1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/VectorUtils.h"
24 #include "llvm/IR/CallSite.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/GetElementPtrTypeIterator.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalVariable.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/Operator.h"
37 #include "llvm/IR/PatternMatch.h"
38 #include "llvm/IR/Statepoint.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/MathExtras.h"
41 #include <algorithm>
42 #include <array>
43 #include <cstring>
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 const unsigned MaxDepth = 6;
48 
49 // Controls the number of uses of the value searched for possible
50 // dominating comparisons.
51 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
52                                               cl::Hidden, cl::init(20));
53 
54 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
55 /// 0). For vector types, returns the element type's bitwidth.
56 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
57   if (unsigned BitWidth = Ty->getScalarSizeInBits())
58     return BitWidth;
59 
60   return DL.getPointerTypeSizeInBits(Ty);
61 }
62 
63 namespace {
64 // Simplifying using an assume can only be done in a particular control-flow
65 // context (the context instruction provides that context). If an assume and
66 // the context instruction are not in the same block then the DT helps in
67 // figuring out if we can use it.
68 struct Query {
69   const DataLayout &DL;
70   AssumptionCache *AC;
71   const Instruction *CxtI;
72   const DominatorTree *DT;
73 
74   /// Set of assumptions that should be excluded from further queries.
75   /// This is because of the potential for mutual recursion to cause
76   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
77   /// classic case of this is assume(x = y), which will attempt to determine
78   /// bits in x from bits in y, which will attempt to determine bits in y from
79   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
80   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
81   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
82   /// on.
83   std::array<const Value*, MaxDepth> Excluded;
84   unsigned NumExcluded;
85 
86   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
87         const DominatorTree *DT)
88       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), NumExcluded(0) {}
89 
90   Query(const Query &Q, const Value *NewExcl)
91       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), NumExcluded(Q.NumExcluded) {
92     Excluded = Q.Excluded;
93     Excluded[NumExcluded++] = NewExcl;
94     assert(NumExcluded <= Excluded.size());
95   }
96 
97   bool isExcluded(const Value *Value) const {
98     if (NumExcluded == 0)
99       return false;
100     auto End = Excluded.begin() + NumExcluded;
101     return std::find(Excluded.begin(), End, Value) != End;
102   }
103 };
104 } // end anonymous namespace
105 
106 // Given the provided Value and, potentially, a context instruction, return
107 // the preferred context instruction (if any).
108 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
109   // If we've been provided with a context instruction, then use that (provided
110   // it has been inserted).
111   if (CxtI && CxtI->getParent())
112     return CxtI;
113 
114   // If the value is really an already-inserted instruction, then use that.
115   CxtI = dyn_cast<Instruction>(V);
116   if (CxtI && CxtI->getParent())
117     return CxtI;
118 
119   return nullptr;
120 }
121 
122 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
123                              unsigned Depth, const Query &Q);
124 
125 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
126                             const DataLayout &DL, unsigned Depth,
127                             AssumptionCache *AC, const Instruction *CxtI,
128                             const DominatorTree *DT) {
129   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
130                      Query(DL, AC, safeCxtI(V, CxtI), DT));
131 }
132 
133 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
134                                AssumptionCache *AC, const Instruction *CxtI,
135                                const DominatorTree *DT) {
136   assert(LHS->getType() == RHS->getType() &&
137          "LHS and RHS should have the same type");
138   assert(LHS->getType()->isIntOrIntVectorTy() &&
139          "LHS and RHS should be integers");
140   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
141   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
142   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
143   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
144   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
145   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
146 }
147 
148 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
149                            unsigned Depth, const Query &Q);
150 
151 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
152                           const DataLayout &DL, unsigned Depth,
153                           AssumptionCache *AC, const Instruction *CxtI,
154                           const DominatorTree *DT) {
155   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
156                    Query(DL, AC, safeCxtI(V, CxtI), DT));
157 }
158 
159 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
160                                    const Query &Q);
161 
162 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero,
163                                   unsigned Depth, AssumptionCache *AC,
164                                   const Instruction *CxtI,
165                                   const DominatorTree *DT) {
166   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
167                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
168 }
169 
170 static bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q);
171 
172 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth,
173                           AssumptionCache *AC, const Instruction *CxtI,
174                           const DominatorTree *DT) {
175   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
176 }
177 
178 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth,
179                               AssumptionCache *AC, const Instruction *CxtI,
180                               const DominatorTree *DT) {
181   bool NonNegative, Negative;
182   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
183   return NonNegative;
184 }
185 
186 bool llvm::isKnownPositive(Value *V, const DataLayout &DL, unsigned Depth,
187                            AssumptionCache *AC, const Instruction *CxtI,
188                            const DominatorTree *DT) {
189   if (auto *CI = dyn_cast<ConstantInt>(V))
190     return CI->getValue().isStrictlyPositive();
191 
192   // TODO: We'd doing two recursive queries here.  We should factor this such
193   // that only a single query is needed.
194   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
195     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
196 }
197 
198 bool llvm::isKnownNegative(Value *V, const DataLayout &DL, unsigned Depth,
199                            AssumptionCache *AC, const Instruction *CxtI,
200                            const DominatorTree *DT) {
201   bool NonNegative, Negative;
202   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
203   return Negative;
204 }
205 
206 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q);
207 
208 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL,
209                           AssumptionCache *AC, const Instruction *CxtI,
210                           const DominatorTree *DT) {
211   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
212                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
213                                          DT));
214 }
215 
216 static bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
217                               const Query &Q);
218 
219 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL,
220                              unsigned Depth, AssumptionCache *AC,
221                              const Instruction *CxtI, const DominatorTree *DT) {
222   return ::MaskedValueIsZero(V, Mask, Depth,
223                              Query(DL, AC, safeCxtI(V, CxtI), DT));
224 }
225 
226 static unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q);
227 
228 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL,
229                                   unsigned Depth, AssumptionCache *AC,
230                                   const Instruction *CxtI,
231                                   const DominatorTree *DT) {
232   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
233 }
234 
235 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW,
236                                    APInt &KnownZero, APInt &KnownOne,
237                                    APInt &KnownZero2, APInt &KnownOne2,
238                                    unsigned Depth, const Query &Q) {
239   if (!Add) {
240     if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) {
241       // We know that the top bits of C-X are clear if X contains less bits
242       // than C (i.e. no wrap-around can happen).  For example, 20-X is
243       // positive if we can prove that X is >= 0 and < 16.
244       if (!CLHS->getValue().isNegative()) {
245         unsigned BitWidth = KnownZero.getBitWidth();
246         unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
247         // NLZ can't be BitWidth with no sign bit
248         APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
249         computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
250 
251         // If all of the MaskV bits are known to be zero, then we know the
252         // output top bits are zero, because we now know that the output is
253         // from [0-C].
254         if ((KnownZero2 & MaskV) == MaskV) {
255           unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
256           // Top bits known zero.
257           KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
258         }
259       }
260     }
261   }
262 
263   unsigned BitWidth = KnownZero.getBitWidth();
264 
265   // If an initial sequence of bits in the result is not needed, the
266   // corresponding bits in the operands are not needed.
267   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
268   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
269   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
270 
271   // Carry in a 1 for a subtract, rather than a 0.
272   APInt CarryIn(BitWidth, 0);
273   if (!Add) {
274     // Sum = LHS + ~RHS + 1
275     std::swap(KnownZero2, KnownOne2);
276     CarryIn.setBit(0);
277   }
278 
279   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
280   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
281 
282   // Compute known bits of the carry.
283   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
284   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
285 
286   // Compute set of known bits (where all three relevant bits are known).
287   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
288   APInt RHSKnown = KnownZero2 | KnownOne2;
289   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
290   APInt Known = LHSKnown & RHSKnown & CarryKnown;
291 
292   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
293          "known bits of sum differ");
294 
295   // Compute known bits of the result.
296   KnownZero = ~PossibleSumOne & Known;
297   KnownOne = PossibleSumOne & Known;
298 
299   // Are we still trying to solve for the sign bit?
300   if (!Known.isNegative()) {
301     if (NSW) {
302       // Adding two non-negative numbers, or subtracting a negative number from
303       // a non-negative one, can't wrap into negative.
304       if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
305         KnownZero |= APInt::getSignBit(BitWidth);
306       // Adding two negative numbers, or subtracting a non-negative number from
307       // a negative one, can't wrap into non-negative.
308       else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
309         KnownOne |= APInt::getSignBit(BitWidth);
310     }
311   }
312 }
313 
314 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW,
315                                 APInt &KnownZero, APInt &KnownOne,
316                                 APInt &KnownZero2, APInt &KnownOne2,
317                                 unsigned Depth, const Query &Q) {
318   unsigned BitWidth = KnownZero.getBitWidth();
319   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
320   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
321 
322   bool isKnownNegative = false;
323   bool isKnownNonNegative = false;
324   // If the multiplication is known not to overflow, compute the sign bit.
325   if (NSW) {
326     if (Op0 == Op1) {
327       // The product of a number with itself is non-negative.
328       isKnownNonNegative = true;
329     } else {
330       bool isKnownNonNegativeOp1 = KnownZero.isNegative();
331       bool isKnownNonNegativeOp0 = KnownZero2.isNegative();
332       bool isKnownNegativeOp1 = KnownOne.isNegative();
333       bool isKnownNegativeOp0 = KnownOne2.isNegative();
334       // The product of two numbers with the same sign is non-negative.
335       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
336         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
337       // The product of a negative number and a non-negative number is either
338       // negative or zero.
339       if (!isKnownNonNegative)
340         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
341                            isKnownNonZero(Op0, Depth, Q)) ||
342                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
343                            isKnownNonZero(Op1, Depth, Q));
344     }
345   }
346 
347   // If low bits are zero in either operand, output low known-0 bits.
348   // Also compute a conservative estimate for high known-0 bits.
349   // More trickiness is possible, but this is sufficient for the
350   // interesting case of alignment computation.
351   KnownOne.clearAllBits();
352   unsigned TrailZ = KnownZero.countTrailingOnes() +
353                     KnownZero2.countTrailingOnes();
354   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
355                              KnownZero2.countLeadingOnes(),
356                              BitWidth) - BitWidth;
357 
358   TrailZ = std::min(TrailZ, BitWidth);
359   LeadZ = std::min(LeadZ, BitWidth);
360   KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
361               APInt::getHighBitsSet(BitWidth, LeadZ);
362 
363   // Only make use of no-wrap flags if we failed to compute the sign bit
364   // directly.  This matters if the multiplication always overflows, in
365   // which case we prefer to follow the result of the direct computation,
366   // though as the program is invoking undefined behaviour we can choose
367   // whatever we like here.
368   if (isKnownNonNegative && !KnownOne.isNegative())
369     KnownZero.setBit(BitWidth - 1);
370   else if (isKnownNegative && !KnownZero.isNegative())
371     KnownOne.setBit(BitWidth - 1);
372 }
373 
374 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
375                                              APInt &KnownZero,
376                                              APInt &KnownOne) {
377   unsigned BitWidth = KnownZero.getBitWidth();
378   unsigned NumRanges = Ranges.getNumOperands() / 2;
379   assert(NumRanges >= 1);
380 
381   KnownZero.setAllBits();
382   KnownOne.setAllBits();
383 
384   for (unsigned i = 0; i < NumRanges; ++i) {
385     ConstantInt *Lower =
386         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
387     ConstantInt *Upper =
388         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
389     ConstantRange Range(Lower->getValue(), Upper->getValue());
390 
391     // The first CommonPrefixBits of all values in Range are equal.
392     unsigned CommonPrefixBits =
393         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
394 
395     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
396     KnownOne &= Range.getUnsignedMax() & Mask;
397     KnownZero &= ~Range.getUnsignedMax() & Mask;
398   }
399 }
400 
401 static bool isEphemeralValueOf(Instruction *I, const Value *E) {
402   SmallVector<const Value *, 16> WorkSet(1, I);
403   SmallPtrSet<const Value *, 32> Visited;
404   SmallPtrSet<const Value *, 16> EphValues;
405 
406   // The instruction defining an assumption's condition itself is always
407   // considered ephemeral to that assumption (even if it has other
408   // non-ephemeral users). See r246696's test case for an example.
409   if (std::find(I->op_begin(), I->op_end(), E) != I->op_end())
410     return true;
411 
412   while (!WorkSet.empty()) {
413     const Value *V = WorkSet.pop_back_val();
414     if (!Visited.insert(V).second)
415       continue;
416 
417     // If all uses of this value are ephemeral, then so is this value.
418     if (std::all_of(V->user_begin(), V->user_end(),
419                     [&](const User *U) { return EphValues.count(U); })) {
420       if (V == E)
421         return true;
422 
423       EphValues.insert(V);
424       if (const User *U = dyn_cast<User>(V))
425         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
426              J != JE; ++J) {
427           if (isSafeToSpeculativelyExecute(*J))
428             WorkSet.push_back(*J);
429         }
430     }
431   }
432 
433   return false;
434 }
435 
436 // Is this an intrinsic that cannot be speculated but also cannot trap?
437 static bool isAssumeLikeIntrinsic(const Instruction *I) {
438   if (const CallInst *CI = dyn_cast<CallInst>(I))
439     if (Function *F = CI->getCalledFunction())
440       switch (F->getIntrinsicID()) {
441       default: break;
442       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
443       case Intrinsic::assume:
444       case Intrinsic::dbg_declare:
445       case Intrinsic::dbg_value:
446       case Intrinsic::invariant_start:
447       case Intrinsic::invariant_end:
448       case Intrinsic::lifetime_start:
449       case Intrinsic::lifetime_end:
450       case Intrinsic::objectsize:
451       case Intrinsic::ptr_annotation:
452       case Intrinsic::var_annotation:
453         return true;
454       }
455 
456   return false;
457 }
458 
459 static bool isValidAssumeForContext(Value *V, const Instruction *CxtI,
460                                     const DominatorTree *DT) {
461   Instruction *Inv = cast<Instruction>(V);
462 
463   // There are two restrictions on the use of an assume:
464   //  1. The assume must dominate the context (or the control flow must
465   //     reach the assume whenever it reaches the context).
466   //  2. The context must not be in the assume's set of ephemeral values
467   //     (otherwise we will use the assume to prove that the condition
468   //     feeding the assume is trivially true, thus causing the removal of
469   //     the assume).
470 
471   if (DT) {
472     if (DT->dominates(Inv, CxtI)) {
473       return true;
474     } else if (Inv->getParent() == CxtI->getParent()) {
475       // The context comes first, but they're both in the same block. Make sure
476       // there is nothing in between that might interrupt the control flow.
477       for (BasicBlock::const_iterator I =
478              std::next(BasicBlock::const_iterator(CxtI)),
479                                       IE(Inv); I != IE; ++I)
480         if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
481           return false;
482 
483       return !isEphemeralValueOf(Inv, CxtI);
484     }
485 
486     return false;
487   }
488 
489   // When we don't have a DT, we do a limited search...
490   if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
491     return true;
492   } else if (Inv->getParent() == CxtI->getParent()) {
493     // Search forward from the assume until we reach the context (or the end
494     // of the block); the common case is that the assume will come first.
495     for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)),
496          IE = Inv->getParent()->end(); I != IE; ++I)
497       if (&*I == CxtI)
498         return true;
499 
500     // The context must come first...
501     for (BasicBlock::const_iterator I =
502            std::next(BasicBlock::const_iterator(CxtI)),
503                                     IE(Inv); I != IE; ++I)
504       if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
505         return false;
506 
507     return !isEphemeralValueOf(Inv, CxtI);
508   }
509 
510   return false;
511 }
512 
513 bool llvm::isValidAssumeForContext(const Instruction *I,
514                                    const Instruction *CxtI,
515                                    const DominatorTree *DT) {
516   return ::isValidAssumeForContext(const_cast<Instruction *>(I), CxtI, DT);
517 }
518 
519 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero,
520                                        APInt &KnownOne, unsigned Depth,
521                                        const Query &Q) {
522   // Use of assumptions is context-sensitive. If we don't have a context, we
523   // cannot use them!
524   if (!Q.AC || !Q.CxtI)
525     return;
526 
527   unsigned BitWidth = KnownZero.getBitWidth();
528 
529   for (auto &AssumeVH : Q.AC->assumptions()) {
530     if (!AssumeVH)
531       continue;
532     CallInst *I = cast<CallInst>(AssumeVH);
533     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
534            "Got assumption for the wrong function!");
535     if (Q.isExcluded(I))
536       continue;
537 
538     // Warning: This loop can end up being somewhat performance sensetive.
539     // We're running this loop for once for each value queried resulting in a
540     // runtime of ~O(#assumes * #values).
