1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 // Look for an inverted mask: (X & ~M) op (Y & M). 194 Value *M; 195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 196 match(RHS, m_c_And(m_Specific(M), m_Value()))) 197 return true; 198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 199 match(LHS, m_c_And(m_Specific(M), m_Value()))) 200 return true; 201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 202 KnownBits LHSKnown(IT->getBitWidth()); 203 KnownBits RHSKnown(IT->getBitWidth()); 204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 207 } 208 209 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 210 for (const User *U : CxtI->users()) { 211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 212 if (IC->isEquality()) 213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 214 if (C->isNullValue()) 215 continue; 216 return false; 217 } 218 return true; 219 } 220 221 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 222 const Query &Q); 223 224 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 225 bool OrZero, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, 228 const DominatorTree *DT) { 229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 234 235 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 236 AssumptionCache *AC, const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 242 unsigned Depth, 243 AssumptionCache *AC, const Instruction *CxtI, 244 const DominatorTree *DT) { 245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 246 return Known.isNonNegative(); 247 } 248 249 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 250 AssumptionCache *AC, const Instruction *CxtI, 251 const DominatorTree *DT) { 252 if (auto *CI = dyn_cast<ConstantInt>(V)) 253 return CI->getValue().isStrictlyPositive(); 254 255 // TODO: We'd doing two recursive queries here. We should factor this such 256 // that only a single query is needed. 257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 259 } 260 261 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 262 AssumptionCache *AC, const Instruction *CxtI, 263 const DominatorTree *DT) { 264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 265 return Known.isNegative(); 266 } 267 268 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 269 270 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 271 const DataLayout &DL, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT) { 274 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 275 safeCxtI(V1, safeCxtI(V2, CxtI)), 276 DT)); 277 } 278 279 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 280 const Query &Q); 281 282 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 283 const DataLayout &DL, 284 unsigned Depth, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT) { 286 return ::MaskedValueIsZero(V, Mask, Depth, 287 Query(DL, AC, safeCxtI(V, CxtI), DT)); 288 } 289 290 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 291 const Query &Q); 292 293 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 294 unsigned Depth, AssumptionCache *AC, 295 const Instruction *CxtI, 296 const DominatorTree *DT) { 297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 298 } 299 300 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 301 bool NSW, 302 KnownBits &KnownOut, KnownBits &Known2, 303 unsigned Depth, const Query &Q) { 304 unsigned BitWidth = KnownOut.getBitWidth(); 305 306 // If an initial sequence of bits in the result is not needed, the 307 // corresponding bits in the operands are not needed. 308 KnownBits LHSKnown(BitWidth); 309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 310 computeKnownBits(Op1, Known2, Depth + 1, Q); 311 312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 313 } 314 315 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 316 KnownBits &Known, KnownBits &Known2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = Known.getBitWidth(); 319 computeKnownBits(Op1, Known, Depth + 1, Q); 320 computeKnownBits(Op0, Known2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 331 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 332 bool isKnownNegativeOp1 = Known.isNegative(); 333 bool isKnownNegativeOp0 = Known2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 assert(!Known.hasConflict() && !Known2.hasConflict()); 348 // Compute a conservative estimate for high known-0 bits. 349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 350 Known2.countMinLeadingZeros(), 351 BitWidth) - BitWidth; 352 LeadZ = std::min(LeadZ, BitWidth); 353 354 // The result of the bottom bits of an integer multiply can be 355 // inferred by looking at the bottom bits of both operands and 356 // multiplying them together. 357 // We can infer at least the minimum number of known trailing bits 358 // of both operands. Depending on number of trailing zeros, we can 359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 360 // a and b are divisible by m and n respectively. 361 // We then calculate how many of those bits are inferrable and set 362 // the output. For example, the i8 mul: 363 // a = XXXX1100 (12) 364 // b = XXXX1110 (14) 365 // We know the bottom 3 bits are zero since the first can be divided by 366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 367 // Applying the multiplication to the trimmed arguments gets: 368 // XX11 (3) 369 // X111 (7) 370 // ------- 371 // XX11 372 // XX11 373 // XX11 374 // XX11 375 // ------- 376 // XXXXX01 377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 379 // The proof for this can be described as: 380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 382 // umin(countTrailingZeros(C2), C6) + 383 // umin(C5 - umin(countTrailingZeros(C1), C5), 384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 385 // %aa = shl i8 %a, C5 386 // %bb = shl i8 %b, C6 387 // %aaa = or i8 %aa, C1 388 // %bbb = or i8 %bb, C2 389 // %mul = mul i8 %aaa, %bbb 390 // %mask = and i8 %mul, C7 391 // => 392 // %mask = i8 ((C1*C2)&C7) 393 // Where C5, C6 describe the known bits of %a, %b 394 // C1, C2 describe the known bottom bits of %a, %b. 395 // C7 describes the mask of the known bits of the result. 396 APInt Bottom0 = Known.One; 397 APInt Bottom1 = Known2.One; 398 399 // How many times we'd be able to divide each argument by 2 (shr by 1). 400 // This gives us the number of trailing zeros on the multiplication result. 401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 403 unsigned TrailZero0 = Known.countMinTrailingZeros(); 404 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 405 unsigned TrailZ = TrailZero0 + TrailZero1; 406 407 // Figure out the fewest known-bits operand. 408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 409 TrailBitsKnown1 - TrailZero1); 410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 411 412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 413 Bottom1.getLoBits(TrailBitsKnown1); 414 415 Known.resetAll(); 416 Known.Zero.setHighBits(LeadZ); 417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 419 420 // Only make use of no-wrap flags if we failed to compute the sign bit 421 // directly. This matters if the multiplication always overflows, in 422 // which case we prefer to follow the result of the direct computation, 423 // though as the program is invoking undefined behaviour we can choose 424 // whatever we like here. 425 if (isKnownNonNegative && !Known.isNegative()) 426 Known.makeNonNegative(); 427 else if (isKnownNegative && !Known.isNonNegative()) 428 Known.makeNegative(); 429 } 430 431 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 432 KnownBits &Known) { 433 unsigned BitWidth = Known.getBitWidth(); 434 unsigned NumRanges = Ranges.getNumOperands() / 2; 435 assert(NumRanges >= 1); 436 437 Known.Zero.setAllBits(); 438 Known.One.setAllBits(); 439 440 for (unsigned i = 0; i < NumRanges; ++i) { 441 ConstantInt *Lower = 442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 443 ConstantInt *Upper = 444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 445 ConstantRange Range(Lower->getValue(), Upper->getValue()); 446 447 // The first CommonPrefixBits of all values in Range are equal. 448 unsigned CommonPrefixBits = 449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 450 451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 452 Known.One &= Range.getUnsignedMax() & Mask; 453 Known.Zero &= ~Range.getUnsignedMax() & Mask; 454 } 455 } 456 457 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 458 SmallVector<const Value *, 16> WorkSet(1, I); 459 SmallPtrSet<const Value *, 32> Visited; 460 SmallPtrSet<const Value *, 16> EphValues; 461 462 // The instruction defining an assumption's condition itself is always 463 // considered ephemeral to that assumption (even if it has other 464 // non-ephemeral users). See r246696's test case for an example. 465 if (is_contained(I->operands(), E)) 466 return true; 467 468 while (!WorkSet.empty()) { 469 const Value *V = WorkSet.pop_back_val(); 470 if (!Visited.insert(V).second) 471 continue; 472 473 // If all uses of this value are ephemeral, then so is this value. 474 if (llvm::all_of(V->users(), [&](const User *U) { 475 return EphValues.count(U); 476 })) { 477 if (V == E) 478 return true; 479 480 if (V == I || isSafeToSpeculativelyExecute(V)) { 481 EphValues.insert(V); 482 if (const User *U = dyn_cast<User>(V)) 483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 484 J != JE; ++J) 485 WorkSet.push_back(*J); 486 } 487 } 488 } 489 490 return false; 491 } 492 493 // Is this an intrinsic that cannot be speculated but also cannot trap? 494 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 495 if (const CallInst *CI = dyn_cast<CallInst>(I)) 496 if (Function *F = CI->getCalledFunction()) 497 switch (F->getIntrinsicID()) { 498 default: break; 499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 500 case Intrinsic::assume: 501 case Intrinsic::sideeffect: 502 case Intrinsic::dbg_declare: 503 case Intrinsic::dbg_value: 504 case Intrinsic::dbg_label: 505 case Intrinsic::invariant_start: 506 case Intrinsic::invariant_end: 507 case Intrinsic::lifetime_start: 508 case Intrinsic::lifetime_end: 509 case Intrinsic::objectsize: 510 case Intrinsic::ptr_annotation: 511 case Intrinsic::var_annotation: 512 return true; 513 } 514 515 return false; 516 } 517 518 bool llvm::isValidAssumeForContext(const Instruction *Inv, 519 const Instruction *CxtI, 520 const DominatorTree *DT) { 521 // There are two restrictions on the use of an assume: 522 // 1. The assume must dominate the context (or the control flow must 523 // reach the assume whenever it reaches the context). 524 // 2. The context must not be in the assume's set of ephemeral values 525 // (otherwise we will use the assume to prove that the condition 526 // feeding the assume is trivially true, thus causing the removal of 527 // the assume). 528 529 if (DT) { 530 if (DT->dominates(Inv, CxtI)) 531 return true; 532 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 533 // We don't have a DT, but this trivially dominates. 534 return true; 535 } 536 537 // With or without a DT, the only remaining case we will check is if the 538 // instructions are in the same BB. Give up if that is not the case. 539 if (Inv->getParent() != CxtI->getParent()) 540 return false; 541 542 // If we have a dom tree, then we now know that the assume doesn't dominate 543 // the other instruction. If we don't have a dom tree then we can check if 544 // the assume is first in the BB. 545 if (!DT) { 546 // Search forward from the assume until we reach the context (or the end 547 // of the block); the common case is that the assume will come first. 548 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 549 IE = Inv->getParent()->end(); I != IE; ++I) 550 if (&*I == CxtI) 551 return true; 552 } 553 554 // The context comes first, but they're both in the same block. Make sure 555 // there is nothing in between that might interrupt the control flow. 556 for (BasicBlock::const_iterator I = 557 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 558 I != IE; ++I) 559 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 566 unsigned Depth, const Query &Q) { 567 // Use of assumptions is context-sensitive. If we don't have a context, we 568 // cannot use them! 569 if (!Q.AC || !Q.CxtI) 570 return; 571 572 unsigned BitWidth = Known.getBitWidth(); 573 574 // Note that the patterns below need to be kept in sync with the code 575 // in AssumptionCache::updateAffectedValues. 576 577 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 578 if (!AssumeVH) 579 continue; 580 CallInst *I = cast<CallInst>(AssumeVH); 581 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 582 "Got assumption for the wrong function!"); 583 if (Q.isExcluded(I)) 584 continue; 585 586 // Warning: This loop can end up being somewhat performance sensitive. 587 // We're running this loop for once for each value queried resulting in a 588 // runtime of ~O(#assumes * #values). 589 590 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 591 "must be an assume intrinsic"); 592 593 Value *Arg = I->getArgOperand(0); 594 595 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 596 assert(BitWidth == 1 && "assume operand is not i1?"); 597 Known.setAllOnes(); 598 return; 599 } 600 if (match(Arg, m_Not(m_Specific(V))) && 601 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 602 assert(BitWidth == 1 && "assume operand is not i1?"); 603 Known.setAllZero(); 604 return; 605 } 606 607 // The remaining tests are all recursive, so bail out if we hit the limit. 608 if (Depth == MaxDepth) 609 continue; 610 611 Value *A, *B; 612 auto m_V = m_CombineOr(m_Specific(V), 613 m_CombineOr(m_PtrToInt(m_Specific(V)), 614 m_BitCast(m_Specific(V)))); 615 616 CmpInst::Predicate Pred; 617 uint64_t C; 618 // assume(v = a) 619 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 Known.Zero |= RHSKnown.Zero; 624 Known.One |= RHSKnown.One; 625 // assume(v & b = a) 626 } else if (match(Arg, 627 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && 629 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 630 KnownBits RHSKnown(BitWidth); 631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 632 KnownBits MaskKnown(BitWidth); 633 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 634 635 // For those bits in the mask that are known to be one, we can propagate 636 // known bits from the RHS to V. 637 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 638 Known.One |= RHSKnown.One & MaskKnown.One; 639 // assume(~(v & b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 KnownBits RHSKnown(BitWidth); 645 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 646 KnownBits MaskKnown(BitWidth); 647 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 648 649 // For those bits in the mask that are known to be one, we can propagate 650 // inverted known bits from the RHS to V. 651 Known.Zero |= RHSKnown.One & MaskKnown.One; 652 Known.One |= RHSKnown.Zero & MaskKnown.One; 653 // assume(v | b = a) 654 } else if (match(Arg, 655 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 656 Pred == ICmpInst::ICMP_EQ && 657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 658 KnownBits RHSKnown(BitWidth); 659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 660 KnownBits BKnown(BitWidth); 661 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 662 663 // For those bits in B that are known to be zero, we can propagate known 664 // bits from the RHS to V. 665 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 666 Known.One |= RHSKnown.One & BKnown.Zero; 667 // assume(~(v | b) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 KnownBits RHSKnown(BitWidth); 673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 674 KnownBits BKnown(BitWidth); 675 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 676 677 // For those bits in B that are known to be zero, we can propagate 678 // inverted known bits from the RHS to V. 679 Known.Zero |= RHSKnown.One & BKnown.Zero; 680 Known.One |= RHSKnown.Zero & BKnown.Zero; 681 // assume(v ^ b = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 KnownBits RHSKnown(BitWidth); 687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 688 KnownBits BKnown(BitWidth); 689 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 690 691 // For those bits in B that are known to be zero, we can propagate known 692 // bits from the RHS to V. For those bits in B that are known to be one, 693 // we can propagate inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 695 Known.One |= RHSKnown.One & BKnown.Zero; 696 Known.Zero |= RHSKnown.One & BKnown.One; 697 Known.One |= RHSKnown.Zero & BKnown.One; 698 // assume(~(v ^ b) = a) 699 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 700 m_Value(A))) && 701 Pred == ICmpInst::ICMP_EQ && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 KnownBits RHSKnown(BitWidth); 704 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 705 KnownBits BKnown(BitWidth); 706 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 707 708 // For those bits in B that are known to be zero, we can propagate 709 // inverted known bits from the RHS to V. For those bits in B that are 710 // known to be one, we can propagate known bits from the RHS to V. 711 Known.Zero |= RHSKnown.One & BKnown.Zero; 712 Known.One |= RHSKnown.Zero & BKnown.Zero; 713 Known.Zero |= RHSKnown.Zero & BKnown.One; 714 Known.One |= RHSKnown.One & BKnown.One; 715 // assume(v << c = a) 716 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 720 C < BitWidth) { 721 KnownBits RHSKnown(BitWidth); 722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 723 // For those bits in RHS that are known, we can propagate them to known 724 // bits in V shifted to the right by C. 725 RHSKnown.Zero.lshrInPlace(C); 726 Known.Zero |= RHSKnown.Zero; 727 RHSKnown.One.lshrInPlace(C); 728 Known.One |= RHSKnown.One; 729 // assume(~(v << c) = a) 730 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 731 m_Value(A))) && 732 Pred == ICmpInst::ICMP_EQ && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 734 C < BitWidth) { 735 KnownBits RHSKnown(BitWidth); 736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 737 // For those bits in RHS that are known, we can propagate them inverted 738 // to known bits in V shifted to the right by C. 739 RHSKnown.One.lshrInPlace(C); 740 Known.Zero |= RHSKnown.One; 741 RHSKnown.Zero.lshrInPlace(C); 742 Known.One |= RHSKnown.Zero; 743 // assume(v >> c = a) 744 } else if (match(Arg, 745 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 746 m_Value(A))) && 747 Pred == ICmpInst::ICMP_EQ && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 749 C < BitWidth) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 // For those bits in RHS that are known, we can propagate them to known 753 // bits in V shifted to the right by C. 754 Known.Zero |= RHSKnown.Zero << C; 755 Known.One |= RHSKnown.One << C; 756 // assume(~(v >> c) = a) 757 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 758 m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 761 C < BitWidth) { 762 KnownBits RHSKnown(BitWidth); 763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 764 // For those bits in RHS that are known, we can propagate them inverted 765 // to known bits in V shifted to the right by C. 766 Known.Zero |= RHSKnown.One << C; 767 Known.One |= RHSKnown.Zero << C; 768 // assume(v >=_s c) where c is non-negative 769 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 770 Pred == ICmpInst::ICMP_SGE && 771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 772 KnownBits RHSKnown(BitWidth); 773 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 774 775 if (RHSKnown.isNonNegative()) { 776 // We know that the sign bit is zero. 777 Known.makeNonNegative(); 778 } 779 // assume(v >_s c) where c is at least -1. 780 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 781 Pred == ICmpInst::ICMP_SGT && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown(BitWidth); 784 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 785 786 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 787 // We know that the sign bit is zero. 788 Known.makeNonNegative(); 789 } 790 // assume(v <=_s c) where c is negative 791 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 792 Pred == ICmpInst::ICMP_SLE && 793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 794 KnownBits RHSKnown(BitWidth); 795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 796 797 if (RHSKnown.isNegative()) { 798 // We know that the sign bit is one. 799 Known.makeNegative(); 800 } 801 // assume(v <_s c) where c is non-positive 802 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 803 Pred == ICmpInst::ICMP_SLT && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown(BitWidth); 806 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 807 808 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 809 // We know that the sign bit is one. 810 Known.makeNegative(); 811 } 812 // assume(v <=_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULE && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero. 820 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 821 // assume(v <_u c) 822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 823 Pred == ICmpInst::ICMP_ULT && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // If the RHS is known zero, then this assumption must be wrong (nothing 829 // is unsigned less than zero). Signal a conflict and get out of here. 830 if (RHSKnown.isZero()) { 831 Known.Zero.setAllBits(); 832 Known.One.setAllBits(); 833 break; 834 } 835 836 // Whatever high bits in c are zero are known to be zero (if c is a power 837 // of 2, then one more). 