is non-negative. 3449 return I->getOperand(0) == I->getOperand(1) && 3450 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3451 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3452 Depth + 1); 3453 } 3454 break; 3455 } 3456 return false; 3457 } 3458 3459 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3460 const TargetLibraryInfo *TLI) { 3461 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3462 } 3463 3464 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3465 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3466 } 3467 3468 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3469 unsigned Depth) { 3470 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3471 3472 // If we're told that infinities won't happen, assume they won't. 3473 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3474 if (FPMathOp->hasNoInfs()) 3475 return true; 3476 3477 // Handle scalar constants. 3478 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3479 return !CFP->isInfinity(); 3480 3481 if (Depth == MaxAnalysisRecursionDepth) 3482 return false; 3483 3484 if (auto *Inst = dyn_cast<Instruction>(V)) { 3485 switch (Inst->getOpcode()) { 3486 case Instruction::Select: { 3487 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3488 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3489 } 3490 case Instruction::SIToFP: 3491 case Instruction::UIToFP: { 3492 // Get width of largest magnitude integer (remove a bit if signed). 3493 // This still works for a signed minimum value because the largest FP 3494 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3495 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3496 if (Inst->getOpcode() == Instruction::SIToFP) 3497 --IntSize; 3498 3499 // If the exponent of the largest finite FP value can hold the largest 3500 // integer, the result of the cast must be finite. 3501 Type *FPTy = Inst->getType()->getScalarType(); 3502 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3503 } 3504 default: 3505 break; 3506 } 3507 } 3508 3509 // try to handle fixed width vector constants 3510 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3511 if (VFVTy && isa<Constant>(V)) { 3512 // For vectors, verify that each element is not infinity. 3513 unsigned NumElts = VFVTy->getNumElements(); 3514 for (unsigned i = 0; i != NumElts; ++i) { 3515 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3516 if (!Elt) 3517 return false; 3518 if (isa<UndefValue>(Elt)) 3519 continue; 3520 auto *CElt = dyn_cast<ConstantFP>(Elt); 3521 if (!CElt || CElt->isInfinity()) 3522 return false; 3523 } 3524 // All elements were confirmed non-infinity or undefined. 3525 return true; 3526 } 3527 3528 // was not able to prove that V never contains infinity 3529 return false; 3530 } 3531 3532 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3533 unsigned Depth) { 3534 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3535 3536 // If we're told that NaNs won't happen, assume they won't. 3537 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3538 if (FPMathOp->hasNoNaNs()) 3539 return true; 3540 3541 // Handle scalar constants. 3542 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3543 return !CFP->isNaN(); 3544 3545 if (Depth == MaxAnalysisRecursionDepth) 3546 return false; 3547 3548 if (auto *Inst = dyn_cast<Instruction>(V)) { 3549 switch (Inst->getOpcode()) { 3550 case Instruction::FAdd: 3551 case Instruction::FSub: 3552 // Adding positive and negative infinity produces NaN. 3553 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3554 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3555 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3556 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3557 3558 case Instruction::FMul: 3559 // Zero multiplied with infinity produces NaN. 3560 // FIXME: If neither side can be zero fmul never produces NaN. 3561 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3562 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3563 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3564 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3565 3566 case Instruction::FDiv: 3567 case Instruction::FRem: 3568 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3569 return false; 3570 3571 case Instruction::Select: { 3572 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3573 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3574 } 3575 case Instruction::SIToFP: 3576 case Instruction::UIToFP: 3577 return true; 3578 case Instruction::FPTrunc: 3579 case Instruction::FPExt: 3580 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3581 default: 3582 break; 3583 } 3584 } 3585 3586 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3587 switch (II->getIntrinsicID()) { 3588 case Intrinsic::canonicalize: 3589 case Intrinsic::fabs: 3590 case Intrinsic::copysign: 3591 case Intrinsic::exp: 3592 case Intrinsic::exp2: 3593 case Intrinsic::floor: 3594 case Intrinsic::ceil: 3595 case Intrinsic::trunc: 3596 case Intrinsic::rint: 3597 case Intrinsic::nearbyint: 3598 case Intrinsic::round: 3599 case Intrinsic::roundeven: 3600 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3601 case Intrinsic::sqrt: 3602 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3603 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3604 case Intrinsic::minnum: 3605 case Intrinsic::maxnum: 3606 // If either operand is not NaN, the result is not NaN. 3607 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3608 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3609 default: 3610 return false; 3611 } 3612 } 3613 3614 // Try to handle fixed width vector constants 3615 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3616 if (VFVTy && isa<Constant>(V)) { 3617 // For vectors, verify that each element is not NaN. 3618 unsigned NumElts = VFVTy->getNumElements(); 3619 for (unsigned i = 0; i != NumElts; ++i) { 3620 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3621 if (!Elt) 3622 return false; 3623 if (isa<UndefValue>(Elt)) 3624 continue; 3625 auto *CElt = dyn_cast<ConstantFP>(Elt); 3626 if (!CElt || CElt->isNaN()) 3627 return false; 3628 } 3629 // All elements were confirmed not-NaN or undefined. 3630 return true; 3631 } 3632 3633 // Was not able to prove that V never contains NaN 3634 return false; 3635 } 3636 3637 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3638 3639 // All byte-wide stores are splatable, even of arbitrary variables. 3640 if (V->getType()->isIntegerTy(8)) 3641 return V; 3642 3643 LLVMContext &Ctx = V->getContext(); 3644 3645 // Undef don't care. 3646 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3647 if (isa<UndefValue>(V)) 3648 return UndefInt8; 3649 3650 // Return Undef for zero-sized type. 3651 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3652 return UndefInt8; 3653 3654 Constant *C = dyn_cast<Constant>(V); 3655 if (!C) { 3656 // Conceptually, we could handle things like: 3657 // %a = zext i8 %X to i16 3658 // %b = shl i16 %a, 8 3659 // %c = or i16 %a, %b 3660 // but until there is an example that actually needs this, it doesn't seem 3661 // worth worrying about. 3662 return nullptr; 3663 } 3664 3665 // Handle 'null' ConstantArrayZero etc. 3666 if (C->isNullValue()) 3667 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3668 3669 // Constant floating-point values can be handled as integer values if the 3670 // corresponding integer value is "byteable". An important case is 0.0. 3671 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3672 Type *Ty = nullptr; 3673 if (CFP->getType()->isHalfTy()) 3674 Ty = Type::getInt16Ty(Ctx); 3675 else if (CFP->getType()->isFloatTy()) 3676 Ty = Type::getInt32Ty(Ctx); 3677 else if (CFP->getType()->isDoubleTy()) 3678 Ty = Type::getInt64Ty(Ctx); 3679 // Don't handle long double formats, which have strange constraints. 3680 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3681 : nullptr; 3682 } 3683 3684 // We can handle constant integers that are multiple of 8 bits. 3685 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3686 if (CI->getBitWidth() % 8 == 0) { 3687 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3688 if (!CI->getValue().isSplat(8)) 3689 return nullptr; 3690 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3691 } 3692 } 3693 3694 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3695 if (CE->getOpcode() == Instruction::IntToPtr) { 3696 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3697 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3698 return isBytewiseValue( 3699 ConstantExpr::getIntegerCast(CE->getOperand(0), 3700 Type::getIntNTy(Ctx, BitWidth), false), 3701 DL); 3702 } 3703 } 3704 } 3705 3706 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3707 if (LHS == RHS) 3708 return LHS; 3709 if (!LHS || !RHS) 3710 return nullptr; 3711 if (LHS == UndefInt8) 3712 return RHS; 3713 if (RHS == UndefInt8) 3714 return LHS; 3715 return nullptr; 3716 }; 3717 3718 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3719 Value *Val = UndefInt8; 3720 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3721 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3722 return nullptr; 3723 return Val; 3724 } 3725 3726 if (isa<ConstantAggregate>(C)) { 3727 Value *Val = UndefInt8; 3728 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3729 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3730 return nullptr; 3731 return Val; 3732 } 3733 3734 // Don't try to handle the handful of other constants. 3735 return nullptr; 3736 } 3737 3738 // This is the recursive version of BuildSubAggregate. It takes a few different 3739 // arguments. Idxs is the index within the nested struct From that we are 3740 // looking at now (which is of type IndexedType). IdxSkip is the number of 3741 // indices from Idxs that should be left out when inserting into the resulting 3742 // struct. To is the result struct built so far, new insertvalue instructions 3743 // build on that. 3744 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3745 SmallVectorImpl<unsigned> &Idxs, 3746 unsigned IdxSkip, 3747 Instruction *InsertBefore) { 3748 StructType *STy = dyn_cast<StructType>(IndexedType); 3749 if (STy) { 3750 // Save the original To argument so we can modify it 3751 Value *OrigTo = To; 3752 // General case, the type indexed by Idxs is a struct 3753 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3754 // Process each struct element recursively 3755 Idxs.push_back(i); 3756 Value *PrevTo = To; 3757 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3758 InsertBefore); 3759 Idxs.pop_back(); 3760 if (!To) { 3761 // Couldn't find any inserted value for this index? Cleanup 3762 while (PrevTo != OrigTo) { 3763 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3764 PrevTo = Del->getAggregateOperand(); 3765 Del->eraseFromParent(); 3766 } 3767 // Stop processing elements 3768 break; 3769 } 3770 } 3771 // If we successfully found a value for each of our subaggregates 3772 if (To) 3773 return To; 3774 } 3775 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3776 // the struct's elements had a value that was inserted directly. In the latter 3777 // case, perhaps we can't determine each of the subelements individually, but 3778 // we might be able to find the complete struct somewhere. 3779 3780 // Find the value that is at that particular spot 3781 Value *V = FindInsertedValue(From, Idxs); 3782 3783 if (!V) 3784 return nullptr; 3785 3786 // Insert the value in the new (sub) aggregate 3787 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3788 "tmp", InsertBefore); 3789 } 3790 3791 // This helper takes a nested struct and extracts a part of it (which is again a 3792 // struct) into a new value. For example, given the struct: 3793 // { a, { b, { c, d }, e } } 3794 // and the indices "1, 1" this returns 3795 // { c, d }. 3796 // 3797 // It does this by inserting an insertvalue for each element in the resulting 3798 // struct, as opposed to just inserting a single struct. This will only work if 3799 // each of the elements of the substruct are known (ie, inserted into From by an 3800 // insertvalue instruction somewhere). 3801 // 3802 // All inserted insertvalue instructions are inserted before InsertBefore 3803 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3804 Instruction *InsertBefore) { 3805 assert(InsertBefore && "Must have someplace to insert!"); 3806 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3807 idx_range); 3808 Value *To = UndefValue::get(IndexedType); 3809 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3810 unsigned IdxSkip = Idxs.size(); 3811 3812 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3813 } 3814 3815 /// Given an aggregate and a sequence of indices, see if the scalar value 3816 /// indexed is already around as a register, for example if it was inserted 3817 /// directly into the aggregate. 3818 /// 3819 /// If InsertBefore is not null, this function will duplicate (modified) 3820 /// insertvalues when a part of a nested struct is extracted. 3821 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3822 Instruction *InsertBefore) { 3823 // Nothing to index? Just return V then (this is useful at the end of our 3824 // recursion). 3825 if (idx_range.empty()) 3826 return V; 3827 // We have indices, so V should have an indexable type. 3828 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3829 "Not looking at a struct or array?"); 3830 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3831 "Invalid indices for type?"); 3832 3833 if (Constant *C = dyn_cast<Constant>(V)) { 3834 C = C->getAggregateElement(idx_range[0]); 3835 if (!C) return nullptr; 3836 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3837 } 3838 3839 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3840 // Loop the indices for the insertvalue instruction in parallel with the 3841 // requested indices 3842 const unsigned *req_idx = idx_range.begin(); 3843 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3844 i != e; ++i, ++req_idx) { 3845 if (req_idx == idx_range.end()) { 3846 // We can't handle this without inserting insertvalues 3847 if (!InsertBefore) 3848 return nullptr; 3849 3850 // The requested index identifies a part of a nested aggregate. Handle 3851 // this specially. For example, 3852 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3853 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3854 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3855 // This can be changed into 3856 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3857 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3858 // which allows the unused 0,0 element from the nested struct to be 3859 // removed. 