541 
542     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
543            "must be an assume intrinsic");
544 
545     Value *Arg = I->getArgOperand(0);
546 
547     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
548       assert(BitWidth == 1 && "assume operand is not i1?");
549       KnownZero.clearAllBits();
550       KnownOne.setAllBits();
551       return;
552     }
553 
554     // The remaining tests are all recursive, so bail out if we hit the limit.
555     if (Depth == MaxDepth)
556       continue;
557 
558     Value *A, *B;
559     auto m_V = m_CombineOr(m_Specific(V),
560                            m_CombineOr(m_PtrToInt(m_Specific(V)),
561                            m_BitCast(m_Specific(V))));
562 
563     CmpInst::Predicate Pred;
564     ConstantInt *C;
565     // assume(v = a)
566     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
567         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
568       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
569       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
570       KnownZero |= RHSKnownZero;
571       KnownOne  |= RHSKnownOne;
572     // assume(v & b = a)
573     } else if (match(Arg,
574                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
575                Pred == ICmpInst::ICMP_EQ &&
576                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
577       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
578       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
579       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
580       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
581 
582       // For those bits in the mask that are known to be one, we can propagate
583       // known bits from the RHS to V.
584       KnownZero |= RHSKnownZero & MaskKnownOne;
585       KnownOne  |= RHSKnownOne  & MaskKnownOne;
586     // assume(~(v & b) = a)
587     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
588                                    m_Value(A))) &&
589                Pred == ICmpInst::ICMP_EQ &&
590                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
591       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
592       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
593       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
594       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
595 
596       // For those bits in the mask that are known to be one, we can propagate
597       // inverted known bits from the RHS to V.
598       KnownZero |= RHSKnownOne  & MaskKnownOne;
599       KnownOne  |= RHSKnownZero & MaskKnownOne;
600     // assume(v | b = a)
601     } else if (match(Arg,
602                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
603                Pred == ICmpInst::ICMP_EQ &&
604                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
605       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
606       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
607       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
608       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
609 
610       // For those bits in B that are known to be zero, we can propagate known
611       // bits from the RHS to V.
612       KnownZero |= RHSKnownZero & BKnownZero;
613       KnownOne  |= RHSKnownOne  & BKnownZero;
614     // assume(~(v | b) = a)
615     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
616                                    m_Value(A))) &&
617                Pred == ICmpInst::ICMP_EQ &&
618                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
619       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
620       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
621       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
622       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
623 
624       // For those bits in B that are known to be zero, we can propagate
625       // inverted known bits from the RHS to V.
626       KnownZero |= RHSKnownOne  & BKnownZero;
627       KnownOne  |= RHSKnownZero & BKnownZero;
628     // assume(v ^ b = a)
629     } else if (match(Arg,
630                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
631                Pred == ICmpInst::ICMP_EQ &&
632                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
633       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
634       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
635       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
636       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
637 
638       // For those bits in B that are known to be zero, we can propagate known
639       // bits from the RHS to V. For those bits in B that are known to be one,
640       // we can propagate inverted known bits from the RHS to V.
641       KnownZero |= RHSKnownZero & BKnownZero;
642       KnownOne  |= RHSKnownOne  & BKnownZero;
643       KnownZero |= RHSKnownOne  & BKnownOne;
644       KnownOne  |= RHSKnownZero & BKnownOne;
645     // assume(~(v ^ b) = a)
646     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
647                                    m_Value(A))) &&
648                Pred == ICmpInst::ICMP_EQ &&
649                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
650       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
651       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
652       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
653       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
654 
655       // For those bits in B that are known to be zero, we can propagate
656       // inverted known bits from the RHS to V. For those bits in B that are
657       // known to be one, we can propagate known bits from the RHS to V.
658       KnownZero |= RHSKnownOne  & BKnownZero;
659       KnownOne  |= RHSKnownZero & BKnownZero;
660       KnownZero |= RHSKnownZero & BKnownOne;
661       KnownOne  |= RHSKnownOne  & BKnownOne;
662     // assume(v << c = a)
663     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
664                                    m_Value(A))) &&
665                Pred == ICmpInst::ICMP_EQ &&
666                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
667       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
668       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
669       // For those bits in RHS that are known, we can propagate them to known
670       // bits in V shifted to the right by C.
671       KnownZero |= RHSKnownZero.lshr(C->getZExtValue());
672       KnownOne  |= RHSKnownOne.lshr(C->getZExtValue());
673     // assume(~(v << c) = a)
674     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
675                                    m_Value(A))) &&
676                Pred == ICmpInst::ICMP_EQ &&
677                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
678       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
679       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
680       // For those bits in RHS that are known, we can propagate them inverted
681       // to known bits in V shifted to the right by C.
682       KnownZero |= RHSKnownOne.lshr(C->getZExtValue());
683       KnownOne  |= RHSKnownZero.lshr(C->getZExtValue());
684     // assume(v >> c = a)
685     } else if (match(Arg,
686                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
687                                                 m_AShr(m_V, m_ConstantInt(C))),
688                               m_Value(A))) &&
689                Pred == ICmpInst::ICMP_EQ &&
690                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
691       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
692       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
693       // For those bits in RHS that are known, we can propagate them to known
694       // bits in V shifted to the right by C.
695       KnownZero |= RHSKnownZero << C->getZExtValue();
696       KnownOne  |= RHSKnownOne  << C->getZExtValue();
697     // assume(~(v >> c) = a)
698     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
699                                              m_LShr(m_V, m_ConstantInt(C)),
700                                              m_AShr(m_V, m_ConstantInt(C)))),
701                                    m_Value(A))) &&
702                Pred == ICmpInst::ICMP_EQ &&
703                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
704       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
705       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
706       // For those bits in RHS that are known, we can propagate them inverted
707       // to known bits in V shifted to the right by C.
708       KnownZero |= RHSKnownOne  << C->getZExtValue();
709       KnownOne  |= RHSKnownZero << C->getZExtValue();
710     // assume(v >=_s c) where c is non-negative
711     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
712                Pred == ICmpInst::ICMP_SGE &&
713                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
714       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
715       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
716 
717       if (RHSKnownZero.isNegative()) {
718         // We know that the sign bit is zero.
719         KnownZero |= APInt::getSignBit(BitWidth);
720       }
721     // assume(v >_s c) where c is at least -1.
722     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
723                Pred == ICmpInst::ICMP_SGT &&
724                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
725       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
726       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
727 
728       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) {
729         // We know that the sign bit is zero.
730         KnownZero |= APInt::getSignBit(BitWidth);
731       }
732     // assume(v <=_s c) where c is negative
733     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
734                Pred == ICmpInst::ICMP_SLE &&
735                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
736       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
737       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
738 
739       if (RHSKnownOne.isNegative()) {
740         // We know that the sign bit is one.
741         KnownOne |= APInt::getSignBit(BitWidth);
742       }
743     // assume(v <_s c) where c is non-positive
744     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
745                Pred == ICmpInst::ICMP_SLT &&
746                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
747       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
748       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
749 
750       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) {
751         // We know that the sign bit is one.
752         KnownOne |= APInt::getSignBit(BitWidth);
753       }
754     // assume(v <=_u c)
755     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
756                Pred == ICmpInst::ICMP_ULE &&
757                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
758       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
759       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
760 
761       // Whatever high bits in c are zero are known to be zero.
762       KnownZero |=
763         APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
764     // assume(v <_u c)
765     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
766                Pred == ICmpInst::ICMP_ULT &&
767                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
768       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
769       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
770 
771       // Whatever high bits in c are zero are known to be zero (if c is a power
772       // of 2, then one more).
773       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
774         KnownZero |=
775           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1);
776       else
777         KnownZero |=
778           APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes());
779     }
780   }
781 }
782 
783 // Compute known bits from a shift operator, including those with a
784 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
785 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
786 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
787 // functors that, given the known-zero or known-one bits respectively, and a
788 // shift amount, compute the implied known-zero or known-one bits of the shift
789 // operator's result respectively for that shift amount. The results from calling
790 // KZF and KOF are conservatively combined for all permitted shift amounts.
791 template <typename KZFunctor, typename KOFunctor>
792 static void computeKnownBitsFromShiftOperator(Operator *I,
793               APInt &KnownZero, APInt &KnownOne,
794               APInt &KnownZero2, APInt &KnownOne2,
795               unsigned Depth, const Query &Q, KZFunctor KZF, KOFunctor KOF) {
796   unsigned BitWidth = KnownZero.getBitWidth();
797 
798   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
799     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
800 
801     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
802     KnownZero = KZF(KnownZero, ShiftAmt);
803     KnownOne  = KOF(KnownOne, ShiftAmt);
804     return;
805   }
806 
807   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
808 
809   // Note: We cannot use KnownZero.getLimitedValue() here, because if
810   // BitWidth > 64 and any upper bits are known, we'll end up returning the
811   // limit value (which implies all bits are known).
812   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
813   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
814 
815   // It would be more-clearly correct to use the two temporaries for this
816   // calculation. Reusing the APInts here to prevent unnecessary allocations.
817   KnownZero.clearAllBits();
818   KnownOne.clearAllBits();
819 
820   // If we know the shifter operand is nonzero, we can sometimes infer more
821   // known bits. However this is expensive to compute, so be lazy about it and
822   // only compute it when absolutely necessary.
823   Optional<bool> ShifterOperandIsNonZero;
824 
825   // Early exit if we can't constrain any well-defined shift amount.
826   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
827     ShifterOperandIsNonZero =
828         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
829     if (!*ShifterOperandIsNonZero)
830       return;
831   }
832 
833   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
834 
835   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
836   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
837     // Combine the shifted known input bits only for those shift amounts
838     // compatible with its known constraints.
839     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
840       continue;
841     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
842       continue;
843     // If we know the shifter is nonzero, we may be able to infer more known
844     // bits. This check is sunk down as far as possible to avoid the expensive
845     // call to isKnownNonZero if the cheaper checks above fail.
846     if (ShiftAmt == 0) {
847       if (!ShifterOperandIsNonZero.hasValue())
848         ShifterOperandIsNonZero =
849             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
850       if (*ShifterOperandIsNonZero)
851         continue;
852     }
853 
854     KnownZero &= KZF(KnownZero2, ShiftAmt);
855     KnownOne  &= KOF(KnownOne2, ShiftAmt);
856   }
857 
858   // If there are no compatible shift amounts, then we've proven that the shift
859   // amount must be >= the BitWidth, and the result is undefined. We could
860   // return anything we'd like, but we need to make sure the sets of known bits
861   // stay disjoint (it should be better for some other code to actually
862   // propagate the undef than to pick a value here using known bits).
863   if ((KnownZero & KnownOne) != 0) {
864     KnownZero.clearAllBits();
865     KnownOne.clearAllBits();
866   }
867 }
868 
869 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero,
870                                          APInt &KnownOne, unsigned Depth,
871                                          const Query &Q) {
872   unsigned BitWidth = KnownZero.getBitWidth();
873 
874   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
875   switch (I->getOpcode()) {
876   default: break;
877   case Instruction::Load:
878     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
879       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
880     break;
881   case Instruction::And: {
882     // If either the LHS or the RHS are Zero, the result is zero.
883     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
884     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
885 
886     // Output known-1 bits are only known if set in both the LHS & RHS.
887     KnownOne &= KnownOne2;
888     // Output known-0 are known to be clear if zero in either the LHS | RHS.
889     KnownZero |= KnownZero2;
890 
891     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
892     // here we handle the more general case of adding any odd number by
893     // matching the form add(x, add(x, y)) where y is odd.
894     // TODO: This could be generalized to clearing any bit set in y where the
895     // following bit is known to be unset in y.
896     Value *Y = nullptr;
897     if (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
898                                       m_Value(Y))) ||
899         match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
900                                       m_Value(Y)))) {
901       APInt KnownZero3(BitWidth, 0), KnownOne3(BitWidth, 0);
902       computeKnownBits(Y, KnownZero3, KnownOne3, Depth + 1, Q);
903       if (KnownOne3.countTrailingOnes() > 0)
904         KnownZero |= APInt::getLowBitsSet(BitWidth, 1);
905     }
906     break;
907   }
908   case Instruction::Or: {
909     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
910     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
911 
912     // Output known-0 bits are only known if clear in both the LHS & RHS.
913     KnownZero &= KnownZero2;
914     // Output known-1 are known to be set if set in either the LHS | RHS.
915     KnownOne |= KnownOne2;
916     break;
917   }
918   case Instruction::Xor: {
919     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
920     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
921 
922     // Output known-0 bits are known if clear or set in both the LHS & RHS.
923     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
924     // Output known-1 are known to be set if set in only one of the LHS, RHS.
925     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
926     KnownZero = KnownZeroOut;
927     break;
928   }
929   case Instruction::Mul: {
930     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
931     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
932                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
933     break;
934   }
935   case Instruction::UDiv: {
936     // For the purposes of computing leading zeros we can conservatively
937     // treat a udiv as a logical right shift by the power of 2 known to
938     // be less than the denominator.
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940     unsigned LeadZ = KnownZero2.countLeadingOnes();
941 
942     KnownOne2.clearAllBits();
943     KnownZero2.clearAllBits();
944     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
945     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
946     if (RHSUnknownLeadingOnes != BitWidth)
947       LeadZ = std::min(BitWidth,
948                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
949 
950     KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
951     break;
952   }
953   case Instruction::Select:
954     computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
955     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
956 
957     // Only known if known in both the LHS and RHS.
958     KnownOne &= KnownOne2;
959     KnownZero &= KnownZero2;
960     break;
961   case Instruction::FPTrunc:
962   case Instruction::FPExt:
963   case Instruction::FPToUI:
964   case Instruction::FPToSI:
965   case Instruction::SIToFP:
966   case Instruction::UIToFP:
967     break; // Can't work with floating point.
968   case Instruction::PtrToInt:
969   case Instruction::IntToPtr:
970   case Instruction::AddrSpaceCast: // Pointers could be different sizes.
971     // FALL THROUGH and handle them the same as zext/trunc.
972   case Instruction::ZExt:
973   case Instruction::Trunc: {
974     Type *SrcTy = I->getOperand(0)->getType();
975 
976     unsigned SrcBitWidth;
977     // Note that we handle pointer operands here because of inttoptr/ptrtoint
978     // which fall through here.
979     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
980 
981     assert(SrcBitWidth && "SrcBitWidth can't be zero");
982     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
983     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
984     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
985     KnownZero = KnownZero.zextOrTrunc(BitWidth);
986     KnownOne = KnownOne.zextOrTrunc(BitWidth);
987     // Any top bits are known to be zero.
988     if (BitWidth > SrcBitWidth)
989       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
990     break;
991   }
992   case Instruction::BitCast: {
993     Type *SrcTy = I->getOperand(0)->getType();
994     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
995         // TODO: For now, not handling conversions like:
996         // (bitcast i64 %x to <2 x i32>)
997         !I->getType()->isVectorTy()) {
998       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
999       break;
1000     }
1001     break;
1002   }
1003   case Instruction::SExt: {
1004     // Compute the bits in the result that are not present in the input.
1005     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1006 
1007     KnownZero = KnownZero.trunc(SrcBitWidth);
1008     KnownOne = KnownOne.trunc(SrcBitWidth);
1009     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1010     KnownZero = KnownZero.zext(BitWidth);
1011     KnownOne = KnownOne.zext(BitWidth);
1012 
1013     // If the sign bit of the input is known set or clear, then we know the
1014     // top bits of the result.
1015     if (KnownZero[SrcBitWidth-1])             // Input sign bit known zero
1016       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1017     else if (KnownOne[SrcBitWidth-1])           // Input sign bit known set
1018       KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1019     break;
1020   }
1021   case Instruction::Shl: {
1022     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1023     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1024       return (KnownZero << ShiftAmt) |
1025              APInt::getLowBitsSet(BitWidth, ShiftAmt); // Low bits known 0.
1026     };
1027 
1028     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1029       return KnownOne << ShiftAmt;
1030     };
1031 
1032     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1033                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1034                                       KOF);
1035     break;
1036   }
1037   case Instruction::LShr: {
1038     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1039     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1040       return APIntOps::lshr(KnownZero, ShiftAmt) |
1041              // High bits known zero.