838 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 839 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 840 else 841 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 842 } 843 } 844 845 // If assumptions conflict with each other or previous known bits, then we 846 // have a logical fallacy. It's possible that the assumption is not reachable, 847 // so this isn't a real bug. On the other hand, the program may have undefined 848 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 849 // clear out the known bits, try to warn the user, and hope for the best. 850 if (Known.Zero.intersects(Known.One)) { 851 Known.resetAll(); 852 853 if (Q.ORE) 854 Q.ORE->emit([&]() { 855 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 856 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 857 CxtI) 858 << "Detected conflicting code assumptions. Program may " 859 "have undefined behavior, or compiler may have " 860 "internal error."; 861 }); 862 } 863 } 864 865 /// Compute known bits from a shift operator, including those with a 866 /// non-constant shift amount. Known is the output of this function. Known2 is a 867 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 868 /// operator-specific functions that, given the known-zero or known-one bits 869 /// respectively, and a shift amount, compute the implied known-zero or 870 /// known-one bits of the shift operator's result respectively for that shift 871 /// amount. The results from calling KZF and KOF are conservatively combined for 872 /// all permitted shift amounts. 873 static void computeKnownBitsFromShiftOperator( 874 const Operator *I, KnownBits &Known, KnownBits &Known2, 875 unsigned Depth, const Query &Q, 876 function_ref<APInt(const APInt &, unsigned)> KZF, 877 function_ref<APInt(const APInt &, unsigned)> KOF) { 878 unsigned BitWidth = Known.getBitWidth(); 879 880 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 881 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 882 883 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 884 Known.Zero = KZF(Known.Zero, ShiftAmt); 885 Known.One = KOF(Known.One, ShiftAmt); 886 // If the known bits conflict, this must be an overflowing left shift, so 887 // the shift result is poison. We can return anything we want. Choose 0 for 888 // the best folding opportunity. 889 if (Known.hasConflict()) 890 Known.setAllZero(); 891 892 return; 893 } 894 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 897 // If the shift amount could be greater than or equal to the bit-width of the 898 // LHS, the value could be poison, but bail out because the check below is 899 // expensive. TODO: Should we just carry on? 900 if ((~Known.Zero).uge(BitWidth)) { 901 Known.resetAll(); 902 return; 903 } 904 905 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 906 // BitWidth > 64 and any upper bits are known, we'll end up returning the 907 // limit value (which implies all bits are known). 908 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 909 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 910 911 // It would be more-clearly correct to use the two temporaries for this 912 // calculation. Reusing the APInts here to prevent unnecessary allocations. 913 Known.resetAll(); 914 915 // If we know the shifter operand is nonzero, we can sometimes infer more 916 // known bits. However this is expensive to compute, so be lazy about it and 917 // only compute it when absolutely necessary. 918 Optional<bool> ShifterOperandIsNonZero; 919 920 // Early exit if we can't constrain any well-defined shift amount. 921 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 922 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 923 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 924 if (!*ShifterOperandIsNonZero) 925 return; 926 } 927 928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 929 930 Known.Zero.setAllBits(); 931 Known.One.setAllBits(); 932 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 933 // Combine the shifted known input bits only for those shift amounts 934 // compatible with its known constraints. 935 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 936 continue; 937 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 938 continue; 939 // If we know the shifter is nonzero, we may be able to infer more known 940 // bits. This check is sunk down as far as possible to avoid the expensive 941 // call to isKnownNonZero if the cheaper checks above fail. 942 if (ShiftAmt == 0) { 943 if (!ShifterOperandIsNonZero.hasValue()) 944 ShifterOperandIsNonZero = 945 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 946 if (*ShifterOperandIsNonZero) 947 continue; 948 } 949 950 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 951 Known.One &= KOF(Known2.One, ShiftAmt); 952 } 953 954 // If the known bits conflict, the result is poison. Return a 0 and hope the 955 // caller can further optimize that. 956 if (Known.hasConflict()) 957 Known.setAllZero(); 958 } 959 960 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = Known.getBitWidth(); 963 964 KnownBits Known2(Known); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, Known); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 Known.One &= Known2.One; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 Known.Zero |= Known2.Zero; 980 981 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 982 // here we handle the more general case of adding any odd number by 983 // matching the form add(x, add(x, y)) where y is odd. 984 // TODO: This could be generalized to clearing any bit set in y where the 985 // following bit is known to be unset in y. 986 Value *X = nullptr, *Y = nullptr; 987 if (!Known.Zero[0] && !Known.One[0] && 988 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 989 Known2.resetAll(); 990 computeKnownBits(Y, Known2, Depth + 1, Q); 991 if (Known2.countMinTrailingOnes() > 0) 992 Known.Zero.setBit(0); 993 } 994 break; 995 } 996 case Instruction::Or: 997 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 998 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 999 1000 // Output known-0 bits are only known if clear in both the LHS & RHS. 1001 Known.Zero &= Known2.Zero; 1002 // Output known-1 are known to be set if set in either the LHS | RHS. 1003 Known.One |= Known2.One; 1004 break; 1005 case Instruction::Xor: { 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1010 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1011 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1012 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1013 Known.Zero = std::move(KnownZeroOut); 1014 break; 1015 } 1016 case Instruction::Mul: { 1017 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1018 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1019 Known2, Depth, Q); 1020 break; 1021 } 1022 case Instruction::UDiv: { 1023 // For the purposes of computing leading zeros we can conservatively 1024 // treat a udiv as a logical right shift by the power of 2 known to 1025 // be less than the denominator. 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 unsigned LeadZ = Known2.countMinLeadingZeros(); 1028 1029 Known2.resetAll(); 1030 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1031 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1032 if (RHSMaxLeadingZeros != BitWidth) 1033 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1034 1035 Known.Zero.setHighBits(LeadZ); 1036 break; 1037 } 1038 case Instruction::Select: { 1039 const Value *LHS, *RHS; 1040 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1041 if (SelectPatternResult::isMinOrMax(SPF)) { 1042 computeKnownBits(RHS, Known, Depth + 1, Q); 1043 computeKnownBits(LHS, Known2, Depth + 1, Q); 1044 } else { 1045 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1046 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1047 } 1048 1049 unsigned MaxHighOnes = 0; 1050 unsigned MaxHighZeros = 0; 1051 if (SPF == SPF_SMAX) { 1052 // If both sides are negative, the result is negative. 1053 if (Known.isNegative() && Known2.isNegative()) 1054 // We can derive a lower bound on the result by taking the max of the 1055 // leading one bits. 1056 MaxHighOnes = 1057 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1058 // If either side is non-negative, the result is non-negative. 1059 else if (Known.isNonNegative() || Known2.isNonNegative()) 1060 MaxHighZeros = 1; 1061 } else if (SPF == SPF_SMIN) { 1062 // If both sides are non-negative, the result is non-negative. 1063 if (Known.isNonNegative() && Known2.isNonNegative()) 1064 // We can derive an upper bound on the result by taking the max of the 1065 // leading zero bits. 1066 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1067 Known2.countMinLeadingZeros()); 1068 // If either side is negative, the result is negative. 1069 else if (Known.isNegative() || Known2.isNegative()) 1070 MaxHighOnes = 1; 1071 } else if (SPF == SPF_UMAX) { 1072 // We can derive a lower bound on the result by taking the max of the 1073 // leading one bits. 1074 MaxHighOnes = 1075 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1076 } else if (SPF == SPF_UMIN) { 1077 // We can derive an upper bound on the result by taking the max of the 1078 // leading zero bits. 1079 MaxHighZeros = 1080 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1081 } else if (SPF == SPF_ABS) { 1082 // RHS from matchSelectPattern returns the negation part of abs pattern. 1083 // If the negate has an NSW flag we can assume the sign bit of the result 1084 // will be 0 because that makes abs(INT_MIN) undefined. 1085 if (cast<Instruction>(RHS)->hasNoSignedWrap()) 1086 MaxHighZeros = 1; 1087 } 1088 1089 // Only known if known in both the LHS and RHS. 1090 Known.One &= Known2.One; 1091 Known.Zero &= Known2.Zero; 1092 if (MaxHighOnes > 0) 1093 Known.One.setHighBits(MaxHighOnes); 1094 if (MaxHighZeros > 0) 1095 Known.Zero.setHighBits(MaxHighZeros); 1096 break; 1097 } 1098 case Instruction::FPTrunc: 1099 case Instruction::FPExt: 1100 case Instruction::FPToUI: 1101 case Instruction::FPToSI: 1102 case Instruction::SIToFP: 1103 case Instruction::UIToFP: 1104 break; // Can't work with floating point. 1105 case Instruction::PtrToInt: 1106 case Instruction::IntToPtr: 1107 // Fall through and handle them the same as zext/trunc. 1108 LLVM_FALLTHROUGH; 1109 case Instruction::ZExt: 1110 case Instruction::Trunc: { 1111 Type *SrcTy = I->getOperand(0)->getType(); 1112 1113 unsigned SrcBitWidth; 1114 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1115 // which fall through here. 1116 Type *ScalarTy = SrcTy->getScalarType(); 1117 SrcBitWidth = ScalarTy->isPointerTy() ? 1118 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1119 Q.DL.getTypeSizeInBits(ScalarTy); 1120 1121 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1122 Known = Known.zextOrTrunc(SrcBitWidth); 1123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1124 Known = Known.zextOrTrunc(BitWidth); 1125 // Any top bits are known to be zero. 1126 if (BitWidth > SrcBitWidth) 1127 Known.Zero.setBitsFrom(SrcBitWidth); 1128 break; 1129 } 1130 case Instruction::BitCast: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 if (SrcTy->isIntOrPtrTy() && 1133 // TODO: For now, not handling conversions like: 1134 // (bitcast i64 %x to <2 x i32>) 1135 !I->getType()->isVectorTy()) { 1136 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1137 break; 1138 } 1139 break; 1140 } 1141 case Instruction::SExt: { 1142 // Compute the bits in the result that are not present in the input. 1143 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1144 1145 Known = Known.trunc(SrcBitWidth); 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 // If the sign bit of the input is known set or clear, then we know the 1148 // top bits of the result. 1149 Known = Known.sext(BitWidth); 1150 break; 1151 } 1152 case Instruction::Shl: { 1153 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1154 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1155 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1156 APInt KZResult = KnownZero << ShiftAmt; 1157 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1158 // If this shift has "nsw" keyword, then the result is either a poison 1159 // value or has the same sign bit as the first operand. 1160 if (NSW && KnownZero.isSignBitSet()) 1161 KZResult.setSignBit(); 1162 return KZResult; 1163 }; 1164 1165 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1166 APInt KOResult = KnownOne << ShiftAmt; 1167 if (NSW && KnownOne.isSignBitSet()) 1168 KOResult.setSignBit(); 1169 return KOResult; 1170 }; 1171 1172 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1173 break; 1174 } 1175 case Instruction::LShr: { 1176 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1177 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1178 APInt KZResult = KnownZero.lshr(ShiftAmt); 1179 // High bits known zero. 1180 KZResult.setHighBits(ShiftAmt); 1181 return KZResult; 1182 }; 1183 1184 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1185 return KnownOne.lshr(ShiftAmt); 1186 }; 1187 1188 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1189 break; 1190 } 1191 case Instruction::AShr: { 1192 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1193 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1194 return KnownZero.ashr(ShiftAmt); 1195 }; 1196 1197 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1198 return KnownOne.ashr(ShiftAmt); 1199 }; 1200 1201 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1202 break; 1203 } 1204 case Instruction::Sub: { 1205 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1206 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1207 Known, Known2, Depth, Q); 1208 break; 1209 } 1210 case Instruction::Add: { 1211 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1212 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1213 Known, Known2, Depth, Q); 1214 break; 1215 } 1216 case Instruction::SRem: 1217 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1218 APInt RA = Rem->getValue().abs(); 1219 if (RA.isPowerOf2()) { 1220 APInt LowBits = RA - 1; 1221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1222 1223 // The low bits of the first operand are unchanged by the srem. 1224 Known.Zero = Known2.Zero & LowBits; 1225 Known.One = Known2.One & LowBits; 1226 1227 // If the first operand is non-negative or has all low bits zero, then 1228 // the upper bits are all zero. 1229 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1230 Known.Zero |= ~LowBits; 1231 1232 // If the first operand is negative and not all low bits are zero, then 1233 // the upper bits are all one. 1234 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1235 Known.One |= ~LowBits; 1236 1237 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1238 break; 1239 } 1240 } 1241 1242 // The sign bit is the LHS's sign bit, except when the result of the 1243 // remainder is zero. 1244 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1245 // If it's known zero, our sign bit is also zero. 1246 if (Known2.isNonNegative()) 1247 Known.makeNonNegative(); 1248 1249 break; 1250 case Instruction::URem: { 1251 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1252 const APInt &RA = Rem->getValue(); 1253 if (RA.isPowerOf2()) { 1254 APInt LowBits = (RA - 1); 1255 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1256 Known.Zero |= ~LowBits; 1257 Known.One &= LowBits; 1258 break; 1259 } 1260 } 1261 1262 // Since the result is less than or equal to either operand, any leading 1263 // zero bits in either operand must also exist in the result. 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1266 1267 unsigned Leaders = 1268 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1269 Known.resetAll(); 1270 Known.Zero.setHighBits(Leaders); 1271 break; 1272 } 1273 1274 case Instruction::Alloca: { 1275 const AllocaInst *AI = cast<AllocaInst>(I); 1276 unsigned Align = AI->getAlignment(); 1277 if (Align == 0) 1278 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1279 1280 if (Align > 0) 1281 Known.Zero.setLowBits(countTrailingZeros(Align)); 1282 break; 1283 } 1284 case Instruction::GetElementPtr: { 1285 // Analyze all of the subscripts of this getelementptr instruction 1286 // to determine if we can prove known low zero bits. 1287 KnownBits LocalKnown(BitWidth); 1288 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1289 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1290 1291 gep_type_iterator GTI = gep_type_begin(I); 1292 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1293 Value *Index = I->getOperand(i); 1294 if (StructType *STy = GTI.getStructTypeOrNull()) { 1295 // Handle struct member offset arithmetic. 1296 1297 // Handle case when index is vector zeroinitializer 1298 Constant *CIndex = cast<Constant>(Index); 1299 if (CIndex->isZeroValue()) 1300 continue; 1301 1302 if (CIndex->getType()->isVectorTy()) 1303 Index = CIndex->getSplatValue(); 1304 1305 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1306 const StructLayout *SL = Q.DL.getStructLayout(STy); 1307 uint64_t Offset = SL->getElementOffset(Idx); 1308 TrailZ = std::min<unsigned>(TrailZ, 1309 countTrailingZeros(Offset)); 1310 } else { 1311 // Handle array index arithmetic. 1312 Type *IndexedTy = GTI.getIndexedType(); 1313 if (!IndexedTy->isSized()) { 1314 TrailZ = 0; 1315 break; 1316 } 1317 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1318 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1319 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1320 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1321 TrailZ = std::min(TrailZ, 1322 unsigned(countTrailingZeros(TypeSize) + 1323 LocalKnown.countMinTrailingZeros())); 1324 } 1325 } 1326 1327 Known.Zero.setLowBits(TrailZ); 1328 break; 1329 } 1330 case Instruction::PHI: { 1331 const PHINode *P = cast<PHINode>(I); 1332 // Handle the case of a simple two-predecessor recurrence PHI. 1333 // There's a lot more that could theoretically be done here, but 1334 // this is sufficient to catch some interesting cases. 1335 if (P->getNumIncomingValues() == 2) { 1336 for (unsigned i = 0; i != 2; ++i) { 1337 Value *L = P->getIncomingValue(i); 1338 Value *R = P->getIncomingValue(!i); 1339 Operator *LU = dyn_cast<Operator>(L); 1340 if (!LU) 1341 continue; 1342 unsigned Opcode = LU->getOpcode(); 1343 // Check for operations that have the property that if 1344 // both their operands have low zero bits, the result 1345 // will have low zero bits. 1346 if (Opcode == Instruction::Add || 1347 Opcode == Instruction::Sub || 1348 Opcode == Instruction::And || 1349 Opcode == Instruction::Or || 1350 Opcode == Instruction::Mul) { 1351 Value *LL = LU->getOperand(0); 1352 Value *LR = LU->getOperand(1); 1353 // Find a recurrence. 1354 if (LL == I) 1355 L = LR; 1356 else if (LR == I) 1357 L = LL; 1358 else 1359 break; 1360 // Ok, we have a PHI of the form L op= R. Check for low 1361 // zero bits. 1362 computeKnownBits(R, Known2, Depth + 1, Q); 1363 1364 // We need to take the minimum number of known bits 1365 KnownBits Known3(Known); 1366 computeKnownBits(L, Known3, Depth + 1, Q); 1367 1368 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1369 Known3.countMinTrailingZeros())); 1370 1371 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1372 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1373 // If initial value of recurrence is nonnegative, and we are adding 1374 // a nonnegative number with nsw, the result can only be nonnegative 1375 // or poison value regardless of the number of times we execute the 1376 // add in phi recurrence. If initial value is negative and we are 1377 // adding a negative number with nsw, the result can only be 1378 // negative or poison value. Similar arguments apply to sub and mul. 1379 // 1380 // (add non-negative, non-negative) --> non-negative 1381 // (add negative, negative) --> negative 1382 if (Opcode == Instruction::Add) { 1383 if (Known2.isNonNegative() && Known3.isNonNegative()) 1384 Known.makeNonNegative(); 1385 else if (Known2.isNegative() && Known3.isNegative()) 1386 Known.makeNegative(); 1387 } 1388 1389 // (sub nsw non-negative, negative) --> non-negative 1390 // (sub nsw negative, non-negative) --> negative 1391 else if (Opcode == Instruction::Sub && LL == I) { 1392 if (Known2.isNonNegative() && Known3.isNegative()) 1393 Known.makeNonNegative(); 1394 else if (Known2.isNegative() && Known3.isNonNegative()) 1395 Known.makeNegative(); 1396 } 1397 1398 // (mul nsw non-negative, non-negative) --> non-negative 1399 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1400 Known3.isNonNegative()) 1401 Known.makeNonNegative(); 1402 } 1403 1404 break; 1405 } 1406 } 1407 } 1408 1409 // Unreachable blocks may have zero-operand PHI nodes. 1410 if (P->getNumIncomingValues() == 0) 1411 break; 1412 1413 // Otherwise take the unions of the known bit sets of the operands, 1414 // taking conservative care to avoid excessive recursion. 1415 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1416 // Skip if every incoming value references to ourself. 1417 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1418 break; 1419 1420 Known.Zero.setAllBits(); 1421 Known.One.setAllBits(); 1422 for (Value *IncValue : P->incoming_values()) { 1423 // Skip direct self references. 1424 if (IncValue == P) continue; 1425 1426 Known2 = KnownBits(BitWidth); 1427 // Recurse, but cap the recursion to one level, because we don't 1428 // want to waste time spinning around in loops. 1429 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1430 Known.Zero &= Known2.Zero; 1431 Known.One &= Known2.One; 1432 // If all bits have been ruled out, there's no need to check 1433 // more operands. 1434 if (!Known.Zero && !Known.One) 1435 break; 1436 } 1437 } 1438 break; 1439 } 1440 case Instruction::Call: 1441 case Instruction::Invoke: 1442 // If range metadata is attached to this call, set known bits from that, 1443 // and then intersect with known bits based on other properties of the 1444 // function. 1445 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1446 computeKnownBitsFromRangeMetadata(*MD, Known); 1447 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1448 computeKnownBits(RV, Known2, Depth + 1, Q); 1449 Known.Zero |= Known2.Zero; 1450 Known.One |= Known2.One; 1451 } 1452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1453 switch (II->getIntrinsicID()) { 1454 default: break; 1455 case Intrinsic::bitreverse: 1456 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1457 Known.Zero |= Known2.Zero.reverseBits(); 1458 Known.One |= Known2.One.reverseBits(); 1459 break; 1460 case Intrinsic::bswap: 1461 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1462 Known.Zero |= Known2.Zero.byteSwap(); 1463 Known.One |= Known2.One.byteSwap(); 1464 break; 1465 case Intrinsic::ctlz: { 1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1467 // If we have a known 1, its position is our upper bound. 