1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <cassert> 74 #include <cstdint> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 // According to the LangRef, branching on a poison condition is absolutely 86 // immediate full UB. However, historically we haven't implemented that 87 // consistently as we have an important transformation (non-trivial unswitch) 88 // which introduces instances of branch on poison/undef to otherwise well 89 // defined programs. This flag exists to let us test optimization benefit 90 // of exploiting the specified behavior (in combination with enabling the 91 // unswitch fix.) 92 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 93 cl::Hidden, cl::init(false)); 94 95 96 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 97 /// returns the element type's bitwidth. 98 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 99 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 100 return BitWidth; 101 102 return DL.getPointerTypeSizeInBits(Ty); 103 } 104 105 namespace { 106 107 // Simplifying using an assume can only be done in a particular control-flow 108 // context (the context instruction provides that context). If an assume and 109 // the context instruction are not in the same block then the DT helps in 110 // figuring out if we can use it. 111 struct Query { 112 const DataLayout &DL; 113 AssumptionCache *AC; 114 const Instruction *CxtI; 115 const DominatorTree *DT; 116 117 // Unlike the other analyses, this may be a nullptr because not all clients 118 // provide it currently. 119 OptimizationRemarkEmitter *ORE; 120 121 /// If true, it is safe to use metadata during simplification. 122 InstrInfoQuery IIQ; 123 124 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 125 const DominatorTree *DT, bool UseInstrInfo, 126 OptimizationRemarkEmitter *ORE = nullptr) 127 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 128 }; 129 130 } // end anonymous namespace 131 132 // Given the provided Value and, potentially, a context instruction, return 133 // the preferred context instruction (if any). 134 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 135 // If we've been provided with a context instruction, then use that (provided 136 // it has been inserted). 137 if (CxtI && CxtI->getParent()) 138 return CxtI; 139 140 // If the value is really an already-inserted instruction, then use that. 141 CxtI = dyn_cast<Instruction>(V); 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 return nullptr; 146 } 147 148 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 149 // If we've been provided with a context instruction, then use that (provided 150 // it has been inserted). 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 // If the value is really an already-inserted instruction, then use that. 155 CxtI = dyn_cast<Instruction>(V1); 156 if (CxtI && CxtI->getParent()) 157 return CxtI; 158 159 CxtI = dyn_cast<Instruction>(V2); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (isa<ScalableVectorType>(Shuf->getType())) 172 return false; 173 174 int NumElts = 175 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 176 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 177 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 178 if (DemandedElts.isZero()) 179 return true; 180 // Simple case of a shuffle with zeroinitializer. 181 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 182 DemandedLHS.setBit(0); 183 return true; 184 } 185 for (int i = 0; i != NumMaskElts; ++i) { 186 if (!DemandedElts[i]) 187 continue; 188 int M = Shuf->getMaskValue(i); 189 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 190 191 // For undef elements, we don't know anything about the common state of 192 // the shuffle result. 193 if (M == -1) 194 return false; 195 if (M < NumElts) 196 DemandedLHS.setBit(M % NumElts); 197 else 198 DemandedRHS.setBit(M % NumElts); 199 } 200 201 return true; 202 } 203 204 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 205 KnownBits &Known, unsigned Depth, const Query &Q); 206 207 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 208 const Query &Q) { 209 // FIXME: We currently have no way to represent the DemandedElts of a scalable 210 // vector 211 if (isa<ScalableVectorType>(V->getType())) { 212 Known.resetAll(); 213 return; 214 } 215 216 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 217 APInt DemandedElts = 218 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 219 computeKnownBits(V, DemandedElts, Known, Depth, Q); 220 } 221 222 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 223 const DataLayout &DL, unsigned Depth, 224 AssumptionCache *AC, const Instruction *CxtI, 225 const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 232 KnownBits &Known, const DataLayout &DL, 233 unsigned Depth, AssumptionCache *AC, 234 const Instruction *CxtI, const DominatorTree *DT, 235 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 236 ::computeKnownBits(V, DemandedElts, Known, Depth, 237 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 238 } 239 240 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 241 unsigned Depth, const Query &Q); 242 243 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT, 250 OptimizationRemarkEmitter *ORE, 251 bool UseInstrInfo) { 252 return ::computeKnownBits( 253 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 257 const DataLayout &DL, unsigned Depth, 258 AssumptionCache *AC, const Instruction *CxtI, 259 const DominatorTree *DT, 260 OptimizationRemarkEmitter *ORE, 261 bool UseInstrInfo) { 262 return ::computeKnownBits( 263 V, DemandedElts, Depth, 264 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 265 } 266 267 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 268 const DataLayout &DL, AssumptionCache *AC, 269 const Instruction *CxtI, const DominatorTree *DT, 270 bool UseInstrInfo) { 271 assert(LHS->getType() == RHS->getType() && 272 "LHS and RHS should have the same type"); 273 assert(LHS->getType()->isIntOrIntVectorTy() && 274 "LHS and RHS should be integers"); 275 // Look for an inverted mask: (X & ~M) op (Y & M). 276 { 277 Value *M; 278 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(RHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 282 match(LHS, m_c_And(m_Specific(M), m_Value()))) 283 return true; 284 } 285 286 // X op (Y & ~X) 287 if (match(RHS, m_c_And(m_Not(m_Specific(LHS)), m_Value())) || 288 match(LHS, m_c_And(m_Not(m_Specific(RHS)), m_Value()))) 289 return true; 290 291 // X op ((X & Y) ^ Y) -- this is the canonical form of the previous pattern 292 // for constant Y. 293 Value *Y; 294 if (match(RHS, 295 m_c_Xor(m_c_And(m_Specific(LHS), m_Value(Y)), m_Deferred(Y))) || 296 match(LHS, m_c_Xor(m_c_And(m_Specific(RHS), m_Value(Y)), m_Deferred(Y)))) 297 return true; 298 299 // Look for: (A & B) op ~(A | B) 300 { 301 Value *A, *B; 302 if (match(LHS, m_And(m_Value(A), m_Value(B))) && 303 match(RHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 304 return true; 305 if (match(RHS, m_And(m_Value(A), m_Value(B))) && 306 match(LHS, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 307 return true; 308 } 309 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 310 KnownBits LHSKnown(IT->getBitWidth()); 311 KnownBits RHSKnown(IT->getBitWidth()); 312 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 313 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 314 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 315 } 316 317 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 318 return !I->user_empty() && all_of(I->users(), [](const User *U) { 319 ICmpInst::Predicate P; 320 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 321 }); 322 } 323 324 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 325 const Query &Q); 326 327 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 328 bool OrZero, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 return ::isKnownToBeAPowerOfTwo( 332 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 333 } 334 335 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 336 unsigned Depth, const Query &Q); 337 338 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 339 340 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 341 AssumptionCache *AC, const Instruction *CxtI, 342 const DominatorTree *DT, bool UseInstrInfo) { 343 return ::isKnownNonZero(V, Depth, 344 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 345 } 346 347 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 348 unsigned Depth, AssumptionCache *AC, 349 const Instruction *CxtI, const DominatorTree *DT, 350 bool UseInstrInfo) { 351 KnownBits Known = 352 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 353 return Known.isNonNegative(); 354 } 355 356 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 357 AssumptionCache *AC, const Instruction *CxtI, 358 const DominatorTree *DT, bool UseInstrInfo) { 359 if (auto *CI = dyn_cast<ConstantInt>(V)) 360 return CI->getValue().isStrictlyPositive(); 361 362 // TODO: We'd doing two recursive queries here. We should factor this such 363 // that only a single query is needed. 364 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 365 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 366 } 367 368 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 KnownBits Known = 372 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 373 return Known.isNegative(); 374 } 375 376 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 377 const Query &Q); 378 379 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 380 const DataLayout &DL, AssumptionCache *AC, 381 const Instruction *CxtI, const DominatorTree *DT, 382 bool UseInstrInfo) { 383 return ::isKnownNonEqual(V1, V2, 0, 384 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 385 UseInstrInfo, /*ORE=*/nullptr)); 386 } 387 388 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 389 const Query &Q); 390 391 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 392 const DataLayout &DL, unsigned Depth, 393 AssumptionCache *AC, const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::MaskedValueIsZero( 396 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 400 unsigned Depth, const Query &Q); 401 402 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 403 const Query &Q) { 404 // FIXME: We currently have no way to represent the DemandedElts of a scalable 405 // vector 406 if (isa<ScalableVectorType>(V->getType())) 407 return 1; 408 409 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 410 APInt DemandedElts = 411 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 412 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 413 } 414 415 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 416 unsigned Depth, AssumptionCache *AC, 417 const Instruction *CxtI, 418 const DominatorTree *DT, bool UseInstrInfo) { 419 return ::ComputeNumSignBits( 420 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 421 } 422 423 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 424 unsigned Depth, AssumptionCache *AC, 425 const Instruction *CxtI, 426 const DominatorTree *DT) { 427 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 428 return V->getType()->getScalarSizeInBits() - SignBits + 1; 429 } 430 431 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 432 bool NSW, const APInt &DemandedElts, 433 KnownBits &KnownOut, KnownBits &Known2, 434 unsigned Depth, const Query &Q) { 435 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 436 437 // If one operand is unknown and we have no nowrap information, 438 // the result will be unknown independently of the second operand. 439 if (KnownOut.isUnknown() && !NSW) 440 return; 441 442 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 443 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 444 } 445 446 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 447 const APInt &DemandedElts, KnownBits &Known, 448 KnownBits &Known2, unsigned Depth, 449 const Query &Q) { 450 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 451 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 452 453 bool isKnownNegative = false; 454 bool isKnownNonNegative = false; 455 // If the multiplication is known not to overflow, compute the sign bit. 456 if (NSW) { 457 if (Op0 == Op1) { 458 // The product of a number with itself is non-negative. 459 isKnownNonNegative = true; 460 } else { 461 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 462 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 463 bool isKnownNegativeOp1 = Known.isNegative(); 464 bool isKnownNegativeOp0 = Known2.isNegative(); 465 // The product of two numbers with the same sign is non-negative. 466 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 467 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 468 // The product of a negative number and a non-negative number is either 469 // negative or zero. 470 if (!isKnownNonNegative) 471 isKnownNegative = 472 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 473 Known2.isNonZero()) || 474 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 475 } 476 } 477 478 bool SelfMultiply = Op0 == Op1; 479 // TODO: SelfMultiply can be poison, but not undef. 480 if (SelfMultiply) 481 SelfMultiply &= 482 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 483 Known = KnownBits::mul(Known, Known2, SelfMultiply); 484 485 // Only make use of no-wrap flags if we failed to compute the sign bit 486 // directly. This matters if the multiplication always overflows, in 487 // which case we prefer to follow the result of the direct computation, 488 // though as the program is invoking undefined behaviour we can choose 489 // whatever we like here. 490 if (isKnownNonNegative && !Known.isNegative()) 491 Known.makeNonNegative(); 492 else if (isKnownNegative && !Known.isNonNegative()) 493 Known.makeNegative(); 494 } 495 496 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 497 KnownBits &Known) { 498 unsigned BitWidth = Known.getBitWidth(); 499 unsigned NumRanges = Ranges.getNumOperands() / 2; 500 assert(NumRanges >= 1); 501 502 Known.Zero.setAllBits(); 503 Known.One.setAllBits(); 504 505 for (unsigned i = 0; i < NumRanges; ++i) { 506 ConstantInt *Lower = 507 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 508 ConstantInt *Upper = 509 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 510 ConstantRange Range(Lower->getValue(), Upper->getValue()); 511 512 // The first CommonPrefixBits of all values in Range are equal. 513 unsigned CommonPrefixBits = 514 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 515 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 516 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 517 Known.One &= UnsignedMax & Mask; 518 Known.Zero &= ~UnsignedMax & Mask; 519 } 520 } 521 522 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 523 SmallVector<const Value *, 16> WorkSet(1, I); 524 SmallPtrSet<const Value *, 32> Visited; 525 SmallPtrSet<const Value *, 16> EphValues; 526 527 // The instruction defining an assumption's condition itself is always 528 // considered ephemeral to that assumption (even if it has other 529 // non-ephemeral users). See r246696's test case for an example. 530 if (is_contained(I->operands(), E)) 531 return true; 532 533 while (!WorkSet.empty()) { 534 const Value *V = WorkSet.pop_back_val(); 535 if (!Visited.insert(V).second) 536 continue; 537 538 // If all uses of this value are ephemeral, then so is this value. 539 if (llvm::all_of(V->users(), [&](const User *U) { 540 return EphValues.count(U); 541 })) { 542 if (V == E) 543 return true; 544 545 if (V == I || (isa<Instruction>(V) && 546 !cast<Instruction>(V)->mayHaveSideEffects() && 547 !cast<Instruction>(V)->isTerminator())) { 548 EphValues.insert(V); 549 if (const User *U = dyn_cast<User>(V)) 550 append_range(WorkSet, U->operands()); 551 } 552 } 553 } 554 555 return false; 556 } 557 558 // Is this an intrinsic that cannot be speculated but also cannot trap? 559 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 560 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 561 return CI->isAssumeLikeIntrinsic(); 562 563 return false; 564 } 565 566 bool llvm::isValidAssumeForContext(const Instruction *Inv, 567 const Instruction *CxtI, 568 const DominatorTree *DT) { 569 // There are two restrictions on the use of an assume: 570 // 1. The assume must dominate the context (or the control flow must 571 // reach the assume whenever it reaches the context). 572 // 2. The context must not be in the assume's set of ephemeral values 573 // (otherwise we will use the assume to prove that the condition 574 // feeding the assume is trivially true, thus causing the removal of 575 // the assume). 576 577 if (Inv->getParent() == CxtI->getParent()) { 578 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 579 // in the BB. 580 if (Inv->comesBefore(CxtI)) 581 return true; 582 583 // Don't let an assume affect itself - this would cause the problems 584 // `isEphemeralValueOf` is trying to prevent, and it would also make 585 // the loop below go out of bounds. 586 if (Inv == CxtI) 587 return false; 588 589 // The context comes first, but they're both in the same block. 590 // Make sure there is nothing in between that might interrupt 591 // the control flow, not even CxtI itself. 592 // We limit the scan distance between the assume and its context instruction 593 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 594 // it can be adjusted if needed (could be turned into a cl::opt). 595 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 596 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 597 return false; 598 599 return !isEphemeralValueOf(Inv, CxtI); 600 } 601 602 // Inv and CxtI are in different blocks. 603 if (DT) { 604 if (DT->dominates(Inv, CxtI)) 605 return true; 606 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 607 // We don't have a DT, but this trivially dominates. 608 return true; 609 } 610 611 return false; 612 } 613 614 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 615 // v u> y implies v != 0. 616 if (Pred == ICmpInst::ICMP_UGT) 617 return true; 618 619 // Special-case v != 0 to also handle v != null. 620 if (Pred == ICmpInst::ICMP_NE) 621 return match(RHS, m_Zero()); 622 623 // All other predicates - rely on generic ConstantRange handling. 624 const APInt *C; 625 if (!match(RHS, m_APInt(C))) 626 return false; 627 628 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 629 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 630 } 631 632 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 633 // Use of assumptions is context-sensitive. If we don't have a context, we 634 // cannot use them! 635 if (!Q.AC || !Q.CxtI) 636 return false; 637 638 if (Q.CxtI && V->getType()->isPointerTy()) { 639 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 640 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 641 V->getType()->getPointerAddressSpace())) 642 AttrKinds.push_back(Attribute::Dereferenceable); 643 644 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 645 return true; 646 } 647 648 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 649 if (!AssumeVH) 650 continue; 651 CallInst *I = cast<CallInst>(AssumeVH); 652 assert(I->getFunction() == Q.CxtI->getFunction() && 653 "Got assumption for the wrong function!"); 654 655 // Warning: This loop can end up being somewhat performance sensitive. 656 // We're running this loop for once for each value queried resulting in a 657 // runtime of ~O(#assumes * #values). 658 659 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 660 "must be an assume intrinsic"); 661 662 Value *RHS; 663 CmpInst::Predicate Pred; 664 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 665 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 666 return false; 667 668 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 669 return true; 670 } 671 672 return false; 673 } 674 675 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 676 unsigned Depth, const Query &Q) { 677 // Use of assumptions is context-sensitive. If we don't have a context, we 678 // cannot use them! 679 if (!Q.AC || !Q.CxtI) 680 return; 681 682 unsigned BitWidth = Known.getBitWidth(); 683 684 // Refine Known set if the pointer alignment is set by assume bundles. 685 if (V->getType()->isPointerTy()) { 686 if (RetainedKnowledge RK = getKnowledgeValidInContext( 687 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 688 if (isPowerOf2_64(RK.ArgValue)) 689 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 690 } 691 } 692 693 // Note that the patterns below need to be kept in sync with the code 694 // in AssumptionCache::updateAffectedValues. 695 696 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 697 if (!AssumeVH) 698 continue; 699 CallInst *I = cast<CallInst>(AssumeVH); 700 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 701 "Got assumption for the wrong function!"); 702 703 // Warning: This loop can end up being somewhat performance sensitive. 704 // We're running this loop for once for each value queried resulting in a 705 // runtime of ~O(#assumes * #values). 706 707 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 708 "must be an assume intrinsic"); 709 710 Value *Arg = I->getArgOperand(0); 711 712 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 713 assert(BitWidth == 1 && "assume operand is not i1?"); 714 Known.setAllOnes(); 715 return; 716 } 717 if (match(Arg, m_Not(m_Specific(V))) && 718 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 719 assert(BitWidth == 1 && "assume operand is not i1?"); 720 Known.setAllZero(); 721 return; 722 } 723 724 // The remaining tests are all recursive, so bail out if we hit the limit. 725 if (Depth == MaxAnalysisRecursionDepth) 726 continue; 727 728 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 729 if (!Cmp) 730 continue; 731 732 // We are attempting to compute known bits for the operands of an assume. 733 // Do not try to use other assumptions for those recursive calls because 734 // that can lead to mutual recursion and a compile-time explosion. 735 // An example of the mutual recursion: computeKnownBits can call 736 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 737 // and so on. 738 Query QueryNoAC = Q; 739 QueryNoAC.AC = nullptr; 740 741 // Note that ptrtoint may change the bitwidth. 742 Value *A, *B; 743 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 744 745 CmpInst::Predicate Pred; 746 uint64_t C; 747 switch (Cmp->getPredicate()) { 748 default: 749 break; 750 case ICmpInst::ICMP_EQ: 751 // assume(v = a) 752 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 KnownBits RHSKnown = 755 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 756 Known.Zero |= RHSKnown.Zero; 757 Known.One |= RHSKnown.One; 758 // assume(v & b = a) 759 } else if (match(Cmp, 760 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 764 KnownBits MaskKnown = 765 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 766 767 // For those bits in the mask that are known to be one, we can propagate 768 // known bits from the RHS to V. 769 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 770 Known.One |= RHSKnown.One & MaskKnown.One; 771 // assume(~(v & b) = a) 772 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 773 m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 777 KnownBits MaskKnown = 778 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 779 780 // For those bits in the mask that are known to be one, we can propagate 781 // inverted known bits from the RHS to V. 782 Known.Zero |= RHSKnown.One & MaskKnown.One; 783 Known.One |= RHSKnown.Zero & MaskKnown.One; 784 // assume(v | b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate known 794 // bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 // assume(~(v | b) = a) 798 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 799 m_Value(A))) && 800 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 801 KnownBits RHSKnown = 802 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 803 KnownBits BKnown = 804 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 805 806 // For those bits in B that are known to be zero, we can propagate 807 // inverted known bits from the RHS to V. 808 Known.Zero |= RHSKnown.One & BKnown.Zero; 809 Known.One |= RHSKnown.Zero & BKnown.Zero; 810 // assume(v ^ b = a) 811 } else if (match(Cmp, 812 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 813 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 814 KnownBits RHSKnown = 815 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 816 KnownBits BKnown = 817 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 818 819 // For those bits in B that are known to be zero, we can propagate known 820 // bits from the RHS to V. For those bits in B that are known to be one, 821 // we can propagate inverted known bits from the RHS to V. 822 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 823 Known.One |= RHSKnown.One & BKnown.Zero; 824 Known.Zero |= RHSKnown.One & BKnown.One; 825 Known.One |= RHSKnown.Zero & BKnown.One; 826 // assume(~(v ^ b) = a) 827 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 828 m_Value(A))) && 829 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 830 KnownBits RHSKnown = 831 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 832 KnownBits BKnown = 833 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 834 835 // For those bits in B that are known to be zero, we can propagate 836 // inverted known bits from the RHS to V. For those bits in B that are 837 // known to be one, we can propagate known bits from the RHS to V. 838 Known.Zero |= RHSKnown.One & BKnown.Zero; 839 Known.One |= RHSKnown.Zero & BKnown.Zero; 840 Known.Zero |= RHSKnown.Zero & BKnown.One; 841 Known.One |= RHSKnown.One & BKnown.One; 842 // assume(v << c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 848 849 // For those bits in RHS that are known, we can propagate them to known 850 // bits in V shifted to the right by C. 851 RHSKnown.Zero.lshrInPlace(C); 852 Known.Zero |= RHSKnown.Zero; 853 RHSKnown.One.lshrInPlace(C); 854 Known.One |= RHSKnown.One; 855 // assume(~(v << c) = a) 856 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 857 m_Value(A))) && 858 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 859 KnownBits RHSKnown = 860 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 861 // For those bits in RHS that are known, we can propagate them inverted 862 // to known bits in V shifted to the right by C. 863 RHSKnown.One.lshrInPlace(C); 864 Known.Zero |= RHSKnown.One; 865 RHSKnown.Zero.lshrInPlace(C); 866 Known.One |= RHSKnown.Zero; 867 // assume(v >> c = a) 868 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 869 m_Value(A))) && 870 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 871 KnownBits RHSKnown = 872 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 873 // For those bits in RHS that are known, we can propagate them to known 874 // bits in V shifted to the right by C. 875 Known.Zero |= RHSKnown.Zero << C; 876 Known.One |= RHSKnown.One << C; 877 // assume(~(v >> c) = a) 878 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 879 m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 883 // For those bits in RHS that are known, we can propagate them inverted 884 // to known bits in V shifted to the right by C. 885 Known.Zero |= RHSKnown.One << C; 886 Known.One |= RHSKnown.Zero << C; 887 } 888 break; 889 case ICmpInst::ICMP_SGE: 890 // assume(v >=_s c) where c is non-negative 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isNonNegative()) { 897 // We know that the sign bit is zero. 898 Known.makeNonNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SGT: 903 // assume(v >_s c) where c is at least -1. 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 910 // We know that the sign bit is zero. 911 Known.makeNonNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_SLE: 916 // assume(v <=_s c) where c is negative 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 921 922 if (RHSKnown.isNegative()) { 923 // We know that the sign bit is one. 924 Known.makeNegative(); 925 } 926 } 927 break; 928 case ICmpInst::ICMP_SLT: 929 // assume(v <_s c) where c is non-positive 930 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 931 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 932 KnownBits RHSKnown = 933 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 934 935 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 936 // We know that the sign bit is one. 937 Known.makeNegative(); 938 } 939 } 940 break; 941 case ICmpInst::ICMP_ULE: 942 // assume(v <=_u c) 943 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 944 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 945 KnownBits RHSKnown = 946 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 947 948 // Whatever high bits in c are zero are known to be zero. 949 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 950 } 951 break; 952 case ICmpInst::ICMP_ULT: 953 // assume(v <_u c) 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown = 957 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 958 959 // If the RHS is known zero, then this assumption must be wrong (nothing 960 // is unsigned less than zero). Signal a conflict and get out of here. 961 if (RHSKnown.isZero()) { 962 Known.Zero.setAllBits(); 963 Known.One.setAllBits(); 964 break; 965 } 966 967 // Whatever high bits in c are zero are known to be zero (if c is a power 968 // of 2, then one more). 969 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 970 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 971 else 972 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 973 } 974 break; 975 } 976 } 977 978 // If assumptions conflict with each other or previous known bits, then we 979 // have a logical fallacy. It's possible that the assumption is not reachable, 980 // so this isn't a real bug. On the other hand, the program may have undefined 981 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 982 // clear out the known bits, try to warn the user, and hope for the best. 983 if (Known.Zero.intersects(Known.One)) { 984 Known.resetAll(); 985 986 if (Q.ORE) 987 Q.ORE->emit([&]() { 988 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 989 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 990 CxtI) 991 << "Detected conflicting code assumptions. Program may " 992 "have undefined behavior, or compiler may have " 993 "internal error."; 994 }); 995 } 996 } 997 998 /// Compute known bits from a shift operator, including those with a 999 /// non-constant shift amount. Known is the output of this function. Known2 is a 1000 /// pre-allocated temporary with the same bit width as Known and on return 1001 /// contains the known bit of the shift value source. KF is an 1002 /// operator-specific function that, given the known-bits and a shift amount, 1003 /// compute the implied known-bits of the shift operator's result respectively 1004 /// for that shift amount. The results from calling KF are conservatively 1005 /// combined for all permitted shift amounts. 1006 static void computeKnownBitsFromShiftOperator( 1007 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1008 KnownBits &Known2, unsigned Depth, const Query &Q, 1009 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 1010 unsigned BitWidth = Known.getBitWidth(); 1011 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1012 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1013 1014 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1015 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1016 // limit value (which implies all bits are known). 