1042              APInt::getHighBitsSet(BitWidth, ShiftAmt);
1043     };
1044 
1045     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1046       return APIntOps::lshr(KnownOne, ShiftAmt);
1047     };
1048 
1049     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1050                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1051                                       KOF);
1052     break;
1053   }
1054   case Instruction::AShr: {
1055     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1056     auto KZF = [BitWidth](const APInt &KnownZero, unsigned ShiftAmt) {
1057       return APIntOps::ashr(KnownZero, ShiftAmt);
1058     };
1059 
1060     auto KOF = [BitWidth](const APInt &KnownOne, unsigned ShiftAmt) {
1061       return APIntOps::ashr(KnownOne, ShiftAmt);
1062     };
1063 
1064     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1065                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1066                                       KOF);
1067     break;
1068   }
1069   case Instruction::Sub: {
1070     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1071     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1072                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1073                            Q);
1074     break;
1075   }
1076   case Instruction::Add: {
1077     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1078     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1079                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1080                            Q);
1081     break;
1082   }
1083   case Instruction::SRem:
1084     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1085       APInt RA = Rem->getValue().abs();
1086       if (RA.isPowerOf2()) {
1087         APInt LowBits = RA - 1;
1088         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1089                          Q);
1090 
1091         // The low bits of the first operand are unchanged by the srem.
1092         KnownZero = KnownZero2 & LowBits;
1093         KnownOne = KnownOne2 & LowBits;
1094 
1095         // If the first operand is non-negative or has all low bits zero, then
1096         // the upper bits are all zero.
1097         if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
1098           KnownZero |= ~LowBits;
1099 
1100         // If the first operand is negative and not all low bits are zero, then
1101         // the upper bits are all one.
1102         if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
1103           KnownOne |= ~LowBits;
1104 
1105         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1106       }
1107     }
1108 
1109     // The sign bit is the LHS's sign bit, except when the result of the
1110     // remainder is zero.
1111     if (KnownZero.isNonNegative()) {
1112       APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
1113       computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, Depth + 1,
1114                        Q);
1115       // If it's known zero, our sign bit is also zero.
1116       if (LHSKnownZero.isNegative())
1117         KnownZero.setBit(BitWidth - 1);
1118     }
1119 
1120     break;
1121   case Instruction::URem: {
1122     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1123       const APInt &RA = Rem->getValue();
1124       if (RA.isPowerOf2()) {
1125         APInt LowBits = (RA - 1);
1126         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1127         KnownZero |= ~LowBits;
1128         KnownOne &= LowBits;
1129         break;
1130       }
1131     }
1132 
1133     // Since the result is less than or equal to either operand, any leading
1134     // zero bits in either operand must also exist in the result.
1135     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1136     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1137 
1138     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1139                                 KnownZero2.countLeadingOnes());
1140     KnownOne.clearAllBits();
1141     KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
1142     break;
1143   }
1144 
1145   case Instruction::Alloca: {
1146     AllocaInst *AI = cast<AllocaInst>(I);
1147     unsigned Align = AI->getAlignment();
1148     if (Align == 0)
1149       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1150 
1151     if (Align > 0)
1152       KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1153     break;
1154   }
1155   case Instruction::GetElementPtr: {
1156     // Analyze all of the subscripts of this getelementptr instruction
1157     // to determine if we can prove known low zero bits.
1158     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1159     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1160                      Q);
1161     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1162 
1163     gep_type_iterator GTI = gep_type_begin(I);
1164     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1165       Value *Index = I->getOperand(i);
1166       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1167         // Handle struct member offset arithmetic.
1168 
1169         // Handle case when index is vector zeroinitializer
1170         Constant *CIndex = cast<Constant>(Index);
1171         if (CIndex->isZeroValue())
1172           continue;
1173 
1174         if (CIndex->getType()->isVectorTy())
1175           Index = CIndex->getSplatValue();
1176 
1177         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1178         const StructLayout *SL = Q.DL.getStructLayout(STy);
1179         uint64_t Offset = SL->getElementOffset(Idx);
1180         TrailZ = std::min<unsigned>(TrailZ,
1181                                     countTrailingZeros(Offset));
1182       } else {
1183         // Handle array index arithmetic.
1184         Type *IndexedTy = GTI.getIndexedType();
1185         if (!IndexedTy->isSized()) {
1186           TrailZ = 0;
1187           break;
1188         }
1189         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1190         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1191         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1192         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1193         TrailZ = std::min(TrailZ,
1194                           unsigned(countTrailingZeros(TypeSize) +
1195                                    LocalKnownZero.countTrailingOnes()));
1196       }
1197     }
1198 
1199     KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ);
1200     break;
1201   }
1202   case Instruction::PHI: {
1203     PHINode *P = cast<PHINode>(I);
1204     // Handle the case of a simple two-predecessor recurrence PHI.
1205     // There's a lot more that could theoretically be done here, but
1206     // this is sufficient to catch some interesting cases.
1207     if (P->getNumIncomingValues() == 2) {
1208       for (unsigned i = 0; i != 2; ++i) {
1209         Value *L = P->getIncomingValue(i);
1210         Value *R = P->getIncomingValue(!i);
1211         Operator *LU = dyn_cast<Operator>(L);
1212         if (!LU)
1213           continue;
1214         unsigned Opcode = LU->getOpcode();
1215         // Check for operations that have the property that if
1216         // both their operands have low zero bits, the result
1217         // will have low zero bits.
1218         if (Opcode == Instruction::Add ||
1219             Opcode == Instruction::Sub ||
1220             Opcode == Instruction::And ||
1221             Opcode == Instruction::Or ||
1222             Opcode == Instruction::Mul) {
1223           Value *LL = LU->getOperand(0);
1224           Value *LR = LU->getOperand(1);
1225           // Find a recurrence.
1226           if (LL == I)
1227             L = LR;
1228           else if (LR == I)
1229             L = LL;
1230           else
1231             break;
1232           // Ok, we have a PHI of the form L op= R. Check for low
1233           // zero bits.
1234           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1235 
1236           // We need to take the minimum number of known bits
1237           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1238           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1239 
1240           KnownZero = APInt::getLowBitsSet(BitWidth,
1241                                            std::min(KnownZero2.countTrailingOnes(),
1242                                                     KnownZero3.countTrailingOnes()));
1243           break;
1244         }
1245       }
1246     }
1247 
1248     // Unreachable blocks may have zero-operand PHI nodes.
1249     if (P->getNumIncomingValues() == 0)
1250       break;
1251 
1252     // Otherwise take the unions of the known bit sets of the operands,
1253     // taking conservative care to avoid excessive recursion.
1254     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1255       // Skip if every incoming value references to ourself.
1256       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1257         break;
1258 
1259       KnownZero = APInt::getAllOnesValue(BitWidth);
1260       KnownOne = APInt::getAllOnesValue(BitWidth);
1261       for (Value *IncValue : P->incoming_values()) {
1262         // Skip direct self references.
1263         if (IncValue == P) continue;
1264 
1265         KnownZero2 = APInt(BitWidth, 0);
1266         KnownOne2 = APInt(BitWidth, 0);
1267         // Recurse, but cap the recursion to one level, because we don't
1268         // want to waste time spinning around in loops.
1269         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1270         KnownZero &= KnownZero2;
1271         KnownOne &= KnownOne2;
1272         // If all bits have been ruled out, there's no need to check
1273         // more operands.
1274         if (!KnownZero && !KnownOne)
1275           break;
1276       }
1277     }
1278     break;
1279   }
1280   case Instruction::Call:
1281   case Instruction::Invoke:
1282     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1283       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1284     // If a range metadata is attached to this IntrinsicInst, intersect the
1285     // explicit range specified by the metadata and the implicit range of
1286     // the intrinsic.
1287     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1288       switch (II->getIntrinsicID()) {
1289       default: break;
1290       case Intrinsic::bswap:
1291         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1292         KnownZero |= KnownZero2.byteSwap();
1293         KnownOne |= KnownOne2.byteSwap();
1294         break;
1295       case Intrinsic::ctlz:
1296       case Intrinsic::cttz: {
1297         unsigned LowBits = Log2_32(BitWidth)+1;
1298         // If this call is undefined for 0, the result will be less than 2^n.
1299         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1300           LowBits -= 1;
1301         KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
1302         break;
1303       }
1304       case Intrinsic::ctpop: {
1305         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1306         // We can bound the space the count needs.  Also, bits known to be zero
1307         // can't contribute to the population.
1308         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1309         unsigned LeadingZeros =
1310           APInt(BitWidth, BitsPossiblySet).countLeadingZeros();
1311         assert(LeadingZeros <= BitWidth);
1312         KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros);
1313         KnownOne &= ~KnownZero;
1314         // TODO: we could bound KnownOne using the lower bound on the number
1315         // of bits which might be set provided by popcnt KnownOne2.
1316         break;
1317       }
1318       case Intrinsic::x86_sse42_crc32_64_64:
1319         KnownZero |= APInt::getHighBitsSet(64, 32);
1320         break;
1321       }
1322     }
1323     break;
1324   case Instruction::ExtractValue:
1325     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1326       ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1327       if (EVI->getNumIndices() != 1) break;
1328       if (EVI->getIndices()[0] == 0) {
1329         switch (II->getIntrinsicID()) {
1330         default: break;
1331         case Intrinsic::uadd_with_overflow:
1332         case Intrinsic::sadd_with_overflow:
1333           computeKnownBitsAddSub(true, II->getArgOperand(0),
1334                                  II->getArgOperand(1), false, KnownZero,
1335                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1336           break;
1337         case Intrinsic::usub_with_overflow:
1338         case Intrinsic::ssub_with_overflow:
1339           computeKnownBitsAddSub(false, II->getArgOperand(0),
1340                                  II->getArgOperand(1), false, KnownZero,
1341                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1342           break;
1343         case Intrinsic::umul_with_overflow:
1344         case Intrinsic::smul_with_overflow:
1345           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1346                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1347                               Q);
1348           break;
1349         }
1350       }
1351     }
1352   }
1353 }
1354 
1355 /// Determine which bits of V are known to be either zero or one and return
1356 /// them in the KnownZero/KnownOne bit sets.
1357 ///
1358 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1359 /// we cannot optimize based on the assumption that it is zero without changing
1360 /// it to be an explicit zero.  If we don't change it to zero, other code could
1361 /// optimized based on the contradictory assumption that it is non-zero.
1362 /// Because instcombine aggressively folds operations with undef args anyway,
1363 /// this won't lose us code quality.
1364 ///
1365 /// This function is defined on values with integer type, values with pointer
1366 /// type, and vectors of integers.  In the case
1367 /// where V is a vector, known zero, and known one values are the
1368 /// same width as the vector element, and the bit is set only if it is true
1369 /// for all of the elements in the vector.
1370 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
1371                       unsigned Depth, const Query &Q) {
1372   assert(V && "No Value?");
1373   assert(Depth <= MaxDepth && "Limit Search Depth");
1374   unsigned BitWidth = KnownZero.getBitWidth();
1375 
1376   assert((V->getType()->isIntOrIntVectorTy() ||
1377           V->getType()->getScalarType()->isPointerTy()) &&
1378          "Not integer or pointer type!");
1379   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1380          (!V->getType()->isIntOrIntVectorTy() ||
1381           V->getType()->getScalarSizeInBits() == BitWidth) &&
1382          KnownZero.getBitWidth() == BitWidth &&
1383          KnownOne.getBitWidth() == BitWidth &&
1384          "V, KnownOne and KnownZero should have same BitWidth");
1385 
1386   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1387     // We know all of the bits for a constant!
1388     KnownOne = CI->getValue();
1389     KnownZero = ~KnownOne;
1390     return;
1391   }
1392   // Null and aggregate-zero are all-zeros.
1393   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1394     KnownOne.clearAllBits();
1395     KnownZero = APInt::getAllOnesValue(BitWidth);
1396     return;
1397   }
1398   // Handle a constant vector by taking the intersection of the known bits of
1399   // each element.
1400   if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1401     // We know that CDS must be a vector of integers. Take the intersection of
1402     // each element.
1403     KnownZero.setAllBits(); KnownOne.setAllBits();
1404     APInt Elt(KnownZero.getBitWidth(), 0);
1405     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1406       Elt = CDS->getElementAsInteger(i);
1407       KnownZero &= ~Elt;
1408       KnownOne &= Elt;
1409     }
1410     return;
1411   }
1412 
1413   if (auto *CV = dyn_cast<ConstantVector>(V)) {
1414     // We know that CV must be a vector of integers. Take the intersection of
1415     // each element.
1416     KnownZero.setAllBits(); KnownOne.setAllBits();
1417     APInt Elt(KnownZero.getBitWidth(), 0);
1418     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1419       Constant *Element = CV->getAggregateElement(i);
1420       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1421       if (!ElementCI) {
1422         KnownZero.clearAllBits();
1423         KnownOne.clearAllBits();
1424         return;
1425       }
1426       Elt = ElementCI->getValue();
1427       KnownZero &= ~Elt;
1428       KnownOne &= Elt;
1429     }
1430     return;
1431   }
1432 
1433   // Start out not knowing anything.
1434   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1435 
1436   // Limit search depth.
1437   // All recursive calls that increase depth must come after this.
1438   if (Depth == MaxDepth)
1439     return;
1440 
1441   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1442   // the bits of its aliasee.
1443   if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1444     if (!GA->isInterposable())
1445       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1446     return;
1447   }
1448 
1449   if (Operator *I = dyn_cast<Operator>(V))
1450     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1451 
1452   // Aligned pointers have trailing zeros - refine KnownZero set
1453   if (V->getType()->isPointerTy()) {
1454     unsigned Align = V->getPointerAlignment(Q.DL);
1455     if (Align)
1456       KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align));
1457   }
1458 
1459   // computeKnownBitsFromAssume strictly refines KnownZero and
1460   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1461 
1462   // Check whether a nearby assume intrinsic can determine some known bits.
1463   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1464 
1465   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1466 }
1467 
1468 /// Determine whether the sign bit is known to be zero or one.
1469 /// Convenience wrapper around computeKnownBits.
1470 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
1471                     unsigned Depth, const Query &Q) {
1472   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1473   if (!BitWidth) {
1474     KnownZero = false;
1475     KnownOne = false;
1476     return;
1477   }
1478   APInt ZeroBits(BitWidth, 0);
1479   APInt OneBits(BitWidth, 0);
1480   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1481   KnownOne = OneBits[BitWidth - 1];
1482   KnownZero = ZeroBits[BitWidth - 1];
1483 }
1484 
1485 /// Return true if the given value is known to have exactly one
1486 /// bit set when defined. For vectors return true if every element is known to
1487 /// be a power of two when defined. Supports values with integer or pointer
1488 /// types and vectors of integers.
1489 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth,
1490                             const Query &Q) {
1491   if (Constant *C = dyn_cast<Constant>(V)) {
1492     if (C->isNullValue())
1493       return OrZero;
1494 
1495     const APInt *ConstIntOrConstSplatInt;
1496     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1497       return ConstIntOrConstSplatInt->isPowerOf2();
1498   }
1499 
1500   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1501   // it is shifted off the end then the result is undefined.
1502   if (match(V, m_Shl(m_One(), m_Value())))
1503     return true;
1504 
1505   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1506   // bottom.  If it is shifted off the bottom then the result is undefined.
1507   if (match(V, m_LShr(m_SignBit(), m_Value())))
1508     return true;
1509 
1510   // The remaining tests are all recursive, so bail out if we hit the limit.
1511   if (Depth++ == MaxDepth)
1512     return false;
1513 
1514   Value *X = nullptr, *Y = nullptr;
1515   // A shift left or a logical shift right of a power of two is a power of two
1516   // or zero.
1517   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1518                  match(V, m_LShr(m_Value(X), m_Value()))))
1519     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1520 
1521   if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1522     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1523 
1524   if (SelectInst *SI = dyn_cast<SelectInst>(V))
1525     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1526            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1527 
1528   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1529     // A power of two and'd with anything is a power of two or zero.
1530     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1531         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1532       return true;
1533     // X & (-X) is always a power of two or zero.
1534     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1535       return true;
1536     return false;
1537   }
1538 
1539   // Adding a power-of-two or zero to the same power-of-two or zero yields
1540   // either the original power-of-two, a larger power-of-two or zero.
1541   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1542     OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1543     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1544       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1545           match(X, m_And(m_Value(), m_Specific(Y))))
1546         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1547           return true;
1548       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1549           match(Y, m_And(m_Value(), m_Specific(X))))
1550         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1551           return true;
1552 
1553       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1554       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1555       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1556 
1557       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1558       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1559       // If i8 V is a power of two or zero:
1560       //  ZeroBits: 1 1 1 0 1 1 1 1
1561       // ~ZeroBits: 0 0 0 1 0 0 0 0
1562       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1563         // If OrZero isn't set, we cannot give back a zero result.
1564         // Make sure either the LHS or RHS has a bit set.
1565         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1566           return true;
1567     }
1568   }
1569 
1570   // An exact divide or right shift can only shift off zero bits, so the result
1571   // is a power of two only if the first operand is a power of two and not
1572   // copying a sign bit (sdiv int_min, 2).
1573   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1574       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1575     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1576                                   Depth, Q);
1577   }
1578 
1579   return false;
1580 }
1581 
1582 /// \brief Test whether a GEP's result is known to be non-null.
