1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 // According to the LangRef, branching on a poison condition is absolutely 88 // immediate full UB. However, historically we haven't implemented that 89 // consistently as we have an important transformation (non-trivial unswitch) 90 // which introduces instances of branch on poison/undef to otherwise well 91 // defined programs. This flag exists to let us test optimization benefit 92 // of exploiting the specified behavior (in combination with enabling the 93 // unswitch fix.) 94 static cl::opt<bool> BranchOnPoisonAsUB("branch-on-poison-as-ub", 95 cl::Hidden, cl::init(false)); 96 97 98 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 99 /// returns the element type's bitwidth. 100 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 101 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 102 return BitWidth; 103 104 return DL.getPointerTypeSizeInBits(Ty); 105 } 106 107 namespace { 108 109 // Simplifying using an assume can only be done in a particular control-flow 110 // context (the context instruction provides that context). If an assume and 111 // the context instruction are not in the same block then the DT helps in 112 // figuring out if we can use it. 113 struct Query { 114 const DataLayout &DL; 115 AssumptionCache *AC; 116 const Instruction *CxtI; 117 const DominatorTree *DT; 118 119 // Unlike the other analyses, this may be a nullptr because not all clients 120 // provide it currently. 121 OptimizationRemarkEmitter *ORE; 122 123 /// If true, it is safe to use metadata during simplification. 124 InstrInfoQuery IIQ; 125 126 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 127 const DominatorTree *DT, bool UseInstrInfo, 128 OptimizationRemarkEmitter *ORE = nullptr) 129 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 130 }; 131 132 } // end anonymous namespace 133 134 // Given the provided Value and, potentially, a context instruction, return 135 // the preferred context instruction (if any). 136 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 137 // If we've been provided with a context instruction, then use that (provided 138 // it has been inserted). 139 if (CxtI && CxtI->getParent()) 140 return CxtI; 141 142 // If the value is really an already-inserted instruction, then use that. 143 CxtI = dyn_cast<Instruction>(V); 144 if (CxtI && CxtI->getParent()) 145 return CxtI; 146 147 return nullptr; 148 } 149 150 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V1); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 CxtI = dyn_cast<Instruction>(V2); 162 if (CxtI && CxtI->getParent()) 163 return CxtI; 164 165 return nullptr; 166 } 167 168 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 169 const APInt &DemandedElts, 170 APInt &DemandedLHS, APInt &DemandedRHS) { 171 // The length of scalable vectors is unknown at compile time, thus we 172 // cannot check their values 173 if (isa<ScalableVectorType>(Shuf->getType())) 174 return false; 175 176 int NumElts = 177 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 178 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 179 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 180 if (DemandedElts.isZero()) 181 return true; 182 // Simple case of a shuffle with zeroinitializer. 183 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 184 DemandedLHS.setBit(0); 185 return true; 186 } 187 for (int i = 0; i != NumMaskElts; ++i) { 188 if (!DemandedElts[i]) 189 continue; 190 int M = Shuf->getMaskValue(i); 191 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 192 193 // For undef elements, we don't know anything about the common state of 194 // the shuffle result. 195 if (M == -1) 196 return false; 197 if (M < NumElts) 198 DemandedLHS.setBit(M % NumElts); 199 else 200 DemandedRHS.setBit(M % NumElts); 201 } 202 203 return true; 204 } 205 206 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 207 KnownBits &Known, unsigned Depth, const Query &Q); 208 209 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 210 const Query &Q) { 211 // FIXME: We currently have no way to represent the DemandedElts of a scalable 212 // vector 213 if (isa<ScalableVectorType>(V->getType())) { 214 Known.resetAll(); 215 return; 216 } 217 218 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 219 APInt DemandedElts = 220 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 221 computeKnownBits(V, DemandedElts, Known, Depth, Q); 222 } 223 224 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 225 const DataLayout &DL, unsigned Depth, 226 AssumptionCache *AC, const Instruction *CxtI, 227 const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 234 KnownBits &Known, const DataLayout &DL, 235 unsigned Depth, AssumptionCache *AC, 236 const Instruction *CxtI, const DominatorTree *DT, 237 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 238 ::computeKnownBits(V, DemandedElts, Known, Depth, 239 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 240 } 241 242 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 243 unsigned Depth, const Query &Q); 244 245 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 246 const Query &Q); 247 248 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, 251 const DominatorTree *DT, 252 OptimizationRemarkEmitter *ORE, 253 bool UseInstrInfo) { 254 return ::computeKnownBits( 255 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 259 const DataLayout &DL, unsigned Depth, 260 AssumptionCache *AC, const Instruction *CxtI, 261 const DominatorTree *DT, 262 OptimizationRemarkEmitter *ORE, 263 bool UseInstrInfo) { 264 return ::computeKnownBits( 265 V, DemandedElts, Depth, 266 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 267 } 268 269 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 270 const DataLayout &DL, AssumptionCache *AC, 271 const Instruction *CxtI, const DominatorTree *DT, 272 bool UseInstrInfo) { 273 assert(LHS->getType() == RHS->getType() && 274 "LHS and RHS should have the same type"); 275 assert(LHS->getType()->isIntOrIntVectorTy() && 276 "LHS and RHS should be integers"); 277 // Look for an inverted mask: (X & ~M) op (Y & M). 278 Value *M; 279 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 280 match(RHS, m_c_And(m_Specific(M), m_Value()))) 281 return true; 282 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 283 match(LHS, m_c_And(m_Specific(M), m_Value()))) 284 return true; 285 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 286 KnownBits LHSKnown(IT->getBitWidth()); 287 KnownBits RHSKnown(IT->getBitWidth()); 288 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 289 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 290 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 291 } 292 293 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 294 return !I->user_empty() && all_of(I->users(), [](const User *U) { 295 ICmpInst::Predicate P; 296 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 297 }); 298 } 299 300 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 301 const Query &Q); 302 303 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 304 bool OrZero, unsigned Depth, 305 AssumptionCache *AC, const Instruction *CxtI, 306 const DominatorTree *DT, bool UseInstrInfo) { 307 return ::isKnownToBeAPowerOfTwo( 308 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 309 } 310 311 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 312 unsigned Depth, const Query &Q); 313 314 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 315 316 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 317 AssumptionCache *AC, const Instruction *CxtI, 318 const DominatorTree *DT, bool UseInstrInfo) { 319 return ::isKnownNonZero(V, Depth, 320 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 321 } 322 323 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 324 unsigned Depth, AssumptionCache *AC, 325 const Instruction *CxtI, const DominatorTree *DT, 326 bool UseInstrInfo) { 327 KnownBits Known = 328 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 329 return Known.isNonNegative(); 330 } 331 332 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 333 AssumptionCache *AC, const Instruction *CxtI, 334 const DominatorTree *DT, bool UseInstrInfo) { 335 if (auto *CI = dyn_cast<ConstantInt>(V)) 336 return CI->getValue().isStrictlyPositive(); 337 338 // TODO: We'd doing two recursive queries here. We should factor this such 339 // that only a single query is needed. 340 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 341 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 342 } 343 344 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 345 AssumptionCache *AC, const Instruction *CxtI, 346 const DominatorTree *DT, bool UseInstrInfo) { 347 KnownBits Known = 348 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 349 return Known.isNegative(); 350 } 351 352 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 353 const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 0, 360 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 unsigned llvm::ComputeMaxSignificantBits(const Value *V, const DataLayout &DL, 400 unsigned Depth, AssumptionCache *AC, 401 const Instruction *CxtI, 402 const DominatorTree *DT) { 403 unsigned SignBits = ComputeNumSignBits(V, DL, Depth, AC, CxtI, DT); 404 return V->getType()->getScalarSizeInBits() - SignBits + 1; 405 } 406 407 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 408 bool NSW, const APInt &DemandedElts, 409 KnownBits &KnownOut, KnownBits &Known2, 410 unsigned Depth, const Query &Q) { 411 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 412 413 // If one operand is unknown and we have no nowrap information, 414 // the result will be unknown independently of the second operand. 415 if (KnownOut.isUnknown() && !NSW) 416 return; 417 418 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 419 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 420 } 421 422 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 423 const APInt &DemandedElts, KnownBits &Known, 424 KnownBits &Known2, unsigned Depth, 425 const Query &Q) { 426 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 427 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 428 429 bool isKnownNegative = false; 430 bool isKnownNonNegative = false; 431 // If the multiplication is known not to overflow, compute the sign bit. 432 if (NSW) { 433 if (Op0 == Op1) { 434 // The product of a number with itself is non-negative. 435 isKnownNonNegative = true; 436 } else { 437 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 438 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 439 bool isKnownNegativeOp1 = Known.isNegative(); 440 bool isKnownNegativeOp0 = Known2.isNegative(); 441 // The product of two numbers with the same sign is non-negative. 442 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 443 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 444 // The product of a negative number and a non-negative number is either 445 // negative or zero. 446 if (!isKnownNonNegative) 447 isKnownNegative = 448 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 449 Known2.isNonZero()) || 450 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 451 } 452 } 453 454 bool SelfMultiply = Op0 == Op1; 455 // TODO: SelfMultiply can be poison, but not undef. 456 if (SelfMultiply) 457 SelfMultiply &= 458 isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT, Depth + 1); 459 Known = KnownBits::mul(Known, Known2, SelfMultiply); 460 461 // Only make use of no-wrap flags if we failed to compute the sign bit 462 // directly. This matters if the multiplication always overflows, in 463 // which case we prefer to follow the result of the direct computation, 464 // though as the program is invoking undefined behaviour we can choose 465 // whatever we like here. 466 if (isKnownNonNegative && !Known.isNegative()) 467 Known.makeNonNegative(); 468 else if (isKnownNegative && !Known.isNonNegative()) 469 Known.makeNegative(); 470 } 471 472 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 473 KnownBits &Known) { 474 unsigned BitWidth = Known.getBitWidth(); 475 unsigned NumRanges = Ranges.getNumOperands() / 2; 476 assert(NumRanges >= 1); 477 478 Known.Zero.setAllBits(); 479 Known.One.setAllBits(); 480 481 for (unsigned i = 0; i < NumRanges; ++i) { 482 ConstantInt *Lower = 483 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 484 ConstantInt *Upper = 485 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 486 ConstantRange Range(Lower->getValue(), Upper->getValue()); 487 488 // The first CommonPrefixBits of all values in Range are equal. 489 unsigned CommonPrefixBits = 490 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 491 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 492 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 493 Known.One &= UnsignedMax & Mask; 494 Known.Zero &= ~UnsignedMax & Mask; 495 } 496 } 497 498 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 499 SmallVector<const Value *, 16> WorkSet(1, I); 500 SmallPtrSet<const Value *, 32> Visited; 501 SmallPtrSet<const Value *, 16> EphValues; 502 503 // The instruction defining an assumption's condition itself is always 504 // considered ephemeral to that assumption (even if it has other 505 // non-ephemeral users). See r246696's test case for an example. 506 if (is_contained(I->operands(), E)) 507 return true; 508 509 while (!WorkSet.empty()) { 510 const Value *V = WorkSet.pop_back_val(); 511 if (!Visited.insert(V).second) 512 continue; 513 514 // If all uses of this value are ephemeral, then so is this value. 515 if (llvm::all_of(V->users(), [&](const User *U) { 516 return EphValues.count(U); 517 })) { 518 if (V == E) 519 return true; 520 521 if (V == I || (isa<Instruction>(V) && 522 !cast<Instruction>(V)->mayHaveSideEffects() && 523 !cast<Instruction>(V)->isTerminator())) { 524 EphValues.insert(V); 525 if (const User *U = dyn_cast<User>(V)) 526 append_range(WorkSet, U->operands()); 527 } 528 } 529 } 530 531 return false; 532 } 533 534 // Is this an intrinsic that cannot be speculated but also cannot trap? 535 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 536 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 537 return CI->isAssumeLikeIntrinsic(); 538 539 return false; 540 } 541 542 bool llvm::isValidAssumeForContext(const Instruction *Inv, 543 const Instruction *CxtI, 544 const DominatorTree *DT) { 545 // There are two restrictions on the use of an assume: 546 // 1. The assume must dominate the context (or the control flow must 547 // reach the assume whenever it reaches the context). 548 // 2. The context must not be in the assume's set of ephemeral values 549 // (otherwise we will use the assume to prove that the condition 550 // feeding the assume is trivially true, thus causing the removal of 551 // the assume). 552 553 if (Inv->getParent() == CxtI->getParent()) { 554 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 555 // in the BB. 556 if (Inv->comesBefore(CxtI)) 557 return true; 558 559 // Don't let an assume affect itself - this would cause the problems 560 // `isEphemeralValueOf` is trying to prevent, and it would also make 561 // the loop below go out of bounds. 562 if (Inv == CxtI) 563 return false; 564 565 // The context comes first, but they're both in the same block. 566 // Make sure there is nothing in between that might interrupt 567 // the control flow, not even CxtI itself. 568 // We limit the scan distance between the assume and its context instruction 569 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 570 // it can be adjusted if needed (could be turned into a cl::opt). 571 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 572 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 573 return false; 574 575 return !isEphemeralValueOf(Inv, CxtI); 576 } 577 578 // Inv and CxtI are in different blocks. 579 if (DT) { 580 if (DT->dominates(Inv, CxtI)) 581 return true; 582 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 583 // We don't have a DT, but this trivially dominates. 584 return true; 585 } 586 587 return false; 588 } 589 590 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 591 // v u> y implies v != 0. 592 if (Pred == ICmpInst::ICMP_UGT) 593 return true; 594 595 // Special-case v != 0 to also handle v != null. 596 if (Pred == ICmpInst::ICMP_NE) 597 return match(RHS, m_Zero()); 598 599 // All other predicates - rely on generic ConstantRange handling. 600 const APInt *C; 601 if (!match(RHS, m_APInt(C))) 602 return false; 603 604 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 605 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 606 } 607 608 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 609 // Use of assumptions is context-sensitive. If we don't have a context, we 610 // cannot use them! 611 if (!Q.AC || !Q.CxtI) 612 return false; 613 614 if (Q.CxtI && V->getType()->isPointerTy()) { 615 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 616 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 617 V->getType()->getPointerAddressSpace())) 618 AttrKinds.push_back(Attribute::Dereferenceable); 619 620 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 621 return true; 622 } 623 624 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 625 if (!AssumeVH) 626 continue; 627 CallInst *I = cast<CallInst>(AssumeVH); 628 assert(I->getFunction() == Q.CxtI->getFunction() && 629 "Got assumption for the wrong function!"); 630 631 // Warning: This loop can end up being somewhat performance sensitive. 632 // We're running this loop for once for each value queried resulting in a 633 // runtime of ~O(#assumes * #values). 634 635 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 636 "must be an assume intrinsic"); 637 638 Value *RHS; 639 CmpInst::Predicate Pred; 640 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 641 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 642 return false; 643 644 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 645 return true; 646 } 647 648 return false; 649 } 650 651 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 652 unsigned Depth, const Query &Q) { 653 // Use of assumptions is context-sensitive. If we don't have a context, we 654 // cannot use them! 655 if (!Q.AC || !Q.CxtI) 656 return; 657 658 unsigned BitWidth = Known.getBitWidth(); 659 660 // Refine Known set if the pointer alignment is set by assume bundles. 661 if (V->getType()->isPointerTy()) { 662 if (RetainedKnowledge RK = getKnowledgeValidInContext( 663 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 664 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 665 } 666 } 667 668 // Note that the patterns below need to be kept in sync with the code 669 // in AssumptionCache::updateAffectedValues. 670 671 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 672 if (!AssumeVH) 673 continue; 674 CallInst *I = cast<CallInst>(AssumeVH); 675 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 676 "Got assumption for the wrong function!"); 677 678 // Warning: This loop can end up being somewhat performance sensitive. 679 // We're running this loop for once for each value queried resulting in a 680 // runtime of ~O(#assumes * #values). 681 682 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 683 "must be an assume intrinsic"); 684 685 Value *Arg = I->getArgOperand(0); 686 687 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 688 assert(BitWidth == 1 && "assume operand is not i1?"); 689 Known.setAllOnes(); 690 return; 691 } 692 if (match(Arg, m_Not(m_Specific(V))) && 693 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 694 assert(BitWidth == 1 && "assume operand is not i1?"); 695 Known.setAllZero(); 696 return; 697 } 698 699 // The remaining tests are all recursive, so bail out if we hit the limit. 700 if (Depth == MaxAnalysisRecursionDepth) 701 continue; 702 703 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 704 if (!Cmp) 705 continue; 706 707 // We are attempting to compute known bits for the operands of an assume. 708 // Do not try to use other assumptions for those recursive calls because 709 // that can lead to mutual recursion and a compile-time explosion. 710 // An example of the mutual recursion: computeKnownBits can call 711 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 712 // and so on. 713 Query QueryNoAC = Q; 714 QueryNoAC.AC = nullptr; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 1207 // Handle cast from vector integer type to scalar or vector integer. 1208 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1209 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1210 !I->getType()->isIntOrIntVectorTy()) 1211 break; 1212 1213 // Look through a cast from narrow vector elements to wider type. 1214 // Examples: v4i32 -> v2i64, v3i8 -> v24 1215 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1216 if (BitWidth % SubBitWidth == 0) { 1217 // Known bits are automatically intersected across demanded elements of a 1218 // vector. So for example, if a bit is computed as known zero, it must be 1219 // zero across all demanded elements of the vector. 1220 // 1221 // For this bitcast, each demanded element of the output is sub-divided 1222 // across a set of smaller vector elements in the source vector. To get 1223 // the known bits for an entire element of the output, compute the known 1224 // bits for each sub-element sequentially. This is done by shifting the 1225 // one-set-bit demanded elements parameter across the sub-elements for 1226 // consecutive calls to computeKnownBits. We are using the demanded 1227 // elements parameter as a mask operator. 1228 // 1229 // The known bits of each sub-element are then inserted into place 1230 // (dependent on endian) to form the full result of known bits. 1231 unsigned NumElts = DemandedElts.getBitWidth(); 1232 unsigned SubScale = BitWidth / SubBitWidth; 1233 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1234 for (unsigned i = 0; i != NumElts; ++i) { 1235 if (DemandedElts[i]) 1236 SubDemandedElts.setBit(i * SubScale); 1237 } 1238 1239 KnownBits KnownSrc(SubBitWidth); 1240 for (unsigned i = 0; i != SubScale; ++i) { 1241 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1242 Depth + 1, Q); 1243 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1244 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1245 } 1246 } 1247 break; 1248 } 1249 case Instruction::SExt: { 1250 // Compute the bits in the result that are not present in the input. 1251 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1252 1253 Known = Known.trunc(SrcBitWidth); 1254 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1255 // If the sign bit of the input is known set or clear, then we know the 1256 // top bits of the result. 1257 Known = Known.sext(BitWidth); 1258 break; 1259 } 1260 case Instruction::Shl: { 1261 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1262 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1263 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1264 // If this shift has "nsw" keyword, then the result is either a poison 1265 // value or has the same sign bit as the first operand. 1266 if (NSW) { 1267 if (KnownVal.Zero.isSignBitSet()) 1268 Result.Zero.setSignBit(); 1269 if (KnownVal.One.isSignBitSet()) 1270 Result.One.setSignBit(); 1271 } 1272 return Result; 1273 }; 1274 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1275 KF); 1276 // Trailing zeros of a right-shifted constant never decrease. 1277 const APInt *C; 1278 if (match(I->getOperand(0), m_APInt(C))) 1279 Known.Zero.setLowBits(C->countTrailingZeros()); 1280 break; 1281 } 1282 case Instruction::LShr: { 1283 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1284 return KnownBits::lshr(KnownVal, KnownAmt); 1285 }; 1286 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1287 KF); 1288 // Leading zeros of a left-shifted constant never decrease. 1289 const APInt *C; 1290 if (match(I->getOperand(0), m_APInt(C))) 1291 Known.Zero.setHighBits(C->countLeadingZeros()); 1292 break; 1293 } 1294 case Instruction::AShr: { 1295 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1296 return KnownBits::ashr(KnownVal, KnownAmt); 1297 }; 1298 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1299 KF); 1300 break; 1301 } 1302 case Instruction::Sub: { 1303 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1304 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1305 DemandedElts, Known, Known2, Depth, Q); 1306 break; 1307 } 1308 case Instruction::Add: { 1309 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1310 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1311 DemandedElts, Known, Known2, Depth, Q); 1312 break; 1313 } 1314 case Instruction::SRem: 1315 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1316 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1317 Known = KnownBits::srem(Known, Known2); 1318 break; 1319 1320 case Instruction::URem: 1321 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1322 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1323 Known = KnownBits::urem(Known, Known2); 1324 break; 1325 case Instruction::Alloca: 1326 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1327 break; 1328 case Instruction::GetElementPtr: { 1329 // Analyze all of the subscripts of this getelementptr instruction 1330 // to determine if we can prove known low zero bits. 1331 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1332 // Accumulate the constant indices in a separate variable 1333 // to minimize the number of calls to computeForAddSub. 1334 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1335 1336 gep_type_iterator GTI = gep_type_begin(I); 1337 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1338 // TrailZ can only become smaller, short-circuit if we hit zero. 1339 if (Known.isUnknown()) 1340 break; 1341 1342 Value *Index = I->getOperand(i); 1343 1344 // Handle case when index is zero. 1345 Constant *CIndex = dyn_cast<Constant>(Index); 1346 if (CIndex && CIndex->isZeroValue()) 1347 continue; 1348 1349 if (StructType *STy = GTI.getStructTypeOrNull()) { 1350 // Handle struct member offset arithmetic. 1351 1352 assert(CIndex && 1353 "Access to structure field must be known at compile time"); 1354 1355 if (CIndex->getType()->isVectorTy()) 1356 Index = CIndex->getSplatValue(); 1357 1358 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1359 const StructLayout *SL = Q.DL.getStructLayout(STy); 1360 uint64_t Offset = SL->getElementOffset(Idx); 1361 AccConstIndices += Offset; 1362 continue; 1363 } 1364 1365 // Handle array index arithmetic. 1366 Type *IndexedTy = GTI.getIndexedType(); 1367 if (!IndexedTy->isSized()) { 1368 Known.resetAll(); 1369 break; 1370 } 1371 1372 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1373 KnownBits IndexBits(IndexBitWidth); 1374 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1375 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1376 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1377 KnownBits ScalingFactor(IndexBitWidth); 1378 // Multiply by current sizeof type. 1379 // &A[i] == A + i * sizeof(*A[i]). 1380 if (IndexTypeSize.isScalable()) { 1381 // For scalable types the only thing we know about sizeof is 1382 // that this is a multiple of the minimum size. 1383 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1384 } else if (IndexBits.isConstant()) { 1385 APInt IndexConst = IndexBits.getConstant(); 1386 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1387 IndexConst *= ScalingFactor; 1388 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1389 continue; 1390 } else { 1391 ScalingFactor = 1392 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1393 } 1394 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1395 1396 // If the offsets have a different width from the pointer, according 1397 // to the language reference we need to sign-extend or truncate them 1398 // to the width of the pointer. 1399 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1400 1401 // Note that inbounds does *not* guarantee nsw for the addition, as only 1402 // the offset is signed, while the base address is unsigned. 