3860 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3861 InsertBefore); 3862 } 3863 3864 // This insert value inserts something else than what we are looking for. 3865 // See if the (aggregate) value inserted into has the value we are 3866 // looking for, then. 3867 if (*req_idx != *i) 3868 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3869 InsertBefore); 3870 } 3871 // If we end up here, the indices of the insertvalue match with those 3872 // requested (though possibly only partially). Now we recursively look at 3873 // the inserted value, passing any remaining indices. 3874 return FindInsertedValue(I->getInsertedValueOperand(), 3875 makeArrayRef(req_idx, idx_range.end()), 3876 InsertBefore); 3877 } 3878 3879 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3880 // If we're extracting a value from an aggregate that was extracted from 3881 // something else, we can extract from that something else directly instead. 3882 // However, we will need to chain I's indices with the requested indices. 3883 3884 // Calculate the number of indices required 3885 unsigned size = I->getNumIndices() + idx_range.size(); 3886 // Allocate some space to put the new indices in 3887 SmallVector<unsigned, 5> Idxs; 3888 Idxs.reserve(size); 3889 // Add indices from the extract value instruction 3890 Idxs.append(I->idx_begin(), I->idx_end()); 3891 3892 // Add requested indices 3893 Idxs.append(idx_range.begin(), idx_range.end()); 3894 3895 assert(Idxs.size() == size 3896 && "Number of indices added not correct?"); 3897 3898 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3899 } 3900 // Otherwise, we don't know (such as, extracting from a function return value 3901 // or load instruction) 3902 return nullptr; 3903 } 3904 3905 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3906 unsigned CharSize) { 3907 // Make sure the GEP has exactly three arguments. 3908 if (GEP->getNumOperands() != 3) 3909 return false; 3910 3911 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3912 // CharSize. 3913 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3914 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3915 return false; 3916 3917 // Check to make sure that the first operand of the GEP is an integer and 3918 // has value 0 so that we are sure we're indexing into the initializer. 3919 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3920 if (!FirstIdx || !FirstIdx->isZero()) 3921 return false; 3922 3923 return true; 3924 } 3925 3926 bool llvm::getConstantDataArrayInfo(const Value *V, 3927 ConstantDataArraySlice &Slice, 3928 unsigned ElementSize, uint64_t Offset) { 3929 assert(V); 3930 3931 // Look through bitcast instructions and geps. 3932 V = V->stripPointerCasts(); 3933 3934 // If the value is a GEP instruction or constant expression, treat it as an 3935 // offset. 3936 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3937 // The GEP operator should be based on a pointer to string constant, and is 3938 // indexing into the string constant. 3939 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3940 return false; 3941 3942 // If the second index isn't a ConstantInt, then this is a variable index 3943 // into the array. If this occurs, we can't say anything meaningful about 3944 // the string. 3945 uint64_t StartIdx = 0; 3946 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3947 StartIdx = CI->getZExtValue(); 3948 else 3949 return false; 3950 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3951 StartIdx + Offset); 3952 } 3953 3954 // The GEP instruction, constant or instruction, must reference a global 3955 // variable that is a constant and is initialized. The referenced constant 3956 // initializer is the array that we'll use for optimization. 3957 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3958 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3959 return false; 3960 3961 const ConstantDataArray *Array; 3962 ArrayType *ArrayTy; 3963 if (GV->getInitializer()->isNullValue()) { 3964 Type *GVTy = GV->getValueType(); 3965 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3966 // A zeroinitializer for the array; there is no ConstantDataArray. 3967 Array = nullptr; 3968 } else { 3969 const DataLayout &DL = GV->getParent()->getDataLayout(); 3970 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3971 uint64_t Length = SizeInBytes / (ElementSize / 8); 3972 if (Length <= Offset) 3973 return false; 3974 3975 Slice.Array = nullptr; 3976 Slice.Offset = 0; 3977 Slice.Length = Length - Offset; 3978 return true; 3979 } 3980 } else { 3981 // This must be a ConstantDataArray. 3982 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3983 if (!Array) 3984 return false; 3985 ArrayTy = Array->getType(); 3986 } 3987 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3988 return false; 3989 3990 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3991 if (Offset > NumElts) 3992 return false; 3993 3994 Slice.Array = Array; 3995 Slice.Offset = Offset; 3996 Slice.Length = NumElts - Offset; 3997 return true; 3998 } 3999 4000 /// This function computes the length of a null-terminated C string pointed to 4001 /// by V. If successful, it returns true and returns the string in Str. 4002 /// If unsuccessful, it returns false. 4003 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4004 uint64_t Offset, bool TrimAtNul) { 4005 ConstantDataArraySlice Slice; 4006 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4007 return false; 4008 4009 if (Slice.Array == nullptr) { 4010 if (TrimAtNul) { 4011 Str = StringRef(); 4012 return true; 4013 } 4014 if (Slice.Length == 1) { 4015 Str = StringRef("", 1); 4016 return true; 4017 } 4018 // We cannot instantiate a StringRef as we do not have an appropriate string 4019 // of 0s at hand. 4020 return false; 4021 } 4022 4023 // Start out with the entire array in the StringRef. 4024 Str = Slice.Array->getAsString(); 4025 // Skip over 'offset' bytes. 4026 Str = Str.substr(Slice.Offset); 4027 4028 if (TrimAtNul) { 4029 // Trim off the \0 and anything after it. If the array is not nul 4030 // terminated, we just return the whole end of string. The client may know 4031 // some other way that the string is length-bound. 4032 Str = Str.substr(0, Str.find('\0')); 4033 } 4034 return true; 4035 } 4036 4037 // These next two are very similar to the above, but also look through PHI 4038 // nodes. 4039 // TODO: See if we can integrate these two together. 4040 4041 /// If we can compute the length of the string pointed to by 4042 /// the specified pointer, return 'len+1'. If we can't, return 0. 4043 static uint64_t GetStringLengthH(const Value *V, 4044 SmallPtrSetImpl<const PHINode*> &PHIs, 4045 unsigned CharSize) { 4046 // Look through noop bitcast instructions. 4047 V = V->stripPointerCasts(); 4048 4049 // If this is a PHI node, there are two cases: either we have already seen it 4050 // or we haven't. 4051 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4052 if (!PHIs.insert(PN).second) 4053 return ~0ULL; // already in the set. 4054 4055 // If it was new, see if all the input strings are the same length. 4056 uint64_t LenSoFar = ~0ULL; 4057 for (Value *IncValue : PN->incoming_values()) { 4058 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4059 if (Len == 0) return 0; // Unknown length -> unknown. 4060 4061 if (Len == ~0ULL) continue; 4062 4063 if (Len != LenSoFar && LenSoFar != ~0ULL) 4064 return 0; // Disagree -> unknown. 4065 LenSoFar = Len; 4066 } 4067 4068 // Success, all agree. 4069 return LenSoFar; 4070 } 4071 4072 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4073 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4074 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4075 if (Len1 == 0) return 0; 4076 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4077 if (Len2 == 0) return 0; 4078 if (Len1 == ~0ULL) return Len2; 4079 if (Len2 == ~0ULL) return Len1; 4080 if (Len1 != Len2) return 0; 4081 return Len1; 4082 } 4083 4084 // Otherwise, see if we can read the string. 4085 ConstantDataArraySlice Slice; 4086 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4087 return 0; 4088 4089 if (Slice.Array == nullptr) 4090 return 1; 4091 4092 // Search for nul characters 4093 unsigned NullIndex = 0; 4094 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4095 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4096 break; 4097 } 4098 4099 return NullIndex + 1; 4100 } 4101 4102 /// If we can compute the length of the string pointed to by 4103 /// the specified pointer, return 'len+1'. If we can't, return 0. 4104 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4105 if (!V->getType()->isPointerTy()) 4106 return 0; 4107 4108 SmallPtrSet<const PHINode*, 32> PHIs; 4109 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4110 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4111 // an empty string as a length. 4112 return Len == ~0ULL ? 1 : Len; 4113 } 4114 4115 const Value * 4116 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4117 bool MustPreserveNullness) { 4118 assert(Call && 4119 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4120 if (const Value *RV = Call->getReturnedArgOperand()) 4121 return RV; 4122 // This can be used only as a aliasing property. 4123 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4124 Call, MustPreserveNullness)) 4125 return Call->getArgOperand(0); 4126 return nullptr; 4127 } 4128 4129 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4130 const CallBase *Call, bool MustPreserveNullness) { 4131 switch (Call->getIntrinsicID()) { 4132 case Intrinsic::launder_invariant_group: 4133 case Intrinsic::strip_invariant_group: 4134 case Intrinsic::aarch64_irg: 4135 case Intrinsic::aarch64_tagp: 4136 return true; 4137 case Intrinsic::ptrmask: 4138 return !MustPreserveNullness; 4139 default: 4140 return false; 4141 } 4142 } 4143 4144 /// \p PN defines a loop-variant pointer to an object. Check if the 4145 /// previous iteration of the loop was referring to the same object as \p PN. 4146 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4147 const LoopInfo *LI) { 4148 // Find the loop-defined value. 4149 Loop *L = LI->getLoopFor(PN->getParent()); 4150 if (PN->getNumIncomingValues() != 2) 4151 return true; 4152 4153 // Find the value from previous iteration. 4154 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4155 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4156 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4157 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4158 return true; 4159 4160 // If a new pointer is loaded in the loop, the pointer references a different 4161 // object in every iteration. E.g.: 4162 // for (i) 4163 // int *p = a[i]; 4164 // ... 4165 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4166 if (!L->isLoopInvariant(Load->getPointerOperand())) 4167 return false; 4168 return true; 4169 } 4170 4171 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4172 if (!V->getType()->isPointerTy()) 4173 return V; 4174 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4175 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4176 V = GEP->getPointerOperand(); 4177 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4178 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4179 V = cast<Operator>(V)->getOperand(0); 4180 if (!V->getType()->isPointerTy()) 4181 return V; 4182 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4183 if (GA->isInterposable()) 4184 return V; 4185 V = GA->getAliasee(); 4186 } else { 4187 if (auto *PHI = dyn_cast<PHINode>(V)) { 4188 // Look through single-arg phi nodes created by LCSSA. 4189 if (PHI->getNumIncomingValues() == 1) { 4190 V = PHI->getIncomingValue(0); 4191 continue; 4192 } 4193 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4194 // CaptureTracking can know about special capturing properties of some 4195 // intrinsics like launder.invariant.group, that can't be expressed with 4196 // the attributes, but have properties like returning aliasing pointer. 4197 // Because some analysis may assume that nocaptured pointer is not 4198 // returned from some special intrinsic (because function would have to 4199 // be marked with returns attribute), it is crucial to use this function 4200 // because it should be in sync with CaptureTracking. Not using it may 4201 // cause weird miscompilations where 2 aliasing pointers are assumed to 4202 // noalias. 4203 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4204 V = RP; 4205 continue; 4206 } 4207 } 4208 4209 return V; 4210 } 4211 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4212 } 4213 return V; 4214 } 4215 4216 void llvm::getUnderlyingObjects(const Value *V, 4217 SmallVectorImpl<const Value *> &Objects, 4218 LoopInfo *LI, unsigned MaxLookup) { 4219 SmallPtrSet<const Value *, 4> Visited; 4220 SmallVector<const Value *, 4> Worklist; 4221 Worklist.push_back(V); 4222 do { 4223 const Value *P = Worklist.pop_back_val(); 4224 P = getUnderlyingObject(P, MaxLookup); 4225 4226 if (!Visited.insert(P).second) 4227 continue; 4228 4229 if (auto *SI = dyn_cast<SelectInst>(P)) { 4230 Worklist.push_back(SI->getTrueValue()); 4231 Worklist.push_back(SI->getFalseValue()); 4232 continue; 4233 } 4234 4235 if (auto *PN = dyn_cast<PHINode>(P)) { 4236 // If this PHI changes the underlying object in every iteration of the 4237 // loop, don't look through it. Consider: 4238 // int **A; 4239 // for (i) { 4240 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4241 // Curr = A[i]; 4242 // *Prev, *Curr; 4243 // 4244 // Prev is tracking Curr one iteration behind so they refer to different 4245 // underlying objects. 4246 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4247 isSameUnderlyingObjectInLoop(PN, LI)) 4248 append_range(Worklist, PN->incoming_values()); 4249 continue; 4250 } 4251 4252 Objects.push_back(P); 4253 } while (!Worklist.empty()); 4254 } 4255 4256 /// This is the function that does the work of looking through basic 4257 /// ptrtoint+arithmetic+inttoptr sequences. 4258 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4259 do { 4260 if (const Operator *U = dyn_cast<Operator>(V)) { 4261 // If we find a ptrtoint, we can transfer control back to the 4262 // regular getUnderlyingObjectFromInt. 4263 if (U->getOpcode() == Instruction::PtrToInt) 4264 return U->getOperand(0); 4265 // If we find an add of a constant, a multiplied value, or a phi, it's 4266 // likely that the other operand will lead us to the base 4267 // object. We don't have to worry about the case where the 4268 // object address is somehow being computed by the multiply, 4269 // because our callers only care when the result is an 4270 // identifiable object. 4271 if (U->getOpcode() != Instruction::Add || 4272 (!isa<ConstantInt>(U->getOperand(1)) && 4273 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4274 !isa<PHINode>(U->getOperand(1)))) 4275 return V; 4276 V = U->getOperand(0); 4277 } else { 4278 return V; 4279 } 4280 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4281 } while (true); 4282 } 4283 4284 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4285 /// ptrtoint+arithmetic+inttoptr sequences. 