1583 ///
1584 /// Uses properties inherent in a GEP to try to determine whether it is known
1585 /// to be non-null.
1586 ///
1587 /// Currently this routine does not support vector GEPs.
1588 static bool isGEPKnownNonNull(GEPOperator *GEP, unsigned Depth,
1589                               const Query &Q) {
1590   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1591     return false;
1592 
1593   // FIXME: Support vector-GEPs.
1594   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1595 
1596   // If the base pointer is non-null, we cannot walk to a null address with an
1597   // inbounds GEP in address space zero.
1598   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1599     return true;
1600 
1601   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1602   // If so, then the GEP cannot produce a null pointer, as doing so would
1603   // inherently violate the inbounds contract within address space zero.
1604   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1605        GTI != GTE; ++GTI) {
1606     // Struct types are easy -- they must always be indexed by a constant.
1607     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
1608       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1609       unsigned ElementIdx = OpC->getZExtValue();
1610       const StructLayout *SL = Q.DL.getStructLayout(STy);
1611       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1612       if (ElementOffset > 0)
1613         return true;
1614       continue;
1615     }
1616 
1617     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1618     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1619       continue;
1620 
1621     // Fast path the constant operand case both for efficiency and so we don't
1622     // increment Depth when just zipping down an all-constant GEP.
1623     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1624       if (!OpC->isZero())
1625         return true;
1626       continue;
1627     }
1628 
1629     // We post-increment Depth here because while isKnownNonZero increments it
1630     // as well, when we pop back up that increment won't persist. We don't want
1631     // to recurse 10k times just because we have 10k GEP operands. We don't
1632     // bail completely out because we want to handle constant GEPs regardless
1633     // of depth.
1634     if (Depth++ >= MaxDepth)
1635       continue;
1636 
1637     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1638       return true;
1639   }
1640 
1641   return false;
1642 }
1643 
1644 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1645 /// ensure that the value it's attached to is never Value?  'RangeType' is
1646 /// is the type of the value described by the range.
1647 static bool rangeMetadataExcludesValue(MDNode* Ranges, const APInt& Value) {
1648   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1649   assert(NumRanges >= 1);
1650   for (unsigned i = 0; i < NumRanges; ++i) {
1651     ConstantInt *Lower =
1652         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1653     ConstantInt *Upper =
1654         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1655     ConstantRange Range(Lower->getValue(), Upper->getValue());
1656     if (Range.contains(Value))
1657       return false;
1658   }
1659   return true;
1660 }
1661 
1662 /// Return true if the given value is known to be non-zero when defined.
1663 /// For vectors return true if every element is known to be non-zero when
1664 /// defined. Supports values with integer or pointer type and vectors of
1665 /// integers.
1666 bool isKnownNonZero(Value *V, unsigned Depth, const Query &Q) {
1667   if (auto *C = dyn_cast<Constant>(V)) {
1668     if (C->isNullValue())
1669       return false;
1670     if (isa<ConstantInt>(C))
1671       // Must be non-zero due to null test above.
1672       return true;
1673 
1674     // For constant vectors, check that all elements are undefined or known
1675     // non-zero to determine that the whole vector is known non-zero.
1676     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1677       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1678         Constant *Elt = C->getAggregateElement(i);
1679         if (!Elt || Elt->isNullValue())
1680           return false;
1681         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1682           return false;
1683       }
1684       return true;
1685     }
1686 
1687     return false;
1688   }
1689 
1690   if (auto *I = dyn_cast<Instruction>(V)) {
1691     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1692       // If the possible ranges don't contain zero, then the value is
1693       // definitely non-zero.
1694       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1695         const APInt ZeroValue(Ty->getBitWidth(), 0);
1696         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1697           return true;
1698       }
1699     }
1700   }
1701 
1702   // The remaining tests are all recursive, so bail out if we hit the limit.
1703   if (Depth++ >= MaxDepth)
1704     return false;
1705 
1706   // Check for pointer simplifications.
1707   if (V->getType()->isPointerTy()) {
1708     if (isKnownNonNull(V))
1709       return true;
1710     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1711       if (isGEPKnownNonNull(GEP, Depth, Q))
1712         return true;
1713   }
1714 
1715   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1716 
1717   // X | Y != 0 if X != 0 or Y != 0.
1718   Value *X = nullptr, *Y = nullptr;
1719   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1720     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1721 
1722   // ext X != 0 if X != 0.
1723   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1724     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1725 
1726   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1727   // if the lowest bit is shifted off the end.
1728   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1729     // shl nuw can't remove any non-zero bits.
1730     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1731     if (BO->hasNoUnsignedWrap())
1732       return isKnownNonZero(X, Depth, Q);
1733 
1734     APInt KnownZero(BitWidth, 0);
1735     APInt KnownOne(BitWidth, 0);
1736     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1737     if (KnownOne[0])
1738       return true;
1739   }
1740   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1741   // defined if the sign bit is shifted off the end.
1742   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1743     // shr exact can only shift out zero bits.
1744     PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1745     if (BO->isExact())
1746       return isKnownNonZero(X, Depth, Q);
1747 
1748     bool XKnownNonNegative, XKnownNegative;
1749     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1750     if (XKnownNegative)
1751       return true;
1752 
1753     // If the shifter operand is a constant, and all of the bits shifted
1754     // out are known to be zero, and X is known non-zero then at least one
1755     // non-zero bit must remain.
1756     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1757       APInt KnownZero(BitWidth, 0);
1758       APInt KnownOne(BitWidth, 0);
1759       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1760 
1761       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1762       // Is there a known one in the portion not shifted out?
1763       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1764         return true;
1765       // Are all the bits to be shifted out known zero?
1766       if (KnownZero.countTrailingOnes() >= ShiftVal)
1767         return isKnownNonZero(X, Depth, Q);
1768     }
1769   }
1770   // div exact can only produce a zero if the dividend is zero.
1771   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1772     return isKnownNonZero(X, Depth, Q);
1773   }
1774   // X + Y.
1775   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1776     bool XKnownNonNegative, XKnownNegative;
1777     bool YKnownNonNegative, YKnownNegative;
1778     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1779     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1780 
1781     // If X and Y are both non-negative (as signed values) then their sum is not
1782     // zero unless both X and Y are zero.
1783     if (XKnownNonNegative && YKnownNonNegative)
1784       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1785         return true;
1786 
1787     // If X and Y are both negative (as signed values) then their sum is not
1788     // zero unless both X and Y equal INT_MIN.
1789     if (BitWidth && XKnownNegative && YKnownNegative) {
1790       APInt KnownZero(BitWidth, 0);
1791       APInt KnownOne(BitWidth, 0);
1792       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1793       // The sign bit of X is set.  If some other bit is set then X is not equal
1794       // to INT_MIN.
1795       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1796       if ((KnownOne & Mask) != 0)
1797         return true;
1798       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1799       // to INT_MIN.
1800       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1801       if ((KnownOne & Mask) != 0)
1802         return true;
1803     }
1804 
1805     // The sum of a non-negative number and a power of two is not zero.
1806     if (XKnownNonNegative &&
1807         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1808       return true;
1809     if (YKnownNonNegative &&
1810         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1811       return true;
1812   }
1813   // X * Y.
1814   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1815     OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1816     // If X and Y are non-zero then so is X * Y as long as the multiplication
1817     // does not overflow.
1818     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1819         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1820       return true;
1821   }
1822   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1823   else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1824     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1825         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1826       return true;
1827   }
1828   // PHI
1829   else if (PHINode *PN = dyn_cast<PHINode>(V)) {
1830     // Try and detect a recurrence that monotonically increases from a
1831     // starting value, as these are common as induction variables.
1832     if (PN->getNumIncomingValues() == 2) {
1833       Value *Start = PN->getIncomingValue(0);
1834       Value *Induction = PN->getIncomingValue(1);
1835       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1836         std::swap(Start, Induction);
1837       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1838         if (!C->isZero() && !C->isNegative()) {
1839           ConstantInt *X;
1840           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1841                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1842               !X->isNegative())
1843             return true;
1844         }
1845       }
1846     }
1847     // Check if all incoming values are non-zero constant.
1848     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1849       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1850     });
1851     if (AllNonZeroConstants)
1852       return true;
1853   }
1854 
1855   if (!BitWidth) return false;
1856   APInt KnownZero(BitWidth, 0);
1857   APInt KnownOne(BitWidth, 0);
1858   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1859   return KnownOne != 0;
1860 }
1861 
1862 /// Return true if V2 == V1 + X, where X is known non-zero.
1863 static bool isAddOfNonZero(Value *V1, Value *V2, const Query &Q) {
1864   BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
1865   if (!BO || BO->getOpcode() != Instruction::Add)
1866     return false;
1867   Value *Op = nullptr;
1868   if (V2 == BO->getOperand(0))
1869     Op = BO->getOperand(1);
1870   else if (V2 == BO->getOperand(1))
1871     Op = BO->getOperand(0);
1872   else
1873     return false;
1874   return isKnownNonZero(Op, 0, Q);
1875 }
1876 
1877 /// Return true if it is known that V1 != V2.
1878 static bool isKnownNonEqual(Value *V1, Value *V2, const Query &Q) {
1879   if (V1->getType()->isVectorTy() || V1 == V2)
1880     return false;
1881   if (V1->getType() != V2->getType())
1882     // We can't look through casts yet.
1883     return false;
1884   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
1885     return true;
1886 
1887   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
1888     // Are any known bits in V1 contradictory to known bits in V2? If V1
1889     // has a known zero where V2 has a known one, they must not be equal.
1890     auto BitWidth = Ty->getBitWidth();
1891     APInt KnownZero1(BitWidth, 0);
1892     APInt KnownOne1(BitWidth, 0);
1893     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
1894     APInt KnownZero2(BitWidth, 0);
1895     APInt KnownOne2(BitWidth, 0);
1896     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
1897 
1898     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
1899     if (OppositeBits.getBoolValue())
1900       return true;
1901   }
1902   return false;
1903 }
1904 
1905 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
1906 /// simplify operations downstream. Mask is known to be zero for bits that V
1907 /// cannot have.
1908 ///
1909 /// This function is defined on values with integer type, values with pointer
1910 /// type, and vectors of integers.  In the case
1911 /// where V is a vector, the mask, known zero, and known one values are the
1912 /// same width as the vector element, and the bit is set only if it is true
1913 /// for all of the elements in the vector.
1914 bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth,
1915                        const Query &Q) {
1916   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
1917   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1918   return (KnownZero & Mask) == Mask;
1919 }
1920 
1921 
1922 
1923 /// Return the number of times the sign bit of the register is replicated into
1924 /// the other bits. We know that at least 1 bit is always equal to the sign bit
1925 /// (itself), but other cases can give us information. For example, immediately
1926 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
1927 /// other, so we return 3.
1928 ///
1929 /// 'Op' must have a scalar integer type.
1930 ///
1931 unsigned ComputeNumSignBits(Value *V, unsigned Depth, const Query &Q) {
1932   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
1933   unsigned Tmp, Tmp2;
1934   unsigned FirstAnswer = 1;
1935 
1936   // Note that ConstantInt is handled by the general computeKnownBits case
1937   // below.
1938 
1939   if (Depth == 6)
1940     return 1;  // Limit search depth.
1941 
1942   Operator *U = dyn_cast<Operator>(V);
1943   switch (Operator::getOpcode(V)) {
1944   default: break;
1945   case Instruction::SExt:
1946     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
1947     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
1948 
1949   case Instruction::SDiv: {
1950     const APInt *Denominator;
1951     // sdiv X, C -> adds log(C) sign bits.
1952     if (match(U->getOperand(1), m_APInt(Denominator))) {
1953 
1954       // Ignore non-positive denominator.
1955       if (!Denominator->isStrictlyPositive())
1956         break;
1957 
1958       // Calculate the incoming numerator bits.
1959       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1960 
1961       // Add floor(log(C)) bits to the numerator bits.
1962       return std::min(TyBits, NumBits + Denominator->logBase2());
1963     }
1964     break;
1965   }
1966 
1967   case Instruction::SRem: {
1968     const APInt *Denominator;
1969     // srem X, C -> we know that the result is within [-C+1,C) when C is a
1970     // positive constant.  This let us put a lower bound on the number of sign
1971     // bits.
1972     if (match(U->getOperand(1), m_APInt(Denominator))) {
1973 
1974       // Ignore non-positive denominator.
1975       if (!Denominator->isStrictlyPositive())
1976         break;
1977 
1978       // Calculate the incoming numerator bits. SRem by a positive constant
1979       // can't lower the number of sign bits.
1980       unsigned NumrBits =
1981           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
1982 
1983       // Calculate the leading sign bit constraints by examining the
1984       // denominator.  Given that the denominator is positive, there are two
1985       // cases:
1986       //
1987       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
1988       //     (1 << ceilLogBase2(C)).
1989       //
1990       //  2. the numerator is negative.  Then the result range is (-C,0] and
1991       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
1992       //
1993       // Thus a lower bound on the number of sign bits is `TyBits -
1994       // ceilLogBase2(C)`.
1995 
1996       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
1997       return std::max(NumrBits, ResBits);
1998     }
1999     break;
2000   }
2001 
2002   case Instruction::AShr: {
2003     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2004     // ashr X, C   -> adds C sign bits.  Vectors too.
2005     const APInt *ShAmt;
2006     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2007       Tmp += ShAmt->getZExtValue();
2008       if (Tmp > TyBits) Tmp = TyBits;
2009     }
2010     return Tmp;
2011   }
2012   case Instruction::Shl: {
2013     const APInt *ShAmt;
2014     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2015       // shl destroys sign bits.
2016       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2017       Tmp2 = ShAmt->getZExtValue();
2018       if (Tmp2 >= TyBits ||      // Bad shift.
2019           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2020       return Tmp - Tmp2;
2021     }
2022     break;
2023   }
2024   case Instruction::And:
2025   case Instruction::Or:
2026   case Instruction::Xor:    // NOT is handled here.
2027     // Logical binary ops preserve the number of sign bits at the worst.
2028     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2029     if (Tmp != 1) {
2030       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2031       FirstAnswer = std::min(Tmp, Tmp2);
2032       // We computed what we know about the sign bits as our first
2033       // answer. Now proceed to the generic code that uses
2034       // computeKnownBits, and pick whichever answer is better.
2035     }
2036     break;
2037 
2038   case Instruction::Select:
2039     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2040     if (Tmp == 1) return 1;  // Early out.
2041     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2042     return std::min(Tmp, Tmp2);
2043 
2044   case Instruction::Add:
2045     // Add can have at most one carry bit.  Thus we know that the output
2046     // is, at worst, one more bit than the inputs.
2047     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2048     if (Tmp == 1) return 1;  // Early out.
2049 
2050     // Special case decrementing a value (ADD X, -1):
2051     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2052       if (CRHS->isAllOnesValue()) {
2053         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2054         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2055 
2056         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2057         // sign bits set.
2058         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2059           return TyBits;
2060 
2061         // If we are subtracting one from a positive number, there is no carry
2062         // out of the result.
2063         if (KnownZero.isNegative())
2064           return Tmp;
2065       }
2066 
2067     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2068     if (Tmp2 == 1) return 1;
2069     return std::min(Tmp, Tmp2)-1;
2070 
2071   case Instruction::Sub:
2072     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2073     if (Tmp2 == 1) return 1;
2074 
2075     // Handle NEG.
2076     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2077       if (CLHS->isNullValue()) {
2078         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2079         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2080         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2081         // sign bits set.
2082         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2083           return TyBits;
2084 
2085         // If the input is known to be positive (the sign bit is known clear),
2086         // the output of the NEG has the same number of sign bits as the input.
2087         if (KnownZero.isNegative())
2088           return Tmp2;
2089 
2090         // Otherwise, we treat this like a SUB.
2091       }
2092 
2093     // Sub can have at most one carry bit.  Thus we know that the output
2094     // is, at worst, one more bit than the inputs.
2095     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2096     if (Tmp == 1) return 1;  // Early out.
2097     return std::min(Tmp, Tmp2)-1;
2098 
2099   case Instruction::PHI: {
2100     PHINode *PN = cast<PHINode>(U);
2101     unsigned NumIncomingValues = PN->getNumIncomingValues();
2102     // Don't analyze large in-degree PHIs.
2103     if (NumIncomingValues > 4) break;
2104     // Unreachable blocks may have zero-operand PHI nodes.
2105     if (NumIncomingValues == 0) break;
2106 
2107     // Take the minimum of all incoming values.  This can't infinitely loop
2108     // because of our depth threshold.