1403 Known = KnownBits::computeForAddSub( 1404 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1405 } 1406 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1407 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1408 Known = KnownBits::computeForAddSub( 1409 /*Add=*/true, /*NSW=*/false, Known, Index); 1410 } 1411 break; 1412 } 1413 case Instruction::PHI: { 1414 const PHINode *P = cast<PHINode>(I); 1415 BinaryOperator *BO = nullptr; 1416 Value *R = nullptr, *L = nullptr; 1417 if (matchSimpleRecurrence(P, BO, R, L)) { 1418 // Handle the case of a simple two-predecessor recurrence PHI. 1419 // There's a lot more that could theoretically be done here, but 1420 // this is sufficient to catch some interesting cases. 1421 unsigned Opcode = BO->getOpcode(); 1422 1423 // If this is a shift recurrence, we know the bits being shifted in. 1424 // We can combine that with information about the start value of the 1425 // recurrence to conclude facts about the result. 1426 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1427 Opcode == Instruction::Shl) && 1428 BO->getOperand(0) == I) { 1429 1430 // We have matched a recurrence of the form: 1431 // %iv = [R, %entry], [%iv.next, %backedge] 1432 // %iv.next = shift_op %iv, L 1433 1434 // Recurse with the phi context to avoid concern about whether facts 1435 // inferred hold at original context instruction. TODO: It may be 1436 // correct to use the original context. IF warranted, explore and 1437 // add sufficient tests to cover. 1438 Query RecQ = Q; 1439 RecQ.CxtI = P; 1440 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1441 switch (Opcode) { 1442 case Instruction::Shl: 1443 // A shl recurrence will only increase the tailing zeros 1444 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1445 break; 1446 case Instruction::LShr: 1447 // A lshr recurrence will preserve the leading zeros of the 1448 // start value 1449 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1450 break; 1451 case Instruction::AShr: 1452 // An ashr recurrence will extend the initial sign bit 1453 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1454 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1455 break; 1456 }; 1457 } 1458 1459 // Check for operations that have the property that if 1460 // both their operands have low zero bits, the result 1461 // will have low zero bits. 1462 if (Opcode == Instruction::Add || 1463 Opcode == Instruction::Sub || 1464 Opcode == Instruction::And || 1465 Opcode == Instruction::Or || 1466 Opcode == Instruction::Mul) { 1467 // Change the context instruction to the "edge" that flows into the 1468 // phi. This is important because that is where the value is actually 1469 // "evaluated" even though it is used later somewhere else. (see also 1470 // D69571). 1471 Query RecQ = Q; 1472 1473 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1474 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1475 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1476 1477 // Ok, we have a PHI of the form L op= R. Check for low 1478 // zero bits. 1479 RecQ.CxtI = RInst; 1480 computeKnownBits(R, Known2, Depth + 1, RecQ); 1481 1482 // We need to take the minimum number of known bits 1483 KnownBits Known3(BitWidth); 1484 RecQ.CxtI = LInst; 1485 computeKnownBits(L, Known3, Depth + 1, RecQ); 1486 1487 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1488 Known3.countMinTrailingZeros())); 1489 1490 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1491 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1492 // If initial value of recurrence is nonnegative, and we are adding 1493 // a nonnegative number with nsw, the result can only be nonnegative 1494 // or poison value regardless of the number of times we execute the 1495 // add in phi recurrence. If initial value is negative and we are 1496 // adding a negative number with nsw, the result can only be 1497 // negative or poison value. Similar arguments apply to sub and mul. 1498 // 1499 // (add non-negative, non-negative) --> non-negative 1500 // (add negative, negative) --> negative 1501 if (Opcode == Instruction::Add) { 1502 if (Known2.isNonNegative() && Known3.isNonNegative()) 1503 Known.makeNonNegative(); 1504 else if (Known2.isNegative() && Known3.isNegative()) 1505 Known.makeNegative(); 1506 } 1507 1508 // (sub nsw non-negative, negative) --> non-negative 1509 // (sub nsw negative, non-negative) --> negative 1510 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1511 if (Known2.isNonNegative() && Known3.isNegative()) 1512 Known.makeNonNegative(); 1513 else if (Known2.isNegative() && Known3.isNonNegative()) 1514 Known.makeNegative(); 1515 } 1516 1517 // (mul nsw non-negative, non-negative) --> non-negative 1518 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1519 Known3.isNonNegative()) 1520 Known.makeNonNegative(); 1521 } 1522 1523 break; 1524 } 1525 } 1526 1527 // Unreachable blocks may have zero-operand PHI nodes. 1528 if (P->getNumIncomingValues() == 0) 1529 break; 1530 1531 // Otherwise take the unions of the known bit sets of the operands, 1532 // taking conservative care to avoid excessive recursion. 1533 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1534 // Skip if every incoming value references to ourself. 1535 if (isa_and_nonnull<UndefValue>(P->hasConstantValue())) 1536 break; 1537 1538 Known.Zero.setAllBits(); 1539 Known.One.setAllBits(); 1540 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1541 Value *IncValue = P->getIncomingValue(u); 1542 // Skip direct self references. 1543 if (IncValue == P) continue; 1544 1545 // Change the context instruction to the "edge" that flows into the 1546 // phi. This is important because that is where the value is actually 1547 // "evaluated" even though it is used later somewhere else. (see also 1548 // D69571). 1549 Query RecQ = Q; 1550 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1551 1552 Known2 = KnownBits(BitWidth); 1553 // Recurse, but cap the recursion to one level, because we don't 1554 // want to waste time spinning around in loops. 1555 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1556 Known = KnownBits::commonBits(Known, Known2); 1557 // If all bits have been ruled out, there's no need to check 1558 // more operands. 1559 if (Known.isUnknown()) 1560 break; 1561 } 1562 } 1563 break; 1564 } 1565 case Instruction::Call: 1566 case Instruction::Invoke: 1567 // If range metadata is attached to this call, set known bits from that, 1568 // and then intersect with known bits based on other properties of the 1569 // function. 1570 if (MDNode *MD = 1571 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1572 computeKnownBitsFromRangeMetadata(*MD, Known); 1573 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1574 computeKnownBits(RV, Known2, Depth + 1, Q); 1575 Known.Zero |= Known2.Zero; 1576 Known.One |= Known2.One; 1577 } 1578 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1579 switch (II->getIntrinsicID()) { 1580 default: break; 1581 case Intrinsic::abs: { 1582 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1583 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1584 Known = Known2.abs(IntMinIsPoison); 1585 break; 1586 } 1587 case Intrinsic::bitreverse: 1588 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1589 Known.Zero |= Known2.Zero.reverseBits(); 1590 Known.One |= Known2.One.reverseBits(); 1591 break; 1592 case Intrinsic::bswap: 1593 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1594 Known.Zero |= Known2.Zero.byteSwap(); 1595 Known.One |= Known2.One.byteSwap(); 1596 break; 1597 case Intrinsic::ctlz: { 1598 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1599 // If we have a known 1, its position is our upper bound. 1600 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1601 // If this call is poison for 0 input, the result will be less than 2^n. 1602 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1603 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1604 unsigned LowBits = Log2_32(PossibleLZ)+1; 1605 Known.Zero.setBitsFrom(LowBits); 1606 break; 1607 } 1608 case Intrinsic::cttz: { 1609 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1610 // If we have a known 1, its position is our upper bound. 1611 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1612 // If this call is poison for 0 input, the result will be less than 2^n. 1613 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1614 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1615 unsigned LowBits = Log2_32(PossibleTZ)+1; 1616 Known.Zero.setBitsFrom(LowBits); 1617 break; 1618 } 1619 case Intrinsic::ctpop: { 1620 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1621 // We can bound the space the count needs. Also, bits known to be zero 1622 // can't contribute to the population. 1623 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1624 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1625 Known.Zero.setBitsFrom(LowBits); 1626 // TODO: we could bound KnownOne using the lower bound on the number 1627 // of bits which might be set provided by popcnt KnownOne2. 1628 break; 1629 } 1630 case Intrinsic::fshr: 1631 case Intrinsic::fshl: { 1632 const APInt *SA; 1633 if (!match(I->getOperand(2), m_APInt(SA))) 1634 break; 1635 1636 // Normalize to funnel shift left. 1637 uint64_t ShiftAmt = SA->urem(BitWidth); 1638 if (II->getIntrinsicID() == Intrinsic::fshr) 1639 ShiftAmt = BitWidth - ShiftAmt; 1640 1641 KnownBits Known3(BitWidth); 1642 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1644 1645 Known.Zero = 1646 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1647 Known.One = 1648 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1649 break; 1650 } 1651 case Intrinsic::uadd_sat: 1652 case Intrinsic::usub_sat: { 1653 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1654 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1655 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1656 1657 // Add: Leading ones of either operand are preserved. 1658 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1659 // as leading zeros in the result. 1660 unsigned LeadingKnown; 1661 if (IsAdd) 1662 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1663 Known2.countMinLeadingOnes()); 1664 else 1665 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1666 Known2.countMinLeadingOnes()); 1667 1668 Known = KnownBits::computeForAddSub( 1669 IsAdd, /* NSW */ false, Known, Known2); 1670 1671 // We select between the operation result and all-ones/zero 1672 // respectively, so we can preserve known ones/zeros. 1673 if (IsAdd) { 1674 Known.One.setHighBits(LeadingKnown); 1675 Known.Zero.clearAllBits(); 1676 } else { 1677 Known.Zero.setHighBits(LeadingKnown); 1678 Known.One.clearAllBits(); 1679 } 1680 break; 1681 } 1682 case Intrinsic::umin: 1683 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1684 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1685 Known = KnownBits::umin(Known, Known2); 1686 break; 1687 case Intrinsic::umax: 1688 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1689 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1690 Known = KnownBits::umax(Known, Known2); 1691 break; 1692 case Intrinsic::smin: 1693 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1694 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1695 Known = KnownBits::smin(Known, Known2); 1696 break; 1697 case Intrinsic::smax: 1698 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1699 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1700 Known = KnownBits::smax(Known, Known2); 1701 break; 1702 case Intrinsic::x86_sse42_crc32_64_64: 1703 Known.Zero.setBitsFrom(32); 1704 break; 1705 case Intrinsic::riscv_vsetvli: 1706 case Intrinsic::riscv_vsetvlimax: 1707 // Assume that VL output is positive and would fit in an int32_t. 1708 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1709 if (BitWidth >= 32) 1710 Known.Zero.setBitsFrom(31); 1711 break; 1712 case Intrinsic::vscale: { 1713 if (!II->getParent() || !II->getFunction() || 1714 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1715 break; 1716 1717 auto Attr = II->getFunction()->getFnAttribute(Attribute::VScaleRange); 1718 Optional<unsigned> VScaleMax = Attr.getVScaleRangeMax(); 1719 1720 if (!VScaleMax) 1721 break; 1722 1723 unsigned VScaleMin = Attr.getVScaleRangeMin(); 1724 1725 // If vscale min = max then we know the exact value at compile time 1726 // and hence we know the exact bits. 1727 if (VScaleMin == VScaleMax) { 1728 Known.One = VScaleMin; 1729 Known.Zero = VScaleMin; 1730 Known.Zero.flipAllBits(); 1731 break; 1732 } 1733 1734 unsigned FirstZeroHighBit = 1735 32 - countLeadingZeros(VScaleMax.getValue()); 1736 if (FirstZeroHighBit < BitWidth) 1737 Known.Zero.setBitsFrom(FirstZeroHighBit); 1738 1739 break; 1740 } 1741 } 1742 } 1743 break; 1744 case Instruction::ShuffleVector: { 1745 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1746 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1747 if (!Shuf) { 1748 Known.resetAll(); 1749 return; 1750 } 1751 // For undef elements, we don't know anything about the common state of 1752 // the shuffle result. 1753 APInt DemandedLHS, DemandedRHS; 1754 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1755 Known.resetAll(); 1756 return; 1757 } 1758 Known.One.setAllBits(); 1759 Known.Zero.setAllBits(); 1760 if (!!DemandedLHS) { 1761 const Value *LHS = Shuf->getOperand(0); 1762 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1763 // If we don't know any bits, early out. 1764 if (Known.isUnknown()) 1765 break; 1766 } 1767 if (!!DemandedRHS) { 1768 const Value *RHS = Shuf->getOperand(1); 1769 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1770 Known = KnownBits::commonBits(Known, Known2); 1771 } 1772 break; 1773 } 1774 case Instruction::InsertElement: { 1775 const Value *Vec = I->getOperand(0); 1776 const Value *Elt = I->getOperand(1); 1777 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1778 // Early out if the index is non-constant or out-of-range. 1779 unsigned NumElts = DemandedElts.getBitWidth(); 1780 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1781 Known.resetAll(); 1782 return; 1783 } 1784 Known.One.setAllBits(); 1785 Known.Zero.setAllBits(); 1786 unsigned EltIdx = CIdx->getZExtValue(); 1787 // Do we demand the inserted element? 1788 if (DemandedElts[EltIdx]) { 1789 computeKnownBits(Elt, Known, Depth + 1, Q); 1790 // If we don't know any bits, early out. 1791 if (Known.isUnknown()) 1792 break; 1793 } 1794 // We don't need the base vector element that has been inserted. 1795 APInt DemandedVecElts = DemandedElts; 1796 DemandedVecElts.clearBit(EltIdx); 1797 if (!!DemandedVecElts) { 1798 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1799 Known = KnownBits::commonBits(Known, Known2); 1800 } 1801 break; 1802 } 1803 case Instruction::ExtractElement: { 1804 // Look through extract element. If the index is non-constant or 1805 // out-of-range demand all elements, otherwise just the extracted element. 1806 const Value *Vec = I->getOperand(0); 1807 const Value *Idx = I->getOperand(1); 1808 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1809 if (isa<ScalableVectorType>(Vec->getType())) { 1810 // FIXME: there's probably *something* we can do with scalable vectors 1811 Known.resetAll(); 1812 break; 1813 } 1814 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1815 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1816 if (CIdx && CIdx->getValue().ult(NumElts)) 1817 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1818 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1819 break; 1820 } 1821 case Instruction::ExtractValue: 1822 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1823 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1824 if (EVI->getNumIndices() != 1) break; 1825 if (EVI->getIndices()[0] == 0) { 1826 switch (II->getIntrinsicID()) { 1827 default: break; 1828 case Intrinsic::uadd_with_overflow: 1829 case Intrinsic::sadd_with_overflow: 1830 computeKnownBitsAddSub(true, II->getArgOperand(0), 1831 II->getArgOperand(1), false, DemandedElts, 1832 Known, Known2, Depth, Q); 1833 break; 1834 case Intrinsic::usub_with_overflow: 1835 case Intrinsic::ssub_with_overflow: 1836 computeKnownBitsAddSub(false, II->getArgOperand(0), 1837 II->getArgOperand(1), false, DemandedElts, 1838 Known, Known2, Depth, Q); 1839 break; 1840 case Intrinsic::umul_with_overflow: 1841 case Intrinsic::smul_with_overflow: 1842 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1843 DemandedElts, Known, Known2, Depth, Q); 1844 break; 1845 } 1846 } 1847 } 1848 break; 1849 case Instruction::Freeze: 1850 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1851 Depth + 1)) 1852 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1853 break; 1854 } 1855 } 1856 1857 /// Determine which bits of V are known to be either zero or one and return 1858 /// them. 1859 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1860 unsigned Depth, const Query &Q) { 1861 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1862 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1863 return Known; 1864 } 1865 1866 /// Determine which bits of V are known to be either zero or one and return 1867 /// them. 1868 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1869 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1870 computeKnownBits(V, Known, Depth, Q); 1871 return Known; 1872 } 1873 1874 /// Determine which bits of V are known to be either zero or one and return 1875 /// them in the Known bit set. 1876 /// 1877 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1878 /// we cannot optimize based on the assumption that it is zero without changing 1879 /// it to be an explicit zero. If we don't change it to zero, other code could 1880 /// optimized based on the contradictory assumption that it is non-zero. 1881 /// Because instcombine aggressively folds operations with undef args anyway, 1882 /// this won't lose us code quality. 1883 /// 1884 /// This function is defined on values with integer type, values with pointer 1885 /// type, and vectors of integers. In the case 1886 /// where V is a vector, known zero, and known one values are the 1887 /// same width as the vector element, and the bit is set only if it is true 1888 /// for all of the demanded elements in the vector specified by DemandedElts. 1889 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1890 KnownBits &Known, unsigned Depth, const Query &Q) { 1891 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1892 // No demanded elts or V is a scalable vector, better to assume we don't 1893 // know anything. 1894 Known.resetAll(); 1895 return; 1896 } 1897 1898 assert(V && "No Value?"); 1899 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1900 1901 #ifndef NDEBUG 1902 Type *Ty = V->getType(); 1903 unsigned BitWidth = Known.getBitWidth(); 1904 1905 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1906 "Not integer or pointer type!"); 1907 1908 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1909 assert( 1910 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1911 "DemandedElt width should equal the fixed vector number of elements"); 1912 } else { 1913 assert(DemandedElts == APInt(1, 1) && 1914 "DemandedElt width should be 1 for scalars"); 1915 } 1916 1917 Type *ScalarTy = Ty->getScalarType(); 1918 if (ScalarTy->isPointerTy()) { 1919 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1920 "V and Known should have same BitWidth"); 1921 } else { 1922 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1923 "V and Known should have same BitWidth"); 1924 } 1925 #endif 1926 1927 const APInt *C; 1928 if (match(V, m_APInt(C))) { 1929 // We know all of the bits for a scalar constant or a splat vector constant! 1930 Known = KnownBits::makeConstant(*C); 1931 return; 1932 } 1933 // Null and aggregate-zero are all-zeros. 1934 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1935 Known.setAllZero(); 1936 return; 1937 } 1938 // Handle a constant vector by taking the intersection of the known bits of 1939 // each element. 1940 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1941 // We know that CDV must be a vector of integers. Take the intersection of 1942 // each element. 1943 Known.Zero.setAllBits(); Known.One.setAllBits(); 1944 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1945 if (!DemandedElts[i]) 1946 continue; 1947 APInt Elt = CDV->getElementAsAPInt(i); 1948 Known.Zero &= ~Elt; 1949 Known.One &= Elt; 1950 } 1951 return; 1952 } 1953 1954 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1955 // We know that CV must be a vector of integers. Take the intersection of 1956 // each element. 1957 Known.Zero.setAllBits(); Known.One.setAllBits(); 1958 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1959 if (!DemandedElts[i]) 1960 continue; 1961 Constant *Element = CV->getAggregateElement(i); 1962 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1963 if (!ElementCI) { 1964 Known.resetAll(); 1965 return; 1966 } 1967 const APInt &Elt = ElementCI->getValue(); 1968 Known.Zero &= ~Elt; 1969 Known.One &= Elt; 1970 } 1971 return; 1972 } 1973 1974 // Start out not knowing anything. 1975 Known.resetAll(); 1976 1977 // We can't imply anything about undefs. 1978 if (isa<UndefValue>(V)) 1979 return; 1980 1981 // There's no point in looking through other users of ConstantData for 1982 // assumptions. Confirm that we've handled them all. 1983 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1984 1985 // All recursive calls that increase depth must come after this. 1986 if (Depth == MaxAnalysisRecursionDepth) 1987 return; 1988 1989 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1990 // the bits of its aliasee. 1991 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1992 if (!GA->isInterposable()) 1993 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1994 return; 1995 } 1996 1997 if (const Operator *I = dyn_cast<Operator>(V)) 1998 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1999 2000 // Aligned pointers have trailing zeros - refine Known.Zero set 2001 if (isa<PointerType>(V->getType())) { 2002 Align Alignment = V->getPointerAlignment(Q.DL); 2003 Known.Zero.setLowBits(Log2(Alignment)); 2004 } 2005 2006 // computeKnownBitsFromAssume strictly refines Known. 2007 // Therefore, we run them after computeKnownBitsFromOperator. 2008 2009 // Check whether a nearby assume intrinsic can determine some known bits. 2010 computeKnownBitsFromAssume(V, Known, Depth, Q); 2011 2012 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 2013 } 2014 2015 /// Return true if the given value is known to have exactly one 2016 /// bit set when defined. For vectors return true if every element is known to 2017 /// be a power of two when defined. Supports values with integer or pointer 2018 /// types and vectors of integers. 2019 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2020 const Query &Q) { 2021 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2022 2023 // Attempt to match against constants. 2024 if (OrZero && match(V, m_Power2OrZero())) 2025 return true; 2026 if (match(V, m_Power2())) 2027 return true; 2028 2029 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2030 // it is shifted off the end then the result is undefined. 2031 if (match(V, m_Shl(m_One(), m_Value()))) 2032 return true; 2033 2034 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2035 // the bottom. If it is shifted off the bottom then the result is undefined. 2036 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2037 return true; 2038 2039 // The remaining tests are all recursive, so bail out if we hit the limit. 2040 if (Depth++ == MaxAnalysisRecursionDepth) 2041 return false; 2042 2043 Value *X = nullptr, *Y = nullptr; 2044 // A shift left or a logical shift right of a power of two is a power of two 2045 // or zero. 2046 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2047 match(V, m_LShr(m_Value(X), m_Value())))) 2048 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2049 2050 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2051 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2052 2053 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2054 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2055 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2056 2057 // Peek through min/max. 2058 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2059 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2060 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2061 } 2062 2063 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2064 // A power of two and'd with anything is a power of two or zero. 2065 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2066 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2067 return true; 2068 // X & (-X) is always a power of two or zero. 2069 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2070 return true; 2071 return false; 2072 } 2073 2074 // Adding a power-of-two or zero to the same power-of-two or zero yields 2075 // either the original power-of-two, a larger power-of-two or zero. 2076 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2077 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2078 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2079 Q.IIQ.hasNoSignedWrap(VOBO)) { 2080 if (match(X, m_And(m_Specific(Y), m_Value())) || 2081 match(X, m_And(m_Value(), m_Specific(Y)))) 2082 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2083 return true; 2084 if (match(Y, m_And(m_Specific(X), m_Value())) || 2085 match(Y, m_And(m_Value(), m_Specific(X)))) 2086 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2087 return true; 2088 2089 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2090 KnownBits LHSBits(BitWidth); 2091 computeKnownBits(X, LHSBits, Depth, Q); 2092 2093 KnownBits RHSBits(BitWidth); 2094 computeKnownBits(Y, RHSBits, Depth, Q); 2095 // If i8 V is a power of two or zero: 2096 // ZeroBits: 1 1 1 0 1 1 1 1 2097 // ~ZeroBits: 0 0 0 1 0 0 0 0 2098 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2099 // If OrZero isn't set, we cannot give back a zero result. 2100 // Make sure either the LHS or RHS has a bit set. 2101 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2102 return true; 2103 } 2104 } 2105 2106 // An exact divide or right shift can only shift off zero bits, so the result 2107 // is a power of two only if the first operand is a power of two and not 2108 // copying a sign bit (sdiv int_min, 2). 2109 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2110 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2111 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2112 Depth, Q); 2113 } 2114 2115 return false; 2116 } 2117 2118 /// Test whether a GEP's result is known to be non-null. 2119 /// 2120 /// Uses properties inherent in a GEP to try to determine whether it is known 2121 /// to be non-null. 2122 /// 2123 /// Currently this routine does not support vector GEPs. 2124 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2125 const Query &Q) { 2126 const Function *F = nullptr; 2127 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2128 F = I->getFunction(); 2129 2130 if (!GEP->isInBounds() || 2131 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2132 return false; 2133 2134 // FIXME: Support vector-GEPs. 2135 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2136 2137 // If the base pointer is non-null, we cannot walk to a null address with an 2138 // inbounds GEP in address space zero. 2139 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2140 return true; 2141 2142 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2143 // If so, then the GEP cannot produce a null pointer, as doing so would 2144 // inherently violate the inbounds contract within address space zero. 2145 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2146 GTI != GTE; ++GTI) { 2147 // Struct types are easy -- they must always be indexed by a constant. 