4286 /// It returns false if unidentified object is found in getUnderlyingObjects. 4287 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4288 SmallVectorImpl<Value *> &Objects) { 4289 SmallPtrSet<const Value *, 16> Visited; 4290 SmallVector<const Value *, 4> Working(1, V); 4291 do { 4292 V = Working.pop_back_val(); 4293 4294 SmallVector<const Value *, 4> Objs; 4295 getUnderlyingObjects(V, Objs); 4296 4297 for (const Value *V : Objs) { 4298 if (!Visited.insert(V).second) 4299 continue; 4300 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4301 const Value *O = 4302 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4303 if (O->getType()->isPointerTy()) { 4304 Working.push_back(O); 4305 continue; 4306 } 4307 } 4308 // If getUnderlyingObjects fails to find an identifiable object, 4309 // getUnderlyingObjectsForCodeGen also fails for safety. 4310 if (!isIdentifiedObject(V)) { 4311 Objects.clear(); 4312 return false; 4313 } 4314 Objects.push_back(const_cast<Value *>(V)); 4315 } 4316 } while (!Working.empty()); 4317 return true; 4318 } 4319 4320 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4321 AllocaInst *Result = nullptr; 4322 SmallPtrSet<Value *, 4> Visited; 4323 SmallVector<Value *, 4> Worklist; 4324 4325 auto AddWork = [&](Value *V) { 4326 if (Visited.insert(V).second) 4327 Worklist.push_back(V); 4328 }; 4329 4330 AddWork(V); 4331 do { 4332 V = Worklist.pop_back_val(); 4333 assert(Visited.count(V)); 4334 4335 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4336 if (Result && Result != AI) 4337 return nullptr; 4338 Result = AI; 4339 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4340 AddWork(CI->getOperand(0)); 4341 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4342 for (Value *IncValue : PN->incoming_values()) 4343 AddWork(IncValue); 4344 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4345 AddWork(SI->getTrueValue()); 4346 AddWork(SI->getFalseValue()); 4347 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4348 if (OffsetZero && !GEP->hasAllZeroIndices()) 4349 return nullptr; 4350 AddWork(GEP->getPointerOperand()); 4351 } else { 4352 return nullptr; 4353 } 4354 } while (!Worklist.empty()); 4355 4356 return Result; 4357 } 4358 4359 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4360 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4361 for (const User *U : V->users()) { 4362 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4363 if (!II) 4364 return false; 4365 4366 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4367 continue; 4368 4369 if (AllowDroppable && II->isDroppable()) 4370 continue; 4371 4372 return false; 4373 } 4374 return true; 4375 } 4376 4377 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4378 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4379 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4380 } 4381 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4382 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4383 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4384 } 4385 4386 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4387 if (!LI.isUnordered()) 4388 return true; 4389 const Function &F = *LI.getFunction(); 4390 // Speculative load may create a race that did not exist in the source. 4391 return F.hasFnAttribute(Attribute::SanitizeThread) || 4392 // Speculative load may load data from dirty regions. 4393 F.hasFnAttribute(Attribute::SanitizeAddress) || 4394 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4395 } 4396 4397 4398 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4399 const Instruction *CtxI, 4400 const DominatorTree *DT) { 4401 const Operator *Inst = dyn_cast<Operator>(V); 4402 if (!Inst) 4403 return false; 4404 4405 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4406 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4407 if (C->canTrap()) 4408 return false; 4409 4410 switch (Inst->getOpcode()) { 4411 default: 4412 return true; 4413 case Instruction::UDiv: 4414 case Instruction::URem: { 4415 // x / y is undefined if y == 0. 4416 const APInt *V; 4417 if (match(Inst->getOperand(1), m_APInt(V))) 4418 return *V != 0; 4419 return false; 4420 } 4421 case Instruction::SDiv: 4422 case Instruction::SRem: { 4423 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4424 const APInt *Numerator, *Denominator; 4425 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4426 return false; 4427 // We cannot hoist this division if the denominator is 0. 4428 if (*Denominator == 0) 4429 return false; 4430 // It's safe to hoist if the denominator is not 0 or -1. 4431 if (!Denominator->isAllOnesValue()) 4432 return true; 4433 // At this point we know that the denominator is -1. It is safe to hoist as 4434 // long we know that the numerator is not INT_MIN. 4435 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4436 return !Numerator->isMinSignedValue(); 4437 // The numerator *might* be MinSignedValue. 4438 return false; 4439 } 4440 case Instruction::Load: { 4441 const LoadInst *LI = cast<LoadInst>(Inst); 4442 if (mustSuppressSpeculation(*LI)) 4443 return false; 4444 const DataLayout &DL = LI->getModule()->getDataLayout(); 4445 return isDereferenceableAndAlignedPointer( 4446 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4447 DL, CtxI, DT); 4448 } 4449 case Instruction::Call: { 4450 auto *CI = cast<const CallInst>(Inst); 4451 const Function *Callee = CI->getCalledFunction(); 4452 4453 // The called function could have undefined behavior or side-effects, even 4454 // if marked readnone nounwind. 4455 return Callee && Callee->isSpeculatable(); 4456 } 4457 case Instruction::VAArg: 4458 case Instruction::Alloca: 4459 case Instruction::Invoke: 4460 case Instruction::CallBr: 4461 case Instruction::PHI: 4462 case Instruction::Store: 4463 case Instruction::Ret: 4464 case Instruction::Br: 4465 case Instruction::IndirectBr: 4466 case Instruction::Switch: 4467 case Instruction::Unreachable: 4468 case Instruction::Fence: 4469 case Instruction::AtomicRMW: 4470 case Instruction::AtomicCmpXchg: 4471 case Instruction::LandingPad: 4472 case Instruction::Resume: 4473 case Instruction::CatchSwitch: 4474 case Instruction::CatchPad: 4475 case Instruction::CatchRet: 4476 case Instruction::CleanupPad: 4477 case Instruction::CleanupRet: 4478 return false; // Misc instructions which have effects 4479 } 4480 } 4481 4482 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4483 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4484 } 4485 4486 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4487 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4488 switch (OR) { 4489 case ConstantRange::OverflowResult::MayOverflow: 4490 return OverflowResult::MayOverflow; 4491 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4492 return OverflowResult::AlwaysOverflowsLow; 4493 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4494 return OverflowResult::AlwaysOverflowsHigh; 4495 case ConstantRange::OverflowResult::NeverOverflows: 4496 return OverflowResult::NeverOverflows; 4497 } 4498 llvm_unreachable("Unknown OverflowResult"); 4499 } 4500 4501 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4502 static ConstantRange computeConstantRangeIncludingKnownBits( 4503 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4504 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4505 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4506 KnownBits Known = computeKnownBits( 4507 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4508 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4509 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4510 ConstantRange::PreferredRangeType RangeType = 4511 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4512 return CR1.intersectWith(CR2, RangeType); 4513 } 4514 4515 OverflowResult llvm::computeOverflowForUnsignedMul( 4516 const Value *LHS, const Value *RHS, const DataLayout &DL, 4517 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4518 bool UseInstrInfo) { 4519 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4520 nullptr, UseInstrInfo); 4521 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4522 nullptr, UseInstrInfo); 4523 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4524 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4525 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4526 } 4527 4528 OverflowResult 4529 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4530 const DataLayout &DL, AssumptionCache *AC, 4531 const Instruction *CxtI, 4532 const DominatorTree *DT, bool UseInstrInfo) { 4533 // Multiplying n * m significant bits yields a result of n + m significant 4534 // bits. If the total number of significant bits does not exceed the 4535 // result bit width (minus 1), there is no overflow. 4536 // This means if we have enough leading sign bits in the operands 4537 // we can guarantee that the result does not overflow. 4538 // Ref: "Hacker's Delight" by Henry Warren 4539 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4540 4541 // Note that underestimating the number of sign bits gives a more 4542 // conservative answer. 4543 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4544 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4545 4546 // First handle the easy case: if we have enough sign bits there's 4547 // definitely no overflow. 4548 if (SignBits > BitWidth + 1) 4549 return OverflowResult::NeverOverflows; 4550 4551 // There are two ambiguous cases where there can be no overflow: 4552 // SignBits == BitWidth + 1 and 4553 // SignBits == BitWidth 4554 // The second case is difficult to check, therefore we only handle the 4555 // first case. 4556 if (SignBits == BitWidth + 1) { 4557 // It overflows only when both arguments are negative and the true 4558 // product is exactly the minimum negative number. 4559 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4560 // For simplicity we just check if at least one side is not negative. 4561 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4562 nullptr, UseInstrInfo); 4563 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4564 nullptr, UseInstrInfo); 4565 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4566 return OverflowResult::NeverOverflows; 4567 } 4568 return OverflowResult::MayOverflow; 4569 } 4570 4571 OverflowResult llvm::computeOverflowForUnsignedAdd( 4572 const Value *LHS, const Value *RHS, const DataLayout &DL, 4573 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4574 bool UseInstrInfo) { 4575 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4576 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4577 nullptr, UseInstrInfo); 4578 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4579 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4580 nullptr, UseInstrInfo); 4581 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4582 } 4583 4584 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4585 const Value *RHS, 4586 const AddOperator *Add, 4587 const DataLayout &DL, 4588 AssumptionCache *AC, 4589 const Instruction *CxtI, 4590 const DominatorTree *DT) { 4591 if (Add && Add->hasNoSignedWrap()) { 4592 return OverflowResult::NeverOverflows; 4593 } 4594 4595 // If LHS and RHS each have at least two sign bits, the addition will look 4596 // like 4597 // 4598 // XX..... + 4599 // YY..... 4600 // 4601 // If the carry into the most significant position is 0, X and Y can't both 4602 // be 1 and therefore the carry out of the addition is also 0. 4603 // 4604 // If the carry into the most significant position is 1, X and Y can't both 4605 // be 0 and therefore the carry out of the addition is also 1. 4606 // 4607 // Since the carry into the most significant position is always equal to 4608 // the carry out of the addition, there is no signed overflow. 4609 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4610 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4611 return OverflowResult::NeverOverflows; 4612 4613 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4614 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4615 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4616 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4617 OverflowResult OR = 4618 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4619 if (OR != OverflowResult::MayOverflow) 4620 return OR; 4621 4622 // The remaining code needs Add to be available. Early returns if not so. 4623 if (!Add) 4624 return OverflowResult::MayOverflow; 4625 4626 // If the sign of Add is the same as at least one of the operands, this add 4627 // CANNOT overflow. If this can be determined from the known bits of the 4628 // operands the above signedAddMayOverflow() check will have already done so. 4629 // The only other way to improve on the known bits is from an assumption, so 4630 // call computeKnownBitsFromAssume() directly. 4631 bool LHSOrRHSKnownNonNegative = 4632 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4633 bool LHSOrRHSKnownNegative = 4634 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4635 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4636 KnownBits AddKnown(LHSRange.getBitWidth()); 4637 computeKnownBitsFromAssume( 4638 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4639 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4640 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4641 return OverflowResult::NeverOverflows; 4642 } 4643 4644 return OverflowResult::MayOverflow; 4645 } 4646 4647 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4648 const Value *RHS, 4649 const DataLayout &DL, 4650 AssumptionCache *AC, 4651 const Instruction *CxtI, 4652 const DominatorTree *DT) { 4653 // Checking for conditions implied by dominating conditions may be expensive. 4654 // Limit it to usub_with_overflow calls for now. 4655 if (match(CxtI, 4656 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4657 if (auto C = 4658 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4659 if (*C) 4660 return OverflowResult::NeverOverflows; 4661 return OverflowResult::AlwaysOverflowsLow; 4662 } 4663 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4664 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4665 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4666 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4667 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4668 } 4669 4670 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4671 const Value *RHS, 4672 const DataLayout &DL, 4673 AssumptionCache *AC, 4674 const Instruction *CxtI, 4675 const DominatorTree *DT) { 4676 // If LHS and RHS each have at least two sign bits, the subtraction 4677 // cannot overflow. 