1017 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1018 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1019 bool ShiftAmtIsConstant = Known.isConstant(); 1020 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 1021 1022 if (ShiftAmtIsConstant) { 1023 Known = KF(Known2, Known); 1024 1025 // If the known bits conflict, this must be an overflowing left shift, so 1026 // the shift result is poison. We can return anything we want. Choose 0 for 1027 // the best folding opportunity. 1028 if (Known.hasConflict()) 1029 Known.setAllZero(); 1030 1031 return; 1032 } 1033 1034 // If the shift amount could be greater than or equal to the bit-width of the 1035 // LHS, the value could be poison, but bail out because the check below is 1036 // expensive. 1037 // TODO: Should we just carry on? 1038 if (MaxShiftAmtIsOutOfRange) { 1039 Known.resetAll(); 1040 return; 1041 } 1042 1043 // It would be more-clearly correct to use the two temporaries for this 1044 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1045 Known.resetAll(); 1046 1047 // If we know the shifter operand is nonzero, we can sometimes infer more 1048 // known bits. However this is expensive to compute, so be lazy about it and 1049 // only compute it when absolutely necessary. 1050 Optional<bool> ShifterOperandIsNonZero; 1051 1052 // Early exit if we can't constrain any well-defined shift amount. 1053 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1054 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1055 ShifterOperandIsNonZero = 1056 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1057 if (!*ShifterOperandIsNonZero) 1058 return; 1059 } 1060 1061 Known.Zero.setAllBits(); 1062 Known.One.setAllBits(); 1063 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1064 // Combine the shifted known input bits only for those shift amounts 1065 // compatible with its known constraints. 1066 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1067 continue; 1068 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1069 continue; 1070 // If we know the shifter is nonzero, we may be able to infer more known 1071 // bits. This check is sunk down as far as possible to avoid the expensive 1072 // call to isKnownNonZero if the cheaper checks above fail. 1073 if (ShiftAmt == 0) { 1074 if (!ShifterOperandIsNonZero.hasValue()) 1075 ShifterOperandIsNonZero = 1076 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1077 if (*ShifterOperandIsNonZero) 1078 continue; 1079 } 1080 1081 Known = KnownBits::commonBits( 1082 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1083 } 1084 1085 // If the known bits conflict, the result is poison. Return a 0 and hope the 1086 // caller can further optimize that. 1087 if (Known.hasConflict()) 1088 Known.setAllZero(); 1089 } 1090 1091 static void computeKnownBitsFromOperator(const Operator *I, 1092 const APInt &DemandedElts, 1093 KnownBits &Known, unsigned Depth, 1094 const Query &Q) { 1095 unsigned BitWidth = Known.getBitWidth(); 1096 1097 KnownBits Known2(BitWidth); 1098 switch (I->getOpcode()) { 1099 default: break; 1100 case Instruction::Load: 1101 if (MDNode *MD = 1102 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1103 computeKnownBitsFromRangeMetadata(*MD, Known); 1104 break; 1105 case Instruction::And: { 1106 // If either the LHS or the RHS are Zero, the result is zero. 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known &= Known2; 1111 1112 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1113 // here we handle the more general case of adding any odd number by 1114 // matching the form add(x, add(x, y)) where y is odd. 1115 // TODO: This could be generalized to clearing any bit set in y where the 1116 // following bit is known to be unset in y. 1117 Value *X = nullptr, *Y = nullptr; 1118 if (!Known.Zero[0] && !Known.One[0] && 1119 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1120 Known2.resetAll(); 1121 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1122 if (Known2.countMinTrailingOnes() > 0) 1123 Known.Zero.setBit(0); 1124 } 1125 break; 1126 } 1127 case Instruction::Or: 1128 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1129 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1130 1131 Known |= Known2; 1132 break; 1133 case Instruction::Xor: 1134 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1135 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1136 1137 Known ^= Known2; 1138 break; 1139 case Instruction::Mul: { 1140 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1141 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1142 Known, Known2, Depth, Q); 1143 break; 1144 } 1145 case Instruction::UDiv: { 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1148 Known = KnownBits::udiv(Known, Known2); 1149 break; 1150 } 1151 case Instruction::Select: { 1152 const Value *LHS = nullptr, *RHS = nullptr; 1153 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1154 if (SelectPatternResult::isMinOrMax(SPF)) { 1155 computeKnownBits(RHS, Known, Depth + 1, Q); 1156 computeKnownBits(LHS, Known2, Depth + 1, Q); 1157 switch (SPF) { 1158 default: 1159 llvm_unreachable("Unhandled select pattern flavor!"); 1160 case SPF_SMAX: 1161 Known = KnownBits::smax(Known, Known2); 1162 break; 1163 case SPF_SMIN: 1164 Known = KnownBits::smin(Known, Known2); 1165 break; 1166 case SPF_UMAX: 1167 Known = KnownBits::umax(Known, Known2); 1168 break; 1169 case SPF_UMIN: 1170 Known = KnownBits::umin(Known, Known2); 1171 break; 1172 } 1173 break; 1174 } 1175 1176 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1177 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1178 1179 // Only known if known in both the LHS and RHS. 1180 Known = KnownBits::commonBits(Known, Known2); 1181 1182 if (SPF == SPF_ABS) { 1183 // RHS from matchSelectPattern returns the negation part of abs pattern. 1184 // If the negate has an NSW flag we can assume the sign bit of the result 1185 // will be 0 because that makes abs(INT_MIN) undefined. 1186 if (match(RHS, m_Neg(m_Specific(LHS))) && 1187 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1188 Known.Zero.setSignBit(); 1189 } 1190 1191 break; 1192 } 1193 case Instruction::FPTrunc: 1194 case Instruction::FPExt: 1195 case Instruction::FPToUI: 1196 case Instruction::FPToSI: 1197 case Instruction::SIToFP: 1198 case Instruction::UIToFP: 1199 break; // Can't work with floating point. 1200 case Instruction::PtrToInt: 1201 case Instruction::IntToPtr: 1202 // Fall through and handle them the same as zext/trunc. 1203 LLVM_FALLTHROUGH; 1204 case Instruction::ZExt: 1205 case Instruction::Trunc: { 1206 Type *SrcTy = I->getOperand(0)->getType(); 1207 1208 unsigned SrcBitWidth; 1209 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1210 // which fall through here. 1211 Type *ScalarTy = SrcTy->getScalarType(); 1212 SrcBitWidth = ScalarTy->isPointerTy() ? 1213 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1214 Q.DL.getTypeSizeInBits(ScalarTy); 1215 1216 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1217 Known = Known.anyextOrTrunc(SrcBitWidth); 1218 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1219 Known = Known.zextOrTrunc(BitWidth); 1220 break; 1221 } 1222 case Instruction::BitCast: { 1223 Type *SrcTy = I->getOperand(0)->getType(); 1224 if (SrcTy->isIntOrPtrTy() && 1225 // TODO: For now, not handling conversions like: 1226 // (bitcast i64 %x to <2 x i32>) 1227 !I->getType()->isVectorTy()) { 1228 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1229 break; 1230 } 1231 1232 // Handle cast from vector integer type to scalar or vector integer. 1233 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1234 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1235 !I->getType()->isIntOrIntVectorTy()) 1236 break; 1237 1238 // Look through a cast from narrow vector elements to wider type. 1239 // Examples: v4i32 -> v2i64, v3i8 -> v24 1240 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1241 if (BitWidth % SubBitWidth == 0) { 1242 // Known bits are automatically intersected across demanded elements of a 1243 // vector. So for example, if a bit is computed as known zero, it must be 1244 // zero across all demanded elements of the vector. 1245 // 1246 // For this bitcast, each demanded element of the output is sub-divided 1247 // across a set of smaller vector elements in the source vector. To get 1248 // the known bits for an entire element of the output, compute the known 1249 // bits for each sub-element sequentially. This is done by shifting the 1250 // one-set-bit demanded elements parameter across the sub-elements for 1251 // consecutive calls to computeKnownBits. We are using the demanded 1252 // elements parameter as a mask operator. 1253 // 1254 // The known bits of each sub-element are then inserted into place 1255 // (dependent on endian) to form the full result of known bits. 1256 unsigned NumElts = DemandedElts.getBitWidth(); 1257 unsigned SubScale = BitWidth / SubBitWidth; 1258 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1259 for (unsigned i = 0; i != NumElts; ++i) { 1260 if (DemandedElts[i]) 1261 SubDemandedElts.setBit(i * SubScale); 1262 } 1263 1264 KnownBits KnownSrc(SubBitWidth); 1265 for (unsigned i = 0; i != SubScale; ++i) { 1266 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1267 Depth + 1, Q); 1268 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1269 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1270 } 1271 } 1272 break; 1273 } 1274 case Instruction::SExt: { 1275 // Compute the bits in the result that are not present in the input. 1276 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1277 1278 Known = Known.trunc(SrcBitWidth); 1279 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1280 // If the sign bit of the input is known set or clear, then we know the 1281 // top bits of the result. 1282 Known = Known.sext(BitWidth); 1283 break; 1284 } 1285 case Instruction::Shl: { 1286 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1287 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1288 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1289 // If this shift has "nsw" keyword, then the result is either a poison 1290 // value or has the same sign bit as the first operand. 1291 if (NSW) { 1292 if (KnownVal.Zero.isSignBitSet()) 1293 Result.Zero.setSignBit(); 1294 if (KnownVal.One.isSignBitSet()) 1295 Result.One.setSignBit(); 1296 } 1297 return Result; 1298 }; 1299 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1300 KF); 1301 // Trailing zeros of a right-shifted constant never decrease. 1302 const APInt *C; 1303 if (match(I->getOperand(0), m_APInt(C))) 1304 Known.Zero.setLowBits(C->countTrailingZeros()); 1305 break; 1306 } 1307 case Instruction::LShr: { 1308 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1309 return KnownBits::lshr(KnownVal, KnownAmt); 1310 }; 1311 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1312 KF); 1313 // Leading zeros of a left-shifted constant never decrease. 1314 const APInt *C; 1315 if (match(I->getOperand(0), m_APInt(C))) 1316 Known.Zero.setHighBits(C->countLeadingZeros()); 1317 break; 1318 } 1319 case Instruction::AShr: { 1320 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1321 return KnownBits::ashr(KnownVal, KnownAmt); 1322 }; 1323 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1324 KF); 1325 break; 1326 } 1327 case Instruction::Sub: { 1328 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1329 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1330 DemandedElts, Known, Known2, Depth, Q); 1331 break; 1332 } 1333 case Instruction::Add: { 1334 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1335 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1336 DemandedElts, Known, Known2, Depth, Q); 1337 break; 1338 } 1339 case Instruction::SRem: 1340 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1341 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1342 Known = KnownBits::srem(Known, Known2); 1343 break; 1344 1345 case Instruction::URem: 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 Known = KnownBits::urem(Known, Known2); 1349 break; 1350 case Instruction::Alloca: 1351 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1352 break; 1353 case Instruction::GetElementPtr: { 1354 // Analyze all of the subscripts of this getelementptr instruction 1355 // to determine if we can prove known low zero bits. 1356 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1357 // Accumulate the constant indices in a separate variable 1358 // to minimize the number of calls to computeForAddSub. 1359 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1360 1361 gep_type_iterator GTI = gep_type_begin(I); 1362 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1363 // TrailZ can only become smaller, short-circuit if we hit zero. 1364 if (Known.isUnknown()) 1365 break; 1366 1367 Value *Index = I->getOperand(i); 1368 1369 // Handle case when index is zero. 1370 Constant *CIndex = dyn_cast<Constant>(Index); 1371 if (CIndex && CIndex->isZeroValue()) 1372 continue; 1373 1374 if (StructType *STy = GTI.getStructTypeOrNull()) { 1375 // Handle struct member offset arithmetic. 1376 1377 assert(CIndex && 1378 "Access to structure field must be known at compile time"); 1379 1380 if (CIndex->getType()->isVectorTy()) 1381 Index = CIndex->getSplatValue(); 1382 1383 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1384 const StructLayout *SL = Q.DL.getStructLayout(STy); 1385 uint64_t Offset = SL->getElementOffset(Idx); 1386 AccConstIndices += Offset; 1387 continue; 1388 } 1389 1390 // Handle array index arithmetic. 1391 Type *IndexedTy = GTI.getIndexedType(); 1392 if (!IndexedTy->isSized()) { 1393 Known.resetAll(); 1394 break; 1395 } 1396 1397 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1398 KnownBits IndexBits(IndexBitWidth); 1399 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1400 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1401 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1402 KnownBits ScalingFactor(IndexBitWidth); 1403 // Multiply by current sizeof type. 1404 // &A[i] == A + i * sizeof(*A[i]). 1405 if (IndexTypeSize.isScalable()) { 1406 // For scalable types the only thing we know about sizeof is 1407 // that this is a multiple of the minimum size. 1408 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1409 } else if (IndexBits.isConstant()) { 1410 APInt IndexConst = IndexBits.getConstant(); 1411 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1412 IndexConst *= ScalingFactor; 1413 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1414 continue; 1415 } else { 1416 ScalingFactor = 1417 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1418 } 1419 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1420 1421 // If the offsets have a different width from the pointer, according 1422 // to the language reference we need to sign-extend or truncate them 1423 // to the width of the pointer. 1424 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1425 1426 // Note that inbounds does *not* guarantee nsw for the addition, as only 1427 // the offset is signed, while the base address is unsigned. 1428 Known = KnownBits::computeForAddSub( 1429 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1430 } 1431 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1432 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1433 Known = KnownBits::computeForAddSub( 1434 /*Add=*/true, /*NSW=*/false, Known, Index); 1435 } 1436 break; 1437 } 1438 case Instruction::PHI: { 1439 const PHINode *P = cast<PHINode>(I); 1440 BinaryOperator *BO = nullptr; 1441 Value *R = nullptr, *L = nullptr; 1442 if (matchSimpleRecurrence(P, BO, R, L)) { 1443 // Handle the case of a simple two-predecessor recurrence PHI. 1444 // There's a lot more that could theoretically be done here, but 1445 // this is sufficient to catch some interesting cases. 1446 unsigned Opcode = BO->getOpcode(); 1447 1448 // If this is a shift recurrence, we know the bits being shifted in. 1449 // We can combine that with information about the start value of the 1450 // recurrence to conclude facts about the result. 1451 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1452 Opcode == Instruction::Shl) && 1453 BO->getOperand(0) == I) { 1454 1455 // We have matched a recurrence of the form: 1456 // %iv = [R, %entry], [%iv.next, %backedge] 1457 // %iv.next = shift_op %iv, L 1458 1459 // Recurse with the phi context to avoid concern about whether facts 1460 // inferred hold at original context instruction. TODO: It may be 1461 // correct to use the original context. IF warranted, explore and 1462 // add sufficient tests to cover. 1463 Query RecQ = Q; 1464 RecQ.CxtI = P; 1465 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1466 switch (Opcode) { 1467 case Instruction::Shl: 1468 // A shl recurrence will only increase the tailing zeros 1469 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1470 break; 1471 case Instruction::LShr: 1472 // A lshr recurrence will preserve the leading zeros of the 1473 // start value 1474 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1475 break; 1476 case Instruction::AShr: 1477 // An ashr recurrence will extend the initial sign bit 1478 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1479 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1480 break; 1481 }; 1482 } 1483 1484 // Check for operations that have the property that if 1485 // both their operands have low zero bits, the result 1486 // will have low zero bits. 1487 if (Opcode == Instruction::Add || 1488 Opcode == Instruction::Sub || 1489 Opcode == Instruction::And || 1490 Opcode == Instruction::Or || 1491 Opcode == Instruction::Mul) { 1492 // Change the context instruction to the "edge" that flows into the 1493 // phi. This is important because that is where the value is actually 1494 // "evaluated" even though it is used later somewhere else. (see also 1495 // D69571). 1496 Query RecQ = Q; 1497 1498 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1499 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1500 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1501 1502 // Ok, we have a PHI of the form L op= R. Check for low 1503 // zero bits. 1504 RecQ.CxtI = RInst; 1505 computeKnownBits(R, Known2, Depth + 1, RecQ); 1506 1507 // We need to take the minimum number of known bits 1508 KnownBits Known3(BitWidth); 1509 RecQ.CxtI = LInst; 1510 computeKnownBits(L, Known3, Depth + 1, RecQ); 1511 1512 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1513 Known3.countMinTrailingZeros())); 1514 1515 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1516 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1517 // If initial value of recurrence is nonnegative, and we are adding 1518 // a nonnegative number with nsw, the result can only be nonnegative 1519 // or poison value regardless of the number of times we execute the 1520 // add in phi recurrence. If initial value is negative and we are 1521 // adding a negative number with nsw, the result can only be 1522 // negative or poison value. Similar arguments apply to sub and mul. 1523 // 1524 // (add non-negative, non-negative) --> non-negative 1525 // (add negative, negative) --> negative 1526 if (Opcode == Instruction::Add) { 1527 if (Known2.isNonNegative() && Known3.isNonNegative()) 1528 Known.makeNonNegative(); 1529 else if (Known2.isNegative() && Known3.isNegative()) 1530 Known.makeNegative(); 1531 } 1532 1533 // (sub nsw non-negative, negative) --> non-negative 1534 // (sub nsw negative, non-negative) --> negative 1535 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1536 if (Known2.isNonNegative() && Known3.isNegative()) 1537 Known.makeNonNegative(); 1538 else if (Known2.isNegative() && Known3.isNonNegative()) 1539 Known.makeNegative(); 1540 } 1541 1542 // (mul nsw non-negative, non-negative) --> non-negative 1543 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1544 Known3.isNonNegative()) 1545 Known.makeNonNegative(); 1546 } 1547 1548 break; 1549 } 1550 } 1551 1552 // Unreachable blocks may have zero-operand PHI nodes. 1553 if (P->getNumIncomingValues() == 0) 1554 break; 1555 1556 // Otherwise take the unions of the known bit sets of the operands, 1557 // taking conservative care to avoid excessive recursion. 1558 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1559 // Skip if every incoming value references to ourself. 1560 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1561 break; 1562 1563 Known.Zero.setAllBits(); 1564 Known.One.setAllBits(); 1565 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1566 Value *IncValue = P->getIncomingValue(u); 1567 // Skip direct self references. 1568 if (IncValue == P) continue; 1569 1570 // Change the context instruction to the "edge" that flows into the 1571 // phi. This is important because that is where the value is actually 1572 // "evaluated" even though it is used later somewhere else. (see also 1573 // D69571). 1574 Query RecQ = Q; 1575 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1576 1577 Known2 = KnownBits(BitWidth); 1578 // Recurse, but cap the recursion to one level, because we don't 1579 // want to waste time spinning around in loops. 1580 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1581 Known = KnownBits::commonBits(Known, Known2); 1582 // If all bits have been ruled out, there's no need to check 1583 // more operands. 1584 if (Known.isUnknown()) 1585 break; 1586 } 1587 } 1588 break; 1589 } 1590 case Instruction::Call: 1591 case Instruction::Invoke: 1592 // If range metadata is attached to this call, set known bits from that, 1593 // and then intersect with known bits based on other properties of the 1594 // function. 1595 if (MDNode *MD = 1596 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1597 computeKnownBitsFromRangeMetadata(*MD, Known); 1598 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1599 computeKnownBits(RV, Known2, Depth + 1, Q); 1600 Known.Zero |= Known2.Zero; 1601 Known.One |= Known2.One; 1602 } 1603 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1604 switch (II->getIntrinsicID()) { 1605 default: break; 1606 case Intrinsic::abs: { 1607 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1608 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1609 Known = Known2.abs(IntMinIsPoison); 1610 break; 1611 } 1612 case Intrinsic::bitreverse: 1613 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1614 Known.Zero |= Known2.Zero.reverseBits(); 1615 Known.One |= Known2.One.reverseBits(); 1616 break; 1617 case Intrinsic::bswap: 1618 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1619 Known.Zero |= Known2.Zero.byteSwap(); 1620 Known.One |= Known2.One.byteSwap(); 1621 break; 1622 case Intrinsic::ctlz: { 1623 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1624 // If we have a known 1, its position is our upper bound. 1625 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1626 // If this call is poison for 0 input, the result will be less than 2^n. 1627 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1628 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1629 unsigned LowBits = Log2_32(PossibleLZ)+1; 1630 Known.Zero.setBitsFrom(LowBits); 1631 break; 1632 } 1633 case Intrinsic::cttz: { 1634 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1635 // If we have a known 1, its position is our upper bound. 1636 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1637 // If this call is poison for 0 input, the result will be less than 2^n. 1638 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1639 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1640 unsigned LowBits = Log2_32(PossibleTZ)+1; 1641 Known.Zero.setBitsFrom(LowBits); 1642 break; 1643 } 1644 case Intrinsic::ctpop: { 1645 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1646 // We can bound the space the count needs. Also, bits known to be zero 1647 // can't contribute to the population. 1648 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1649 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1650 Known.Zero.setBitsFrom(LowBits); 1651 // TODO: we could bound KnownOne using the lower bound on the number 1652 // of bits which might be set provided by popcnt KnownOne2. 1653 break; 1654 } 1655 case Intrinsic::fshr: 1656 case Intrinsic::fshl: { 1657 const APInt *SA; 1658 if (!match(I->getOperand(2), m_APInt(SA))) 1659 break; 1660 1661 // Normalize to funnel shift left. 1662 uint64_t ShiftAmt = SA->urem(BitWidth); 1663 if (II->getIntrinsicID() == Intrinsic::fshr) 1664 ShiftAmt = BitWidth - ShiftAmt; 1665 1666 KnownBits Known3(BitWidth); 1667 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1668 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1669 1670 Known.Zero = 1671 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1672 Known.One = 1673 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1674 break; 1675 } 1676 case Intrinsic::uadd_sat: 1677 case Intrinsic::usub_sat: { 1678 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1679 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1680 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1681 1682 // Add: Leading ones of either operand are preserved. 1683 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1684 // as leading zeros in the result. 1685 unsigned LeadingKnown; 1686 if (IsAdd) 1687 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1688 Known2.countMinLeadingOnes()); 1689 else 1690 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1691 Known2.countMinLeadingOnes()); 1692 1693 Known = KnownBits::computeForAddSub( 1694 IsAdd, /* NSW */ false, Known, Known2); 1695 1696 // We select between the operation result and all-ones/zero 1697 // respectively, so we can preserve known ones/zeros. 1698 if (IsAdd) { 1699 Known.One.setHighBits(LeadingKnown); 1700 Known.Zero.clearAllBits(); 1701 } else { 1702 Known.Zero.setHighBits(LeadingKnown); 1703 Known.One.clearAllBits(); 1704 } 1705 break; 1706 } 1707 case Intrinsic::umin: 1708 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1709 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1710 Known = KnownBits::umin(Known, Known2); 1711 break; 1712 case Intrinsic::umax: 1713 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1714 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1715 Known = KnownBits::umax(Known, Known2); 1716 break; 1717 case Intrinsic::smin: 1718 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1719 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1720 Known = KnownBits::smin(Known, Known2); 1721 break; 1722 case Intrinsic::smax: 1723 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1724 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1725 Known = KnownBits::smax(Known, Known2); 1726 break; 1727 case Intrinsic::x86_sse42_crc32_64_64: 1728 Known.Zero.setBitsFrom(32); 1729 break; 1730 case Intrinsic::riscv_vsetvli: 1731 case Intrinsic::riscv_vsetvlimax: 1732 // Assume that VL output is positive and would fit in an int32_t. 1733 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1734 if (BitWidth >= 32) 1735 Known.Zero.setBitsFrom(31); 1736 break; 1737 case Intrinsic::vscale: { 1738 if (!II->getParent() || !II->getFunction() || 1739 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1740 break; 1741 1742 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1743 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1744 1745 if (!VScaleMax) 1746 break; 1747 1748 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1749 1750 // If vscale min = max then we know the exact value at compile time 1751 // and hence we know the exact bits. 1752 if (VScaleMin == VScaleMax) { 1753 Known.One = VScaleMin; 1754 Known.Zero = VScaleMin; 1755 Known.Zero.flipAllBits(); 1756 break; 1757 } 1758 1759 unsigned FirstZeroHighBit = 1760 32 - countLeadingZeros(VScaleMax.getValue()); 1761 if (FirstZeroHighBit < BitWidth) 1762 Known.Zero.setBitsFrom(FirstZeroHighBit); 1763 1764 break; 1765 } 1766 } 1767 } 1768 break; 1769 case Instruction::ShuffleVector: { 1770 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1771 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1772 if (!Shuf) { 1773 Known.resetAll(); 1774 return; 1775 } 1776 // For undef elements, we don't know anything about the common state of 1777 // the shuffle result. 1778 APInt DemandedLHS, DemandedRHS; 1779 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1780 Known.resetAll(); 1781 return; 1782 } 1783 Known.One.setAllBits(); 1784 Known.Zero.setAllBits(); 1785 if (!!DemandedLHS) { 1786 const Value *LHS = Shuf->getOperand(0); 1787 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1788 // If we don't know any bits, early out. 1789 if (Known.isUnknown()) 1790 break; 1791 } 1792 if (!!DemandedRHS) { 1793 const Value *RHS = Shuf->getOperand(1); 1794 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1795 Known = KnownBits::commonBits(Known, Known2); 1796 } 1797 break; 1798 } 1799 case Instruction::InsertElement: { 1800 const Value *Vec = I->getOperand(0); 1801 const Value *Elt = I->getOperand(1); 1802 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1803 // Early out if the index is non-constant or out-of-range. 1804 unsigned NumElts = DemandedElts.getBitWidth(); 1805 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1806 Known.resetAll(); 1807 return; 1808 } 1809 Known.One.setAllBits(); 1810 Known.Zero.setAllBits(); 1811 unsigned EltIdx = CIdx->getZExtValue(); 1812 // Do we demand the inserted element? 1813 if (DemandedElts[EltIdx]) { 1814 computeKnownBits(Elt, Known, Depth + 1, Q); 1815 // If we don't know any bits, early out. 1816 if (Known.isUnknown()) 1817 break; 1818 } 1819 // We don't need the base vector element that has been inserted. 1820 APInt DemandedVecElts = DemandedElts; 1821 DemandedVecElts.clearBit(EltIdx); 1822 if (!!DemandedVecElts) { 1823 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1824 Known = KnownBits::commonBits(Known, Known2); 1825 } 1826 break; 1827 } 1828 case Instruction::ExtractElement: { 1829 // Look through extract element. If the index is non-constant or 1830 // out-of-range demand all elements, otherwise just the extracted element. 1831 const Value *Vec = I->getOperand(0); 1832 const Value *Idx = I->getOperand(1); 1833 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1834 if (isa<ScalableVectorType>(Vec->getType())) { 1835 // FIXME: there's probably *something* we can do with scalable vectors 1836 Known.resetAll(); 1837 break; 1838 } 1839 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1840 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1841 if (CIdx && CIdx->getValue().ult(NumElts)) 1842 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1843 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1844 break; 1845 } 1846 case Instruction::ExtractValue: 1847 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1848 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1849 if (EVI->getNumIndices() != 1) break; 1850 if (EVI->getIndices()[0] == 0) { 1851 switch (II->getIntrinsicID()) { 1852 default: break; 1853 case Intrinsic::uadd_with_overflow: 1854 case Intrinsic::sadd_with_overflow: 1855 computeKnownBitsAddSub(true, II->getArgOperand(0), 1856 II->getArgOperand(1), false, DemandedElts, 1857 Known, Known2, Depth, Q); 1858 break; 1859 case Intrinsic::usub_with_overflow: 1860 case Intrinsic::ssub_with_overflow: 1861 computeKnownBitsAddSub(false, II->getArgOperand(0), 1862 II->getArgOperand(1), false, DemandedElts, 1863 Known, Known2, Depth, Q); 1864 break; 1865 case Intrinsic::umul_with_overflow: 1866 case Intrinsic::smul_with_overflow: 1867 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1868 DemandedElts, Known, Known2, Depth, Q); 1869 break; 1870 } 1871 } 1872 } 1873 break; 1874 case Instruction::Freeze: 1875 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1876 Depth + 1)) 1877 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1878 break; 1879 } 1880 } 1881 1882 /// Determine which bits of V are known to be either zero or one and return 1883 /// them. 1884 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1885 unsigned Depth, const Query &Q) { 1886 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1887 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1888 return Known; 1889 } 1890 1891 /// Determine which bits of V are known to be either zero or one and return 1892 /// them. 1893 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1894 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1895 computeKnownBits(V, Known, Depth, Q); 1896 return Known; 1897 } 1898 1899 /// Determine which bits of V are known to be either zero or one and return 1900 /// them in the Known bit set. 1901 /// 1902 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1903 /// we cannot optimize based on the assumption that it is zero without changing 1904 /// it to be an explicit zero. If we don't change it to zero, other code could 1905 /// optimized based on the contradictory assumption that it is non-zero. 1906 /// Because instcombine aggressively folds operations with undef args anyway, 1907 /// this won't lose us code quality. 