2109     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2110     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2111       if (Tmp == 1) return Tmp;
2112       Tmp = std::min(
2113           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2114     }
2115     return Tmp;
2116   }
2117 
2118   case Instruction::Trunc:
2119     // FIXME: it's tricky to do anything useful for this, but it is an important
2120     // case for targets like X86.
2121     break;
2122   }
2123 
2124   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2125   // use this information.
2126   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2127   APInt Mask;
2128   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2129 
2130   if (KnownZero.isNegative()) {        // sign bit is 0
2131     Mask = KnownZero;
2132   } else if (KnownOne.isNegative()) {  // sign bit is 1;
2133     Mask = KnownOne;
2134   } else {
2135     // Nothing known.
2136     return FirstAnswer;
2137   }
2138 
2139   // Okay, we know that the sign bit in Mask is set.  Use CLZ to determine
2140   // the number of identical bits in the top of the input value.
2141   Mask = ~Mask;
2142   Mask <<= Mask.getBitWidth()-TyBits;
2143   // Return # leading zeros.  We use 'min' here in case Val was zero before
2144   // shifting.  We don't want to return '64' as for an i32 "0".
2145   return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
2146 }
2147 
2148 /// This function computes the integer multiple of Base that equals V.
2149 /// If successful, it returns true and returns the multiple in
2150 /// Multiple. If unsuccessful, it returns false. It looks
2151 /// through SExt instructions only if LookThroughSExt is true.
2152 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2153                            bool LookThroughSExt, unsigned Depth) {
2154   const unsigned MaxDepth = 6;
2155 
2156   assert(V && "No Value?");
2157   assert(Depth <= MaxDepth && "Limit Search Depth");
2158   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2159 
2160   Type *T = V->getType();
2161 
2162   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2163 
2164   if (Base == 0)
2165     return false;
2166 
2167   if (Base == 1) {
2168     Multiple = V;
2169     return true;
2170   }
2171 
2172   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2173   Constant *BaseVal = ConstantInt::get(T, Base);
2174   if (CO && CO == BaseVal) {
2175     // Multiple is 1.
2176     Multiple = ConstantInt::get(T, 1);
2177     return true;
2178   }
2179 
2180   if (CI && CI->getZExtValue() % Base == 0) {
2181     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2182     return true;
2183   }
2184 
2185   if (Depth == MaxDepth) return false;  // Limit search depth.
2186 
2187   Operator *I = dyn_cast<Operator>(V);
2188   if (!I) return false;
2189 
2190   switch (I->getOpcode()) {
2191   default: break;
2192   case Instruction::SExt:
2193     if (!LookThroughSExt) return false;
2194     // otherwise fall through to ZExt
2195   case Instruction::ZExt:
2196     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2197                            LookThroughSExt, Depth+1);
2198   case Instruction::Shl:
2199   case Instruction::Mul: {
2200     Value *Op0 = I->getOperand(0);
2201     Value *Op1 = I->getOperand(1);
2202 
2203     if (I->getOpcode() == Instruction::Shl) {
2204       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2205       if (!Op1CI) return false;
2206       // Turn Op0 << Op1 into Op0 * 2^Op1
2207       APInt Op1Int = Op1CI->getValue();
2208       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2209       APInt API(Op1Int.getBitWidth(), 0);
2210       API.setBit(BitToSet);
2211       Op1 = ConstantInt::get(V->getContext(), API);
2212     }
2213 
2214     Value *Mul0 = nullptr;
2215     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2216       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2217         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2218           if (Op1C->getType()->getPrimitiveSizeInBits() <
2219               MulC->getType()->getPrimitiveSizeInBits())
2220             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2221           if (Op1C->getType()->getPrimitiveSizeInBits() >
2222               MulC->getType()->getPrimitiveSizeInBits())
2223             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2224 
2225           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2226           Multiple = ConstantExpr::getMul(MulC, Op1C);
2227           return true;
2228         }
2229 
2230       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2231         if (Mul0CI->getValue() == 1) {
2232           // V == Base * Op1, so return Op1
2233           Multiple = Op1;
2234           return true;
2235         }
2236     }
2237 
2238     Value *Mul1 = nullptr;
2239     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2240       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2241         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2242           if (Op0C->getType()->getPrimitiveSizeInBits() <
2243               MulC->getType()->getPrimitiveSizeInBits())
2244             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2245           if (Op0C->getType()->getPrimitiveSizeInBits() >
2246               MulC->getType()->getPrimitiveSizeInBits())
2247             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2248 
2249           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2250           Multiple = ConstantExpr::getMul(MulC, Op0C);
2251           return true;
2252         }
2253 
2254       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2255         if (Mul1CI->getValue() == 1) {
2256           // V == Base * Op0, so return Op0
2257           Multiple = Op0;
2258           return true;
2259         }
2260     }
2261   }
2262   }
2263 
2264   // We could not determine if V is a multiple of Base.
2265   return false;
2266 }
2267 
2268 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2269                                             const TargetLibraryInfo *TLI) {
2270   const Function *F = ICS.getCalledFunction();
2271   if (!F)
2272     return Intrinsic::not_intrinsic;
2273 
2274   if (F->isIntrinsic())
2275     return F->getIntrinsicID();
2276 
2277   if (!TLI)
2278     return Intrinsic::not_intrinsic;
2279 
2280   LibFunc::Func Func;
2281   // We're going to make assumptions on the semantics of the functions, check
2282   // that the target knows that it's available in this environment and it does
2283   // not have local linkage.
2284   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2285     return Intrinsic::not_intrinsic;
2286 
2287   if (!ICS.onlyReadsMemory())
2288     return Intrinsic::not_intrinsic;
2289 
2290   // Otherwise check if we have a call to a function that can be turned into a
2291   // vector intrinsic.
2292   switch (Func) {
2293   default:
2294     break;
2295   case LibFunc::sin:
2296   case LibFunc::sinf:
2297   case LibFunc::sinl:
2298     return Intrinsic::sin;
2299   case LibFunc::cos:
2300   case LibFunc::cosf:
2301   case LibFunc::cosl:
2302     return Intrinsic::cos;
2303   case LibFunc::exp:
2304   case LibFunc::expf:
2305   case LibFunc::expl:
2306     return Intrinsic::exp;
2307   case LibFunc::exp2:
2308   case LibFunc::exp2f:
2309   case LibFunc::exp2l:
2310     return Intrinsic::exp2;
2311   case LibFunc::log:
2312   case LibFunc::logf:
2313   case LibFunc::logl:
2314     return Intrinsic::log;
2315   case LibFunc::log10:
2316   case LibFunc::log10f:
2317   case LibFunc::log10l:
2318     return Intrinsic::log10;
2319   case LibFunc::log2:
2320   case LibFunc::log2f:
2321   case LibFunc::log2l:
2322     return Intrinsic::log2;
2323   case LibFunc::fabs:
2324   case LibFunc::fabsf:
2325   case LibFunc::fabsl:
2326     return Intrinsic::fabs;
2327   case LibFunc::fmin:
2328   case LibFunc::fminf:
2329   case LibFunc::fminl:
2330     return Intrinsic::minnum;
2331   case LibFunc::fmax:
2332   case LibFunc::fmaxf:
2333   case LibFunc::fmaxl:
2334     return Intrinsic::maxnum;
2335   case LibFunc::copysign:
2336   case LibFunc::copysignf:
2337   case LibFunc::copysignl:
2338     return Intrinsic::copysign;
2339   case LibFunc::floor:
2340   case LibFunc::floorf:
2341   case LibFunc::floorl:
2342     return Intrinsic::floor;
2343   case LibFunc::ceil:
2344   case LibFunc::ceilf:
2345   case LibFunc::ceill:
2346     return Intrinsic::ceil;
2347   case LibFunc::trunc:
2348   case LibFunc::truncf:
2349   case LibFunc::truncl:
2350     return Intrinsic::trunc;
2351   case LibFunc::rint:
2352   case LibFunc::rintf:
2353   case LibFunc::rintl:
2354     return Intrinsic::rint;
2355   case LibFunc::nearbyint:
2356   case LibFunc::nearbyintf:
2357   case LibFunc::nearbyintl:
2358     return Intrinsic::nearbyint;
2359   case LibFunc::round:
2360   case LibFunc::roundf:
2361   case LibFunc::roundl:
2362     return Intrinsic::round;
2363   case LibFunc::pow:
2364   case LibFunc::powf:
2365   case LibFunc::powl:
2366     return Intrinsic::pow;
2367   case LibFunc::sqrt:
2368   case LibFunc::sqrtf:
2369   case LibFunc::sqrtl:
2370     if (ICS->hasNoNaNs())
2371       return Intrinsic::sqrt;
2372     return Intrinsic::not_intrinsic;
2373   }
2374 
2375   return Intrinsic::not_intrinsic;
2376 }
2377 
2378 /// Return true if we can prove that the specified FP value is never equal to
2379 /// -0.0.
2380 ///
2381 /// NOTE: this function will need to be revisited when we support non-default
2382 /// rounding modes!
2383 ///
2384 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2385                                 unsigned Depth) {
2386   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2387     return !CFP->getValueAPF().isNegZero();
2388 
2389   // FIXME: Magic number! At the least, this should be given a name because it's
2390   // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to
2391   // expose it as a parameter, so it can be used for testing / experimenting.
2392   if (Depth == 6)
2393     return false;  // Limit search depth.
2394 
2395   const Operator *I = dyn_cast<Operator>(V);
2396   if (!I) return false;
2397 
2398   // Check if the nsz fast-math flag is set
2399   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2400     if (FPO->hasNoSignedZeros())
2401       return true;
2402 
2403   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2404   if (I->getOpcode() == Instruction::FAdd)
2405     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2406       if (CFP->isNullValue())
2407         return true;
2408 
2409   // sitofp and uitofp turn into +0.0 for zero.
2410   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2411     return true;
2412 
2413   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2414     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2415     switch (IID) {
2416     default:
2417       break;
2418     // sqrt(-0.0) = -0.0, no other negative results are possible.
2419     case Intrinsic::sqrt:
2420       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2421     // fabs(x) != -0.0
2422     case Intrinsic::fabs:
2423       return true;
2424     }
2425   }
2426 
2427   return false;
2428 }
2429 
2430 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2431                                        const TargetLibraryInfo *TLI,
2432                                        unsigned Depth) {
2433   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2434     return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero();
2435 
2436   // FIXME: Magic number! At the least, this should be given a name because it's
2437   // used similarly in CannotBeNegativeZero(). A better fix may be to
2438   // expose it as a parameter, so it can be used for testing / experimenting.
2439   if (Depth == 6)
2440     return false;  // Limit search depth.
2441 
2442   const Operator *I = dyn_cast<Operator>(V);
2443   if (!I) return false;
2444 
2445   switch (I->getOpcode()) {
2446   default: break;
2447   // Unsigned integers are always nonnegative.
2448   case Instruction::UIToFP:
2449     return true;
2450   case Instruction::FMul:
2451     // x*x is always non-negative or a NaN.
2452     if (I->getOperand(0) == I->getOperand(1))
2453       return true;
2454     // Fall through
2455   case Instruction::FAdd:
2456   case Instruction::FDiv:
2457   case Instruction::FRem:
2458     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2459            CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2460   case Instruction::Select:
2461     return CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1) &&
2462            CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2463   case Instruction::FPExt:
2464   case Instruction::FPTrunc:
2465     // Widening/narrowing never change sign.
2466     return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2467   case Instruction::Call:
2468     Intrinsic::ID IID = getIntrinsicForCallSite(cast<CallInst>(I), TLI);
2469     switch (IID) {
2470     default:
2471       break;
2472     case Intrinsic::maxnum:
2473       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) ||
2474              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2475     case Intrinsic::minnum:
2476       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1) &&
2477              CannotBeOrderedLessThanZero(I->getOperand(1), TLI, Depth + 1);
2478     case Intrinsic::exp:
2479     case Intrinsic::exp2:
2480     case Intrinsic::fabs:
2481     case Intrinsic::sqrt:
2482       return true;
2483     case Intrinsic::powi:
2484       if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
2485         // powi(x,n) is non-negative if n is even.
2486         if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0)
2487           return true;
2488       }
2489       return CannotBeOrderedLessThanZero(I->getOperand(0), TLI, Depth + 1);
2490     case Intrinsic::fma:
2491     case Intrinsic::fmuladd:
2492       // x*x+y is non-negative if y is non-negative.
2493       return I->getOperand(0) == I->getOperand(1) &&
2494              CannotBeOrderedLessThanZero(I->getOperand(2), TLI, Depth + 1);
2495     }
2496     break;
2497   }
2498   return false;
2499 }
2500 
2501 /// If the specified value can be set by repeating the same byte in memory,
2502 /// return the i8 value that it is represented with.  This is
2503 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2504 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2505 /// byte store (e.g. i16 0x1234), return null.
2506 Value *llvm::isBytewiseValue(Value *V) {
2507   // All byte-wide stores are splatable, even of arbitrary variables.
2508   if (V->getType()->isIntegerTy(8)) return V;
2509 
2510   // Handle 'null' ConstantArrayZero etc.
2511   if (Constant *C = dyn_cast<Constant>(V))
2512     if (C->isNullValue())
2513       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2514 
2515   // Constant float and double values can be handled as integer values if the
2516   // corresponding integer value is "byteable".  An important case is 0.0.
2517   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2518     if (CFP->getType()->isFloatTy())
2519       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2520     if (CFP->getType()->isDoubleTy())
2521       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2522     // Don't handle long double formats, which have strange constraints.
2523   }
2524 
2525   // We can handle constant integers that are multiple of 8 bits.
2526   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2527     if (CI->getBitWidth() % 8 == 0) {
2528       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2529 
2530       if (!CI->getValue().isSplat(8))
2531         return nullptr;
2532       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2533     }
2534   }
2535 
2536   // A ConstantDataArray/Vector is splatable if all its members are equal and
2537   // also splatable.
2538   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2539     Value *Elt = CA->getElementAsConstant(0);
2540     Value *Val = isBytewiseValue(Elt);
2541     if (!Val)
2542       return nullptr;
2543 
2544     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2545       if (CA->getElementAsConstant(I) != Elt)
2546         return nullptr;
2547 
2548     return Val;
2549   }
2550 
2551   // Conceptually, we could handle things like:
2552   //   %a = zext i8 %X to i16
2553   //   %b = shl i16 %a, 8
2554   //   %c = or i16 %a, %b
2555   // but until there is an example that actually needs this, it doesn't seem
2556   // worth worrying about.
2557   return nullptr;
2558 }
2559 
2560 
2561 // This is the recursive version of BuildSubAggregate. It takes a few different
2562 // arguments. Idxs is the index within the nested struct From that we are
2563 // looking at now (which is of type IndexedType). IdxSkip is the number of
2564 // indices from Idxs that should be left out when inserting into the resulting
2565 // struct. To is the result struct built so far, new insertvalue instructions
2566 // build on that.
2567 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2568                                 SmallVectorImpl<unsigned> &Idxs,
2569                                 unsigned IdxSkip,
2570                                 Instruction *InsertBefore) {
2571   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2572   if (STy) {
2573     // Save the original To argument so we can modify it
2574     Value *OrigTo = To;
2575     // General case, the type indexed by Idxs is a struct
2576     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2577       // Process each struct element recursively
2578       Idxs.push_back(i);
2579       Value *PrevTo = To;
2580       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2581                              InsertBefore);
2582       Idxs.pop_back();
2583       if (!To) {
2584         // Couldn't find any inserted value for this index? Cleanup
2585         while (PrevTo != OrigTo) {
2586           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2587           PrevTo = Del->getAggregateOperand();
2588           Del->eraseFromParent();
2589         }
2590         // Stop processing elements
2591         break;
2592       }
2593     }
2594     // If we successfully found a value for each of our subaggregates
2595     if (To)
2596       return To;
2597   }
2598   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2599   // the struct's elements had a value that was inserted directly. In the latter
2600   // case, perhaps we can't determine each of the subelements individually, but
2601   // we might be able to find the complete struct somewhere.
2602 
2603   // Find the value that is at that particular spot
2604   Value *V = FindInsertedValue(From, Idxs);
2605 
2606   if (!V)
2607     return nullptr;
2608 
2609   // Insert the value in the new (sub) aggregrate
2610   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2611                                        "tmp", InsertBefore);
2612 }
2613 
2614 // This helper takes a nested struct and extracts a part of it (which is again a
2615 // struct) into a new value. For example, given the struct:
2616 // { a, { b, { c, d }, e } }
2617 // and the indices "1, 1" this returns
2618 // { c, d }.
2619 //
2620 // It does this by inserting an insertvalue for each element in the resulting
2621 // struct, as opposed to just inserting a single struct. This will only work if
2622 // each of the elements of the substruct are known (ie, inserted into From by an
2623 // insertvalue instruction somewhere).