4678 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4679 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4680 return OverflowResult::NeverOverflows; 4681 4682 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4683 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4684 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4685 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4686 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4687 } 4688 4689 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4690 const DominatorTree &DT) { 4691 SmallVector<const BranchInst *, 2> GuardingBranches; 4692 SmallVector<const ExtractValueInst *, 2> Results; 4693 4694 for (const User *U : WO->users()) { 4695 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4696 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4697 4698 if (EVI->getIndices()[0] == 0) 4699 Results.push_back(EVI); 4700 else { 4701 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4702 4703 for (const auto *U : EVI->users()) 4704 if (const auto *B = dyn_cast<BranchInst>(U)) { 4705 assert(B->isConditional() && "How else is it using an i1?"); 4706 GuardingBranches.push_back(B); 4707 } 4708 } 4709 } else { 4710 // We are using the aggregate directly in a way we don't want to analyze 4711 // here (storing it to a global, say). 4712 return false; 4713 } 4714 } 4715 4716 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4717 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4718 if (!NoWrapEdge.isSingleEdge()) 4719 return false; 4720 4721 // Check if all users of the add are provably no-wrap. 4722 for (const auto *Result : Results) { 4723 // If the extractvalue itself is not executed on overflow, the we don't 4724 // need to check each use separately, since domination is transitive. 4725 if (DT.dominates(NoWrapEdge, Result->getParent())) 4726 continue; 4727 4728 for (auto &RU : Result->uses()) 4729 if (!DT.dominates(NoWrapEdge, RU)) 4730 return false; 4731 } 4732 4733 return true; 4734 }; 4735 4736 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4737 } 4738 4739 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4740 // See whether I has flags that may create poison 4741 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4742 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4743 return true; 4744 } 4745 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4746 if (ExactOp->isExact()) 4747 return true; 4748 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4749 auto FMF = FP->getFastMathFlags(); 4750 if (FMF.noNaNs() || FMF.noInfs()) 4751 return true; 4752 } 4753 4754 unsigned Opcode = Op->getOpcode(); 4755 4756 // Check whether opcode is a poison/undef-generating operation 4757 switch (Opcode) { 4758 case Instruction::Shl: 4759 case Instruction::AShr: 4760 case Instruction::LShr: { 4761 // Shifts return poison if shiftwidth is larger than the bitwidth. 4762 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4763 SmallVector<Constant *, 4> ShiftAmounts; 4764 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4765 unsigned NumElts = FVTy->getNumElements(); 4766 for (unsigned i = 0; i < NumElts; ++i) 4767 ShiftAmounts.push_back(C->getAggregateElement(i)); 4768 } else if (isa<ScalableVectorType>(C->getType())) 4769 return true; // Can't tell, just return true to be safe 4770 else 4771 ShiftAmounts.push_back(C); 4772 4773 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4774 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4775 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4776 }); 4777 return !Safe; 4778 } 4779 return true; 4780 } 4781 case Instruction::FPToSI: 4782 case Instruction::FPToUI: 4783 // fptosi/ui yields poison if the resulting value does not fit in the 4784 // destination type. 4785 return true; 4786 case Instruction::Call: 4787 case Instruction::CallBr: 4788 case Instruction::Invoke: { 4789 const auto *CB = cast<CallBase>(Op); 4790 return !CB->hasRetAttr(Attribute::NoUndef); 4791 } 4792 case Instruction::InsertElement: 4793 case Instruction::ExtractElement: { 4794 // If index exceeds the length of the vector, it returns poison 4795 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4796 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4797 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4798 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4799 return true; 4800 return false; 4801 } 4802 case Instruction::ShuffleVector: { 4803 // shufflevector may return undef. 4804 if (PoisonOnly) 4805 return false; 4806 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4807 ? cast<ConstantExpr>(Op)->getShuffleMask() 4808 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4809 return is_contained(Mask, UndefMaskElem); 4810 } 4811 case Instruction::FNeg: 4812 case Instruction::PHI: 4813 case Instruction::Select: 4814 case Instruction::URem: 4815 case Instruction::SRem: 4816 case Instruction::ExtractValue: 4817 case Instruction::InsertValue: 4818 case Instruction::Freeze: 4819 case Instruction::ICmp: 4820 case Instruction::FCmp: 4821 return false; 4822 case Instruction::GetElementPtr: { 4823 const auto *GEP = cast<GEPOperator>(Op); 4824 return GEP->isInBounds(); 4825 } 4826 default: { 4827 const auto *CE = dyn_cast<ConstantExpr>(Op); 4828 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4829 return false; 4830 else if (Instruction::isBinaryOp(Opcode)) 4831 return false; 4832 // Be conservative and return true. 4833 return true; 4834 } 4835 } 4836 } 4837 4838 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4839 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4840 } 4841 4842 bool llvm::canCreatePoison(const Operator *Op) { 4843 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4844 } 4845 4846 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4847 const Value *V, unsigned Depth) { 4848 if (ValAssumedPoison == V) 4849 return true; 4850 4851 const unsigned MaxDepth = 2; 4852 if (Depth >= MaxDepth) 4853 return false; 4854 4855 const auto *I = dyn_cast<Instruction>(V); 4856 if (I && propagatesPoison(cast<Operator>(I))) { 4857 return any_of(I->operands(), [=](const Value *Op) { 4858 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4859 }); 4860 } 4861 return false; 4862 } 4863 4864 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4865 unsigned Depth) { 4866 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4867 return true; 4868 4869 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4870 return true; 4871 4872 const unsigned MaxDepth = 2; 4873 if (Depth >= MaxDepth) 4874 return false; 4875 4876 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4877 if (I && !canCreatePoison(cast<Operator>(I))) { 4878 return all_of(I->operands(), [=](const Value *Op) { 4879 return impliesPoison(Op, V, Depth + 1); 4880 }); 4881 } 4882 return false; 4883 } 4884 4885 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4886 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4887 } 4888 4889 static bool programUndefinedIfUndefOrPoison(const Value *V, 4890 bool PoisonOnly); 4891 4892 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4893 AssumptionCache *AC, 4894 const Instruction *CtxI, 4895 const DominatorTree *DT, 4896 unsigned Depth, bool PoisonOnly) { 4897 if (Depth >= MaxAnalysisRecursionDepth) 4898 return false; 4899 4900 if (isa<MetadataAsValue>(V)) 4901 return false; 4902 4903 if (const auto *A = dyn_cast<Argument>(V)) { 4904 if (A->hasAttribute(Attribute::NoUndef)) 4905 return true; 4906 } 4907 4908 if (auto *C = dyn_cast<Constant>(V)) { 4909 if (isa<UndefValue>(C)) 4910 return PoisonOnly && !isa<PoisonValue>(C); 4911 4912 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4913 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4914 return true; 4915 4916 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4917 return (PoisonOnly ? !C->containsPoisonElement() 4918 : !C->containsUndefOrPoisonElement()) && 4919 !C->containsConstantExpression(); 4920 } 4921 4922 // Strip cast operations from a pointer value. 4923 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4924 // inbounds with zero offset. To guarantee that the result isn't poison, the 4925 // stripped pointer is checked as it has to be pointing into an allocated 4926 // object or be null `null` to ensure `inbounds` getelement pointers with a 4927 // zero offset could not produce poison. 4928 // It can strip off addrspacecast that do not change bit representation as 4929 // well. We believe that such addrspacecast is equivalent to no-op. 4930 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4931 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4932 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4933 return true; 4934 4935 auto OpCheck = [&](const Value *V) { 4936 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4937 PoisonOnly); 4938 }; 4939 4940 if (auto *Opr = dyn_cast<Operator>(V)) { 4941 // If the value is a freeze instruction, then it can never 4942 // be undef or poison. 4943 if (isa<FreezeInst>(V)) 4944 return true; 4945 4946 if (const auto *CB = dyn_cast<CallBase>(V)) { 4947 if (CB->hasRetAttr(Attribute::NoUndef)) 4948 return true; 4949 } 4950 4951 if (const auto *PN = dyn_cast<PHINode>(V)) { 4952 unsigned Num = PN->getNumIncomingValues(); 4953 bool IsWellDefined = true; 4954 for (unsigned i = 0; i < Num; ++i) { 4955 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4956 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4957 DT, Depth + 1, PoisonOnly)) { 4958 IsWellDefined = false; 4959 break; 4960 } 4961 } 4962 if (IsWellDefined) 4963 return true; 4964 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4965 return true; 4966 } 4967 4968 if (auto *I = dyn_cast<LoadInst>(V)) 4969 if (I->getMetadata(LLVMContext::MD_noundef)) 4970 return true; 4971 4972 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4973 return true; 4974 4975 // CxtI may be null or a cloned instruction. 4976 if (!CtxI || !CtxI->getParent() || !DT) 4977 return false; 4978 4979 auto *DNode = DT->getNode(CtxI->getParent()); 4980 if (!DNode) 4981 // Unreachable block 4982 return false; 4983 4984 // If V is used as a branch condition before reaching CtxI, V cannot be 4985 // undef or poison. 4986 // br V, BB1, BB2 4987 // BB1: 4988 // CtxI ; V cannot be undef or poison here 4989 auto *Dominator = DNode->getIDom(); 4990 while (Dominator) { 4991 auto *TI = Dominator->getBlock()->getTerminator(); 4992 4993 Value *Cond = nullptr; 4994 if (auto BI = dyn_cast<BranchInst>(TI)) { 4995 if (BI->isConditional()) 4996 Cond = BI->getCondition(); 4997 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4998 Cond = SI->getCondition(); 4999 } 5000 5001 if (Cond) { 5002 if (Cond == V) 5003 return true; 5004 else if (PoisonOnly && isa<Operator>(Cond)) { 5005 // For poison, we can analyze further 5006 auto *Opr = cast<Operator>(Cond); 5007 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5008 return true; 5009 } 5010 } 5011 5012 Dominator = Dominator->getIDom(); 5013 } 5014 5015 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5016 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5017 return true; 5018 5019 return false; 5020 } 5021 5022 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5023 const Instruction *CtxI, 5024 const DominatorTree *DT, 5025 unsigned Depth) { 5026 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5027 } 5028 5029 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5030 const Instruction *CtxI, 5031 const DominatorTree *DT, unsigned Depth) { 5032 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5033 } 5034 5035 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5036 const DataLayout &DL, 5037 AssumptionCache *AC, 5038 const Instruction *CxtI, 5039 const DominatorTree *DT) { 5040 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5041 Add, DL, AC, CxtI, DT); 5042 } 5043 5044 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5045 const Value *RHS, 5046 const DataLayout &DL, 5047 AssumptionCache *AC, 5048 const Instruction *CxtI, 5049 const DominatorTree *DT) { 5050 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5051 } 5052 5053 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5054 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5055 // of time because it's possible for another thread to interfere with it for an 5056 // arbitrary length of time, but programs aren't allowed to rely on that. 5057 5058 // If there is no successor, then execution can't transfer to it. 5059 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5060 return !CRI->unwindsToCaller(); 5061 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5062 return !CatchSwitch->unwindsToCaller(); 5063 if (isa<ResumeInst>(I)) 5064 return false; 5065 if (isa<ReturnInst>(I)) 5066 return false; 5067 if (isa<UnreachableInst>(I)) 5068 return false; 5069 5070 // Calls can throw, or contain an infinite loop, or kill the process. 5071 if (const auto *CB = dyn_cast<CallBase>(I)) { 5072 // Call sites that throw have implicit non-local control flow. 5073 if (!CB->doesNotThrow()) 5074 return false; 5075 5076 // A function which doens't throw and has "willreturn" attribute will 5077 // always return. 5078 if (CB->hasFnAttr(Attribute::WillReturn)) 5079 return true; 5080 5081 // FIXME: Temporarily assume that all side-effect free intrinsics will 5082 // return. Remove this workaround once all intrinsics are appropriately 5083 // annotated. 5084 return isa<IntrinsicInst>(CB) && CB->onlyReadsMemory(); 5085 } 5086 5087 // Other instructions return normally. 5088 return true; 5089 } 5090 5091 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5092 // TODO: This is slightly conservative for invoke instruction since exiting 5093 // via an exception *is* normal control for them. 5094 for (const Instruction &I : *BB) 5095 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5096 return false; 5097 return true; 5098 } 5099 5100 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5101 const Loop *L) { 5102 // The loop header is guaranteed to be executed for every iteration. 5103 // 5104 // FIXME: Relax this constraint to cover all basic blocks that are 5105 // guaranteed to be executed at every iteration. 5106 if (I->getParent() != L->getHeader()) return false; 5107 5108 for (const Instruction &LI : *L->getHeader()) { 5109 if (&LI == I) return true; 5110 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5111 } 5112 llvm_unreachable("Instruction not contained in its own parent basic block."); 5113 } 5114 5115 bool llvm::propagatesPoison(const Operator *I) { 5116 switch (I->getOpcode()) { 5117 case Instruction::Freeze: 5118 case Instruction::Select: 5119 case Instruction::PHI: 5120 case Instruction::Call: 5121 case Instruction::Invoke: 5122 return false; 5123 case Instruction::ICmp: 5124 case Instruction::FCmp: 5125 case Instruction::GetElementPtr: 5126 return true; 5127 default: 5128 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5129 return true; 5130 5131 // Be conservative and return false. 