2148 if (StructType *STy = GTI.getStructTypeOrNull()) { 2149 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2150 unsigned ElementIdx = OpC->getZExtValue(); 2151 const StructLayout *SL = Q.DL.getStructLayout(STy); 2152 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2153 if (ElementOffset > 0) 2154 return true; 2155 continue; 2156 } 2157 2158 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2159 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2160 continue; 2161 2162 // Fast path the constant operand case both for efficiency and so we don't 2163 // increment Depth when just zipping down an all-constant GEP. 2164 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2165 if (!OpC->isZero()) 2166 return true; 2167 continue; 2168 } 2169 2170 // We post-increment Depth here because while isKnownNonZero increments it 2171 // as well, when we pop back up that increment won't persist. We don't want 2172 // to recurse 10k times just because we have 10k GEP operands. We don't 2173 // bail completely out because we want to handle constant GEPs regardless 2174 // of depth. 2175 if (Depth++ >= MaxAnalysisRecursionDepth) 2176 continue; 2177 2178 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2179 return true; 2180 } 2181 2182 return false; 2183 } 2184 2185 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2186 const Instruction *CtxI, 2187 const DominatorTree *DT) { 2188 if (isa<Constant>(V)) 2189 return false; 2190 2191 if (!CtxI || !DT) 2192 return false; 2193 2194 unsigned NumUsesExplored = 0; 2195 for (auto *U : V->users()) { 2196 // Avoid massive lists 2197 if (NumUsesExplored >= DomConditionsMaxUses) 2198 break; 2199 NumUsesExplored++; 2200 2201 // If the value is used as an argument to a call or invoke, then argument 2202 // attributes may provide an answer about null-ness. 2203 if (const auto *CB = dyn_cast<CallBase>(U)) 2204 if (auto *CalledFunc = CB->getCalledFunction()) 2205 for (const Argument &Arg : CalledFunc->args()) 2206 if (CB->getArgOperand(Arg.getArgNo()) == V && 2207 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2208 DT->dominates(CB, CtxI)) 2209 return true; 2210 2211 // If the value is used as a load/store, then the pointer must be non null. 2212 if (V == getLoadStorePointerOperand(U)) { 2213 const Instruction *I = cast<Instruction>(U); 2214 if (!NullPointerIsDefined(I->getFunction(), 2215 V->getType()->getPointerAddressSpace()) && 2216 DT->dominates(I, CtxI)) 2217 return true; 2218 } 2219 2220 // Consider only compare instructions uniquely controlling a branch 2221 Value *RHS; 2222 CmpInst::Predicate Pred; 2223 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2224 continue; 2225 2226 bool NonNullIfTrue; 2227 if (cmpExcludesZero(Pred, RHS)) 2228 NonNullIfTrue = true; 2229 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2230 NonNullIfTrue = false; 2231 else 2232 continue; 2233 2234 SmallVector<const User *, 4> WorkList; 2235 SmallPtrSet<const User *, 4> Visited; 2236 for (auto *CmpU : U->users()) { 2237 assert(WorkList.empty() && "Should be!"); 2238 if (Visited.insert(CmpU).second) 2239 WorkList.push_back(CmpU); 2240 2241 while (!WorkList.empty()) { 2242 auto *Curr = WorkList.pop_back_val(); 2243 2244 // If a user is an AND, add all its users to the work list. We only 2245 // propagate "pred != null" condition through AND because it is only 2246 // correct to assume that all conditions of AND are met in true branch. 2247 // TODO: Support similar logic of OR and EQ predicate? 2248 if (NonNullIfTrue) 2249 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2250 for (auto *CurrU : Curr->users()) 2251 if (Visited.insert(CurrU).second) 2252 WorkList.push_back(CurrU); 2253 continue; 2254 } 2255 2256 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2257 assert(BI->isConditional() && "uses a comparison!"); 2258 2259 BasicBlock *NonNullSuccessor = 2260 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2261 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2262 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2263 return true; 2264 } else if (NonNullIfTrue && isGuard(Curr) && 2265 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2266 return true; 2267 } 2268 } 2269 } 2270 } 2271 2272 return false; 2273 } 2274 2275 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2276 /// ensure that the value it's attached to is never Value? 'RangeType' is 2277 /// is the type of the value described by the range. 2278 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2279 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2280 assert(NumRanges >= 1); 2281 for (unsigned i = 0; i < NumRanges; ++i) { 2282 ConstantInt *Lower = 2283 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2284 ConstantInt *Upper = 2285 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2286 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2287 if (Range.contains(Value)) 2288 return false; 2289 } 2290 return true; 2291 } 2292 2293 /// Try to detect a recurrence that monotonically increases/decreases from a 2294 /// non-zero starting value. These are common as induction variables. 2295 static bool isNonZeroRecurrence(const PHINode *PN) { 2296 BinaryOperator *BO = nullptr; 2297 Value *Start = nullptr, *Step = nullptr; 2298 const APInt *StartC, *StepC; 2299 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2300 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2301 return false; 2302 2303 switch (BO->getOpcode()) { 2304 case Instruction::Add: 2305 // Starting from non-zero and stepping away from zero can never wrap back 2306 // to zero. 2307 return BO->hasNoUnsignedWrap() || 2308 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2309 StartC->isNegative() == StepC->isNegative()); 2310 case Instruction::Mul: 2311 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2312 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2313 case Instruction::Shl: 2314 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2315 case Instruction::AShr: 2316 case Instruction::LShr: 2317 return BO->isExact(); 2318 default: 2319 return false; 2320 } 2321 } 2322 2323 /// Return true if the given value is known to be non-zero when defined. For 2324 /// vectors, return true if every demanded element is known to be non-zero when 2325 /// defined. For pointers, if the context instruction and dominator tree are 2326 /// specified, perform context-sensitive analysis and return true if the 2327 /// pointer couldn't possibly be null at the specified instruction. 2328 /// Supports values with integer or pointer type and vectors of integers. 2329 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2330 const Query &Q) { 2331 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2332 // vector 2333 if (isa<ScalableVectorType>(V->getType())) 2334 return false; 2335 2336 if (auto *C = dyn_cast<Constant>(V)) { 2337 if (C->isNullValue()) 2338 return false; 2339 if (isa<ConstantInt>(C)) 2340 // Must be non-zero due to null test above. 2341 return true; 2342 2343 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2344 // See the comment for IntToPtr/PtrToInt instructions below. 2345 if (CE->getOpcode() == Instruction::IntToPtr || 2346 CE->getOpcode() == Instruction::PtrToInt) 2347 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2348 .getFixedSize() <= 2349 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2350 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2351 } 2352 2353 // For constant vectors, check that all elements are undefined or known 2354 // non-zero to determine that the whole vector is known non-zero. 2355 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2356 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2357 if (!DemandedElts[i]) 2358 continue; 2359 Constant *Elt = C->getAggregateElement(i); 2360 if (!Elt || Elt->isNullValue()) 2361 return false; 2362 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2363 return false; 2364 } 2365 return true; 2366 } 2367 2368 // A global variable in address space 0 is non null unless extern weak 2369 // or an absolute symbol reference. Other address spaces may have null as a 2370 // valid address for a global, so we can't assume anything. 2371 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2372 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2373 GV->getType()->getAddressSpace() == 0) 2374 return true; 2375 } else 2376 return false; 2377 } 2378 2379 if (auto *I = dyn_cast<Instruction>(V)) { 2380 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2381 // If the possible ranges don't contain zero, then the value is 2382 // definitely non-zero. 2383 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2384 const APInt ZeroValue(Ty->getBitWidth(), 0); 2385 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2386 return true; 2387 } 2388 } 2389 } 2390 2391 if (isKnownNonZeroFromAssume(V, Q)) 2392 return true; 2393 2394 // Some of the tests below are recursive, so bail out if we hit the limit. 2395 if (Depth++ >= MaxAnalysisRecursionDepth) 2396 return false; 2397 2398 // Check for pointer simplifications. 2399 2400 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2401 // Alloca never returns null, malloc might. 2402 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2403 return true; 2404 2405 // A byval, inalloca may not be null in a non-default addres space. A 2406 // nonnull argument is assumed never 0. 2407 if (const Argument *A = dyn_cast<Argument>(V)) { 2408 if (((A->hasPassPointeeByValueCopyAttr() && 2409 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2410 A->hasNonNullAttr())) 2411 return true; 2412 } 2413 2414 // A Load tagged with nonnull metadata is never null. 2415 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2416 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2417 return true; 2418 2419 if (const auto *Call = dyn_cast<CallBase>(V)) { 2420 if (Call->isReturnNonNull()) 2421 return true; 2422 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2423 return isKnownNonZero(RP, Depth, Q); 2424 } 2425 } 2426 2427 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2428 return true; 2429 2430 // Check for recursive pointer simplifications. 2431 if (V->getType()->isPointerTy()) { 2432 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2433 // do not alter the value, or at least not the nullness property of the 2434 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2435 // 2436 // Note that we have to take special care to avoid looking through 2437 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2438 // as casts that can alter the value, e.g., AddrSpaceCasts. 2439 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2440 return isGEPKnownNonNull(GEP, Depth, Q); 2441 2442 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2443 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2444 2445 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2446 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2447 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2448 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2449 } 2450 2451 // Similar to int2ptr above, we can look through ptr2int here if the cast 2452 // is a no-op or an extend and not a truncate. 2453 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2454 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2455 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2456 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2457 2458 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2459 2460 // X | Y != 0 if X != 0 or Y != 0. 2461 Value *X = nullptr, *Y = nullptr; 2462 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2463 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2464 isKnownNonZero(Y, DemandedElts, Depth, Q); 2465 2466 // ext X != 0 if X != 0. 2467 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2468 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2469 2470 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2471 // if the lowest bit is shifted off the end. 2472 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2473 // shl nuw can't remove any non-zero bits. 2474 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2475 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2476 return isKnownNonZero(X, Depth, Q); 2477 2478 KnownBits Known(BitWidth); 2479 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2480 if (Known.One[0]) 2481 return true; 2482 } 2483 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2484 // defined if the sign bit is shifted off the end. 2485 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2486 // shr exact can only shift out zero bits. 2487 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2488 if (BO->isExact()) 2489 return isKnownNonZero(X, Depth, Q); 2490 2491 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2492 if (Known.isNegative()) 2493 return true; 2494 2495 // If the shifter operand is a constant, and all of the bits shifted 2496 // out are known to be zero, and X is known non-zero then at least one 2497 // non-zero bit must remain. 2498 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2499 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2500 // Is there a known one in the portion not shifted out? 2501 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2502 return true; 2503 // Are all the bits to be shifted out known zero? 2504 if (Known.countMinTrailingZeros() >= ShiftVal) 2505 return isKnownNonZero(X, DemandedElts, Depth, Q); 2506 } 2507 } 2508 // div exact can only produce a zero if the dividend is zero. 2509 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2510 return isKnownNonZero(X, DemandedElts, Depth, Q); 2511 } 2512 // X + Y. 2513 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2514 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2515 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2516 2517 // If X and Y are both non-negative (as signed values) then their sum is not 2518 // zero unless both X and Y are zero. 2519 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2520 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2521 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2522 return true; 2523 2524 // If X and Y are both negative (as signed values) then their sum is not 2525 // zero unless both X and Y equal INT_MIN. 2526 if (XKnown.isNegative() && YKnown.isNegative()) { 2527 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2528 // The sign bit of X is set. If some other bit is set then X is not equal 2529 // to INT_MIN. 2530 if (XKnown.One.intersects(Mask)) 2531 return true; 2532 // The sign bit of Y is set. If some other bit is set then Y is not equal 2533 // to INT_MIN. 2534 if (YKnown.One.intersects(Mask)) 2535 return true; 2536 } 2537 2538 // The sum of a non-negative number and a power of two is not zero. 2539 if (XKnown.isNonNegative() && 2540 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2541 return true; 2542 if (YKnown.isNonNegative() && 2543 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2544 return true; 2545 } 2546 // X * Y. 2547 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2548 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2549 // If X and Y are non-zero then so is X * Y as long as the multiplication 2550 // does not overflow. 2551 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2552 isKnownNonZero(X, DemandedElts, Depth, Q) && 2553 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2554 return true; 2555 } 2556 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2557 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2558 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2559 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2560 return true; 2561 } 2562 // PHI 2563 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2564 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2565 return true; 2566 2567 // Check if all incoming values are non-zero using recursion. 2568 Query RecQ = Q; 2569 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2570 return llvm::all_of(PN->operands(), [&](const Use &U) { 2571 if (U.get() == PN) 2572 return true; 2573 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2574 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2575 }); 2576 } 2577 // ExtractElement 2578 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2579 const Value *Vec = EEI->getVectorOperand(); 2580 const Value *Idx = EEI->getIndexOperand(); 2581 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2582 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2583 unsigned NumElts = VecTy->getNumElements(); 2584 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2585 if (CIdx && CIdx->getValue().ult(NumElts)) 2586 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2587 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2588 } 2589 } 2590 // Freeze 2591 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2592 auto *Op = FI->getOperand(0); 2593 if (isKnownNonZero(Op, Depth, Q) && 2594 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2595 return true; 2596 } 2597 2598 KnownBits Known(BitWidth); 2599 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2600 return Known.One != 0; 2601 } 2602 2603 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2604 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2605 // vector 2606 if (isa<ScalableVectorType>(V->getType())) 2607 return false; 2608 2609 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2610 APInt DemandedElts = 2611 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2612 return isKnownNonZero(V, DemandedElts, Depth, Q); 2613 } 2614 2615 /// If the pair of operators are the same invertible function, return the 2616 /// the operands of the function corresponding to each input. Otherwise, 2617 /// return None. An invertible function is one that is 1-to-1 and maps 2618 /// every input value to exactly one output value. This is equivalent to 2619 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2620 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2621 static Optional<std::pair<Value*, Value*>> 2622 getInvertibleOperands(const Operator *Op1, 2623 const Operator *Op2) { 2624 if (Op1->getOpcode() != Op2->getOpcode()) 2625 return None; 2626 2627 auto getOperands = [&](unsigned OpNum) -> auto { 2628 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2629 }; 2630 2631 switch (Op1->getOpcode()) { 2632 default: 2633 break; 2634 case Instruction::Add: 2635 case Instruction::Sub: 2636 if (Op1->getOperand(0) == Op2->getOperand(0)) 2637 return getOperands(1); 2638 if (Op1->getOperand(1) == Op2->getOperand(1)) 2639 return getOperands(0); 2640 break; 2641 case Instruction::Mul: { 2642 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2643 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2644 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2645 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2646 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2647 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2648 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2649 break; 2650 2651 // Assume operand order has been canonicalized 2652 if (Op1->getOperand(1) == Op2->getOperand(1) && 2653 isa<ConstantInt>(Op1->getOperand(1)) && 2654 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2655 return getOperands(0); 2656 break; 2657 } 2658 case Instruction::Shl: { 2659 // Same as multiplies, with the difference that we don't need to check 2660 // for a non-zero multiply. Shifts always multiply by non-zero. 2661 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2662 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2663 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2664 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2665 break; 2666 2667 if (Op1->getOperand(1) == Op2->getOperand(1)) 2668 return getOperands(0); 2669 break; 2670 } 2671 case Instruction::AShr: 2672 case Instruction::LShr: { 2673 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2674 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2675 if (!PEO1->isExact() || !PEO2->isExact()) 2676 break; 2677 2678 if (Op1->getOperand(1) == Op2->getOperand(1)) 2679 return getOperands(0); 2680 break; 2681 } 2682 case Instruction::SExt: 2683 case Instruction::ZExt: 2684 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2685 return getOperands(0); 2686 break; 2687 case Instruction::PHI: { 2688 const PHINode *PN1 = cast<PHINode>(Op1); 2689 const PHINode *PN2 = cast<PHINode>(Op2); 2690 2691 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2692 // are a single invertible function of the start values? Note that repeated 2693 // application of an invertible function is also invertible 2694 BinaryOperator *BO1 = nullptr; 2695 Value *Start1 = nullptr, *Step1 = nullptr; 2696 BinaryOperator *BO2 = nullptr; 2697 Value *Start2 = nullptr, *Step2 = nullptr; 2698 if (PN1->getParent() != PN2->getParent() || 2699 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2700 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2701 break; 2702 2703 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2704 cast<Operator>(BO2)); 2705 if (!Values) 2706 break; 2707 2708 // We have to be careful of mutually defined recurrences here. Ex: 2709 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2710 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2711 // The invertibility of these is complicated, and not worth reasoning 2712 // about (yet?). 2713 if (Values->first != PN1 || Values->second != PN2) 2714 break; 2715 2716 return std::make_pair(Start1, Start2); 2717 } 2718 } 2719 return None; 2720 } 2721 2722 /// Return true if V2 == V1 + X, where X is known non-zero. 2723 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2724 const Query &Q) { 2725 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2726 if (!BO || BO->getOpcode() != Instruction::Add) 2727 return false; 2728 Value *Op = nullptr; 2729 if (V2 == BO->getOperand(0)) 2730 Op = BO->getOperand(1); 2731 else if (V2 == BO->getOperand(1)) 2732 Op = BO->getOperand(0); 2733 else 2734 return false; 2735 return isKnownNonZero(Op, Depth + 1, Q); 2736 } 2737 2738 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2739 /// the multiplication is nuw or nsw. 2740 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2741 const Query &Q) { 2742 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2743 const APInt *C; 2744 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2745 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2746 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2747 } 2748 return false; 2749 } 2750 2751 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2752 /// the shift is nuw or nsw. 2753 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2754 const Query &Q) { 2755 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2756 const APInt *C; 2757 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2758 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2759 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2760 } 2761 return false; 2762 } 2763 2764 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2765 unsigned Depth, const Query &Q) { 2766 // Check two PHIs are in same block. 2767 if (PN1->getParent() != PN2->getParent()) 2768 return false; 2769 2770 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2771 bool UsedFullRecursion = false; 2772 for (const BasicBlock *IncomBB : PN1->blocks()) { 2773 if (!VisitedBBs.insert(IncomBB).second) 2774 continue; // Don't reprocess blocks that we have dealt with already. 2775 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2776 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2777 const APInt *C1, *C2; 2778 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2779 continue; 2780 2781 // Only one pair of phi operands is allowed for full recursion. 2782 if (UsedFullRecursion) 2783 return false; 2784 2785 Query RecQ = Q; 2786 RecQ.CxtI = IncomBB->getTerminator(); 2787 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2788 return false; 2789 UsedFullRecursion = true; 2790 } 2791 return true; 2792 } 2793 2794 /// Return true if it is known that V1 != V2. 2795 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2796 const Query &Q) { 2797 if (V1 == V2) 2798 return false; 2799 if (V1->getType() != V2->getType()) 2800 // We can't look through casts yet. 2801 return false; 2802 2803 if (Depth >= MaxAnalysisRecursionDepth) 2804 return false; 2805 2806 // See if we can recurse through (exactly one of) our operands. This 2807 // requires our operation be 1-to-1 and map every input value to exactly 2808 // one output value. Such an operation is invertible. 2809 auto *O1 = dyn_cast<Operator>(V1); 2810 auto *O2 = dyn_cast<Operator>(V2); 2811 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2812 if (auto Values = getInvertibleOperands(O1, O2)) 2813 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2814 2815 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2816 const PHINode *PN2 = cast<PHINode>(V2); 2817 // FIXME: This is missing a generalization to handle the case where one is 2818 // a PHI and another one isn't. 2819 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2820 return true; 2821 }; 2822 } 2823 2824 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2825 return true; 2826 2827 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2828 return true; 2829 2830 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2831 return true; 2832 2833 if (V1->getType()->isIntOrIntVectorTy()) { 2834 // Are any known bits in V1 contradictory to known bits in V2? If V1 2835 // has a known zero where V2 has a known one, they must not be equal. 2836 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2837 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2838 2839 if (Known1.Zero.intersects(Known2.One) || 2840 Known2.Zero.intersects(Known1.One)) 2841 return true; 2842 } 2843 return false; 2844 } 2845 2846 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2847 /// simplify operations downstream. Mask is known to be zero for bits that V 2848 /// cannot have. 2849 /// 2850 /// This function is defined on values with integer type, values with pointer 2851 /// type, and vectors of integers. In the case 2852 /// where V is a vector, the mask, known zero, and known one values are the 2853 /// same width as the vector element, and the bit is set only if it is true 2854 /// for all of the elements in the vector. 2855 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2856 const Query &Q) { 2857 KnownBits Known(Mask.getBitWidth()); 2858 computeKnownBits(V, Known, Depth, Q); 2859 return Mask.isSubsetOf(Known.Zero); 2860 } 2861 2862 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2863 // Returns the input and lower/upper bounds. 