1908 /// 1909 /// This function is defined on values with integer type, values with pointer 1910 /// type, and vectors of integers. In the case 1911 /// where V is a vector, known zero, and known one values are the 1912 /// same width as the vector element, and the bit is set only if it is true 1913 /// for all of the demanded elements in the vector specified by DemandedElts. 1914 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1915 KnownBits &Known, unsigned Depth, const Query &Q) { 1916 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1917 // No demanded elts or V is a scalable vector, better to assume we don't 1918 // know anything. 1919 Known.resetAll(); 1920 return; 1921 } 1922 1923 assert(V && "No Value?"); 1924 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1925 1926 #ifndef NDEBUG 1927 Type *Ty = V->getType(); 1928 unsigned BitWidth = Known.getBitWidth(); 1929 1930 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1931 "Not integer or pointer type!"); 1932 1933 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1934 assert( 1935 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1936 "DemandedElt width should equal the fixed vector number of elements"); 1937 } else { 1938 assert(DemandedElts == APInt(1, 1) && 1939 "DemandedElt width should be 1 for scalars"); 1940 } 1941 1942 Type *ScalarTy = Ty->getScalarType(); 1943 if (ScalarTy->isPointerTy()) { 1944 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1945 "V and Known should have same BitWidth"); 1946 } else { 1947 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1948 "V and Known should have same BitWidth"); 1949 } 1950 #endif 1951 1952 const APInt *C; 1953 if (match(V, m_APInt(C))) { 1954 // We know all of the bits for a scalar constant or a splat vector constant! 1955 Known = KnownBits::makeConstant(*C); 1956 return; 1957 } 1958 // Null and aggregate-zero are all-zeros. 1959 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1960 Known.setAllZero(); 1961 return; 1962 } 1963 // Handle a constant vector by taking the intersection of the known bits of 1964 // each element. 1965 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1966 // We know that CDV must be a vector of integers. Take the intersection of 1967 // each element. 1968 Known.Zero.setAllBits(); Known.One.setAllBits(); 1969 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1970 if (!DemandedElts[i]) 1971 continue; 1972 APInt Elt = CDV->getElementAsAPInt(i); 1973 Known.Zero &= ~Elt; 1974 Known.One &= Elt; 1975 } 1976 return; 1977 } 1978 1979 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1980 // We know that CV must be a vector of integers. Take the intersection of 1981 // each element. 1982 Known.Zero.setAllBits(); Known.One.setAllBits(); 1983 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1984 if (!DemandedElts[i]) 1985 continue; 1986 Constant *Element = CV->getAggregateElement(i); 1987 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1988 if (!ElementCI) { 1989 Known.resetAll(); 1990 return; 1991 } 1992 const APInt &Elt = ElementCI->getValue(); 1993 Known.Zero &= ~Elt; 1994 Known.One &= Elt; 1995 } 1996 return; 1997 } 1998 1999 // Start out not knowing anything. 2000 Known.resetAll(); 2001 2002 // We can't imply anything about undefs. 2003 if (isa<UndefValue>(V)) 2004 return; 2005 2006 // There's no point in looking through other users of ConstantData for 2007 // assumptions. Confirm that we've handled them all. 2008 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 2009 2010 // All recursive calls that increase depth must come after this. 2011 if (Depth == MaxAnalysisRecursionDepth) 2012 return; 2013 2014 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 2015 // the bits of its aliasee. 2016 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2017 if (!GA->isInterposable()) 2018 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 2019 return; 2020 } 2021 2022 if (const Operator *I = dyn_cast<Operator>(V)) 2023 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 2024 2025 // Aligned pointers have trailing zeros - refine Known.Zero set 2026 if (isa<PointerType>(V->getType())) { 2027 Align Alignment = V->getPointerAlignment(Q.DL); 2028 Known.Zero.setLowBits(Log2(Alignment)); 2029 } 2030 2031 // computeKnownBitsFromAssume strictly refines Known. 2032 // Therefore, we run them after computeKnownBitsFromOperator. 2033 2034 // Check whether a nearby assume intrinsic can determine some known bits. 2035 computeKnownBitsFromAssume(V, Known, Depth, Q); 2036 2037 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2038 } 2039 2040 /// Return true if the given value is known to have exactly one 2041 /// bit set when defined. For vectors return true if every element is known to 2042 /// be a power of two when defined. Supports values with integer or pointer 2043 /// types and vectors of integers. 2044 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2045 const Query &Q) { 2046 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2047 2048 // Attempt to match against constants. 2049 if (OrZero && match(V, m_Power2OrZero())) 2050 return true; 2051 if (match(V, m_Power2())) 2052 return true; 2053 2054 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2055 // it is shifted off the end then the result is undefined. 2056 if (match(V, m_Shl(m_One(), m_Value()))) 2057 return true; 2058 2059 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2060 // the bottom. If it is shifted off the bottom then the result is undefined. 2061 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2062 return true; 2063 2064 // The remaining tests are all recursive, so bail out if we hit the limit. 2065 if (Depth++ == MaxAnalysisRecursionDepth) 2066 return false; 2067 2068 Value *X = nullptr, *Y = nullptr; 2069 // A shift left or a logical shift right of a power of two is a power of two 2070 // or zero. 2071 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2072 match(V, m_LShr(m_Value(X), m_Value())))) 2073 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2074 2075 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2076 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2077 2078 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2079 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2080 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2081 2082 // Peek through min/max. 2083 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2084 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2085 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2086 } 2087 2088 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2089 // A power of two and'd with anything is a power of two or zero. 2090 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2091 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2092 return true; 2093 // X & (-X) is always a power of two or zero. 2094 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2095 return true; 2096 return false; 2097 } 2098 2099 // Adding a power-of-two or zero to the same power-of-two or zero yields 2100 // either the original power-of-two, a larger power-of-two or zero. 2101 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2102 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2103 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2104 Q.IIQ.hasNoSignedWrap(VOBO)) { 2105 if (match(X, m_And(m_Specific(Y), m_Value())) || 2106 match(X, m_And(m_Value(), m_Specific(Y)))) 2107 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2108 return true; 2109 if (match(Y, m_And(m_Specific(X), m_Value())) || 2110 match(Y, m_And(m_Value(), m_Specific(X)))) 2111 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2112 return true; 2113 2114 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2115 KnownBits LHSBits(BitWidth); 2116 computeKnownBits(X, LHSBits, Depth, Q); 2117 2118 KnownBits RHSBits(BitWidth); 2119 computeKnownBits(Y, RHSBits, Depth, Q); 2120 // If i8 V is a power of two or zero: 2121 // ZeroBits: 1 1 1 0 1 1 1 1 2122 // ~ZeroBits: 0 0 0 1 0 0 0 0 2123 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2124 // If OrZero isn't set, we cannot give back a zero result. 2125 // Make sure either the LHS or RHS has a bit set. 2126 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2127 return true; 2128 } 2129 } 2130 2131 // A PHI node is power of two if all incoming values are power of two. 2132 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2133 Query RecQ = Q; 2134 2135 // Recursively check all incoming values. Limit recursion to 2 levels, so 2136 // that search complexity is limited to number of operands^2. 2137 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2138 return llvm::all_of(PN->operands(), [&](const Use &U) { 2139 // Value is power of 2 if it is coming from PHI node itself by induction. 2140 if (U.get() == PN) 2141 return true; 2142 2143 // Change the context instruction to the incoming block where it is 2144 // evaluated. 2145 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2146 return isKnownToBeAPowerOfTwo(U.get(), OrZero, NewDepth, RecQ); 2147 }); 2148 } 2149 2150 // An exact divide or right shift can only shift off zero bits, so the result 2151 // is a power of two only if the first operand is a power of two and not 2152 // copying a sign bit (sdiv int_min, 2). 2153 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2154 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2155 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2156 Depth, Q); 2157 } 2158 2159 return false; 2160 } 2161 2162 /// Test whether a GEP's result is known to be non-null. 2163 /// 2164 /// Uses properties inherent in a GEP to try to determine whether it is known 2165 /// to be non-null. 2166 /// 2167 /// Currently this routine does not support vector GEPs. 2168 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2169 const Query &Q) { 2170 const Function *F = nullptr; 2171 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2172 F = I->getFunction(); 2173 2174 if (!GEP->isInBounds() || 2175 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2176 return false; 2177 2178 // FIXME: Support vector-GEPs. 2179 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2180 2181 // If the base pointer is non-null, we cannot walk to a null address with an 2182 // inbounds GEP in address space zero. 2183 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2184 return true; 2185 2186 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2187 // If so, then the GEP cannot produce a null pointer, as doing so would 2188 // inherently violate the inbounds contract within address space zero. 2189 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2190 GTI != GTE; ++GTI) { 2191 // Struct types are easy -- they must always be indexed by a constant. 2192 if (StructType *STy = GTI.getStructTypeOrNull()) { 2193 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2194 unsigned ElementIdx = OpC->getZExtValue(); 2195 const StructLayout *SL = Q.DL.getStructLayout(STy); 2196 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2197 if (ElementOffset > 0) 2198 return true; 2199 continue; 2200 } 2201 2202 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2203 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2204 continue; 2205 2206 // Fast path the constant operand case both for efficiency and so we don't 2207 // increment Depth when just zipping down an all-constant GEP. 2208 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2209 if (!OpC->isZero()) 2210 return true; 2211 continue; 2212 } 2213 2214 // We post-increment Depth here because while isKnownNonZero increments it 2215 // as well, when we pop back up that increment won't persist. We don't want 2216 // to recurse 10k times just because we have 10k GEP operands. We don't 2217 // bail completely out because we want to handle constant GEPs regardless 2218 // of depth. 2219 if (Depth++ >= MaxAnalysisRecursionDepth) 2220 continue; 2221 2222 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2223 return true; 2224 } 2225 2226 return false; 2227 } 2228 2229 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2230 const Instruction *CtxI, 2231 const DominatorTree *DT) { 2232 if (isa<Constant>(V)) 2233 return false; 2234 2235 if (!CtxI || !DT) 2236 return false; 2237 2238 unsigned NumUsesExplored = 0; 2239 for (auto *U : V->users()) { 2240 // Avoid massive lists 2241 if (NumUsesExplored >= DomConditionsMaxUses) 2242 break; 2243 NumUsesExplored++; 2244 2245 // If the value is used as an argument to a call or invoke, then argument 2246 // attributes may provide an answer about null-ness. 2247 if (const auto *CB = dyn_cast<CallBase>(U)) 2248 if (auto *CalledFunc = CB->getCalledFunction()) 2249 for (const Argument &Arg : CalledFunc->args()) 2250 if (CB->getArgOperand(Arg.getArgNo()) == V && 2251 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2252 DT->dominates(CB, CtxI)) 2253 return true; 2254 2255 // If the value is used as a load/store, then the pointer must be non null. 2256 if (V == getLoadStorePointerOperand(U)) { 2257 const Instruction *I = cast<Instruction>(U); 2258 if (!NullPointerIsDefined(I->getFunction(), 2259 V->getType()->getPointerAddressSpace()) && 2260 DT->dominates(I, CtxI)) 2261 return true; 2262 } 2263 2264 // Consider only compare instructions uniquely controlling a branch 2265 Value *RHS; 2266 CmpInst::Predicate Pred; 2267 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2268 continue; 2269 2270 bool NonNullIfTrue; 2271 if (cmpExcludesZero(Pred, RHS)) 2272 NonNullIfTrue = true; 2273 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2274 NonNullIfTrue = false; 2275 else 2276 continue; 2277 2278 SmallVector<const User *, 4> WorkList; 2279 SmallPtrSet<const User *, 4> Visited; 2280 for (auto *CmpU : U->users()) { 2281 assert(WorkList.empty() && "Should be!"); 2282 if (Visited.insert(CmpU).second) 2283 WorkList.push_back(CmpU); 2284 2285 while (!WorkList.empty()) { 2286 auto *Curr = WorkList.pop_back_val(); 2287 2288 // If a user is an AND, add all its users to the work list. We only 2289 // propagate "pred != null" condition through AND because it is only 2290 // correct to assume that all conditions of AND are met in true branch. 2291 // TODO: Support similar logic of OR and EQ predicate? 2292 if (NonNullIfTrue) 2293 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2294 for (auto *CurrU : Curr->users()) 2295 if (Visited.insert(CurrU).second) 2296 WorkList.push_back(CurrU); 2297 continue; 2298 } 2299 2300 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2301 assert(BI->isConditional() && "uses a comparison!"); 2302 2303 BasicBlock *NonNullSuccessor = 2304 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2305 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2306 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2307 return true; 2308 } else if (NonNullIfTrue && isGuard(Curr) && 2309 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2310 return true; 2311 } 2312 } 2313 } 2314 } 2315 2316 return false; 2317 } 2318 2319 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2320 /// ensure that the value it's attached to is never Value? 'RangeType' is 2321 /// is the type of the value described by the range. 2322 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2323 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2324 assert(NumRanges >= 1); 2325 for (unsigned i = 0; i < NumRanges; ++i) { 2326 ConstantInt *Lower = 2327 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2328 ConstantInt *Upper = 2329 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2330 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2331 if (Range.contains(Value)) 2332 return false; 2333 } 2334 return true; 2335 } 2336 2337 /// Try to detect a recurrence that monotonically increases/decreases from a 2338 /// non-zero starting value. These are common as induction variables. 2339 static bool isNonZeroRecurrence(const PHINode *PN) { 2340 BinaryOperator *BO = nullptr; 2341 Value *Start = nullptr, *Step = nullptr; 2342 const APInt *StartC, *StepC; 2343 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2344 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2345 return false; 2346 2347 switch (BO->getOpcode()) { 2348 case Instruction::Add: 2349 // Starting from non-zero and stepping away from zero can never wrap back 2350 // to zero. 2351 return BO->hasNoUnsignedWrap() || 2352 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2353 StartC->isNegative() == StepC->isNegative()); 2354 case Instruction::Mul: 2355 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2356 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2357 case Instruction::Shl: 2358 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2359 case Instruction::AShr: 2360 case Instruction::LShr: 2361 return BO->isExact(); 2362 default: 2363 return false; 2364 } 2365 } 2366 2367 /// Return true if the given value is known to be non-zero when defined. For 2368 /// vectors, return true if every demanded element is known to be non-zero when 2369 /// defined. For pointers, if the context instruction and dominator tree are 2370 /// specified, perform context-sensitive analysis and return true if the 2371 /// pointer couldn't possibly be null at the specified instruction. 2372 /// Supports values with integer or pointer type and vectors of integers. 2373 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2374 const Query &Q) { 2375 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2376 // vector 2377 if (isa<ScalableVectorType>(V->getType())) 2378 return false; 2379 2380 if (auto *C = dyn_cast<Constant>(V)) { 2381 if (C->isNullValue()) 2382 return false; 2383 if (isa<ConstantInt>(C)) 2384 // Must be non-zero due to null test above. 2385 return true; 2386 2387 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2388 // See the comment for IntToPtr/PtrToInt instructions below. 2389 if (CE->getOpcode() == Instruction::IntToPtr || 2390 CE->getOpcode() == Instruction::PtrToInt) 2391 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2392 .getFixedSize() <= 2393 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2394 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2395 } 2396 2397 // For constant vectors, check that all elements are undefined or known 2398 // non-zero to determine that the whole vector is known non-zero. 2399 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2400 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2401 if (!DemandedElts[i]) 2402 continue; 2403 Constant *Elt = C->getAggregateElement(i); 2404 if (!Elt || Elt->isNullValue()) 2405 return false; 2406 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2407 return false; 2408 } 2409 return true; 2410 } 2411 2412 // A global variable in address space 0 is non null unless extern weak 2413 // or an absolute symbol reference. Other address spaces may have null as a 2414 // valid address for a global, so we can't assume anything. 2415 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2416 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2417 GV->getType()->getAddressSpace() == 0) 2418 return true; 2419 } else 2420 return false; 2421 } 2422 2423 if (auto *I = dyn_cast<Instruction>(V)) { 2424 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2425 // If the possible ranges don't contain zero, then the value is 2426 // definitely non-zero. 2427 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2428 const APInt ZeroValue(Ty->getBitWidth(), 0); 2429 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2430 return true; 2431 } 2432 } 2433 } 2434 2435 if (isKnownNonZeroFromAssume(V, Q)) 2436 return true; 2437 2438 // Some of the tests below are recursive, so bail out if we hit the limit. 2439 if (Depth++ >= MaxAnalysisRecursionDepth) 2440 return false; 2441 2442 // Check for pointer simplifications. 2443 2444 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2445 // Alloca never returns null, malloc might. 2446 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2447 return true; 2448 2449 // A byval, inalloca may not be null in a non-default addres space. A 2450 // nonnull argument is assumed never 0. 2451 if (const Argument *A = dyn_cast<Argument>(V)) { 2452 if (((A->hasPassPointeeByValueCopyAttr() && 2453 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2454 A->hasNonNullAttr())) 2455 return true; 2456 } 2457 2458 // A Load tagged with nonnull metadata is never null. 2459 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2460 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2461 return true; 2462 2463 if (const auto *Call = dyn_cast<CallBase>(V)) { 2464 if (Call->isReturnNonNull()) 2465 return true; 2466 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2467 return isKnownNonZero(RP, Depth, Q); 2468 } 2469 } 2470 2471 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2472 return true; 2473 2474 // Check for recursive pointer simplifications. 2475 if (V->getType()->isPointerTy()) { 2476 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2477 // do not alter the value, or at least not the nullness property of the 2478 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2479 // 2480 // Note that we have to take special care to avoid looking through 2481 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2482 // as casts that can alter the value, e.g., AddrSpaceCasts. 2483 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2484 return isGEPKnownNonNull(GEP, Depth, Q); 2485 2486 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2487 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2488 2489 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2490 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2491 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2492 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2493 } 2494 2495 // Similar to int2ptr above, we can look through ptr2int here if the cast 2496 // is a no-op or an extend and not a truncate. 2497 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2498 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2499 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2500 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2501 2502 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2503 2504 // X | Y != 0 if X != 0 or Y != 0. 2505 Value *X = nullptr, *Y = nullptr; 2506 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2507 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2508 isKnownNonZero(Y, DemandedElts, Depth, Q); 2509 2510 // ext X != 0 if X != 0. 2511 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2512 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2513 2514 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2515 // if the lowest bit is shifted off the end. 2516 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2517 // shl nuw can't remove any non-zero bits. 2518 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2519 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2520 return isKnownNonZero(X, Depth, Q); 2521 2522 KnownBits Known(BitWidth); 2523 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2524 if (Known.One[0]) 2525 return true; 2526 } 2527 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2528 // defined if the sign bit is shifted off the end. 2529 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2530 // shr exact can only shift out zero bits. 2531 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2532 if (BO->isExact()) 2533 return isKnownNonZero(X, Depth, Q); 2534 2535 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2536 if (Known.isNegative()) 2537 return true; 2538 2539 // If the shifter operand is a constant, and all of the bits shifted 2540 // out are known to be zero, and X is known non-zero then at least one 2541 // non-zero bit must remain. 2542 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2543 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2544 // Is there a known one in the portion not shifted out? 2545 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2546 return true; 2547 // Are all the bits to be shifted out known zero? 2548 if (Known.countMinTrailingZeros() >= ShiftVal) 2549 return isKnownNonZero(X, DemandedElts, Depth, Q); 2550 } 2551 } 2552 // div exact can only produce a zero if the dividend is zero. 2553 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2554 return isKnownNonZero(X, DemandedElts, Depth, Q); 2555 } 2556 // X + Y. 2557 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2558 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2559 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2560 2561 // If X and Y are both non-negative (as signed values) then their sum is not 2562 // zero unless both X and Y are zero. 2563 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2564 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2565 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2566 return true; 2567 2568 // If X and Y are both negative (as signed values) then their sum is not 2569 // zero unless both X and Y equal INT_MIN. 2570 if (XKnown.isNegative() && YKnown.isNegative()) { 2571 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2572 // The sign bit of X is set. If some other bit is set then X is not equal 2573 // to INT_MIN. 2574 if (XKnown.One.intersects(Mask)) 2575 return true; 2576 // The sign bit of Y is set. If some other bit is set then Y is not equal 2577 // to INT_MIN. 2578 if (YKnown.One.intersects(Mask)) 2579 return true; 2580 } 2581 2582 // The sum of a non-negative number and a power of two is not zero. 2583 if (XKnown.isNonNegative() && 2584 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2585 return true; 2586 if (YKnown.isNonNegative() && 2587 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2588 return true; 2589 } 2590 // X * Y. 2591 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2592 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2593 // If X and Y are non-zero then so is X * Y as long as the multiplication 2594 // does not overflow. 2595 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2596 isKnownNonZero(X, DemandedElts, Depth, Q) && 2597 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2598 return true; 2599 } 2600 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2601 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2602 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2603 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2604 return true; 2605 } 2606 // PHI 2607 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2608 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2609 return true; 2610 2611 // Check if all incoming values are non-zero using recursion. 2612 Query RecQ = Q; 2613 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2614 return llvm::all_of(PN->operands(), [&](const Use &U) { 2615 if (U.get() == PN) 2616 return true; 2617 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2618 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2619 }); 2620 } 2621 // ExtractElement 2622 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2623 const Value *Vec = EEI->getVectorOperand(); 2624 const Value *Idx = EEI->getIndexOperand(); 2625 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2626 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2627 unsigned NumElts = VecTy->getNumElements(); 2628 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2629 if (CIdx && CIdx->getValue().ult(NumElts)) 2630 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2631 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2632 } 2633 } 2634 // Freeze 2635 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2636 auto *Op = FI->getOperand(0); 2637 if (isKnownNonZero(Op, Depth, Q) && 2638 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2639 return true; 2640 } 2641 2642 KnownBits Known(BitWidth); 2643 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2644 return Known.One != 0; 2645 } 2646 2647 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2648 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2649 // vector 2650 if (isa<ScalableVectorType>(V->getType())) 2651 return false; 2652 2653 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2654 APInt DemandedElts = 2655 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2656 return isKnownNonZero(V, DemandedElts, Depth, Q); 2657 } 2658 2659 /// If the pair of operators are the same invertible function, return the 2660 /// the operands of the function corresponding to each input. Otherwise, 2661 /// return None. An invertible function is one that is 1-to-1 and maps 2662 /// every input value to exactly one output value. This is equivalent to 2663 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2664 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2665 static Optional<std::pair<Value*, Value*>> 2666 getInvertibleOperands(const Operator *Op1, 2667 const Operator *Op2) { 2668 if (Op1->getOpcode() != Op2->getOpcode()) 2669 return None; 2670 2671 auto getOperands = [&](unsigned OpNum) -> auto { 2672 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2673 }; 2674 2675 switch (Op1->getOpcode()) { 2676 default: 2677 break; 2678 case Instruction::Add: 2679 case Instruction::Sub: 2680 if (Op1->getOperand(0) == Op2->getOperand(0)) 2681 return getOperands(1); 2682 if (Op1->getOperand(1) == Op2->getOperand(1)) 2683 return getOperands(0); 2684 break; 2685 case Instruction::Mul: { 2686 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2687 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2688 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2689 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2690 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2691 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2692 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2693 break; 2694 2695 // Assume operand order has been canonicalized 2696 if (Op1->getOperand(1) == Op2->getOperand(1) && 2697 isa<ConstantInt>(Op1->getOperand(1)) && 2698 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2699 return getOperands(0); 2700 break; 2701 } 2702 case Instruction::Shl: { 2703 // Same as multiplies, with the difference that we don't need to check 2704 // for a non-zero multiply. Shifts always multiply by non-zero. 2705 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2706 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2707 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2708 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2709 break; 2710 2711 if (Op1->getOperand(1) == Op2->getOperand(1)) 2712 return getOperands(0); 2713 break; 2714 } 2715 case Instruction::AShr: 2716 case Instruction::LShr: { 2717 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2718 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2719 if (!PEO1->isExact() || !PEO2->isExact()) 2720 break; 2721 2722 if (Op1->getOperand(1) == Op2->getOperand(1)) 2723 return getOperands(0); 2724 break; 2725 } 2726 case Instruction::SExt: 2727 case Instruction::ZExt: 2728 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2729 return getOperands(0); 2730 break; 2731 case Instruction::PHI: { 2732 const PHINode *PN1 = cast<PHINode>(Op1); 2733 const PHINode *PN2 = cast<PHINode>(Op2); 2734 2735 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2736 // are a single invertible function of the start values? Note that repeated 2737 // application of an invertible function is also invertible 2738 BinaryOperator *BO1 = nullptr; 2739 Value *Start1 = nullptr, *Step1 = nullptr; 2740 BinaryOperator *BO2 = nullptr; 2741 Value *Start2 = nullptr, *Step2 = nullptr; 2742 if (PN1->getParent() != PN2->getParent() || 2743 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2744 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2745 break; 2746 2747 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2748 cast<Operator>(BO2)); 2749 if (!Values) 2750 break; 2751 2752 // We have to be careful of mutually defined recurrences here. Ex: 2753 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2754 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2755 // The invertibility of these is complicated, and not worth reasoning 2756 // about (yet?). 