5132 return false; 5133 } 5134 } 5135 5136 void llvm::getGuaranteedWellDefinedOps( 5137 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5138 switch (I->getOpcode()) { 5139 case Instruction::Store: 5140 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5141 break; 5142 5143 case Instruction::Load: 5144 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5145 break; 5146 5147 // Since dereferenceable attribute imply noundef, atomic operations 5148 // also implicitly have noundef pointers too 5149 case Instruction::AtomicCmpXchg: 5150 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5151 break; 5152 5153 case Instruction::AtomicRMW: 5154 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5155 break; 5156 5157 case Instruction::Call: 5158 case Instruction::Invoke: { 5159 const CallBase *CB = cast<CallBase>(I); 5160 if (CB->isIndirectCall()) 5161 Operands.insert(CB->getCalledOperand()); 5162 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5163 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5164 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5165 Operands.insert(CB->getArgOperand(i)); 5166 } 5167 break; 5168 } 5169 5170 default: 5171 break; 5172 } 5173 } 5174 5175 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5176 SmallPtrSetImpl<const Value *> &Operands) { 5177 getGuaranteedWellDefinedOps(I, Operands); 5178 switch (I->getOpcode()) { 5179 // Divisors of these operations are allowed to be partially undef. 5180 case Instruction::UDiv: 5181 case Instruction::SDiv: 5182 case Instruction::URem: 5183 case Instruction::SRem: 5184 Operands.insert(I->getOperand(1)); 5185 break; 5186 5187 default: 5188 break; 5189 } 5190 } 5191 5192 bool llvm::mustTriggerUB(const Instruction *I, 5193 const SmallSet<const Value *, 16>& KnownPoison) { 5194 SmallPtrSet<const Value *, 4> NonPoisonOps; 5195 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5196 5197 for (const auto *V : NonPoisonOps) 5198 if (KnownPoison.count(V)) 5199 return true; 5200 5201 return false; 5202 } 5203 5204 static bool programUndefinedIfUndefOrPoison(const Value *V, 5205 bool PoisonOnly) { 5206 // We currently only look for uses of values within the same basic 5207 // block, as that makes it easier to guarantee that the uses will be 5208 // executed given that Inst is executed. 5209 // 5210 // FIXME: Expand this to consider uses beyond the same basic block. To do 5211 // this, look out for the distinction between post-dominance and strong 5212 // post-dominance. 5213 const BasicBlock *BB = nullptr; 5214 BasicBlock::const_iterator Begin; 5215 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5216 BB = Inst->getParent(); 5217 Begin = Inst->getIterator(); 5218 Begin++; 5219 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5220 BB = &Arg->getParent()->getEntryBlock(); 5221 Begin = BB->begin(); 5222 } else { 5223 return false; 5224 } 5225 5226 BasicBlock::const_iterator End = BB->end(); 5227 5228 if (!PoisonOnly) { 5229 // Since undef does not propagate eagerly, be conservative & just check 5230 // whether a value is directly passed to an instruction that must take 5231 // well-defined operands. 5232 5233 for (auto &I : make_range(Begin, End)) { 5234 SmallPtrSet<const Value *, 4> WellDefinedOps; 5235 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5236 for (auto *Op : WellDefinedOps) { 5237 if (Op == V) 5238 return true; 5239 } 5240 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5241 break; 5242 } 5243 return false; 5244 } 5245 5246 // Set of instructions that we have proved will yield poison if Inst 5247 // does. 5248 SmallSet<const Value *, 16> YieldsPoison; 5249 SmallSet<const BasicBlock *, 4> Visited; 5250 5251 YieldsPoison.insert(V); 5252 auto Propagate = [&](const User *User) { 5253 if (propagatesPoison(cast<Operator>(User))) 5254 YieldsPoison.insert(User); 5255 }; 5256 for_each(V->users(), Propagate); 5257 Visited.insert(BB); 5258 5259 unsigned Iter = 0; 5260 while (Iter++ < MaxAnalysisRecursionDepth) { 5261 for (auto &I : make_range(Begin, End)) { 5262 if (mustTriggerUB(&I, YieldsPoison)) 5263 return true; 5264 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5265 return false; 5266 5267 // Mark poison that propagates from I through uses of I. 5268 if (YieldsPoison.count(&I)) 5269 for_each(I.users(), Propagate); 5270 } 5271 5272 if (auto *NextBB = BB->getSingleSuccessor()) { 5273 if (Visited.insert(NextBB).second) { 5274 BB = NextBB; 5275 Begin = BB->getFirstNonPHI()->getIterator(); 5276 End = BB->end(); 5277 continue; 5278 } 5279 } 5280 5281 break; 5282 } 5283 return false; 5284 } 5285 5286 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5287 return ::programUndefinedIfUndefOrPoison(Inst, false); 5288 } 5289 5290 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5291 return ::programUndefinedIfUndefOrPoison(Inst, true); 5292 } 5293 5294 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5295 if (FMF.noNaNs()) 5296 return true; 5297 5298 if (auto *C = dyn_cast<ConstantFP>(V)) 5299 return !C->isNaN(); 5300 5301 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5302 if (!C->getElementType()->isFloatingPointTy()) 5303 return false; 5304 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5305 if (C->getElementAsAPFloat(I).isNaN()) 5306 return false; 5307 } 5308 return true; 5309 } 5310 5311 if (isa<ConstantAggregateZero>(V)) 5312 return true; 5313 5314 return false; 5315 } 5316 5317 static bool isKnownNonZero(const Value *V) { 5318 if (auto *C = dyn_cast<ConstantFP>(V)) 5319 return !C->isZero(); 5320 5321 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5322 if (!C->getElementType()->isFloatingPointTy()) 5323 return false; 5324 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5325 if (C->getElementAsAPFloat(I).isZero()) 5326 return false; 5327 } 5328 return true; 5329 } 5330 5331 return false; 5332 } 5333 5334 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5335 /// Given non-min/max outer cmp/select from the clamp pattern this 5336 /// function recognizes if it can be substitued by a "canonical" min/max 5337 /// pattern. 5338 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5339 Value *CmpLHS, Value *CmpRHS, 5340 Value *TrueVal, Value *FalseVal, 5341 Value *&LHS, Value *&RHS) { 5342 // Try to match 5343 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5344 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5345 // and return description of the outer Max/Min. 5346 5347 // First, check if select has inverse order: 5348 if (CmpRHS == FalseVal) { 5349 std::swap(TrueVal, FalseVal); 5350 Pred = CmpInst::getInversePredicate(Pred); 5351 } 5352 5353 // Assume success now. If there's no match, callers should not use these anyway. 5354 LHS = TrueVal; 5355 RHS = FalseVal; 5356 5357 const APFloat *FC1; 5358 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5359 return {SPF_UNKNOWN, SPNB_NA, false}; 5360 5361 const APFloat *FC2; 5362 switch (Pred) { 5363 case CmpInst::FCMP_OLT: 5364 case CmpInst::FCMP_OLE: 5365 case CmpInst::FCMP_ULT: 5366 case CmpInst::FCMP_ULE: 5367 if (match(FalseVal, 5368 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5369 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5370 *FC1 < *FC2) 5371 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5372 break; 5373 case CmpInst::FCMP_OGT: 5374 case CmpInst::FCMP_OGE: 5375 case CmpInst::FCMP_UGT: 5376 case CmpInst::FCMP_UGE: 5377 if (match(FalseVal, 5378 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5379 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5380 *FC1 > *FC2) 5381 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5382 break; 5383 default: 5384 break; 5385 } 5386 5387 return {SPF_UNKNOWN, SPNB_NA, false}; 5388 } 5389 5390 /// Recognize variations of: 5391 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5392 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5393 Value *CmpLHS, Value *CmpRHS, 5394 Value *TrueVal, Value *FalseVal) { 5395 // Swap the select operands and predicate to match the patterns below. 5396 if (CmpRHS != TrueVal) { 5397 Pred = ICmpInst::getSwappedPredicate(Pred); 5398 std::swap(TrueVal, FalseVal); 5399 } 5400 const APInt *C1; 5401 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5402 const APInt *C2; 5403 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5404 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5405 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5406 return {SPF_SMAX, SPNB_NA, false}; 5407 5408 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5409 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5410 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5411 return {SPF_SMIN, SPNB_NA, false}; 5412 5413 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5414 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5415 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5416 return {SPF_UMAX, SPNB_NA, false}; 5417 5418 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5419 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5420 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5421 return {SPF_UMIN, SPNB_NA, false}; 5422 } 5423 return {SPF_UNKNOWN, SPNB_NA, false}; 5424 } 5425 5426 /// Recognize variations of: 5427 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5428 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5429 Value *CmpLHS, Value *CmpRHS, 5430 Value *TVal, Value *FVal, 5431 unsigned Depth) { 5432 // TODO: Allow FP min/max with nnan/nsz. 5433 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5434 5435 Value *A = nullptr, *B = nullptr; 5436 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5437 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5438 return {SPF_UNKNOWN, SPNB_NA, false}; 5439 5440 Value *C = nullptr, *D = nullptr; 5441 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5442 if (L.Flavor != R.Flavor) 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 5445 // We have something like: x Pred y ? min(a, b) : min(c, d). 5446 // Try to match the compare to the min/max operations of the select operands. 5447 // First, make sure we have the right compare predicate. 5448 switch (L.Flavor) { 5449 case SPF_SMIN: 5450 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5451 Pred = ICmpInst::getSwappedPredicate(Pred); 5452 std::swap(CmpLHS, CmpRHS); 5453 } 5454 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5455 break; 5456 return {SPF_UNKNOWN, SPNB_NA, false}; 5457 case SPF_SMAX: 5458 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5459 Pred = ICmpInst::getSwappedPredicate(Pred); 5460 std::swap(CmpLHS, CmpRHS); 5461 } 5462 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5463 break; 5464 return {SPF_UNKNOWN, SPNB_NA, false}; 5465 case SPF_UMIN: 5466 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5467 Pred = ICmpInst::getSwappedPredicate(Pred); 5468 std::swap(CmpLHS, CmpRHS); 5469 } 5470 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5471 break; 5472 return {SPF_UNKNOWN, SPNB_NA, false}; 5473 case SPF_UMAX: 5474 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5475 Pred = ICmpInst::getSwappedPredicate(Pred); 5476 std::swap(CmpLHS, CmpRHS); 5477 } 5478 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5479 break; 5480 return {SPF_UNKNOWN, SPNB_NA, false}; 5481 default: 5482 return {SPF_UNKNOWN, SPNB_NA, false}; 5483 } 5484 5485 // If there is a common operand in the already matched min/max and the other 5486 // min/max operands match the compare operands (either directly or inverted), 5487 // then this is min/max of the same flavor. 5488 5489 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5490 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5491 if (D == B) { 5492 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5493 match(A, m_Not(m_Specific(CmpRHS))))) 5494 return {L.Flavor, SPNB_NA, false}; 5495 } 5496 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5497 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5498 if (C == B) { 5499 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5500 match(A, m_Not(m_Specific(CmpRHS))))) 5501 return {L.Flavor, SPNB_NA, false}; 5502 } 5503 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5504 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5505 if (D == A) { 5506 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5507 match(B, m_Not(m_Specific(CmpRHS))))) 5508 return {L.Flavor, SPNB_NA, false}; 5509 } 5510 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5511 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5512 if (C == A) { 5513 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5514 match(B, m_Not(m_Specific(CmpRHS))))) 5515 return {L.Flavor, SPNB_NA, false}; 5516 } 5517 5518 return {SPF_UNKNOWN, SPNB_NA, false}; 5519 } 5520 5521 /// If the input value is the result of a 'not' op, constant integer, or vector 5522 /// splat of a constant integer, return the bitwise-not source value. 5523 /// TODO: This could be extended to handle non-splat vector integer constants. 5524 static Value *getNotValue(Value *V) { 5525 Value *NotV; 5526 if (match(V, m_Not(m_Value(NotV)))) 5527 return NotV; 5528 5529 const APInt *C; 5530 if (match(V, m_APInt(C))) 5531 return ConstantInt::get(V->getType(), ~(*C)); 5532 5533 return nullptr; 5534 } 5535 5536 /// Match non-obvious integer minimum and maximum sequences. 5537 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5538 Value *CmpLHS, Value *CmpRHS, 5539 Value *TrueVal, Value *FalseVal, 5540 Value *&LHS, Value *&RHS, 5541 unsigned Depth) { 5542 // Assume success. If there's no match, callers should not use these anyway. 5543 LHS = TrueVal; 5544 RHS = FalseVal; 5545 5546 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5547 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5548 return SPR; 5549 5550 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5551 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5552 return SPR; 5553 5554 // Look through 'not' ops to find disguised min/max. 5555 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5556 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5557 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5558 switch (Pred) { 5559 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5560 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5561 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5562 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5563 default: break; 5564 } 5565 } 5566 5567 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5568 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5569 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5570 switch (Pred) { 5571 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5572 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5573 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5574 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5575 default: break; 5576 } 5577 } 5578 5579 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5580 return {SPF_UNKNOWN, SPNB_NA, false}; 5581 5582 // Z = X -nsw Y 5583 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5584 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5585 if (match(TrueVal, m_Zero()) && 5586 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5587 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5588 5589 // Z = X -nsw Y 5590 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5591 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5592 if (match(FalseVal, m_Zero()) && 5593 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5594 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5595 5596 const APInt *C1; 5597 if (!match(CmpRHS, m_APInt(C1))) 5598 return {SPF_UNKNOWN, SPNB_NA, false}; 5599 5600 // An unsigned min/max can be written with a signed compare. 