2864 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2865 const APInt *&CLow, const APInt *&CHigh) { 2866 assert(isa<Operator>(Select) && 2867 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2868 "Input should be a Select!"); 2869 2870 const Value *LHS = nullptr, *RHS = nullptr; 2871 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2872 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2873 return false; 2874 2875 if (!match(RHS, m_APInt(CLow))) 2876 return false; 2877 2878 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2879 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2880 if (getInverseMinMaxFlavor(SPF) != SPF2) 2881 return false; 2882 2883 if (!match(RHS2, m_APInt(CHigh))) 2884 return false; 2885 2886 if (SPF == SPF_SMIN) 2887 std::swap(CLow, CHigh); 2888 2889 In = LHS2; 2890 return CLow->sle(*CHigh); 2891 } 2892 2893 /// For vector constants, loop over the elements and find the constant with the 2894 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2895 /// or if any element was not analyzed; otherwise, return the count for the 2896 /// element with the minimum number of sign bits. 2897 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2898 const APInt &DemandedElts, 2899 unsigned TyBits) { 2900 const auto *CV = dyn_cast<Constant>(V); 2901 if (!CV || !isa<FixedVectorType>(CV->getType())) 2902 return 0; 2903 2904 unsigned MinSignBits = TyBits; 2905 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2906 for (unsigned i = 0; i != NumElts; ++i) { 2907 if (!DemandedElts[i]) 2908 continue; 2909 // If we find a non-ConstantInt, bail out. 2910 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2911 if (!Elt) 2912 return 0; 2913 2914 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2915 } 2916 2917 return MinSignBits; 2918 } 2919 2920 static unsigned ComputeNumSignBitsImpl(const Value *V, 2921 const APInt &DemandedElts, 2922 unsigned Depth, const Query &Q); 2923 2924 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2925 unsigned Depth, const Query &Q) { 2926 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2927 assert(Result > 0 && "At least one sign bit needs to be present!"); 2928 return Result; 2929 } 2930 2931 /// Return the number of times the sign bit of the register is replicated into 2932 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2933 /// (itself), but other cases can give us information. For example, immediately 2934 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2935 /// other, so we return 3. For vectors, return the number of sign bits for the 2936 /// vector element with the minimum number of known sign bits of the demanded 2937 /// elements in the vector specified by DemandedElts. 2938 static unsigned ComputeNumSignBitsImpl(const Value *V, 2939 const APInt &DemandedElts, 2940 unsigned Depth, const Query &Q) { 2941 Type *Ty = V->getType(); 2942 2943 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2944 // vector 2945 if (isa<ScalableVectorType>(Ty)) 2946 return 1; 2947 2948 #ifndef NDEBUG 2949 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2950 2951 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2952 assert( 2953 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2954 "DemandedElt width should equal the fixed vector number of elements"); 2955 } else { 2956 assert(DemandedElts == APInt(1, 1) && 2957 "DemandedElt width should be 1 for scalars"); 2958 } 2959 #endif 2960 2961 // We return the minimum number of sign bits that are guaranteed to be present 2962 // in V, so for undef we have to conservatively return 1. We don't have the 2963 // same behavior for poison though -- that's a FIXME today. 2964 2965 Type *ScalarTy = Ty->getScalarType(); 2966 unsigned TyBits = ScalarTy->isPointerTy() ? 2967 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2968 Q.DL.getTypeSizeInBits(ScalarTy); 2969 2970 unsigned Tmp, Tmp2; 2971 unsigned FirstAnswer = 1; 2972 2973 // Note that ConstantInt is handled by the general computeKnownBits case 2974 // below. 2975 2976 if (Depth == MaxAnalysisRecursionDepth) 2977 return 1; 2978 2979 if (auto *U = dyn_cast<Operator>(V)) { 2980 switch (Operator::getOpcode(V)) { 2981 default: break; 2982 case Instruction::SExt: 2983 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2984 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2985 2986 case Instruction::SDiv: { 2987 const APInt *Denominator; 2988 // sdiv X, C -> adds log(C) sign bits. 2989 if (match(U->getOperand(1), m_APInt(Denominator))) { 2990 2991 // Ignore non-positive denominator. 2992 if (!Denominator->isStrictlyPositive()) 2993 break; 2994 2995 // Calculate the incoming numerator bits. 2996 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2997 2998 // Add floor(log(C)) bits to the numerator bits. 2999 return std::min(TyBits, NumBits + Denominator->logBase2()); 3000 } 3001 break; 3002 } 3003 3004 case Instruction::SRem: { 3005 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3006 3007 const APInt *Denominator; 3008 // srem X, C -> we know that the result is within [-C+1,C) when C is a 3009 // positive constant. This let us put a lower bound on the number of sign 3010 // bits. 3011 if (match(U->getOperand(1), m_APInt(Denominator))) { 3012 3013 // Ignore non-positive denominator. 3014 if (Denominator->isStrictlyPositive()) { 3015 // Calculate the leading sign bit constraints by examining the 3016 // denominator. Given that the denominator is positive, there are two 3017 // cases: 3018 // 3019 // 1. The numerator is positive. The result range is [0,C) and 3020 // [0,C) u< (1 << ceilLogBase2(C)). 3021 // 3022 // 2. The numerator is negative. Then the result range is (-C,0] and 3023 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 3024 // 3025 // Thus a lower bound on the number of sign bits is `TyBits - 3026 // ceilLogBase2(C)`. 3027 3028 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3029 Tmp = std::max(Tmp, ResBits); 3030 } 3031 } 3032 return Tmp; 3033 } 3034 3035 case Instruction::AShr: { 3036 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3037 // ashr X, C -> adds C sign bits. Vectors too. 3038 const APInt *ShAmt; 3039 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3040 if (ShAmt->uge(TyBits)) 3041 break; // Bad shift. 3042 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3043 Tmp += ShAmtLimited; 3044 if (Tmp > TyBits) Tmp = TyBits; 3045 } 3046 return Tmp; 3047 } 3048 case Instruction::Shl: { 3049 const APInt *ShAmt; 3050 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3051 // shl destroys sign bits. 3052 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3053 if (ShAmt->uge(TyBits) || // Bad shift. 3054 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3055 Tmp2 = ShAmt->getZExtValue(); 3056 return Tmp - Tmp2; 3057 } 3058 break; 3059 } 3060 case Instruction::And: 3061 case Instruction::Or: 3062 case Instruction::Xor: // NOT is handled here. 3063 // Logical binary ops preserve the number of sign bits at the worst. 3064 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3065 if (Tmp != 1) { 3066 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3067 FirstAnswer = std::min(Tmp, Tmp2); 3068 // We computed what we know about the sign bits as our first 3069 // answer. Now proceed to the generic code that uses 3070 // computeKnownBits, and pick whichever answer is better. 3071 } 3072 break; 3073 3074 case Instruction::Select: { 3075 // If we have a clamp pattern, we know that the number of sign bits will 3076 // be the minimum of the clamp min/max range. 3077 const Value *X; 3078 const APInt *CLow, *CHigh; 3079 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3080 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3081 3082 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3083 if (Tmp == 1) break; 3084 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3085 return std::min(Tmp, Tmp2); 3086 } 3087 3088 case Instruction::Add: 3089 // Add can have at most one carry bit. Thus we know that the output 3090 // is, at worst, one more bit than the inputs. 3091 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3092 if (Tmp == 1) break; 3093 3094 // Special case decrementing a value (ADD X, -1): 3095 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3096 if (CRHS->isAllOnesValue()) { 3097 KnownBits Known(TyBits); 3098 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3099 3100 // If the input is known to be 0 or 1, the output is 0/-1, which is 3101 // all sign bits set. 3102 if ((Known.Zero | 1).isAllOnes()) 3103 return TyBits; 3104 3105 // If we are subtracting one from a positive number, there is no carry 3106 // out of the result. 3107 if (Known.isNonNegative()) 3108 return Tmp; 3109 } 3110 3111 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3112 if (Tmp2 == 1) break; 3113 return std::min(Tmp, Tmp2) - 1; 3114 3115 case Instruction::Sub: 3116 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3117 if (Tmp2 == 1) break; 3118 3119 // Handle NEG. 3120 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3121 if (CLHS->isNullValue()) { 3122 KnownBits Known(TyBits); 3123 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3124 // If the input is known to be 0 or 1, the output is 0/-1, which is 3125 // all sign bits set. 3126 if ((Known.Zero | 1).isAllOnes()) 3127 return TyBits; 3128 3129 // If the input is known to be positive (the sign bit is known clear), 3130 // the output of the NEG has the same number of sign bits as the 3131 // input. 3132 if (Known.isNonNegative()) 3133 return Tmp2; 3134 3135 // Otherwise, we treat this like a SUB. 3136 } 3137 3138 // Sub can have at most one carry bit. Thus we know that the output 3139 // is, at worst, one more bit than the inputs. 3140 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3141 if (Tmp == 1) break; 3142 return std::min(Tmp, Tmp2) - 1; 3143 3144 case Instruction::Mul: { 3145 // The output of the Mul can be at most twice the valid bits in the 3146 // inputs. 3147 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3148 if (SignBitsOp0 == 1) break; 3149 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3150 if (SignBitsOp1 == 1) break; 3151 unsigned OutValidBits = 3152 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3153 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3154 } 3155 3156 case Instruction::PHI: { 3157 const PHINode *PN = cast<PHINode>(U); 3158 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3159 // Don't analyze large in-degree PHIs. 3160 if (NumIncomingValues > 4) break; 3161 // Unreachable blocks may have zero-operand PHI nodes. 3162 if (NumIncomingValues == 0) break; 3163 3164 // Take the minimum of all incoming values. This can't infinitely loop 3165 // because of our depth threshold. 3166 Query RecQ = Q; 3167 Tmp = TyBits; 3168 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3169 if (Tmp == 1) return Tmp; 3170 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3171 Tmp = std::min( 3172 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3173 } 3174 return Tmp; 3175 } 3176 3177 case Instruction::Trunc: 3178 // FIXME: it's tricky to do anything useful for this, but it is an 3179 // important case for targets like X86. 3180 break; 3181 3182 case Instruction::ExtractElement: 3183 // Look through extract element. At the moment we keep this simple and 3184 // skip tracking the specific element. But at least we might find 3185 // information valid for all elements of the vector (for example if vector 3186 // is sign extended, shifted, etc). 3187 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3188 3189 case Instruction::ShuffleVector: { 3190 // Collect the minimum number of sign bits that are shared by every vector 3191 // element referenced by the shuffle. 3192 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3193 if (!Shuf) { 3194 // FIXME: Add support for shufflevector constant expressions. 3195 return 1; 3196 } 3197 APInt DemandedLHS, DemandedRHS; 3198 // For undef elements, we don't know anything about the common state of 3199 // the shuffle result. 3200 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3201 return 1; 3202 Tmp = std::numeric_limits<unsigned>::max(); 3203 if (!!DemandedLHS) { 3204 const Value *LHS = Shuf->getOperand(0); 3205 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3206 } 3207 // If we don't know anything, early out and try computeKnownBits 3208 // fall-back. 3209 if (Tmp == 1) 3210 break; 3211 if (!!DemandedRHS) { 3212 const Value *RHS = Shuf->getOperand(1); 3213 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3214 Tmp = std::min(Tmp, Tmp2); 3215 } 3216 // If we don't know anything, early out and try computeKnownBits 3217 // fall-back. 3218 if (Tmp == 1) 3219 break; 3220 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3221 return Tmp; 3222 } 3223 case Instruction::Call: { 3224 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3225 switch (II->getIntrinsicID()) { 3226 default: break; 3227 case Intrinsic::abs: 3228 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3229 if (Tmp == 1) break; 3230 3231 // Absolute value reduces number of sign bits by at most 1. 3232 return Tmp - 1; 3233 } 3234 } 3235 } 3236 } 3237 } 3238 3239 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3240 // use this information. 3241 3242 // If we can examine all elements of a vector constant successfully, we're 3243 // done (we can't do any better than that). If not, keep trying. 3244 if (unsigned VecSignBits = 3245 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3246 return VecSignBits; 3247 3248 KnownBits Known(TyBits); 3249 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3250 3251 // If we know that the sign bit is either zero or one, determine the number of 3252 // identical bits in the top of the input value. 3253 return std::max(FirstAnswer, Known.countMinSignBits()); 3254 } 3255 3256 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3257 const TargetLibraryInfo *TLI) { 3258 const Function *F = CB.getCalledFunction(); 3259 if (!F) 3260 return Intrinsic::not_intrinsic; 3261 3262 if (F->isIntrinsic()) 3263 return F->getIntrinsicID(); 3264 3265 // We are going to infer semantics of a library function based on mapping it 3266 // to an LLVM intrinsic. Check that the library function is available from 3267 // this callbase and in this environment. 3268 LibFunc Func; 3269 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3270 !CB.onlyReadsMemory()) 3271 return Intrinsic::not_intrinsic; 3272 3273 switch (Func) { 3274 default: 3275 break; 3276 case LibFunc_sin: 3277 case LibFunc_sinf: 3278 case LibFunc_sinl: 3279 return Intrinsic::sin; 3280 case LibFunc_cos: 3281 case LibFunc_cosf: 3282 case LibFunc_cosl: 3283 return Intrinsic::cos; 3284 case LibFunc_exp: 3285 case LibFunc_expf: 3286 case LibFunc_expl: 3287 return Intrinsic::exp; 3288 case LibFunc_exp2: 3289 case LibFunc_exp2f: 3290 case LibFunc_exp2l: 3291 return Intrinsic::exp2; 3292 case LibFunc_log: 3293 case LibFunc_logf: 3294 case LibFunc_logl: 3295 return Intrinsic::log; 3296 case LibFunc_log10: 3297 case LibFunc_log10f: 3298 case LibFunc_log10l: 3299 return Intrinsic::log10; 3300 case LibFunc_log2: 3301 case LibFunc_log2f: 3302 case LibFunc_log2l: 3303 return Intrinsic::log2; 3304 case LibFunc_fabs: 3305 case LibFunc_fabsf: 3306 case LibFunc_fabsl: 3307 return Intrinsic::fabs; 3308 case LibFunc_fmin: 3309 case LibFunc_fminf: 3310 case LibFunc_fminl: 3311 return Intrinsic::minnum; 3312 case LibFunc_fmax: 3313 case LibFunc_fmaxf: 3314 case LibFunc_fmaxl: 3315 return Intrinsic::maxnum; 3316 case LibFunc_copysign: 3317 case LibFunc_copysignf: 3318 case LibFunc_copysignl: 3319 return Intrinsic::copysign; 3320 case LibFunc_floor: 3321 case LibFunc_floorf: 3322 case LibFunc_floorl: 3323 return Intrinsic::floor; 3324 case LibFunc_ceil: 3325 case LibFunc_ceilf: 3326 case LibFunc_ceill: 3327 return Intrinsic::ceil; 3328 case LibFunc_trunc: 3329 case LibFunc_truncf: 3330 case LibFunc_truncl: 3331 return Intrinsic::trunc; 3332 case LibFunc_rint: 3333 case LibFunc_rintf: 3334 case LibFunc_rintl: 3335 return Intrinsic::rint; 3336 case LibFunc_nearbyint: 3337 case LibFunc_nearbyintf: 3338 case LibFunc_nearbyintl: 3339 return Intrinsic::nearbyint; 3340 case LibFunc_round: 3341 case LibFunc_roundf: 3342 case LibFunc_roundl: 3343 return Intrinsic::round; 3344 case LibFunc_roundeven: 3345 case LibFunc_roundevenf: 3346 case LibFunc_roundevenl: 3347 return Intrinsic::roundeven; 3348 case LibFunc_pow: 3349 case LibFunc_powf: 3350 case LibFunc_powl: 3351 return Intrinsic::pow; 3352 case LibFunc_sqrt: 3353 case LibFunc_sqrtf: 3354 case LibFunc_sqrtl: 3355 return Intrinsic::sqrt; 3356 } 3357 3358 return Intrinsic::not_intrinsic; 3359 } 3360 3361 /// Return true if we can prove that the specified FP value is never equal to 3362 /// -0.0. 3363 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3364 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3365 /// the same as +0.0 in floating-point ops. 3366 /// 3367 /// NOTE: this function will need to be revisited when we support non-default 3368 /// rounding modes! 3369 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3370 unsigned Depth) { 3371 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3372 return !CFP->getValueAPF().isNegZero(); 3373 3374 if (Depth == MaxAnalysisRecursionDepth) 3375 return false; 3376 3377 auto *Op = dyn_cast<Operator>(V); 3378 if (!Op) 3379 return false; 3380 3381 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3382 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3383 return true; 3384 3385 // sitofp and uitofp turn into +0.0 for zero. 3386 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3387 return true; 3388 3389 if (auto *Call = dyn_cast<CallInst>(Op)) { 3390 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3391 switch (IID) { 3392 default: 3393 break; 3394 // sqrt(-0.0) = -0.0, no other negative results are possible. 3395 case Intrinsic::sqrt: 3396 case Intrinsic::canonicalize: 3397 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3398 // fabs(x) != -0.0 3399 case Intrinsic::fabs: 3400 return true; 3401 } 3402 } 3403 3404 return false; 3405 } 3406 3407 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3408 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3409 /// bit despite comparing equal. 3410 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3411 const TargetLibraryInfo *TLI, 3412 bool SignBitOnly, 3413 unsigned Depth) { 3414 // TODO: This function does not do the right thing when SignBitOnly is true 3415 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3416 // which flips the sign bits of NaNs. See 3417 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3418 3419 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3420 return !CFP->getValueAPF().isNegative() || 3421 (!SignBitOnly && CFP->getValueAPF().isZero()); 3422 } 3423 3424 // Handle vector of constants. 3425 if (auto *CV = dyn_cast<Constant>(V)) { 3426 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3427 unsigned NumElts = CVFVTy->getNumElements(); 3428 for (unsigned i = 0; i != NumElts; ++i) { 3429 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3430 if (!CFP) 3431 return false; 3432 if (CFP->getValueAPF().isNegative() && 3433 (SignBitOnly || !CFP->getValueAPF().isZero())) 3434 return false; 3435 } 3436 3437 // All non-negative ConstantFPs. 3438 return true; 3439 } 3440 } 3441 3442 if (Depth == MaxAnalysisRecursionDepth) 3443 return false; 3444 3445 const Operator *I = dyn_cast<Operator>(V); 3446 if (!I) 3447 return false; 3448 3449 switch (I->getOpcode()) { 3450 default: 3451 break; 3452 // Unsigned integers are always nonnegative. 3453 case Instruction::UIToFP: 3454 return true; 3455 case Instruction::FMul: 3456 case Instruction::FDiv: 3457 // X * X is always non-negative or a NaN. 3458 // X / X is always exactly 1.0 or a NaN. 3459 if (I->getOperand(0) == I->getOperand(1) && 3460 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3461 return true; 3462 3463 LLVM_FALLTHROUGH; 3464 case Instruction::FAdd: 3465 case Instruction::FRem: 3466 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3467 Depth + 1) && 3468 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3469 Depth + 1); 3470 case Instruction::Select: 3471 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3472 Depth + 1) && 3473 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3474 Depth + 1); 3475 case Instruction::FPExt: 3476 case Instruction::FPTrunc: 3477 // Widening/narrowing never change sign. 3478 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3479 Depth + 1); 3480 case Instruction::ExtractElement: 3481 // Look through extract element. At the moment we keep this simple and skip 3482 // tracking the specific element. But at least we might find information 3483 // valid for all elements of the vector. 3484 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3485 Depth + 1); 3486 case Instruction::Call: 3487 const auto *CI = cast<CallInst>(I); 3488 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3489 switch (IID) { 3490 default: 3491 break; 3492 case Intrinsic::maxnum: { 3493 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3494 auto isPositiveNum = [&](Value *V) { 3495 if (SignBitOnly) { 3496 // With SignBitOnly, this is tricky because the result of 3497 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3498 // a constant strictly greater than 0.0. 3499 const APFloat *C; 3500 return match(V, m_APFloat(C)) && 3501 *C > APFloat::getZero(C->getSemantics()); 3502 } 3503 3504 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3505 // maxnum can't be ordered-less-than-zero. 3506 return isKnownNeverNaN(V, TLI) && 3507 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3508 }; 3509 3510 // TODO: This could be improved. We could also check that neither operand 3511 // has its sign bit set (and at least 1 is not-NAN?). 3512 return isPositiveNum(V0) || isPositiveNum(V1); 3513 } 3514 3515 case Intrinsic::maximum: 3516 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3517 Depth + 1) || 3518 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3519 Depth + 1); 3520 case Intrinsic::minnum: 3521 case Intrinsic::minimum: 3522 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3523 Depth + 1) && 3524 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3525 Depth + 1); 3526 case Intrinsic::exp: 3527 case Intrinsic::exp2: 3528 case Intrinsic::fabs: 3529 return true; 3530 3531 case Intrinsic::sqrt: 3532 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3533 if (!SignBitOnly) 3534 return true; 3535 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3536 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3537 3538 case Intrinsic::powi: 3539 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3540 // powi(x,n) is non-negative if n is even. 3541 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3542 return true; 3543 } 3544 // TODO: This is not correct. Given that exp is an integer, here are the 3545 // ways that pow can return a negative value: 3546 // 3547 // pow(x, exp) --> negative if exp is odd and x is negative. 3548 // pow(-0, exp) --> -inf if exp is negative odd. 3549 // pow(-0, exp) --> -0 if exp is positive odd. 3550 // pow(-inf, exp) --> -0 if exp is negative odd. 3551 // pow(-inf, exp) --> -inf if exp is positive odd. 3552 // 3553 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3554 // but we must return false if x == -0. Unfortunately we do not currently 3555 // have a way of expressing this constraint. See details in 3556 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3557 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3558 Depth + 1); 3559 3560 case Intrinsic::fma: 3561 case Intrinsic::fmuladd: 3562 // x*x+y is non-negative if y is non-negative. 3563 return I->getOperand(0) == I->getOperand(1) && 3564 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3565 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3566 Depth + 1); 3567 } 3568 break; 3569 } 3570 return false; 3571 } 3572 3573 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3574 const TargetLibraryInfo *TLI) { 3575 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3576 } 3577 3578 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3579 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3580 } 3581 3582 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3583 unsigned Depth) { 3584 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3585 3586 // If we're told that infinities won't happen, assume they won't. 3587 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3588 if (FPMathOp->hasNoInfs()) 3589 return true; 3590 3591 // Handle scalar constants. 3592 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3593 return !CFP->isInfinity(); 3594 3595 if (Depth == MaxAnalysisRecursionDepth) 3596 return false; 3597 3598 if (auto *Inst = dyn_cast<Instruction>(V)) { 3599 switch (Inst->getOpcode()) { 3600 case Instruction::Select: { 3601 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3602 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3603 } 3604 case Instruction::SIToFP: 3605 case Instruction::UIToFP: { 3606 // Get width of largest magnitude integer (remove a bit if signed). 3607 // This still works for a signed minimum value because the largest FP 3608 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3609 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3610 if (Inst->getOpcode() == Instruction::SIToFP) 3611 --IntSize; 3612 3613 // If the exponent of the largest finite FP value can hold the largest 3614 // integer, the result of the cast must be finite. 3615 Type *FPTy = Inst->getType()->getScalarType(); 3616 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3617 } 3618 default: 3619 break; 3620 } 3621 } 3622 3623 // try to handle fixed width vector constants 3624 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3625 if (VFVTy && isa<Constant>(V)) { 3626 // For vectors, verify that each element is not infinity. 3627 unsigned NumElts = VFVTy->getNumElements(); 3628 for (unsigned i = 0; i != NumElts; ++i) { 3629 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3630 if (!Elt) 3631 return false; 3632 if (isa<UndefValue>(Elt)) 3633 continue; 3634 auto *CElt = dyn_cast<ConstantFP>(Elt); 3635 if (!CElt || CElt->isInfinity()) 3636 return false; 3637 } 3638 // All elements were confirmed non-infinity or undefined. 3639 return true; 3640 } 3641 3642 // was not able to prove that V never contains infinity 3643 return false; 3644 } 3645 3646 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3647 unsigned Depth) { 3648 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3649 3650 // If we're told that NaNs won't happen, assume they won't. 3651 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3652 if (FPMathOp->hasNoNaNs()) 3653 return true; 3654 3655 // Handle scalar constants. 3656 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3657 return !CFP->isNaN(); 3658 3659 if (Depth == MaxAnalysisRecursionDepth) 3660 return false; 3661 3662 if (auto *Inst = dyn_cast<Instruction>(V)) { 3663 switch (Inst->getOpcode()) { 3664 case Instruction::FAdd: 3665 case Instruction::FSub: 3666 // Adding positive and negative infinity produces NaN. 3667 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3668 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3669 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3670 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3671 3672 case Instruction::FMul: 3673 // Zero multiplied with infinity produces NaN. 3674 // FIXME: If neither side can be zero fmul never produces NaN. 3675 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3676 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3677 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3678 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3679 3680 case Instruction::FDiv: 3681 case Instruction::FRem: 3682 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3683 return false; 3684 3685 case Instruction::Select: { 3686 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3687 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3688 } 3689 case Instruction::SIToFP: 3690 case Instruction::UIToFP: 3691 return true; 3692 case Instruction::FPTrunc: 3693 case Instruction::FPExt: 3694 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3695 default: 3696 break; 3697 } 3698 } 3699 3700 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3701 switch (II->getIntrinsicID()) { 3702 case Intrinsic::canonicalize: 3703 case Intrinsic::fabs: 3704 case Intrinsic::copysign: 3705 case Intrinsic::exp: 3706 case Intrinsic::exp2: 3707 case Intrinsic::floor: 3708 case Intrinsic::ceil: 3709 case Intrinsic::trunc: 3710 case Intrinsic::rint: 3711 case Intrinsic::nearbyint: 3712 case Intrinsic::round: 3713 case Intrinsic::roundeven: 3714 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3715 case Intrinsic::sqrt: 3716 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3717 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3718 case Intrinsic::minnum: 3719 case Intrinsic::maxnum: 3720 // If either operand is not NaN, the result is not NaN. 3721 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3722 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3723 default: 3724 return false; 3725 } 3726 } 3727 3728 // Try to handle fixed width vector constants 3729 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3730 if (VFVTy && isa<Constant>(V)) { 3731 // For vectors, verify that each element is not NaN. 3732 unsigned NumElts = VFVTy->getNumElements(); 3733 for (unsigned i = 0; i != NumElts; ++i) { 3734 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3735 if (!Elt) 3736 return false; 3737 if (isa<UndefValue>(Elt)) 3738 continue; 3739 auto *CElt = dyn_cast<ConstantFP>(Elt); 3740 if (!CElt || CElt->isNaN()) 3741 return false; 3742 } 3743 // All elements were confirmed not-NaN or undefined. 