2624 //
2625 // All inserted insertvalue instructions are inserted before InsertBefore
2626 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2627                                 Instruction *InsertBefore) {
2628   assert(InsertBefore && "Must have someplace to insert!");
2629   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2630                                                              idx_range);
2631   Value *To = UndefValue::get(IndexedType);
2632   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2633   unsigned IdxSkip = Idxs.size();
2634 
2635   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2636 }
2637 
2638 /// Given an aggregrate and an sequence of indices, see if
2639 /// the scalar value indexed is already around as a register, for example if it
2640 /// were inserted directly into the aggregrate.
2641 ///
2642 /// If InsertBefore is not null, this function will duplicate (modified)
2643 /// insertvalues when a part of a nested struct is extracted.
2644 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2645                                Instruction *InsertBefore) {
2646   // Nothing to index? Just return V then (this is useful at the end of our
2647   // recursion).
2648   if (idx_range.empty())
2649     return V;
2650   // We have indices, so V should have an indexable type.
2651   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2652          "Not looking at a struct or array?");
2653   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2654          "Invalid indices for type?");
2655 
2656   if (Constant *C = dyn_cast<Constant>(V)) {
2657     C = C->getAggregateElement(idx_range[0]);
2658     if (!C) return nullptr;
2659     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2660   }
2661 
2662   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2663     // Loop the indices for the insertvalue instruction in parallel with the
2664     // requested indices
2665     const unsigned *req_idx = idx_range.begin();
2666     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2667          i != e; ++i, ++req_idx) {
2668       if (req_idx == idx_range.end()) {
2669         // We can't handle this without inserting insertvalues
2670         if (!InsertBefore)
2671           return nullptr;
2672 
2673         // The requested index identifies a part of a nested aggregate. Handle
2674         // this specially. For example,
2675         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2676         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2677         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2678         // This can be changed into
2679         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2680         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2681         // which allows the unused 0,0 element from the nested struct to be
2682         // removed.
2683         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2684                                  InsertBefore);
2685       }
2686 
2687       // This insert value inserts something else than what we are looking for.
2688       // See if the (aggregate) value inserted into has the value we are
2689       // looking for, then.
2690       if (*req_idx != *i)
2691         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2692                                  InsertBefore);
2693     }
2694     // If we end up here, the indices of the insertvalue match with those
2695     // requested (though possibly only partially). Now we recursively look at
2696     // the inserted value, passing any remaining indices.
2697     return FindInsertedValue(I->getInsertedValueOperand(),
2698                              makeArrayRef(req_idx, idx_range.end()),
2699                              InsertBefore);
2700   }
2701 
2702   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2703     // If we're extracting a value from an aggregate that was extracted from
2704     // something else, we can extract from that something else directly instead.
2705     // However, we will need to chain I's indices with the requested indices.
2706 
2707     // Calculate the number of indices required
2708     unsigned size = I->getNumIndices() + idx_range.size();
2709     // Allocate some space to put the new indices in
2710     SmallVector<unsigned, 5> Idxs;
2711     Idxs.reserve(size);
2712     // Add indices from the extract value instruction
2713     Idxs.append(I->idx_begin(), I->idx_end());
2714 
2715     // Add requested indices
2716     Idxs.append(idx_range.begin(), idx_range.end());
2717 
2718     assert(Idxs.size() == size
2719            && "Number of indices added not correct?");
2720 
2721     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2722   }
2723   // Otherwise, we don't know (such as, extracting from a function return value
2724   // or load instruction)
2725   return nullptr;
2726 }
2727 
2728 /// Analyze the specified pointer to see if it can be expressed as a base
2729 /// pointer plus a constant offset. Return the base and offset to the caller.
2730 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2731                                               const DataLayout &DL) {
2732   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2733   APInt ByteOffset(BitWidth, 0);
2734 
2735   // We walk up the defs but use a visited set to handle unreachable code. In
2736   // that case, we stop after accumulating the cycle once (not that it
2737   // matters).
2738   SmallPtrSet<Value *, 16> Visited;
2739   while (Visited.insert(Ptr).second) {
2740     if (Ptr->getType()->isVectorTy())
2741       break;
2742 
2743     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2744       APInt GEPOffset(BitWidth, 0);
2745       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2746         break;
2747 
2748       ByteOffset += GEPOffset;
2749 
2750       Ptr = GEP->getPointerOperand();
2751     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2752                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
2753       Ptr = cast<Operator>(Ptr)->getOperand(0);
2754     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
2755       if (GA->isInterposable())
2756         break;
2757       Ptr = GA->getAliasee();
2758     } else {
2759       break;
2760     }
2761   }
2762   Offset = ByteOffset.getSExtValue();
2763   return Ptr;
2764 }
2765 
2766 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
2767   // Make sure the GEP has exactly three arguments.
2768   if (GEP->getNumOperands() != 3)
2769     return false;
2770 
2771   // Make sure the index-ee is a pointer to array of i8.
2772   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
2773   if (!AT || !AT->getElementType()->isIntegerTy(8))
2774     return false;
2775 
2776   // Check to make sure that the first operand of the GEP is an integer and
2777   // has value 0 so that we are sure we're indexing into the initializer.
2778   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
2779   if (!FirstIdx || !FirstIdx->isZero())
2780     return false;
2781 
2782   return true;
2783 }
2784 
2785 /// This function computes the length of a null-terminated C string pointed to
2786 /// by V. If successful, it returns true and returns the string in Str.
2787 /// If unsuccessful, it returns false.
2788 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
2789                                  uint64_t Offset, bool TrimAtNul) {
2790   assert(V);
2791 
2792   // Look through bitcast instructions and geps.
2793   V = V->stripPointerCasts();
2794 
2795   // If the value is a GEP instruction or constant expression, treat it as an
2796   // offset.
2797   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2798     // The GEP operator should be based on a pointer to string constant, and is
2799     // indexing into the string constant.
2800     if (!isGEPBasedOnPointerToString(GEP))
2801       return false;
2802 
2803     // If the second index isn't a ConstantInt, then this is a variable index
2804     // into the array.  If this occurs, we can't say anything meaningful about
2805     // the string.
2806     uint64_t StartIdx = 0;
2807     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
2808       StartIdx = CI->getZExtValue();
2809     else
2810       return false;
2811     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
2812                                  TrimAtNul);
2813   }
2814 
2815   // The GEP instruction, constant or instruction, must reference a global
2816   // variable that is a constant and is initialized. The referenced constant
2817   // initializer is the array that we'll use for optimization.
2818   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2819   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
2820     return false;
2821 
2822   // Handle the all-zeros case.
2823   if (GV->getInitializer()->isNullValue()) {
2824     // This is a degenerate case. The initializer is constant zero so the
2825     // length of the string must be zero.
2826     Str = "";
2827     return true;
2828   }
2829 
2830   // This must be a ConstantDataArray.
2831   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
2832   if (!Array || !Array->isString())
2833     return false;
2834 
2835   // Get the number of elements in the array.
2836   uint64_t NumElts = Array->getType()->getArrayNumElements();
2837 
2838   // Start out with the entire array in the StringRef.
2839   Str = Array->getAsString();
2840 
2841   if (Offset > NumElts)
2842     return false;
2843 
2844   // Skip over 'offset' bytes.
2845   Str = Str.substr(Offset);
2846 
2847   if (TrimAtNul) {
2848     // Trim off the \0 and anything after it.  If the array is not nul
2849     // terminated, we just return the whole end of string.  The client may know
2850     // some other way that the string is length-bound.
2851     Str = Str.substr(0, Str.find('\0'));
2852   }
2853   return true;
2854 }
2855 
2856 // These next two are very similar to the above, but also look through PHI
2857 // nodes.
2858 // TODO: See if we can integrate these two together.
2859 
2860 /// If we can compute the length of the string pointed to by
2861 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2862 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) {
2863   // Look through noop bitcast instructions.
2864   V = V->stripPointerCasts();
2865 
2866   // If this is a PHI node, there are two cases: either we have already seen it
2867   // or we haven't.
2868   if (PHINode *PN = dyn_cast<PHINode>(V)) {
2869     if (!PHIs.insert(PN).second)
2870       return ~0ULL;  // already in the set.
2871 
2872     // If it was new, see if all the input strings are the same length.
2873     uint64_t LenSoFar = ~0ULL;
2874     for (Value *IncValue : PN->incoming_values()) {
2875       uint64_t Len = GetStringLengthH(IncValue, PHIs);
2876       if (Len == 0) return 0; // Unknown length -> unknown.
2877 
2878       if (Len == ~0ULL) continue;
2879 
2880       if (Len != LenSoFar && LenSoFar != ~0ULL)
2881         return 0;    // Disagree -> unknown.
2882       LenSoFar = Len;
2883     }
2884 
2885     // Success, all agree.
2886     return LenSoFar;
2887   }
2888 
2889   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
2890   if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
2891     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
2892     if (Len1 == 0) return 0;
2893     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
2894     if (Len2 == 0) return 0;
2895     if (Len1 == ~0ULL) return Len2;
2896     if (Len2 == ~0ULL) return Len1;
2897     if (Len1 != Len2) return 0;
2898     return Len1;
2899   }
2900 
2901   // Otherwise, see if we can read the string.
2902   StringRef StrData;
2903   if (!getConstantStringInfo(V, StrData))
2904     return 0;
2905 
2906   return StrData.size()+1;
2907 }
2908 
2909 /// If we can compute the length of the string pointed to by
2910 /// the specified pointer, return 'len+1'.  If we can't, return 0.
2911 uint64_t llvm::GetStringLength(Value *V) {
2912   if (!V->getType()->isPointerTy()) return 0;
2913 
2914   SmallPtrSet<PHINode*, 32> PHIs;
2915   uint64_t Len = GetStringLengthH(V, PHIs);
2916   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
2917   // an empty string as a length.
2918   return Len == ~0ULL ? 1 : Len;
2919 }
2920 
2921 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
2922 /// previous iteration of the loop was referring to the same object as \p PN.
2923 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) {
2924   // Find the loop-defined value.
2925   Loop *L = LI->getLoopFor(PN->getParent());
2926   if (PN->getNumIncomingValues() != 2)
2927     return true;
2928 
2929   // Find the value from previous iteration.
2930   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
2931   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2932     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
2933   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
2934     return true;
2935 
2936   // If a new pointer is loaded in the loop, the pointer references a different
2937   // object in every iteration.  E.g.:
2938   //    for (i)
2939   //       int *p = a[i];
2940   //       ...
2941   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
2942     if (!L->isLoopInvariant(Load->getPointerOperand()))
2943       return false;
2944   return true;
2945 }
2946 
2947 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
2948                                  unsigned MaxLookup) {
2949   if (!V->getType()->isPointerTy())
2950     return V;
2951   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
2952     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
2953       V = GEP->getPointerOperand();
2954     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
2955                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
2956       V = cast<Operator>(V)->getOperand(0);
2957     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
2958       if (GA->isInterposable())
2959         return V;
2960       V = GA->getAliasee();
2961     } else {
2962       // See if InstructionSimplify knows any relevant tricks.
2963       if (Instruction *I = dyn_cast<Instruction>(V))
2964         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
2965         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
2966           V = Simplified;
2967           continue;
2968         }
2969 
2970       return V;
2971     }
2972     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
2973   }
2974   return V;
2975 }
2976 
2977 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
2978                                 const DataLayout &DL, LoopInfo *LI,
2979                                 unsigned MaxLookup) {
2980   SmallPtrSet<Value *, 4> Visited;
2981   SmallVector<Value *, 4> Worklist;
2982   Worklist.push_back(V);
2983   do {
2984     Value *P = Worklist.pop_back_val();
2985     P = GetUnderlyingObject(P, DL, MaxLookup);
2986 
2987     if (!Visited.insert(P).second)
2988       continue;
2989 
2990     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
2991       Worklist.push_back(SI->getTrueValue());
2992       Worklist.push_back(SI->getFalseValue());
2993       continue;
2994     }
2995 
2996     if (PHINode *PN = dyn_cast<PHINode>(P)) {
2997       // If this PHI changes the underlying object in every iteration of the
2998       // loop, don't look through it.  Consider:
2999       //   int **A;
3000       //   for (i) {
3001       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3002       //     Curr = A[i];
3003       //     *Prev, *Curr;
3004       //
3005       // Prev is tracking Curr one iteration behind so they refer to different
3006       // underlying objects.
3007       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3008           isSameUnderlyingObjectInLoop(PN, LI))
3009         for (Value *IncValue : PN->incoming_values())
3010           Worklist.push_back(IncValue);
3011       continue;
3012     }
3013 
3014     Objects.push_back(P);
3015   } while (!Worklist.empty());
3016 }
3017 
3018 /// Return true if the only users of this pointer are lifetime markers.
3019 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3020   for (const User *U : V->users()) {
3021     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3022     if (!II) return false;
3023 
3024     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3025         II->getIntrinsicID() != Intrinsic::lifetime_end)
3026       return false;
3027   }
3028   return true;
3029 }
3030 
3031 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3032                                         const Instruction *CtxI,
3033                                         const DominatorTree *DT,
3034                                         const TargetLibraryInfo *TLI) {
3035   const Operator *Inst = dyn_cast<Operator>(V);
3036   if (!Inst)
3037     return false;
3038 
3039   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3040     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3041       if (C->canTrap())
3042         return false;
3043 
3044   switch (Inst->getOpcode()) {
3045   default:
3046     return true;
3047   case Instruction::UDiv:
3048   case Instruction::URem: {
3049     // x / y is undefined if y == 0.
3050     const APInt *V;
3051     if (match(Inst->getOperand(1), m_APInt(V)))
3052       return *V != 0;
3053     return false;
3054   }
3055   case Instruction::SDiv:
3056   case Instruction::SRem: {
3057     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3058     const APInt *Numerator, *Denominator;
3059     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3060       return false;
3061     // We cannot hoist this division if the denominator is 0.
3062     if (*Denominator == 0)
3063       return false;
3064     // It's safe to hoist if the denominator is not 0 or -1.
3065     if (*Denominator != -1)
3066       return true;
3067     // At this point we know that the denominator is -1.  It is safe to hoist as
3068     // long we know that the numerator is not INT_MIN.
3069     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3070       return !Numerator->isMinSignedValue();
3071     // The numerator *might* be MinSignedValue.
3072     return false;
3073   }
3074   case Instruction::Load: {
3075     const LoadInst *LI = cast<LoadInst>(Inst);
3076     if (!LI->isUnordered() ||
3077         // Speculative load may create a race that did not exist in the source.
3078         LI->getParent()->getParent()->hasFnAttribute(
3079             Attribute::SanitizeThread) ||
3080         // Speculative load may load data from dirty regions.
3081         LI->getParent()->getParent()->hasFnAttribute(
3082             Attribute::SanitizeAddress))
3083       return false;
3084     const DataLayout &DL = LI->getModule()->getDataLayout();
3085     return isDereferenceableAndAlignedPointer(
3086         LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI);
3087   }
3088   case Instruction::Call: {
3089     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3090       switch (II->getIntrinsicID()) {
3091       // These synthetic intrinsics have no side-effects and just mark
3092       // information about their operands.
3093       // FIXME: There are other no-op synthetic instructions that potentially
3094       // should be considered at least *safe* to speculate...
3095       case Intrinsic::dbg_declare:
3096       case Intrinsic::dbg_value:
3097         return true;
3098 
3099       case Intrinsic::bswap:
3100       case Intrinsic::ctlz:
3101       case Intrinsic::ctpop:
3102       case Intrinsic::cttz:
3103       case Intrinsic::objectsize:
3104       case Intrinsic::sadd_with_overflow:
3105       case Intrinsic::smul_with_overflow:
3106       case Intrinsic::ssub_with_overflow:
3107       case Intrinsic::uadd_with_overflow:
3108       case Intrinsic::umul_with_overflow:
3109       case Intrinsic::usub_with_overflow:
3110         return true;
3111       // These intrinsics are defined to have the same behavior as libm
3112       // functions except for setting errno.
3113       case Intrinsic::sqrt:
3114       case Intrinsic::fma:
3115       case Intrinsic::fmuladd:
3116         return true;
3117       // These intrinsics are defined to have the same behavior as libm
3118       // functions, and the corresponding libm functions never set errno.
3119       case Intrinsic::trunc:
3120       case Intrinsic::copysign:
3121       case Intrinsic::fabs:
3122       case Intrinsic::minnum:
3123       case Intrinsic::maxnum:
3124         return true;
3125       // These intrinsics are defined to have the same behavior as libm
3126       // functions, which never overflow when operating on the IEEE754 types
3127       // that we support, and never set errno otherwise.