2757 if (Values->first != PN1 || Values->second != PN2) 2758 break; 2759 2760 return std::make_pair(Start1, Start2); 2761 } 2762 } 2763 return None; 2764 } 2765 2766 /// Return true if V2 == V1 + X, where X is known non-zero. 2767 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2768 const Query &Q) { 2769 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2770 if (!BO || BO->getOpcode() != Instruction::Add) 2771 return false; 2772 Value *Op = nullptr; 2773 if (V2 == BO->getOperand(0)) 2774 Op = BO->getOperand(1); 2775 else if (V2 == BO->getOperand(1)) 2776 Op = BO->getOperand(0); 2777 else 2778 return false; 2779 return isKnownNonZero(Op, Depth + 1, Q); 2780 } 2781 2782 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2783 /// the multiplication is nuw or nsw. 2784 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2785 const Query &Q) { 2786 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2787 const APInt *C; 2788 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2789 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2790 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2791 } 2792 return false; 2793 } 2794 2795 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2796 /// the shift is nuw or nsw. 2797 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2798 const Query &Q) { 2799 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2800 const APInt *C; 2801 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2802 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2803 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2804 } 2805 return false; 2806 } 2807 2808 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2809 unsigned Depth, const Query &Q) { 2810 // Check two PHIs are in same block. 2811 if (PN1->getParent() != PN2->getParent()) 2812 return false; 2813 2814 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2815 bool UsedFullRecursion = false; 2816 for (const BasicBlock *IncomBB : PN1->blocks()) { 2817 if (!VisitedBBs.insert(IncomBB).second) 2818 continue; // Don't reprocess blocks that we have dealt with already. 2819 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2820 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2821 const APInt *C1, *C2; 2822 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2823 continue; 2824 2825 // Only one pair of phi operands is allowed for full recursion. 2826 if (UsedFullRecursion) 2827 return false; 2828 2829 Query RecQ = Q; 2830 RecQ.CxtI = IncomBB->getTerminator(); 2831 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2832 return false; 2833 UsedFullRecursion = true; 2834 } 2835 return true; 2836 } 2837 2838 /// Return true if it is known that V1 != V2. 2839 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2840 const Query &Q) { 2841 if (V1 == V2) 2842 return false; 2843 if (V1->getType() != V2->getType()) 2844 // We can't look through casts yet. 2845 return false; 2846 2847 if (Depth >= MaxAnalysisRecursionDepth) 2848 return false; 2849 2850 // See if we can recurse through (exactly one of) our operands. This 2851 // requires our operation be 1-to-1 and map every input value to exactly 2852 // one output value. Such an operation is invertible. 2853 auto *O1 = dyn_cast<Operator>(V1); 2854 auto *O2 = dyn_cast<Operator>(V2); 2855 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2856 if (auto Values = getInvertibleOperands(O1, O2)) 2857 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2858 2859 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2860 const PHINode *PN2 = cast<PHINode>(V2); 2861 // FIXME: This is missing a generalization to handle the case where one is 2862 // a PHI and another one isn't. 2863 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2864 return true; 2865 }; 2866 } 2867 2868 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2869 return true; 2870 2871 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2872 return true; 2873 2874 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2875 return true; 2876 2877 if (V1->getType()->isIntOrIntVectorTy()) { 2878 // Are any known bits in V1 contradictory to known bits in V2? If V1 2879 // has a known zero where V2 has a known one, they must not be equal. 2880 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2881 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2882 2883 if (Known1.Zero.intersects(Known2.One) || 2884 Known2.Zero.intersects(Known1.One)) 2885 return true; 2886 } 2887 return false; 2888 } 2889 2890 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2891 /// simplify operations downstream. Mask is known to be zero for bits that V 2892 /// cannot have. 2893 /// 2894 /// This function is defined on values with integer type, values with pointer 2895 /// type, and vectors of integers. In the case 2896 /// where V is a vector, the mask, known zero, and known one values are the 2897 /// same width as the vector element, and the bit is set only if it is true 2898 /// for all of the elements in the vector. 2899 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2900 const Query &Q) { 2901 KnownBits Known(Mask.getBitWidth()); 2902 computeKnownBits(V, Known, Depth, Q); 2903 return Mask.isSubsetOf(Known.Zero); 2904 } 2905 2906 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2907 // Returns the input and lower/upper bounds. 2908 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2909 const APInt *&CLow, const APInt *&CHigh) { 2910 assert(isa<Operator>(Select) && 2911 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2912 "Input should be a Select!"); 2913 2914 const Value *LHS = nullptr, *RHS = nullptr; 2915 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2916 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2917 return false; 2918 2919 if (!match(RHS, m_APInt(CLow))) 2920 return false; 2921 2922 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2923 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2924 if (getInverseMinMaxFlavor(SPF) != SPF2) 2925 return false; 2926 2927 if (!match(RHS2, m_APInt(CHigh))) 2928 return false; 2929 2930 if (SPF == SPF_SMIN) 2931 std::swap(CLow, CHigh); 2932 2933 In = LHS2; 2934 return CLow->sle(*CHigh); 2935 } 2936 2937 static bool isSignedMinMaxIntrinsicClamp(const IntrinsicInst *II, 2938 const APInt *&CLow, 2939 const APInt *&CHigh) { 2940 assert((II->getIntrinsicID() == Intrinsic::smin || 2941 II->getIntrinsicID() == Intrinsic::smax) && "Must be smin/smax"); 2942 2943 Intrinsic::ID InverseID = getInverseMinMaxIntrinsic(II->getIntrinsicID()); 2944 auto *InnerII = dyn_cast<IntrinsicInst>(II->getArgOperand(0)); 2945 if (!InnerII || InnerII->getIntrinsicID() != InverseID || 2946 !match(II->getArgOperand(1), m_APInt(CLow)) || 2947 !match(InnerII->getArgOperand(1), m_APInt(CHigh))) 2948 return false; 2949 2950 if (II->getIntrinsicID() == Intrinsic::smin) 2951 std::swap(CLow, CHigh); 2952 return CLow->sle(*CHigh); 2953 } 2954 2955 /// For vector constants, loop over the elements and find the constant with the 2956 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2957 /// or if any element was not analyzed; otherwise, return the count for the 2958 /// element with the minimum number of sign bits. 2959 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2960 const APInt &DemandedElts, 2961 unsigned TyBits) { 2962 const auto *CV = dyn_cast<Constant>(V); 2963 if (!CV || !isa<FixedVectorType>(CV->getType())) 2964 return 0; 2965 2966 unsigned MinSignBits = TyBits; 2967 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2968 for (unsigned i = 0; i != NumElts; ++i) { 2969 if (!DemandedElts[i]) 2970 continue; 2971 // If we find a non-ConstantInt, bail out. 2972 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2973 if (!Elt) 2974 return 0; 2975 2976 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2977 } 2978 2979 return MinSignBits; 2980 } 2981 2982 static unsigned ComputeNumSignBitsImpl(const Value *V, 2983 const APInt &DemandedElts, 2984 unsigned Depth, const Query &Q); 2985 2986 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2987 unsigned Depth, const Query &Q) { 2988 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2989 assert(Result > 0 && "At least one sign bit needs to be present!"); 2990 return Result; 2991 } 2992 2993 /// Return the number of times the sign bit of the register is replicated into 2994 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2995 /// (itself), but other cases can give us information. For example, immediately 2996 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2997 /// other, so we return 3. For vectors, return the number of sign bits for the 2998 /// vector element with the minimum number of known sign bits of the demanded 2999 /// elements in the vector specified by DemandedElts. 3000 static unsigned ComputeNumSignBitsImpl(const Value *V, 3001 const APInt &DemandedElts, 3002 unsigned Depth, const Query &Q) { 3003 Type *Ty = V->getType(); 3004 3005 // FIXME: We currently have no way to represent the DemandedElts of a scalable 3006 // vector 3007 if (isa<ScalableVectorType>(Ty)) 3008 return 1; 3009 3010 #ifndef NDEBUG 3011 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3012 3013 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3014 assert( 3015 FVTy->getNumElements() == DemandedElts.getBitWidth() && 3016 "DemandedElt width should equal the fixed vector number of elements"); 3017 } else { 3018 assert(DemandedElts == APInt(1, 1) && 3019 "DemandedElt width should be 1 for scalars"); 3020 } 3021 #endif 3022 3023 // We return the minimum number of sign bits that are guaranteed to be present 3024 // in V, so for undef we have to conservatively return 1. We don't have the 3025 // same behavior for poison though -- that's a FIXME today. 3026 3027 Type *ScalarTy = Ty->getScalarType(); 3028 unsigned TyBits = ScalarTy->isPointerTy() ? 3029 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 3030 Q.DL.getTypeSizeInBits(ScalarTy); 3031 3032 unsigned Tmp, Tmp2; 3033 unsigned FirstAnswer = 1; 3034 3035 // Note that ConstantInt is handled by the general computeKnownBits case 3036 // below. 3037 3038 if (Depth == MaxAnalysisRecursionDepth) 3039 return 1; 3040 3041 if (auto *U = dyn_cast<Operator>(V)) { 3042 switch (Operator::getOpcode(V)) { 3043 default: break; 3044 case Instruction::SExt: 3045 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 3046 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 3047 3048 case Instruction::SDiv: { 3049 const APInt *Denominator; 3050 // sdiv X, C -> adds log(C) sign bits. 3051 if (match(U->getOperand(1), m_APInt(Denominator))) { 3052 3053 // Ignore non-positive denominator. 3054 if (!Denominator->isStrictlyPositive()) 3055 break; 3056 3057 // Calculate the incoming numerator bits. 3058 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3059 3060 // Add floor(log(C)) bits to the numerator bits. 3061 return std::min(TyBits, NumBits + Denominator->logBase2()); 3062 } 3063 break; 3064 } 3065 3066 case Instruction::SRem: { 3067 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3068 3069 const APInt *Denominator; 3070 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3071 // positive constant. This let us put a lower bound on the number of sign 3072 // bits. 3073 if (match(U->getOperand(1), m_APInt(Denominator))) { 3074 3075 // Ignore non-positive denominator. 3076 if (Denominator->isStrictlyPositive()) { 3077 // Calculate the leading sign bit constraints by examining the 3078 // denominator. Given that the denominator is positive, there are two 3079 // cases: 3080 // 3081 // 1. The numerator is positive. The result range is [0,C) and 3082 // [0,C) u< (1 << ceilLogBase2(C)). 3083 // 3084 // 2. The numerator is negative. Then the result range is (-C,0] and 3085 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3086 // 3087 // Thus a lower bound on the number of sign bits is `TyBits - 3088 // ceilLogBase2(C)`. 3089 3090 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3091 Tmp = std::max(Tmp, ResBits); 3092 } 3093 } 3094 return Tmp; 3095 } 3096 3097 case Instruction::AShr: { 3098 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3099 // ashr X, C -> adds C sign bits. Vectors too. 3100 const APInt *ShAmt; 3101 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3102 if (ShAmt->uge(TyBits)) 3103 break; // Bad shift. 3104 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3105 Tmp += ShAmtLimited; 3106 if (Tmp > TyBits) Tmp = TyBits; 3107 } 3108 return Tmp; 3109 } 3110 case Instruction::Shl: { 3111 const APInt *ShAmt; 3112 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3113 // shl destroys sign bits. 3114 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3115 if (ShAmt->uge(TyBits) || // Bad shift. 3116 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3117 Tmp2 = ShAmt->getZExtValue(); 3118 return Tmp - Tmp2; 3119 } 3120 break; 3121 } 3122 case Instruction::And: 3123 case Instruction::Or: 3124 case Instruction::Xor: // NOT is handled here. 3125 // Logical binary ops preserve the number of sign bits at the worst. 3126 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3127 if (Tmp != 1) { 3128 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3129 FirstAnswer = std::min(Tmp, Tmp2); 3130 // We computed what we know about the sign bits as our first 3131 // answer. Now proceed to the generic code that uses 3132 // computeKnownBits, and pick whichever answer is better. 3133 } 3134 break; 3135 3136 case Instruction::Select: { 3137 // If we have a clamp pattern, we know that the number of sign bits will 3138 // be the minimum of the clamp min/max range. 3139 const Value *X; 3140 const APInt *CLow, *CHigh; 3141 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3142 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3143 3144 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3145 if (Tmp == 1) break; 3146 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3147 return std::min(Tmp, Tmp2); 3148 } 3149 3150 case Instruction::Add: 3151 // Add can have at most one carry bit. Thus we know that the output 3152 // is, at worst, one more bit than the inputs. 3153 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3154 if (Tmp == 1) break; 3155 3156 // Special case decrementing a value (ADD X, -1): 3157 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3158 if (CRHS->isAllOnesValue()) { 3159 KnownBits Known(TyBits); 3160 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3161 3162 // If the input is known to be 0 or 1, the output is 0/-1, which is 3163 // all sign bits set. 3164 if ((Known.Zero | 1).isAllOnes()) 3165 return TyBits; 3166 3167 // If we are subtracting one from a positive number, there is no carry 3168 // out of the result. 3169 if (Known.isNonNegative()) 3170 return Tmp; 3171 } 3172 3173 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3174 if (Tmp2 == 1) break; 3175 return std::min(Tmp, Tmp2) - 1; 3176 3177 case Instruction::Sub: 3178 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3179 if (Tmp2 == 1) break; 3180 3181 // Handle NEG. 3182 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3183 if (CLHS->isNullValue()) { 3184 KnownBits Known(TyBits); 3185 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3186 // If the input is known to be 0 or 1, the output is 0/-1, which is 3187 // all sign bits set. 3188 if ((Known.Zero | 1).isAllOnes()) 3189 return TyBits; 3190 3191 // If the input is known to be positive (the sign bit is known clear), 3192 // the output of the NEG has the same number of sign bits as the 3193 // input. 3194 if (Known.isNonNegative()) 3195 return Tmp2; 3196 3197 // Otherwise, we treat this like a SUB. 3198 } 3199 3200 // Sub can have at most one carry bit. Thus we know that the output 3201 // is, at worst, one more bit than the inputs. 3202 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3203 if (Tmp == 1) break; 3204 return std::min(Tmp, Tmp2) - 1; 3205 3206 case Instruction::Mul: { 3207 // The output of the Mul can be at most twice the valid bits in the 3208 // inputs. 3209 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3210 if (SignBitsOp0 == 1) break; 3211 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3212 if (SignBitsOp1 == 1) break; 3213 unsigned OutValidBits = 3214 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3215 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3216 } 3217 3218 case Instruction::PHI: { 3219 const PHINode *PN = cast<PHINode>(U); 3220 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3221 // Don't analyze large in-degree PHIs. 3222 if (NumIncomingValues > 4) break; 3223 // Unreachable blocks may have zero-operand PHI nodes. 3224 if (NumIncomingValues == 0) break; 3225 3226 // Take the minimum of all incoming values. This can't infinitely loop 3227 // because of our depth threshold. 3228 Query RecQ = Q; 3229 Tmp = TyBits; 3230 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3231 if (Tmp == 1) return Tmp; 3232 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3233 Tmp = std::min( 3234 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3235 } 3236 return Tmp; 3237 } 3238 3239 case Instruction::Trunc: 3240 // FIXME: it's tricky to do anything useful for this, but it is an 3241 // important case for targets like X86. 3242 break; 3243 3244 case Instruction::ExtractElement: 3245 // Look through extract element. At the moment we keep this simple and 3246 // skip tracking the specific element. But at least we might find 3247 // information valid for all elements of the vector (for example if vector 3248 // is sign extended, shifted, etc). 3249 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3250 3251 case Instruction::ShuffleVector: { 3252 // Collect the minimum number of sign bits that are shared by every vector 3253 // element referenced by the shuffle. 3254 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3255 if (!Shuf) { 3256 // FIXME: Add support for shufflevector constant expressions. 3257 return 1; 3258 } 3259 APInt DemandedLHS, DemandedRHS; 3260 // For undef elements, we don't know anything about the common state of 3261 // the shuffle result. 3262 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3263 return 1; 3264 Tmp = std::numeric_limits<unsigned>::max(); 3265 if (!!DemandedLHS) { 3266 const Value *LHS = Shuf->getOperand(0); 3267 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3268 } 3269 // If we don't know anything, early out and try computeKnownBits 3270 // fall-back. 3271 if (Tmp == 1) 3272 break; 3273 if (!!DemandedRHS) { 3274 const Value *RHS = Shuf->getOperand(1); 3275 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3276 Tmp = std::min(Tmp, Tmp2); 3277 } 3278 // If we don't know anything, early out and try computeKnownBits 3279 // fall-back. 3280 if (Tmp == 1) 3281 break; 3282 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3283 return Tmp; 3284 } 3285 case Instruction::Call: { 3286 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3287 switch (II->getIntrinsicID()) { 3288 default: break; 3289 case Intrinsic::abs: 3290 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3291 if (Tmp == 1) break; 3292 3293 // Absolute value reduces number of sign bits by at most 1. 3294 return Tmp - 1; 3295 case Intrinsic::smin: 3296 case Intrinsic::smax: { 3297 const APInt *CLow, *CHigh; 3298 if (isSignedMinMaxIntrinsicClamp(II, CLow, CHigh)) 3299 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3300 } 3301 } 3302 } 3303 } 3304 } 3305 } 3306 3307 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3308 // use this information. 3309 3310 // If we can examine all elements of a vector constant successfully, we're 3311 // done (we can't do any better than that). If not, keep trying. 3312 if (unsigned VecSignBits = 3313 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3314 return VecSignBits; 3315 3316 KnownBits Known(TyBits); 3317 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3318 3319 // If we know that the sign bit is either zero or one, determine the number of 3320 // identical bits in the top of the input value. 3321 return std::max(FirstAnswer, Known.countMinSignBits()); 3322 } 3323 3324 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3325 const TargetLibraryInfo *TLI) { 3326 const Function *F = CB.getCalledFunction(); 3327 if (!F) 3328 return Intrinsic::not_intrinsic; 3329 3330 if (F->isIntrinsic()) 3331 return F->getIntrinsicID(); 3332 3333 // We are going to infer semantics of a library function based on mapping it 3334 // to an LLVM intrinsic. Check that the library function is available from 3335 // this callbase and in this environment. 3336 LibFunc Func; 3337 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3338 !CB.onlyReadsMemory()) 3339 return Intrinsic::not_intrinsic; 3340 3341 switch (Func) { 3342 default: 3343 break; 3344 case LibFunc_sin: 3345 case LibFunc_sinf: 3346 case LibFunc_sinl: 3347 return Intrinsic::sin; 3348 case LibFunc_cos: 3349 case LibFunc_cosf: 3350 case LibFunc_cosl: 3351 return Intrinsic::cos; 3352 case LibFunc_exp: 3353 case LibFunc_expf: 3354 case LibFunc_expl: 3355 return Intrinsic::exp; 3356 case LibFunc_exp2: 3357 case LibFunc_exp2f: 3358 case LibFunc_exp2l: 3359 return Intrinsic::exp2; 3360 case LibFunc_log: 3361 case LibFunc_logf: 3362 case LibFunc_logl: 3363 return Intrinsic::log; 3364 case LibFunc_log10: 3365 case LibFunc_log10f: 3366 case LibFunc_log10l: 3367 return Intrinsic::log10; 3368 case LibFunc_log2: 3369 case LibFunc_log2f: 3370 case LibFunc_log2l: 3371 return Intrinsic::log2; 3372 case LibFunc_fabs: 3373 case LibFunc_fabsf: 3374 case LibFunc_fabsl: 3375 return Intrinsic::fabs; 3376 case LibFunc_fmin: 3377 case LibFunc_fminf: 3378 case LibFunc_fminl: 3379 return Intrinsic::minnum; 3380 case LibFunc_fmax: 3381 case LibFunc_fmaxf: 3382 case LibFunc_fmaxl: 3383 return Intrinsic::maxnum; 3384 case LibFunc_copysign: 3385 case LibFunc_copysignf: 3386 case LibFunc_copysignl: 3387 return Intrinsic::copysign; 3388 case LibFunc_floor: 3389 case LibFunc_floorf: 3390 case LibFunc_floorl: 3391 return Intrinsic::floor; 3392 case LibFunc_ceil: 3393 case LibFunc_ceilf: 3394 case LibFunc_ceill: 3395 return Intrinsic::ceil; 3396 case LibFunc_trunc: 3397 case LibFunc_truncf: 3398 case LibFunc_truncl: 3399 return Intrinsic::trunc; 3400 case LibFunc_rint: 3401 case LibFunc_rintf: 3402 case LibFunc_rintl: 3403 return Intrinsic::rint; 3404 case LibFunc_nearbyint: 3405 case LibFunc_nearbyintf: 3406 case LibFunc_nearbyintl: 3407 return Intrinsic::nearbyint; 3408 case LibFunc_round: 3409 case LibFunc_roundf: 3410 case LibFunc_roundl: 3411 return Intrinsic::round; 3412 case LibFunc_roundeven: 3413 case LibFunc_roundevenf: 3414 case LibFunc_roundevenl: 3415 return Intrinsic::roundeven; 3416 case LibFunc_pow: 3417 case LibFunc_powf: 3418 case LibFunc_powl: 3419 return Intrinsic::pow; 3420 case LibFunc_sqrt: 3421 case LibFunc_sqrtf: 3422 case LibFunc_sqrtl: 3423 return Intrinsic::sqrt; 3424 } 3425 3426 return Intrinsic::not_intrinsic; 3427 } 3428 3429 /// Return true if we can prove that the specified FP value is never equal to 3430 /// -0.0. 3431 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3432 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3433 /// the same as +0.0 in floating-point ops. 3434 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3435 unsigned Depth) { 3436 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3437 return !CFP->getValueAPF().isNegZero(); 3438 3439 if (Depth == MaxAnalysisRecursionDepth) 3440 return false; 3441 3442 auto *Op = dyn_cast<Operator>(V); 3443 if (!Op) 3444 return false; 3445 3446 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3447 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3448 return true; 3449 3450 // sitofp and uitofp turn into +0.0 for zero. 3451 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3452 return true; 3453 3454 if (auto *Call = dyn_cast<CallInst>(Op)) { 3455 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3456 switch (IID) { 3457 default: 3458 break; 3459 // sqrt(-0.0) = -0.0, no other negative results are possible. 3460 case Intrinsic::sqrt: 3461 case Intrinsic::canonicalize: 3462 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3463 case Intrinsic::experimental_constrained_sqrt: { 3464 // NOTE: This rounding mode restriction may be too strict. 3465 const auto *CI = cast<ConstrainedFPIntrinsic>(Call); 3466 if (CI->getRoundingMode() == RoundingMode::NearestTiesToEven) 3467 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3468 else 3469 return false; 3470 } 3471 // fabs(x) != -0.0 3472 case Intrinsic::fabs: 3473 return true; 3474 // sitofp and uitofp turn into +0.0 for zero. 3475 case Intrinsic::experimental_constrained_sitofp: 3476 case Intrinsic::experimental_constrained_uitofp: 3477 return true; 3478 } 3479 } 3480 3481 return false; 3482 } 3483 3484 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3485 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3486 /// bit despite comparing equal. 3487 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3488 const TargetLibraryInfo *TLI, 3489 bool SignBitOnly, 3490 unsigned Depth) { 3491 // TODO: This function does not do the right thing when SignBitOnly is true 3492 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3493 // which flips the sign bits of NaNs. See 3494 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3495 3496 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3497 return !CFP->getValueAPF().isNegative() || 3498 (!SignBitOnly && CFP->getValueAPF().isZero()); 3499 } 3500 3501 // Handle vector of constants. 3502 if (auto *CV = dyn_cast<Constant>(V)) { 3503 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3504 unsigned NumElts = CVFVTy->getNumElements(); 3505 for (unsigned i = 0; i != NumElts; ++i) { 3506 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3507 if (!CFP) 3508 return false; 3509 if (CFP->getValueAPF().isNegative() && 3510 (SignBitOnly || !CFP->getValueAPF().isZero())) 3511 return false; 3512 } 3513 3514 // All non-negative ConstantFPs. 3515 return true; 3516 } 3517 } 3518 3519 if (Depth == MaxAnalysisRecursionDepth) 3520 return false; 3521 3522 const Operator *I = dyn_cast<Operator>(V); 3523 if (!I) 3524 return false; 3525 3526 switch (I->getOpcode()) { 3527 default: 3528 break; 3529 // Unsigned integers are always nonnegative. 3530 case Instruction::UIToFP: 3531 return true; 3532 case Instruction::FMul: 3533 case Instruction::FDiv: 3534 // X * X is always non-negative or a NaN. 3535 // X / X is always exactly 1.0 or a NaN. 3536 if (I->getOperand(0) == I->getOperand(1) && 3537 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3538 return true; 3539 3540 LLVM_FALLTHROUGH; 3541 case Instruction::FAdd: 3542 case Instruction::FRem: 3543 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3544 Depth + 1) && 3545 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3546 Depth + 1); 3547 case Instruction::Select: 3548 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3549 Depth + 1) && 3550 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3551 Depth + 1); 3552 case Instruction::FPExt: 3553 case Instruction::FPTrunc: 3554 // Widening/narrowing never change sign. 3555 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3556 Depth + 1); 3557 case Instruction::ExtractElement: 3558 // Look through extract element. At the moment we keep this simple and skip 3559 // tracking the specific element. But at least we might find information 3560 // valid for all elements of the vector. 3561 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3562 Depth + 1); 3563 case Instruction::Call: 3564 const auto *CI = cast<CallInst>(I); 3565 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3566 switch (IID) { 3567 default: 3568 break; 3569 case Intrinsic::maxnum: { 3570 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3571 auto isPositiveNum = [&](Value *V) { 3572 if (SignBitOnly) { 3573 // With SignBitOnly, this is tricky because the result of 3574 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3575 // a constant strictly greater than 0.0. 3576 const APFloat *C; 3577 return match(V, m_APFloat(C)) && 3578 *C > APFloat::getZero(C->getSemantics()); 3579 } 3580 3581 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3582 // maxnum can't be ordered-less-than-zero. 3583 return isKnownNeverNaN(V, TLI) && 3584 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3585 }; 3586 3587 // TODO: This could be improved. We could also check that neither operand 3588 // has its sign bit set (and at least 1 is not-NAN?). 3589 return isPositiveNum(V0) || isPositiveNum(V1); 3590 } 3591 3592 case Intrinsic::maximum: 3593 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3594 Depth + 1) || 3595 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3596 Depth + 1); 3597 case Intrinsic::minnum: 3598 case Intrinsic::minimum: 3599 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3600 Depth + 1) && 3601 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3602 Depth + 1); 3603 case Intrinsic::exp: 3604 case Intrinsic::exp2: 3605 case Intrinsic::fabs: 3606 return true; 3607 3608 case Intrinsic::sqrt: 3609 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3610 if (!SignBitOnly) 3611 return true; 3612 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3613 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3614 3615 case Intrinsic::powi: 3616 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3617 // powi(x,n) is non-negative if n is even. 3618 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3619 return true; 3620 } 3621 // TODO: This is not correct. Given that exp is an integer, here are the 3622 // ways that pow can return a negative value: 3623 // 3624 // pow(x, exp) --> negative if exp is odd and x is negative. 3625 // pow(-0, exp) --> -inf if exp is negative odd. 3626 // pow(-0, exp) --> -0 if exp is positive odd. 3627 // pow(-inf, exp) --> -0 if exp is negative odd. 3628 // pow(-inf, exp) --> -inf if exp is positive odd. 3629 // 3630 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3631 // but we must return false if x == -0. Unfortunately we do not currently 3632 // have a way of expressing this constraint. See details in 3633 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3634 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3635 Depth + 1); 3636 3637 case Intrinsic::fma: 3638 case Intrinsic::fmuladd: 3639 // x*x+y is non-negative if y is non-negative. 