3744 return true; 3745 } 3746 3747 // Was not able to prove that V never contains NaN 3748 return false; 3749 } 3750 3751 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3752 3753 // All byte-wide stores are splatable, even of arbitrary variables. 3754 if (V->getType()->isIntegerTy(8)) 3755 return V; 3756 3757 LLVMContext &Ctx = V->getContext(); 3758 3759 // Undef don't care. 3760 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3761 if (isa<UndefValue>(V)) 3762 return UndefInt8; 3763 3764 // Return Undef for zero-sized type. 3765 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3766 return UndefInt8; 3767 3768 Constant *C = dyn_cast<Constant>(V); 3769 if (!C) { 3770 // Conceptually, we could handle things like: 3771 // %a = zext i8 %X to i16 3772 // %b = shl i16 %a, 8 3773 // %c = or i16 %a, %b 3774 // but until there is an example that actually needs this, it doesn't seem 3775 // worth worrying about. 3776 return nullptr; 3777 } 3778 3779 // Handle 'null' ConstantArrayZero etc. 3780 if (C->isNullValue()) 3781 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3782 3783 // Constant floating-point values can be handled as integer values if the 3784 // corresponding integer value is "byteable". An important case is 0.0. 3785 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3786 Type *Ty = nullptr; 3787 if (CFP->getType()->isHalfTy()) 3788 Ty = Type::getInt16Ty(Ctx); 3789 else if (CFP->getType()->isFloatTy()) 3790 Ty = Type::getInt32Ty(Ctx); 3791 else if (CFP->getType()->isDoubleTy()) 3792 Ty = Type::getInt64Ty(Ctx); 3793 // Don't handle long double formats, which have strange constraints. 3794 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3795 : nullptr; 3796 } 3797 3798 // We can handle constant integers that are multiple of 8 bits. 3799 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3800 if (CI->getBitWidth() % 8 == 0) { 3801 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3802 if (!CI->getValue().isSplat(8)) 3803 return nullptr; 3804 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3805 } 3806 } 3807 3808 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3809 if (CE->getOpcode() == Instruction::IntToPtr) { 3810 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3811 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3812 return isBytewiseValue( 3813 ConstantExpr::getIntegerCast(CE->getOperand(0), 3814 Type::getIntNTy(Ctx, BitWidth), false), 3815 DL); 3816 } 3817 } 3818 } 3819 3820 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3821 if (LHS == RHS) 3822 return LHS; 3823 if (!LHS || !RHS) 3824 return nullptr; 3825 if (LHS == UndefInt8) 3826 return RHS; 3827 if (RHS == UndefInt8) 3828 return LHS; 3829 return nullptr; 3830 }; 3831 3832 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3833 Value *Val = UndefInt8; 3834 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3835 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3836 return nullptr; 3837 return Val; 3838 } 3839 3840 if (isa<ConstantAggregate>(C)) { 3841 Value *Val = UndefInt8; 3842 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3843 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3844 return nullptr; 3845 return Val; 3846 } 3847 3848 // Don't try to handle the handful of other constants. 3849 return nullptr; 3850 } 3851 3852 // This is the recursive version of BuildSubAggregate. It takes a few different 3853 // arguments. Idxs is the index within the nested struct From that we are 3854 // looking at now (which is of type IndexedType). IdxSkip is the number of 3855 // indices from Idxs that should be left out when inserting into the resulting 3856 // struct. To is the result struct built so far, new insertvalue instructions 3857 // build on that. 3858 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3859 SmallVectorImpl<unsigned> &Idxs, 3860 unsigned IdxSkip, 3861 Instruction *InsertBefore) { 3862 StructType *STy = dyn_cast<StructType>(IndexedType); 3863 if (STy) { 3864 // Save the original To argument so we can modify it 3865 Value *OrigTo = To; 3866 // General case, the type indexed by Idxs is a struct 3867 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3868 // Process each struct element recursively 3869 Idxs.push_back(i); 3870 Value *PrevTo = To; 3871 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3872 InsertBefore); 3873 Idxs.pop_back(); 3874 if (!To) { 3875 // Couldn't find any inserted value for this index? Cleanup 3876 while (PrevTo != OrigTo) { 3877 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3878 PrevTo = Del->getAggregateOperand(); 3879 Del->eraseFromParent(); 3880 } 3881 // Stop processing elements 3882 break; 3883 } 3884 } 3885 // If we successfully found a value for each of our subaggregates 3886 if (To) 3887 return To; 3888 } 3889 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3890 // the struct's elements had a value that was inserted directly. In the latter 3891 // case, perhaps we can't determine each of the subelements individually, but 3892 // we might be able to find the complete struct somewhere. 3893 3894 // Find the value that is at that particular spot 3895 Value *V = FindInsertedValue(From, Idxs); 3896 3897 if (!V) 3898 return nullptr; 3899 3900 // Insert the value in the new (sub) aggregate 3901 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3902 "tmp", InsertBefore); 3903 } 3904 3905 // This helper takes a nested struct and extracts a part of it (which is again a 3906 // struct) into a new value. For example, given the struct: 3907 // { a, { b, { c, d }, e } } 3908 // and the indices "1, 1" this returns 3909 // { c, d }. 3910 // 3911 // It does this by inserting an insertvalue for each element in the resulting 3912 // struct, as opposed to just inserting a single struct. This will only work if 3913 // each of the elements of the substruct are known (ie, inserted into From by an 3914 // insertvalue instruction somewhere). 3915 // 3916 // All inserted insertvalue instructions are inserted before InsertBefore 3917 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3918 Instruction *InsertBefore) { 3919 assert(InsertBefore && "Must have someplace to insert!"); 3920 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3921 idx_range); 3922 Value *To = UndefValue::get(IndexedType); 3923 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3924 unsigned IdxSkip = Idxs.size(); 3925 3926 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3927 } 3928 3929 /// Given an aggregate and a sequence of indices, see if the scalar value 3930 /// indexed is already around as a register, for example if it was inserted 3931 /// directly into the aggregate. 3932 /// 3933 /// If InsertBefore is not null, this function will duplicate (modified) 3934 /// insertvalues when a part of a nested struct is extracted. 3935 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3936 Instruction *InsertBefore) { 3937 // Nothing to index? Just return V then (this is useful at the end of our 3938 // recursion). 3939 if (idx_range.empty()) 3940 return V; 3941 // We have indices, so V should have an indexable type. 3942 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3943 "Not looking at a struct or array?"); 3944 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3945 "Invalid indices for type?"); 3946 3947 if (Constant *C = dyn_cast<Constant>(V)) { 3948 C = C->getAggregateElement(idx_range[0]); 3949 if (!C) return nullptr; 3950 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3951 } 3952 3953 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3954 // Loop the indices for the insertvalue instruction in parallel with the 3955 // requested indices 3956 const unsigned *req_idx = idx_range.begin(); 3957 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3958 i != e; ++i, ++req_idx) { 3959 if (req_idx == idx_range.end()) { 3960 // We can't handle this without inserting insertvalues 3961 if (!InsertBefore) 3962 return nullptr; 3963 3964 // The requested index identifies a part of a nested aggregate. Handle 3965 // this specially. For example, 3966 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3967 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3968 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3969 // This can be changed into 3970 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3971 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3972 // which allows the unused 0,0 element from the nested struct to be 3973 // removed. 3974 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3975 InsertBefore); 3976 } 3977 3978 // This insert value inserts something else than what we are looking for. 3979 // See if the (aggregate) value inserted into has the value we are 3980 // looking for, then. 3981 if (*req_idx != *i) 3982 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3983 InsertBefore); 3984 } 3985 // If we end up here, the indices of the insertvalue match with those 3986 // requested (though possibly only partially). Now we recursively look at 3987 // the inserted value, passing any remaining indices. 3988 return FindInsertedValue(I->getInsertedValueOperand(), 3989 makeArrayRef(req_idx, idx_range.end()), 3990 InsertBefore); 3991 } 3992 3993 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3994 // If we're extracting a value from an aggregate that was extracted from 3995 // something else, we can extract from that something else directly instead. 3996 // However, we will need to chain I's indices with the requested indices. 3997 3998 // Calculate the number of indices required 3999 unsigned size = I->getNumIndices() + idx_range.size(); 4000 // Allocate some space to put the new indices in 4001 SmallVector<unsigned, 5> Idxs; 4002 Idxs.reserve(size); 4003 // Add indices from the extract value instruction 4004 Idxs.append(I->idx_begin(), I->idx_end()); 4005 4006 // Add requested indices 4007 Idxs.append(idx_range.begin(), idx_range.end()); 4008 4009 assert(Idxs.size() == size 4010 && "Number of indices added not correct?"); 4011 4012 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4013 } 4014 // Otherwise, we don't know (such as, extracting from a function return value 4015 // or load instruction) 4016 return nullptr; 4017 } 4018 4019 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4020 unsigned CharSize) { 4021 // Make sure the GEP has exactly three arguments. 4022 if (GEP->getNumOperands() != 3) 4023 return false; 4024 4025 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4026 // CharSize. 4027 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4028 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4029 return false; 4030 4031 // Check to make sure that the first operand of the GEP is an integer and 4032 // has value 0 so that we are sure we're indexing into the initializer. 4033 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4034 if (!FirstIdx || !FirstIdx->isZero()) 4035 return false; 4036 4037 return true; 4038 } 4039 4040 bool llvm::getConstantDataArrayInfo(const Value *V, 4041 ConstantDataArraySlice &Slice, 4042 unsigned ElementSize, uint64_t Offset) { 4043 assert(V); 4044 4045 // Look through bitcast instructions and geps. 4046 V = V->stripPointerCasts(); 4047 4048 // If the value is a GEP instruction or constant expression, treat it as an 4049 // offset. 4050 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4051 // The GEP operator should be based on a pointer to string constant, and is 4052 // indexing into the string constant. 4053 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4054 return false; 4055 4056 // If the second index isn't a ConstantInt, then this is a variable index 4057 // into the array. If this occurs, we can't say anything meaningful about 4058 // the string. 4059 uint64_t StartIdx = 0; 4060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4061 StartIdx = CI->getZExtValue(); 4062 else 4063 return false; 4064 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4065 StartIdx + Offset); 4066 } 4067 4068 // The GEP instruction, constant or instruction, must reference a global 4069 // variable that is a constant and is initialized. The referenced constant 4070 // initializer is the array that we'll use for optimization. 4071 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4072 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4073 return false; 4074 4075 const ConstantDataArray *Array; 4076 ArrayType *ArrayTy; 4077 if (GV->getInitializer()->isNullValue()) { 4078 Type *GVTy = GV->getValueType(); 4079 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4080 // A zeroinitializer for the array; there is no ConstantDataArray. 4081 Array = nullptr; 4082 } else { 4083 const DataLayout &DL = GV->getParent()->getDataLayout(); 4084 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4085 uint64_t Length = SizeInBytes / (ElementSize / 8); 4086 if (Length <= Offset) 4087 return false; 4088 4089 Slice.Array = nullptr; 4090 Slice.Offset = 0; 4091 Slice.Length = Length - Offset; 4092 return true; 4093 } 4094 } else { 4095 // This must be a ConstantDataArray. 4096 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4097 if (!Array) 4098 return false; 4099 ArrayTy = Array->getType(); 4100 } 4101 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4102 return false; 4103 4104 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4105 if (Offset > NumElts) 4106 return false; 4107 4108 Slice.Array = Array; 4109 Slice.Offset = Offset; 4110 Slice.Length = NumElts - Offset; 4111 return true; 4112 } 4113 4114 /// This function computes the length of a null-terminated C string pointed to 4115 /// by V. If successful, it returns true and returns the string in Str. 4116 /// If unsuccessful, it returns false. 4117 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4118 uint64_t Offset, bool TrimAtNul) { 4119 ConstantDataArraySlice Slice; 4120 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4121 return false; 4122 4123 if (Slice.Array == nullptr) { 4124 if (TrimAtNul) { 4125 Str = StringRef(); 4126 return true; 4127 } 4128 if (Slice.Length == 1) { 4129 Str = StringRef("", 1); 4130 return true; 4131 } 4132 // We cannot instantiate a StringRef as we do not have an appropriate string 4133 // of 0s at hand. 4134 return false; 4135 } 4136 4137 // Start out with the entire array in the StringRef. 4138 Str = Slice.Array->getAsString(); 4139 // Skip over 'offset' bytes. 4140 Str = Str.substr(Slice.Offset); 4141 4142 if (TrimAtNul) { 4143 // Trim off the \0 and anything after it. If the array is not nul 4144 // terminated, we just return the whole end of string. The client may know 4145 // some other way that the string is length-bound. 4146 Str = Str.substr(0, Str.find('\0')); 4147 } 4148 return true; 4149 } 4150 4151 // These next two are very similar to the above, but also look through PHI 4152 // nodes. 4153 // TODO: See if we can integrate these two together. 4154 4155 /// If we can compute the length of the string pointed to by 4156 /// the specified pointer, return 'len+1'. If we can't, return 0. 4157 static uint64_t GetStringLengthH(const Value *V, 4158 SmallPtrSetImpl<const PHINode*> &PHIs, 4159 unsigned CharSize) { 4160 // Look through noop bitcast instructions. 4161 V = V->stripPointerCasts(); 4162 4163 // If this is a PHI node, there are two cases: either we have already seen it 4164 // or we haven't. 4165 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4166 if (!PHIs.insert(PN).second) 4167 return ~0ULL; // already in the set. 4168 4169 // If it was new, see if all the input strings are the same length. 4170 uint64_t LenSoFar = ~0ULL; 4171 for (Value *IncValue : PN->incoming_values()) { 4172 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4173 if (Len == 0) return 0; // Unknown length -> unknown. 4174 4175 if (Len == ~0ULL) continue; 4176 4177 if (Len != LenSoFar && LenSoFar != ~0ULL) 4178 return 0; // Disagree -> unknown. 4179 LenSoFar = Len; 4180 } 4181 4182 // Success, all agree. 4183 return LenSoFar; 4184 } 4185 4186 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4187 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4188 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4189 if (Len1 == 0) return 0; 4190 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4191 if (Len2 == 0) return 0; 4192 if (Len1 == ~0ULL) return Len2; 4193 if (Len2 == ~0ULL) return Len1; 4194 if (Len1 != Len2) return 0; 4195 return Len1; 4196 } 4197 4198 // Otherwise, see if we can read the string. 4199 ConstantDataArraySlice Slice; 4200 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4201 return 0; 4202 4203 if (Slice.Array == nullptr) 4204 return 1; 4205 4206 // Search for nul characters 4207 unsigned NullIndex = 0; 4208 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4209 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4210 break; 4211 } 4212 4213 return NullIndex + 1; 4214 } 4215 4216 /// If we can compute the length of the string pointed to by 4217 /// the specified pointer, return 'len+1'. If we can't, return 0. 4218 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4219 if (!V->getType()->isPointerTy()) 4220 return 0; 4221 4222 SmallPtrSet<const PHINode*, 32> PHIs; 4223 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4224 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4225 // an empty string as a length. 4226 return Len == ~0ULL ? 1 : Len; 4227 } 4228 4229 const Value * 4230 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4231 bool MustPreserveNullness) { 4232 assert(Call && 4233 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4234 if (const Value *RV = Call->getReturnedArgOperand()) 4235 return RV; 4236 // This can be used only as a aliasing property. 4237 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4238 Call, MustPreserveNullness)) 4239 return Call->getArgOperand(0); 4240 return nullptr; 4241 } 4242 4243 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4244 const CallBase *Call, bool MustPreserveNullness) { 4245 switch (Call->getIntrinsicID()) { 4246 case Intrinsic::launder_invariant_group: 4247 case Intrinsic::strip_invariant_group: 4248 case Intrinsic::aarch64_irg: 4249 case Intrinsic::aarch64_tagp: 4250 return true; 4251 case Intrinsic::ptrmask: 4252 return !MustPreserveNullness; 4253 default: 4254 return false; 4255 } 4256 } 4257 4258 /// \p PN defines a loop-variant pointer to an object. Check if the 4259 /// previous iteration of the loop was referring to the same object as \p PN. 4260 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4261 const LoopInfo *LI) { 4262 // Find the loop-defined value. 4263 Loop *L = LI->getLoopFor(PN->getParent()); 4264 if (PN->getNumIncomingValues() != 2) 4265 return true; 4266 4267 // Find the value from previous iteration. 4268 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4269 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4270 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4271 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4272 return true; 4273 4274 // If a new pointer is loaded in the loop, the pointer references a different 4275 // object in every iteration. E.g.: 4276 // for (i) 4277 // int *p = a[i]; 4278 // ... 4279 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4280 if (!L->isLoopInvariant(Load->getPointerOperand())) 4281 return false; 4282 return true; 4283 } 4284 4285 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4286 if (!V->getType()->isPointerTy()) 4287 return V; 4288 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4289 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4290 V = GEP->getPointerOperand(); 4291 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4292 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4293 V = cast<Operator>(V)->getOperand(0); 4294 if (!V->getType()->isPointerTy()) 4295 return V; 4296 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4297 if (GA->isInterposable()) 4298 return V; 4299 V = GA->getAliasee(); 4300 } else { 4301 if (auto *PHI = dyn_cast<PHINode>(V)) { 4302 // Look through single-arg phi nodes created by LCSSA. 4303 if (PHI->getNumIncomingValues() == 1) { 4304 V = PHI->getIncomingValue(0); 4305 continue; 4306 } 4307 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4308 // CaptureTracking can know about special capturing properties of some 4309 // intrinsics like launder.invariant.group, that can't be expressed with 4310 // the attributes, but have properties like returning aliasing pointer. 4311 // Because some analysis may assume that nocaptured pointer is not 4312 // returned from some special intrinsic (because function would have to 4313 // be marked with returns attribute), it is crucial to use this function 4314 // because it should be in sync with CaptureTracking. Not using it may 4315 // cause weird miscompilations where 2 aliasing pointers are assumed to 4316 // noalias. 4317 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4318 V = RP; 4319 continue; 4320 } 4321 } 4322 4323 return V; 4324 } 4325 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4326 } 4327 return V; 4328 } 4329 4330 void llvm::getUnderlyingObjects(const Value *V, 4331 SmallVectorImpl<const Value *> &Objects, 4332 LoopInfo *LI, unsigned MaxLookup) { 4333 SmallPtrSet<const Value *, 4> Visited; 4334 SmallVector<const Value *, 4> Worklist; 4335 Worklist.push_back(V); 4336 do { 4337 const Value *P = Worklist.pop_back_val(); 4338 P = getUnderlyingObject(P, MaxLookup); 4339 4340 if (!Visited.insert(P).second) 4341 continue; 4342 4343 if (auto *SI = dyn_cast<SelectInst>(P)) { 4344 Worklist.push_back(SI->getTrueValue()); 4345 Worklist.push_back(SI->getFalseValue()); 4346 continue; 4347 } 4348 4349 if (auto *PN = dyn_cast<PHINode>(P)) { 4350 // If this PHI changes the underlying object in every iteration of the 4351 // loop, don't look through it. Consider: 4352 // int **A; 4353 // for (i) { 4354 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4355 // Curr = A[i]; 4356 // *Prev, *Curr; 4357 // 4358 // Prev is tracking Curr one iteration behind so they refer to different 4359 // underlying objects. 4360 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4361 isSameUnderlyingObjectInLoop(PN, LI)) 4362 append_range(Worklist, PN->incoming_values()); 4363 continue; 4364 } 4365 4366 Objects.push_back(P); 4367 } while (!Worklist.empty()); 4368 } 4369 4370 /// This is the function that does the work of looking through basic 4371 /// ptrtoint+arithmetic+inttoptr sequences. 4372 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4373 do { 4374 if (const Operator *U = dyn_cast<Operator>(V)) { 4375 // If we find a ptrtoint, we can transfer control back to the 4376 // regular getUnderlyingObjectFromInt. 4377 if (U->getOpcode() == Instruction::PtrToInt) 4378 return U->getOperand(0); 4379 // If we find an add of a constant, a multiplied value, or a phi, it's 4380 // likely that the other operand will lead us to the base 4381 // object. We don't have to worry about the case where the 4382 // object address is somehow being computed by the multiply, 4383 // because our callers only care when the result is an 4384 // identifiable object. 4385 if (U->getOpcode() != Instruction::Add || 4386 (!isa<ConstantInt>(U->getOperand(1)) && 4387 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4388 !isa<PHINode>(U->getOperand(1)))) 4389 return V; 4390 V = U->getOperand(0); 4391 } else { 4392 return V; 4393 } 4394 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4395 } while (true); 4396 } 4397 4398 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4399 /// ptrtoint+arithmetic+inttoptr sequences. 4400 /// It returns false if unidentified object is found in getUnderlyingObjects. 4401 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4402 SmallVectorImpl<Value *> &Objects) { 4403 SmallPtrSet<const Value *, 16> Visited; 4404 SmallVector<const Value *, 4> Working(1, V); 4405 do { 4406 V = Working.pop_back_val(); 4407 4408 SmallVector<const Value *, 4> Objs; 4409 getUnderlyingObjects(V, Objs); 4410 4411 for (const Value *V : Objs) { 4412 if (!Visited.insert(V).second) 4413 continue; 4414 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4415 const Value *O = 4416 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4417 if (O->getType()->isPointerTy()) { 4418 Working.push_back(O); 4419 continue; 4420 } 4421 } 4422 // If getUnderlyingObjects fails to find an identifiable object, 4423 // getUnderlyingObjectsForCodeGen also fails for safety. 4424 if (!isIdentifiedObject(V)) { 4425 Objects.clear(); 4426 return false; 4427 } 4428 Objects.push_back(const_cast<Value *>(V)); 4429 } 4430 } while (!Working.empty()); 4431 return true; 4432 } 4433 4434 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4435 AllocaInst *Result = nullptr; 4436 SmallPtrSet<Value *, 4> Visited; 4437 SmallVector<Value *, 4> Worklist; 4438 4439 auto AddWork = [&](Value *V) { 4440 if (Visited.insert(V).second) 4441 Worklist.push_back(V); 4442 }; 4443 4444 AddWork(V); 4445 do { 4446 V = Worklist.pop_back_val(); 4447 assert(Visited.count(V)); 4448 4449 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4450 if (Result && Result != AI) 4451 return nullptr; 4452 Result = AI; 4453 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4454 AddWork(CI->getOperand(0)); 4455 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4456 for (Value *IncValue : PN->incoming_values()) 4457 AddWork(IncValue); 4458 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4459 AddWork(SI->getTrueValue()); 4460 AddWork(SI->getFalseValue()); 4461 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4462 if (OffsetZero && !GEP->hasAllZeroIndices()) 4463 return nullptr; 4464 AddWork(GEP->getPointerOperand()); 4465 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4466 Value *Returned = CB->getReturnedArgOperand(); 4467 if (Returned) 4468 AddWork(Returned); 4469 else 4470 return nullptr; 4471 } else { 4472 return nullptr; 4473 } 4474 } while (!Worklist.empty()); 4475 4476 return Result; 4477 } 4478 4479 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4480 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4481 for (const User *U : V->users()) { 4482 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4483 if (!II) 4484 return false; 4485 4486 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4487 continue; 4488 4489 if (AllowDroppable && II->isDroppable()) 4490 continue; 4491 4492 return false; 4493 } 4494 return true; 4495 } 4496 4497 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4498 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4499 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4500 } 4501 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4502 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4503 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4504 } 4505 4506 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4507 if (!LI.isUnordered()) 4508 return true; 4509 const Function &F = *LI.getFunction(); 4510 // Speculative load may create a race that did not exist in the source. 4511 return F.hasFnAttribute(Attribute::SanitizeThread) || 4512 // Speculative load may load data from dirty regions. 