1468 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1469 // If this call is undefined for 0, the result will be less than 2^n. 1470 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1471 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1472 unsigned LowBits = Log2_32(PossibleLZ)+1; 1473 Known.Zero.setBitsFrom(LowBits); 1474 break; 1475 } 1476 case Intrinsic::cttz: { 1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1478 // If we have a known 1, its position is our upper bound. 1479 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1480 // If this call is undefined for 0, the result will be less than 2^n. 1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1482 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1483 unsigned LowBits = Log2_32(PossibleTZ)+1; 1484 Known.Zero.setBitsFrom(LowBits); 1485 break; 1486 } 1487 case Intrinsic::ctpop: { 1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1489 // We can bound the space the count needs. Also, bits known to be zero 1490 // can't contribute to the population. 1491 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1492 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1493 Known.Zero.setBitsFrom(LowBits); 1494 // TODO: we could bound KnownOne using the lower bound on the number 1495 // of bits which might be set provided by popcnt KnownOne2. 1496 break; 1497 } 1498 case Intrinsic::x86_sse42_crc32_64_64: 1499 Known.Zero.setBitsFrom(32); 1500 break; 1501 } 1502 } 1503 break; 1504 case Instruction::ExtractElement: 1505 // Look through extract element. At the moment we keep this simple and skip 1506 // tracking the specific element. But at least we might find information 1507 // valid for all elements of the vector (for example if vector is sign 1508 // extended, shifted, etc). 1509 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1510 break; 1511 case Instruction::ExtractValue: 1512 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1513 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1514 if (EVI->getNumIndices() != 1) break; 1515 if (EVI->getIndices()[0] == 0) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::uadd_with_overflow: 1519 case Intrinsic::sadd_with_overflow: 1520 computeKnownBitsAddSub(true, II->getArgOperand(0), 1521 II->getArgOperand(1), false, Known, Known2, 1522 Depth, Q); 1523 break; 1524 case Intrinsic::usub_with_overflow: 1525 case Intrinsic::ssub_with_overflow: 1526 computeKnownBitsAddSub(false, II->getArgOperand(0), 1527 II->getArgOperand(1), false, Known, Known2, 1528 Depth, Q); 1529 break; 1530 case Intrinsic::umul_with_overflow: 1531 case Intrinsic::smul_with_overflow: 1532 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1533 Known, Known2, Depth, Q); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 } 1540 1541 /// Determine which bits of V are known to be either zero or one and return 1542 /// them. 1543 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1544 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1545 computeKnownBits(V, Known, Depth, Q); 1546 return Known; 1547 } 1548 1549 /// Determine which bits of V are known to be either zero or one and return 1550 /// them in the Known bit set. 1551 /// 1552 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1553 /// we cannot optimize based on the assumption that it is zero without changing 1554 /// it to be an explicit zero. If we don't change it to zero, other code could 1555 /// optimized based on the contradictory assumption that it is non-zero. 1556 /// Because instcombine aggressively folds operations with undef args anyway, 1557 /// this won't lose us code quality. 1558 /// 1559 /// This function is defined on values with integer type, values with pointer 1560 /// type, and vectors of integers. In the case 1561 /// where V is a vector, known zero, and known one values are the 1562 /// same width as the vector element, and the bit is set only if it is true 1563 /// for all of the elements in the vector. 1564 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1565 const Query &Q) { 1566 assert(V && "No Value?"); 1567 assert(Depth <= MaxDepth && "Limit Search Depth"); 1568 unsigned BitWidth = Known.getBitWidth(); 1569 1570 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1571 V->getType()->isPtrOrPtrVectorTy()) && 1572 "Not integer or pointer type!"); 1573 1574 Type *ScalarTy = V->getType()->getScalarType(); 1575 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1576 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1577 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1578 (void)BitWidth; 1579 (void)ExpectedWidth; 1580 1581 const APInt *C; 1582 if (match(V, m_APInt(C))) { 1583 // We know all of the bits for a scalar constant or a splat vector constant! 1584 Known.One = *C; 1585 Known.Zero = ~Known.One; 1586 return; 1587 } 1588 // Null and aggregate-zero are all-zeros. 1589 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1590 Known.setAllZero(); 1591 return; 1592 } 1593 // Handle a constant vector by taking the intersection of the known bits of 1594 // each element. 1595 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1596 // We know that CDS must be a vector of integers. Take the intersection of 1597 // each element. 1598 Known.Zero.setAllBits(); Known.One.setAllBits(); 1599 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1600 APInt Elt = CDS->getElementAsAPInt(i); 1601 Known.Zero &= ~Elt; 1602 Known.One &= Elt; 1603 } 1604 return; 1605 } 1606 1607 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1608 // We know that CV must be a vector of integers. Take the intersection of 1609 // each element. 1610 Known.Zero.setAllBits(); Known.One.setAllBits(); 1611 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1612 Constant *Element = CV->getAggregateElement(i); 1613 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1614 if (!ElementCI) { 1615 Known.resetAll(); 1616 return; 1617 } 1618 const APInt &Elt = ElementCI->getValue(); 1619 Known.Zero &= ~Elt; 1620 Known.One &= Elt; 1621 } 1622 return; 1623 } 1624 1625 // Start out not knowing anything. 1626 Known.resetAll(); 1627 1628 // We can't imply anything about undefs. 1629 if (isa<UndefValue>(V)) 1630 return; 1631 1632 // There's no point in looking through other users of ConstantData for 1633 // assumptions. Confirm that we've handled them all. 1634 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1635 1636 // Limit search depth. 1637 // All recursive calls that increase depth must come after this. 1638 if (Depth == MaxDepth) 1639 return; 1640 1641 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1642 // the bits of its aliasee. 1643 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1644 if (!GA->isInterposable()) 1645 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1646 return; 1647 } 1648 1649 if (const Operator *I = dyn_cast<Operator>(V)) 1650 computeKnownBitsFromOperator(I, Known, Depth, Q); 1651 1652 // Aligned pointers have trailing zeros - refine Known.Zero set 1653 if (V->getType()->isPointerTy()) { 1654 unsigned Align = V->getPointerAlignment(Q.DL); 1655 if (Align) 1656 Known.Zero.setLowBits(countTrailingZeros(Align)); 1657 } 1658 1659 // computeKnownBitsFromAssume strictly refines Known. 1660 // Therefore, we run them after computeKnownBitsFromOperator. 1661 1662 // Check whether a nearby assume intrinsic can determine some known bits. 1663 computeKnownBitsFromAssume(V, Known, Depth, Q); 1664 1665 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1666 } 1667 1668 /// Return true if the given value is known to have exactly one 1669 /// bit set when defined. For vectors return true if every element is known to 1670 /// be a power of two when defined. Supports values with integer or pointer 1671 /// types and vectors of integers. 1672 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1673 const Query &Q) { 1674 assert(Depth <= MaxDepth && "Limit Search Depth"); 1675 1676 // Attempt to match against constants. 1677 if (OrZero && match(V, m_Power2OrZero())) 1678 return true; 1679 if (match(V, m_Power2())) 1680 return true; 1681 1682 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1683 // it is shifted off the end then the result is undefined. 1684 if (match(V, m_Shl(m_One(), m_Value()))) 1685 return true; 1686 1687 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1688 // the bottom. If it is shifted off the bottom then the result is undefined. 1689 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1690 return true; 1691 1692 // The remaining tests are all recursive, so bail out if we hit the limit. 1693 if (Depth++ == MaxDepth) 1694 return false; 1695 1696 Value *X = nullptr, *Y = nullptr; 1697 // A shift left or a logical shift right of a power of two is a power of two 1698 // or zero. 1699 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1700 match(V, m_LShr(m_Value(X), m_Value())))) 1701 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1702 1703 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1704 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1705 1706 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1707 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1708 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1709 1710 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1711 // A power of two and'd with anything is a power of two or zero. 1712 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1713 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1714 return true; 1715 // X & (-X) is always a power of two or zero. 1716 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1717 return true; 1718 return false; 1719 } 1720 1721 // Adding a power-of-two or zero to the same power-of-two or zero yields 1722 // either the original power-of-two, a larger power-of-two or zero. 1723 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1724 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1725 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1726 if (match(X, m_And(m_Specific(Y), m_Value())) || 1727 match(X, m_And(m_Value(), m_Specific(Y)))) 1728 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1729 return true; 1730 if (match(Y, m_And(m_Specific(X), m_Value())) || 1731 match(Y, m_And(m_Value(), m_Specific(X)))) 1732 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1733 return true; 1734 1735 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1736 KnownBits LHSBits(BitWidth); 1737 computeKnownBits(X, LHSBits, Depth, Q); 1738 1739 KnownBits RHSBits(BitWidth); 1740 computeKnownBits(Y, RHSBits, Depth, Q); 1741 // If i8 V is a power of two or zero: 1742 // ZeroBits: 1 1 1 0 1 1 1 1 1743 // ~ZeroBits: 0 0 0 1 0 0 0 0 1744 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1745 // If OrZero isn't set, we cannot give back a zero result. 1746 // Make sure either the LHS or RHS has a bit set. 1747 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1748 return true; 1749 } 1750 } 1751 1752 // An exact divide or right shift can only shift off zero bits, so the result 1753 // is a power of two only if the first operand is a power of two and not 1754 // copying a sign bit (sdiv int_min, 2). 1755 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1756 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1757 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1758 Depth, Q); 1759 } 1760 1761 return false; 1762 } 1763 1764 /// Test whether a GEP's result is known to be non-null. 1765 /// 1766 /// Uses properties inherent in a GEP to try to determine whether it is known 1767 /// to be non-null. 1768 /// 1769 /// Currently this routine does not support vector GEPs. 1770 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1771 const Query &Q) { 1772 const Function *F = nullptr; 1773 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 1774 F = I->getFunction(); 1775 1776 if (!GEP->isInBounds() || 1777 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 1778 return false; 1779 1780 // FIXME: Support vector-GEPs. 1781 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1782 1783 // If the base pointer is non-null, we cannot walk to a null address with an 1784 // inbounds GEP in address space zero. 1785 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1786 return true; 1787 1788 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1789 // If so, then the GEP cannot produce a null pointer, as doing so would 1790 // inherently violate the inbounds contract within address space zero. 1791 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1792 GTI != GTE; ++GTI) { 1793 // Struct types are easy -- they must always be indexed by a constant. 1794 if (StructType *STy = GTI.getStructTypeOrNull()) { 1795 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1796 unsigned ElementIdx = OpC->getZExtValue(); 1797 const StructLayout *SL = Q.DL.getStructLayout(STy); 1798 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1799 if (ElementOffset > 0) 1800 return true; 1801 continue; 1802 } 1803 1804 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1805 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1806 continue; 1807 1808 // Fast path the constant operand case both for efficiency and so we don't 1809 // increment Depth when just zipping down an all-constant GEP. 1810 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1811 if (!OpC->isZero()) 1812 return true; 1813 continue; 1814 } 1815 1816 // We post-increment Depth here because while isKnownNonZero increments it 1817 // as well, when we pop back up that increment won't persist. We don't want 1818 // to recurse 10k times just because we have 10k GEP operands. We don't 1819 // bail completely out because we want to handle constant GEPs regardless 1820 // of depth. 1821 if (Depth++ >= MaxDepth) 1822 continue; 1823 1824 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1825 return true; 1826 } 1827 1828 return false; 1829 } 1830 1831 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1832 const Instruction *CtxI, 1833 const DominatorTree *DT) { 1834 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1835 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1836 1837 if (!CtxI || !DT) 1838 return false; 1839 1840 unsigned NumUsesExplored = 0; 1841 for (auto *U : V->users()) { 1842 // Avoid massive lists 1843 if (NumUsesExplored >= DomConditionsMaxUses) 1844 break; 1845 NumUsesExplored++; 1846 1847 // If the value is used as an argument to a call or invoke, then argument 1848 // attributes may provide an answer about null-ness. 1849 if (auto CS = ImmutableCallSite(U)) 1850 if (auto *CalledFunc = CS.getCalledFunction()) 1851 for (const Argument &Arg : CalledFunc->args()) 1852 if (CS.getArgOperand(Arg.getArgNo()) == V && 1853 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1854 return true; 1855 1856 // Consider only compare instructions uniquely controlling a branch 1857 CmpInst::Predicate Pred; 1858 if (!match(const_cast<User *>(U), 1859 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1860 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1861 continue; 1862 1863 SmallVector<const User *, 4> WorkList; 1864 SmallPtrSet<const User *, 4> Visited; 1865 for (auto *CmpU : U->users()) { 1866 assert(WorkList.empty() && "Should be!"); 1867 if (Visited.insert(CmpU).second) 1868 WorkList.push_back(CmpU); 1869 1870 while (!WorkList.empty()) { 1871 auto *Curr = WorkList.pop_back_val(); 1872 1873 // If a user is an AND, add all its users to the work list. We only 1874 // propagate "pred != null" condition through AND because it is only 1875 // correct to assume that all conditions of AND are met in true branch. 1876 // TODO: Support similar logic of OR and EQ predicate? 1877 if (Pred == ICmpInst::ICMP_NE) 1878 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 1879 if (BO->getOpcode() == Instruction::And) { 1880 for (auto *BOU : BO->users()) 1881 if (Visited.insert(BOU).second) 1882 WorkList.push_back(BOU); 1883 continue; 1884 } 1885 1886 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 1887 assert(BI->isConditional() && "uses a comparison!"); 1888 1889 BasicBlock *NonNullSuccessor = 1890 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1891 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1892 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1893 return true; 1894 } else if (Pred == ICmpInst::ICMP_NE && 1895 match(Curr, m_Intrinsic<Intrinsic::experimental_guard>()) && 1896 DT->dominates(cast<Instruction>(Curr), CtxI)) { 1897 return true; 1898 } 1899 } 1900 } 1901 } 1902 1903 return false; 1904 } 1905 1906 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1907 /// ensure that the value it's attached to is never Value? 'RangeType' is 1908 /// is the type of the value described by the range. 1909 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1910 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1911 assert(NumRanges >= 1); 1912 for (unsigned i = 0; i < NumRanges; ++i) { 1913 ConstantInt *Lower = 1914 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1915 ConstantInt *Upper = 1916 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1917 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1918 if (Range.contains(Value)) 1919 return false; 1920 } 1921 return true; 1922 } 1923 1924 /// Return true if the given value is known to be non-zero when defined. For 1925 /// vectors, return true if every element is known to be non-zero when 1926 /// defined. For pointers, if the context instruction and dominator tree are 1927 /// specified, perform context-sensitive analysis and return true if the 1928 /// pointer couldn't possibly be null at the specified instruction. 1929 /// Supports values with integer or pointer type and vectors of integers. 1930 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1931 if (auto *C = dyn_cast<Constant>(V)) { 1932 if (C->isNullValue()) 1933 return false; 1934 if (isa<ConstantInt>(C)) 1935 // Must be non-zero due to null test above. 1936 return true; 1937 1938 // For constant vectors, check that all elements are undefined or known 1939 // non-zero to determine that the whole vector is known non-zero. 1940 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1941 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1942 Constant *Elt = C->getAggregateElement(i); 1943 if (!Elt || Elt->isNullValue()) 1944 return false; 1945 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1946 return false; 1947 } 1948 return true; 1949 } 1950 1951 // A global variable in address space 0 is non null unless extern weak 1952 // or an absolute symbol reference. Other address spaces may have null as a 1953 // valid address for a global, so we can't assume anything. 1954 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1955 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1956 GV->getType()->getAddressSpace() == 0) 1957 return true; 1958 } else 1959 return false; 1960 } 1961 1962 if (auto *I = dyn_cast<Instruction>(V)) { 1963 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1964 // If the possible ranges don't contain zero, then the value is 1965 // definitely non-zero. 1966 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1967 const APInt ZeroValue(Ty->getBitWidth(), 0); 1968 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1969 return true; 1970 } 1971 } 1972 } 1973 1974 // Some of the tests below are recursive, so bail out if we hit the limit. 1975 if (Depth++ >= MaxDepth) 1976 return false; 1977 1978 // Check for pointer simplifications. 1979 if (V->getType()->isPointerTy()) { 1980 // Alloca never returns null, malloc might. 1981 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1982 return true; 1983 1984 // A byval, inalloca, or nonnull argument is never null. 1985 if (const Argument *A = dyn_cast<Argument>(V)) 1986 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1987 return true; 1988 1989 // A Load tagged with nonnull metadata is never null. 1990 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1991 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1992 return true; 1993 1994 if (auto CS = ImmutableCallSite(V)) { 1995 if (CS.isReturnNonNull()) 1996 return true; 1997 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 1998 return isKnownNonZero(RP, Depth, Q); 1999 } 2000 } 2001 2002 2003 // Check for recursive pointer simplifications. 2004 if (V->getType()->isPointerTy()) { 2005 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2006 return true; 2007 2008 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2009 if (isGEPKnownNonNull(GEP, Depth, Q)) 2010 return true; 2011 } 2012 2013 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2014 2015 // X | Y != 0 if X != 0 or Y != 0. 2016 Value *X = nullptr, *Y = nullptr; 2017 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2018 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2019 2020 // ext X != 0 if X != 0. 2021 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2022 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2023 2024 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2025 // if the lowest bit is shifted off the end. 2026 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2027 // shl nuw can't remove any non-zero bits. 2028 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2029 if (BO->hasNoUnsignedWrap()) 2030 return isKnownNonZero(X, Depth, Q); 2031 2032 KnownBits Known(BitWidth); 2033 computeKnownBits(X, Known, Depth, Q); 2034 if (Known.One[0]) 2035 return true; 2036 } 2037 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2038 // defined if the sign bit is shifted off the end. 2039 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2040 // shr exact can only shift out zero bits. 2041 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2042 if (BO->isExact()) 2043 return isKnownNonZero(X, Depth, Q); 2044 2045 KnownBits Known = computeKnownBits(X, Depth, Q); 2046 if (Known.isNegative()) 2047 return true; 2048 2049 // If the shifter operand is a constant, and all of the bits shifted 2050 // out are known to be zero, and X is known non-zero then at least one 2051 // non-zero bit must remain. 