3640 return I->getOperand(0) == I->getOperand(1) && 3641 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3642 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3643 Depth + 1); 3644 } 3645 break; 3646 } 3647 return false; 3648 } 3649 3650 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3651 const TargetLibraryInfo *TLI) { 3652 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3653 } 3654 3655 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3656 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3657 } 3658 3659 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3660 unsigned Depth) { 3661 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3662 3663 // If we're told that infinities won't happen, assume they won't. 3664 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3665 if (FPMathOp->hasNoInfs()) 3666 return true; 3667 3668 // Handle scalar constants. 3669 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3670 return !CFP->isInfinity(); 3671 3672 if (Depth == MaxAnalysisRecursionDepth) 3673 return false; 3674 3675 if (auto *Inst = dyn_cast<Instruction>(V)) { 3676 switch (Inst->getOpcode()) { 3677 case Instruction::Select: { 3678 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3679 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3680 } 3681 case Instruction::SIToFP: 3682 case Instruction::UIToFP: { 3683 // Get width of largest magnitude integer (remove a bit if signed). 3684 // This still works for a signed minimum value because the largest FP 3685 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3686 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3687 if (Inst->getOpcode() == Instruction::SIToFP) 3688 --IntSize; 3689 3690 // If the exponent of the largest finite FP value can hold the largest 3691 // integer, the result of the cast must be finite. 3692 Type *FPTy = Inst->getType()->getScalarType(); 3693 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3694 } 3695 default: 3696 break; 3697 } 3698 } 3699 3700 // try to handle fixed width vector constants 3701 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3702 if (VFVTy && isa<Constant>(V)) { 3703 // For vectors, verify that each element is not infinity. 3704 unsigned NumElts = VFVTy->getNumElements(); 3705 for (unsigned i = 0; i != NumElts; ++i) { 3706 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3707 if (!Elt) 3708 return false; 3709 if (isa<UndefValue>(Elt)) 3710 continue; 3711 auto *CElt = dyn_cast<ConstantFP>(Elt); 3712 if (!CElt || CElt->isInfinity()) 3713 return false; 3714 } 3715 // All elements were confirmed non-infinity or undefined. 3716 return true; 3717 } 3718 3719 // was not able to prove that V never contains infinity 3720 return false; 3721 } 3722 3723 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3724 unsigned Depth) { 3725 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3726 3727 // If we're told that NaNs won't happen, assume they won't. 3728 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3729 if (FPMathOp->hasNoNaNs()) 3730 return true; 3731 3732 // Handle scalar constants. 3733 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3734 return !CFP->isNaN(); 3735 3736 if (Depth == MaxAnalysisRecursionDepth) 3737 return false; 3738 3739 if (auto *Inst = dyn_cast<Instruction>(V)) { 3740 switch (Inst->getOpcode()) { 3741 case Instruction::FAdd: 3742 case Instruction::FSub: 3743 // Adding positive and negative infinity produces NaN. 3744 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3745 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3746 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3747 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3748 3749 case Instruction::FMul: 3750 // Zero multiplied with infinity produces NaN. 3751 // FIXME: If neither side can be zero fmul never produces NaN. 3752 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3753 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3754 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3755 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3756 3757 case Instruction::FDiv: 3758 case Instruction::FRem: 3759 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3760 return false; 3761 3762 case Instruction::Select: { 3763 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3764 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3765 } 3766 case Instruction::SIToFP: 3767 case Instruction::UIToFP: 3768 return true; 3769 case Instruction::FPTrunc: 3770 case Instruction::FPExt: 3771 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3772 default: 3773 break; 3774 } 3775 } 3776 3777 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3778 switch (II->getIntrinsicID()) { 3779 case Intrinsic::canonicalize: 3780 case Intrinsic::fabs: 3781 case Intrinsic::copysign: 3782 case Intrinsic::exp: 3783 case Intrinsic::exp2: 3784 case Intrinsic::floor: 3785 case Intrinsic::ceil: 3786 case Intrinsic::trunc: 3787 case Intrinsic::rint: 3788 case Intrinsic::nearbyint: 3789 case Intrinsic::round: 3790 case Intrinsic::roundeven: 3791 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3792 case Intrinsic::sqrt: 3793 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3794 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3795 case Intrinsic::minnum: 3796 case Intrinsic::maxnum: 3797 // If either operand is not NaN, the result is not NaN. 3798 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3799 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3800 default: 3801 return false; 3802 } 3803 } 3804 3805 // Try to handle fixed width vector constants 3806 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3807 if (VFVTy && isa<Constant>(V)) { 3808 // For vectors, verify that each element is not NaN. 3809 unsigned NumElts = VFVTy->getNumElements(); 3810 for (unsigned i = 0; i != NumElts; ++i) { 3811 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3812 if (!Elt) 3813 return false; 3814 if (isa<UndefValue>(Elt)) 3815 continue; 3816 auto *CElt = dyn_cast<ConstantFP>(Elt); 3817 if (!CElt || CElt->isNaN()) 3818 return false; 3819 } 3820 // All elements were confirmed not-NaN or undefined. 3821 return true; 3822 } 3823 3824 // Was not able to prove that V never contains NaN 3825 return false; 3826 } 3827 3828 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3829 3830 // All byte-wide stores are splatable, even of arbitrary variables. 3831 if (V->getType()->isIntegerTy(8)) 3832 return V; 3833 3834 LLVMContext &Ctx = V->getContext(); 3835 3836 // Undef don't care. 3837 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3838 if (isa<UndefValue>(V)) 3839 return UndefInt8; 3840 3841 // Return Undef for zero-sized type. 3842 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3843 return UndefInt8; 3844 3845 Constant *C = dyn_cast<Constant>(V); 3846 if (!C) { 3847 // Conceptually, we could handle things like: 3848 // %a = zext i8 %X to i16 3849 // %b = shl i16 %a, 8 3850 // %c = or i16 %a, %b 3851 // but until there is an example that actually needs this, it doesn't seem 3852 // worth worrying about. 3853 return nullptr; 3854 } 3855 3856 // Handle 'null' ConstantArrayZero etc. 3857 if (C->isNullValue()) 3858 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3859 3860 // Constant floating-point values can be handled as integer values if the 3861 // corresponding integer value is "byteable". An important case is 0.0. 3862 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3863 Type *Ty = nullptr; 3864 if (CFP->getType()->isHalfTy()) 3865 Ty = Type::getInt16Ty(Ctx); 3866 else if (CFP->getType()->isFloatTy()) 3867 Ty = Type::getInt32Ty(Ctx); 3868 else if (CFP->getType()->isDoubleTy()) 3869 Ty = Type::getInt64Ty(Ctx); 3870 // Don't handle long double formats, which have strange constraints. 3871 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3872 : nullptr; 3873 } 3874 3875 // We can handle constant integers that are multiple of 8 bits. 3876 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3877 if (CI->getBitWidth() % 8 == 0) { 3878 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3879 if (!CI->getValue().isSplat(8)) 3880 return nullptr; 3881 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3882 } 3883 } 3884 3885 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3886 if (CE->getOpcode() == Instruction::IntToPtr) { 3887 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3888 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3889 return isBytewiseValue( 3890 ConstantExpr::getIntegerCast(CE->getOperand(0), 3891 Type::getIntNTy(Ctx, BitWidth), false), 3892 DL); 3893 } 3894 } 3895 } 3896 3897 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3898 if (LHS == RHS) 3899 return LHS; 3900 if (!LHS || !RHS) 3901 return nullptr; 3902 if (LHS == UndefInt8) 3903 return RHS; 3904 if (RHS == UndefInt8) 3905 return LHS; 3906 return nullptr; 3907 }; 3908 3909 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3910 Value *Val = UndefInt8; 3911 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3912 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3913 return nullptr; 3914 return Val; 3915 } 3916 3917 if (isa<ConstantAggregate>(C)) { 3918 Value *Val = UndefInt8; 3919 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3920 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3921 return nullptr; 3922 return Val; 3923 } 3924 3925 // Don't try to handle the handful of other constants. 3926 return nullptr; 3927 } 3928 3929 // This is the recursive version of BuildSubAggregate. It takes a few different 3930 // arguments. Idxs is the index within the nested struct From that we are 3931 // looking at now (which is of type IndexedType). IdxSkip is the number of 3932 // indices from Idxs that should be left out when inserting into the resulting 3933 // struct. To is the result struct built so far, new insertvalue instructions 3934 // build on that. 3935 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3936 SmallVectorImpl<unsigned> &Idxs, 3937 unsigned IdxSkip, 3938 Instruction *InsertBefore) { 3939 StructType *STy = dyn_cast<StructType>(IndexedType); 3940 if (STy) { 3941 // Save the original To argument so we can modify it 3942 Value *OrigTo = To; 3943 // General case, the type indexed by Idxs is a struct 3944 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3945 // Process each struct element recursively 3946 Idxs.push_back(i); 3947 Value *PrevTo = To; 3948 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3949 InsertBefore); 3950 Idxs.pop_back(); 3951 if (!To) { 3952 // Couldn't find any inserted value for this index? Cleanup 3953 while (PrevTo != OrigTo) { 3954 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3955 PrevTo = Del->getAggregateOperand(); 3956 Del->eraseFromParent(); 3957 } 3958 // Stop processing elements 3959 break; 3960 } 3961 } 3962 // If we successfully found a value for each of our subaggregates 3963 if (To) 3964 return To; 3965 } 3966 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3967 // the struct's elements had a value that was inserted directly. In the latter 3968 // case, perhaps we can't determine each of the subelements individually, but 3969 // we might be able to find the complete struct somewhere. 3970 3971 // Find the value that is at that particular spot 3972 Value *V = FindInsertedValue(From, Idxs); 3973 3974 if (!V) 3975 return nullptr; 3976 3977 // Insert the value in the new (sub) aggregate 3978 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3979 "tmp", InsertBefore); 3980 } 3981 3982 // This helper takes a nested struct and extracts a part of it (which is again a 3983 // struct) into a new value. For example, given the struct: 3984 // { a, { b, { c, d }, e } } 3985 // and the indices "1, 1" this returns 3986 // { c, d }. 3987 // 3988 // It does this by inserting an insertvalue for each element in the resulting 3989 // struct, as opposed to just inserting a single struct. This will only work if 3990 // each of the elements of the substruct are known (ie, inserted into From by an 3991 // insertvalue instruction somewhere). 3992 // 3993 // All inserted insertvalue instructions are inserted before InsertBefore 3994 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3995 Instruction *InsertBefore) { 3996 assert(InsertBefore && "Must have someplace to insert!"); 3997 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3998 idx_range); 3999 Value *To = UndefValue::get(IndexedType); 4000 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4001 unsigned IdxSkip = Idxs.size(); 4002 4003 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4004 } 4005 4006 /// Given an aggregate and a sequence of indices, see if the scalar value 4007 /// indexed is already around as a register, for example if it was inserted 4008 /// directly into the aggregate. 4009 /// 4010 /// If InsertBefore is not null, this function will duplicate (modified) 4011 /// insertvalues when a part of a nested struct is extracted. 4012 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4013 Instruction *InsertBefore) { 4014 // Nothing to index? Just return V then (this is useful at the end of our 4015 // recursion). 4016 if (idx_range.empty()) 4017 return V; 4018 // We have indices, so V should have an indexable type. 4019 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4020 "Not looking at a struct or array?"); 4021 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4022 "Invalid indices for type?"); 4023 4024 if (Constant *C = dyn_cast<Constant>(V)) { 4025 C = C->getAggregateElement(idx_range[0]); 4026 if (!C) return nullptr; 4027 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4028 } 4029 4030 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4031 // Loop the indices for the insertvalue instruction in parallel with the 4032 // requested indices 4033 const unsigned *req_idx = idx_range.begin(); 4034 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4035 i != e; ++i, ++req_idx) { 4036 if (req_idx == idx_range.end()) { 4037 // We can't handle this without inserting insertvalues 4038 if (!InsertBefore) 4039 return nullptr; 4040 4041 // The requested index identifies a part of a nested aggregate. Handle 4042 // this specially. For example, 4043 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4044 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4045 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4046 // This can be changed into 4047 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4048 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4049 // which allows the unused 0,0 element from the nested struct to be 4050 // removed. 4051 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4052 InsertBefore); 4053 } 4054 4055 // This insert value inserts something else than what we are looking for. 4056 // See if the (aggregate) value inserted into has the value we are 4057 // looking for, then. 4058 if (*req_idx != *i) 4059 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4060 InsertBefore); 4061 } 4062 // If we end up here, the indices of the insertvalue match with those 4063 // requested (though possibly only partially). Now we recursively look at 4064 // the inserted value, passing any remaining indices. 4065 return FindInsertedValue(I->getInsertedValueOperand(), 4066 makeArrayRef(req_idx, idx_range.end()), 4067 InsertBefore); 4068 } 4069 4070 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4071 // If we're extracting a value from an aggregate that was extracted from 4072 // something else, we can extract from that something else directly instead. 4073 // However, we will need to chain I's indices with the requested indices. 4074 4075 // Calculate the number of indices required 4076 unsigned size = I->getNumIndices() + idx_range.size(); 4077 // Allocate some space to put the new indices in 4078 SmallVector<unsigned, 5> Idxs; 4079 Idxs.reserve(size); 4080 // Add indices from the extract value instruction 4081 Idxs.append(I->idx_begin(), I->idx_end()); 4082 4083 // Add requested indices 4084 Idxs.append(idx_range.begin(), idx_range.end()); 4085 4086 assert(Idxs.size() == size 4087 && "Number of indices added not correct?"); 4088 4089 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4090 } 4091 // Otherwise, we don't know (such as, extracting from a function return value 4092 // or load instruction) 4093 return nullptr; 4094 } 4095 4096 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4097 unsigned CharSize) { 4098 // Make sure the GEP has exactly three arguments. 4099 if (GEP->getNumOperands() != 3) 4100 return false; 4101 4102 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4103 // CharSize. 4104 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4105 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4106 return false; 4107 4108 // Check to make sure that the first operand of the GEP is an integer and 4109 // has value 0 so that we are sure we're indexing into the initializer. 4110 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4111 if (!FirstIdx || !FirstIdx->isZero()) 4112 return false; 4113 4114 return true; 4115 } 4116 4117 bool llvm::getConstantDataArrayInfo(const Value *V, 4118 ConstantDataArraySlice &Slice, 4119 unsigned ElementSize, uint64_t Offset) { 4120 assert(V); 4121 4122 // Look through bitcast instructions and geps. 4123 V = V->stripPointerCasts(); 4124 4125 // If the value is a GEP instruction or constant expression, treat it as an 4126 // offset. 4127 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4128 // The GEP operator should be based on a pointer to string constant, and is 4129 // indexing into the string constant. 4130 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4131 return false; 4132 4133 // If the second index isn't a ConstantInt, then this is a variable index 4134 // into the array. If this occurs, we can't say anything meaningful about 4135 // the string. 4136 uint64_t StartIdx = 0; 4137 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4138 StartIdx = CI->getZExtValue(); 4139 else 4140 return false; 4141 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4142 StartIdx + Offset); 4143 } 4144 4145 // The GEP instruction, constant or instruction, must reference a global 4146 // variable that is a constant and is initialized. The referenced constant 4147 // initializer is the array that we'll use for optimization. 4148 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4149 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4150 return false; 4151 4152 const ConstantDataArray *Array; 4153 ArrayType *ArrayTy; 4154 if (GV->getInitializer()->isNullValue()) { 4155 Type *GVTy = GV->getValueType(); 4156 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4157 // A zeroinitializer for the array; there is no ConstantDataArray. 4158 Array = nullptr; 4159 } else { 4160 const DataLayout &DL = GV->getParent()->getDataLayout(); 4161 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4162 uint64_t Length = SizeInBytes / (ElementSize / 8); 4163 if (Length <= Offset) 4164 return false; 4165 4166 Slice.Array = nullptr; 4167 Slice.Offset = 0; 4168 Slice.Length = Length - Offset; 4169 return true; 4170 } 4171 } else { 4172 // This must be a ConstantDataArray. 4173 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4174 if (!Array) 4175 return false; 4176 ArrayTy = Array->getType(); 4177 } 4178 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4179 return false; 4180 4181 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4182 if (Offset > NumElts) 4183 return false; 4184 4185 Slice.Array = Array; 4186 Slice.Offset = Offset; 4187 Slice.Length = NumElts - Offset; 4188 return true; 4189 } 4190 4191 /// This function computes the length of a null-terminated C string pointed to 4192 /// by V. If successful, it returns true and returns the string in Str. 4193 /// If unsuccessful, it returns false. 4194 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4195 uint64_t Offset, bool TrimAtNul) { 4196 ConstantDataArraySlice Slice; 4197 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4198 return false; 4199 4200 if (Slice.Array == nullptr) { 4201 if (TrimAtNul) { 4202 Str = StringRef(); 4203 return true; 4204 } 4205 if (Slice.Length == 1) { 4206 Str = StringRef("", 1); 4207 return true; 4208 } 4209 // We cannot instantiate a StringRef as we do not have an appropriate string 4210 // of 0s at hand. 4211 return false; 4212 } 4213 4214 // Start out with the entire array in the StringRef. 4215 Str = Slice.Array->getAsString(); 4216 // Skip over 'offset' bytes. 4217 Str = Str.substr(Slice.Offset); 4218 4219 if (TrimAtNul) { 4220 // Trim off the \0 and anything after it. If the array is not nul 4221 // terminated, we just return the whole end of string. The client may know 4222 // some other way that the string is length-bound. 4223 Str = Str.substr(0, Str.find('\0')); 4224 } 4225 return true; 4226 } 4227 4228 // These next two are very similar to the above, but also look through PHI 4229 // nodes. 4230 // TODO: See if we can integrate these two together. 4231 4232 /// If we can compute the length of the string pointed to by 4233 /// the specified pointer, return 'len+1'. If we can't, return 0. 4234 static uint64_t GetStringLengthH(const Value *V, 4235 SmallPtrSetImpl<const PHINode*> &PHIs, 4236 unsigned CharSize) { 4237 // Look through noop bitcast instructions. 4238 V = V->stripPointerCasts(); 4239 4240 // If this is a PHI node, there are two cases: either we have already seen it 4241 // or we haven't. 4242 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4243 if (!PHIs.insert(PN).second) 4244 return ~0ULL; // already in the set. 4245 4246 // If it was new, see if all the input strings are the same length. 4247 uint64_t LenSoFar = ~0ULL; 4248 for (Value *IncValue : PN->incoming_values()) { 4249 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4250 if (Len == 0) return 0; // Unknown length -> unknown. 4251 4252 if (Len == ~0ULL) continue; 4253 4254 if (Len != LenSoFar && LenSoFar != ~0ULL) 4255 return 0; // Disagree -> unknown. 4256 LenSoFar = Len; 4257 } 4258 4259 // Success, all agree. 4260 return LenSoFar; 4261 } 4262 4263 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4264 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4265 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4266 if (Len1 == 0) return 0; 4267 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4268 if (Len2 == 0) return 0; 4269 if (Len1 == ~0ULL) return Len2; 4270 if (Len2 == ~0ULL) return Len1; 4271 if (Len1 != Len2) return 0; 4272 return Len1; 4273 } 4274 4275 // Otherwise, see if we can read the string. 4276 ConstantDataArraySlice Slice; 4277 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4278 return 0; 4279 4280 if (Slice.Array == nullptr) 4281 return 1; 4282 4283 // Search for nul characters 4284 unsigned NullIndex = 0; 4285 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4286 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4287 break; 4288 } 4289 4290 return NullIndex + 1; 4291 } 4292 4293 /// If we can compute the length of the string pointed to by 4294 /// the specified pointer, return 'len+1'. If we can't, return 0. 4295 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4296 if (!V->getType()->isPointerTy()) 4297 return 0; 4298 4299 SmallPtrSet<const PHINode*, 32> PHIs; 4300 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4301 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4302 // an empty string as a length. 4303 return Len == ~0ULL ? 1 : Len; 4304 } 4305 4306 const Value * 4307 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4308 bool MustPreserveNullness) { 4309 assert(Call && 4310 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4311 if (const Value *RV = Call->getReturnedArgOperand()) 4312 return RV; 4313 // This can be used only as a aliasing property. 4314 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4315 Call, MustPreserveNullness)) 4316 return Call->getArgOperand(0); 4317 return nullptr; 4318 } 4319 4320 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4321 const CallBase *Call, bool MustPreserveNullness) { 4322 switch (Call->getIntrinsicID()) { 4323 case Intrinsic::launder_invariant_group: 4324 case Intrinsic::strip_invariant_group: 4325 case Intrinsic::aarch64_irg: 4326 case Intrinsic::aarch64_tagp: 4327 return true; 4328 case Intrinsic::ptrmask: 4329 return !MustPreserveNullness; 4330 default: 4331 return false; 4332 } 4333 } 4334 4335 /// \p PN defines a loop-variant pointer to an object. Check if the 4336 /// previous iteration of the loop was referring to the same object as \p PN. 4337 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4338 const LoopInfo *LI) { 4339 // Find the loop-defined value. 4340 Loop *L = LI->getLoopFor(PN->getParent()); 4341 if (PN->getNumIncomingValues() != 2) 4342 return true; 4343 4344 // Find the value from previous iteration. 4345 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4346 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4347 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4348 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4349 return true; 4350 4351 // If a new pointer is loaded in the loop, the pointer references a different 4352 // object in every iteration. E.g.: 4353 // for (i) 4354 // int *p = a[i]; 4355 // ... 4356 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4357 if (!L->isLoopInvariant(Load->getPointerOperand())) 4358 return false; 4359 return true; 4360 } 4361 4362 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4363 if (!V->getType()->isPointerTy()) 4364 return V; 4365 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4366 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4367 V = GEP->getPointerOperand(); 4368 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4369 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4370 V = cast<Operator>(V)->getOperand(0); 4371 if (!V->getType()->isPointerTy()) 4372 return V; 4373 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4374 if (GA->isInterposable()) 4375 return V; 4376 V = GA->getAliasee(); 4377 } else { 4378 if (auto *PHI = dyn_cast<PHINode>(V)) { 4379 // Look through single-arg phi nodes created by LCSSA. 4380 if (PHI->getNumIncomingValues() == 1) { 4381 V = PHI->getIncomingValue(0); 4382 continue; 4383 } 4384 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4385 // CaptureTracking can know about special capturing properties of some 4386 // intrinsics like launder.invariant.group, that can't be expressed with 4387 // the attributes, but have properties like returning aliasing pointer. 4388 // Because some analysis may assume that nocaptured pointer is not 4389 // returned from some special intrinsic (because function would have to 4390 // be marked with returns attribute), it is crucial to use this function 4391 // because it should be in sync with CaptureTracking. Not using it may 4392 // cause weird miscompilations where 2 aliasing pointers are assumed to 4393 // noalias. 4394 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4395 V = RP; 4396 continue; 4397 } 4398 } 4399 4400 return V; 4401 } 4402 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4403 } 4404 return V; 4405 } 4406 4407 void llvm::getUnderlyingObjects(const Value *V, 4408 SmallVectorImpl<const Value *> &Objects, 4409 LoopInfo *LI, unsigned MaxLookup) { 4410 SmallPtrSet<const Value *, 4> Visited; 4411 SmallVector<const Value *, 4> Worklist; 4412 Worklist.push_back(V); 4413 do { 4414 const Value *P = Worklist.pop_back_val(); 4415 P = getUnderlyingObject(P, MaxLookup); 4416 4417 if (!Visited.insert(P).second) 4418 continue; 4419 4420 if (auto *SI = dyn_cast<SelectInst>(P)) { 4421 Worklist.push_back(SI->getTrueValue()); 4422 Worklist.push_back(SI->getFalseValue()); 4423 continue; 4424 } 4425 4426 if (auto *PN = dyn_cast<PHINode>(P)) { 4427 // If this PHI changes the underlying object in every iteration of the 4428 // loop, don't look through it. Consider: 4429 // int **A; 4430 // for (i) { 4431 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4432 // Curr = A[i]; 4433 // *Prev, *Curr; 4434 // 4435 // Prev is tracking Curr one iteration behind so they refer to different 4436 // underlying objects. 4437 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4438 isSameUnderlyingObjectInLoop(PN, LI)) 4439 append_range(Worklist, PN->incoming_values()); 4440 continue; 4441 } 4442 4443 Objects.push_back(P); 4444 } while (!Worklist.empty()); 4445 } 4446 4447 /// This is the function that does the work of looking through basic 4448 /// ptrtoint+arithmetic+inttoptr sequences. 4449 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4450 do { 4451 if (const Operator *U = dyn_cast<Operator>(V)) { 4452 // If we find a ptrtoint, we can transfer control back to the 4453 // regular getUnderlyingObjectFromInt. 4454 if (U->getOpcode() == Instruction::PtrToInt) 4455 return U->getOperand(0); 4456 // If we find an add of a constant, a multiplied value, or a phi, it's 4457 // likely that the other operand will lead us to the base 4458 // object. We don't have to worry about the case where the 4459 // object address is somehow being computed by the multiply, 4460 // because our callers only care when the result is an 4461 // identifiable object. 4462 if (U->getOpcode() != Instruction::Add || 4463 (!isa<ConstantInt>(U->getOperand(1)) && 4464 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4465 !isa<PHINode>(U->getOperand(1)))) 4466 return V; 4467 V = U->getOperand(0); 4468 } else { 4469 return V; 4470 } 4471 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4472 } while (true); 4473 } 4474 4475 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4476 /// ptrtoint+arithmetic+inttoptr sequences. 4477 /// It returns false if unidentified object is found in getUnderlyingObjects. 4478 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4479 SmallVectorImpl<Value *> &Objects) { 4480 SmallPtrSet<const Value *, 16> Visited; 4481 SmallVector<const Value *, 4> Working(1, V); 4482 do { 4483 V = Working.pop_back_val(); 4484 4485 SmallVector<const Value *, 4> Objs; 4486 getUnderlyingObjects(V, Objs); 4487 4488 for (const Value *V : Objs) { 4489 if (!Visited.insert(V).second) 4490 continue; 4491 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4492 const Value *O = 4493 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4494 if (O->getType()->isPointerTy()) { 4495 Working.push_back(O); 4496 continue; 4497 } 4498 } 4499 // If getUnderlyingObjects fails to find an identifiable object, 4500 // getUnderlyingObjectsForCodeGen also fails for safety. 