3128       case Intrinsic::ceil:
3129       case Intrinsic::floor:
3130       case Intrinsic::nearbyint:
3131       case Intrinsic::rint:
3132       case Intrinsic::round:
3133         return true;
3134       // TODO: are convert_{from,to}_fp16 safe?
3135       // TODO: can we list target-specific intrinsics here?
3136       default: break;
3137       }
3138     }
3139     return false; // The called function could have undefined behavior or
3140                   // side-effects, even if marked readnone nounwind.
3141   }
3142   case Instruction::VAArg:
3143   case Instruction::Alloca:
3144   case Instruction::Invoke:
3145   case Instruction::PHI:
3146   case Instruction::Store:
3147   case Instruction::Ret:
3148   case Instruction::Br:
3149   case Instruction::IndirectBr:
3150   case Instruction::Switch:
3151   case Instruction::Unreachable:
3152   case Instruction::Fence:
3153   case Instruction::AtomicRMW:
3154   case Instruction::AtomicCmpXchg:
3155   case Instruction::LandingPad:
3156   case Instruction::Resume:
3157   case Instruction::CatchSwitch:
3158   case Instruction::CatchPad:
3159   case Instruction::CatchRet:
3160   case Instruction::CleanupPad:
3161   case Instruction::CleanupRet:
3162     return false; // Misc instructions which have effects
3163   }
3164 }
3165 
3166 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3167   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3168 }
3169 
3170 /// Return true if we know that the specified value is never null.
3171 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) {
3172   assert(V->getType()->isPointerTy() && "V must be pointer type");
3173 
3174   // Alloca never returns null, malloc might.
3175   if (isa<AllocaInst>(V)) return true;
3176 
3177   // A byval, inalloca, or nonnull argument is never null.
3178   if (const Argument *A = dyn_cast<Argument>(V))
3179     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3180 
3181   // A global variable in address space 0 is non null unless extern weak.
3182   // Other address spaces may have null as a valid address for a global,
3183   // so we can't assume anything.
3184   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3185     return !GV->hasExternalWeakLinkage() &&
3186            GV->getType()->getAddressSpace() == 0;
3187 
3188   // A Load tagged with nonnull metadata is never null.
3189   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3190     return LI->getMetadata(LLVMContext::MD_nonnull);
3191 
3192   if (auto CS = ImmutableCallSite(V))
3193     if (CS.isReturnNonNull())
3194       return true;
3195 
3196   return false;
3197 }
3198 
3199 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3200                                                   const Instruction *CtxI,
3201                                                   const DominatorTree *DT) {
3202   assert(V->getType()->isPointerTy() && "V must be pointer type");
3203 
3204   unsigned NumUsesExplored = 0;
3205   for (auto *U : V->users()) {
3206     // Avoid massive lists
3207     if (NumUsesExplored >= DomConditionsMaxUses)
3208       break;
3209     NumUsesExplored++;
3210     // Consider only compare instructions uniquely controlling a branch
3211     CmpInst::Predicate Pred;
3212     if (!match(const_cast<User *>(U),
3213                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3214         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3215       continue;
3216 
3217     for (auto *CmpU : U->users()) {
3218       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3219         assert(BI->isConditional() && "uses a comparison!");
3220 
3221         BasicBlock *NonNullSuccessor =
3222             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3223         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3224         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3225           return true;
3226       } else if (Pred == ICmpInst::ICMP_NE &&
3227                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3228                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3229         return true;
3230       }
3231     }
3232   }
3233 
3234   return false;
3235 }
3236 
3237 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3238                    const DominatorTree *DT, const TargetLibraryInfo *TLI) {
3239   if (isKnownNonNull(V, TLI))
3240     return true;
3241 
3242   return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false;
3243 }
3244 
3245 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
3246                                                    const DataLayout &DL,
3247                                                    AssumptionCache *AC,
3248                                                    const Instruction *CxtI,
3249                                                    const DominatorTree *DT) {
3250   // Multiplying n * m significant bits yields a result of n + m significant
3251   // bits. If the total number of significant bits does not exceed the
3252   // result bit width (minus 1), there is no overflow.
3253   // This means if we have enough leading zero bits in the operands
3254   // we can guarantee that the result does not overflow.
3255   // Ref: "Hacker's Delight" by Henry Warren
3256   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3257   APInt LHSKnownZero(BitWidth, 0);
3258   APInt LHSKnownOne(BitWidth, 0);
3259   APInt RHSKnownZero(BitWidth, 0);
3260   APInt RHSKnownOne(BitWidth, 0);
3261   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3262                    DT);
3263   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3264                    DT);
3265   // Note that underestimating the number of zero bits gives a more
3266   // conservative answer.
3267   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3268                       RHSKnownZero.countLeadingOnes();
3269   // First handle the easy case: if we have enough zero bits there's
3270   // definitely no overflow.
3271   if (ZeroBits >= BitWidth)
3272     return OverflowResult::NeverOverflows;
3273 
3274   // Get the largest possible values for each operand.
3275   APInt LHSMax = ~LHSKnownZero;
3276   APInt RHSMax = ~RHSKnownZero;
3277 
3278   // We know the multiply operation doesn't overflow if the maximum values for
3279   // each operand will not overflow after we multiply them together.
3280   bool MaxOverflow;
3281   LHSMax.umul_ov(RHSMax, MaxOverflow);
3282   if (!MaxOverflow)
3283     return OverflowResult::NeverOverflows;
3284 
3285   // We know it always overflows if multiplying the smallest possible values for
3286   // the operands also results in overflow.
3287   bool MinOverflow;
3288   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3289   if (MinOverflow)
3290     return OverflowResult::AlwaysOverflows;
3291 
3292   return OverflowResult::MayOverflow;
3293 }
3294 
3295 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
3296                                                    const DataLayout &DL,
3297                                                    AssumptionCache *AC,
3298                                                    const Instruction *CxtI,
3299                                                    const DominatorTree *DT) {
3300   bool LHSKnownNonNegative, LHSKnownNegative;
3301   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3302                  AC, CxtI, DT);
3303   if (LHSKnownNonNegative || LHSKnownNegative) {
3304     bool RHSKnownNonNegative, RHSKnownNegative;
3305     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3306                    AC, CxtI, DT);
3307 
3308     if (LHSKnownNegative && RHSKnownNegative) {
3309       // The sign bit is set in both cases: this MUST overflow.
3310       // Create a simple add instruction, and insert it into the struct.
3311       return OverflowResult::AlwaysOverflows;
3312     }
3313 
3314     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3315       // The sign bit is clear in both cases: this CANNOT overflow.
3316       // Create a simple add instruction, and insert it into the struct.
3317       return OverflowResult::NeverOverflows;
3318     }
3319   }
3320 
3321   return OverflowResult::MayOverflow;
3322 }
3323 
3324 static OverflowResult computeOverflowForSignedAdd(
3325     Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL,
3326     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) {
3327   if (Add && Add->hasNoSignedWrap()) {
3328     return OverflowResult::NeverOverflows;
3329   }
3330 
3331   bool LHSKnownNonNegative, LHSKnownNegative;
3332   bool RHSKnownNonNegative, RHSKnownNegative;
3333   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3334                  AC, CxtI, DT);
3335   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3336                  AC, CxtI, DT);
3337 
3338   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3339       (LHSKnownNegative && RHSKnownNonNegative)) {
3340     // The sign bits are opposite: this CANNOT overflow.
3341     return OverflowResult::NeverOverflows;
3342   }
3343 
3344   // The remaining code needs Add to be available. Early returns if not so.
3345   if (!Add)
3346     return OverflowResult::MayOverflow;
3347 
3348   // If the sign of Add is the same as at least one of the operands, this add
3349   // CANNOT overflow. This is particularly useful when the sum is
3350   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3351   // operands.
3352   bool LHSOrRHSKnownNonNegative =
3353       (LHSKnownNonNegative || RHSKnownNonNegative);
3354   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3355   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3356     bool AddKnownNonNegative, AddKnownNegative;
3357     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3358                    /*Depth=*/0, AC, CxtI, DT);
3359     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3360         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3361       return OverflowResult::NeverOverflows;
3362     }
3363   }
3364 
3365   return OverflowResult::MayOverflow;
3366 }
3367 
3368 bool llvm::isOverflowIntrinsicNoWrap(IntrinsicInst *II, DominatorTree &DT) {
3369 #ifndef NDEBUG
3370   auto IID = II->getIntrinsicID();
3371   assert((IID == Intrinsic::sadd_with_overflow ||
3372           IID == Intrinsic::uadd_with_overflow ||
3373           IID == Intrinsic::ssub_with_overflow ||
3374           IID == Intrinsic::usub_with_overflow ||
3375           IID == Intrinsic::smul_with_overflow ||
3376           IID == Intrinsic::umul_with_overflow) &&
3377          "Not an overflow intrinsic!");
3378 #endif
3379 
3380   SmallVector<BranchInst *, 2> GuardingBranches;
3381   SmallVector<ExtractValueInst *, 2> Results;
3382 
3383   for (User *U : II->users()) {
3384     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3385       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3386 
3387       if (EVI->getIndices()[0] == 0)
3388         Results.push_back(EVI);
3389       else {
3390         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3391 
3392         for (auto *U : EVI->users())
3393           if (auto *B = dyn_cast<BranchInst>(U)) {
3394             assert(B->isConditional() && "How else is it using an i1?");
3395             GuardingBranches.push_back(B);
3396           }
3397       }
3398     } else {
3399       // We are using the aggregate directly in a way we don't want to analyze
3400       // here (storing it to a global, say).
3401       return false;
3402     }
3403   }
3404 
3405   auto AllUsesGuardedByBranch = [&](BranchInst *BI) {
3406     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3407     if (!NoWrapEdge.isSingleEdge())
3408       return false;
3409 
3410     // Check if all users of the add are provably no-wrap.
3411     for (auto *Result : Results) {
3412       // If the extractvalue itself is not executed on overflow, the we don't
3413       // need to check each use separately, since domination is transitive.
3414       if (DT.dominates(NoWrapEdge, Result->getParent()))
3415         continue;
3416 
3417       for (auto &RU : Result->uses())
3418         if (!DT.dominates(NoWrapEdge, RU))
3419           return false;
3420     }
3421 
3422     return true;
3423   };
3424 
3425   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3426 }
3427 
3428 
3429 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add,
3430                                                  const DataLayout &DL,
3431                                                  AssumptionCache *AC,
3432                                                  const Instruction *CxtI,
3433                                                  const DominatorTree *DT) {
3434   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3435                                        Add, DL, AC, CxtI, DT);
3436 }
3437 
3438 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS,
3439                                                  const DataLayout &DL,
3440                                                  AssumptionCache *AC,
3441                                                  const Instruction *CxtI,
3442                                                  const DominatorTree *DT) {
3443   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3444 }
3445 
3446 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3447   // A memory operation returns normally if it isn't volatile. A volatile
3448   // operation is allowed to trap.
3449   //
3450   // An atomic operation isn't guaranteed to return in a reasonable amount of
3451   // time because it's possible for another thread to interfere with it for an
3452   // arbitrary length of time, but programs aren't allowed to rely on that.
3453   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3454     return !LI->isVolatile();
3455   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3456     return !SI->isVolatile();
3457   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3458     return !CXI->isVolatile();
3459   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3460     return !RMWI->isVolatile();
3461   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3462     return !MII->isVolatile();
3463 
3464   // If there is no successor, then execution can't transfer to it.
3465   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3466     return !CRI->unwindsToCaller();
3467   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3468     return !CatchSwitch->unwindsToCaller();
3469   if (isa<ResumeInst>(I))
3470     return false;
3471   if (isa<ReturnInst>(I))
3472     return false;
3473 
3474   // Calls can throw, or contain an infinite loop, or kill the process.
3475   if (CallSite CS = CallSite(const_cast<Instruction*>(I))) {
3476     // Calls which don't write to arbitrary memory are safe.
3477     // FIXME: Ignoring infinite loops without any side-effects is too aggressive,
3478     // but it's consistent with other passes. See http://llvm.org/PR965 .
3479     // FIXME: This isn't aggressive enough; a call which only writes to a
3480     // global is guaranteed to return.
3481     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3482            match(I, m_Intrinsic<Intrinsic::assume>());
3483   }
3484 
3485   // Other instructions return normally.
3486   return true;
3487 }
3488 
3489 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3490                                                   const Loop *L) {
3491   // The loop header is guaranteed to be executed for every iteration.
3492   //
3493   // FIXME: Relax this constraint to cover all basic blocks that are
3494   // guaranteed to be executed at every iteration.
3495   if (I->getParent() != L->getHeader()) return false;
3496 
3497   for (const Instruction &LI : *L->getHeader()) {
3498     if (&LI == I) return true;
3499     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3500   }
3501   llvm_unreachable("Instruction not contained in its own parent basic block.");
3502 }
3503 
3504 bool llvm::propagatesFullPoison(const Instruction *I) {
3505   switch (I->getOpcode()) {
3506     case Instruction::Add:
3507     case Instruction::Sub:
3508     case Instruction::Xor:
3509     case Instruction::Trunc:
3510     case Instruction::BitCast:
3511     case Instruction::AddrSpaceCast:
3512       // These operations all propagate poison unconditionally. Note that poison
3513       // is not any particular value, so xor or subtraction of poison with
3514       // itself still yields poison, not zero.
3515       return true;
3516 
3517     case Instruction::AShr:
3518     case Instruction::SExt:
3519       // For these operations, one bit of the input is replicated across
3520       // multiple output bits. A replicated poison bit is still poison.
3521       return true;
3522 
3523     case Instruction::Shl: {
3524       // Left shift *by* a poison value is poison. The number of
3525       // positions to shift is unsigned, so no negative values are
3526       // possible there. Left shift by zero places preserves poison. So
3527       // it only remains to consider left shift of poison by a positive
3528       // number of places.
3529       //
3530       // A left shift by a positive number of places leaves the lowest order bit
3531       // non-poisoned. However, if such a shift has a no-wrap flag, then we can
3532       // make the poison operand violate that flag, yielding a fresh full-poison
3533       // value.
3534       auto *OBO = cast<OverflowingBinaryOperator>(I);
3535       return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap();
3536     }
3537 
3538     case Instruction::Mul: {
3539       // A multiplication by zero yields a non-poison zero result, so we need to
3540       // rule out zero as an operand. Conservatively, multiplication by a
3541       // non-zero constant is not multiplication by zero.
3542       //
3543       // Multiplication by a non-zero constant can leave some bits
3544       // non-poisoned. For example, a multiplication by 2 leaves the lowest
3545       // order bit unpoisoned. So we need to consider that.
3546       //
3547       // Multiplication by 1 preserves poison. If the multiplication has a
3548       // no-wrap flag, then we can make the poison operand violate that flag
3549       // when multiplied by any integer other than 0 and 1.
3550       auto *OBO = cast<OverflowingBinaryOperator>(I);
3551       if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) {
3552         for (Value *V : OBO->operands()) {
3553           if (auto *CI = dyn_cast<ConstantInt>(V)) {
3554             // A ConstantInt cannot yield poison, so we can assume that it is
3555             // the other operand that is poison.
3556             return !CI->isZero();
3557           }
3558         }
3559       }
3560       return false;
3561     }
3562 
3563     case Instruction::ICmp:
3564       // Comparing poison with any value yields poison.  This is why, for
3565       // instance, x s< (x +nsw 1) can be folded to true.
3566       return true;
3567 
3568     case Instruction::GetElementPtr:
3569       // A GEP implicitly represents a sequence of additions, subtractions,
3570       // truncations, sign extensions and multiplications. The multiplications
3571       // are by the non-zero sizes of some set of types, so we do not have to be
3572       // concerned with multiplication by zero. If the GEP is in-bounds, then
3573       // these operations are implicitly no-signed-wrap so poison is propagated
3574       // by the arguments above for Add, Sub, Trunc, SExt and Mul.
3575       return cast<GEPOperator>(I)->isInBounds();
3576 
3577     default:
3578       return false;
3579   }
3580 }
3581 
3582 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3583   switch (I->getOpcode()) {
3584     case Instruction::Store:
3585       return cast<StoreInst>(I)->getPointerOperand();
3586 
3587     case Instruction::Load:
3588       return cast<LoadInst>(I)->getPointerOperand();
3589 
3590     case Instruction::AtomicCmpXchg:
3591       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3592 
3593     case Instruction::AtomicRMW:
3594       return cast<AtomicRMWInst>(I)->getPointerOperand();
3595 
3596     case Instruction::UDiv:
3597     case Instruction::SDiv:
3598     case Instruction::URem:
3599     case Instruction::SRem:
3600       return I->getOperand(1);
3601 
3602     default:
3603       return nullptr;
3604   }
3605 }
3606 
3607 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3608   // We currently only look for uses of poison values within the same basic
3609   // block, as that makes it easier to guarantee that the uses will be
3610   // executed given that PoisonI is executed.