2052 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2053 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2054 // Is there a known one in the portion not shifted out? 2055 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2056 return true; 2057 // Are all the bits to be shifted out known zero? 2058 if (Known.countMinTrailingZeros() >= ShiftVal) 2059 return isKnownNonZero(X, Depth, Q); 2060 } 2061 } 2062 // div exact can only produce a zero if the dividend is zero. 2063 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2064 return isKnownNonZero(X, Depth, Q); 2065 } 2066 // X + Y. 2067 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2068 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2069 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2070 2071 // If X and Y are both non-negative (as signed values) then their sum is not 2072 // zero unless both X and Y are zero. 2073 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2074 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2075 return true; 2076 2077 // If X and Y are both negative (as signed values) then their sum is not 2078 // zero unless both X and Y equal INT_MIN. 2079 if (XKnown.isNegative() && YKnown.isNegative()) { 2080 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2081 // The sign bit of X is set. If some other bit is set then X is not equal 2082 // to INT_MIN. 2083 if (XKnown.One.intersects(Mask)) 2084 return true; 2085 // The sign bit of Y is set. If some other bit is set then Y is not equal 2086 // to INT_MIN. 2087 if (YKnown.One.intersects(Mask)) 2088 return true; 2089 } 2090 2091 // The sum of a non-negative number and a power of two is not zero. 2092 if (XKnown.isNonNegative() && 2093 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2094 return true; 2095 if (YKnown.isNonNegative() && 2096 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2097 return true; 2098 } 2099 // X * Y. 2100 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2101 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2102 // If X and Y are non-zero then so is X * Y as long as the multiplication 2103 // does not overflow. 2104 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2105 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2106 return true; 2107 } 2108 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2109 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2110 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2111 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2112 return true; 2113 } 2114 // PHI 2115 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2116 // Try and detect a recurrence that monotonically increases from a 2117 // starting value, as these are common as induction variables. 2118 if (PN->getNumIncomingValues() == 2) { 2119 Value *Start = PN->getIncomingValue(0); 2120 Value *Induction = PN->getIncomingValue(1); 2121 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2122 std::swap(Start, Induction); 2123 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2124 if (!C->isZero() && !C->isNegative()) { 2125 ConstantInt *X; 2126 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2127 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2128 !X->isNegative()) 2129 return true; 2130 } 2131 } 2132 } 2133 // Check if all incoming values are non-zero constant. 2134 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2135 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2136 }); 2137 if (AllNonZeroConstants) 2138 return true; 2139 } 2140 2141 KnownBits Known(BitWidth); 2142 computeKnownBits(V, Known, Depth, Q); 2143 return Known.One != 0; 2144 } 2145 2146 /// Return true if V2 == V1 + X, where X is known non-zero. 2147 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2148 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2149 if (!BO || BO->getOpcode() != Instruction::Add) 2150 return false; 2151 Value *Op = nullptr; 2152 if (V2 == BO->getOperand(0)) 2153 Op = BO->getOperand(1); 2154 else if (V2 == BO->getOperand(1)) 2155 Op = BO->getOperand(0); 2156 else 2157 return false; 2158 return isKnownNonZero(Op, 0, Q); 2159 } 2160 2161 /// Return true if it is known that V1 != V2. 2162 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2163 if (V1 == V2) 2164 return false; 2165 if (V1->getType() != V2->getType()) 2166 // We can't look through casts yet. 2167 return false; 2168 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2169 return true; 2170 2171 if (V1->getType()->isIntOrIntVectorTy()) { 2172 // Are any known bits in V1 contradictory to known bits in V2? If V1 2173 // has a known zero where V2 has a known one, they must not be equal. 2174 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2175 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2176 2177 if (Known1.Zero.intersects(Known2.One) || 2178 Known2.Zero.intersects(Known1.One)) 2179 return true; 2180 } 2181 return false; 2182 } 2183 2184 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2185 /// simplify operations downstream. Mask is known to be zero for bits that V 2186 /// cannot have. 2187 /// 2188 /// This function is defined on values with integer type, values with pointer 2189 /// type, and vectors of integers. In the case 2190 /// where V is a vector, the mask, known zero, and known one values are the 2191 /// same width as the vector element, and the bit is set only if it is true 2192 /// for all of the elements in the vector. 2193 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2194 const Query &Q) { 2195 KnownBits Known(Mask.getBitWidth()); 2196 computeKnownBits(V, Known, Depth, Q); 2197 return Mask.isSubsetOf(Known.Zero); 2198 } 2199 2200 /// For vector constants, loop over the elements and find the constant with the 2201 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2202 /// or if any element was not analyzed; otherwise, return the count for the 2203 /// element with the minimum number of sign bits. 2204 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2205 unsigned TyBits) { 2206 const auto *CV = dyn_cast<Constant>(V); 2207 if (!CV || !CV->getType()->isVectorTy()) 2208 return 0; 2209 2210 unsigned MinSignBits = TyBits; 2211 unsigned NumElts = CV->getType()->getVectorNumElements(); 2212 for (unsigned i = 0; i != NumElts; ++i) { 2213 // If we find a non-ConstantInt, bail out. 2214 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2215 if (!Elt) 2216 return 0; 2217 2218 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2219 } 2220 2221 return MinSignBits; 2222 } 2223 2224 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2225 const Query &Q); 2226 2227 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2228 const Query &Q) { 2229 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2230 assert(Result > 0 && "At least one sign bit needs to be present!"); 2231 return Result; 2232 } 2233 2234 /// Return the number of times the sign bit of the register is replicated into 2235 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2236 /// (itself), but other cases can give us information. For example, immediately 2237 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2238 /// other, so we return 3. For vectors, return the number of sign bits for the 2239 /// vector element with the minimum number of known sign bits. 2240 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2241 const Query &Q) { 2242 assert(Depth <= MaxDepth && "Limit Search Depth"); 2243 2244 // We return the minimum number of sign bits that are guaranteed to be present 2245 // in V, so for undef we have to conservatively return 1. We don't have the 2246 // same behavior for poison though -- that's a FIXME today. 2247 2248 Type *ScalarTy = V->getType()->getScalarType(); 2249 unsigned TyBits = ScalarTy->isPointerTy() ? 2250 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2251 Q.DL.getTypeSizeInBits(ScalarTy); 2252 2253 unsigned Tmp, Tmp2; 2254 unsigned FirstAnswer = 1; 2255 2256 // Note that ConstantInt is handled by the general computeKnownBits case 2257 // below. 2258 2259 if (Depth == MaxDepth) 2260 return 1; // Limit search depth. 2261 2262 const Operator *U = dyn_cast<Operator>(V); 2263 switch (Operator::getOpcode(V)) { 2264 default: break; 2265 case Instruction::SExt: 2266 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2267 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2268 2269 case Instruction::SDiv: { 2270 const APInt *Denominator; 2271 // sdiv X, C -> adds log(C) sign bits. 2272 if (match(U->getOperand(1), m_APInt(Denominator))) { 2273 2274 // Ignore non-positive denominator. 2275 if (!Denominator->isStrictlyPositive()) 2276 break; 2277 2278 // Calculate the incoming numerator bits. 2279 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2280 2281 // Add floor(log(C)) bits to the numerator bits. 2282 return std::min(TyBits, NumBits + Denominator->logBase2()); 2283 } 2284 break; 2285 } 2286 2287 case Instruction::SRem: { 2288 const APInt *Denominator; 2289 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2290 // positive constant. This let us put a lower bound on the number of sign 2291 // bits. 2292 if (match(U->getOperand(1), m_APInt(Denominator))) { 2293 2294 // Ignore non-positive denominator. 2295 if (!Denominator->isStrictlyPositive()) 2296 break; 2297 2298 // Calculate the incoming numerator bits. SRem by a positive constant 2299 // can't lower the number of sign bits. 2300 unsigned NumrBits = 2301 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2302 2303 // Calculate the leading sign bit constraints by examining the 2304 // denominator. Given that the denominator is positive, there are two 2305 // cases: 2306 // 2307 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2308 // (1 << ceilLogBase2(C)). 2309 // 2310 // 2. the numerator is negative. Then the result range is (-C,0] and 2311 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2312 // 2313 // Thus a lower bound on the number of sign bits is `TyBits - 2314 // ceilLogBase2(C)`. 2315 2316 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2317 return std::max(NumrBits, ResBits); 2318 } 2319 break; 2320 } 2321 2322 case Instruction::AShr: { 2323 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2324 // ashr X, C -> adds C sign bits. Vectors too. 2325 const APInt *ShAmt; 2326 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2327 if (ShAmt->uge(TyBits)) 2328 break; // Bad shift. 2329 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2330 Tmp += ShAmtLimited; 2331 if (Tmp > TyBits) Tmp = TyBits; 2332 } 2333 return Tmp; 2334 } 2335 case Instruction::Shl: { 2336 const APInt *ShAmt; 2337 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2338 // shl destroys sign bits. 2339 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2340 if (ShAmt->uge(TyBits) || // Bad shift. 2341 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2342 Tmp2 = ShAmt->getZExtValue(); 2343 return Tmp - Tmp2; 2344 } 2345 break; 2346 } 2347 case Instruction::And: 2348 case Instruction::Or: 2349 case Instruction::Xor: // NOT is handled here. 2350 // Logical binary ops preserve the number of sign bits at the worst. 2351 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2352 if (Tmp != 1) { 2353 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2354 FirstAnswer = std::min(Tmp, Tmp2); 2355 // We computed what we know about the sign bits as our first 2356 // answer. Now proceed to the generic code that uses 2357 // computeKnownBits, and pick whichever answer is better. 2358 } 2359 break; 2360 2361 case Instruction::Select: 2362 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2363 if (Tmp == 1) break; 2364 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2365 return std::min(Tmp, Tmp2); 2366 2367 case Instruction::Add: 2368 // Add can have at most one carry bit. Thus we know that the output 2369 // is, at worst, one more bit than the inputs. 2370 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2371 if (Tmp == 1) break; 2372 2373 // Special case decrementing a value (ADD X, -1): 2374 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2375 if (CRHS->isAllOnesValue()) { 2376 KnownBits Known(TyBits); 2377 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2378 2379 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2380 // sign bits set. 2381 if ((Known.Zero | 1).isAllOnesValue()) 2382 return TyBits; 2383 2384 // If we are subtracting one from a positive number, there is no carry 2385 // out of the result. 2386 if (Known.isNonNegative()) 2387 return Tmp; 2388 } 2389 2390 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2391 if (Tmp2 == 1) break; 2392 return std::min(Tmp, Tmp2)-1; 2393 2394 case Instruction::Sub: 2395 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2396 if (Tmp2 == 1) break; 2397 2398 // Handle NEG. 2399 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2400 if (CLHS->isNullValue()) { 2401 KnownBits Known(TyBits); 2402 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2403 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2404 // sign bits set. 2405 if ((Known.Zero | 1).isAllOnesValue()) 2406 return TyBits; 2407 2408 // If the input is known to be positive (the sign bit is known clear), 2409 // the output of the NEG has the same number of sign bits as the input. 2410 if (Known.isNonNegative()) 2411 return Tmp2; 2412 2413 // Otherwise, we treat this like a SUB. 2414 } 2415 2416 // Sub can have at most one carry bit. Thus we know that the output 2417 // is, at worst, one more bit than the inputs. 2418 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2419 if (Tmp == 1) break; 2420 return std::min(Tmp, Tmp2)-1; 2421 2422 case Instruction::Mul: { 2423 // The output of the Mul can be at most twice the valid bits in the inputs. 2424 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2425 if (SignBitsOp0 == 1) break; 2426 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2427 if (SignBitsOp1 == 1) break; 2428 unsigned OutValidBits = 2429 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2430 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2431 } 2432 2433 case Instruction::PHI: { 2434 const PHINode *PN = cast<PHINode>(U); 2435 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2436 // Don't analyze large in-degree PHIs. 2437 if (NumIncomingValues > 4) break; 2438 // Unreachable blocks may have zero-operand PHI nodes. 2439 if (NumIncomingValues == 0) break; 2440 2441 // Take the minimum of all incoming values. This can't infinitely loop 2442 // because of our depth threshold. 2443 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2444 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2445 if (Tmp == 1) return Tmp; 2446 Tmp = std::min( 2447 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2448 } 2449 return Tmp; 2450 } 2451 2452 case Instruction::Trunc: 2453 // FIXME: it's tricky to do anything useful for this, but it is an important 2454 // case for targets like X86. 2455 break; 2456 2457 case Instruction::ExtractElement: 2458 // Look through extract element. At the moment we keep this simple and skip 2459 // tracking the specific element. But at least we might find information 2460 // valid for all elements of the vector (for example if vector is sign 2461 // extended, shifted, etc). 2462 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2463 } 2464 2465 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2466 // use this information. 2467 2468 // If we can examine all elements of a vector constant successfully, we're 2469 // done (we can't do any better than that). If not, keep trying. 2470 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2471 return VecSignBits; 2472 2473 KnownBits Known(TyBits); 2474 computeKnownBits(V, Known, Depth, Q); 2475 2476 // If we know that the sign bit is either zero or one, determine the number of 2477 // identical bits in the top of the input value. 2478 return std::max(FirstAnswer, Known.countMinSignBits()); 2479 } 2480 2481 /// This function computes the integer multiple of Base that equals V. 2482 /// If successful, it returns true and returns the multiple in 2483 /// Multiple. If unsuccessful, it returns false. It looks 2484 /// through SExt instructions only if LookThroughSExt is true. 2485 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2486 bool LookThroughSExt, unsigned Depth) { 2487 const unsigned MaxDepth = 6; 2488 2489 assert(V && "No Value?"); 2490 assert(Depth <= MaxDepth && "Limit Search Depth"); 2491 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2492 2493 Type *T = V->getType(); 2494 2495 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2496 2497 if (Base == 0) 2498 return false; 2499 2500 if (Base == 1) { 2501 Multiple = V; 2502 return true; 2503 } 2504 2505 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2506 Constant *BaseVal = ConstantInt::get(T, Base); 2507 if (CO && CO == BaseVal) { 2508 // Multiple is 1. 2509 Multiple = ConstantInt::get(T, 1); 2510 return true; 2511 } 2512 2513 if (CI && CI->getZExtValue() % Base == 0) { 2514 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2515 return true; 2516 } 2517 2518 if (Depth == MaxDepth) return false; // Limit search depth. 2519 2520 Operator *I = dyn_cast<Operator>(V); 2521 if (!I) return false; 2522 2523 switch (I->getOpcode()) { 2524 default: break; 2525 case Instruction::SExt: 2526 if (!LookThroughSExt) return false; 2527 // otherwise fall through to ZExt 2528 LLVM_FALLTHROUGH; 2529 case Instruction::ZExt: 2530 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2531 LookThroughSExt, Depth+1); 2532 case Instruction::Shl: 2533 case Instruction::Mul: { 2534 Value *Op0 = I->getOperand(0); 2535 Value *Op1 = I->getOperand(1); 2536 2537 if (I->getOpcode() == Instruction::Shl) { 2538 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2539 if (!Op1CI) return false; 2540 // Turn Op0 << Op1 into Op0 * 2^Op1 2541 APInt Op1Int = Op1CI->getValue(); 2542 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2543 APInt API(Op1Int.getBitWidth(), 0); 2544 API.setBit(BitToSet); 2545 Op1 = ConstantInt::get(V->getContext(), API); 2546 } 2547 2548 Value *Mul0 = nullptr; 2549 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2550 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2551 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2552 if (Op1C->getType()->getPrimitiveSizeInBits() < 2553 MulC->getType()->getPrimitiveSizeInBits()) 2554 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2555 if (Op1C->getType()->getPrimitiveSizeInBits() > 2556 MulC->getType()->getPrimitiveSizeInBits()) 2557 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2558 2559 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2560 Multiple = ConstantExpr::getMul(MulC, Op1C); 2561 return true; 2562 } 2563 2564 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2565 if (Mul0CI->getValue() == 1) { 2566 // V == Base * Op1, so return Op1 2567 Multiple = Op1; 2568 return true; 2569 } 2570 } 2571 2572 Value *Mul1 = nullptr; 2573 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2574 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2575 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2576 if (Op0C->getType()->getPrimitiveSizeInBits() < 2577 MulC->getType()->getPrimitiveSizeInBits()) 2578 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2579 if (Op0C->getType()->getPrimitiveSizeInBits() > 2580 MulC->getType()->getPrimitiveSizeInBits()) 2581 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2582 2583 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2584 Multiple = ConstantExpr::getMul(MulC, Op0C); 2585 return true; 2586 } 2587 2588 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2589 if (Mul1CI->getValue() == 1) { 2590 // V == Base * Op0, so return Op0 2591 Multiple = Op0; 2592 return true; 2593 } 2594 } 2595 } 2596 } 2597 2598 // We could not determine if V is a multiple of Base. 2599 return false; 2600 } 2601 2602 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2603 const TargetLibraryInfo *TLI) { 2604 const Function *F = ICS.getCalledFunction(); 2605 if (!F) 2606 return Intrinsic::not_intrinsic; 2607 2608 if (F->isIntrinsic()) 2609 return F->getIntrinsicID(); 2610 2611 if (!TLI) 2612 return Intrinsic::not_intrinsic; 2613 2614 LibFunc Func; 2615 // We're going to make assumptions on the semantics of the functions, check 2616 // that the target knows that it's available in this environment and it does 2617 // not have local linkage. 2618 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2619 return Intrinsic::not_intrinsic; 2620 2621 if (!ICS.onlyReadsMemory()) 2622 return Intrinsic::not_intrinsic; 2623 2624 // Otherwise check if we have a call to a function that can be turned into a 2625 // vector intrinsic. 2626 switch (Func) { 2627 default: 2628 break; 2629 case LibFunc_sin: 2630 case LibFunc_sinf: 2631 case LibFunc_sinl: 2632 return Intrinsic::sin; 2633 case LibFunc_cos: 2634 case LibFunc_cosf: 2635 case LibFunc_cosl: 2636 return Intrinsic::cos; 2637 case LibFunc_exp: 2638 case LibFunc_expf: 2639 case LibFunc_expl: 2640 return Intrinsic::exp; 2641 case LibFunc_exp2: 2642 case LibFunc_exp2f: 2643 case LibFunc_exp2l: 2644 return Intrinsic::exp2; 2645 case LibFunc_log: 2646 case LibFunc_logf: 2647 case LibFunc_logl: 2648 return Intrinsic::log; 2649 case LibFunc_log10: 2650 case LibFunc_log10f: 2651 case LibFunc_log10l: 2652 return Intrinsic::log10; 2653 case LibFunc_log2: 2654 case LibFunc_log2f: 2655 case LibFunc_log2l: 2656 return Intrinsic::log2; 2657 case LibFunc_fabs: 2658 case LibFunc_fabsf: 2659 case LibFunc_fabsl: 2660 return Intrinsic::fabs; 2661 case LibFunc_fmin: 2662 case LibFunc_fminf: 2663 case LibFunc_fminl: 2664 return Intrinsic::minnum; 2665 case LibFunc_fmax: 2666 case LibFunc_fmaxf: 2667 case LibFunc_fmaxl: 2668 return Intrinsic::maxnum; 2669 case LibFunc_copysign: 2670 case LibFunc_copysignf: 2671 case LibFunc_copysignl: 2672 return Intrinsic::copysign; 2673 case LibFunc_floor: 2674 case LibFunc_floorf: 2675 case LibFunc_floorl: 2676 return Intrinsic::floor; 2677 case LibFunc_ceil: 2678 case LibFunc_ceilf: 2679 case LibFunc_ceill: 2680 return Intrinsic::ceil; 2681 case LibFunc_trunc: 2682 case LibFunc_truncf: 2683 case LibFunc_truncl: 2684 return Intrinsic::trunc; 2685 case LibFunc_rint: 2686 case LibFunc_rintf: 2687 case LibFunc_rintl: 2688 return Intrinsic::rint; 2689 case LibFunc_nearbyint: 2690 case LibFunc_nearbyintf: 2691 case LibFunc_nearbyintl: 2692 return Intrinsic::nearbyint; 2693 case LibFunc_round: 2694 case LibFunc_roundf: 2695 case LibFunc_roundl: 2696 return Intrinsic::round; 2697 case LibFunc_pow: 2698 case LibFunc_powf: 2699 case LibFunc_powl: 2700 return Intrinsic::pow; 2701 case LibFunc_sqrt: 2702 case LibFunc_sqrtf: 2703 case LibFunc_sqrtl: 2704 return Intrinsic::sqrt; 2705 } 2706 2707 return Intrinsic::not_intrinsic; 2708 } 2709 2710 /// Return true if we can prove that the specified FP value is never equal to 2711 /// -0.0. 