4501 if (!isIdentifiedObject(V)) { 4502 Objects.clear(); 4503 return false; 4504 } 4505 Objects.push_back(const_cast<Value *>(V)); 4506 } 4507 } while (!Working.empty()); 4508 return true; 4509 } 4510 4511 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4512 AllocaInst *Result = nullptr; 4513 SmallPtrSet<Value *, 4> Visited; 4514 SmallVector<Value *, 4> Worklist; 4515 4516 auto AddWork = [&](Value *V) { 4517 if (Visited.insert(V).second) 4518 Worklist.push_back(V); 4519 }; 4520 4521 AddWork(V); 4522 do { 4523 V = Worklist.pop_back_val(); 4524 assert(Visited.count(V)); 4525 4526 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4527 if (Result && Result != AI) 4528 return nullptr; 4529 Result = AI; 4530 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4531 AddWork(CI->getOperand(0)); 4532 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4533 for (Value *IncValue : PN->incoming_values()) 4534 AddWork(IncValue); 4535 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4536 AddWork(SI->getTrueValue()); 4537 AddWork(SI->getFalseValue()); 4538 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4539 if (OffsetZero && !GEP->hasAllZeroIndices()) 4540 return nullptr; 4541 AddWork(GEP->getPointerOperand()); 4542 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4543 Value *Returned = CB->getReturnedArgOperand(); 4544 if (Returned) 4545 AddWork(Returned); 4546 else 4547 return nullptr; 4548 } else { 4549 return nullptr; 4550 } 4551 } while (!Worklist.empty()); 4552 4553 return Result; 4554 } 4555 4556 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4557 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4558 for (const User *U : V->users()) { 4559 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4560 if (!II) 4561 return false; 4562 4563 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4564 continue; 4565 4566 if (AllowDroppable && II->isDroppable()) 4567 continue; 4568 4569 return false; 4570 } 4571 return true; 4572 } 4573 4574 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4575 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4576 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4577 } 4578 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4579 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4580 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4581 } 4582 4583 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4584 if (!LI.isUnordered()) 4585 return true; 4586 const Function &F = *LI.getFunction(); 4587 // Speculative load may create a race that did not exist in the source. 4588 return F.hasFnAttribute(Attribute::SanitizeThread) || 4589 // Speculative load may load data from dirty regions. 4590 F.hasFnAttribute(Attribute::SanitizeAddress) || 4591 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4592 } 4593 4594 4595 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4596 const Instruction *CtxI, 4597 const DominatorTree *DT, 4598 const TargetLibraryInfo *TLI) { 4599 const Operator *Inst = dyn_cast<Operator>(V); 4600 if (!Inst) 4601 return false; 4602 return isSafeToSpeculativelyExecuteWithOpcode(Inst->getOpcode(), Inst, CtxI, DT, TLI); 4603 } 4604 4605 bool llvm::isSafeToSpeculativelyExecuteWithOpcode(unsigned Opcode, 4606 const Operator *Inst, 4607 const Instruction *CtxI, 4608 const DominatorTree *DT, 4609 const TargetLibraryInfo *TLI) { 4610 if (Inst->getOpcode() != Opcode) { 4611 // Check that the operands are actually compatible with the Opcode override. 4612 auto hasEqualReturnAndLeadingOperandTypes = 4613 [](const Operator *Inst, unsigned NumLeadingOperands) { 4614 if (Inst->getNumOperands() < NumLeadingOperands) 4615 return false; 4616 const Type *ExpectedType = Inst->getType(); 4617 for (unsigned ItOp = 0; ItOp < NumLeadingOperands; ++ItOp) 4618 if (Inst->getOperand(ItOp)->getType() != ExpectedType) 4619 return false; 4620 return true; 4621 }; 4622 assert(!Instruction::isBinaryOp(Opcode) || 4623 hasEqualReturnAndLeadingOperandTypes(Inst, 2)); 4624 assert(!Instruction::isUnaryOp(Opcode) || 4625 hasEqualReturnAndLeadingOperandTypes(Inst, 1)); 4626 } 4627 4628 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4629 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4630 if (C->canTrap()) 4631 return false; 4632 4633 switch (Opcode) { 4634 default: 4635 return true; 4636 case Instruction::UDiv: 4637 case Instruction::URem: { 4638 // x / y is undefined if y == 0. 4639 const APInt *V; 4640 if (match(Inst->getOperand(1), m_APInt(V))) 4641 return *V != 0; 4642 return false; 4643 } 4644 case Instruction::SDiv: 4645 case Instruction::SRem: { 4646 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4647 const APInt *Numerator, *Denominator; 4648 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4649 return false; 4650 // We cannot hoist this division if the denominator is 0. 4651 if (*Denominator == 0) 4652 return false; 4653 // It's safe to hoist if the denominator is not 0 or -1. 4654 if (!Denominator->isAllOnes()) 4655 return true; 4656 // At this point we know that the denominator is -1. It is safe to hoist as 4657 // long we know that the numerator is not INT_MIN. 4658 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4659 return !Numerator->isMinSignedValue(); 4660 // The numerator *might* be MinSignedValue. 4661 return false; 4662 } 4663 case Instruction::Load: { 4664 const LoadInst *LI = dyn_cast<LoadInst>(Inst); 4665 if (!LI) 4666 return false; 4667 if (mustSuppressSpeculation(*LI)) 4668 return false; 4669 const DataLayout &DL = LI->getModule()->getDataLayout(); 4670 return isDereferenceableAndAlignedPointer( 4671 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4672 TLI); 4673 } 4674 case Instruction::Call: { 4675 auto *CI = dyn_cast<const CallInst>(Inst); 4676 if (!CI) 4677 return false; 4678 const Function *Callee = CI->getCalledFunction(); 4679 4680 // The called function could have undefined behavior or side-effects, even 4681 // if marked readnone nounwind. 4682 return Callee && Callee->isSpeculatable(); 4683 } 4684 case Instruction::VAArg: 4685 case Instruction::Alloca: 4686 case Instruction::Invoke: 4687 case Instruction::CallBr: 4688 case Instruction::PHI: 4689 case Instruction::Store: 4690 case Instruction::Ret: 4691 case Instruction::Br: 4692 case Instruction::IndirectBr: 4693 case Instruction::Switch: 4694 case Instruction::Unreachable: 4695 case Instruction::Fence: 4696 case Instruction::AtomicRMW: 4697 case Instruction::AtomicCmpXchg: 4698 case Instruction::LandingPad: 4699 case Instruction::Resume: 4700 case Instruction::CatchSwitch: 4701 case Instruction::CatchPad: 4702 case Instruction::CatchRet: 4703 case Instruction::CleanupPad: 4704 case Instruction::CleanupRet: 4705 return false; // Misc instructions which have effects 4706 } 4707 } 4708 4709 bool llvm::mayHaveNonDefUseDependency(const Instruction &I) { 4710 if (I.mayReadOrWriteMemory()) 4711 // Memory dependency possible 4712 return true; 4713 if (!isSafeToSpeculativelyExecute(&I)) 4714 // Can't move above a maythrow call or infinite loop. Or if an 4715 // inalloca alloca, above a stacksave call. 4716 return true; 4717 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4718 // 1) Can't reorder two inf-loop calls, even if readonly 4719 // 2) Also can't reorder an inf-loop call below a instruction which isn't 4720 // safe to speculative execute. (Inverse of above) 4721 return true; 4722 return false; 4723 } 4724 4725 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4726 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4727 switch (OR) { 4728 case ConstantRange::OverflowResult::MayOverflow: 4729 return OverflowResult::MayOverflow; 4730 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4731 return OverflowResult::AlwaysOverflowsLow; 4732 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4733 return OverflowResult::AlwaysOverflowsHigh; 4734 case ConstantRange::OverflowResult::NeverOverflows: 4735 return OverflowResult::NeverOverflows; 4736 } 4737 llvm_unreachable("Unknown OverflowResult"); 4738 } 4739 4740 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4741 static ConstantRange computeConstantRangeIncludingKnownBits( 4742 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4743 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4744 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4745 KnownBits Known = computeKnownBits( 4746 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4747 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4748 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4749 ConstantRange::PreferredRangeType RangeType = 4750 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4751 return CR1.intersectWith(CR2, RangeType); 4752 } 4753 4754 OverflowResult llvm::computeOverflowForUnsignedMul( 4755 const Value *LHS, const Value *RHS, const DataLayout &DL, 4756 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4757 bool UseInstrInfo) { 4758 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4759 nullptr, UseInstrInfo); 4760 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4761 nullptr, UseInstrInfo); 4762 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4763 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4764 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4765 } 4766 4767 OverflowResult 4768 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4769 const DataLayout &DL, AssumptionCache *AC, 4770 const Instruction *CxtI, 4771 const DominatorTree *DT, bool UseInstrInfo) { 4772 // Multiplying n * m significant bits yields a result of n + m significant 4773 // bits. If the total number of significant bits does not exceed the 4774 // result bit width (minus 1), there is no overflow. 4775 // This means if we have enough leading sign bits in the operands 4776 // we can guarantee that the result does not overflow. 4777 // Ref: "Hacker's Delight" by Henry Warren 4778 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4779 4780 // Note that underestimating the number of sign bits gives a more 4781 // conservative answer. 4782 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4783 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4784 4785 // First handle the easy case: if we have enough sign bits there's 4786 // definitely no overflow. 4787 if (SignBits > BitWidth + 1) 4788 return OverflowResult::NeverOverflows; 4789 4790 // There are two ambiguous cases where there can be no overflow: 4791 // SignBits == BitWidth + 1 and 4792 // SignBits == BitWidth 4793 // The second case is difficult to check, therefore we only handle the 4794 // first case. 4795 if (SignBits == BitWidth + 1) { 4796 // It overflows only when both arguments are negative and the true 4797 // product is exactly the minimum negative number. 4798 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4799 // For simplicity we just check if at least one side is not negative. 4800 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4801 nullptr, UseInstrInfo); 4802 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4803 nullptr, UseInstrInfo); 4804 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4805 return OverflowResult::NeverOverflows; 4806 } 4807 return OverflowResult::MayOverflow; 4808 } 4809 4810 OverflowResult llvm::computeOverflowForUnsignedAdd( 4811 const Value *LHS, const Value *RHS, const DataLayout &DL, 4812 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4813 bool UseInstrInfo) { 4814 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4815 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4816 nullptr, UseInstrInfo); 4817 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4818 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4819 nullptr, UseInstrInfo); 4820 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4821 } 4822 4823 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4824 const Value *RHS, 4825 const AddOperator *Add, 4826 const DataLayout &DL, 4827 AssumptionCache *AC, 4828 const Instruction *CxtI, 4829 const DominatorTree *DT) { 4830 if (Add && Add->hasNoSignedWrap()) { 4831 return OverflowResult::NeverOverflows; 4832 } 4833 4834 // If LHS and RHS each have at least two sign bits, the addition will look 4835 // like 4836 // 4837 // XX..... + 4838 // YY..... 4839 // 4840 // If the carry into the most significant position is 0, X and Y can't both 4841 // be 1 and therefore the carry out of the addition is also 0. 4842 // 4843 // If the carry into the most significant position is 1, X and Y can't both 4844 // be 0 and therefore the carry out of the addition is also 1. 4845 // 4846 // Since the carry into the most significant position is always equal to 4847 // the carry out of the addition, there is no signed overflow. 4848 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4849 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4850 return OverflowResult::NeverOverflows; 4851 4852 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4853 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4854 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4855 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4856 OverflowResult OR = 4857 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4858 if (OR != OverflowResult::MayOverflow) 4859 return OR; 4860 4861 // The remaining code needs Add to be available. Early returns if not so. 4862 if (!Add) 4863 return OverflowResult::MayOverflow; 4864 4865 // If the sign of Add is the same as at least one of the operands, this add 4866 // CANNOT overflow. If this can be determined from the known bits of the 4867 // operands the above signedAddMayOverflow() check will have already done so. 4868 // The only other way to improve on the known bits is from an assumption, so 4869 // call computeKnownBitsFromAssume() directly. 4870 bool LHSOrRHSKnownNonNegative = 4871 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4872 bool LHSOrRHSKnownNegative = 4873 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4874 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4875 KnownBits AddKnown(LHSRange.getBitWidth()); 4876 computeKnownBitsFromAssume( 4877 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4878 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4879 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4880 return OverflowResult::NeverOverflows; 4881 } 4882 4883 return OverflowResult::MayOverflow; 4884 } 4885 4886 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4887 const Value *RHS, 4888 const DataLayout &DL, 4889 AssumptionCache *AC, 4890 const Instruction *CxtI, 4891 const DominatorTree *DT) { 4892 // X - (X % ?) 4893 // The remainder of a value can't have greater magnitude than itself, 4894 // so the subtraction can't overflow. 4895 // TODO: There are other patterns like this. 4896 // See simplifyICmpWithBinOpOnLHS() for candidates. 4897 if (match(RHS, m_URem(m_Specific(LHS), m_Value())) && 4898 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4899 return OverflowResult::NeverOverflows; 4900 4901 // Checking for conditions implied by dominating conditions may be expensive. 4902 // Limit it to usub_with_overflow calls for now. 4903 if (match(CxtI, 4904 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4905 if (auto C = 4906 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4907 if (*C) 4908 return OverflowResult::NeverOverflows; 4909 return OverflowResult::AlwaysOverflowsLow; 4910 } 4911 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4912 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4913 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4914 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4915 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4916 } 4917 4918 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4919 const Value *RHS, 4920 const DataLayout &DL, 4921 AssumptionCache *AC, 4922 const Instruction *CxtI, 4923 const DominatorTree *DT) { 4924 // X - (X % ?) 4925 // The remainder of a value can't have greater magnitude than itself, 4926 // so the subtraction can't overflow. 4927 if (match(RHS, m_SRem(m_Specific(LHS), m_Value())) && 4928 isGuaranteedNotToBeUndefOrPoison(LHS, AC, CxtI, DT)) 4929 return OverflowResult::NeverOverflows; 4930 4931 // If LHS and RHS each have at least two sign bits, the subtraction 4932 // cannot overflow. 4933 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4934 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4935 return OverflowResult::NeverOverflows; 4936 4937 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4938 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4939 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4940 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4941 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4942 } 4943 4944 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4945 const DominatorTree &DT) { 4946 SmallVector<const BranchInst *, 2> GuardingBranches; 4947 SmallVector<const ExtractValueInst *, 2> Results; 4948 4949 for (const User *U : WO->users()) { 4950 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4951 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4952 4953 if (EVI->getIndices()[0] == 0) 4954 Results.push_back(EVI); 4955 else { 4956 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4957 4958 for (const auto *U : EVI->users()) 4959 if (const auto *B = dyn_cast<BranchInst>(U)) { 4960 assert(B->isConditional() && "How else is it using an i1?"); 4961 GuardingBranches.push_back(B); 4962 } 4963 } 4964 } else { 4965 // We are using the aggregate directly in a way we don't want to analyze 4966 // here (storing it to a global, say). 4967 return false; 4968 } 4969 } 4970 4971 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4972 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4973 if (!NoWrapEdge.isSingleEdge()) 4974 return false; 4975 4976 // Check if all users of the add are provably no-wrap. 4977 for (const auto *Result : Results) { 4978 // If the extractvalue itself is not executed on overflow, the we don't 4979 // need to check each use separately, since domination is transitive. 4980 if (DT.dominates(NoWrapEdge, Result->getParent())) 4981 continue; 4982 4983 for (auto &RU : Result->uses()) 4984 if (!DT.dominates(NoWrapEdge, RU)) 4985 return false; 4986 } 4987 4988 return true; 4989 }; 4990 4991 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4992 } 4993 4994 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4995 bool ConsiderFlags) { 4996 4997 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4998 return true; 4999 5000 unsigned Opcode = Op->getOpcode(); 5001 5002 // Check whether opcode is a poison/undef-generating operation 5003 switch (Opcode) { 5004 case Instruction::Shl: 5005 case Instruction::AShr: 5006 case Instruction::LShr: { 5007 // Shifts return poison if shiftwidth is larger than the bitwidth. 5008 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 5009 SmallVector<Constant *, 4> ShiftAmounts; 5010 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 5011 unsigned NumElts = FVTy->getNumElements(); 5012 for (unsigned i = 0; i < NumElts; ++i) 5013 ShiftAmounts.push_back(C->getAggregateElement(i)); 5014 } else if (isa<ScalableVectorType>(C->getType())) 5015 return true; // Can't tell, just return true to be safe 5016 else 5017 ShiftAmounts.push_back(C); 5018 5019 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 5020 auto *CI = dyn_cast_or_null<ConstantInt>(C); 5021 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 5022 }); 5023 return !Safe; 5024 } 5025 return true; 5026 } 5027 case Instruction::FPToSI: 5028 case Instruction::FPToUI: 5029 // fptosi/ui yields poison if the resulting value does not fit in the 5030 // destination type. 5031 return true; 5032 case Instruction::Call: 5033 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5034 switch (II->getIntrinsicID()) { 5035 // TODO: Add more intrinsics. 5036 case Intrinsic::ctpop: 5037 case Intrinsic::sadd_with_overflow: 5038 case Intrinsic::ssub_with_overflow: 5039 case Intrinsic::smul_with_overflow: 5040 case Intrinsic::uadd_with_overflow: 5041 case Intrinsic::usub_with_overflow: 5042 case Intrinsic::umul_with_overflow: 5043 return false; 5044 } 5045 } 5046 LLVM_FALLTHROUGH; 5047 case Instruction::CallBr: 5048 case Instruction::Invoke: { 5049 const auto *CB = cast<CallBase>(Op); 5050 return !CB->hasRetAttr(Attribute::NoUndef); 5051 } 5052 case Instruction::InsertElement: 5053 case Instruction::ExtractElement: { 5054 // If index exceeds the length of the vector, it returns poison 5055 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5056 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5057 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5058 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5059 return true; 5060 return false; 5061 } 5062 case Instruction::ShuffleVector: { 5063 // shufflevector may return undef. 5064 if (PoisonOnly) 5065 return false; 5066 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5067 ? cast<ConstantExpr>(Op)->getShuffleMask() 5068 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5069 return is_contained(Mask, UndefMaskElem); 5070 } 5071 case Instruction::FNeg: 5072 case Instruction::PHI: 5073 case Instruction::Select: 5074 case Instruction::URem: 5075 case Instruction::SRem: 5076 case Instruction::ExtractValue: 5077 case Instruction::InsertValue: 5078 case Instruction::Freeze: 5079 case Instruction::ICmp: 5080 case Instruction::FCmp: 5081 return false; 5082 case Instruction::GetElementPtr: 5083 // inbounds is handled above 5084 // TODO: what about inrange on constexpr? 5085 return false; 5086 default: { 5087 const auto *CE = dyn_cast<ConstantExpr>(Op); 5088 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5089 return false; 5090 else if (Instruction::isBinaryOp(Opcode)) 5091 return false; 5092 // Be conservative and return true. 5093 return true; 5094 } 5095 } 5096 } 5097 5098 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5099 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5100 } 5101 5102 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5103 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5104 } 5105 5106 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5107 const Value *V, unsigned Depth) { 5108 if (ValAssumedPoison == V) 5109 return true; 5110 5111 const unsigned MaxDepth = 2; 5112 if (Depth >= MaxDepth) 5113 return false; 5114 5115 if (const auto *I = dyn_cast<Instruction>(V)) { 5116 if (propagatesPoison(cast<Operator>(I))) 5117 return any_of(I->operands(), [=](const Value *Op) { 5118 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5119 }); 5120 5121 // 'select ValAssumedPoison, _, _' is poison. 5122 if (const auto *SI = dyn_cast<SelectInst>(I)) 5123 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5124 Depth + 1); 5125 // V = extractvalue V0, idx 5126 // V2 = extractvalue V0, idx2 5127 // V0's elements are all poison or not. (e.g., add_with_overflow) 5128 const WithOverflowInst *II; 5129 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5130 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5131 llvm::is_contained(II->args(), ValAssumedPoison))) 5132 return true; 5133 } 5134 return false; 5135 } 5136 5137 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5138 unsigned Depth) { 5139 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5140 return true; 5141 5142 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5143 return true; 5144 5145 const unsigned MaxDepth = 2; 5146 if (Depth >= MaxDepth) 5147 return false; 5148 5149 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5150 if (I && !canCreatePoison(cast<Operator>(I))) { 5151 return all_of(I->operands(), [=](const Value *Op) { 5152 return impliesPoison(Op, V, Depth + 1); 5153 }); 5154 } 5155 return false; 5156 } 5157 5158 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5159 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5160 } 5161 5162 static bool programUndefinedIfUndefOrPoison(const Value *V, 5163 bool PoisonOnly); 5164 5165 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5166 AssumptionCache *AC, 5167 const Instruction *CtxI, 5168 const DominatorTree *DT, 5169 unsigned Depth, bool PoisonOnly) { 5170 if (Depth >= MaxAnalysisRecursionDepth) 5171 return false; 5172 5173 if (isa<MetadataAsValue>(V)) 5174 return false; 5175 5176 if (const auto *A = dyn_cast<Argument>(V)) { 5177 if (A->hasAttribute(Attribute::NoUndef)) 5178 return true; 5179 } 5180 5181 if (auto *C = dyn_cast<Constant>(V)) { 5182 if (isa<UndefValue>(C)) 5183 return PoisonOnly && !isa<PoisonValue>(C); 5184 5185 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5186 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5187 return true; 5188 5189 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5190 return (PoisonOnly ? !C->containsPoisonElement() 5191 : !C->containsUndefOrPoisonElement()) && 5192 !C->containsConstantExpression(); 5193 } 5194 5195 // Strip cast operations from a pointer value. 5196 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5197 // inbounds with zero offset. To guarantee that the result isn't poison, the 5198 // stripped pointer is checked as it has to be pointing into an allocated 5199 // object or be null `null` to ensure `inbounds` getelement pointers with a 5200 // zero offset could not produce poison. 5201 // It can strip off addrspacecast that do not change bit representation as 5202 // well. We believe that such addrspacecast is equivalent to no-op. 5203 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5204 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5205 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5206 return true; 5207 5208 auto OpCheck = [&](const Value *V) { 5209 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5210 PoisonOnly); 5211 }; 5212 5213 if (auto *Opr = dyn_cast<Operator>(V)) { 5214 // If the value is a freeze instruction, then it can never 5215 // be undef or poison. 5216 if (isa<FreezeInst>(V)) 5217 return true; 5218 5219 if (const auto *CB = dyn_cast<CallBase>(V)) { 5220 if (CB->hasRetAttr(Attribute::NoUndef)) 5221 return true; 5222 } 5223 5224 if (const auto *PN = dyn_cast<PHINode>(V)) { 5225 unsigned Num = PN->getNumIncomingValues(); 5226 bool IsWellDefined = true; 5227 for (unsigned i = 0; i < Num; ++i) { 5228 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5229 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5230 DT, Depth + 1, PoisonOnly)) { 5231 IsWellDefined = false; 5232 break; 5233 } 5234 } 5235 if (IsWellDefined) 5236 return true; 5237 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5238 return true; 5239 } 5240 5241 if (auto *I = dyn_cast<LoadInst>(V)) 5242 if (I->hasMetadata(LLVMContext::MD_noundef) || 5243 I->hasMetadata(LLVMContext::MD_dereferenceable) || 5244 I->hasMetadata(LLVMContext::MD_dereferenceable_or_null)) 5245 return true; 5246 5247 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5248 return true; 5249 5250 // CxtI may be null or a cloned instruction. 5251 if (!CtxI || !CtxI->getParent() || !DT) 5252 return false; 5253 5254 auto *DNode = DT->getNode(CtxI->getParent()); 5255 if (!DNode) 5256 // Unreachable block 5257 return false; 5258 5259 // If V is used as a branch condition before reaching CtxI, V cannot be 5260 // undef or poison. 5261 // br V, BB1, BB2 5262 // BB1: 5263 // CtxI ; V cannot be undef or poison here 5264 auto *Dominator = DNode->getIDom(); 5265 while (Dominator) { 5266 auto *TI = Dominator->getBlock()->getTerminator(); 5267 5268 Value *Cond = nullptr; 5269 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5270 if (BI->isConditional()) 5271 Cond = BI->getCondition(); 5272 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5273 Cond = SI->getCondition(); 5274 } 5275 5276 if (Cond) { 5277 if (Cond == V) 5278 return true; 5279 else if (PoisonOnly && isa<Operator>(Cond)) { 5280 // For poison, we can analyze further 5281 auto *Opr = cast<Operator>(Cond); 5282 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5283 return true; 5284 } 5285 } 5286 5287 Dominator = Dominator->getIDom(); 5288 } 5289 5290 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5291 return true; 5292 5293 return false; 5294 } 5295 5296 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5297 const Instruction *CtxI, 5298 const DominatorTree *DT, 5299 unsigned Depth) { 5300 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5301 } 5302 5303 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5304 const Instruction *CtxI, 5305 const DominatorTree *DT, unsigned Depth) { 5306 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5307 } 5308 5309 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5310 const DataLayout &DL, 5311 AssumptionCache *AC, 5312 const Instruction *CxtI, 5313 const DominatorTree *DT) { 5314 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5315 Add, DL, AC, CxtI, DT); 5316 } 5317 5318 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5319 const Value *RHS, 5320 const DataLayout &DL, 5321 AssumptionCache *AC, 5322 const Instruction *CxtI, 5323 const DominatorTree *DT) { 5324 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5325 } 5326 5327 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5328 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5329 // of time because it's possible for another thread to interfere with it for an 5330 // arbitrary length of time, but programs aren't allowed to rely on that. 5331 5332 // If there is no successor, then execution can't transfer to it. 5333 if (isa<ReturnInst>(I)) 5334 return false; 5335 if (isa<UnreachableInst>(I)) 5336 return false; 5337 5338 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5339 // Instruction::willReturn. 5340 // 5341 // FIXME: Move this check into Instruction::willReturn. 5342 if (isa<CatchPadInst>(I)) { 5343 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5344 default: 5345 // A catchpad may invoke exception object constructors and such, which 5346 // in some languages can be arbitrary code, so be conservative by default. 5347 return false; 5348 case EHPersonality::CoreCLR: 5349 // For CoreCLR, it just involves a type test. 5350 return true; 5351 } 5352 } 5353 5354 // An instruction that returns without throwing must transfer control flow 5355 // to a successor. 5356 return !I->mayThrow() && I->willReturn(); 5357 } 5358 5359 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5360 // TODO: This is slightly conservative for invoke instruction since exiting 5361 // via an exception *is* normal control for them. 5362 for (const Instruction &I : *BB) 5363 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5364 return false; 5365 return true; 5366 } 5367 5368 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5369 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5370 unsigned ScanLimit) { 5371 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5372 ScanLimit); 5373 } 5374 5375 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5376 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5377 assert(ScanLimit && "scan limit must be non-zero"); 5378 for (const Instruction &I : Range) { 5379 if (isa<DbgInfoIntrinsic>(I)) 5380 continue; 5381 if (--ScanLimit == 0) 5382 return false; 5383 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5384 return false; 5385 } 5386 return true; 5387 } 5388 5389 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5390 const Loop *L) { 5391 // The loop header is guaranteed to be executed for every iteration. 5392 // 5393 // FIXME: Relax this constraint to cover all basic blocks that are 5394 // guaranteed to be executed at every iteration. 5395 if (I->getParent() != L->getHeader()) return false; 5396 5397 for (const Instruction &LI : *L->getHeader()) { 5398 if (&LI == I) return true; 5399 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5400 } 5401 llvm_unreachable("Instruction not contained in its own parent basic block."); 5402 } 5403 5404 bool llvm::propagatesPoison(const Operator *I) { 5405 switch (I->getOpcode()) { 5406 case Instruction::Freeze: 5407 case Instruction::Select: 5408 case Instruction::PHI: 5409 case Instruction::Invoke: 5410 return false; 5411 case Instruction::Call: 5412 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5413 switch (II->getIntrinsicID()) { 5414 // TODO: Add more intrinsics. 5415 case Intrinsic::sadd_with_overflow: 5416 case Intrinsic::ssub_with_overflow: 5417 case Intrinsic::smul_with_overflow: 5418 case Intrinsic::uadd_with_overflow: 5419 case Intrinsic::usub_with_overflow: 5420 case Intrinsic::umul_with_overflow: 5421 // If an input is a vector containing a poison element, the 5422 // two output vectors (calculated results, overflow bits)' 5423 // corresponding lanes are poison. 