3611   //
3612   // FIXME: Expand this to consider uses beyond the same basic block. To do
3613   // this, look out for the distinction between post-dominance and strong
3614   // post-dominance.
3615   const BasicBlock *BB = PoisonI->getParent();
3616 
3617   // Set of instructions that we have proved will yield poison if PoisonI
3618   // does.
3619   SmallSet<const Value *, 16> YieldsPoison;
3620   SmallSet<const BasicBlock *, 4> Visited;
3621   YieldsPoison.insert(PoisonI);
3622   Visited.insert(PoisonI->getParent());
3623 
3624   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3625 
3626   unsigned Iter = 0;
3627   while (Iter++ < MaxDepth) {
3628     for (auto &I : make_range(Begin, End)) {
3629       if (&I != PoisonI) {
3630         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3631         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3632           return true;
3633         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3634           return false;
3635       }
3636 
3637       // Mark poison that propagates from I through uses of I.
3638       if (YieldsPoison.count(&I)) {
3639         for (const User *User : I.users()) {
3640           const Instruction *UserI = cast<Instruction>(User);
3641           if (propagatesFullPoison(UserI))
3642             YieldsPoison.insert(User);
3643         }
3644       }
3645     }
3646 
3647     if (auto *NextBB = BB->getSingleSuccessor()) {
3648       if (Visited.insert(NextBB).second) {
3649         BB = NextBB;
3650         Begin = BB->getFirstNonPHI()->getIterator();
3651         End = BB->end();
3652         continue;
3653       }
3654     }
3655 
3656     break;
3657   };
3658   return false;
3659 }
3660 
3661 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) {
3662   if (FMF.noNaNs())
3663     return true;
3664 
3665   if (auto *C = dyn_cast<ConstantFP>(V))
3666     return !C->isNaN();
3667   return false;
3668 }
3669 
3670 static bool isKnownNonZero(Value *V) {
3671   if (auto *C = dyn_cast<ConstantFP>(V))
3672     return !C->isZero();
3673   return false;
3674 }
3675 
3676 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
3677                                               FastMathFlags FMF,
3678                                               Value *CmpLHS, Value *CmpRHS,
3679                                               Value *TrueVal, Value *FalseVal,
3680                                               Value *&LHS, Value *&RHS) {
3681   LHS = CmpLHS;
3682   RHS = CmpRHS;
3683 
3684   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
3685   // return inconsistent results between implementations.
3686   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
3687   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
3688   // Therefore we behave conservatively and only proceed if at least one of the
3689   // operands is known to not be zero, or if we don't care about signed zeroes.
3690   switch (Pred) {
3691   default: break;
3692   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
3693   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
3694     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
3695         !isKnownNonZero(CmpRHS))
3696       return {SPF_UNKNOWN, SPNB_NA, false};
3697   }
3698 
3699   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
3700   bool Ordered = false;
3701 
3702   // When given one NaN and one non-NaN input:
3703   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
3704   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
3705   //     ordered comparison fails), which could be NaN or non-NaN.
3706   // so here we discover exactly what NaN behavior is required/accepted.
3707   if (CmpInst::isFPPredicate(Pred)) {
3708     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
3709     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
3710 
3711     if (LHSSafe && RHSSafe) {
3712       // Both operands are known non-NaN.
3713       NaNBehavior = SPNB_RETURNS_ANY;
3714     } else if (CmpInst::isOrdered(Pred)) {
3715       // An ordered comparison will return false when given a NaN, so it
3716       // returns the RHS.
3717       Ordered = true;
3718       if (LHSSafe)
3719         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
3720         NaNBehavior = SPNB_RETURNS_NAN;
3721       else if (RHSSafe)
3722         NaNBehavior = SPNB_RETURNS_OTHER;
3723       else
3724         // Completely unsafe.
3725         return {SPF_UNKNOWN, SPNB_NA, false};
3726     } else {
3727       Ordered = false;
3728       // An unordered comparison will return true when given a NaN, so it
3729       // returns the LHS.
3730       if (LHSSafe)
3731         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
3732         NaNBehavior = SPNB_RETURNS_OTHER;
3733       else if (RHSSafe)
3734         NaNBehavior = SPNB_RETURNS_NAN;
3735       else
3736         // Completely unsafe.
3737         return {SPF_UNKNOWN, SPNB_NA, false};
3738     }
3739   }
3740 
3741   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
3742     std::swap(CmpLHS, CmpRHS);
3743     Pred = CmpInst::getSwappedPredicate(Pred);
3744     if (NaNBehavior == SPNB_RETURNS_NAN)
3745       NaNBehavior = SPNB_RETURNS_OTHER;
3746     else if (NaNBehavior == SPNB_RETURNS_OTHER)
3747       NaNBehavior = SPNB_RETURNS_NAN;
3748     Ordered = !Ordered;
3749   }
3750 
3751   // ([if]cmp X, Y) ? X : Y
3752   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
3753     switch (Pred) {
3754     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
3755     case ICmpInst::ICMP_UGT:
3756     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
3757     case ICmpInst::ICMP_SGT:
3758     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
3759     case ICmpInst::ICMP_ULT:
3760     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
3761     case ICmpInst::ICMP_SLT:
3762     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
3763     case FCmpInst::FCMP_UGT:
3764     case FCmpInst::FCMP_UGE:
3765     case FCmpInst::FCMP_OGT:
3766     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
3767     case FCmpInst::FCMP_ULT:
3768     case FCmpInst::FCMP_ULE:
3769     case FCmpInst::FCMP_OLT:
3770     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
3771     }
3772   }
3773 
3774   if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) {
3775     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
3776         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
3777 
3778       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
3779       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
3780       if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) {
3781         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3782       }
3783 
3784       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
3785       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
3786       if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) {
3787         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
3788       }
3789     }
3790 
3791     // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C)
3792     if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) {
3793       if (Pred == ICmpInst::ICMP_SGT && C1->getType() == C2->getType() &&
3794           ~C1->getValue() == C2->getValue() &&
3795           (match(TrueVal, m_Not(m_Specific(CmpLHS))) ||
3796            match(CmpLHS, m_Not(m_Specific(TrueVal))))) {
3797         LHS = TrueVal;
3798         RHS = FalseVal;
3799         return {SPF_SMIN, SPNB_NA, false};
3800       }
3801     }
3802   }
3803 
3804   // TODO: (X > 4) ? X : 5   -->  (X >= 5) ? X : 5  -->  MAX(X, 5)
3805 
3806   return {SPF_UNKNOWN, SPNB_NA, false};
3807 }
3808 
3809 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
3810                               Instruction::CastOps *CastOp) {
3811   CastInst *CI = dyn_cast<CastInst>(V1);
3812   Constant *C = dyn_cast<Constant>(V2);
3813   if (!CI)
3814     return nullptr;
3815   *CastOp = CI->getOpcode();
3816 
3817   if (auto *CI2 = dyn_cast<CastInst>(V2)) {
3818     // If V1 and V2 are both the same cast from the same type, we can look
3819     // through V1.
3820     if (CI2->getOpcode() == CI->getOpcode() &&
3821         CI2->getSrcTy() == CI->getSrcTy())
3822       return CI2->getOperand(0);
3823     return nullptr;
3824   } else if (!C) {
3825     return nullptr;
3826   }
3827 
3828   Constant *CastedTo = nullptr;
3829 
3830   if (isa<ZExtInst>(CI) && CmpI->isUnsigned())
3831     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy());
3832 
3833   if (isa<SExtInst>(CI) && CmpI->isSigned())
3834     CastedTo = ConstantExpr::getTrunc(C, CI->getSrcTy(), true);
3835 
3836   if (isa<TruncInst>(CI))
3837     CastedTo = ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned());
3838 
3839   if (isa<FPTruncInst>(CI))
3840     CastedTo = ConstantExpr::getFPExtend(C, CI->getSrcTy(), true);
3841 
3842   if (isa<FPExtInst>(CI))
3843     CastedTo = ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true);
3844 
3845   if (isa<FPToUIInst>(CI))
3846     CastedTo = ConstantExpr::getUIToFP(C, CI->getSrcTy(), true);
3847 
3848   if (isa<FPToSIInst>(CI))
3849     CastedTo = ConstantExpr::getSIToFP(C, CI->getSrcTy(), true);
3850 
3851   if (isa<UIToFPInst>(CI))
3852     CastedTo = ConstantExpr::getFPToUI(C, CI->getSrcTy(), true);
3853 
3854   if (isa<SIToFPInst>(CI))
3855     CastedTo = ConstantExpr::getFPToSI(C, CI->getSrcTy(), true);
3856 
3857   if (!CastedTo)
3858     return nullptr;
3859 
3860   Constant *CastedBack =
3861       ConstantExpr::getCast(CI->getOpcode(), CastedTo, C->getType(), true);
3862   // Make sure the cast doesn't lose any information.
3863   if (CastedBack != C)
3864     return nullptr;
3865 
3866   return CastedTo;
3867 }
3868 
3869 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
3870                                              Instruction::CastOps *CastOp) {
3871   SelectInst *SI = dyn_cast<SelectInst>(V);
3872   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
3873 
3874   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
3875   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
3876 
3877   CmpInst::Predicate Pred = CmpI->getPredicate();
3878   Value *CmpLHS = CmpI->getOperand(0);
3879   Value *CmpRHS = CmpI->getOperand(1);
3880   Value *TrueVal = SI->getTrueValue();
3881   Value *FalseVal = SI->getFalseValue();
3882   FastMathFlags FMF;
3883   if (isa<FPMathOperator>(CmpI))
3884     FMF = CmpI->getFastMathFlags();
3885 
3886   // Bail out early.
3887   if (CmpI->isEquality())
3888     return {SPF_UNKNOWN, SPNB_NA, false};
3889 
3890   // Deal with type mismatches.
3891   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
3892     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
3893       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3894                                   cast<CastInst>(TrueVal)->getOperand(0), C,
3895                                   LHS, RHS);
3896     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
3897       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
3898                                   C, cast<CastInst>(FalseVal)->getOperand(0),
3899                                   LHS, RHS);
3900   }
3901   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
3902                               LHS, RHS);
3903 }
3904 
3905 ConstantRange llvm::getConstantRangeFromMetadata(MDNode &Ranges) {
3906   const unsigned NumRanges = Ranges.getNumOperands() / 2;
3907   assert(NumRanges >= 1 && "Must have at least one range!");
3908   assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
3909 
3910   auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
3911   auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
3912 
3913   ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
3914 
3915   for (unsigned i = 1; i < NumRanges; ++i) {
3916     auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
3917     auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
3918 
3919     // Note: unionWith will potentially create a range that contains values not
3920     // contained in any of the original N ranges.
3921     CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
3922   }
3923 
3924   return CR;
3925 }
3926 
3927 /// Return true if "icmp Pred LHS RHS" is always true.
3928 static bool isTruePredicate(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
3929                             const DataLayout &DL, unsigned Depth,
3930                             AssumptionCache *AC, const Instruction *CxtI,
3931                             const DominatorTree *DT) {
3932   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
3933   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
3934     return true;
3935 
3936   switch (Pred) {
3937   default:
3938     return false;
3939 
3940   case CmpInst::ICMP_SLE: {
3941     const APInt *C;
3942 
3943     // LHS s<= LHS +_{nsw} C   if C >= 0
3944     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
3945       return !C->isNegative();
3946     return false;
3947   }
3948 
3949   case CmpInst::ICMP_ULE: {
3950     const APInt *C;
3951 
3952     // LHS u<= LHS +_{nuw} C   for any C
3953     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
3954       return true;
3955 
3956     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
3957     auto MatchNUWAddsToSameValue = [&](Value *A, Value *B, Value *&X,
3958                                        const APInt *&CA, const APInt *&CB) {
3959       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
3960           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
3961         return true;
3962 
3963       // If X & C == 0 then (X | C) == X +_{nuw} C
3964       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
3965           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
3966         unsigned BitWidth = CA->getBitWidth();
3967         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3968         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
3969 
3970         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
3971           return true;
3972       }
3973 
3974       return false;
3975     };
3976 
3977     Value *X;
3978     const APInt *CLHS, *CRHS;
3979     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
3980       return CLHS->ule(*CRHS);
3981 
3982     return false;
3983   }
3984   }
3985 }
3986 
3987 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
3988 /// ALHS ARHS" is true.  Otherwise, return None.
3989 static Optional<bool>
3990 isImpliedCondOperands(CmpInst::Predicate Pred, Value *ALHS, Value *ARHS,
3991                       Value *BLHS, Value *BRHS, const DataLayout &DL,
3992                       unsigned Depth, AssumptionCache *AC,
3993                       const Instruction *CxtI, const DominatorTree *DT) {
3994   switch (Pred) {
3995   default:
3996     return None;
3997 
3998   case CmpInst::ICMP_SLT:
3999   case CmpInst::ICMP_SLE:
4000     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4001                         DT) &&
4002         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4003       return true;
4004     return None;
4005 
4006   case CmpInst::ICMP_ULT:
4007   case CmpInst::ICMP_ULE:
4008     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4009                         DT) &&
4010         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4011       return true;
4012     return None;
4013   }
4014 }
4015 
4016 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4017 /// when the operands match, but are swapped.
4018 static bool isMatchingOps(Value *ALHS, Value *ARHS, Value *BLHS, Value *BRHS,
4019                           bool &IsSwappedOps) {
4020 
4021   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4022   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4023   return IsMatchingOps || IsSwappedOps;
4024 }
4025 
4026 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4027 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4028 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4029 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4030                                                     Value *ALHS, Value *ARHS,
4031                                                     CmpInst::Predicate BPred,
4032                                                     Value *BLHS, Value *BRHS,
4033                                                     bool IsSwappedOps) {
4034   // Canonicalize the operands so they're matching.
4035   if (IsSwappedOps) {
4036     std::swap(BLHS, BRHS);
4037     BPred = ICmpInst::getSwappedPredicate(BPred);
4038   }
4039   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4040     return true;
4041   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4042     return false;
4043 
4044   return None;
4045 }
4046 
4047 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4048 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4049 /// C2" is false.  Otherwise, return None if we can't infer anything.
4050 static Optional<bool>
4051 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, Value *ALHS,
4052                                  ConstantInt *C1, CmpInst::Predicate BPred,
4053                                  Value *BLHS, ConstantInt *C2) {
4054   assert(ALHS == BLHS && "LHS operands must match.");
4055   ConstantRange DomCR =
4056       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4057   ConstantRange CR =
4058       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4059   ConstantRange Intersection = DomCR.intersectWith(CR);
4060   ConstantRange Difference = DomCR.difference(CR);
4061   if (Intersection.isEmptySet())
4062     return false;
4063   if (Difference.isEmptySet())
4064     return true;
4065   return None;
4066 }
4067 
4068 Optional<bool> llvm::isImpliedCondition(Value *LHS, Value *RHS,
4069                                         const DataLayout &DL, bool InvertAPred,
4070                                         unsigned Depth, AssumptionCache *AC,
4071                                         const Instruction *CxtI,
4072                                         const DominatorTree *DT) {
4073   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4074   if (LHS->getType() != RHS->getType())
4075     return None;
4076 
4077   Type *OpTy = LHS->getType();
4078   assert(OpTy->getScalarType()->isIntegerTy(1));
4079 
4080   // LHS ==> RHS by definition
4081   if (!InvertAPred && LHS == RHS)
4082     return true;
4083 
4084   if (OpTy->isVectorTy())
4085     // TODO: extending the code below to handle vectors
4086     return None;
4087   assert(OpTy->isIntegerTy(1) && "implied by above");
4088 
4089   ICmpInst::Predicate APred, BPred;
4090   Value *ALHS, *ARHS;
4091   Value *BLHS, *BRHS;
4092 
4093   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4094       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4095     return None;
4096 
4097   if (InvertAPred)
4098     APred = CmpInst::getInversePredicate(APred);
4099 
4100   // Can we infer anything when the two compares have matching operands?
4101   bool IsSwappedOps;
4102   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4103     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4104             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4105       return Implication;
4106     // No amount of additional analysis will infer the second condition, so
4107     // early exit.
4108     return None;
4109   }
4110 
4111   // Can we infer anything when the LHS operands match and the RHS operands are
4112   // constants (not necessarily matching)?
4113   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4114     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4115             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4116             cast<ConstantInt>(BRHS)))
4117       return Implication;
4118     // No amount of additional analysis will infer the second condition, so
4119     // early exit.
4120     return None;
4121   }
4122 
4123   if (APred == BPred)
4124     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4125                                  CxtI, DT);
4126 
4127   return None;
4128 }
4129