2712 /// 2713 /// NOTE: this function will need to be revisited when we support non-default 2714 /// rounding modes! 2715 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2716 unsigned Depth) { 2717 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2718 return !CFP->getValueAPF().isNegZero(); 2719 2720 // Limit search depth. 2721 if (Depth == MaxDepth) 2722 return false; 2723 2724 auto *Op = dyn_cast<Operator>(V); 2725 if (!Op) 2726 return false; 2727 2728 // Check if the nsz fast-math flag is set. 2729 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2730 if (FPO->hasNoSignedZeros()) 2731 return true; 2732 2733 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2734 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2735 return true; 2736 2737 // sitofp and uitofp turn into +0.0 for zero. 2738 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2739 return true; 2740 2741 if (auto *Call = dyn_cast<CallInst>(Op)) { 2742 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2743 switch (IID) { 2744 default: 2745 break; 2746 // sqrt(-0.0) = -0.0, no other negative results are possible. 2747 case Intrinsic::sqrt: 2748 case Intrinsic::canonicalize: 2749 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2750 // fabs(x) != -0.0 2751 case Intrinsic::fabs: 2752 return true; 2753 } 2754 } 2755 2756 return false; 2757 } 2758 2759 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2760 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2761 /// bit despite comparing equal. 2762 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2763 const TargetLibraryInfo *TLI, 2764 bool SignBitOnly, 2765 unsigned Depth) { 2766 // TODO: This function does not do the right thing when SignBitOnly is true 2767 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2768 // which flips the sign bits of NaNs. See 2769 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2770 2771 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2772 return !CFP->getValueAPF().isNegative() || 2773 (!SignBitOnly && CFP->getValueAPF().isZero()); 2774 } 2775 2776 // Handle vector of constants. 2777 if (auto *CV = dyn_cast<Constant>(V)) { 2778 if (CV->getType()->isVectorTy()) { 2779 unsigned NumElts = CV->getType()->getVectorNumElements(); 2780 for (unsigned i = 0; i != NumElts; ++i) { 2781 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2782 if (!CFP) 2783 return false; 2784 if (CFP->getValueAPF().isNegative() && 2785 (SignBitOnly || !CFP->getValueAPF().isZero())) 2786 return false; 2787 } 2788 2789 // All non-negative ConstantFPs. 2790 return true; 2791 } 2792 } 2793 2794 if (Depth == MaxDepth) 2795 return false; // Limit search depth. 2796 2797 const Operator *I = dyn_cast<Operator>(V); 2798 if (!I) 2799 return false; 2800 2801 switch (I->getOpcode()) { 2802 default: 2803 break; 2804 // Unsigned integers are always nonnegative. 2805 case Instruction::UIToFP: 2806 return true; 2807 case Instruction::FMul: 2808 // x*x is always non-negative or a NaN. 2809 if (I->getOperand(0) == I->getOperand(1) && 2810 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2811 return true; 2812 2813 LLVM_FALLTHROUGH; 2814 case Instruction::FAdd: 2815 case Instruction::FDiv: 2816 case Instruction::FRem: 2817 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2818 Depth + 1) && 2819 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2820 Depth + 1); 2821 case Instruction::Select: 2822 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2823 Depth + 1) && 2824 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2825 Depth + 1); 2826 case Instruction::FPExt: 2827 case Instruction::FPTrunc: 2828 // Widening/narrowing never change sign. 2829 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2830 Depth + 1); 2831 case Instruction::ExtractElement: 2832 // Look through extract element. At the moment we keep this simple and skip 2833 // tracking the specific element. But at least we might find information 2834 // valid for all elements of the vector. 2835 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2836 Depth + 1); 2837 case Instruction::Call: 2838 const auto *CI = cast<CallInst>(I); 2839 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2840 switch (IID) { 2841 default: 2842 break; 2843 case Intrinsic::maxnum: 2844 return (isKnownNeverNaN(I->getOperand(0)) && 2845 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 2846 SignBitOnly, Depth + 1)) || 2847 (isKnownNeverNaN(I->getOperand(1)) && 2848 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 2849 SignBitOnly, Depth + 1)); 2850 2851 case Intrinsic::minnum: 2852 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2853 Depth + 1) && 2854 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2855 Depth + 1); 2856 case Intrinsic::exp: 2857 case Intrinsic::exp2: 2858 case Intrinsic::fabs: 2859 return true; 2860 2861 case Intrinsic::sqrt: 2862 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2863 if (!SignBitOnly) 2864 return true; 2865 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2866 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2867 2868 case Intrinsic::powi: 2869 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2870 // powi(x,n) is non-negative if n is even. 2871 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2872 return true; 2873 } 2874 // TODO: This is not correct. Given that exp is an integer, here are the 2875 // ways that pow can return a negative value: 2876 // 2877 // pow(x, exp) --> negative if exp is odd and x is negative. 2878 // pow(-0, exp) --> -inf if exp is negative odd. 2879 // pow(-0, exp) --> -0 if exp is positive odd. 2880 // pow(-inf, exp) --> -0 if exp is negative odd. 2881 // pow(-inf, exp) --> -inf if exp is positive odd. 2882 // 2883 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2884 // but we must return false if x == -0. Unfortunately we do not currently 2885 // have a way of expressing this constraint. See details in 2886 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2887 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2888 Depth + 1); 2889 2890 case Intrinsic::fma: 2891 case Intrinsic::fmuladd: 2892 // x*x+y is non-negative if y is non-negative. 2893 return I->getOperand(0) == I->getOperand(1) && 2894 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2895 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2896 Depth + 1); 2897 } 2898 break; 2899 } 2900 return false; 2901 } 2902 2903 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2904 const TargetLibraryInfo *TLI) { 2905 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2906 } 2907 2908 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2909 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2910 } 2911 2912 bool llvm::isKnownNeverNaN(const Value *V) { 2913 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2914 2915 // If we're told that NaNs won't happen, assume they won't. 2916 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2917 if (FPMathOp->hasNoNaNs()) 2918 return true; 2919 2920 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2921 // functions. For example, the result of sitofp is never NaN. 2922 2923 // Handle scalar constants. 2924 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2925 return !CFP->isNaN(); 2926 2927 // Bail out for constant expressions, but try to handle vector constants. 2928 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2929 return false; 2930 2931 // For vectors, verify that each element is not NaN. 2932 unsigned NumElts = V->getType()->getVectorNumElements(); 2933 for (unsigned i = 0; i != NumElts; ++i) { 2934 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2935 if (!Elt) 2936 return false; 2937 if (isa<UndefValue>(Elt)) 2938 continue; 2939 auto *CElt = dyn_cast<ConstantFP>(Elt); 2940 if (!CElt || CElt->isNaN()) 2941 return false; 2942 } 2943 // All elements were confirmed not-NaN or undefined. 2944 return true; 2945 } 2946 2947 /// If the specified value can be set by repeating the same byte in memory, 2948 /// return the i8 value that it is represented with. This is 2949 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2950 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2951 /// byte store (e.g. i16 0x1234), return null. 2952 Value *llvm::isBytewiseValue(Value *V) { 2953 // All byte-wide stores are splatable, even of arbitrary variables. 2954 if (V->getType()->isIntegerTy(8)) return V; 2955 2956 // Handle 'null' ConstantArrayZero etc. 2957 if (Constant *C = dyn_cast<Constant>(V)) 2958 if (C->isNullValue()) 2959 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2960 2961 // Constant float and double values can be handled as integer values if the 2962 // corresponding integer value is "byteable". An important case is 0.0. 2963 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2964 if (CFP->getType()->isFloatTy()) 2965 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2966 if (CFP->getType()->isDoubleTy()) 2967 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2968 // Don't handle long double formats, which have strange constraints. 2969 } 2970 2971 // We can handle constant integers that are multiple of 8 bits. 2972 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2973 if (CI->getBitWidth() % 8 == 0) { 2974 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2975 2976 if (!CI->getValue().isSplat(8)) 2977 return nullptr; 2978 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2979 } 2980 } 2981 2982 // A ConstantDataArray/Vector is splatable if all its members are equal and 2983 // also splatable. 2984 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2985 Value *Elt = CA->getElementAsConstant(0); 2986 Value *Val = isBytewiseValue(Elt); 2987 if (!Val) 2988 return nullptr; 2989 2990 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2991 if (CA->getElementAsConstant(I) != Elt) 2992 return nullptr; 2993 2994 return Val; 2995 } 2996 2997 // Conceptually, we could handle things like: 2998 // %a = zext i8 %X to i16 2999 // %b = shl i16 %a, 8 3000 // %c = or i16 %a, %b 3001 // but until there is an example that actually needs this, it doesn't seem 3002 // worth worrying about. 3003 return nullptr; 3004 } 3005 3006 // This is the recursive version of BuildSubAggregate. It takes a few different 3007 // arguments. Idxs is the index within the nested struct From that we are 3008 // looking at now (which is of type IndexedType). IdxSkip is the number of 3009 // indices from Idxs that should be left out when inserting into the resulting 3010 // struct. To is the result struct built so far, new insertvalue instructions 3011 // build on that. 3012 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3013 SmallVectorImpl<unsigned> &Idxs, 3014 unsigned IdxSkip, 3015 Instruction *InsertBefore) { 3016 StructType *STy = dyn_cast<StructType>(IndexedType); 3017 if (STy) { 3018 // Save the original To argument so we can modify it 3019 Value *OrigTo = To; 3020 // General case, the type indexed by Idxs is a struct 3021 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3022 // Process each struct element recursively 3023 Idxs.push_back(i); 3024 Value *PrevTo = To; 3025 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3026 InsertBefore); 3027 Idxs.pop_back(); 3028 if (!To) { 3029 // Couldn't find any inserted value for this index? Cleanup 3030 while (PrevTo != OrigTo) { 3031 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3032 PrevTo = Del->getAggregateOperand(); 3033 Del->eraseFromParent(); 3034 } 3035 // Stop processing elements 3036 break; 3037 } 3038 } 3039 // If we successfully found a value for each of our subaggregates 3040 if (To) 3041 return To; 3042 } 3043 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3044 // the struct's elements had a value that was inserted directly. In the latter 3045 // case, perhaps we can't determine each of the subelements individually, but 3046 // we might be able to find the complete struct somewhere. 3047 3048 // Find the value that is at that particular spot 3049 Value *V = FindInsertedValue(From, Idxs); 3050 3051 if (!V) 3052 return nullptr; 3053 3054 // Insert the value in the new (sub) aggregate 3055 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3056 "tmp", InsertBefore); 3057 } 3058 3059 // This helper takes a nested struct and extracts a part of it (which is again a 3060 // struct) into a new value. For example, given the struct: 3061 // { a, { b, { c, d }, e } } 3062 // and the indices "1, 1" this returns 3063 // { c, d }. 3064 // 3065 // It does this by inserting an insertvalue for each element in the resulting 3066 // struct, as opposed to just inserting a single struct. This will only work if 3067 // each of the elements of the substruct are known (ie, inserted into From by an 3068 // insertvalue instruction somewhere). 3069 // 3070 // All inserted insertvalue instructions are inserted before InsertBefore 3071 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3072 Instruction *InsertBefore) { 3073 assert(InsertBefore && "Must have someplace to insert!"); 3074 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3075 idx_range); 3076 Value *To = UndefValue::get(IndexedType); 3077 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3078 unsigned IdxSkip = Idxs.size(); 3079 3080 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3081 } 3082 3083 /// Given an aggregate and a sequence of indices, see if the scalar value 3084 /// indexed is already around as a register, for example if it was inserted 3085 /// directly into the aggregate. 3086 /// 3087 /// If InsertBefore is not null, this function will duplicate (modified) 3088 /// insertvalues when a part of a nested struct is extracted. 3089 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3090 Instruction *InsertBefore) { 3091 // Nothing to index? Just return V then (this is useful at the end of our 3092 // recursion). 3093 if (idx_range.empty()) 3094 return V; 3095 // We have indices, so V should have an indexable type. 3096 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3097 "Not looking at a struct or array?"); 3098 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3099 "Invalid indices for type?"); 3100 3101 if (Constant *C = dyn_cast<Constant>(V)) { 3102 C = C->getAggregateElement(idx_range[0]); 3103 if (!C) return nullptr; 3104 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3105 } 3106 3107 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3108 // Loop the indices for the insertvalue instruction in parallel with the 3109 // requested indices 3110 const unsigned *req_idx = idx_range.begin(); 3111 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3112 i != e; ++i, ++req_idx) { 3113 if (req_idx == idx_range.end()) { 3114 // We can't handle this without inserting insertvalues 3115 if (!InsertBefore) 3116 return nullptr; 3117 3118 // The requested index identifies a part of a nested aggregate. Handle 3119 // this specially. For example, 3120 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3121 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3122 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3123 // This can be changed into 3124 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3125 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3126 // which allows the unused 0,0 element from the nested struct to be 3127 // removed. 3128 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3129 InsertBefore); 3130 } 3131 3132 // This insert value inserts something else than what we are looking for. 3133 // See if the (aggregate) value inserted into has the value we are 3134 // looking for, then. 3135 if (*req_idx != *i) 3136 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3137 InsertBefore); 3138 } 3139 // If we end up here, the indices of the insertvalue match with those 3140 // requested (though possibly only partially). Now we recursively look at 3141 // the inserted value, passing any remaining indices. 3142 return FindInsertedValue(I->getInsertedValueOperand(), 3143 makeArrayRef(req_idx, idx_range.end()), 3144 InsertBefore); 3145 } 3146 3147 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3148 // If we're extracting a value from an aggregate that was extracted from 3149 // something else, we can extract from that something else directly instead. 3150 // However, we will need to chain I's indices with the requested indices. 3151 3152 // Calculate the number of indices required 3153 unsigned size = I->getNumIndices() + idx_range.size(); 3154 // Allocate some space to put the new indices in 3155 SmallVector<unsigned, 5> Idxs; 3156 Idxs.reserve(size); 3157 // Add indices from the extract value instruction 3158 Idxs.append(I->idx_begin(), I->idx_end()); 3159 3160 // Add requested indices 3161 Idxs.append(idx_range.begin(), idx_range.end()); 3162 3163 assert(Idxs.size() == size 3164 && "Number of indices added not correct?"); 3165 3166 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3167 } 3168 // Otherwise, we don't know (such as, extracting from a function return value 3169 // or load instruction) 3170 return nullptr; 3171 } 3172 3173 /// Analyze the specified pointer to see if it can be expressed as a base 3174 /// pointer plus a constant offset. Return the base and offset to the caller. 3175 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3176 const DataLayout &DL) { 3177 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3178 APInt ByteOffset(BitWidth, 0); 3179 3180 // We walk up the defs but use a visited set to handle unreachable code. In 3181 // that case, we stop after accumulating the cycle once (not that it 3182 // matters). 3183 SmallPtrSet<Value *, 16> Visited; 3184 while (Visited.insert(Ptr).second) { 3185 if (Ptr->getType()->isVectorTy()) 3186 break; 3187 3188 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3189 // If one of the values we have visited is an addrspacecast, then 3190 // the pointer type of this GEP may be different from the type 3191 // of the Ptr parameter which was passed to this function. This 3192 // means when we construct GEPOffset, we need to use the size 3193 // of GEP's pointer type rather than the size of the original 3194 // pointer type. 3195 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3196 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3197 break; 3198 3199 ByteOffset += GEPOffset.getSExtValue(); 3200 3201 Ptr = GEP->getPointerOperand(); 3202 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3203 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3204 Ptr = cast<Operator>(Ptr)->getOperand(0); 3205 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3206 if (GA->isInterposable()) 3207 break; 3208 Ptr = GA->getAliasee(); 3209 } else { 3210 break; 3211 } 3212 } 3213 Offset = ByteOffset.getSExtValue(); 3214 return Ptr; 3215 } 3216 3217 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3218 unsigned CharSize) { 3219 // Make sure the GEP has exactly three arguments. 3220 if (GEP->getNumOperands() != 3) 3221 return false; 3222 3223 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3224 // CharSize. 3225 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3226 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3227 return false; 3228 3229 // Check to make sure that the first operand of the GEP is an integer and 3230 // has value 0 so that we are sure we're indexing into the initializer. 3231 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3232 if (!FirstIdx || !FirstIdx->isZero()) 3233 return false; 3234 3235 return true; 3236 } 3237 3238 bool llvm::getConstantDataArrayInfo(const Value *V, 3239 ConstantDataArraySlice &Slice, 3240 unsigned ElementSize, uint64_t Offset) { 3241 assert(V); 3242 3243 // Look through bitcast instructions and geps. 3244 V = V->stripPointerCasts(); 3245 3246 // If the value is a GEP instruction or constant expression, treat it as an 3247 // offset. 3248 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3249 // The GEP operator should be based on a pointer to string constant, and is 3250 // indexing into the string constant. 3251 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3252 return false; 3253 3254 // If the second index isn't a ConstantInt, then this is a variable index 3255 // into the array. If this occurs, we can't say anything meaningful about 3256 // the string. 3257 uint64_t StartIdx = 0; 3258 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3259 StartIdx = CI->getZExtValue(); 3260 else 3261 return false; 3262 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3263 StartIdx + Offset); 3264 } 3265 3266 // The GEP instruction, constant or instruction, must reference a global 3267 // variable that is a constant and is initialized. The referenced constant 3268 // initializer is the array that we'll use for optimization. 3269 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3270 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3271 return false; 3272 3273 const ConstantDataArray *Array; 3274 ArrayType *ArrayTy; 3275 if (GV->getInitializer()->isNullValue()) { 3276 Type *GVTy = GV->getValueType(); 3277 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3278 // A zeroinitializer for the array; there is no ConstantDataArray. 3279 Array = nullptr; 3280 } else { 3281 const DataLayout &DL = GV->getParent()->getDataLayout(); 3282 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3283 uint64_t Length = SizeInBytes / (ElementSize / 8); 3284 if (Length <= Offset) 3285 return false; 3286 3287 Slice.Array = nullptr; 3288 Slice.Offset = 0; 3289 Slice.Length = Length - Offset; 3290 return true; 3291 } 3292 } else { 3293 // This must be a ConstantDataArray. 3294 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3295 if (!Array) 3296 return false; 3297 ArrayTy = Array->getType(); 3298 } 3299 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3300 return false; 3301 3302 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3303 if (Offset > NumElts) 3304 return false; 3305 3306 Slice.Array = Array; 3307 Slice.Offset = Offset; 3308 Slice.Length = NumElts - Offset; 3309 return true; 3310 } 3311 3312 /// This function computes the length of a null-terminated C string pointed to 3313 /// by V. If successful, it returns true and returns the string in Str. 3314 /// If unsuccessful, it returns false. 