4513 F.hasFnAttribute(Attribute::SanitizeAddress) || 4514 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4515 } 4516 4517 4518 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4519 const Instruction *CtxI, 4520 const DominatorTree *DT, 4521 const TargetLibraryInfo *TLI) { 4522 const Operator *Inst = dyn_cast<Operator>(V); 4523 if (!Inst) 4524 return false; 4525 4526 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4527 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4528 if (C->canTrap()) 4529 return false; 4530 4531 switch (Inst->getOpcode()) { 4532 default: 4533 return true; 4534 case Instruction::UDiv: 4535 case Instruction::URem: { 4536 // x / y is undefined if y == 0. 4537 const APInt *V; 4538 if (match(Inst->getOperand(1), m_APInt(V))) 4539 return *V != 0; 4540 return false; 4541 } 4542 case Instruction::SDiv: 4543 case Instruction::SRem: { 4544 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4545 const APInt *Numerator, *Denominator; 4546 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4547 return false; 4548 // We cannot hoist this division if the denominator is 0. 4549 if (*Denominator == 0) 4550 return false; 4551 // It's safe to hoist if the denominator is not 0 or -1. 4552 if (!Denominator->isAllOnes()) 4553 return true; 4554 // At this point we know that the denominator is -1. It is safe to hoist as 4555 // long we know that the numerator is not INT_MIN. 4556 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4557 return !Numerator->isMinSignedValue(); 4558 // The numerator *might* be MinSignedValue. 4559 return false; 4560 } 4561 case Instruction::Load: { 4562 const LoadInst *LI = cast<LoadInst>(Inst); 4563 if (mustSuppressSpeculation(*LI)) 4564 return false; 4565 const DataLayout &DL = LI->getModule()->getDataLayout(); 4566 return isDereferenceableAndAlignedPointer( 4567 LI->getPointerOperand(), LI->getType(), LI->getAlign(), DL, CtxI, DT, 4568 TLI); 4569 } 4570 case Instruction::Call: { 4571 auto *CI = cast<const CallInst>(Inst); 4572 const Function *Callee = CI->getCalledFunction(); 4573 4574 // The called function could have undefined behavior or side-effects, even 4575 // if marked readnone nounwind. 4576 return Callee && Callee->isSpeculatable(); 4577 } 4578 case Instruction::VAArg: 4579 case Instruction::Alloca: 4580 case Instruction::Invoke: 4581 case Instruction::CallBr: 4582 case Instruction::PHI: 4583 case Instruction::Store: 4584 case Instruction::Ret: 4585 case Instruction::Br: 4586 case Instruction::IndirectBr: 4587 case Instruction::Switch: 4588 case Instruction::Unreachable: 4589 case Instruction::Fence: 4590 case Instruction::AtomicRMW: 4591 case Instruction::AtomicCmpXchg: 4592 case Instruction::LandingPad: 4593 case Instruction::Resume: 4594 case Instruction::CatchSwitch: 4595 case Instruction::CatchPad: 4596 case Instruction::CatchRet: 4597 case Instruction::CleanupPad: 4598 case Instruction::CleanupRet: 4599 return false; // Misc instructions which have effects 4600 } 4601 } 4602 4603 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4604 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4605 } 4606 4607 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4608 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4609 switch (OR) { 4610 case ConstantRange::OverflowResult::MayOverflow: 4611 return OverflowResult::MayOverflow; 4612 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4613 return OverflowResult::AlwaysOverflowsLow; 4614 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4615 return OverflowResult::AlwaysOverflowsHigh; 4616 case ConstantRange::OverflowResult::NeverOverflows: 4617 return OverflowResult::NeverOverflows; 4618 } 4619 llvm_unreachable("Unknown OverflowResult"); 4620 } 4621 4622 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4623 static ConstantRange computeConstantRangeIncludingKnownBits( 4624 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4625 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4626 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4627 KnownBits Known = computeKnownBits( 4628 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4629 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4630 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4631 ConstantRange::PreferredRangeType RangeType = 4632 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4633 return CR1.intersectWith(CR2, RangeType); 4634 } 4635 4636 OverflowResult llvm::computeOverflowForUnsignedMul( 4637 const Value *LHS, const Value *RHS, const DataLayout &DL, 4638 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4639 bool UseInstrInfo) { 4640 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4641 nullptr, UseInstrInfo); 4642 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4643 nullptr, UseInstrInfo); 4644 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4645 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4646 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4647 } 4648 4649 OverflowResult 4650 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4651 const DataLayout &DL, AssumptionCache *AC, 4652 const Instruction *CxtI, 4653 const DominatorTree *DT, bool UseInstrInfo) { 4654 // Multiplying n * m significant bits yields a result of n + m significant 4655 // bits. If the total number of significant bits does not exceed the 4656 // result bit width (minus 1), there is no overflow. 4657 // This means if we have enough leading sign bits in the operands 4658 // we can guarantee that the result does not overflow. 4659 // Ref: "Hacker's Delight" by Henry Warren 4660 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4661 4662 // Note that underestimating the number of sign bits gives a more 4663 // conservative answer. 4664 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4665 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4666 4667 // First handle the easy case: if we have enough sign bits there's 4668 // definitely no overflow. 4669 if (SignBits > BitWidth + 1) 4670 return OverflowResult::NeverOverflows; 4671 4672 // There are two ambiguous cases where there can be no overflow: 4673 // SignBits == BitWidth + 1 and 4674 // SignBits == BitWidth 4675 // The second case is difficult to check, therefore we only handle the 4676 // first case. 4677 if (SignBits == BitWidth + 1) { 4678 // It overflows only when both arguments are negative and the true 4679 // product is exactly the minimum negative number. 4680 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4681 // For simplicity we just check if at least one side is not negative. 4682 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4683 nullptr, UseInstrInfo); 4684 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4685 nullptr, UseInstrInfo); 4686 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4687 return OverflowResult::NeverOverflows; 4688 } 4689 return OverflowResult::MayOverflow; 4690 } 4691 4692 OverflowResult llvm::computeOverflowForUnsignedAdd( 4693 const Value *LHS, const Value *RHS, const DataLayout &DL, 4694 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4695 bool UseInstrInfo) { 4696 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4697 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4698 nullptr, UseInstrInfo); 4699 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4700 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4701 nullptr, UseInstrInfo); 4702 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4703 } 4704 4705 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4706 const Value *RHS, 4707 const AddOperator *Add, 4708 const DataLayout &DL, 4709 AssumptionCache *AC, 4710 const Instruction *CxtI, 4711 const DominatorTree *DT) { 4712 if (Add && Add->hasNoSignedWrap()) { 4713 return OverflowResult::NeverOverflows; 4714 } 4715 4716 // If LHS and RHS each have at least two sign bits, the addition will look 4717 // like 4718 // 4719 // XX..... + 4720 // YY..... 4721 // 4722 // If the carry into the most significant position is 0, X and Y can't both 4723 // be 1 and therefore the carry out of the addition is also 0. 4724 // 4725 // If the carry into the most significant position is 1, X and Y can't both 4726 // be 0 and therefore the carry out of the addition is also 1. 4727 // 4728 // Since the carry into the most significant position is always equal to 4729 // the carry out of the addition, there is no signed overflow. 4730 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4731 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4732 return OverflowResult::NeverOverflows; 4733 4734 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4735 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4736 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4737 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4738 OverflowResult OR = 4739 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4740 if (OR != OverflowResult::MayOverflow) 4741 return OR; 4742 4743 // The remaining code needs Add to be available. Early returns if not so. 4744 if (!Add) 4745 return OverflowResult::MayOverflow; 4746 4747 // If the sign of Add is the same as at least one of the operands, this add 4748 // CANNOT overflow. If this can be determined from the known bits of the 4749 // operands the above signedAddMayOverflow() check will have already done so. 4750 // The only other way to improve on the known bits is from an assumption, so 4751 // call computeKnownBitsFromAssume() directly. 4752 bool LHSOrRHSKnownNonNegative = 4753 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4754 bool LHSOrRHSKnownNegative = 4755 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4756 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4757 KnownBits AddKnown(LHSRange.getBitWidth()); 4758 computeKnownBitsFromAssume( 4759 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4760 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4761 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4762 return OverflowResult::NeverOverflows; 4763 } 4764 4765 return OverflowResult::MayOverflow; 4766 } 4767 4768 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4769 const Value *RHS, 4770 const DataLayout &DL, 4771 AssumptionCache *AC, 4772 const Instruction *CxtI, 4773 const DominatorTree *DT) { 4774 // Checking for conditions implied by dominating conditions may be expensive. 4775 // Limit it to usub_with_overflow calls for now. 4776 if (match(CxtI, 4777 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4778 if (auto C = 4779 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4780 if (*C) 4781 return OverflowResult::NeverOverflows; 4782 return OverflowResult::AlwaysOverflowsLow; 4783 } 4784 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4785 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4786 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4787 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4788 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4789 } 4790 4791 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4792 const Value *RHS, 4793 const DataLayout &DL, 4794 AssumptionCache *AC, 4795 const Instruction *CxtI, 4796 const DominatorTree *DT) { 4797 // If LHS and RHS each have at least two sign bits, the subtraction 4798 // cannot overflow. 4799 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4800 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4801 return OverflowResult::NeverOverflows; 4802 4803 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4804 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4805 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4806 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4807 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4808 } 4809 4810 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4811 const DominatorTree &DT) { 4812 SmallVector<const BranchInst *, 2> GuardingBranches; 4813 SmallVector<const ExtractValueInst *, 2> Results; 4814 4815 for (const User *U : WO->users()) { 4816 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4817 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4818 4819 if (EVI->getIndices()[0] == 0) 4820 Results.push_back(EVI); 4821 else { 4822 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4823 4824 for (const auto *U : EVI->users()) 4825 if (const auto *B = dyn_cast<BranchInst>(U)) { 4826 assert(B->isConditional() && "How else is it using an i1?"); 4827 GuardingBranches.push_back(B); 4828 } 4829 } 4830 } else { 4831 // We are using the aggregate directly in a way we don't want to analyze 4832 // here (storing it to a global, say). 4833 return false; 4834 } 4835 } 4836 4837 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4838 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4839 if (!NoWrapEdge.isSingleEdge()) 4840 return false; 4841 4842 // Check if all users of the add are provably no-wrap. 4843 for (const auto *Result : Results) { 4844 // If the extractvalue itself is not executed on overflow, the we don't 4845 // need to check each use separately, since domination is transitive. 4846 if (DT.dominates(NoWrapEdge, Result->getParent())) 4847 continue; 4848 4849 for (auto &RU : Result->uses()) 4850 if (!DT.dominates(NoWrapEdge, RU)) 4851 return false; 4852 } 4853 4854 return true; 4855 }; 4856 4857 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4858 } 4859 4860 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4861 bool ConsiderFlags) { 4862 4863 if (ConsiderFlags && Op->hasPoisonGeneratingFlags()) 4864 return true; 4865 4866 unsigned Opcode = Op->getOpcode(); 4867 4868 // Check whether opcode is a poison/undef-generating operation 4869 switch (Opcode) { 4870 case Instruction::Shl: 4871 case Instruction::AShr: 4872 case Instruction::LShr: { 4873 // Shifts return poison if shiftwidth is larger than the bitwidth. 4874 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4875 SmallVector<Constant *, 4> ShiftAmounts; 4876 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4877 unsigned NumElts = FVTy->getNumElements(); 4878 for (unsigned i = 0; i < NumElts; ++i) 4879 ShiftAmounts.push_back(C->getAggregateElement(i)); 4880 } else if (isa<ScalableVectorType>(C->getType())) 4881 return true; // Can't tell, just return true to be safe 4882 else 4883 ShiftAmounts.push_back(C); 4884 4885 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4886 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4887 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4888 }); 4889 return !Safe; 4890 } 4891 return true; 4892 } 4893 case Instruction::FPToSI: 4894 case Instruction::FPToUI: 4895 // fptosi/ui yields poison if the resulting value does not fit in the 4896 // destination type. 4897 return true; 4898 case Instruction::Call: 4899 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 4900 switch (II->getIntrinsicID()) { 4901 // TODO: Add more intrinsics. 4902 case Intrinsic::ctpop: 4903 case Intrinsic::sadd_with_overflow: 4904 case Intrinsic::ssub_with_overflow: 4905 case Intrinsic::smul_with_overflow: 4906 case Intrinsic::uadd_with_overflow: 4907 case Intrinsic::usub_with_overflow: 4908 case Intrinsic::umul_with_overflow: 4909 return false; 4910 } 4911 } 4912 LLVM_FALLTHROUGH; 4913 case Instruction::CallBr: 4914 case Instruction::Invoke: { 4915 const auto *CB = cast<CallBase>(Op); 4916 return !CB->hasRetAttr(Attribute::NoUndef); 4917 } 4918 case Instruction::InsertElement: 4919 case Instruction::ExtractElement: { 4920 // If index exceeds the length of the vector, it returns poison 4921 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4922 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4923 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4924 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4925 return true; 4926 return false; 4927 } 4928 case Instruction::ShuffleVector: { 4929 // shufflevector may return undef. 4930 if (PoisonOnly) 4931 return false; 4932 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4933 ? cast<ConstantExpr>(Op)->getShuffleMask() 4934 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4935 return is_contained(Mask, UndefMaskElem); 4936 } 4937 case Instruction::FNeg: 4938 case Instruction::PHI: 4939 case Instruction::Select: 4940 case Instruction::URem: 4941 case Instruction::SRem: 4942 case Instruction::ExtractValue: 4943 case Instruction::InsertValue: 4944 case Instruction::Freeze: 4945 case Instruction::ICmp: 4946 case Instruction::FCmp: 4947 return false; 4948 case Instruction::GetElementPtr: 4949 // inbounds is handled above 4950 // TODO: what about inrange on constexpr? 4951 return false; 4952 default: { 4953 const auto *CE = dyn_cast<ConstantExpr>(Op); 4954 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4955 return false; 4956 else if (Instruction::isBinaryOp(Opcode)) 4957 return false; 4958 // Be conservative and return true. 4959 return true; 4960 } 4961 } 4962 } 4963 4964 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 4965 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 4966 } 4967 4968 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 4969 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 4970 } 4971 4972 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4973 const Value *V, unsigned Depth) { 4974 if (ValAssumedPoison == V) 4975 return true; 4976 4977 const unsigned MaxDepth = 2; 4978 if (Depth >= MaxDepth) 4979 return false; 4980 4981 if (const auto *I = dyn_cast<Instruction>(V)) { 4982 if (propagatesPoison(cast<Operator>(I))) 4983 return any_of(I->operands(), [=](const Value *Op) { 4984 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4985 }); 4986 4987 // 'select ValAssumedPoison, _, _' is poison. 4988 if (const auto *SI = dyn_cast<SelectInst>(I)) 4989 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 4990 Depth + 1); 4991 // V = extractvalue V0, idx 4992 // V2 = extractvalue V0, idx2 4993 // V0's elements are all poison or not. (e.g., add_with_overflow) 4994 const WithOverflowInst *II; 4995 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 4996 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 4997 llvm::is_contained(II->args(), ValAssumedPoison))) 4998 return true; 4999 } 5000 return false; 5001 } 5002 5003 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5004 unsigned Depth) { 5005 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5006 return true; 5007 5008 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5009 return true; 5010 5011 const unsigned MaxDepth = 2; 5012 if (Depth >= MaxDepth) 5013 return false; 5014 5015 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5016 if (I && !canCreatePoison(cast<Operator>(I))) { 5017 return all_of(I->operands(), [=](const Value *Op) { 5018 return impliesPoison(Op, V, Depth + 1); 5019 }); 5020 } 5021 return false; 5022 } 5023 5024 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5025 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5026 } 5027 5028 static bool programUndefinedIfUndefOrPoison(const Value *V, 5029 bool PoisonOnly); 5030 5031 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5032 AssumptionCache *AC, 5033 const Instruction *CtxI, 5034 const DominatorTree *DT, 5035 unsigned Depth, bool PoisonOnly) { 5036 if (Depth >= MaxAnalysisRecursionDepth) 5037 return false; 5038 5039 if (isa<MetadataAsValue>(V)) 5040 return false; 5041 5042 if (const auto *A = dyn_cast<Argument>(V)) { 5043 if (A->hasAttribute(Attribute::NoUndef)) 5044 return true; 5045 } 5046 5047 if (auto *C = dyn_cast<Constant>(V)) { 5048 if (isa<UndefValue>(C)) 5049 return PoisonOnly && !isa<PoisonValue>(C); 5050 5051 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5052 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5053 return true; 5054 5055 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5056 return (PoisonOnly ? !C->containsPoisonElement() 5057 : !C->containsUndefOrPoisonElement()) && 5058 !C->containsConstantExpression(); 5059 } 5060 5061 // Strip cast operations from a pointer value. 5062 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5063 // inbounds with zero offset. To guarantee that the result isn't poison, the 5064 // stripped pointer is checked as it has to be pointing into an allocated 5065 // object or be null `null` to ensure `inbounds` getelement pointers with a 5066 // zero offset could not produce poison. 5067 // It can strip off addrspacecast that do not change bit representation as 5068 // well. We believe that such addrspacecast is equivalent to no-op. 5069 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5070 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5071 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5072 return true; 5073 5074 auto OpCheck = [&](const Value *V) { 5075 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5076 PoisonOnly); 5077 }; 5078 5079 if (auto *Opr = dyn_cast<Operator>(V)) { 5080 // If the value is a freeze instruction, then it can never 5081 // be undef or poison. 5082 if (isa<FreezeInst>(V)) 5083 return true; 5084 5085 if (const auto *CB = dyn_cast<CallBase>(V)) { 5086 if (CB->hasRetAttr(Attribute::NoUndef)) 5087 return true; 5088 } 5089 5090 if (const auto *PN = dyn_cast<PHINode>(V)) { 5091 unsigned Num = PN->getNumIncomingValues(); 5092 bool IsWellDefined = true; 5093 for (unsigned i = 0; i < Num; ++i) { 5094 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5095 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5096 DT, Depth + 1, PoisonOnly)) { 5097 IsWellDefined = false; 5098 break; 5099 } 5100 } 5101 if (IsWellDefined) 5102 return true; 5103 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5104 return true; 5105 } 5106 5107 if (auto *I = dyn_cast<LoadInst>(V)) 5108 if (I->getMetadata(LLVMContext::MD_noundef)) 5109 return true; 5110 5111 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5112 return true; 5113 5114 // CxtI may be null or a cloned instruction. 5115 if (!CtxI || !CtxI->getParent() || !DT) 5116 return false; 5117 5118 auto *DNode = DT->getNode(CtxI->getParent()); 5119 if (!DNode) 5120 // Unreachable block 5121 return false; 5122 5123 // If V is used as a branch condition before reaching CtxI, V cannot be 5124 // undef or poison. 5125 // br V, BB1, BB2 5126 // BB1: 5127 // CtxI ; V cannot be undef or poison here 5128 auto *Dominator = DNode->getIDom(); 5129 while (Dominator) { 5130 auto *TI = Dominator->getBlock()->getTerminator(); 5131 5132 Value *Cond = nullptr; 5133 if (auto BI = dyn_cast_or_null<BranchInst>(TI)) { 5134 if (BI->isConditional()) 5135 Cond = BI->getCondition(); 5136 } else if (auto SI = dyn_cast_or_null<SwitchInst>(TI)) { 5137 Cond = SI->getCondition(); 5138 } 5139 5140 if (Cond) { 5141 if (Cond == V) 5142 return true; 5143 else if (PoisonOnly && isa<Operator>(Cond)) { 5144 // For poison, we can analyze further 5145 auto *Opr = cast<Operator>(Cond); 5146 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5147 return true; 5148 } 5149 } 5150 5151 Dominator = Dominator->getIDom(); 5152 } 5153 5154 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5155 return true; 5156 5157 return false; 5158 } 5159 5160 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5161 const Instruction *CtxI, 5162 const DominatorTree *DT, 5163 unsigned Depth) { 5164 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5165 } 5166 5167 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5168 const Instruction *CtxI, 5169 const DominatorTree *DT, unsigned Depth) { 5170 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5171 } 5172 5173 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5174 const DataLayout &DL, 5175 AssumptionCache *AC, 5176 const Instruction *CxtI, 5177 const DominatorTree *DT) { 5178 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5179 Add, DL, AC, CxtI, DT); 5180 } 5181 5182 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5183 const Value *RHS, 5184 const DataLayout &DL, 5185 AssumptionCache *AC, 5186 const Instruction *CxtI, 5187 const DominatorTree *DT) { 5188 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5189 } 5190 5191 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5192 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5193 // of time because it's possible for another thread to interfere with it for an 5194 // arbitrary length of time, but programs aren't allowed to rely on that. 5195 5196 // If there is no successor, then execution can't transfer to it. 5197 if (isa<ReturnInst>(I)) 5198 return false; 5199 if (isa<UnreachableInst>(I)) 5200 return false; 5201 5202 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5203 // Instruction::willReturn. 5204 // 5205 // FIXME: Move this check into Instruction::willReturn. 5206 if (isa<CatchPadInst>(I)) { 5207 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5208 default: 5209 // A catchpad may invoke exception object constructors and such, which 5210 // in some languages can be arbitrary code, so be conservative by default. 5211 return false; 5212 case EHPersonality::CoreCLR: 5213 // For CoreCLR, it just involves a type test. 5214 return true; 5215 } 5216 } 5217 5218 // An instruction that returns without throwing must transfer control flow 5219 // to a successor. 5220 return !I->mayThrow() && I->willReturn(); 5221 } 5222 5223 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5224 // TODO: This is slightly conservative for invoke instruction since exiting 5225 // via an exception *is* normal control for them. 5226 for (const Instruction &I : *BB) 5227 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5228 return false; 5229 return true; 5230 } 5231 5232 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5233 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5234 unsigned ScanLimit) { 5235 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5236 ScanLimit); 5237 } 5238 5239 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5240 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5241 assert(ScanLimit && "scan limit must be non-zero"); 5242 for (const Instruction &I : Range) { 5243 if (isa<DbgInfoIntrinsic>(I)) 5244 continue; 5245 if (--ScanLimit == 0) 5246 return false; 5247 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5248 return false; 5249 } 5250 return true; 5251 } 5252 5253 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5254 const Loop *L) { 5255 // The loop header is guaranteed to be executed for every iteration. 5256 // 5257 // FIXME: Relax this constraint to cover all basic blocks that are 5258 // guaranteed to be executed at every iteration. 5259 if (I->getParent() != L->getHeader()) return false; 5260 5261 for (const Instruction &LI : *L->getHeader()) { 5262 if (&LI == I) return true; 5263 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5264 } 5265 llvm_unreachable("Instruction not contained in its own parent basic block."); 5266 } 5267 5268 bool llvm::propagatesPoison(const Operator *I) { 5269 switch (I->getOpcode()) { 5270 case Instruction::Freeze: 5271 case Instruction::Select: 5272 case Instruction::PHI: 5273 case Instruction::Invoke: 5274 return false; 5275 case Instruction::Call: 5276 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5277 switch (II->getIntrinsicID()) { 5278 // TODO: Add more intrinsics. 5279 case Intrinsic::sadd_with_overflow: 5280 case Intrinsic::ssub_with_overflow: 5281 case Intrinsic::smul_with_overflow: 5282 case Intrinsic::uadd_with_overflow: 5283 case Intrinsic::usub_with_overflow: 5284 case Intrinsic::umul_with_overflow: 5285 // If an input is a vector containing a poison element, the 5286 // two output vectors (calculated results, overflow bits)' 5287 // corresponding lanes are poison. 5288 return true; 5289 case Intrinsic::ctpop: 5290 return true; 5291 } 5292 } 5293 return false; 5294 case Instruction::ICmp: 5295 case Instruction::FCmp: 5296 case Instruction::GetElementPtr: 5297 return true; 5298 default: 5299 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5300 return true; 5301 5302 // Be conservative and return false. 