5601 const APInt *C2; 5602 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5603 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5604 // Is the sign bit set? 5605 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5606 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5607 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5608 C2->isMaxSignedValue()) 5609 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5610 5611 // Is the sign bit clear? 5612 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5613 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5614 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5615 C2->isMinSignedValue()) 5616 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5617 } 5618 5619 return {SPF_UNKNOWN, SPNB_NA, false}; 5620 } 5621 5622 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5623 assert(X && Y && "Invalid operand"); 5624 5625 // X = sub (0, Y) || X = sub nsw (0, Y) 5626 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5627 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5628 return true; 5629 5630 // Y = sub (0, X) || Y = sub nsw (0, X) 5631 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5632 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5633 return true; 5634 5635 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5636 Value *A, *B; 5637 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5638 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5639 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5640 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5641 } 5642 5643 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5644 FastMathFlags FMF, 5645 Value *CmpLHS, Value *CmpRHS, 5646 Value *TrueVal, Value *FalseVal, 5647 Value *&LHS, Value *&RHS, 5648 unsigned Depth) { 5649 if (CmpInst::isFPPredicate(Pred)) { 5650 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5651 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5652 // purpose of identifying min/max. Disregard vector constants with undefined 5653 // elements because those can not be back-propagated for analysis. 5654 Value *OutputZeroVal = nullptr; 5655 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5656 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5657 OutputZeroVal = TrueVal; 5658 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5659 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5660 OutputZeroVal = FalseVal; 5661 5662 if (OutputZeroVal) { 5663 if (match(CmpLHS, m_AnyZeroFP())) 5664 CmpLHS = OutputZeroVal; 5665 if (match(CmpRHS, m_AnyZeroFP())) 5666 CmpRHS = OutputZeroVal; 5667 } 5668 } 5669 5670 LHS = CmpLHS; 5671 RHS = CmpRHS; 5672 5673 // Signed zero may return inconsistent results between implementations. 5674 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5675 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5676 // Therefore, we behave conservatively and only proceed if at least one of the 5677 // operands is known to not be zero or if we don't care about signed zero. 5678 switch (Pred) { 5679 default: break; 5680 // FIXME: Include OGT/OLT/UGT/ULT. 5681 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5682 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5683 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5684 !isKnownNonZero(CmpRHS)) 5685 return {SPF_UNKNOWN, SPNB_NA, false}; 5686 } 5687 5688 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5689 bool Ordered = false; 5690 5691 // When given one NaN and one non-NaN input: 5692 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5693 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5694 // ordered comparison fails), which could be NaN or non-NaN. 5695 // so here we discover exactly what NaN behavior is required/accepted. 5696 if (CmpInst::isFPPredicate(Pred)) { 5697 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5698 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5699 5700 if (LHSSafe && RHSSafe) { 5701 // Both operands are known non-NaN. 5702 NaNBehavior = SPNB_RETURNS_ANY; 5703 } else if (CmpInst::isOrdered(Pred)) { 5704 // An ordered comparison will return false when given a NaN, so it 5705 // returns the RHS. 5706 Ordered = true; 5707 if (LHSSafe) 5708 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5709 NaNBehavior = SPNB_RETURNS_NAN; 5710 else if (RHSSafe) 5711 NaNBehavior = SPNB_RETURNS_OTHER; 5712 else 5713 // Completely unsafe. 5714 return {SPF_UNKNOWN, SPNB_NA, false}; 5715 } else { 5716 Ordered = false; 5717 // An unordered comparison will return true when given a NaN, so it 5718 // returns the LHS. 5719 if (LHSSafe) 5720 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5721 NaNBehavior = SPNB_RETURNS_OTHER; 5722 else if (RHSSafe) 5723 NaNBehavior = SPNB_RETURNS_NAN; 5724 else 5725 // Completely unsafe. 5726 return {SPF_UNKNOWN, SPNB_NA, false}; 5727 } 5728 } 5729 5730 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5731 std::swap(CmpLHS, CmpRHS); 5732 Pred = CmpInst::getSwappedPredicate(Pred); 5733 if (NaNBehavior == SPNB_RETURNS_NAN) 5734 NaNBehavior = SPNB_RETURNS_OTHER; 5735 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5736 NaNBehavior = SPNB_RETURNS_NAN; 5737 Ordered = !Ordered; 5738 } 5739 5740 // ([if]cmp X, Y) ? X : Y 5741 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5742 switch (Pred) { 5743 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5744 case ICmpInst::ICMP_UGT: 5745 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5746 case ICmpInst::ICMP_SGT: 5747 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5748 case ICmpInst::ICMP_ULT: 5749 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5750 case ICmpInst::ICMP_SLT: 5751 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5752 case FCmpInst::FCMP_UGT: 5753 case FCmpInst::FCMP_UGE: 5754 case FCmpInst::FCMP_OGT: 5755 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5756 case FCmpInst::FCMP_ULT: 5757 case FCmpInst::FCMP_ULE: 5758 case FCmpInst::FCMP_OLT: 5759 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5760 } 5761 } 5762 5763 if (isKnownNegation(TrueVal, FalseVal)) { 5764 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5765 // match against either LHS or sext(LHS). 5766 auto MaybeSExtCmpLHS = 5767 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5768 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5769 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5770 if (match(TrueVal, MaybeSExtCmpLHS)) { 5771 // Set the return values. If the compare uses the negated value (-X >s 0), 5772 // swap the return values because the negated value is always 'RHS'. 5773 LHS = TrueVal; 5774 RHS = FalseVal; 5775 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5776 std::swap(LHS, RHS); 5777 5778 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5779 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5780 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5781 return {SPF_ABS, SPNB_NA, false}; 5782 5783 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5784 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5785 return {SPF_ABS, SPNB_NA, false}; 5786 5787 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5788 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5789 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5790 return {SPF_NABS, SPNB_NA, false}; 5791 } 5792 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5793 // Set the return values. If the compare uses the negated value (-X >s 0), 5794 // swap the return values because the negated value is always 'RHS'. 5795 LHS = FalseVal; 5796 RHS = TrueVal; 5797 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5798 std::swap(LHS, RHS); 5799 5800 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5801 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5802 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5803 return {SPF_NABS, SPNB_NA, false}; 5804 5805 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5806 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5807 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5808 return {SPF_ABS, SPNB_NA, false}; 5809 } 5810 } 5811 5812 if (CmpInst::isIntPredicate(Pred)) 5813 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5814 5815 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5816 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5817 // semantics than minNum. Be conservative in such case. 5818 if (NaNBehavior != SPNB_RETURNS_ANY || 5819 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5820 !isKnownNonZero(CmpRHS))) 5821 return {SPF_UNKNOWN, SPNB_NA, false}; 5822 5823 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5824 } 5825 5826 /// Helps to match a select pattern in case of a type mismatch. 5827 /// 5828 /// The function processes the case when type of true and false values of a 5829 /// select instruction differs from type of the cmp instruction operands because 5830 /// of a cast instruction. The function checks if it is legal to move the cast 5831 /// operation after "select". If yes, it returns the new second value of 5832 /// "select" (with the assumption that cast is moved): 5833 /// 1. As operand of cast instruction when both values of "select" are same cast 5834 /// instructions. 5835 /// 2. As restored constant (by applying reverse cast operation) when the first 5836 /// value of the "select" is a cast operation and the second value is a 5837 /// constant. 5838 /// NOTE: We return only the new second value because the first value could be 5839 /// accessed as operand of cast instruction. 5840 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5841 Instruction::CastOps *CastOp) { 5842 auto *Cast1 = dyn_cast<CastInst>(V1); 5843 if (!Cast1) 5844 return nullptr; 5845 5846 *CastOp = Cast1->getOpcode(); 5847 Type *SrcTy = Cast1->getSrcTy(); 5848 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5849 // If V1 and V2 are both the same cast from the same type, look through V1. 5850 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5851 return Cast2->getOperand(0); 5852 return nullptr; 5853 } 5854 5855 auto *C = dyn_cast<Constant>(V2); 5856 if (!C) 5857 return nullptr; 5858 5859 Constant *CastedTo = nullptr; 5860 switch (*CastOp) { 5861 case Instruction::ZExt: 5862 if (CmpI->isUnsigned()) 5863 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5864 break; 5865 case Instruction::SExt: 5866 if (CmpI->isSigned()) 5867 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5868 break; 5869 case Instruction::Trunc: 5870 Constant *CmpConst; 5871 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5872 CmpConst->getType() == SrcTy) { 5873 // Here we have the following case: 5874 // 5875 // %cond = cmp iN %x, CmpConst 5876 // %tr = trunc iN %x to iK 5877 // %narrowsel = select i1 %cond, iK %t, iK C 5878 // 5879 // We can always move trunc after select operation: 5880 // 5881 // %cond = cmp iN %x, CmpConst 5882 // %widesel = select i1 %cond, iN %x, iN CmpConst 5883 // %tr = trunc iN %widesel to iK 5884 // 5885 // Note that C could be extended in any way because we don't care about 5886 // upper bits after truncation. It can't be abs pattern, because it would 5887 // look like: 5888 // 5889 // select i1 %cond, x, -x. 5890 // 5891 // So only min/max pattern could be matched. Such match requires widened C 5892 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5893 // CmpConst == C is checked below. 5894 CastedTo = CmpConst; 5895 } else { 5896 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5897 } 5898 break; 5899 case Instruction::FPTrunc: 5900 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5901 break; 5902 case Instruction::FPExt: 5903 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5904 break; 5905 case Instruction::FPToUI: 5906 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5907 break; 5908 case Instruction::FPToSI: 5909 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5910 break; 5911 case Instruction::UIToFP: 5912 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5913 break; 5914 case Instruction::SIToFP: 5915 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5916 break; 5917 default: 5918 break; 5919 } 5920 5921 if (!CastedTo) 5922 return nullptr; 5923 5924 // Make sure the cast doesn't lose any information. 5925 Constant *CastedBack = 5926 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5927 if (CastedBack != C) 5928 return nullptr; 5929 5930 return CastedTo; 5931 } 5932 5933 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5934 Instruction::CastOps *CastOp, 5935 unsigned Depth) { 5936 if (Depth >= MaxAnalysisRecursionDepth) 5937 return {SPF_UNKNOWN, SPNB_NA, false}; 5938 5939 SelectInst *SI = dyn_cast<SelectInst>(V); 5940 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5941 5942 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5943 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5944 5945 Value *TrueVal = SI->getTrueValue(); 5946 Value *FalseVal = SI->getFalseValue(); 5947 5948 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5949 CastOp, Depth); 5950 } 5951 5952 SelectPatternResult llvm::matchDecomposedSelectPattern( 5953 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5954 Instruction::CastOps *CastOp, unsigned Depth) { 5955 CmpInst::Predicate Pred = CmpI->getPredicate(); 5956 Value *CmpLHS = CmpI->getOperand(0); 5957 Value *CmpRHS = CmpI->getOperand(1); 5958 FastMathFlags FMF; 5959 if (isa<FPMathOperator>(CmpI)) 5960 FMF = CmpI->getFastMathFlags(); 5961 5962 // Bail out early. 5963 if (CmpI->isEquality()) 5964 return {SPF_UNKNOWN, SPNB_NA, false}; 5965 5966 // Deal with type mismatches. 5967 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5968 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5969 // If this is a potential fmin/fmax with a cast to integer, then ignore 5970 // -0.0 because there is no corresponding integer value. 