3315 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3316 uint64_t Offset, bool TrimAtNul) { 3317 ConstantDataArraySlice Slice; 3318 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3319 return false; 3320 3321 if (Slice.Array == nullptr) { 3322 if (TrimAtNul) { 3323 Str = StringRef(); 3324 return true; 3325 } 3326 if (Slice.Length == 1) { 3327 Str = StringRef("", 1); 3328 return true; 3329 } 3330 // We cannot instantiate a StringRef as we do not have an appropriate string 3331 // of 0s at hand. 3332 return false; 3333 } 3334 3335 // Start out with the entire array in the StringRef. 3336 Str = Slice.Array->getAsString(); 3337 // Skip over 'offset' bytes. 3338 Str = Str.substr(Slice.Offset); 3339 3340 if (TrimAtNul) { 3341 // Trim off the \0 and anything after it. If the array is not nul 3342 // terminated, we just return the whole end of string. The client may know 3343 // some other way that the string is length-bound. 3344 Str = Str.substr(0, Str.find('\0')); 3345 } 3346 return true; 3347 } 3348 3349 // These next two are very similar to the above, but also look through PHI 3350 // nodes. 3351 // TODO: See if we can integrate these two together. 3352 3353 /// If we can compute the length of the string pointed to by 3354 /// the specified pointer, return 'len+1'. If we can't, return 0. 3355 static uint64_t GetStringLengthH(const Value *V, 3356 SmallPtrSetImpl<const PHINode*> &PHIs, 3357 unsigned CharSize) { 3358 // Look through noop bitcast instructions. 3359 V = V->stripPointerCasts(); 3360 3361 // If this is a PHI node, there are two cases: either we have already seen it 3362 // or we haven't. 3363 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3364 if (!PHIs.insert(PN).second) 3365 return ~0ULL; // already in the set. 3366 3367 // If it was new, see if all the input strings are the same length. 3368 uint64_t LenSoFar = ~0ULL; 3369 for (Value *IncValue : PN->incoming_values()) { 3370 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3371 if (Len == 0) return 0; // Unknown length -> unknown. 3372 3373 if (Len == ~0ULL) continue; 3374 3375 if (Len != LenSoFar && LenSoFar != ~0ULL) 3376 return 0; // Disagree -> unknown. 3377 LenSoFar = Len; 3378 } 3379 3380 // Success, all agree. 3381 return LenSoFar; 3382 } 3383 3384 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3385 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3386 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3387 if (Len1 == 0) return 0; 3388 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3389 if (Len2 == 0) return 0; 3390 if (Len1 == ~0ULL) return Len2; 3391 if (Len2 == ~0ULL) return Len1; 3392 if (Len1 != Len2) return 0; 3393 return Len1; 3394 } 3395 3396 // Otherwise, see if we can read the string. 3397 ConstantDataArraySlice Slice; 3398 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3399 return 0; 3400 3401 if (Slice.Array == nullptr) 3402 return 1; 3403 3404 // Search for nul characters 3405 unsigned NullIndex = 0; 3406 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3407 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3408 break; 3409 } 3410 3411 return NullIndex + 1; 3412 } 3413 3414 /// If we can compute the length of the string pointed to by 3415 /// the specified pointer, return 'len+1'. If we can't, return 0. 3416 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3417 if (!V->getType()->isPointerTy()) 3418 return 0; 3419 3420 SmallPtrSet<const PHINode*, 32> PHIs; 3421 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3422 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3423 // an empty string as a length. 3424 return Len == ~0ULL ? 1 : Len; 3425 } 3426 3427 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3428 assert(CS && 3429 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3430 if (const Value *RV = CS.getReturnedArgOperand()) 3431 return RV; 3432 // This can be used only as a aliasing property. 3433 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3434 return CS.getArgOperand(0); 3435 return nullptr; 3436 } 3437 3438 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3439 ImmutableCallSite CS) { 3440 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group || 3441 CS.getIntrinsicID() == Intrinsic::strip_invariant_group; 3442 } 3443 3444 /// \p PN defines a loop-variant pointer to an object. Check if the 3445 /// previous iteration of the loop was referring to the same object as \p PN. 3446 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3447 const LoopInfo *LI) { 3448 // Find the loop-defined value. 3449 Loop *L = LI->getLoopFor(PN->getParent()); 3450 if (PN->getNumIncomingValues() != 2) 3451 return true; 3452 3453 // Find the value from previous iteration. 3454 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3455 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3456 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3457 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3458 return true; 3459 3460 // If a new pointer is loaded in the loop, the pointer references a different 3461 // object in every iteration. E.g.: 3462 // for (i) 3463 // int *p = a[i]; 3464 // ... 3465 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3466 if (!L->isLoopInvariant(Load->getPointerOperand())) 3467 return false; 3468 return true; 3469 } 3470 3471 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3472 unsigned MaxLookup) { 3473 if (!V->getType()->isPointerTy()) 3474 return V; 3475 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3476 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3477 V = GEP->getPointerOperand(); 3478 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3479 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3480 V = cast<Operator>(V)->getOperand(0); 3481 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3482 if (GA->isInterposable()) 3483 return V; 3484 V = GA->getAliasee(); 3485 } else if (isa<AllocaInst>(V)) { 3486 // An alloca can't be further simplified. 3487 return V; 3488 } else { 3489 if (auto CS = CallSite(V)) { 3490 // CaptureTracking can know about special capturing properties of some 3491 // intrinsics like launder.invariant.group, that can't be expressed with 3492 // the attributes, but have properties like returning aliasing pointer. 3493 // Because some analysis may assume that nocaptured pointer is not 3494 // returned from some special intrinsic (because function would have to 3495 // be marked with returns attribute), it is crucial to use this function 3496 // because it should be in sync with CaptureTracking. Not using it may 3497 // cause weird miscompilations where 2 aliasing pointers are assumed to 3498 // noalias. 3499 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3500 V = RP; 3501 continue; 3502 } 3503 } 3504 3505 // See if InstructionSimplify knows any relevant tricks. 3506 if (Instruction *I = dyn_cast<Instruction>(V)) 3507 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3508 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3509 V = Simplified; 3510 continue; 3511 } 3512 3513 return V; 3514 } 3515 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3516 } 3517 return V; 3518 } 3519 3520 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3521 const DataLayout &DL, LoopInfo *LI, 3522 unsigned MaxLookup) { 3523 SmallPtrSet<Value *, 4> Visited; 3524 SmallVector<Value *, 4> Worklist; 3525 Worklist.push_back(V); 3526 do { 3527 Value *P = Worklist.pop_back_val(); 3528 P = GetUnderlyingObject(P, DL, MaxLookup); 3529 3530 if (!Visited.insert(P).second) 3531 continue; 3532 3533 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3534 Worklist.push_back(SI->getTrueValue()); 3535 Worklist.push_back(SI->getFalseValue()); 3536 continue; 3537 } 3538 3539 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3540 // If this PHI changes the underlying object in every iteration of the 3541 // loop, don't look through it. Consider: 3542 // int **A; 3543 // for (i) { 3544 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3545 // Curr = A[i]; 3546 // *Prev, *Curr; 3547 // 3548 // Prev is tracking Curr one iteration behind so they refer to different 3549 // underlying objects. 3550 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3551 isSameUnderlyingObjectInLoop(PN, LI)) 3552 for (Value *IncValue : PN->incoming_values()) 3553 Worklist.push_back(IncValue); 3554 continue; 3555 } 3556 3557 Objects.push_back(P); 3558 } while (!Worklist.empty()); 3559 } 3560 3561 /// This is the function that does the work of looking through basic 3562 /// ptrtoint+arithmetic+inttoptr sequences. 3563 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3564 do { 3565 if (const Operator *U = dyn_cast<Operator>(V)) { 3566 // If we find a ptrtoint, we can transfer control back to the 3567 // regular getUnderlyingObjectFromInt. 3568 if (U->getOpcode() == Instruction::PtrToInt) 3569 return U->getOperand(0); 3570 // If we find an add of a constant, a multiplied value, or a phi, it's 3571 // likely that the other operand will lead us to the base 3572 // object. We don't have to worry about the case where the 3573 // object address is somehow being computed by the multiply, 3574 // because our callers only care when the result is an 3575 // identifiable object. 3576 if (U->getOpcode() != Instruction::Add || 3577 (!isa<ConstantInt>(U->getOperand(1)) && 3578 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3579 !isa<PHINode>(U->getOperand(1)))) 3580 return V; 3581 V = U->getOperand(0); 3582 } else { 3583 return V; 3584 } 3585 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3586 } while (true); 3587 } 3588 3589 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3590 /// ptrtoint+arithmetic+inttoptr sequences. 3591 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3592 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3593 SmallVectorImpl<Value *> &Objects, 3594 const DataLayout &DL) { 3595 SmallPtrSet<const Value *, 16> Visited; 3596 SmallVector<const Value *, 4> Working(1, V); 3597 do { 3598 V = Working.pop_back_val(); 3599 3600 SmallVector<Value *, 4> Objs; 3601 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3602 3603 for (Value *V : Objs) { 3604 if (!Visited.insert(V).second) 3605 continue; 3606 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3607 const Value *O = 3608 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3609 if (O->getType()->isPointerTy()) { 3610 Working.push_back(O); 3611 continue; 3612 } 3613 } 3614 // If GetUnderlyingObjects fails to find an identifiable object, 3615 // getUnderlyingObjectsForCodeGen also fails for safety. 3616 if (!isIdentifiedObject(V)) { 3617 Objects.clear(); 3618 return false; 3619 } 3620 Objects.push_back(const_cast<Value *>(V)); 3621 } 3622 } while (!Working.empty()); 3623 return true; 3624 } 3625 3626 /// Return true if the only users of this pointer are lifetime markers. 3627 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3628 for (const User *U : V->users()) { 3629 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3630 if (!II) return false; 3631 3632 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3633 II->getIntrinsicID() != Intrinsic::lifetime_end) 3634 return false; 3635 } 3636 return true; 3637 } 3638 3639 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3640 const Instruction *CtxI, 3641 const DominatorTree *DT) { 3642 const Operator *Inst = dyn_cast<Operator>(V); 3643 if (!Inst) 3644 return false; 3645 3646 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3647 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3648 if (C->canTrap()) 3649 return false; 3650 3651 switch (Inst->getOpcode()) { 3652 default: 3653 return true; 3654 case Instruction::UDiv: 3655 case Instruction::URem: { 3656 // x / y is undefined if y == 0. 3657 const APInt *V; 3658 if (match(Inst->getOperand(1), m_APInt(V))) 3659 return *V != 0; 3660 return false; 3661 } 3662 case Instruction::SDiv: 3663 case Instruction::SRem: { 3664 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3665 const APInt *Numerator, *Denominator; 3666 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3667 return false; 3668 // We cannot hoist this division if the denominator is 0. 3669 if (*Denominator == 0) 3670 return false; 3671 // It's safe to hoist if the denominator is not 0 or -1. 3672 if (*Denominator != -1) 3673 return true; 3674 // At this point we know that the denominator is -1. It is safe to hoist as 3675 // long we know that the numerator is not INT_MIN. 3676 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3677 return !Numerator->isMinSignedValue(); 3678 // The numerator *might* be MinSignedValue. 3679 return false; 3680 } 3681 case Instruction::Load: { 3682 const LoadInst *LI = cast<LoadInst>(Inst); 3683 if (!LI->isUnordered() || 3684 // Speculative load may create a race that did not exist in the source. 3685 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3686 // Speculative load may load data from dirty regions. 3687 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3688 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3689 return false; 3690 const DataLayout &DL = LI->getModule()->getDataLayout(); 3691 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3692 LI->getAlignment(), DL, CtxI, DT); 3693 } 3694 case Instruction::Call: { 3695 auto *CI = cast<const CallInst>(Inst); 3696 const Function *Callee = CI->getCalledFunction(); 3697 3698 // The called function could have undefined behavior or side-effects, even 3699 // if marked readnone nounwind. 3700 return Callee && Callee->isSpeculatable(); 3701 } 3702 case Instruction::VAArg: 3703 case Instruction::Alloca: 3704 case Instruction::Invoke: 3705 case Instruction::PHI: 3706 case Instruction::Store: 3707 case Instruction::Ret: 3708 case Instruction::Br: 3709 case Instruction::IndirectBr: 3710 case Instruction::Switch: 3711 case Instruction::Unreachable: 3712 case Instruction::Fence: 3713 case Instruction::AtomicRMW: 3714 case Instruction::AtomicCmpXchg: 3715 case Instruction::LandingPad: 3716 case Instruction::Resume: 3717 case Instruction::CatchSwitch: 3718 case Instruction::CatchPad: 3719 case Instruction::CatchRet: 3720 case Instruction::CleanupPad: 3721 case Instruction::CleanupRet: 3722 return false; // Misc instructions which have effects 3723 } 3724 } 3725 3726 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3727 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3728 } 3729 3730 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3731 const Value *RHS, 3732 const DataLayout &DL, 3733 AssumptionCache *AC, 3734 const Instruction *CxtI, 3735 const DominatorTree *DT) { 3736 // Multiplying n * m significant bits yields a result of n + m significant 3737 // bits. If the total number of significant bits does not exceed the 3738 // result bit width (minus 1), there is no overflow. 3739 // This means if we have enough leading zero bits in the operands 3740 // we can guarantee that the result does not overflow. 3741 // Ref: "Hacker's Delight" by Henry Warren 3742 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3743 KnownBits LHSKnown(BitWidth); 3744 KnownBits RHSKnown(BitWidth); 3745 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3746 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3747 // Note that underestimating the number of zero bits gives a more 3748 // conservative answer. 3749 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3750 RHSKnown.countMinLeadingZeros(); 3751 // First handle the easy case: if we have enough zero bits there's 3752 // definitely no overflow. 3753 if (ZeroBits >= BitWidth) 3754 return OverflowResult::NeverOverflows; 3755 3756 // Get the largest possible values for each operand. 3757 APInt LHSMax = ~LHSKnown.Zero; 3758 APInt RHSMax = ~RHSKnown.Zero; 3759 3760 // We know the multiply operation doesn't overflow if the maximum values for 3761 // each operand will not overflow after we multiply them together. 3762 bool MaxOverflow; 3763 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3764 if (!MaxOverflow) 3765 return OverflowResult::NeverOverflows; 3766 3767 // We know it always overflows if multiplying the smallest possible values for 3768 // the operands also results in overflow. 3769 bool MinOverflow; 3770 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3771 if (MinOverflow) 3772 return OverflowResult::AlwaysOverflows; 3773 3774 return OverflowResult::MayOverflow; 3775 } 3776 3777 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, 3778 const Value *RHS, 3779 const DataLayout &DL, 3780 AssumptionCache *AC, 3781 const Instruction *CxtI, 3782 const DominatorTree *DT) { 3783 // Multiplying n * m significant bits yields a result of n + m significant 3784 // bits. If the total number of significant bits does not exceed the 3785 // result bit width (minus 1), there is no overflow. 3786 // This means if we have enough leading sign bits in the operands 3787 // we can guarantee that the result does not overflow. 3788 // Ref: "Hacker's Delight" by Henry Warren 3789 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3790 3791 // Note that underestimating the number of sign bits gives a more 3792 // conservative answer. 3793 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3794 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3795 3796 // First handle the easy case: if we have enough sign bits there's 3797 // definitely no overflow. 3798 if (SignBits > BitWidth + 1) 3799 return OverflowResult::NeverOverflows; 3800 3801 // There are two ambiguous cases where there can be no overflow: 3802 // SignBits == BitWidth + 1 and 3803 // SignBits == BitWidth 3804 // The second case is difficult to check, therefore we only handle the 3805 // first case. 3806 if (SignBits == BitWidth + 1) { 3807 // It overflows only when both arguments are negative and the true 3808 // product is exactly the minimum negative number. 3809 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3810 // For simplicity we just check if at least one side is not negative. 3811 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3812 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3813 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3814 return OverflowResult::NeverOverflows; 3815 } 3816 return OverflowResult::MayOverflow; 3817 } 3818 3819 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3820 const Value *RHS, 3821 const DataLayout &DL, 3822 AssumptionCache *AC, 3823 const Instruction *CxtI, 3824 const DominatorTree *DT) { 3825 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3826 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3827 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3828 3829 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3830 // The sign bit is set in both cases: this MUST overflow. 3831 // Create a simple add instruction, and insert it into the struct. 3832 return OverflowResult::AlwaysOverflows; 3833 } 3834 3835 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3836 // The sign bit is clear in both cases: this CANNOT overflow. 3837 // Create a simple add instruction, and insert it into the struct. 3838 return OverflowResult::NeverOverflows; 3839 } 3840 } 3841 3842 return OverflowResult::MayOverflow; 3843 } 3844 3845 /// Return true if we can prove that adding the two values of the 3846 /// knownbits will not overflow. 3847 /// Otherwise return false. 3848 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3849 const KnownBits &RHSKnown) { 3850 // Addition of two 2's complement numbers having opposite signs will never 3851 // overflow. 3852 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3853 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3854 return true; 3855 3856 // If either of the values is known to be non-negative, adding them can only 3857 // overflow if the second is also non-negative, so we can assume that. 3858 // Two non-negative numbers will only overflow if there is a carry to the 3859 // sign bit, so we can check if even when the values are as big as possible 3860 // there is no overflow to the sign bit. 3861 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3862 APInt MaxLHS = ~LHSKnown.Zero; 3863 MaxLHS.clearSignBit(); 3864 APInt MaxRHS = ~RHSKnown.Zero; 3865 MaxRHS.clearSignBit(); 3866 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3867 return Result.isSignBitClear(); 3868 } 3869 3870 // If either of the values is known to be negative, adding them can only 3871 // overflow if the second is also negative, so we can assume that. 3872 // Two negative number will only overflow if there is no carry to the sign 3873 // bit, so we can check if even when the values are as small as possible 3874 // there is overflow to the sign bit. 3875 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3876 APInt MinLHS = LHSKnown.One; 3877 MinLHS.clearSignBit(); 3878 APInt MinRHS = RHSKnown.One; 3879 MinRHS.clearSignBit(); 3880 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3881 return Result.isSignBitSet(); 3882 } 3883 3884 // If we reached here it means that we know nothing about the sign bits. 3885 // In this case we can't know if there will be an overflow, since by 3886 // changing the sign bits any two values can be made to overflow. 3887 return false; 3888 } 3889 3890 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3891 const Value *RHS, 3892 const AddOperator *Add, 3893 const DataLayout &DL, 3894 AssumptionCache *AC, 3895 const Instruction *CxtI, 3896 const DominatorTree *DT) { 3897 if (Add && Add->hasNoSignedWrap()) { 3898 return OverflowResult::NeverOverflows; 3899 } 3900 3901 // If LHS and RHS each have at least two sign bits, the addition will look 3902 // like 3903 // 3904 // XX..... + 3905 // YY..... 3906 // 3907 // If the carry into the most significant position is 0, X and Y can't both 3908 // be 1 and therefore the carry out of the addition is also 0. 3909 // 3910 // If the carry into the most significant position is 1, X and Y can't both 3911 // be 0 and therefore the carry out of the addition is also 1. 3912 // 3913 // Since the carry into the most significant position is always equal to 3914 // the carry out of the addition, there is no signed overflow. 