5303 return false; 5304 } 5305 } 5306 5307 void llvm::getGuaranteedWellDefinedOps( 5308 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5309 switch (I->getOpcode()) { 5310 case Instruction::Store: 5311 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5312 break; 5313 5314 case Instruction::Load: 5315 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5316 break; 5317 5318 // Since dereferenceable attribute imply noundef, atomic operations 5319 // also implicitly have noundef pointers too 5320 case Instruction::AtomicCmpXchg: 5321 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5322 break; 5323 5324 case Instruction::AtomicRMW: 5325 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5326 break; 5327 5328 case Instruction::Call: 5329 case Instruction::Invoke: { 5330 const CallBase *CB = cast<CallBase>(I); 5331 if (CB->isIndirectCall()) 5332 Operands.insert(CB->getCalledOperand()); 5333 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5334 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5335 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5336 Operands.insert(CB->getArgOperand(i)); 5337 } 5338 break; 5339 } 5340 case Instruction::Ret: 5341 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5342 Operands.insert(I->getOperand(0)); 5343 break; 5344 default: 5345 break; 5346 } 5347 } 5348 5349 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5350 SmallPtrSetImpl<const Value *> &Operands) { 5351 getGuaranteedWellDefinedOps(I, Operands); 5352 switch (I->getOpcode()) { 5353 // Divisors of these operations are allowed to be partially undef. 5354 case Instruction::UDiv: 5355 case Instruction::SDiv: 5356 case Instruction::URem: 5357 case Instruction::SRem: 5358 Operands.insert(I->getOperand(1)); 5359 break; 5360 case Instruction::Switch: 5361 if (BranchOnPoisonAsUB) 5362 Operands.insert(cast<SwitchInst>(I)->getCondition()); 5363 break; 5364 case Instruction::Br: { 5365 auto *BR = cast<BranchInst>(I); 5366 if (BranchOnPoisonAsUB && BR->isConditional()) 5367 Operands.insert(BR->getCondition()); 5368 break; 5369 } 5370 default: 5371 break; 5372 } 5373 } 5374 5375 bool llvm::mustTriggerUB(const Instruction *I, 5376 const SmallSet<const Value *, 16>& KnownPoison) { 5377 SmallPtrSet<const Value *, 4> NonPoisonOps; 5378 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5379 5380 for (const auto *V : NonPoisonOps) 5381 if (KnownPoison.count(V)) 5382 return true; 5383 5384 return false; 5385 } 5386 5387 static bool programUndefinedIfUndefOrPoison(const Value *V, 5388 bool PoisonOnly) { 5389 // We currently only look for uses of values within the same basic 5390 // block, as that makes it easier to guarantee that the uses will be 5391 // executed given that Inst is executed. 5392 // 5393 // FIXME: Expand this to consider uses beyond the same basic block. To do 5394 // this, look out for the distinction between post-dominance and strong 5395 // post-dominance. 5396 const BasicBlock *BB = nullptr; 5397 BasicBlock::const_iterator Begin; 5398 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5399 BB = Inst->getParent(); 5400 Begin = Inst->getIterator(); 5401 Begin++; 5402 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5403 BB = &Arg->getParent()->getEntryBlock(); 5404 Begin = BB->begin(); 5405 } else { 5406 return false; 5407 } 5408 5409 // Limit number of instructions we look at, to avoid scanning through large 5410 // blocks. The current limit is chosen arbitrarily. 5411 unsigned ScanLimit = 32; 5412 BasicBlock::const_iterator End = BB->end(); 5413 5414 if (!PoisonOnly) { 5415 // Since undef does not propagate eagerly, be conservative & just check 5416 // whether a value is directly passed to an instruction that must take 5417 // well-defined operands. 5418 5419 for (auto &I : make_range(Begin, End)) { 5420 if (isa<DbgInfoIntrinsic>(I)) 5421 continue; 5422 if (--ScanLimit == 0) 5423 break; 5424 5425 SmallPtrSet<const Value *, 4> WellDefinedOps; 5426 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5427 if (WellDefinedOps.contains(V)) 5428 return true; 5429 5430 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5431 break; 5432 } 5433 return false; 5434 } 5435 5436 // Set of instructions that we have proved will yield poison if Inst 5437 // does. 5438 SmallSet<const Value *, 16> YieldsPoison; 5439 SmallSet<const BasicBlock *, 4> Visited; 5440 5441 YieldsPoison.insert(V); 5442 auto Propagate = [&](const User *User) { 5443 if (propagatesPoison(cast<Operator>(User))) 5444 YieldsPoison.insert(User); 5445 }; 5446 for_each(V->users(), Propagate); 5447 Visited.insert(BB); 5448 5449 while (true) { 5450 for (auto &I : make_range(Begin, End)) { 5451 if (isa<DbgInfoIntrinsic>(I)) 5452 continue; 5453 if (--ScanLimit == 0) 5454 return false; 5455 if (mustTriggerUB(&I, YieldsPoison)) 5456 return true; 5457 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5458 return false; 5459 5460 // Mark poison that propagates from I through uses of I. 5461 if (YieldsPoison.count(&I)) 5462 for_each(I.users(), Propagate); 5463 } 5464 5465 BB = BB->getSingleSuccessor(); 5466 if (!BB || !Visited.insert(BB).second) 5467 break; 5468 5469 Begin = BB->getFirstNonPHI()->getIterator(); 5470 End = BB->end(); 5471 } 5472 return false; 5473 } 5474 5475 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5476 return ::programUndefinedIfUndefOrPoison(Inst, false); 5477 } 5478 5479 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5480 return ::programUndefinedIfUndefOrPoison(Inst, true); 5481 } 5482 5483 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5484 if (FMF.noNaNs()) 5485 return true; 5486 5487 if (auto *C = dyn_cast<ConstantFP>(V)) 5488 return !C->isNaN(); 5489 5490 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5491 if (!C->getElementType()->isFloatingPointTy()) 5492 return false; 5493 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5494 if (C->getElementAsAPFloat(I).isNaN()) 5495 return false; 5496 } 5497 return true; 5498 } 5499 5500 if (isa<ConstantAggregateZero>(V)) 5501 return true; 5502 5503 return false; 5504 } 5505 5506 static bool isKnownNonZero(const Value *V) { 5507 if (auto *C = dyn_cast<ConstantFP>(V)) 5508 return !C->isZero(); 5509 5510 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5511 if (!C->getElementType()->isFloatingPointTy()) 5512 return false; 5513 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5514 if (C->getElementAsAPFloat(I).isZero()) 5515 return false; 5516 } 5517 return true; 5518 } 5519 5520 return false; 5521 } 5522 5523 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5524 /// Given non-min/max outer cmp/select from the clamp pattern this 5525 /// function recognizes if it can be substitued by a "canonical" min/max 5526 /// pattern. 5527 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5528 Value *CmpLHS, Value *CmpRHS, 5529 Value *TrueVal, Value *FalseVal, 5530 Value *&LHS, Value *&RHS) { 5531 // Try to match 5532 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5533 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5534 // and return description of the outer Max/Min. 5535 5536 // First, check if select has inverse order: 5537 if (CmpRHS == FalseVal) { 5538 std::swap(TrueVal, FalseVal); 5539 Pred = CmpInst::getInversePredicate(Pred); 5540 } 5541 5542 // Assume success now. If there's no match, callers should not use these anyway. 5543 LHS = TrueVal; 5544 RHS = FalseVal; 5545 5546 const APFloat *FC1; 5547 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5548 return {SPF_UNKNOWN, SPNB_NA, false}; 5549 5550 const APFloat *FC2; 5551 switch (Pred) { 5552 case CmpInst::FCMP_OLT: 5553 case CmpInst::FCMP_OLE: 5554 case CmpInst::FCMP_ULT: 5555 case CmpInst::FCMP_ULE: 5556 if (match(FalseVal, 5557 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5558 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5559 *FC1 < *FC2) 5560 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5561 break; 5562 case CmpInst::FCMP_OGT: 5563 case CmpInst::FCMP_OGE: 5564 case CmpInst::FCMP_UGT: 5565 case CmpInst::FCMP_UGE: 5566 if (match(FalseVal, 5567 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5568 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5569 *FC1 > *FC2) 5570 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5571 break; 5572 default: 5573 break; 5574 } 5575 5576 return {SPF_UNKNOWN, SPNB_NA, false}; 5577 } 5578 5579 /// Recognize variations of: 5580 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5581 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5582 Value *CmpLHS, Value *CmpRHS, 5583 Value *TrueVal, Value *FalseVal) { 5584 // Swap the select operands and predicate to match the patterns below. 5585 if (CmpRHS != TrueVal) { 5586 Pred = ICmpInst::getSwappedPredicate(Pred); 5587 std::swap(TrueVal, FalseVal); 5588 } 5589 const APInt *C1; 5590 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5591 const APInt *C2; 5592 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5593 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5594 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5595 return {SPF_SMAX, SPNB_NA, false}; 5596 5597 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5598 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5599 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5600 return {SPF_SMIN, SPNB_NA, false}; 5601 5602 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5603 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5604 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5605 return {SPF_UMAX, SPNB_NA, false}; 5606 5607 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5608 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5609 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5610 return {SPF_UMIN, SPNB_NA, false}; 5611 } 5612 return {SPF_UNKNOWN, SPNB_NA, false}; 5613 } 5614 5615 /// Recognize variations of: 5616 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5617 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5618 Value *CmpLHS, Value *CmpRHS, 5619 Value *TVal, Value *FVal, 5620 unsigned Depth) { 5621 // TODO: Allow FP min/max with nnan/nsz. 5622 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5623 5624 Value *A = nullptr, *B = nullptr; 5625 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5626 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5627 return {SPF_UNKNOWN, SPNB_NA, false}; 5628 5629 Value *C = nullptr, *D = nullptr; 5630 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5631 if (L.Flavor != R.Flavor) 5632 return {SPF_UNKNOWN, SPNB_NA, false}; 5633 5634 // We have something like: x Pred y ? min(a, b) : min(c, d). 5635 // Try to match the compare to the min/max operations of the select operands. 5636 // First, make sure we have the right compare predicate. 5637 switch (L.Flavor) { 5638 case SPF_SMIN: 5639 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5640 Pred = ICmpInst::getSwappedPredicate(Pred); 5641 std::swap(CmpLHS, CmpRHS); 5642 } 5643 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5644 break; 5645 return {SPF_UNKNOWN, SPNB_NA, false}; 5646 case SPF_SMAX: 5647 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5648 Pred = ICmpInst::getSwappedPredicate(Pred); 5649 std::swap(CmpLHS, CmpRHS); 5650 } 5651 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5652 break; 5653 return {SPF_UNKNOWN, SPNB_NA, false}; 5654 case SPF_UMIN: 5655 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5656 Pred = ICmpInst::getSwappedPredicate(Pred); 5657 std::swap(CmpLHS, CmpRHS); 5658 } 5659 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5660 break; 5661 return {SPF_UNKNOWN, SPNB_NA, false}; 5662 case SPF_UMAX: 5663 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5664 Pred = ICmpInst::getSwappedPredicate(Pred); 5665 std::swap(CmpLHS, CmpRHS); 5666 } 5667 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5668 break; 5669 return {SPF_UNKNOWN, SPNB_NA, false}; 5670 default: 5671 return {SPF_UNKNOWN, SPNB_NA, false}; 5672 } 5673 5674 // If there is a common operand in the already matched min/max and the other 5675 // min/max operands match the compare operands (either directly or inverted), 5676 // then this is min/max of the same flavor. 5677 5678 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5679 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5680 if (D == B) { 5681 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5682 match(A, m_Not(m_Specific(CmpRHS))))) 5683 return {L.Flavor, SPNB_NA, false}; 5684 } 5685 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5686 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5687 if (C == B) { 5688 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5689 match(A, m_Not(m_Specific(CmpRHS))))) 5690 return {L.Flavor, SPNB_NA, false}; 5691 } 5692 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5693 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5694 if (D == A) { 5695 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5696 match(B, m_Not(m_Specific(CmpRHS))))) 5697 return {L.Flavor, SPNB_NA, false}; 5698 } 5699 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5700 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5701 if (C == A) { 5702 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5703 match(B, m_Not(m_Specific(CmpRHS))))) 5704 return {L.Flavor, SPNB_NA, false}; 5705 } 5706 5707 return {SPF_UNKNOWN, SPNB_NA, false}; 5708 } 5709 5710 /// If the input value is the result of a 'not' op, constant integer, or vector 5711 /// splat of a constant integer, return the bitwise-not source value. 5712 /// TODO: This could be extended to handle non-splat vector integer constants. 5713 static Value *getNotValue(Value *V) { 5714 Value *NotV; 5715 if (match(V, m_Not(m_Value(NotV)))) 5716 return NotV; 5717 5718 const APInt *C; 5719 if (match(V, m_APInt(C))) 5720 return ConstantInt::get(V->getType(), ~(*C)); 5721 5722 return nullptr; 5723 } 5724 5725 /// Match non-obvious integer minimum and maximum sequences. 5726 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5727 Value *CmpLHS, Value *CmpRHS, 5728 Value *TrueVal, Value *FalseVal, 5729 Value *&LHS, Value *&RHS, 5730 unsigned Depth) { 5731 // Assume success. If there's no match, callers should not use these anyway. 5732 LHS = TrueVal; 5733 RHS = FalseVal; 5734 5735 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5736 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5737 return SPR; 5738 5739 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5740 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5741 return SPR; 5742 5743 // Look through 'not' ops to find disguised min/max. 5744 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5745 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5746 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5747 switch (Pred) { 5748 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5749 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5750 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5751 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5752 default: break; 5753 } 5754 } 5755 5756 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5757 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5758 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5759 switch (Pred) { 5760 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5761 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5762 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5763 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5764 default: break; 5765 } 5766 } 5767 5768 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5769 return {SPF_UNKNOWN, SPNB_NA, false}; 5770 5771 // Z = X -nsw Y 5772 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5773 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5774 if (match(TrueVal, m_Zero()) && 5775 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5776 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5777 5778 // Z = X -nsw Y 5779 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5780 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5781 if (match(FalseVal, m_Zero()) && 5782 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5783 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5784 5785 const APInt *C1; 5786 if (!match(CmpRHS, m_APInt(C1))) 5787 return {SPF_UNKNOWN, SPNB_NA, false}; 5788 5789 // An unsigned min/max can be written with a signed compare. 5790 const APInt *C2; 5791 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5792 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5793 // Is the sign bit set? 5794 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5795 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5796 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5797 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5798 5799 // Is the sign bit clear? 5800 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5801 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5802 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5803 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5804 } 5805 5806 return {SPF_UNKNOWN, SPNB_NA, false}; 5807 } 5808 5809 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5810 assert(X && Y && "Invalid operand"); 5811 5812 // X = sub (0, Y) || X = sub nsw (0, Y) 5813 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5814 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5815 return true; 5816 5817 // Y = sub (0, X) || Y = sub nsw (0, X) 5818 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5819 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5820 return true; 5821 5822 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5823 Value *A, *B; 5824 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5825 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5826 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5827 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5828 } 5829 5830 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5831 FastMathFlags FMF, 5832 Value *CmpLHS, Value *CmpRHS, 5833 Value *TrueVal, Value *FalseVal, 5834 Value *&LHS, Value *&RHS, 5835 unsigned Depth) { 5836 if (CmpInst::isFPPredicate(Pred)) { 5837 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5838 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5839 // purpose of identifying min/max. Disregard vector constants with undefined 5840 // elements because those can not be back-propagated for analysis. 5841 Value *OutputZeroVal = nullptr; 5842 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5843 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5844 OutputZeroVal = TrueVal; 5845 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5846 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5847 OutputZeroVal = FalseVal; 5848 5849 if (OutputZeroVal) { 5850 if (match(CmpLHS, m_AnyZeroFP())) 5851 CmpLHS = OutputZeroVal; 5852 if (match(CmpRHS, m_AnyZeroFP())) 5853 CmpRHS = OutputZeroVal; 5854 } 5855 } 5856 5857 LHS = CmpLHS; 5858 RHS = CmpRHS; 5859 5860 // Signed zero may return inconsistent results between implementations. 5861 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5862 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5863 // Therefore, we behave conservatively and only proceed if at least one of the 5864 // operands is known to not be zero or if we don't care about signed zero. 5865 switch (Pred) { 5866 default: break; 5867 // FIXME: Include OGT/OLT/UGT/ULT. 5868 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5869 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5870 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5871 !isKnownNonZero(CmpRHS)) 5872 return {SPF_UNKNOWN, SPNB_NA, false}; 5873 } 5874 5875 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5876 bool Ordered = false; 5877 5878 // When given one NaN and one non-NaN input: 5879 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5880 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5881 // ordered comparison fails), which could be NaN or non-NaN. 5882 // so here we discover exactly what NaN behavior is required/accepted. 5883 if (CmpInst::isFPPredicate(Pred)) { 5884 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5885 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5886 5887 if (LHSSafe && RHSSafe) { 5888 // Both operands are known non-NaN. 5889 NaNBehavior = SPNB_RETURNS_ANY; 5890 } else if (CmpInst::isOrdered(Pred)) { 5891 // An ordered comparison will return false when given a NaN, so it 5892 // returns the RHS. 5893 Ordered = true; 5894 if (LHSSafe) 5895 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5896 NaNBehavior = SPNB_RETURNS_NAN; 5897 else if (RHSSafe) 5898 NaNBehavior = SPNB_RETURNS_OTHER; 5899 else 5900 // Completely unsafe. 5901 return {SPF_UNKNOWN, SPNB_NA, false}; 5902 } else { 5903 Ordered = false; 5904 // An unordered comparison will return true when given a NaN, so it 5905 // returns the LHS. 5906 if (LHSSafe) 5907 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5908 NaNBehavior = SPNB_RETURNS_OTHER; 5909 else if (RHSSafe) 5910 NaNBehavior = SPNB_RETURNS_NAN; 5911 else 5912 // Completely unsafe. 5913 return {SPF_UNKNOWN, SPNB_NA, false}; 5914 } 5915 } 5916 5917 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5918 std::swap(CmpLHS, CmpRHS); 5919 Pred = CmpInst::getSwappedPredicate(Pred); 5920 if (NaNBehavior == SPNB_RETURNS_NAN) 5921 NaNBehavior = SPNB_RETURNS_OTHER; 5922 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5923 NaNBehavior = SPNB_RETURNS_NAN; 5924 Ordered = !Ordered; 5925 } 5926 5927 // ([if]cmp X, Y) ? X : Y 5928 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5929 switch (Pred) { 5930 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5931 case ICmpInst::ICMP_UGT: 5932 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5933 case ICmpInst::ICMP_SGT: 5934 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5935 case ICmpInst::ICMP_ULT: 5936 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5937 case ICmpInst::ICMP_SLT: 5938 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5939 case FCmpInst::FCMP_UGT: 5940 case FCmpInst::FCMP_UGE: 5941 case FCmpInst::FCMP_OGT: 5942 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5943 case FCmpInst::FCMP_ULT: 5944 case FCmpInst::FCMP_ULE: 5945 case FCmpInst::FCMP_OLT: 5946 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5947 } 5948 } 5949 5950 if (isKnownNegation(TrueVal, FalseVal)) { 5951 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5952 // match against either LHS or sext(LHS). 5953 auto MaybeSExtCmpLHS = 5954 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5955 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5956 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5957 if (match(TrueVal, MaybeSExtCmpLHS)) { 5958 // Set the return values. If the compare uses the negated value (-X >s 0), 5959 // swap the return values because the negated value is always 'RHS'. 5960 LHS = TrueVal; 5961 RHS = FalseVal; 5962 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5963 std::swap(LHS, RHS); 5964 5965 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5966 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5967 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5968 return {SPF_ABS, SPNB_NA, false}; 5969 5970 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5971 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5972 return {SPF_ABS, SPNB_NA, false}; 5973 5974 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5975 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5976 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5977 return {SPF_NABS, SPNB_NA, false}; 5978 } 5979 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5980 // Set the return values. If the compare uses the negated value (-X >s 0), 5981 // swap the return values because the negated value is always 'RHS'. 5982 LHS = FalseVal; 5983 RHS = TrueVal; 5984 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5985 std::swap(LHS, RHS); 5986 5987 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5988 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5989 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5990 return {SPF_NABS, SPNB_NA, false}; 5991 5992 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5993 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5994 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5995 return {SPF_ABS, SPNB_NA, false}; 5996 } 5997 } 5998 5999 if (CmpInst::isIntPredicate(Pred)) 6000 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6001 6002 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6003 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6004 // semantics than minNum. Be conservative in such case. 6005 if (NaNBehavior != SPNB_RETURNS_ANY || 6006 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6007 !isKnownNonZero(CmpRHS))) 6008 return {SPF_UNKNOWN, SPNB_NA, false}; 6009 6010 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6011 } 6012 6013 /// Helps to match a select pattern in case of a type mismatch. 6014 /// 6015 /// The function processes the case when type of true and false values of a 6016 /// select instruction differs from type of the cmp instruction operands because 6017 /// of a cast instruction. The function checks if it is legal to move the cast 6018 /// operation after "select". If yes, it returns the new second value of 6019 /// "select" (with the assumption that cast is moved): 6020 /// 1. As operand of cast instruction when both values of "select" are same cast 6021 /// instructions. 6022 /// 2. As restored constant (by applying reverse cast operation) when the first 6023 /// value of the "select" is a cast operation and the second value is a 6024 /// constant. 6025 /// NOTE: We return only the new second value because the first value could be 6026 /// accessed as operand of cast instruction. 6027 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6028 Instruction::CastOps *CastOp) { 6029 auto *Cast1 = dyn_cast<CastInst>(V1); 6030 if (!Cast1) 6031 return nullptr; 6032 6033 *CastOp = Cast1->getOpcode(); 6034 Type *SrcTy = Cast1->getSrcTy(); 6035 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6036 // If V1 and V2 are both the same cast from the same type, look through V1. 6037 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6038 return Cast2->getOperand(0); 6039 return nullptr; 6040 } 6041 6042 auto *C = dyn_cast<Constant>(V2); 6043 if (!C) 6044 return nullptr; 6045 6046 Constant *CastedTo = nullptr; 6047 switch (*CastOp) { 6048 case Instruction::ZExt: 6049 if (CmpI->isUnsigned()) 6050 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6051 break; 6052 case Instruction::SExt: 6053 if (CmpI->isSigned()) 6054 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6055 break; 6056 case Instruction::Trunc: 6057 Constant *CmpConst; 6058 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6059 CmpConst->getType() == SrcTy) { 6060 // Here we have the following case: 6061 // 6062 // %cond = cmp iN %x, CmpConst 6063 // %tr = trunc iN %x to iK 6064 // %narrowsel = select i1 %cond, iK %t, iK C 6065 // 6066 // We can always move trunc after select operation: 6067 // 6068 // %cond = cmp iN %x, CmpConst 6069 // %widesel = select i1 %cond, iN %x, iN CmpConst 6070 // %tr = trunc iN %widesel to iK 6071 // 6072 // Note that C could be extended in any way because we don't care about 6073 // upper bits after truncation. It can't be abs pattern, because it would 6074 // look like: 6075 // 6076 // select i1 %cond, x, -x. 6077 // 6078 // So only min/max pattern could be matched. Such match requires widened C 6079 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6080 // CmpConst == C is checked below. 6081 CastedTo = CmpConst; 6082 } else { 6083 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6084 } 6085 break; 6086 case Instruction::FPTrunc: 6087 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6088 break; 6089 case Instruction::FPExt: 6090 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6091 break; 6092 case Instruction::FPToUI: 6093 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6094 break; 6095 case Instruction::FPToSI: 6096 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6097 break; 6098 case Instruction::UIToFP: 6099 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6100 break; 6101 case Instruction::SIToFP: 6102 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6103 break; 6104 default: 6105 break; 6106 } 6107 6108 if (!CastedTo) 6109 return nullptr; 6110 6111 // Make sure the cast doesn't lose any information. 