5971 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5972 FMF.setNoSignedZeros(); 5973 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5974 cast<CastInst>(TrueVal)->getOperand(0), C, 5975 LHS, RHS, Depth); 5976 } 5977 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5978 // If this is a potential fmin/fmax with a cast to integer, then ignore 5979 // -0.0 because there is no corresponding integer value. 5980 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5981 FMF.setNoSignedZeros(); 5982 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5983 C, cast<CastInst>(FalseVal)->getOperand(0), 5984 LHS, RHS, Depth); 5985 } 5986 } 5987 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5988 LHS, RHS, Depth); 5989 } 5990 5991 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5992 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5993 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5994 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5995 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5996 if (SPF == SPF_FMINNUM) 5997 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5998 if (SPF == SPF_FMAXNUM) 5999 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6000 llvm_unreachable("unhandled!"); 6001 } 6002 6003 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6004 if (SPF == SPF_SMIN) return SPF_SMAX; 6005 if (SPF == SPF_UMIN) return SPF_UMAX; 6006 if (SPF == SPF_SMAX) return SPF_SMIN; 6007 if (SPF == SPF_UMAX) return SPF_UMIN; 6008 llvm_unreachable("unhandled!"); 6009 } 6010 6011 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6012 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6013 } 6014 6015 std::pair<Intrinsic::ID, bool> 6016 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6017 // Check if VL contains select instructions that can be folded into a min/max 6018 // vector intrinsic and return the intrinsic if it is possible. 6019 // TODO: Support floating point min/max. 6020 bool AllCmpSingleUse = true; 6021 SelectPatternResult SelectPattern; 6022 SelectPattern.Flavor = SPF_UNKNOWN; 6023 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6024 Value *LHS, *RHS; 6025 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6026 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6027 CurrentPattern.Flavor == SPF_FMINNUM || 6028 CurrentPattern.Flavor == SPF_FMAXNUM || 6029 !I->getType()->isIntOrIntVectorTy()) 6030 return false; 6031 if (SelectPattern.Flavor != SPF_UNKNOWN && 6032 SelectPattern.Flavor != CurrentPattern.Flavor) 6033 return false; 6034 SelectPattern = CurrentPattern; 6035 AllCmpSingleUse &= 6036 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6037 return true; 6038 })) { 6039 switch (SelectPattern.Flavor) { 6040 case SPF_SMIN: 6041 return {Intrinsic::smin, AllCmpSingleUse}; 6042 case SPF_UMIN: 6043 return {Intrinsic::umin, AllCmpSingleUse}; 6044 case SPF_SMAX: 6045 return {Intrinsic::smax, AllCmpSingleUse}; 6046 case SPF_UMAX: 6047 return {Intrinsic::umax, AllCmpSingleUse}; 6048 default: 6049 llvm_unreachable("unexpected select pattern flavor"); 6050 } 6051 } 6052 return {Intrinsic::not_intrinsic, false}; 6053 } 6054 6055 /// Return true if "icmp Pred LHS RHS" is always true. 6056 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6057 const Value *RHS, const DataLayout &DL, 6058 unsigned Depth) { 6059 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6060 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6061 return true; 6062 6063 switch (Pred) { 6064 default: 6065 return false; 6066 6067 case CmpInst::ICMP_SLE: { 6068 const APInt *C; 6069 6070 // LHS s<= LHS +_{nsw} C if C >= 0 6071 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6072 return !C->isNegative(); 6073 return false; 6074 } 6075 6076 case CmpInst::ICMP_ULE: { 6077 const APInt *C; 6078 6079 // LHS u<= LHS +_{nuw} C for any C 6080 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6081 return true; 6082 6083 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6084 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6085 const Value *&X, 6086 const APInt *&CA, const APInt *&CB) { 6087 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6088 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6089 return true; 6090 6091 // If X & C == 0 then (X | C) == X +_{nuw} C 6092 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6093 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6094 KnownBits Known(CA->getBitWidth()); 6095 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6096 /*CxtI*/ nullptr, /*DT*/ nullptr); 6097 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6098 return true; 6099 } 6100 6101 return false; 6102 }; 6103 6104 const Value *X; 6105 const APInt *CLHS, *CRHS; 6106 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6107 return CLHS->ule(*CRHS); 6108 6109 return false; 6110 } 6111 } 6112 } 6113 6114 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6115 /// ALHS ARHS" is true. Otherwise, return None. 6116 static Optional<bool> 6117 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6118 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6119 const DataLayout &DL, unsigned Depth) { 6120 switch (Pred) { 6121 default: 6122 return None; 6123 6124 case CmpInst::ICMP_SLT: 6125 case CmpInst::ICMP_SLE: 6126 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6127 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6128 return true; 6129 return None; 6130 6131 case CmpInst::ICMP_ULT: 6132 case CmpInst::ICMP_ULE: 6133 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6134 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6135 return true; 6136 return None; 6137 } 6138 } 6139 6140 /// Return true if the operands of the two compares match. IsSwappedOps is true 6141 /// when the operands match, but are swapped. 6142 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6143 const Value *BLHS, const Value *BRHS, 6144 bool &IsSwappedOps) { 6145 6146 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6147 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6148 return IsMatchingOps || IsSwappedOps; 6149 } 6150 6151 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6152 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6153 /// Otherwise, return None if we can't infer anything. 6154 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6155 CmpInst::Predicate BPred, 6156 bool AreSwappedOps) { 6157 // Canonicalize the predicate as if the operands were not commuted. 6158 if (AreSwappedOps) 6159 BPred = ICmpInst::getSwappedPredicate(BPred); 6160 6161 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6162 return true; 6163 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6164 return false; 6165 6166 return None; 6167 } 6168 6169 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6170 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6171 /// Otherwise, return None if we can't infer anything. 6172 static Optional<bool> 6173 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6174 const ConstantInt *C1, 6175 CmpInst::Predicate BPred, 6176 const ConstantInt *C2) { 6177 ConstantRange DomCR = 6178 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6179 ConstantRange CR = 6180 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6181 ConstantRange Intersection = DomCR.intersectWith(CR); 6182 ConstantRange Difference = DomCR.difference(CR); 6183 if (Intersection.isEmptySet()) 6184 return false; 6185 if (Difference.isEmptySet()) 6186 return true; 6187 return None; 6188 } 6189 6190 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6191 /// false. Otherwise, return None if we can't infer anything. 6192 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6193 CmpInst::Predicate BPred, 6194 const Value *BLHS, const Value *BRHS, 6195 const DataLayout &DL, bool LHSIsTrue, 6196 unsigned Depth) { 6197 Value *ALHS = LHS->getOperand(0); 6198 Value *ARHS = LHS->getOperand(1); 6199 6200 // The rest of the logic assumes the LHS condition is true. If that's not the 6201 // case, invert the predicate to make it so. 6202 CmpInst::Predicate APred = 6203 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6204 6205 // Can we infer anything when the two compares have matching operands? 6206 bool AreSwappedOps; 6207 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6208 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6209 APred, BPred, AreSwappedOps)) 6210 return Implication; 6211 // No amount of additional analysis will infer the second condition, so 6212 // early exit. 6213 return None; 6214 } 6215 6216 // Can we infer anything when the LHS operands match and the RHS operands are 6217 // constants (not necessarily matching)? 6218 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6219 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6220 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6221 return Implication; 6222 // No amount of additional analysis will infer the second condition, so 6223 // early exit. 6224 return None; 6225 } 6226 6227 if (APred == BPred) 6228 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6229 return None; 6230 } 6231 6232 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6233 /// false. Otherwise, return None if we can't infer anything. We expect the 6234 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6235 static Optional<bool> 6236 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6237 const Value *RHSOp0, const Value *RHSOp1, 6238 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6239 // The LHS must be an 'or', 'and', or a 'select' instruction. 6240 assert((LHS->getOpcode() == Instruction::And || 6241 LHS->getOpcode() == Instruction::Or || 6242 LHS->getOpcode() == Instruction::Select) && 6243 "Expected LHS to be 'and', 'or', or 'select'."); 6244 6245 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6246 6247 // If the result of an 'or' is false, then we know both legs of the 'or' are 6248 // false. Similarly, if the result of an 'and' is true, then we know both 6249 // legs of the 'and' are true. 6250 const Value *ALHS, *ARHS; 6251 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6252 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6253 // FIXME: Make this non-recursion. 6254 if (Optional<bool> Implication = isImpliedCondition( 6255 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6256 return Implication; 6257 if (Optional<bool> Implication = isImpliedCondition( 6258 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6259 return Implication; 6260 return None; 6261 } 6262 return None; 6263 } 6264 6265 Optional<bool> 6266 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6267 const Value *RHSOp0, const Value *RHSOp1, 6268 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6269 // Bail out when we hit the limit. 6270 if (Depth == MaxAnalysisRecursionDepth) 6271 return None; 6272 6273 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6274 // example. 6275 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6276 return None; 6277 6278 Type *OpTy = LHS->getType(); 6279 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6280 6281 // FIXME: Extending the code below to handle vectors. 6282 if (OpTy->isVectorTy()) 6283 return None; 6284 6285 assert(OpTy->isIntegerTy(1) && "implied by above"); 6286 6287 // Both LHS and RHS are icmps. 6288 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6289 if (LHSCmp) 6290 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6291 Depth); 6292 6293 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6294 /// the RHS to be an icmp. 6295 /// FIXME: Add support for and/or/select on the RHS. 6296 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6297 if ((LHSI->getOpcode() == Instruction::And || 6298 LHSI->getOpcode() == Instruction::Or || 6299 LHSI->getOpcode() == Instruction::Select)) 6300 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6301 Depth); 6302 } 6303 return None; 6304 } 6305 6306 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6307 const DataLayout &DL, bool LHSIsTrue, 6308 unsigned Depth) { 6309 // LHS ==> RHS by definition 6310 if (LHS == RHS) 6311 return LHSIsTrue; 6312 6313 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6314 if (RHSCmp) 6315 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6316 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6317 LHSIsTrue, Depth); 6318 return None; 6319 } 6320 6321 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6322 // condition dominating ContextI or nullptr, if no condition is found. 6323 static std::pair<Value *, bool> 6324 getDomPredecessorCondition(const Instruction *ContextI) { 6325 if (!ContextI || !ContextI->getParent()) 6326 return {nullptr, false}; 6327 6328 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6329 // dominator tree (eg, from a SimplifyQuery) instead? 6330 const BasicBlock *ContextBB = ContextI->getParent(); 6331 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6332 if (!PredBB) 6333 return {nullptr, false}; 6334 6335 // We need a conditional branch in the predecessor. 6336 Value *PredCond; 6337 BasicBlock *TrueBB, *FalseBB; 6338 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6339 return {nullptr, false}; 6340 6341 // The branch should get simplified. Don't bother simplifying this condition. 6342 if (TrueBB == FalseBB) 6343 return {nullptr, false}; 6344 6345 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6346 "Predecessor block does not point to successor?"); 6347 6348 // Is this condition implied by the predecessor condition? 6349 return {PredCond, TrueBB == ContextBB}; 6350 } 6351 6352 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6353 const Instruction *ContextI, 6354 const DataLayout &DL) { 6355 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6356 auto PredCond = getDomPredecessorCondition(ContextI); 6357 if (PredCond.first) 6358 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6359 return None; 6360 } 6361 6362 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6363 const Value *LHS, const Value *RHS, 6364 const Instruction *ContextI, 6365 const DataLayout &DL) { 6366 auto PredCond = getDomPredecessorCondition(ContextI); 6367 if (PredCond.first) 6368 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6369 PredCond.second); 6370 return None; 6371 } 6372 6373 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6374 APInt &Upper, const InstrInfoQuery &IIQ) { 6375 unsigned Width = Lower.getBitWidth(); 6376 const APInt *C; 6377 switch (BO.getOpcode()) { 6378 case Instruction::Add: 6379 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6380 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6381 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6382 // 'add nuw x, C' produces [C, UINT_MAX]. 