3915 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3916 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3917 return OverflowResult::NeverOverflows; 3918 3919 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3920 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3921 3922 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3923 return OverflowResult::NeverOverflows; 3924 3925 // The remaining code needs Add to be available. Early returns if not so. 3926 if (!Add) 3927 return OverflowResult::MayOverflow; 3928 3929 // If the sign of Add is the same as at least one of the operands, this add 3930 // CANNOT overflow. This is particularly useful when the sum is 3931 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3932 // operands. 3933 bool LHSOrRHSKnownNonNegative = 3934 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3935 bool LHSOrRHSKnownNegative = 3936 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3937 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3938 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3939 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3940 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3941 return OverflowResult::NeverOverflows; 3942 } 3943 } 3944 3945 return OverflowResult::MayOverflow; 3946 } 3947 3948 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 3949 const Value *RHS, 3950 const DataLayout &DL, 3951 AssumptionCache *AC, 3952 const Instruction *CxtI, 3953 const DominatorTree *DT) { 3954 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 3955 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3956 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3957 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 3958 return OverflowResult::NeverOverflows; 3959 3960 return OverflowResult::MayOverflow; 3961 } 3962 3963 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 3964 const Value *RHS, 3965 const DataLayout &DL, 3966 AssumptionCache *AC, 3967 const Instruction *CxtI, 3968 const DominatorTree *DT) { 3969 // If LHS and RHS each have at least two sign bits, the subtraction 3970 // cannot overflow. 3971 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3972 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3973 return OverflowResult::NeverOverflows; 3974 3975 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 3976 3977 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 3978 3979 // Subtraction of two 2's complement numbers having identical signs will 3980 // never overflow. 3981 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 3982 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 3983 return OverflowResult::NeverOverflows; 3984 3985 // TODO: implement logic similar to checkRippleForAdd 3986 return OverflowResult::MayOverflow; 3987 } 3988 3989 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3990 const DominatorTree &DT) { 3991 #ifndef NDEBUG 3992 auto IID = II->getIntrinsicID(); 3993 assert((IID == Intrinsic::sadd_with_overflow || 3994 IID == Intrinsic::uadd_with_overflow || 3995 IID == Intrinsic::ssub_with_overflow || 3996 IID == Intrinsic::usub_with_overflow || 3997 IID == Intrinsic::smul_with_overflow || 3998 IID == Intrinsic::umul_with_overflow) && 3999 "Not an overflow intrinsic!"); 4000 #endif 4001 4002 SmallVector<const BranchInst *, 2> GuardingBranches; 4003 SmallVector<const ExtractValueInst *, 2> Results; 4004 4005 for (const User *U : II->users()) { 4006 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4007 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4008 4009 if (EVI->getIndices()[0] == 0) 4010 Results.push_back(EVI); 4011 else { 4012 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4013 4014 for (const auto *U : EVI->users()) 4015 if (const auto *B = dyn_cast<BranchInst>(U)) { 4016 assert(B->isConditional() && "How else is it using an i1?"); 4017 GuardingBranches.push_back(B); 4018 } 4019 } 4020 } else { 4021 // We are using the aggregate directly in a way we don't want to analyze 4022 // here (storing it to a global, say). 4023 return false; 4024 } 4025 } 4026 4027 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4028 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4029 if (!NoWrapEdge.isSingleEdge()) 4030 return false; 4031 4032 // Check if all users of the add are provably no-wrap. 4033 for (const auto *Result : Results) { 4034 // If the extractvalue itself is not executed on overflow, the we don't 4035 // need to check each use separately, since domination is transitive. 4036 if (DT.dominates(NoWrapEdge, Result->getParent())) 4037 continue; 4038 4039 for (auto &RU : Result->uses()) 4040 if (!DT.dominates(NoWrapEdge, RU)) 4041 return false; 4042 } 4043 4044 return true; 4045 }; 4046 4047 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4048 } 4049 4050 4051 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4052 const DataLayout &DL, 4053 AssumptionCache *AC, 4054 const Instruction *CxtI, 4055 const DominatorTree *DT) { 4056 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4057 Add, DL, AC, CxtI, DT); 4058 } 4059 4060 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4061 const Value *RHS, 4062 const DataLayout &DL, 4063 AssumptionCache *AC, 4064 const Instruction *CxtI, 4065 const DominatorTree *DT) { 4066 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4067 } 4068 4069 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4070 // A memory operation returns normally if it isn't volatile. A volatile 4071 // operation is allowed to trap. 4072 // 4073 // An atomic operation isn't guaranteed to return in a reasonable amount of 4074 // time because it's possible for another thread to interfere with it for an 4075 // arbitrary length of time, but programs aren't allowed to rely on that. 4076 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4077 return !LI->isVolatile(); 4078 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4079 return !SI->isVolatile(); 4080 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4081 return !CXI->isVolatile(); 4082 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4083 return !RMWI->isVolatile(); 4084 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4085 return !MII->isVolatile(); 4086 4087 // If there is no successor, then execution can't transfer to it. 4088 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4089 return !CRI->unwindsToCaller(); 4090 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4091 return !CatchSwitch->unwindsToCaller(); 4092 if (isa<ResumeInst>(I)) 4093 return false; 4094 if (isa<ReturnInst>(I)) 4095 return false; 4096 if (isa<UnreachableInst>(I)) 4097 return false; 4098 4099 // Calls can throw, or contain an infinite loop, or kill the process. 4100 if (auto CS = ImmutableCallSite(I)) { 4101 // Call sites that throw have implicit non-local control flow. 4102 if (!CS.doesNotThrow()) 4103 return false; 4104 4105 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4106 // etc. and thus not return. However, LLVM already assumes that 4107 // 4108 // - Thread exiting actions are modeled as writes to memory invisible to 4109 // the program. 4110 // 4111 // - Loops that don't have side effects (side effects are volatile/atomic 4112 // stores and IO) always terminate (see http://llvm.org/PR965). 4113 // Furthermore IO itself is also modeled as writes to memory invisible to 4114 // the program. 4115 // 4116 // We rely on those assumptions here, and use the memory effects of the call 4117 // target as a proxy for checking that it always returns. 4118 4119 // FIXME: This isn't aggressive enough; a call which only writes to a global 4120 // is guaranteed to return. 4121 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4122 match(I, m_Intrinsic<Intrinsic::assume>()) || 4123 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4124 } 4125 4126 // Other instructions return normally. 4127 return true; 4128 } 4129 4130 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4131 // TODO: This is slightly consdervative for invoke instruction since exiting 4132 // via an exception *is* normal control for them. 4133 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4134 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4135 return false; 4136 return true; 4137 } 4138 4139 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4140 const Loop *L) { 4141 // The loop header is guaranteed to be executed for every iteration. 4142 // 4143 // FIXME: Relax this constraint to cover all basic blocks that are 4144 // guaranteed to be executed at every iteration. 4145 if (I->getParent() != L->getHeader()) return false; 4146 4147 for (const Instruction &LI : *L->getHeader()) { 4148 if (&LI == I) return true; 4149 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4150 } 4151 llvm_unreachable("Instruction not contained in its own parent basic block."); 4152 } 4153 4154 bool llvm::propagatesFullPoison(const Instruction *I) { 4155 switch (I->getOpcode()) { 4156 case Instruction::Add: 4157 case Instruction::Sub: 4158 case Instruction::Xor: 4159 case Instruction::Trunc: 4160 case Instruction::BitCast: 4161 case Instruction::AddrSpaceCast: 4162 case Instruction::Mul: 4163 case Instruction::Shl: 4164 case Instruction::GetElementPtr: 4165 // These operations all propagate poison unconditionally. Note that poison 4166 // is not any particular value, so xor or subtraction of poison with 4167 // itself still yields poison, not zero. 4168 return true; 4169 4170 case Instruction::AShr: 4171 case Instruction::SExt: 4172 // For these operations, one bit of the input is replicated across 4173 // multiple output bits. A replicated poison bit is still poison. 4174 return true; 4175 4176 case Instruction::ICmp: 4177 // Comparing poison with any value yields poison. This is why, for 4178 // instance, x s< (x +nsw 1) can be folded to true. 4179 return true; 4180 4181 default: 4182 return false; 4183 } 4184 } 4185 4186 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4187 switch (I->getOpcode()) { 4188 case Instruction::Store: 4189 return cast<StoreInst>(I)->getPointerOperand(); 4190 4191 case Instruction::Load: 4192 return cast<LoadInst>(I)->getPointerOperand(); 4193 4194 case Instruction::AtomicCmpXchg: 4195 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4196 4197 case Instruction::AtomicRMW: 4198 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4199 4200 case Instruction::UDiv: 4201 case Instruction::SDiv: 4202 case Instruction::URem: 4203 case Instruction::SRem: 4204 return I->getOperand(1); 4205 4206 default: 4207 return nullptr; 4208 } 4209 } 4210 4211 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4212 // We currently only look for uses of poison values within the same basic 4213 // block, as that makes it easier to guarantee that the uses will be 4214 // executed given that PoisonI is executed. 4215 // 4216 // FIXME: Expand this to consider uses beyond the same basic block. To do 4217 // this, look out for the distinction between post-dominance and strong 4218 // post-dominance. 4219 const BasicBlock *BB = PoisonI->getParent(); 4220 4221 // Set of instructions that we have proved will yield poison if PoisonI 4222 // does. 4223 SmallSet<const Value *, 16> YieldsPoison; 4224 SmallSet<const BasicBlock *, 4> Visited; 4225 YieldsPoison.insert(PoisonI); 4226 Visited.insert(PoisonI->getParent()); 4227 4228 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4229 4230 unsigned Iter = 0; 4231 while (Iter++ < MaxDepth) { 4232 for (auto &I : make_range(Begin, End)) { 4233 if (&I != PoisonI) { 4234 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4235 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4236 return true; 4237 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4238 return false; 4239 } 4240 4241 // Mark poison that propagates from I through uses of I. 4242 if (YieldsPoison.count(&I)) { 4243 for (const User *User : I.users()) { 4244 const Instruction *UserI = cast<Instruction>(User); 4245 if (propagatesFullPoison(UserI)) 4246 YieldsPoison.insert(User); 4247 } 4248 } 4249 } 4250 4251 if (auto *NextBB = BB->getSingleSuccessor()) { 4252 if (Visited.insert(NextBB).second) { 4253 BB = NextBB; 4254 Begin = BB->getFirstNonPHI()->getIterator(); 4255 End = BB->end(); 4256 continue; 4257 } 4258 } 4259 4260 break; 4261 } 4262 return false; 4263 } 4264 4265 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4266 if (FMF.noNaNs()) 4267 return true; 4268 4269 if (auto *C = dyn_cast<ConstantFP>(V)) 4270 return !C->isNaN(); 4271 return false; 4272 } 4273 4274 static bool isKnownNonZero(const Value *V) { 4275 if (auto *C = dyn_cast<ConstantFP>(V)) 4276 return !C->isZero(); 4277 return false; 4278 } 4279 4280 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4281 /// Given non-min/max outer cmp/select from the clamp pattern this 4282 /// function recognizes if it can be substitued by a "canonical" min/max 4283 /// pattern. 4284 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4285 Value *CmpLHS, Value *CmpRHS, 4286 Value *TrueVal, Value *FalseVal, 4287 Value *&LHS, Value *&RHS) { 4288 // Try to match 4289 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4290 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4291 // and return description of the outer Max/Min. 4292 4293 // First, check if select has inverse order: 4294 if (CmpRHS == FalseVal) { 4295 std::swap(TrueVal, FalseVal); 4296 Pred = CmpInst::getInversePredicate(Pred); 4297 } 4298 4299 // Assume success now. If there's no match, callers should not use these anyway. 4300 LHS = TrueVal; 4301 RHS = FalseVal; 4302 4303 const APFloat *FC1; 4304 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4305 return {SPF_UNKNOWN, SPNB_NA, false}; 4306 4307 const APFloat *FC2; 4308 switch (Pred) { 4309 case CmpInst::FCMP_OLT: 4310 case CmpInst::FCMP_OLE: 4311 case CmpInst::FCMP_ULT: 4312 case CmpInst::FCMP_ULE: 4313 if (match(FalseVal, 4314 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4315 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4316 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4317 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4318 break; 4319 case CmpInst::FCMP_OGT: 4320 case CmpInst::FCMP_OGE: 4321 case CmpInst::FCMP_UGT: 4322 case CmpInst::FCMP_UGE: 4323 if (match(FalseVal, 4324 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4325 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4326 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4327 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4328 break; 4329 default: 4330 break; 4331 } 4332 4333 return {SPF_UNKNOWN, SPNB_NA, false}; 4334 } 4335 4336 /// Recognize variations of: 4337 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4338 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4339 Value *CmpLHS, Value *CmpRHS, 4340 Value *TrueVal, Value *FalseVal) { 4341 // Swap the select operands and predicate to match the patterns below. 4342 if (CmpRHS != TrueVal) { 4343 Pred = ICmpInst::getSwappedPredicate(Pred); 4344 std::swap(TrueVal, FalseVal); 4345 } 4346 const APInt *C1; 4347 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4348 const APInt *C2; 4349 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4350 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4351 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4352 return {SPF_SMAX, SPNB_NA, false}; 4353 4354 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4355 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4356 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4357 return {SPF_SMIN, SPNB_NA, false}; 4358 4359 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4360 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4361 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4362 return {SPF_UMAX, SPNB_NA, false}; 4363 4364 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4365 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4366 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4367 return {SPF_UMIN, SPNB_NA, false}; 4368 } 4369 return {SPF_UNKNOWN, SPNB_NA, false}; 4370 } 4371 4372 /// Recognize variations of: 4373 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4374 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4375 Value *CmpLHS, Value *CmpRHS, 4376 Value *TVal, Value *FVal, 4377 unsigned Depth) { 4378 // TODO: Allow FP min/max with nnan/nsz. 4379 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4380 4381 Value *A, *B; 4382 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4383 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4384 return {SPF_UNKNOWN, SPNB_NA, false}; 4385 4386 Value *C, *D; 4387 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4388 if (L.Flavor != R.Flavor) 4389 return {SPF_UNKNOWN, SPNB_NA, false}; 4390 4391 // We have something like: x Pred y ? min(a, b) : min(c, d). 4392 // Try to match the compare to the min/max operations of the select operands. 4393 // First, make sure we have the right compare predicate. 4394 switch (L.Flavor) { 4395 case SPF_SMIN: 4396 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4397 Pred = ICmpInst::getSwappedPredicate(Pred); 4398 std::swap(CmpLHS, CmpRHS); 4399 } 4400 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4401 break; 4402 return {SPF_UNKNOWN, SPNB_NA, false}; 4403 case SPF_SMAX: 4404 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4405 Pred = ICmpInst::getSwappedPredicate(Pred); 4406 std::swap(CmpLHS, CmpRHS); 4407 } 4408 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4409 break; 4410 return {SPF_UNKNOWN, SPNB_NA, false}; 4411 case SPF_UMIN: 4412 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4413 Pred = ICmpInst::getSwappedPredicate(Pred); 4414 std::swap(CmpLHS, CmpRHS); 4415 } 4416 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4417 break; 4418 return {SPF_UNKNOWN, SPNB_NA, false}; 4419 case SPF_UMAX: 4420 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4421 Pred = ICmpInst::getSwappedPredicate(Pred); 4422 std::swap(CmpLHS, CmpRHS); 4423 } 4424 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4425 break; 4426 return {SPF_UNKNOWN, SPNB_NA, false}; 4427 default: 4428 return {SPF_UNKNOWN, SPNB_NA, false}; 4429 } 4430 4431 // If there is a common operand in the already matched min/max and the other 4432 // min/max operands match the compare operands (either directly or inverted), 4433 // then this is min/max of the same flavor. 4434 4435 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4436 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4437 if (D == B) { 4438 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4439 match(A, m_Not(m_Specific(CmpRHS))))) 4440 return {L.Flavor, SPNB_NA, false}; 4441 } 4442 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4443 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4444 if (C == B) { 4445 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4446 match(A, m_Not(m_Specific(CmpRHS))))) 4447 return {L.Flavor, SPNB_NA, false}; 4448 } 4449 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4450 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4451 if (D == A) { 4452 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4453 match(B, m_Not(m_Specific(CmpRHS))))) 4454 return {L.Flavor, SPNB_NA, false}; 4455 } 4456 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4457 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4458 if (C == A) { 4459 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4460 match(B, m_Not(m_Specific(CmpRHS))))) 4461 return {L.Flavor, SPNB_NA, false}; 4462 } 4463 4464 return {SPF_UNKNOWN, SPNB_NA, false}; 4465 } 4466 4467 /// Match non-obvious integer minimum and maximum sequences. 4468 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4469 Value *CmpLHS, Value *CmpRHS, 4470 Value *TrueVal, Value *FalseVal, 4471 Value *&LHS, Value *&RHS, 4472 unsigned Depth) { 4473 // Assume success. If there's no match, callers should not use these anyway. 4474 LHS = TrueVal; 4475 RHS = FalseVal; 4476 4477 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4478 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4479 return SPR; 4480 4481 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4482 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4483 return SPR; 4484 4485 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4486 return {SPF_UNKNOWN, SPNB_NA, false}; 4487 4488 // Z = X -nsw Y 4489 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4490 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4491 if (match(TrueVal, m_Zero()) && 4492 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4493 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4494 4495 // Z = X -nsw Y 4496 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4497 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4498 if (match(FalseVal, m_Zero()) && 4499 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4500 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4501 4502 const APInt *C1; 4503 if (!match(CmpRHS, m_APInt(C1))) 4504 return {SPF_UNKNOWN, SPNB_NA, false}; 4505 4506 // An unsigned min/max can be written with a signed compare. 4507 const APInt *C2; 4508 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4509 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4510 // Is the sign bit set? 4511 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4512 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4513 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4514 C2->isMaxSignedValue()) 4515 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4516 4517 // Is the sign bit clear? 