5424 return true; 5425 case Intrinsic::ctpop: 5426 return true; 5427 } 5428 } 5429 return false; 5430 case Instruction::ICmp: 5431 case Instruction::FCmp: 5432 case Instruction::GetElementPtr: 5433 return true; 5434 default: 5435 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5436 return true; 5437 5438 // Be conservative and return false. 5439 return false; 5440 } 5441 } 5442 5443 void llvm::getGuaranteedWellDefinedOps( 5444 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5445 switch (I->getOpcode()) { 5446 case Instruction::Store: 5447 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5448 break; 5449 5450 case Instruction::Load: 5451 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5452 break; 5453 5454 // Since dereferenceable attribute imply noundef, atomic operations 5455 // also implicitly have noundef pointers too 5456 case Instruction::AtomicCmpXchg: 5457 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5458 break; 5459 5460 case Instruction::AtomicRMW: 5461 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5462 break; 5463 5464 case Instruction::Call: 5465 case Instruction::Invoke: { 5466 const CallBase *CB = cast<CallBase>(I); 5467 if (CB->isIndirectCall()) 5468 Operands.insert(CB->getCalledOperand()); 5469 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5470 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5471 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5472 Operands.insert(CB->getArgOperand(i)); 5473 } 5474 break; 5475 } 5476 case Instruction::Ret: 5477 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5478 Operands.insert(I->getOperand(0)); 5479 break; 5480 default: 5481 break; 5482 } 5483 } 5484 5485 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5486 SmallPtrSetImpl<const Value *> &Operands) { 5487 getGuaranteedWellDefinedOps(I, Operands); 5488 switch (I->getOpcode()) { 5489 // Divisors of these operations are allowed to be partially undef. 5490 case Instruction::UDiv: 5491 case Instruction::SDiv: 5492 case Instruction::URem: 5493 case Instruction::SRem: 5494 Operands.insert(I->getOperand(1)); 5495 break; 5496 case Instruction::Switch: 5497 if (BranchOnPoisonAsUB) 5498 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5499 break; 5500 case Instruction::Br: { 5501 auto *BR = cast<BranchInst>(I); 5502 if (BranchOnPoisonAsUB && BR->isConditional()) 5503 Operands.insert(BR->getCondition()); 5504 break; 5505 } 5506 default: 5507 break; 5508 } 5509 } 5510 5511 bool llvm::mustTriggerUB(const Instruction *I, 5512 const SmallSet<const Value *, 16>& KnownPoison) { 5513 SmallPtrSet<const Value *, 4> NonPoisonOps; 5514 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5515 5516 for (const auto *V : NonPoisonOps) 5517 if (KnownPoison.count(V)) 5518 return true; 5519 5520 return false; 5521 } 5522 5523 static bool programUndefinedIfUndefOrPoison(const Value *V, 5524 bool PoisonOnly) { 5525 // We currently only look for uses of values within the same basic 5526 // block, as that makes it easier to guarantee that the uses will be 5527 // executed given that Inst is executed. 5528 // 5529 // FIXME: Expand this to consider uses beyond the same basic block. To do 5530 // this, look out for the distinction between post-dominance and strong 5531 // post-dominance. 5532 const BasicBlock *BB = nullptr; 5533 BasicBlock::const_iterator Begin; 5534 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5535 BB = Inst->getParent(); 5536 Begin = Inst->getIterator(); 5537 Begin++; 5538 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5539 BB = &Arg->getParent()->getEntryBlock(); 5540 Begin = BB->begin(); 5541 } else { 5542 return false; 5543 } 5544 5545 // Limit number of instructions we look at, to avoid scanning through large 5546 // blocks. The current limit is chosen arbitrarily. 5547 unsigned ScanLimit = 32; 5548 BasicBlock::const_iterator End = BB->end(); 5549 5550 if (!PoisonOnly) { 5551 // Since undef does not propagate eagerly, be conservative & just check 5552 // whether a value is directly passed to an instruction that must take 5553 // well-defined operands. 5554 5555 for (auto &I : make_range(Begin, End)) { 5556 if (isa<DbgInfoIntrinsic>(I)) 5557 continue; 5558 if (--ScanLimit == 0) 5559 break; 5560 5561 SmallPtrSet<const Value *, 4> WellDefinedOps; 5562 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5563 if (WellDefinedOps.contains(V)) 5564 return true; 5565 5566 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5567 break; 5568 } 5569 return false; 5570 } 5571 5572 // Set of instructions that we have proved will yield poison if Inst 5573 // does. 5574 SmallSet<const Value *, 16> YieldsPoison; 5575 SmallSet<const BasicBlock *, 4> Visited; 5576 5577 YieldsPoison.insert(V); 5578 auto Propagate = [&](const User *User) { 5579 if (propagatesPoison(cast<Operator>(User))) 5580 YieldsPoison.insert(User); 5581 }; 5582 for_each(V->users(), Propagate); 5583 Visited.insert(BB); 5584 5585 while (true) { 5586 for (auto &I : make_range(Begin, End)) { 5587 if (isa<DbgInfoIntrinsic>(I)) 5588 continue; 5589 if (--ScanLimit == 0) 5590 return false; 5591 if (mustTriggerUB(&I, YieldsPoison)) 5592 return true; 5593 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5594 return false; 5595 5596 // Mark poison that propagates from I through uses of I. 5597 if (YieldsPoison.count(&I)) 5598 for_each(I.users(), Propagate); 5599 } 5600 5601 BB = BB->getSingleSuccessor(); 5602 if (!BB || !Visited.insert(BB).second) 5603 break; 5604 5605 Begin = BB->getFirstNonPHI()->getIterator(); 5606 End = BB->end(); 5607 } 5608 return false; 5609 } 5610 5611 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5612 return ::programUndefinedIfUndefOrPoison(Inst, false); 5613 } 5614 5615 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5616 return ::programUndefinedIfUndefOrPoison(Inst, true); 5617 } 5618 5619 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5620 if (FMF.noNaNs()) 5621 return true; 5622 5623 if (auto *C = dyn_cast<ConstantFP>(V)) 5624 return !C->isNaN(); 5625 5626 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5627 if (!C->getElementType()->isFloatingPointTy()) 5628 return false; 5629 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5630 if (C->getElementAsAPFloat(I).isNaN()) 5631 return false; 5632 } 5633 return true; 5634 } 5635 5636 if (isa<ConstantAggregateZero>(V)) 5637 return true; 5638 5639 return false; 5640 } 5641 5642 static bool isKnownNonZero(const Value *V) { 5643 if (auto *C = dyn_cast<ConstantFP>(V)) 5644 return !C->isZero(); 5645 5646 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5647 if (!C->getElementType()->isFloatingPointTy()) 5648 return false; 5649 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5650 if (C->getElementAsAPFloat(I).isZero()) 5651 return false; 5652 } 5653 return true; 5654 } 5655 5656 return false; 5657 } 5658 5659 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5660 /// Given non-min/max outer cmp/select from the clamp pattern this 5661 /// function recognizes if it can be substitued by a "canonical" min/max 5662 /// pattern. 5663 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5664 Value *CmpLHS, Value *CmpRHS, 5665 Value *TrueVal, Value *FalseVal, 5666 Value *&LHS, Value *&RHS) { 5667 // Try to match 5668 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5669 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5670 // and return description of the outer Max/Min. 5671 5672 // First, check if select has inverse order: 5673 if (CmpRHS == FalseVal) { 5674 std::swap(TrueVal, FalseVal); 5675 Pred = CmpInst::getInversePredicate(Pred); 5676 } 5677 5678 // Assume success now. If there's no match, callers should not use these anyway. 5679 LHS = TrueVal; 5680 RHS = FalseVal; 5681 5682 const APFloat *FC1; 5683 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5684 return {SPF_UNKNOWN, SPNB_NA, false}; 5685 5686 const APFloat *FC2; 5687 switch (Pred) { 5688 case CmpInst::FCMP_OLT: 5689 case CmpInst::FCMP_OLE: 5690 case CmpInst::FCMP_ULT: 5691 case CmpInst::FCMP_ULE: 5692 if (match(FalseVal, 5693 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5694 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5695 *FC1 < *FC2) 5696 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5697 break; 5698 case CmpInst::FCMP_OGT: 5699 case CmpInst::FCMP_OGE: 5700 case CmpInst::FCMP_UGT: 5701 case CmpInst::FCMP_UGE: 5702 if (match(FalseVal, 5703 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5704 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5705 *FC1 > *FC2) 5706 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5707 break; 5708 default: 5709 break; 5710 } 5711 5712 return {SPF_UNKNOWN, SPNB_NA, false}; 5713 } 5714 5715 /// Recognize variations of: 5716 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5717 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5718 Value *CmpLHS, Value *CmpRHS, 5719 Value *TrueVal, Value *FalseVal) { 5720 // Swap the select operands and predicate to match the patterns below. 5721 if (CmpRHS != TrueVal) { 5722 Pred = ICmpInst::getSwappedPredicate(Pred); 5723 std::swap(TrueVal, FalseVal); 5724 } 5725 const APInt *C1; 5726 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5727 const APInt *C2; 5728 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5729 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5730 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5731 return {SPF_SMAX, SPNB_NA, false}; 5732 5733 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5734 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5735 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5736 return {SPF_SMIN, SPNB_NA, false}; 5737 5738 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5739 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5740 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5741 return {SPF_UMAX, SPNB_NA, false}; 5742 5743 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5744 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5745 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5746 return {SPF_UMIN, SPNB_NA, false}; 5747 } 5748 return {SPF_UNKNOWN, SPNB_NA, false}; 5749 } 5750 5751 /// Recognize variations of: 5752 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5753 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5754 Value *CmpLHS, Value *CmpRHS, 5755 Value *TVal, Value *FVal, 5756 unsigned Depth) { 5757 // TODO: Allow FP min/max with nnan/nsz. 5758 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5759 5760 Value *A = nullptr, *B = nullptr; 5761 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5762 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5763 return {SPF_UNKNOWN, SPNB_NA, false}; 5764 5765 Value *C = nullptr, *D = nullptr; 5766 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5767 if (L.Flavor != R.Flavor) 5768 return {SPF_UNKNOWN, SPNB_NA, false}; 5769 5770 // We have something like: x Pred y ? min(a, b) : min(c, d). 5771 // Try to match the compare to the min/max operations of the select operands. 5772 // First, make sure we have the right compare predicate. 5773 switch (L.Flavor) { 5774 case SPF_SMIN: 5775 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5776 Pred = ICmpInst::getSwappedPredicate(Pred); 5777 std::swap(CmpLHS, CmpRHS); 5778 } 5779 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5780 break; 5781 return {SPF_UNKNOWN, SPNB_NA, false}; 5782 case SPF_SMAX: 5783 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5784 Pred = ICmpInst::getSwappedPredicate(Pred); 5785 std::swap(CmpLHS, CmpRHS); 5786 } 5787 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5788 break; 5789 return {SPF_UNKNOWN, SPNB_NA, false}; 5790 case SPF_UMIN: 5791 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5792 Pred = ICmpInst::getSwappedPredicate(Pred); 5793 std::swap(CmpLHS, CmpRHS); 5794 } 5795 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5796 break; 5797 return {SPF_UNKNOWN, SPNB_NA, false}; 5798 case SPF_UMAX: 5799 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5800 Pred = ICmpInst::getSwappedPredicate(Pred); 5801 std::swap(CmpLHS, CmpRHS); 5802 } 5803 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5804 break; 5805 return {SPF_UNKNOWN, SPNB_NA, false}; 5806 default: 5807 return {SPF_UNKNOWN, SPNB_NA, false}; 5808 } 5809 5810 // If there is a common operand in the already matched min/max and the other 5811 // min/max operands match the compare operands (either directly or inverted), 5812 // then this is min/max of the same flavor. 5813 5814 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5815 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5816 if (D == B) { 5817 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5818 match(A, m_Not(m_Specific(CmpRHS))))) 5819 return {L.Flavor, SPNB_NA, false}; 5820 } 5821 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5822 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5823 if (C == B) { 5824 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5825 match(A, m_Not(m_Specific(CmpRHS))))) 5826 return {L.Flavor, SPNB_NA, false}; 5827 } 5828 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5829 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5830 if (D == A) { 5831 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5832 match(B, m_Not(m_Specific(CmpRHS))))) 5833 return {L.Flavor, SPNB_NA, false}; 5834 } 5835 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5836 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5837 if (C == A) { 5838 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5839 match(B, m_Not(m_Specific(CmpRHS))))) 5840 return {L.Flavor, SPNB_NA, false}; 5841 } 5842 5843 return {SPF_UNKNOWN, SPNB_NA, false}; 5844 } 5845 5846 /// If the input value is the result of a 'not' op, constant integer, or vector 5847 /// splat of a constant integer, return the bitwise-not source value. 5848 /// TODO: This could be extended to handle non-splat vector integer constants. 5849 static Value *getNotValue(Value *V) { 5850 Value *NotV; 5851 if (match(V, m_Not(m_Value(NotV)))) 5852 return NotV; 5853 5854 const APInt *C; 5855 if (match(V, m_APInt(C))) 5856 return ConstantInt::get(V->getType(), ~(*C)); 5857 5858 return nullptr; 5859 } 5860 5861 /// Match non-obvious integer minimum and maximum sequences. 5862 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5863 Value *CmpLHS, Value *CmpRHS, 5864 Value *TrueVal, Value *FalseVal, 5865 Value *&LHS, Value *&RHS, 5866 unsigned Depth) { 5867 // Assume success. If there's no match, callers should not use these anyway. 5868 LHS = TrueVal; 5869 RHS = FalseVal; 5870 5871 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5872 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5873 return SPR; 5874 5875 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5876 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5877 return SPR; 5878 5879 // Look through 'not' ops to find disguised min/max. 5880 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5881 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5882 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5883 switch (Pred) { 5884 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5885 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5886 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5887 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5888 default: break; 5889 } 5890 } 5891 5892 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5893 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5894 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5895 switch (Pred) { 5896 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5897 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5898 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5899 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5900 default: break; 5901 } 5902 } 5903 5904 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5905 return {SPF_UNKNOWN, SPNB_NA, false}; 5906 5907 const APInt *C1; 5908 if (!match(CmpRHS, m_APInt(C1))) 5909 return {SPF_UNKNOWN, SPNB_NA, false}; 5910 5911 // An unsigned min/max can be written with a signed compare. 5912 const APInt *C2; 5913 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5914 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5915 // Is the sign bit set? 5916 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5917 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5918 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5919 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5920 5921 // Is the sign bit clear? 5922 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5923 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5924 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5925 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5926 } 5927 5928 return {SPF_UNKNOWN, SPNB_NA, false}; 5929 } 5930 5931 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5932 assert(X && Y && "Invalid operand"); 5933 5934 // X = sub (0, Y) || X = sub nsw (0, Y) 5935 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5936 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5937 return true; 5938 5939 // Y = sub (0, X) || Y = sub nsw (0, X) 5940 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5941 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5942 return true; 5943 5944 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5945 Value *A, *B; 5946 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5947 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5948 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5949 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5950 } 5951 5952 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5953 FastMathFlags FMF, 5954 Value *CmpLHS, Value *CmpRHS, 5955 Value *TrueVal, Value *FalseVal, 5956 Value *&LHS, Value *&RHS, 5957 unsigned Depth) { 5958 if (CmpInst::isFPPredicate(Pred)) { 5959 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5960 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5961 // purpose of identifying min/max. Disregard vector constants with undefined 5962 // elements because those can not be back-propagated for analysis. 5963 Value *OutputZeroVal = nullptr; 5964 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5965 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5966 OutputZeroVal = TrueVal; 5967 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5968 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5969 OutputZeroVal = FalseVal; 5970 5971 if (OutputZeroVal) { 5972 if (match(CmpLHS, m_AnyZeroFP())) 5973 CmpLHS = OutputZeroVal; 5974 if (match(CmpRHS, m_AnyZeroFP())) 5975 CmpRHS = OutputZeroVal; 5976 } 5977 } 5978 5979 LHS = CmpLHS; 5980 RHS = CmpRHS; 5981 5982 // Signed zero may return inconsistent results between implementations. 5983 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5984 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5985 // Therefore, we behave conservatively and only proceed if at least one of the 5986 // operands is known to not be zero or if we don't care about signed zero. 5987 switch (Pred) { 5988 default: break; 5989 // FIXME: Include OGT/OLT/UGT/ULT. 5990 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5991 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5992 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5993 !isKnownNonZero(CmpRHS)) 5994 return {SPF_UNKNOWN, SPNB_NA, false}; 5995 } 5996 5997 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5998 bool Ordered = false; 5999 6000 // When given one NaN and one non-NaN input: 6001 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 6002 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 6003 // ordered comparison fails), which could be NaN or non-NaN. 6004 // so here we discover exactly what NaN behavior is required/accepted. 6005 if (CmpInst::isFPPredicate(Pred)) { 6006 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 6007 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 6008 6009 if (LHSSafe && RHSSafe) { 6010 // Both operands are known non-NaN. 6011 NaNBehavior = SPNB_RETURNS_ANY; 6012 } else if (CmpInst::isOrdered(Pred)) { 6013 // An ordered comparison will return false when given a NaN, so it 6014 // returns the RHS. 6015 Ordered = true; 6016 if (LHSSafe) 6017 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 6018 NaNBehavior = SPNB_RETURNS_NAN; 6019 else if (RHSSafe) 6020 NaNBehavior = SPNB_RETURNS_OTHER; 6021 else 6022 // Completely unsafe. 6023 return {SPF_UNKNOWN, SPNB_NA, false}; 6024 } else { 6025 Ordered = false; 6026 // An unordered comparison will return true when given a NaN, so it 6027 // returns the LHS. 6028 if (LHSSafe) 6029 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6030 NaNBehavior = SPNB_RETURNS_OTHER; 6031 else if (RHSSafe) 6032 NaNBehavior = SPNB_RETURNS_NAN; 6033 else 6034 // Completely unsafe. 6035 return {SPF_UNKNOWN, SPNB_NA, false}; 6036 } 6037 } 6038 6039 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6040 std::swap(CmpLHS, CmpRHS); 6041 Pred = CmpInst::getSwappedPredicate(Pred); 6042 if (NaNBehavior == SPNB_RETURNS_NAN) 6043 NaNBehavior = SPNB_RETURNS_OTHER; 6044 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6045 NaNBehavior = SPNB_RETURNS_NAN; 6046 Ordered = !Ordered; 6047 } 6048 6049 // ([if]cmp X, Y) ? X : Y 6050 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6051 switch (Pred) { 6052 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6053 case ICmpInst::ICMP_UGT: 6054 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6055 case ICmpInst::ICMP_SGT: 6056 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6057 case ICmpInst::ICMP_ULT: 6058 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6059 case ICmpInst::ICMP_SLT: 6060 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6061 case FCmpInst::FCMP_UGT: 6062 case FCmpInst::FCMP_UGE: 6063 case FCmpInst::FCMP_OGT: 6064 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6065 case FCmpInst::FCMP_ULT: 6066 case FCmpInst::FCMP_ULE: 6067 case FCmpInst::FCMP_OLT: 6068 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6069 } 6070 } 6071 6072 if (isKnownNegation(TrueVal, FalseVal)) { 6073 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6074 // match against either LHS or sext(LHS). 6075 auto MaybeSExtCmpLHS = 6076 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6077 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6078 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6079 if (match(TrueVal, MaybeSExtCmpLHS)) { 6080 // Set the return values. If the compare uses the negated value (-X >s 0), 6081 // swap the return values because the negated value is always 'RHS'. 6082 LHS = TrueVal; 6083 RHS = FalseVal; 6084 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6085 std::swap(LHS, RHS); 6086 6087 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6088 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6089 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6090 return {SPF_ABS, SPNB_NA, false}; 6091 6092 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6093 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6094 return {SPF_ABS, SPNB_NA, false}; 6095 6096 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6097 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6098 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6099 return {SPF_NABS, SPNB_NA, false}; 6100 } 6101 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6102 // Set the return values. If the compare uses the negated value (-X >s 0), 6103 // swap the return values because the negated value is always 'RHS'. 6104 LHS = FalseVal; 6105 RHS = TrueVal; 6106 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6107 std::swap(LHS, RHS); 6108 6109 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6110 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6111 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6112 return {SPF_NABS, SPNB_NA, false}; 6113 6114 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6115 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6116 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6117 return {SPF_ABS, SPNB_NA, false}; 6118 } 6119 } 6120 6121 if (CmpInst::isIntPredicate(Pred)) 6122 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6123 6124 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6125 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6126 // semantics than minNum. Be conservative in such case. 6127 if (NaNBehavior != SPNB_RETURNS_ANY || 6128 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6129 !isKnownNonZero(CmpRHS))) 6130 return {SPF_UNKNOWN, SPNB_NA, false}; 6131 6132 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6133 } 6134 6135 /// Helps to match a select pattern in case of a type mismatch. 6136 /// 6137 /// The function processes the case when type of true and false values of a 6138 /// select instruction differs from type of the cmp instruction operands because 6139 /// of a cast instruction. The function checks if it is legal to move the cast 6140 /// operation after "select". If yes, it returns the new second value of 6141 /// "select" (with the assumption that cast is moved): 6142 /// 1. As operand of cast instruction when both values of "select" are same cast 6143 /// instructions. 6144 /// 2. As restored constant (by applying reverse cast operation) when the first 6145 /// value of the "select" is a cast operation and the second value is a 6146 /// constant. 6147 /// NOTE: We return only the new second value because the first value could be 6148 /// accessed as operand of cast instruction. 6149 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6150 Instruction::CastOps *CastOp) { 6151 auto *Cast1 = dyn_cast<CastInst>(V1); 6152 if (!Cast1) 6153 return nullptr; 6154 6155 *CastOp = Cast1->getOpcode(); 6156 Type *SrcTy = Cast1->getSrcTy(); 6157 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6158 // If V1 and V2 are both the same cast from the same type, look through V1. 6159 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6160 return Cast2->getOperand(0); 6161 return nullptr; 6162 } 6163 6164 auto *C = dyn_cast<Constant>(V2); 6165 if (!C) 6166 return nullptr; 6167 6168 Constant *CastedTo = nullptr; 6169 switch (*CastOp) { 6170 case Instruction::ZExt: 6171 if (CmpI->isUnsigned()) 6172 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6173 break; 6174 case Instruction::SExt: 6175 if (CmpI->isSigned()) 6176 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6177 break; 6178 case Instruction::Trunc: 6179 Constant *CmpConst; 6180 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6181 CmpConst->getType() == SrcTy) { 6182 // Here we have the following case: 6183 // 6184 // %cond = cmp iN %x, CmpConst 6185 // %tr = trunc iN %x to iK 6186 // %narrowsel = select i1 %cond, iK %t, iK C 6187 // 6188 // We can always move trunc after select operation: 6189 // 6190 // %cond = cmp iN %x, CmpConst 6191 // %widesel = select i1 %cond, iN %x, iN CmpConst 6192 // %tr = trunc iN %widesel to iK 6193 // 6194 // Note that C could be extended in any way because we don't care about 6195 // upper bits after truncation. It can't be abs pattern, because it would 6196 // look like: 6197 // 6198 // select i1 %cond, x, -x. 6199 // 6200 // So only min/max pattern could be matched. Such match requires widened C 6201 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6202 // CmpConst == C is checked below. 6203 CastedTo = CmpConst; 6204 } else { 6205 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6206 } 6207 break; 6208 case Instruction::FPTrunc: 6209 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6210 break; 6211 case Instruction::FPExt: 6212 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6213 break; 6214 case Instruction::FPToUI: 6215 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6216 break; 6217 case Instruction::FPToSI: 6218 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6219 break; 6220 case Instruction::UIToFP: 6221 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6222 break; 6223 case Instruction::SIToFP: 6224 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6225 break; 6226 default: 6227 break; 6228 } 6229 6230 if (!CastedTo) 6231 return nullptr; 6232 6233 // Make sure the cast doesn't lose any information. 6234 Constant *CastedBack = 6235 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6236 if (CastedBack != C) 6237 return nullptr; 6238 6239 return CastedTo; 6240 } 6241 6242 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6243 Instruction::CastOps *CastOp, 6244 unsigned Depth) { 6245 if (Depth >= MaxAnalysisRecursionDepth) 6246 return {SPF_UNKNOWN, SPNB_NA, false}; 6247 6248 SelectInst *SI = dyn_cast<SelectInst>(V); 6249 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6250 6251 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6252 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6253 6254 Value *TrueVal = SI->getTrueValue(); 6255 Value *FalseVal = SI->getFalseValue(); 6256 6257 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6258 CastOp, Depth); 6259 } 6260 6261 SelectPatternResult llvm::matchDecomposedSelectPattern( 6262 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6263 Instruction::CastOps *CastOp, unsigned Depth) { 6264 CmpInst::Predicate Pred = CmpI->getPredicate(); 6265 Value *CmpLHS = CmpI->getOperand(0); 6266 Value *CmpRHS = CmpI->getOperand(1); 6267 FastMathFlags FMF; 6268 if (isa<FPMathOperator>(CmpI)) 6269 FMF = CmpI->getFastMathFlags(); 6270 6271 // Bail out early. 6272 if (CmpI->isEquality()) 6273 return {SPF_UNKNOWN, SPNB_NA, false}; 6274 6275 // Deal with type mismatches. 6276 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6277 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6278 // If this is a potential fmin/fmax with a cast to integer, then ignore 6279 // -0.0 because there is no corresponding integer value. 6280 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6281 FMF.setNoSignedZeros(); 6282 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6283 cast<CastInst>(TrueVal)->getOperand(0), C, 6284 LHS, RHS, Depth); 6285 } 6286 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6287 // If this is a potential fmin/fmax with a cast to integer, then ignore 6288 // -0.0 because there is no corresponding integer value. 6289 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6290 FMF.setNoSignedZeros(); 6291 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6292 C, cast<CastInst>(FalseVal)->getOperand(0), 6293 LHS, RHS, Depth); 6294 } 6295 } 6296 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6297 LHS, RHS, Depth); 6298 } 6299 6300 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6301 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6302 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6303 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6304 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6305 if (SPF == SPF_FMINNUM) 6306 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6307 if (SPF == SPF_FMAXNUM) 6308 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6309 llvm_unreachable("unhandled!"); 6310 } 6311 6312 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6313 if (SPF == SPF_SMIN) return SPF_SMAX; 6314 if (SPF == SPF_UMIN) return SPF_UMAX; 6315 if (SPF == SPF_SMAX) return SPF_SMIN; 6316 if (SPF == SPF_UMAX) return SPF_UMIN; 6317 llvm_unreachable("unhandled!"); 6318 } 6319 6320 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6321 switch (MinMaxID) { 6322 case Intrinsic::smax: return Intrinsic::smin; 6323 case Intrinsic::smin: return Intrinsic::smax; 6324 case Intrinsic::umax: return Intrinsic::umin; 6325 case Intrinsic::umin: return Intrinsic::umax; 6326 default: llvm_unreachable("Unexpected intrinsic"); 6327 } 6328 } 6329 6330 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6331 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6332 } 6333 6334 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6335 switch (SPF) { 6336 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6337 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6338 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6339 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6340 default: llvm_unreachable("Unexpected flavor"); 6341 } 6342 } 6343 6344 std::pair<Intrinsic::ID, bool> 6345 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6346 // Check if VL contains select instructions that can be folded into a min/max 6347 // vector intrinsic and return the intrinsic if it is possible. 