6383 Lower = *C; 6384 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6385 if (C->isNegative()) { 6386 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6387 Lower = APInt::getSignedMinValue(Width); 6388 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6389 } else { 6390 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6391 Lower = APInt::getSignedMinValue(Width) + *C; 6392 Upper = APInt::getSignedMaxValue(Width) + 1; 6393 } 6394 } 6395 } 6396 break; 6397 6398 case Instruction::And: 6399 if (match(BO.getOperand(1), m_APInt(C))) 6400 // 'and x, C' produces [0, C]. 6401 Upper = *C + 1; 6402 break; 6403 6404 case Instruction::Or: 6405 if (match(BO.getOperand(1), m_APInt(C))) 6406 // 'or x, C' produces [C, UINT_MAX]. 6407 Lower = *C; 6408 break; 6409 6410 case Instruction::AShr: 6411 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6412 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6413 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6414 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6415 } else if (match(BO.getOperand(0), m_APInt(C))) { 6416 unsigned ShiftAmount = Width - 1; 6417 if (!C->isNullValue() && IIQ.isExact(&BO)) 6418 ShiftAmount = C->countTrailingZeros(); 6419 if (C->isNegative()) { 6420 // 'ashr C, x' produces [C, C >> (Width-1)] 6421 Lower = *C; 6422 Upper = C->ashr(ShiftAmount) + 1; 6423 } else { 6424 // 'ashr C, x' produces [C >> (Width-1), C] 6425 Lower = C->ashr(ShiftAmount); 6426 Upper = *C + 1; 6427 } 6428 } 6429 break; 6430 6431 case Instruction::LShr: 6432 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6433 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6434 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6435 } else if (match(BO.getOperand(0), m_APInt(C))) { 6436 // 'lshr C, x' produces [C >> (Width-1), C]. 6437 unsigned ShiftAmount = Width - 1; 6438 if (!C->isNullValue() && IIQ.isExact(&BO)) 6439 ShiftAmount = C->countTrailingZeros(); 6440 Lower = C->lshr(ShiftAmount); 6441 Upper = *C + 1; 6442 } 6443 break; 6444 6445 case Instruction::Shl: 6446 if (match(BO.getOperand(0), m_APInt(C))) { 6447 if (IIQ.hasNoUnsignedWrap(&BO)) { 6448 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6449 Lower = *C; 6450 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6451 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6452 if (C->isNegative()) { 6453 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6454 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6455 Lower = C->shl(ShiftAmount); 6456 Upper = *C + 1; 6457 } else { 6458 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6459 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6460 Lower = *C; 6461 Upper = C->shl(ShiftAmount) + 1; 6462 } 6463 } 6464 } 6465 break; 6466 6467 case Instruction::SDiv: 6468 if (match(BO.getOperand(1), m_APInt(C))) { 6469 APInt IntMin = APInt::getSignedMinValue(Width); 6470 APInt IntMax = APInt::getSignedMaxValue(Width); 6471 if (C->isAllOnesValue()) { 6472 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6473 // where C != -1 and C != 0 and C != 1 6474 Lower = IntMin + 1; 6475 Upper = IntMax + 1; 6476 } else if (C->countLeadingZeros() < Width - 1) { 6477 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6478 // where C != -1 and C != 0 and C != 1 6479 Lower = IntMin.sdiv(*C); 6480 Upper = IntMax.sdiv(*C); 6481 if (Lower.sgt(Upper)) 6482 std::swap(Lower, Upper); 6483 Upper = Upper + 1; 6484 assert(Upper != Lower && "Upper part of range has wrapped!"); 6485 } 6486 } else if (match(BO.getOperand(0), m_APInt(C))) { 6487 if (C->isMinSignedValue()) { 6488 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6489 Lower = *C; 6490 Upper = Lower.lshr(1) + 1; 6491 } else { 6492 // 'sdiv C, x' produces [-|C|, |C|]. 6493 Upper = C->abs() + 1; 6494 Lower = (-Upper) + 1; 6495 } 6496 } 6497 break; 6498 6499 case Instruction::UDiv: 6500 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6501 // 'udiv x, C' produces [0, UINT_MAX / C]. 6502 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6503 } else if (match(BO.getOperand(0), m_APInt(C))) { 6504 // 'udiv C, x' produces [0, C]. 6505 Upper = *C + 1; 6506 } 6507 break; 6508 6509 case Instruction::SRem: 6510 if (match(BO.getOperand(1), m_APInt(C))) { 6511 // 'srem x, C' produces (-|C|, |C|). 6512 Upper = C->abs(); 6513 Lower = (-Upper) + 1; 6514 } 6515 break; 6516 6517 case Instruction::URem: 6518 if (match(BO.getOperand(1), m_APInt(C))) 6519 // 'urem x, C' produces [0, C). 6520 Upper = *C; 6521 break; 6522 6523 default: 6524 break; 6525 } 6526 } 6527 6528 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6529 APInt &Upper) { 6530 unsigned Width = Lower.getBitWidth(); 6531 const APInt *C; 6532 switch (II.getIntrinsicID()) { 6533 case Intrinsic::ctpop: 6534 case Intrinsic::ctlz: 6535 case Intrinsic::cttz: 6536 // Maximum of set/clear bits is the bit width. 6537 assert(Lower == 0 && "Expected lower bound to be zero"); 6538 Upper = Width + 1; 6539 break; 6540 case Intrinsic::uadd_sat: 6541 // uadd.sat(x, C) produces [C, UINT_MAX]. 6542 if (match(II.getOperand(0), m_APInt(C)) || 6543 match(II.getOperand(1), m_APInt(C))) 6544 Lower = *C; 6545 break; 6546 case Intrinsic::sadd_sat: 6547 if (match(II.getOperand(0), m_APInt(C)) || 6548 match(II.getOperand(1), m_APInt(C))) { 6549 if (C->isNegative()) { 6550 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6551 Lower = APInt::getSignedMinValue(Width); 6552 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6553 } else { 6554 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6555 Lower = APInt::getSignedMinValue(Width) + *C; 6556 Upper = APInt::getSignedMaxValue(Width) + 1; 6557 } 6558 } 6559 break; 6560 case Intrinsic::usub_sat: 6561 // usub.sat(C, x) produces [0, C]. 6562 if (match(II.getOperand(0), m_APInt(C))) 6563 Upper = *C + 1; 6564 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6565 else if (match(II.getOperand(1), m_APInt(C))) 6566 Upper = APInt::getMaxValue(Width) - *C + 1; 6567 break; 6568 case Intrinsic::ssub_sat: 6569 if (match(II.getOperand(0), m_APInt(C))) { 6570 if (C->isNegative()) { 6571 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6572 Lower = APInt::getSignedMinValue(Width); 6573 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6574 } else { 6575 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6576 Lower = *C - APInt::getSignedMaxValue(Width); 6577 Upper = APInt::getSignedMaxValue(Width) + 1; 6578 } 6579 } else if (match(II.getOperand(1), m_APInt(C))) { 6580 if (C->isNegative()) { 6581 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6582 Lower = APInt::getSignedMinValue(Width) - *C; 6583 Upper = APInt::getSignedMaxValue(Width) + 1; 6584 } else { 6585 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6586 Lower = APInt::getSignedMinValue(Width); 6587 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6588 } 6589 } 6590 break; 6591 case Intrinsic::umin: 6592 case Intrinsic::umax: 6593 case Intrinsic::smin: 6594 case Intrinsic::smax: 6595 if (!match(II.getOperand(0), m_APInt(C)) && 6596 !match(II.getOperand(1), m_APInt(C))) 6597 break; 6598 6599 switch (II.getIntrinsicID()) { 6600 case Intrinsic::umin: 6601 Upper = *C + 1; 6602 break; 6603 case Intrinsic::umax: 6604 Lower = *C; 6605 break; 6606 case Intrinsic::smin: 6607 Lower = APInt::getSignedMinValue(Width); 6608 Upper = *C + 1; 6609 break; 6610 case Intrinsic::smax: 6611 Lower = *C; 6612 Upper = APInt::getSignedMaxValue(Width) + 1; 6613 break; 6614 default: 6615 llvm_unreachable("Must be min/max intrinsic"); 6616 } 6617 break; 6618 case Intrinsic::abs: 6619 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6620 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6621 if (match(II.getOperand(1), m_One())) 6622 Upper = APInt::getSignedMaxValue(Width) + 1; 6623 else 6624 Upper = APInt::getSignedMinValue(Width) + 1; 6625 break; 6626 default: 6627 break; 6628 } 6629 } 6630 6631 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6632 APInt &Upper, const InstrInfoQuery &IIQ) { 6633 const Value *LHS = nullptr, *RHS = nullptr; 6634 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6635 if (R.Flavor == SPF_UNKNOWN) 6636 return; 6637 6638 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6639 6640 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6641 // If the negation part of the abs (in RHS) has the NSW flag, 6642 // then the result of abs(X) is [0..SIGNED_MAX], 6643 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6644 Lower = APInt::getNullValue(BitWidth); 6645 if (match(RHS, m_Neg(m_Specific(LHS))) && 6646 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6647 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6648 else 6649 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6650 return; 6651 } 6652 6653 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6654 // The result of -abs(X) is <= 0. 6655 Lower = APInt::getSignedMinValue(BitWidth); 6656 Upper = APInt(BitWidth, 1); 6657 return; 6658 } 6659 6660 const APInt *C; 6661 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6662 return; 6663 6664 switch (R.Flavor) { 6665 case SPF_UMIN: 6666 Upper = *C + 1; 6667 break; 6668 case SPF_UMAX: 6669 Lower = *C; 6670 break; 6671 case SPF_SMIN: 6672 Lower = APInt::getSignedMinValue(BitWidth); 6673 Upper = *C + 1; 6674 break; 6675 case SPF_SMAX: 6676 Lower = *C; 6677 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6678 break; 6679 default: 6680 break; 6681 } 6682 } 6683 6684 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6685 AssumptionCache *AC, 6686 const Instruction *CtxI, 6687 unsigned Depth) { 6688 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6689 6690 if (Depth == MaxAnalysisRecursionDepth) 6691 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6692 6693 const APInt *C; 6694 if (match(V, m_APInt(C))) 6695 return ConstantRange(*C); 6696 6697 InstrInfoQuery IIQ(UseInstrInfo); 6698 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6699 APInt Lower = APInt(BitWidth, 0); 6700 APInt Upper = APInt(BitWidth, 0); 6701 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6702 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6703 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6704 setLimitsForIntrinsic(*II, Lower, Upper); 6705 else if (auto *SI = dyn_cast<SelectInst>(V)) 6706 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6707 6708 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6709 6710 if (auto *I = dyn_cast<Instruction>(V)) 6711 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6712 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6713 6714 if (CtxI && AC) { 6715 // Try to restrict the range based on information from assumptions. 6716 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6717 if (!AssumeVH) 6718 continue; 6719 CallInst *I = cast<CallInst>(AssumeVH); 6720 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6721 "Got assumption for the wrong function!"); 6722 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6723 "must be an assume intrinsic"); 6724 6725 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6726 continue; 6727 Value *Arg = I->getArgOperand(0); 6728 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6729 // Currently we just use information from comparisons. 6730 if (!Cmp || Cmp->getOperand(0) != V) 6731 continue; 6732 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6733 AC, I, Depth + 1); 6734 CR = CR.intersectWith( 6735 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6736 } 6737 } 6738 6739 return CR; 6740 } 6741 6742 static Optional<int64_t> 6743 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6744 // Skip over the first indices. 6745 gep_type_iterator GTI = gep_type_begin(GEP); 6746 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6747 /*skip along*/; 6748 6749 // Compute the offset implied by the rest of the indices. 6750 int64_t Offset = 0; 6751 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6752 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6753 if (!OpC) 6754 return None; 6755 if (OpC->isZero()) 6756 continue; // No offset. 6757 6758 // Handle struct indices, which add their field offset to the pointer. 6759 if (StructType *STy = GTI.getStructTypeOrNull()) { 6760 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6761 continue; 6762 } 6763 6764 // Otherwise, we have a sequential type like an array or fixed-length 6765 // vector. Multiply the index by the ElementSize. 6766 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6767 if (Size.isScalable()) 6768 return None; 6769 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6770 } 6771 6772 return Offset; 6773 } 6774 6775 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6776 const DataLayout &DL) { 6777 Ptr1 = Ptr1->stripPointerCasts(); 6778 Ptr2 = Ptr2->stripPointerCasts(); 6779 6780 // Handle the trivial case first. 6781 if (Ptr1 == Ptr2) { 6782 return 0; 6783 } 6784 6785 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6786 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6787 6788 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6789 // as in "P" and "gep P, 1". 6790 // Also do this iteratively to handle the the following case: 6791 // Ptr_t1 = GEP Ptr1, c1 6792 // Ptr_t2 = GEP Ptr_t1, c2 6793 // Ptr2 = GEP Ptr_t2, c3 6794 // where we will return c1+c2+c3. 6795 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6796 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6797 // are the same, and return the difference between offsets. 6798 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6799 const Value *Ptr) -> Optional<int64_t> { 6800 const GEPOperator *GEP_T = GEP; 6801 int64_t OffsetVal = 0; 6802 bool HasSameBase = false; 6803 while (GEP_T) { 6804 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6805 if (!Offset) 6806 return None; 6807 OffsetVal += *Offset; 6808 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6809 if (Op0 == Ptr) { 6810 HasSameBase = true; 6811 break; 6812 } 6813 GEP_T = dyn_cast<GEPOperator>(Op0); 6814 } 6815 if (!HasSameBase) 6816 return None; 6817 return OffsetVal; 6818 }; 6819 6820 if (GEP1) { 6821 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6822 if (Offset) 6823 return -*Offset; 6824 } 6825 if (GEP2) { 6826 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6827 if (Offset) 6828 return Offset; 6829 } 6830 6831 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6832 // base. After that base, they may have some number of common (and 6833 // potentially variable) indices. After that they handle some constant 6834 // offset, which determines their offset from each other. At this point, we 6835 // handle no other case. 6836 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6837 return None; 6838 6839 // Skip any common indices and track the GEP types. 6840 unsigned Idx = 1; 6841 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6842 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6843 break; 6844 6845 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6846 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6847 if (!Offset1 || !Offset2) 6848 return None; 6849 return *Offset2 - *Offset1; 6850 } 6851