4518 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4519 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4520 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4521 C2->isMinSignedValue()) 4522 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4523 } 4524 4525 // Look through 'not' ops to find disguised signed min/max. 4526 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4527 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4528 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4529 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4530 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4531 4532 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4533 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4534 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4535 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4536 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4537 4538 return {SPF_UNKNOWN, SPNB_NA, false}; 4539 } 4540 4541 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 4542 assert(X && Y && "Invalid operand"); 4543 4544 // X = sub (0, Y) || X = sub nsw (0, Y) 4545 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 4546 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 4547 return true; 4548 4549 // Y = sub (0, X) || Y = sub nsw (0, X) 4550 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 4551 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 4552 return true; 4553 4554 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 4555 Value *A, *B; 4556 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 4557 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 4558 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 4559 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 4560 } 4561 4562 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4563 FastMathFlags FMF, 4564 Value *CmpLHS, Value *CmpRHS, 4565 Value *TrueVal, Value *FalseVal, 4566 Value *&LHS, Value *&RHS, 4567 unsigned Depth) { 4568 LHS = CmpLHS; 4569 RHS = CmpRHS; 4570 4571 // Signed zero may return inconsistent results between implementations. 4572 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4573 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4574 // Therefore, we behave conservatively and only proceed if at least one of the 4575 // operands is known to not be zero or if we don't care about signed zero. 4576 switch (Pred) { 4577 default: break; 4578 // FIXME: Include OGT/OLT/UGT/ULT. 4579 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4580 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4581 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4582 !isKnownNonZero(CmpRHS)) 4583 return {SPF_UNKNOWN, SPNB_NA, false}; 4584 } 4585 4586 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4587 bool Ordered = false; 4588 4589 // When given one NaN and one non-NaN input: 4590 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4591 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4592 // ordered comparison fails), which could be NaN or non-NaN. 4593 // so here we discover exactly what NaN behavior is required/accepted. 4594 if (CmpInst::isFPPredicate(Pred)) { 4595 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4596 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4597 4598 if (LHSSafe && RHSSafe) { 4599 // Both operands are known non-NaN. 4600 NaNBehavior = SPNB_RETURNS_ANY; 4601 } else if (CmpInst::isOrdered(Pred)) { 4602 // An ordered comparison will return false when given a NaN, so it 4603 // returns the RHS. 4604 Ordered = true; 4605 if (LHSSafe) 4606 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4607 NaNBehavior = SPNB_RETURNS_NAN; 4608 else if (RHSSafe) 4609 NaNBehavior = SPNB_RETURNS_OTHER; 4610 else 4611 // Completely unsafe. 4612 return {SPF_UNKNOWN, SPNB_NA, false}; 4613 } else { 4614 Ordered = false; 4615 // An unordered comparison will return true when given a NaN, so it 4616 // returns the LHS. 4617 if (LHSSafe) 4618 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4619 NaNBehavior = SPNB_RETURNS_OTHER; 4620 else if (RHSSafe) 4621 NaNBehavior = SPNB_RETURNS_NAN; 4622 else 4623 // Completely unsafe. 4624 return {SPF_UNKNOWN, SPNB_NA, false}; 4625 } 4626 } 4627 4628 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4629 std::swap(CmpLHS, CmpRHS); 4630 Pred = CmpInst::getSwappedPredicate(Pred); 4631 if (NaNBehavior == SPNB_RETURNS_NAN) 4632 NaNBehavior = SPNB_RETURNS_OTHER; 4633 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4634 NaNBehavior = SPNB_RETURNS_NAN; 4635 Ordered = !Ordered; 4636 } 4637 4638 // ([if]cmp X, Y) ? X : Y 4639 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4640 switch (Pred) { 4641 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4642 case ICmpInst::ICMP_UGT: 4643 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4644 case ICmpInst::ICMP_SGT: 4645 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4646 case ICmpInst::ICMP_ULT: 4647 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4648 case ICmpInst::ICMP_SLT: 4649 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4650 case FCmpInst::FCMP_UGT: 4651 case FCmpInst::FCMP_UGE: 4652 case FCmpInst::FCMP_OGT: 4653 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4654 case FCmpInst::FCMP_ULT: 4655 case FCmpInst::FCMP_ULE: 4656 case FCmpInst::FCMP_OLT: 4657 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4658 } 4659 } 4660 4661 if (isKnownNegation(TrueVal, FalseVal)) { 4662 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4663 // match against either LHS or sext(LHS). 4664 auto MaybeSExtCmpLHS = 4665 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 4666 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 4667 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 4668 if (match(TrueVal, MaybeSExtCmpLHS)) { 4669 // Set the return values. If the compare uses the negated value (-X >s 0), 4670 // swap the return values because the negated value is always 'RHS'. 4671 LHS = TrueVal; 4672 RHS = FalseVal; 4673 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 4674 std::swap(LHS, RHS); 4675 4676 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 4677 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 4678 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4679 return {SPF_ABS, SPNB_NA, false}; 4680 4681 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 4682 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 4683 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4684 return {SPF_NABS, SPNB_NA, false}; 4685 } 4686 else if (match(FalseVal, MaybeSExtCmpLHS)) { 4687 // Set the return values. If the compare uses the negated value (-X >s 0), 4688 // swap the return values because the negated value is always 'RHS'. 4689 LHS = FalseVal; 4690 RHS = TrueVal; 4691 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 4692 std::swap(LHS, RHS); 4693 4694 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 4695 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 4696 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 4697 return {SPF_NABS, SPNB_NA, false}; 4698 4699 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 4700 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 4701 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 4702 return {SPF_ABS, SPNB_NA, false}; 4703 } 4704 } 4705 4706 if (CmpInst::isIntPredicate(Pred)) 4707 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4708 4709 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4710 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4711 // semantics than minNum. Be conservative in such case. 4712 if (NaNBehavior != SPNB_RETURNS_ANY || 4713 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4714 !isKnownNonZero(CmpRHS))) 4715 return {SPF_UNKNOWN, SPNB_NA, false}; 4716 4717 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4718 } 4719 4720 /// Helps to match a select pattern in case of a type mismatch. 4721 /// 4722 /// The function processes the case when type of true and false values of a 4723 /// select instruction differs from type of the cmp instruction operands because 4724 /// of a cast instruction. The function checks if it is legal to move the cast 4725 /// operation after "select". If yes, it returns the new second value of 4726 /// "select" (with the assumption that cast is moved): 4727 /// 1. As operand of cast instruction when both values of "select" are same cast 4728 /// instructions. 4729 /// 2. As restored constant (by applying reverse cast operation) when the first 4730 /// value of the "select" is a cast operation and the second value is a 4731 /// constant. 4732 /// NOTE: We return only the new second value because the first value could be 4733 /// accessed as operand of cast instruction. 4734 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4735 Instruction::CastOps *CastOp) { 4736 auto *Cast1 = dyn_cast<CastInst>(V1); 4737 if (!Cast1) 4738 return nullptr; 4739 4740 *CastOp = Cast1->getOpcode(); 4741 Type *SrcTy = Cast1->getSrcTy(); 4742 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4743 // If V1 and V2 are both the same cast from the same type, look through V1. 4744 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4745 return Cast2->getOperand(0); 4746 return nullptr; 4747 } 4748 4749 auto *C = dyn_cast<Constant>(V2); 4750 if (!C) 4751 return nullptr; 4752 4753 Constant *CastedTo = nullptr; 4754 switch (*CastOp) { 4755 case Instruction::ZExt: 4756 if (CmpI->isUnsigned()) 4757 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4758 break; 4759 case Instruction::SExt: 4760 if (CmpI->isSigned()) 4761 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4762 break; 4763 case Instruction::Trunc: 4764 Constant *CmpConst; 4765 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4766 CmpConst->getType() == SrcTy) { 4767 // Here we have the following case: 4768 // 4769 // %cond = cmp iN %x, CmpConst 4770 // %tr = trunc iN %x to iK 4771 // %narrowsel = select i1 %cond, iK %t, iK C 4772 // 4773 // We can always move trunc after select operation: 4774 // 4775 // %cond = cmp iN %x, CmpConst 4776 // %widesel = select i1 %cond, iN %x, iN CmpConst 4777 // %tr = trunc iN %widesel to iK 4778 // 4779 // Note that C could be extended in any way because we don't care about 4780 // upper bits after truncation. It can't be abs pattern, because it would 4781 // look like: 4782 // 4783 // select i1 %cond, x, -x. 4784 // 4785 // So only min/max pattern could be matched. Such match requires widened C 4786 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4787 // CmpConst == C is checked below. 4788 CastedTo = CmpConst; 4789 } else { 4790 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4791 } 4792 break; 4793 case Instruction::FPTrunc: 4794 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4795 break; 4796 case Instruction::FPExt: 4797 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4798 break; 4799 case Instruction::FPToUI: 4800 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4801 break; 4802 case Instruction::FPToSI: 4803 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4804 break; 4805 case Instruction::UIToFP: 4806 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4807 break; 4808 case Instruction::SIToFP: 4809 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4810 break; 4811 default: 4812 break; 4813 } 4814 4815 if (!CastedTo) 4816 return nullptr; 4817 4818 // Make sure the cast doesn't lose any information. 4819 Constant *CastedBack = 4820 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4821 if (CastedBack != C) 4822 return nullptr; 4823 4824 return CastedTo; 4825 } 4826 4827 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4828 Instruction::CastOps *CastOp, 4829 unsigned Depth) { 4830 if (Depth >= MaxDepth) 4831 return {SPF_UNKNOWN, SPNB_NA, false}; 4832 4833 SelectInst *SI = dyn_cast<SelectInst>(V); 4834 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4835 4836 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4837 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4838 4839 CmpInst::Predicate Pred = CmpI->getPredicate(); 4840 Value *CmpLHS = CmpI->getOperand(0); 4841 Value *CmpRHS = CmpI->getOperand(1); 4842 Value *TrueVal = SI->getTrueValue(); 4843 Value *FalseVal = SI->getFalseValue(); 4844 FastMathFlags FMF; 4845 if (isa<FPMathOperator>(CmpI)) 4846 FMF = CmpI->getFastMathFlags(); 4847 4848 // Bail out early. 4849 if (CmpI->isEquality()) 4850 return {SPF_UNKNOWN, SPNB_NA, false}; 4851 4852 // Deal with type mismatches. 4853 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4854 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4855 // If this is a potential fmin/fmax with a cast to integer, then ignore 4856 // -0.0 because there is no corresponding integer value. 4857 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4858 FMF.setNoSignedZeros(); 4859 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4860 cast<CastInst>(TrueVal)->getOperand(0), C, 4861 LHS, RHS, Depth); 4862 } 4863 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4864 // If this is a potential fmin/fmax with a cast to integer, then ignore 4865 // -0.0 because there is no corresponding integer value. 4866 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4867 FMF.setNoSignedZeros(); 4868 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4869 C, cast<CastInst>(FalseVal)->getOperand(0), 4870 LHS, RHS, Depth); 4871 } 4872 } 4873 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4874 LHS, RHS, Depth); 4875 } 4876 4877 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4878 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4879 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4880 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4881 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4882 if (SPF == SPF_FMINNUM) 4883 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4884 if (SPF == SPF_FMAXNUM) 4885 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4886 llvm_unreachable("unhandled!"); 4887 } 4888 4889 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4890 if (SPF == SPF_SMIN) return SPF_SMAX; 4891 if (SPF == SPF_UMIN) return SPF_UMAX; 4892 if (SPF == SPF_SMAX) return SPF_SMIN; 4893 if (SPF == SPF_UMAX) return SPF_UMIN; 4894 llvm_unreachable("unhandled!"); 4895 } 4896 4897 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4898 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4899 } 4900 4901 /// Return true if "icmp Pred LHS RHS" is always true. 4902 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4903 const Value *RHS, const DataLayout &DL, 4904 unsigned Depth) { 4905 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4906 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4907 return true; 4908 4909 switch (Pred) { 4910 default: 4911 return false; 4912 4913 case CmpInst::ICMP_SLE: { 4914 const APInt *C; 4915 4916 // LHS s<= LHS +_{nsw} C if C >= 0 4917 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4918 return !C->isNegative(); 4919 return false; 4920 } 4921 4922 case CmpInst::ICMP_ULE: { 4923 const APInt *C; 4924 4925 // LHS u<= LHS +_{nuw} C for any C 4926 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4927 return true; 4928 4929 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4930 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4931 const Value *&X, 4932 const APInt *&CA, const APInt *&CB) { 4933 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4934 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4935 return true; 4936 4937 // If X & C == 0 then (X | C) == X +_{nuw} C 4938 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4939 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4940 KnownBits Known(CA->getBitWidth()); 4941 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4942 /*CxtI*/ nullptr, /*DT*/ nullptr); 4943 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4944 return true; 4945 } 4946 4947 return false; 4948 }; 4949 4950 const Value *X; 4951 const APInt *CLHS, *CRHS; 4952 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4953 return CLHS->ule(*CRHS); 4954 4955 return false; 4956 } 4957 } 4958 } 4959 4960 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4961 /// ALHS ARHS" is true. Otherwise, return None. 4962 static Optional<bool> 4963 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4964 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4965 const DataLayout &DL, unsigned Depth) { 4966 switch (Pred) { 4967 default: 4968 return None; 4969 4970 case CmpInst::ICMP_SLT: 4971 case CmpInst::ICMP_SLE: 4972 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4973 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4974 return true; 4975 return None; 4976 4977 case CmpInst::ICMP_ULT: 4978 case CmpInst::ICMP_ULE: 4979 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4980 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4981 return true; 4982 return None; 4983 } 4984 } 4985 4986 /// Return true if the operands of the two compares match. IsSwappedOps is true 4987 /// when the operands match, but are swapped. 4988 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4989 const Value *BLHS, const Value *BRHS, 4990 bool &IsSwappedOps) { 4991 4992 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4993 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4994 return IsMatchingOps || IsSwappedOps; 4995 } 4996 4997 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4998 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4999 /// BRHS" is false. Otherwise, return None if we can't infer anything. 5000 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5001 const Value *ALHS, 5002 const Value *ARHS, 5003 CmpInst::Predicate BPred, 5004 const Value *BLHS, 5005 const Value *BRHS, 5006 bool IsSwappedOps) { 5007 // Canonicalize the operands so they're matching. 5008 if (IsSwappedOps) { 5009 std::swap(BLHS, BRHS); 5010 BPred = ICmpInst::getSwappedPredicate(BPred); 5011 } 5012 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5013 return true; 5014 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5015 return false; 5016 5017 return None; 5018 } 5019 5020 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 5021 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 5022 /// C2" is false. Otherwise, return None if we can't infer anything. 5023 static Optional<bool> 5024 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 5025 const ConstantInt *C1, 5026 CmpInst::Predicate BPred, 5027 const Value *BLHS, const ConstantInt *C2) { 5028 assert(ALHS == BLHS && "LHS operands must match."); 5029 ConstantRange DomCR = 5030 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5031 ConstantRange CR = 5032 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5033 ConstantRange Intersection = DomCR.intersectWith(CR); 5034 ConstantRange Difference = DomCR.difference(CR); 5035 if (Intersection.isEmptySet()) 5036 return false; 5037 if (Difference.isEmptySet()) 5038 return true; 5039 return None; 5040 } 5041 5042 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5043 /// false. Otherwise, return None if we can't infer anything. 5044 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5045 const ICmpInst *RHS, 5046 const DataLayout &DL, bool LHSIsTrue, 5047 unsigned Depth) { 5048 Value *ALHS = LHS->getOperand(0); 5049 Value *ARHS = LHS->getOperand(1); 5050 // The rest of the logic assumes the LHS condition is true. If that's not the 5051 // case, invert the predicate to make it so. 5052 ICmpInst::Predicate APred = 5053 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5054 5055 Value *BLHS = RHS->getOperand(0); 5056 Value *BRHS = RHS->getOperand(1); 5057 ICmpInst::Predicate BPred = RHS->getPredicate(); 5058 5059 // Can we infer anything when the two compares have matching operands? 5060 bool IsSwappedOps; 5061 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 5062 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5063 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 5064 return Implication; 5065 // No amount of additional analysis will infer the second condition, so 5066 // early exit. 5067 return None; 5068 } 5069 5070 // Can we infer anything when the LHS operands match and the RHS operands are 5071 // constants (not necessarily matching)? 5072 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5073 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5074 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 5075 cast<ConstantInt>(BRHS))) 5076 return Implication; 5077 // No amount of additional analysis will infer the second condition, so 5078 // early exit. 5079 return None; 5080 } 5081 5082 if (APred == BPred) 5083 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5084 return None; 5085 } 5086 5087 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5088 /// false. Otherwise, return None if we can't infer anything. We expect the 5089 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5090 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5091 const ICmpInst *RHS, 5092 const DataLayout &DL, bool LHSIsTrue, 5093 unsigned Depth) { 5094 // The LHS must be an 'or' or an 'and' instruction. 5095 assert((LHS->getOpcode() == Instruction::And || 5096 LHS->getOpcode() == Instruction::Or) && 5097 "Expected LHS to be 'and' or 'or'."); 5098 5099 assert(Depth <= MaxDepth && "Hit recursion limit"); 5100 5101 // If the result of an 'or' is false, then we know both legs of the 'or' are 5102 // false. Similarly, if the result of an 'and' is true, then we know both 5103 // legs of the 'and' are true. 5104 Value *ALHS, *ARHS; 5105 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5106 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5107 // FIXME: Make this non-recursion. 5108 if (Optional<bool> Implication = 5109 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5110 return Implication; 5111 if (Optional<bool> Implication = 5112 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5113 return Implication; 5114 return None; 5115 } 5116 return None; 5117 } 5118 5119 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5120 const DataLayout &DL, bool LHSIsTrue, 5121 unsigned Depth) { 5122 // Bail out when we hit the limit. 5123 if (Depth == MaxDepth) 5124 return None; 5125 5126 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5127 // example. 5128 if (LHS->getType() != RHS->getType()) 5129 return None; 5130 5131 Type *OpTy = LHS->getType(); 5132 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5133 5134 // LHS ==> RHS by definition 5135 if (LHS == RHS) 5136 return LHSIsTrue; 5137 5138 // FIXME: Extending the code below to handle vectors. 5139 if (OpTy->isVectorTy()) 5140 return None; 5141 5142 assert(OpTy->isIntegerTy(1) && "implied by above"); 5143 5144 // Both LHS and RHS are icmps. 5145 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5146 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5147 if (LHSCmp && RHSCmp) 5148 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5149 5150 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5151 // an icmp. FIXME: Add support for and/or on the RHS. 5152 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5153 if (LHSBO && RHSCmp) { 5154 if ((LHSBO->getOpcode() == Instruction::And || 5155 LHSBO->getOpcode() == Instruction::Or)) 5156 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5157 } 5158 return None; 5159 } 5160