6348 // TODO: Support floating point min/max. 6349 bool AllCmpSingleUse = true; 6350 SelectPatternResult SelectPattern; 6351 SelectPattern.Flavor = SPF_UNKNOWN; 6352 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6353 Value *LHS, *RHS; 6354 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6355 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6356 CurrentPattern.Flavor == SPF_FMINNUM || 6357 CurrentPattern.Flavor == SPF_FMAXNUM || 6358 !I->getType()->isIntOrIntVectorTy()) 6359 return false; 6360 if (SelectPattern.Flavor != SPF_UNKNOWN && 6361 SelectPattern.Flavor != CurrentPattern.Flavor) 6362 return false; 6363 SelectPattern = CurrentPattern; 6364 AllCmpSingleUse &= 6365 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6366 return true; 6367 })) { 6368 switch (SelectPattern.Flavor) { 6369 case SPF_SMIN: 6370 return {Intrinsic::smin, AllCmpSingleUse}; 6371 case SPF_UMIN: 6372 return {Intrinsic::umin, AllCmpSingleUse}; 6373 case SPF_SMAX: 6374 return {Intrinsic::smax, AllCmpSingleUse}; 6375 case SPF_UMAX: 6376 return {Intrinsic::umax, AllCmpSingleUse}; 6377 default: 6378 llvm_unreachable("unexpected select pattern flavor"); 6379 } 6380 } 6381 return {Intrinsic::not_intrinsic, false}; 6382 } 6383 6384 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6385 Value *&Start, Value *&Step) { 6386 // Handle the case of a simple two-predecessor recurrence PHI. 6387 // There's a lot more that could theoretically be done here, but 6388 // this is sufficient to catch some interesting cases. 6389 if (P->getNumIncomingValues() != 2) 6390 return false; 6391 6392 for (unsigned i = 0; i != 2; ++i) { 6393 Value *L = P->getIncomingValue(i); 6394 Value *R = P->getIncomingValue(!i); 6395 Operator *LU = dyn_cast<Operator>(L); 6396 if (!LU) 6397 continue; 6398 unsigned Opcode = LU->getOpcode(); 6399 6400 switch (Opcode) { 6401 default: 6402 continue; 6403 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6404 case Instruction::LShr: 6405 case Instruction::AShr: 6406 case Instruction::Shl: 6407 case Instruction::Add: 6408 case Instruction::Sub: 6409 case Instruction::And: 6410 case Instruction::Or: 6411 case Instruction::Mul: { 6412 Value *LL = LU->getOperand(0); 6413 Value *LR = LU->getOperand(1); 6414 // Find a recurrence. 6415 if (LL == P) 6416 L = LR; 6417 else if (LR == P) 6418 L = LL; 6419 else 6420 continue; // Check for recurrence with L and R flipped. 6421 6422 break; // Match! 6423 } 6424 }; 6425 6426 // We have matched a recurrence of the form: 6427 // %iv = [R, %entry], [%iv.next, %backedge] 6428 // %iv.next = binop %iv, L 6429 // OR 6430 // %iv = [R, %entry], [%iv.next, %backedge] 6431 // %iv.next = binop L, %iv 6432 BO = cast<BinaryOperator>(LU); 6433 Start = R; 6434 Step = L; 6435 return true; 6436 } 6437 return false; 6438 } 6439 6440 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6441 Value *&Start, Value *&Step) { 6442 BinaryOperator *BO = nullptr; 6443 P = dyn_cast<PHINode>(I->getOperand(0)); 6444 if (!P) 6445 P = dyn_cast<PHINode>(I->getOperand(1)); 6446 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6447 } 6448 6449 /// Return true if "icmp Pred LHS RHS" is always true. 6450 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6451 const Value *RHS, const DataLayout &DL, 6452 unsigned Depth) { 6453 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6454 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6455 return true; 6456 6457 switch (Pred) { 6458 default: 6459 return false; 6460 6461 case CmpInst::ICMP_SLE: { 6462 const APInt *C; 6463 6464 // LHS s<= LHS +_{nsw} C if C >= 0 6465 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6466 return !C->isNegative(); 6467 return false; 6468 } 6469 6470 case CmpInst::ICMP_ULE: { 6471 const APInt *C; 6472 6473 // LHS u<= LHS +_{nuw} C for any C 6474 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6475 return true; 6476 6477 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6478 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6479 const Value *&X, 6480 const APInt *&CA, const APInt *&CB) { 6481 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6482 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6483 return true; 6484 6485 // If X & C == 0 then (X | C) == X +_{nuw} C 6486 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6487 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6488 KnownBits Known(CA->getBitWidth()); 6489 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6490 /*CxtI*/ nullptr, /*DT*/ nullptr); 6491 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6492 return true; 6493 } 6494 6495 return false; 6496 }; 6497 6498 const Value *X; 6499 const APInt *CLHS, *CRHS; 6500 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6501 return CLHS->ule(*CRHS); 6502 6503 return false; 6504 } 6505 } 6506 } 6507 6508 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6509 /// ALHS ARHS" is true. Otherwise, return None. 6510 static Optional<bool> 6511 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6512 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6513 const DataLayout &DL, unsigned Depth) { 6514 switch (Pred) { 6515 default: 6516 return None; 6517 6518 case CmpInst::ICMP_SLT: 6519 case CmpInst::ICMP_SLE: 6520 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6521 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6522 return true; 6523 return None; 6524 6525 case CmpInst::ICMP_ULT: 6526 case CmpInst::ICMP_ULE: 6527 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6528 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6529 return true; 6530 return None; 6531 } 6532 } 6533 6534 /// Return true if the operands of the two compares match. IsSwappedOps is true 6535 /// when the operands match, but are swapped. 6536 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6537 const Value *BLHS, const Value *BRHS, 6538 bool &IsSwappedOps) { 6539 6540 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6541 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6542 return IsMatchingOps || IsSwappedOps; 6543 } 6544 6545 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6546 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6547 /// Otherwise, return None if we can't infer anything. 6548 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6549 CmpInst::Predicate BPred, 6550 bool AreSwappedOps) { 6551 // Canonicalize the predicate as if the operands were not commuted. 6552 if (AreSwappedOps) 6553 BPred = ICmpInst::getSwappedPredicate(BPred); 6554 6555 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6556 return true; 6557 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6558 return false; 6559 6560 return None; 6561 } 6562 6563 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6564 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6565 /// Otherwise, return None if we can't infer anything. 6566 static Optional<bool> 6567 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6568 const ConstantInt *C1, 6569 CmpInst::Predicate BPred, 6570 const ConstantInt *C2) { 6571 ConstantRange DomCR = 6572 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6573 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6574 ConstantRange Intersection = DomCR.intersectWith(CR); 6575 ConstantRange Difference = DomCR.difference(CR); 6576 if (Intersection.isEmptySet()) 6577 return false; 6578 if (Difference.isEmptySet()) 6579 return true; 6580 return None; 6581 } 6582 6583 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6584 /// false. Otherwise, return None if we can't infer anything. 6585 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6586 CmpInst::Predicate BPred, 6587 const Value *BLHS, const Value *BRHS, 6588 const DataLayout &DL, bool LHSIsTrue, 6589 unsigned Depth) { 6590 Value *ALHS = LHS->getOperand(0); 6591 Value *ARHS = LHS->getOperand(1); 6592 6593 // The rest of the logic assumes the LHS condition is true. If that's not the 6594 // case, invert the predicate to make it so. 6595 CmpInst::Predicate APred = 6596 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6597 6598 // Can we infer anything when the two compares have matching operands? 6599 bool AreSwappedOps; 6600 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6601 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6602 APred, BPred, AreSwappedOps)) 6603 return Implication; 6604 // No amount of additional analysis will infer the second condition, so 6605 // early exit. 6606 return None; 6607 } 6608 6609 // Can we infer anything when the LHS operands match and the RHS operands are 6610 // constants (not necessarily matching)? 6611 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6612 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6613 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6614 return Implication; 6615 // No amount of additional analysis will infer the second condition, so 6616 // early exit. 6617 return None; 6618 } 6619 6620 if (APred == BPred) 6621 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6622 return None; 6623 } 6624 6625 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6626 /// false. Otherwise, return None if we can't infer anything. We expect the 6627 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6628 static Optional<bool> 6629 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6630 const Value *RHSOp0, const Value *RHSOp1, 6631 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6632 // The LHS must be an 'or', 'and', or a 'select' instruction. 6633 assert((LHS->getOpcode() == Instruction::And || 6634 LHS->getOpcode() == Instruction::Or || 6635 LHS->getOpcode() == Instruction::Select) && 6636 "Expected LHS to be 'and', 'or', or 'select'."); 6637 6638 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6639 6640 // If the result of an 'or' is false, then we know both legs of the 'or' are 6641 // false. Similarly, if the result of an 'and' is true, then we know both 6642 // legs of the 'and' are true. 6643 const Value *ALHS, *ARHS; 6644 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6645 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6646 // FIXME: Make this non-recursion. 6647 if (Optional<bool> Implication = isImpliedCondition( 6648 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6649 return Implication; 6650 if (Optional<bool> Implication = isImpliedCondition( 6651 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6652 return Implication; 6653 return None; 6654 } 6655 return None; 6656 } 6657 6658 Optional<bool> 6659 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6660 const Value *RHSOp0, const Value *RHSOp1, 6661 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6662 // Bail out when we hit the limit. 6663 if (Depth == MaxAnalysisRecursionDepth) 6664 return None; 6665 6666 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6667 // example. 6668 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6669 return None; 6670 6671 Type *OpTy = LHS->getType(); 6672 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6673 6674 // FIXME: Extending the code below to handle vectors. 6675 if (OpTy->isVectorTy()) 6676 return None; 6677 6678 assert(OpTy->isIntegerTy(1) && "implied by above"); 6679 6680 // Both LHS and RHS are icmps. 6681 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6682 if (LHSCmp) 6683 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6684 Depth); 6685 6686 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6687 /// the RHS to be an icmp. 6688 /// FIXME: Add support for and/or/select on the RHS. 6689 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6690 if ((LHSI->getOpcode() == Instruction::And || 6691 LHSI->getOpcode() == Instruction::Or || 6692 LHSI->getOpcode() == Instruction::Select)) 6693 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6694 Depth); 6695 } 6696 return None; 6697 } 6698 6699 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6700 const DataLayout &DL, bool LHSIsTrue, 6701 unsigned Depth) { 6702 // LHS ==> RHS by definition 6703 if (LHS == RHS) 6704 return LHSIsTrue; 6705 6706 if (const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS)) 6707 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6708 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6709 LHSIsTrue, Depth); 6710 6711 if (Depth == MaxAnalysisRecursionDepth) 6712 return None; 6713 6714 // LHS ==> (RHS1 || RHS2) if LHS ==> RHS1 or LHS ==> RHS2 6715 // LHS ==> !(RHS1 && RHS2) if LHS ==> !RHS1 or LHS ==> !RHS2 6716 const Value *RHS1, *RHS2; 6717 if (match(RHS, m_LogicalOr(m_Value(RHS1), m_Value(RHS2)))) { 6718 if (Optional<bool> Imp = 6719 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6720 if (*Imp == true) 6721 return true; 6722 if (Optional<bool> Imp = 6723 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6724 if (*Imp == true) 6725 return true; 6726 } 6727 if (match(RHS, m_LogicalAnd(m_Value(RHS1), m_Value(RHS2)))) { 6728 if (Optional<bool> Imp = 6729 isImpliedCondition(LHS, RHS1, DL, LHSIsTrue, Depth + 1)) 6730 if (*Imp == false) 6731 return false; 6732 if (Optional<bool> Imp = 6733 isImpliedCondition(LHS, RHS2, DL, LHSIsTrue, Depth + 1)) 6734 if (*Imp == false) 6735 return false; 6736 } 6737 6738 return None; 6739 } 6740 6741 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6742 // condition dominating ContextI or nullptr, if no condition is found. 6743 static std::pair<Value *, bool> 6744 getDomPredecessorCondition(const Instruction *ContextI) { 6745 if (!ContextI || !ContextI->getParent()) 6746 return {nullptr, false}; 6747 6748 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6749 // dominator tree (eg, from a SimplifyQuery) instead? 6750 const BasicBlock *ContextBB = ContextI->getParent(); 6751 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6752 if (!PredBB) 6753 return {nullptr, false}; 6754 6755 // We need a conditional branch in the predecessor. 6756 Value *PredCond; 6757 BasicBlock *TrueBB, *FalseBB; 6758 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6759 return {nullptr, false}; 6760 6761 // The branch should get simplified. Don't bother simplifying this condition. 6762 if (TrueBB == FalseBB) 6763 return {nullptr, false}; 6764 6765 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6766 "Predecessor block does not point to successor?"); 6767 6768 // Is this condition implied by the predecessor condition? 6769 return {PredCond, TrueBB == ContextBB}; 6770 } 6771 6772 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6773 const Instruction *ContextI, 6774 const DataLayout &DL) { 6775 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6776 auto PredCond = getDomPredecessorCondition(ContextI); 6777 if (PredCond.first) 6778 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6779 return None; 6780 } 6781 6782 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6783 const Value *LHS, const Value *RHS, 6784 const Instruction *ContextI, 6785 const DataLayout &DL) { 6786 auto PredCond = getDomPredecessorCondition(ContextI); 6787 if (PredCond.first) 6788 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6789 PredCond.second); 6790 return None; 6791 } 6792 6793 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6794 APInt &Upper, const InstrInfoQuery &IIQ, 6795 bool PreferSignedRange) { 6796 unsigned Width = Lower.getBitWidth(); 6797 const APInt *C; 6798 switch (BO.getOpcode()) { 6799 case Instruction::Add: 6800 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6801 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6802 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6803 6804 // If the caller expects a signed compare, then try to use a signed range. 6805 // Otherwise if both no-wraps are set, use the unsigned range because it 6806 // is never larger than the signed range. Example: 6807 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6808 if (PreferSignedRange && HasNSW && HasNUW) 6809 HasNUW = false; 6810 6811 if (HasNUW) { 6812 // 'add nuw x, C' produces [C, UINT_MAX]. 6813 Lower = *C; 6814 } else if (HasNSW) { 6815 if (C->isNegative()) { 6816 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6817 Lower = APInt::getSignedMinValue(Width); 6818 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6819 } else { 6820 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6821 Lower = APInt::getSignedMinValue(Width) + *C; 6822 Upper = APInt::getSignedMaxValue(Width) + 1; 6823 } 6824 } 6825 } 6826 break; 6827 6828 case Instruction::And: 6829 if (match(BO.getOperand(1), m_APInt(C))) 6830 // 'and x, C' produces [0, C]. 6831 Upper = *C + 1; 6832 break; 6833 6834 case Instruction::Or: 6835 if (match(BO.getOperand(1), m_APInt(C))) 6836 // 'or x, C' produces [C, UINT_MAX]. 6837 Lower = *C; 6838 break; 6839 6840 case Instruction::AShr: 6841 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6842 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6843 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6844 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6845 } else if (match(BO.getOperand(0), m_APInt(C))) { 6846 unsigned ShiftAmount = Width - 1; 6847 if (!C->isZero() && IIQ.isExact(&BO)) 6848 ShiftAmount = C->countTrailingZeros(); 6849 if (C->isNegative()) { 6850 // 'ashr C, x' produces [C, C >> (Width-1)] 6851 Lower = *C; 6852 Upper = C->ashr(ShiftAmount) + 1; 6853 } else { 6854 // 'ashr C, x' produces [C >> (Width-1), C] 6855 Lower = C->ashr(ShiftAmount); 6856 Upper = *C + 1; 6857 } 6858 } 6859 break; 6860 6861 case Instruction::LShr: 6862 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6863 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6864 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6865 } else if (match(BO.getOperand(0), m_APInt(C))) { 6866 // 'lshr C, x' produces [C >> (Width-1), C]. 6867 unsigned ShiftAmount = Width - 1; 6868 if (!C->isZero() && IIQ.isExact(&BO)) 6869 ShiftAmount = C->countTrailingZeros(); 6870 Lower = C->lshr(ShiftAmount); 6871 Upper = *C + 1; 6872 } 6873 break; 6874 6875 case Instruction::Shl: 6876 if (match(BO.getOperand(0), m_APInt(C))) { 6877 if (IIQ.hasNoUnsignedWrap(&BO)) { 6878 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6879 Lower = *C; 6880 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6881 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6882 if (C->isNegative()) { 6883 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6884 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6885 Lower = C->shl(ShiftAmount); 6886 Upper = *C + 1; 6887 } else { 6888 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6889 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6890 Lower = *C; 6891 Upper = C->shl(ShiftAmount) + 1; 6892 } 6893 } 6894 } 6895 break; 6896 6897 case Instruction::SDiv: 6898 if (match(BO.getOperand(1), m_APInt(C))) { 6899 APInt IntMin = APInt::getSignedMinValue(Width); 6900 APInt IntMax = APInt::getSignedMaxValue(Width); 6901 if (C->isAllOnes()) { 6902 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6903 // where C != -1 and C != 0 and C != 1 6904 Lower = IntMin + 1; 6905 Upper = IntMax + 1; 6906 } else if (C->countLeadingZeros() < Width - 1) { 6907 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6908 // where C != -1 and C != 0 and C != 1 6909 Lower = IntMin.sdiv(*C); 6910 Upper = IntMax.sdiv(*C); 6911 if (Lower.sgt(Upper)) 6912 std::swap(Lower, Upper); 6913 Upper = Upper + 1; 6914 assert(Upper != Lower && "Upper part of range has wrapped!"); 6915 } 6916 } else if (match(BO.getOperand(0), m_APInt(C))) { 6917 if (C->isMinSignedValue()) { 6918 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6919 Lower = *C; 6920 Upper = Lower.lshr(1) + 1; 6921 } else { 6922 // 'sdiv C, x' produces [-|C|, |C|]. 6923 Upper = C->abs() + 1; 6924 Lower = (-Upper) + 1; 6925 } 6926 } 6927 break; 6928 6929 case Instruction::UDiv: 6930 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6931 // 'udiv x, C' produces [0, UINT_MAX / C]. 6932 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6933 } else if (match(BO.getOperand(0), m_APInt(C))) { 6934 // 'udiv C, x' produces [0, C]. 6935 Upper = *C + 1; 6936 } 6937 break; 6938 6939 case Instruction::SRem: 6940 if (match(BO.getOperand(1), m_APInt(C))) { 6941 // 'srem x, C' produces (-|C|, |C|). 6942 Upper = C->abs(); 6943 Lower = (-Upper) + 1; 6944 } 6945 break; 6946 6947 case Instruction::URem: 6948 if (match(BO.getOperand(1), m_APInt(C))) 6949 // 'urem x, C' produces [0, C). 6950 Upper = *C; 6951 break; 6952 6953 default: 6954 break; 6955 } 6956 } 6957 6958 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6959 APInt &Upper) { 6960 unsigned Width = Lower.getBitWidth(); 6961 const APInt *C; 6962 switch (II.getIntrinsicID()) { 6963 case Intrinsic::ctpop: 6964 case Intrinsic::ctlz: 6965 case Intrinsic::cttz: 6966 // Maximum of set/clear bits is the bit width. 6967 assert(Lower == 0 && "Expected lower bound to be zero"); 6968 Upper = Width + 1; 6969 break; 6970 case Intrinsic::uadd_sat: 6971 // uadd.sat(x, C) produces [C, UINT_MAX]. 6972 if (match(II.getOperand(0), m_APInt(C)) || 6973 match(II.getOperand(1), m_APInt(C))) 6974 Lower = *C; 6975 break; 6976 case Intrinsic::sadd_sat: 6977 if (match(II.getOperand(0), m_APInt(C)) || 6978 match(II.getOperand(1), m_APInt(C))) { 6979 if (C->isNegative()) { 6980 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6981 Lower = APInt::getSignedMinValue(Width); 6982 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6983 } else { 6984 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6985 Lower = APInt::getSignedMinValue(Width) + *C; 6986 Upper = APInt::getSignedMaxValue(Width) + 1; 6987 } 6988 } 6989 break; 6990 case Intrinsic::usub_sat: 6991 // usub.sat(C, x) produces [0, C]. 6992 if (match(II.getOperand(0), m_APInt(C))) 6993 Upper = *C + 1; 6994 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6995 else if (match(II.getOperand(1), m_APInt(C))) 6996 Upper = APInt::getMaxValue(Width) - *C + 1; 6997 break; 6998 case Intrinsic::ssub_sat: 6999 if (match(II.getOperand(0), m_APInt(C))) { 7000 if (C->isNegative()) { 7001 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 7002 Lower = APInt::getSignedMinValue(Width); 7003 Upper = *C - APInt::getSignedMinValue(Width) + 1; 7004 } else { 7005 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 7006 Lower = *C - APInt::getSignedMaxValue(Width); 7007 Upper = APInt::getSignedMaxValue(Width) + 1; 7008 } 7009 } else if (match(II.getOperand(1), m_APInt(C))) { 7010 if (C->isNegative()) { 7011 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 7012 Lower = APInt::getSignedMinValue(Width) - *C; 7013 Upper = APInt::getSignedMaxValue(Width) + 1; 7014 } else { 7015 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 7016 Lower = APInt::getSignedMinValue(Width); 7017 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 7018 } 7019 } 7020 break; 7021 case Intrinsic::umin: 7022 case Intrinsic::umax: 7023 case Intrinsic::smin: 7024 case Intrinsic::smax: 7025 if (!match(II.getOperand(0), m_APInt(C)) && 7026 !match(II.getOperand(1), m_APInt(C))) 7027 break; 7028 7029 switch (II.getIntrinsicID()) { 7030 case Intrinsic::umin: 7031 Upper = *C + 1; 7032 break; 7033 case Intrinsic::umax: 7034 Lower = *C; 7035 break; 7036 case Intrinsic::smin: 7037 Lower = APInt::getSignedMinValue(Width); 7038 Upper = *C + 1; 7039 break; 7040 case Intrinsic::smax: 7041 Lower = *C; 7042 Upper = APInt::getSignedMaxValue(Width) + 1; 7043 break; 7044 default: 7045 llvm_unreachable("Must be min/max intrinsic"); 7046 } 7047 break; 7048 case Intrinsic::abs: 7049 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 7050 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7051 if (match(II.getOperand(1), m_One())) 7052 Upper = APInt::getSignedMaxValue(Width) + 1; 7053 else 7054 Upper = APInt::getSignedMinValue(Width) + 1; 7055 break; 7056 default: 7057 break; 7058 } 7059 } 7060 7061 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7062 APInt &Upper, const InstrInfoQuery &IIQ) { 7063 const Value *LHS = nullptr, *RHS = nullptr; 7064 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7065 if (R.Flavor == SPF_UNKNOWN) 7066 return; 7067 7068 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7069 7070 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7071 // If the negation part of the abs (in RHS) has the NSW flag, 7072 // then the result of abs(X) is [0..SIGNED_MAX], 7073 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7074 Lower = APInt::getZero(BitWidth); 7075 if (match(RHS, m_Neg(m_Specific(LHS))) && 7076 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7077 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7078 else 7079 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7080 return; 7081 } 7082 7083 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7084 // The result of -abs(X) is <= 0. 7085 Lower = APInt::getSignedMinValue(BitWidth); 7086 Upper = APInt(BitWidth, 1); 7087 return; 7088 } 7089 7090 const APInt *C; 7091 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7092 return; 7093 7094 switch (R.Flavor) { 7095 case SPF_UMIN: 7096 Upper = *C + 1; 7097 break; 7098 case SPF_UMAX: 7099 Lower = *C; 7100 break; 7101 case SPF_SMIN: 7102 Lower = APInt::getSignedMinValue(BitWidth); 7103 Upper = *C + 1; 7104 break; 7105 case SPF_SMAX: 7106 Lower = *C; 7107 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7108 break; 7109 default: 7110 break; 7111 } 7112 } 7113 7114 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 7115 // The maximum representable value of a half is 65504. For floats the maximum 7116 // value is 3.4e38 which requires roughly 129 bits. 7117 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 7118 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 7119 return; 7120 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 7121 Lower = APInt(BitWidth, -65504); 7122 Upper = APInt(BitWidth, 65505); 7123 } 7124 7125 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 7126 // For a fptoui the lower limit is left as 0. 7127 Upper = APInt(BitWidth, 65505); 7128 } 7129 } 7130 7131 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 7132 bool UseInstrInfo, AssumptionCache *AC, 7133 const Instruction *CtxI, 7134 const DominatorTree *DT, 7135 unsigned Depth) { 7136 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7137 7138 if (Depth == MaxAnalysisRecursionDepth) 7139 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7140 7141 const APInt *C; 7142 if (match(V, m_APInt(C))) 7143 return ConstantRange(*C); 7144 7145 InstrInfoQuery IIQ(UseInstrInfo); 7146 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7147 APInt Lower = APInt(BitWidth, 0); 7148 APInt Upper = APInt(BitWidth, 0); 7149 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7150 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7151 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7152 setLimitsForIntrinsic(*II, Lower, Upper); 7153 else if (auto *SI = dyn_cast<SelectInst>(V)) 7154 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7155 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7156 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7157 7158 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7159 7160 if (auto *I = dyn_cast<Instruction>(V)) 7161 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7162 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7163 7164 if (CtxI && AC) { 7165 // Try to restrict the range based on information from assumptions. 7166 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7167 if (!AssumeVH) 7168 continue; 7169 CallInst *I = cast<CallInst>(AssumeVH); 7170 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7171 "Got assumption for the wrong function!"); 7172 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7173 "must be an assume intrinsic"); 7174 7175 if (!isValidAssumeForContext(I, CtxI, DT)) 7176 continue; 7177 Value *Arg = I->getArgOperand(0); 7178 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7179 // Currently we just use information from comparisons. 7180 if (!Cmp || Cmp->getOperand(0) != V) 7181 continue; 7182 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7183 ConstantRange RHS = 7184 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7185 UseInstrInfo, AC, I, DT, Depth + 1); 7186 CR = CR.intersectWith( 7187 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7188 } 7189 } 7190 7191 return CR; 7192 } 7193 7194 static Optional<int64_t> 7195 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7196 // Skip over the first indices. 7197 gep_type_iterator GTI = gep_type_begin(GEP); 7198 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7199 /*skip along*/; 7200 7201 // Compute the offset implied by the rest of the indices. 7202 int64_t Offset = 0; 7203 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7204 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7205 if (!OpC) 7206 return None; 7207 if (OpC->isZero()) 7208 continue; // No offset. 7209 7210 // Handle struct indices, which add their field offset to the pointer. 7211 if (StructType *STy = GTI.getStructTypeOrNull()) { 7212 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7213 continue; 7214 } 7215 7216 // Otherwise, we have a sequential type like an array or fixed-length 7217 // vector. Multiply the index by the ElementSize. 7218 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7219 if (Size.isScalable()) 7220 return None; 7221 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7222 } 7223 7224 return Offset; 7225 } 7226 7227 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7228 const DataLayout &DL) { 7229 APInt Offset1(DL.getIndexTypeSizeInBits(Ptr1->getType()), 0); 7230 APInt Offset2(DL.getIndexTypeSizeInBits(Ptr2->getType()), 0); 7231 Ptr1 = Ptr1->stripAndAccumulateConstantOffsets(DL, Offset1, true); 7232 Ptr2 = Ptr2->stripAndAccumulateConstantOffsets(DL, Offset2, true); 7233 7234 // Handle the trivial case first. 7235 if (Ptr1 == Ptr2) 7236 return Offset2.getSExtValue() - Offset1.getSExtValue(); 7237 7238 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7239 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7240 7241 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7242 // base. After that base, they may have some number of common (and 7243 // potentially variable) indices. After that they handle some constant 7244 // offset, which determines their offset from each other. At this point, we 7245 // handle no other case. 7246 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7247 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7248 return None; 7249 7250 // Skip any common indices and track the GEP types. 7251 unsigned Idx = 1; 7252 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7253 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7254 break; 7255 7256 auto IOffset1 = getOffsetFromIndex(GEP1, Idx, DL); 7257 auto IOffset2 = getOffsetFromIndex(GEP2, Idx, DL); 7258 if (!IOffset1 || !IOffset2) 7259 return None; 7260 return *IOffset2 - *IOffset1 + Offset2.getSExtValue() - 7261 Offset1.getSExtValue(); 7262 } 7263