6112 Constant *CastedBack = 6113 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6114 if (CastedBack != C) 6115 return nullptr; 6116 6117 return CastedTo; 6118 } 6119 6120 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6121 Instruction::CastOps *CastOp, 6122 unsigned Depth) { 6123 if (Depth >= MaxAnalysisRecursionDepth) 6124 return {SPF_UNKNOWN, SPNB_NA, false}; 6125 6126 SelectInst *SI = dyn_cast<SelectInst>(V); 6127 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6128 6129 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6130 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6131 6132 Value *TrueVal = SI->getTrueValue(); 6133 Value *FalseVal = SI->getFalseValue(); 6134 6135 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6136 CastOp, Depth); 6137 } 6138 6139 SelectPatternResult llvm::matchDecomposedSelectPattern( 6140 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6141 Instruction::CastOps *CastOp, unsigned Depth) { 6142 CmpInst::Predicate Pred = CmpI->getPredicate(); 6143 Value *CmpLHS = CmpI->getOperand(0); 6144 Value *CmpRHS = CmpI->getOperand(1); 6145 FastMathFlags FMF; 6146 if (isa<FPMathOperator>(CmpI)) 6147 FMF = CmpI->getFastMathFlags(); 6148 6149 // Bail out early. 6150 if (CmpI->isEquality()) 6151 return {SPF_UNKNOWN, SPNB_NA, false}; 6152 6153 // Deal with type mismatches. 6154 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6155 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6156 // If this is a potential fmin/fmax with a cast to integer, then ignore 6157 // -0.0 because there is no corresponding integer value. 6158 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6159 FMF.setNoSignedZeros(); 6160 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6161 cast<CastInst>(TrueVal)->getOperand(0), C, 6162 LHS, RHS, Depth); 6163 } 6164 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6165 // If this is a potential fmin/fmax with a cast to integer, then ignore 6166 // -0.0 because there is no corresponding integer value. 6167 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6168 FMF.setNoSignedZeros(); 6169 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6170 C, cast<CastInst>(FalseVal)->getOperand(0), 6171 LHS, RHS, Depth); 6172 } 6173 } 6174 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6175 LHS, RHS, Depth); 6176 } 6177 6178 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6179 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6180 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6181 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6182 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6183 if (SPF == SPF_FMINNUM) 6184 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6185 if (SPF == SPF_FMAXNUM) 6186 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6187 llvm_unreachable("unhandled!"); 6188 } 6189 6190 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6191 if (SPF == SPF_SMIN) return SPF_SMAX; 6192 if (SPF == SPF_UMIN) return SPF_UMAX; 6193 if (SPF == SPF_SMAX) return SPF_SMIN; 6194 if (SPF == SPF_UMAX) return SPF_UMIN; 6195 llvm_unreachable("unhandled!"); 6196 } 6197 6198 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6199 switch (MinMaxID) { 6200 case Intrinsic::smax: return Intrinsic::smin; 6201 case Intrinsic::smin: return Intrinsic::smax; 6202 case Intrinsic::umax: return Intrinsic::umin; 6203 case Intrinsic::umin: return Intrinsic::umax; 6204 default: llvm_unreachable("Unexpected intrinsic"); 6205 } 6206 } 6207 6208 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6209 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6210 } 6211 6212 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6213 switch (SPF) { 6214 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6215 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6216 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6217 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6218 default: llvm_unreachable("Unexpected flavor"); 6219 } 6220 } 6221 6222 std::pair<Intrinsic::ID, bool> 6223 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6224 // Check if VL contains select instructions that can be folded into a min/max 6225 // vector intrinsic and return the intrinsic if it is possible. 6226 // TODO: Support floating point min/max. 6227 bool AllCmpSingleUse = true; 6228 SelectPatternResult SelectPattern; 6229 SelectPattern.Flavor = SPF_UNKNOWN; 6230 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6231 Value *LHS, *RHS; 6232 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6233 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6234 CurrentPattern.Flavor == SPF_FMINNUM || 6235 CurrentPattern.Flavor == SPF_FMAXNUM || 6236 !I->getType()->isIntOrIntVectorTy()) 6237 return false; 6238 if (SelectPattern.Flavor != SPF_UNKNOWN && 6239 SelectPattern.Flavor != CurrentPattern.Flavor) 6240 return false; 6241 SelectPattern = CurrentPattern; 6242 AllCmpSingleUse &= 6243 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6244 return true; 6245 })) { 6246 switch (SelectPattern.Flavor) { 6247 case SPF_SMIN: 6248 return {Intrinsic::smin, AllCmpSingleUse}; 6249 case SPF_UMIN: 6250 return {Intrinsic::umin, AllCmpSingleUse}; 6251 case SPF_SMAX: 6252 return {Intrinsic::smax, AllCmpSingleUse}; 6253 case SPF_UMAX: 6254 return {Intrinsic::umax, AllCmpSingleUse}; 6255 default: 6256 llvm_unreachable("unexpected select pattern flavor"); 6257 } 6258 } 6259 return {Intrinsic::not_intrinsic, false}; 6260 } 6261 6262 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6263 Value *&Start, Value *&Step) { 6264 // Handle the case of a simple two-predecessor recurrence PHI. 6265 // There's a lot more that could theoretically be done here, but 6266 // this is sufficient to catch some interesting cases. 6267 if (P->getNumIncomingValues() != 2) 6268 return false; 6269 6270 for (unsigned i = 0; i != 2; ++i) { 6271 Value *L = P->getIncomingValue(i); 6272 Value *R = P->getIncomingValue(!i); 6273 Operator *LU = dyn_cast<Operator>(L); 6274 if (!LU) 6275 continue; 6276 unsigned Opcode = LU->getOpcode(); 6277 6278 switch (Opcode) { 6279 default: 6280 continue; 6281 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6282 case Instruction::LShr: 6283 case Instruction::AShr: 6284 case Instruction::Shl: 6285 case Instruction::Add: 6286 case Instruction::Sub: 6287 case Instruction::And: 6288 case Instruction::Or: 6289 case Instruction::Mul: { 6290 Value *LL = LU->getOperand(0); 6291 Value *LR = LU->getOperand(1); 6292 // Find a recurrence. 6293 if (LL == P) 6294 L = LR; 6295 else if (LR == P) 6296 L = LL; 6297 else 6298 continue; // Check for recurrence with L and R flipped. 6299 6300 break; // Match! 6301 } 6302 }; 6303 6304 // We have matched a recurrence of the form: 6305 // %iv = [R, %entry], [%iv.next, %backedge] 6306 // %iv.next = binop %iv, L 6307 // OR 6308 // %iv = [R, %entry], [%iv.next, %backedge] 6309 // %iv.next = binop L, %iv 6310 BO = cast<BinaryOperator>(LU); 6311 Start = R; 6312 Step = L; 6313 return true; 6314 } 6315 return false; 6316 } 6317 6318 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6319 Value *&Start, Value *&Step) { 6320 BinaryOperator *BO = nullptr; 6321 P = dyn_cast<PHINode>(I->getOperand(0)); 6322 if (!P) 6323 P = dyn_cast<PHINode>(I->getOperand(1)); 6324 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6325 } 6326 6327 /// Return true if "icmp Pred LHS RHS" is always true. 6328 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6329 const Value *RHS, const DataLayout &DL, 6330 unsigned Depth) { 6331 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6332 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6333 return true; 6334 6335 switch (Pred) { 6336 default: 6337 return false; 6338 6339 case CmpInst::ICMP_SLE: { 6340 const APInt *C; 6341 6342 // LHS s<= LHS +_{nsw} C if C >= 0 6343 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6344 return !C->isNegative(); 6345 return false; 6346 } 6347 6348 case CmpInst::ICMP_ULE: { 6349 const APInt *C; 6350 6351 // LHS u<= LHS +_{nuw} C for any C 6352 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6353 return true; 6354 6355 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6356 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6357 const Value *&X, 6358 const APInt *&CA, const APInt *&CB) { 6359 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6360 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6361 return true; 6362 6363 // If X & C == 0 then (X | C) == X +_{nuw} C 6364 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6365 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6366 KnownBits Known(CA->getBitWidth()); 6367 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6368 /*CxtI*/ nullptr, /*DT*/ nullptr); 6369 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6370 return true; 6371 } 6372 6373 return false; 6374 }; 6375 6376 const Value *X; 6377 const APInt *CLHS, *CRHS; 6378 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6379 return CLHS->ule(*CRHS); 6380 6381 return false; 6382 } 6383 } 6384 } 6385 6386 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6387 /// ALHS ARHS" is true. Otherwise, return None. 6388 static Optional<bool> 6389 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6390 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6391 const DataLayout &DL, unsigned Depth) { 6392 switch (Pred) { 6393 default: 6394 return None; 6395 6396 case CmpInst::ICMP_SLT: 6397 case CmpInst::ICMP_SLE: 6398 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6399 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6400 return true; 6401 return None; 6402 6403 case CmpInst::ICMP_ULT: 6404 case CmpInst::ICMP_ULE: 6405 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6406 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6407 return true; 6408 return None; 6409 } 6410 } 6411 6412 /// Return true if the operands of the two compares match. IsSwappedOps is true 6413 /// when the operands match, but are swapped. 6414 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6415 const Value *BLHS, const Value *BRHS, 6416 bool &IsSwappedOps) { 6417 6418 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6419 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6420 return IsMatchingOps || IsSwappedOps; 6421 } 6422 6423 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6424 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6425 /// Otherwise, return None if we can't infer anything. 6426 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6427 CmpInst::Predicate BPred, 6428 bool AreSwappedOps) { 6429 // Canonicalize the predicate as if the operands were not commuted. 6430 if (AreSwappedOps) 6431 BPred = ICmpInst::getSwappedPredicate(BPred); 6432 6433 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6434 return true; 6435 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6436 return false; 6437 6438 return None; 6439 } 6440 6441 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6442 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6443 /// Otherwise, return None if we can't infer anything. 6444 static Optional<bool> 6445 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6446 const ConstantInt *C1, 6447 CmpInst::Predicate BPred, 6448 const ConstantInt *C2) { 6449 ConstantRange DomCR = 6450 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6451 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6452 ConstantRange Intersection = DomCR.intersectWith(CR); 6453 ConstantRange Difference = DomCR.difference(CR); 6454 if (Intersection.isEmptySet()) 6455 return false; 6456 if (Difference.isEmptySet()) 6457 return true; 6458 return None; 6459 } 6460 6461 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6462 /// false. Otherwise, return None if we can't infer anything. 6463 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6464 CmpInst::Predicate BPred, 6465 const Value *BLHS, const Value *BRHS, 6466 const DataLayout &DL, bool LHSIsTrue, 6467 unsigned Depth) { 6468 Value *ALHS = LHS->getOperand(0); 6469 Value *ARHS = LHS->getOperand(1); 6470 6471 // The rest of the logic assumes the LHS condition is true. If that's not the 6472 // case, invert the predicate to make it so. 6473 CmpInst::Predicate APred = 6474 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6475 6476 // Can we infer anything when the two compares have matching operands? 6477 bool AreSwappedOps; 6478 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6479 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6480 APred, BPred, AreSwappedOps)) 6481 return Implication; 6482 // No amount of additional analysis will infer the second condition, so 6483 // early exit. 6484 return None; 6485 } 6486 6487 // Can we infer anything when the LHS operands match and the RHS operands are 6488 // constants (not necessarily matching)? 6489 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6490 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6491 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6492 return Implication; 6493 // No amount of additional analysis will infer the second condition, so 6494 // early exit. 6495 return None; 6496 } 6497 6498 if (APred == BPred) 6499 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6500 return None; 6501 } 6502 6503 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6504 /// false. Otherwise, return None if we can't infer anything. We expect the 6505 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6506 static Optional<bool> 6507 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6508 const Value *RHSOp0, const Value *RHSOp1, 6509 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6510 // The LHS must be an 'or', 'and', or a 'select' instruction. 6511 assert((LHS->getOpcode() == Instruction::And || 6512 LHS->getOpcode() == Instruction::Or || 6513 LHS->getOpcode() == Instruction::Select) && 6514 "Expected LHS to be 'and', 'or', or 'select'."); 6515 6516 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6517 6518 // If the result of an 'or' is false, then we know both legs of the 'or' are 6519 // false. Similarly, if the result of an 'and' is true, then we know both 6520 // legs of the 'and' are true. 6521 const Value *ALHS, *ARHS; 6522 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6523 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6524 // FIXME: Make this non-recursion. 6525 if (Optional<bool> Implication = isImpliedCondition( 6526 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6527 return Implication; 6528 if (Optional<bool> Implication = isImpliedCondition( 6529 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6530 return Implication; 6531 return None; 6532 } 6533 return None; 6534 } 6535 6536 Optional<bool> 6537 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6538 const Value *RHSOp0, const Value *RHSOp1, 6539 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6540 // Bail out when we hit the limit. 6541 if (Depth == MaxAnalysisRecursionDepth) 6542 return None; 6543 6544 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6545 // example. 6546 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6547 return None; 6548 6549 Type *OpTy = LHS->getType(); 6550 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6551 6552 // FIXME: Extending the code below to handle vectors. 6553 if (OpTy->isVectorTy()) 6554 return None; 6555 6556 assert(OpTy->isIntegerTy(1) && "implied by above"); 6557 6558 // Both LHS and RHS are icmps. 6559 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6560 if (LHSCmp) 6561 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6562 Depth); 6563 6564 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6565 /// the RHS to be an icmp. 6566 /// FIXME: Add support for and/or/select on the RHS. 6567 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6568 if ((LHSI->getOpcode() == Instruction::And || 6569 LHSI->getOpcode() == Instruction::Or || 6570 LHSI->getOpcode() == Instruction::Select)) 6571 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6572 Depth); 6573 } 6574 return None; 6575 } 6576 6577 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6578 const DataLayout &DL, bool LHSIsTrue, 6579 unsigned Depth) { 6580 // LHS ==> RHS by definition 6581 if (LHS == RHS) 6582 return LHSIsTrue; 6583 6584 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6585 if (RHSCmp) 6586 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6587 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6588 LHSIsTrue, Depth); 6589 return None; 6590 } 6591 6592 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6593 // condition dominating ContextI or nullptr, if no condition is found. 6594 static std::pair<Value *, bool> 6595 getDomPredecessorCondition(const Instruction *ContextI) { 6596 if (!ContextI || !ContextI->getParent()) 6597 return {nullptr, false}; 6598 6599 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6600 // dominator tree (eg, from a SimplifyQuery) instead? 6601 const BasicBlock *ContextBB = ContextI->getParent(); 6602 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6603 if (!PredBB) 6604 return {nullptr, false}; 6605 6606 // We need a conditional branch in the predecessor. 6607 Value *PredCond; 6608 BasicBlock *TrueBB, *FalseBB; 6609 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6610 return {nullptr, false}; 6611 6612 // The branch should get simplified. Don't bother simplifying this condition. 6613 if (TrueBB == FalseBB) 6614 return {nullptr, false}; 6615 6616 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6617 "Predecessor block does not point to successor?"); 6618 6619 // Is this condition implied by the predecessor condition? 6620 return {PredCond, TrueBB == ContextBB}; 6621 } 6622 6623 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6624 const Instruction *ContextI, 6625 const DataLayout &DL) { 6626 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6627 auto PredCond = getDomPredecessorCondition(ContextI); 6628 if (PredCond.first) 6629 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6630 return None; 6631 } 6632 6633 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6634 const Value *LHS, const Value *RHS, 6635 const Instruction *ContextI, 6636 const DataLayout &DL) { 6637 auto PredCond = getDomPredecessorCondition(ContextI); 6638 if (PredCond.first) 6639 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6640 PredCond.second); 6641 return None; 6642 } 6643 6644 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6645 APInt &Upper, const InstrInfoQuery &IIQ, 6646 bool PreferSignedRange) { 6647 unsigned Width = Lower.getBitWidth(); 6648 const APInt *C; 6649 switch (BO.getOpcode()) { 6650 case Instruction::Add: 6651 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6652 bool HasNSW = IIQ.hasNoSignedWrap(&BO); 6653 bool HasNUW = IIQ.hasNoUnsignedWrap(&BO); 6654 6655 // If the caller expects a signed compare, then try to use a signed range. 6656 // Otherwise if both no-wraps are set, use the unsigned range because it 6657 // is never larger than the signed range. Example: 6658 // "add nuw nsw i8 X, -2" is unsigned [254,255] vs. signed [-128, 125]. 6659 if (PreferSignedRange && HasNSW && HasNUW) 6660 HasNUW = false; 6661 6662 if (HasNUW) { 6663 // 'add nuw x, C' produces [C, UINT_MAX]. 6664 Lower = *C; 6665 } else if (HasNSW) { 6666 if (C->isNegative()) { 6667 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6668 Lower = APInt::getSignedMinValue(Width); 6669 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6670 } else { 6671 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6672 Lower = APInt::getSignedMinValue(Width) + *C; 6673 Upper = APInt::getSignedMaxValue(Width) + 1; 6674 } 6675 } 6676 } 6677 break; 6678 6679 case Instruction::And: 6680 if (match(BO.getOperand(1), m_APInt(C))) 6681 // 'and x, C' produces [0, C]. 6682 Upper = *C + 1; 6683 break; 6684 6685 case Instruction::Or: 6686 if (match(BO.getOperand(1), m_APInt(C))) 6687 // 'or x, C' produces [C, UINT_MAX]. 6688 Lower = *C; 6689 break; 6690 6691 case Instruction::AShr: 6692 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6693 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6694 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6695 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6696 } else if (match(BO.getOperand(0), m_APInt(C))) { 6697 unsigned ShiftAmount = Width - 1; 6698 if (!C->isZero() && IIQ.isExact(&BO)) 6699 ShiftAmount = C->countTrailingZeros(); 6700 if (C->isNegative()) { 6701 // 'ashr C, x' produces [C, C >> (Width-1)] 6702 Lower = *C; 6703 Upper = C->ashr(ShiftAmount) + 1; 6704 } else { 6705 // 'ashr C, x' produces [C >> (Width-1), C] 6706 Lower = C->ashr(ShiftAmount); 6707 Upper = *C + 1; 6708 } 6709 } 6710 break; 6711 6712 case Instruction::LShr: 6713 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6714 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6715 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6716 } else if (match(BO.getOperand(0), m_APInt(C))) { 6717 // 'lshr C, x' produces [C >> (Width-1), C]. 6718 unsigned ShiftAmount = Width - 1; 6719 if (!C->isZero() && IIQ.isExact(&BO)) 6720 ShiftAmount = C->countTrailingZeros(); 6721 Lower = C->lshr(ShiftAmount); 6722 Upper = *C + 1; 6723 } 6724 break; 6725 6726 case Instruction::Shl: 6727 if (match(BO.getOperand(0), m_APInt(C))) { 6728 if (IIQ.hasNoUnsignedWrap(&BO)) { 6729 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6730 Lower = *C; 6731 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6732 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6733 if (C->isNegative()) { 6734 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6735 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6736 Lower = C->shl(ShiftAmount); 6737 Upper = *C + 1; 6738 } else { 6739 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6740 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6741 Lower = *C; 6742 Upper = C->shl(ShiftAmount) + 1; 6743 } 6744 } 6745 } 6746 break; 6747 6748 case Instruction::SDiv: 6749 if (match(BO.getOperand(1), m_APInt(C))) { 6750 APInt IntMin = APInt::getSignedMinValue(Width); 6751 APInt IntMax = APInt::getSignedMaxValue(Width); 6752 if (C->isAllOnes()) { 6753 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6754 // where C != -1 and C != 0 and C != 1 6755 Lower = IntMin + 1; 6756 Upper = IntMax + 1; 6757 } else if (C->countLeadingZeros() < Width - 1) { 6758 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6759 // where C != -1 and C != 0 and C != 1 6760 Lower = IntMin.sdiv(*C); 6761 Upper = IntMax.sdiv(*C); 6762 if (Lower.sgt(Upper)) 6763 std::swap(Lower, Upper); 6764 Upper = Upper + 1; 6765 assert(Upper != Lower && "Upper part of range has wrapped!"); 6766 } 6767 } else if (match(BO.getOperand(0), m_APInt(C))) { 6768 if (C->isMinSignedValue()) { 6769 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6770 Lower = *C; 6771 Upper = Lower.lshr(1) + 1; 6772 } else { 6773 // 'sdiv C, x' produces [-|C|, |C|]. 6774 Upper = C->abs() + 1; 6775 Lower = (-Upper) + 1; 6776 } 6777 } 6778 break; 6779 6780 case Instruction::UDiv: 6781 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6782 // 'udiv x, C' produces [0, UINT_MAX / C]. 6783 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6784 } else if (match(BO.getOperand(0), m_APInt(C))) { 6785 // 'udiv C, x' produces [0, C]. 6786 Upper = *C + 1; 6787 } 6788 break; 6789 6790 case Instruction::SRem: 6791 if (match(BO.getOperand(1), m_APInt(C))) { 6792 // 'srem x, C' produces (-|C|, |C|). 6793 Upper = C->abs(); 6794 Lower = (-Upper) + 1; 6795 } 6796 break; 6797 6798 case Instruction::URem: 6799 if (match(BO.getOperand(1), m_APInt(C))) 6800 // 'urem x, C' produces [0, C). 6801 Upper = *C; 6802 break; 6803 6804 default: 6805 break; 6806 } 6807 } 6808 6809 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6810 APInt &Upper) { 6811 unsigned Width = Lower.getBitWidth(); 6812 const APInt *C; 6813 switch (II.getIntrinsicID()) { 6814 case Intrinsic::ctpop: 6815 case Intrinsic::ctlz: 6816 case Intrinsic::cttz: 6817 // Maximum of set/clear bits is the bit width. 6818 assert(Lower == 0 && "Expected lower bound to be zero"); 6819 Upper = Width + 1; 6820 break; 6821 case Intrinsic::uadd_sat: 6822 // uadd.sat(x, C) produces [C, UINT_MAX]. 6823 if (match(II.getOperand(0), m_APInt(C)) || 6824 match(II.getOperand(1), m_APInt(C))) 6825 Lower = *C; 6826 break; 6827 case Intrinsic::sadd_sat: 6828 if (match(II.getOperand(0), m_APInt(C)) || 6829 match(II.getOperand(1), m_APInt(C))) { 6830 if (C->isNegative()) { 6831 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6832 Lower = APInt::getSignedMinValue(Width); 6833 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6834 } else { 6835 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6836 Lower = APInt::getSignedMinValue(Width) + *C; 6837 Upper = APInt::getSignedMaxValue(Width) + 1; 6838 } 6839 } 6840 break; 6841 case Intrinsic::usub_sat: 6842 // usub.sat(C, x) produces [0, C]. 6843 if (match(II.getOperand(0), m_APInt(C))) 6844 Upper = *C + 1; 6845 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6846 else if (match(II.getOperand(1), m_APInt(C))) 6847 Upper = APInt::getMaxValue(Width) - *C + 1; 6848 break; 6849 case Intrinsic::ssub_sat: 6850 if (match(II.getOperand(0), m_APInt(C))) { 6851 if (C->isNegative()) { 6852 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6853 Lower = APInt::getSignedMinValue(Width); 6854 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6855 } else { 6856 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6857 Lower = *C - APInt::getSignedMaxValue(Width); 6858 Upper = APInt::getSignedMaxValue(Width) + 1; 6859 } 6860 } else if (match(II.getOperand(1), m_APInt(C))) { 6861 if (C->isNegative()) { 6862 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6863 Lower = APInt::getSignedMinValue(Width) - *C; 6864 Upper = APInt::getSignedMaxValue(Width) + 1; 6865 } else { 6866 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6867 Lower = APInt::getSignedMinValue(Width); 6868 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6869 } 6870 } 6871 break; 6872 case Intrinsic::umin: 6873 case Intrinsic::umax: 6874 case Intrinsic::smin: 6875 case Intrinsic::smax: 6876 if (!match(II.getOperand(0), m_APInt(C)) && 6877 !match(II.getOperand(1), m_APInt(C))) 6878 break; 6879 6880 switch (II.getIntrinsicID()) { 6881 case Intrinsic::umin: 6882 Upper = *C + 1; 6883 break; 6884 case Intrinsic::umax: 6885 Lower = *C; 6886 break; 6887 case Intrinsic::smin: 6888 Lower = APInt::getSignedMinValue(Width); 6889 Upper = *C + 1; 6890 break; 6891 case Intrinsic::smax: 6892 Lower = *C; 6893 Upper = APInt::getSignedMaxValue(Width) + 1; 6894 break; 6895 default: 6896 llvm_unreachable("Must be min/max intrinsic"); 6897 } 6898 break; 6899 case Intrinsic::abs: 6900 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6901 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6902 if (match(II.getOperand(1), m_One())) 6903 Upper = APInt::getSignedMaxValue(Width) + 1; 6904 else 6905 Upper = APInt::getSignedMinValue(Width) + 1; 6906 break; 6907 default: 6908 break; 6909 } 6910 } 6911 6912 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6913 APInt &Upper, const InstrInfoQuery &IIQ) { 6914 const Value *LHS = nullptr, *RHS = nullptr; 6915 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6916 if (R.Flavor == SPF_UNKNOWN) 6917 return; 6918 6919 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6920 6921 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6922 // If the negation part of the abs (in RHS) has the NSW flag, 6923 // then the result of abs(X) is [0..SIGNED_MAX], 6924 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6925 Lower = APInt::getZero(BitWidth); 6926 if (match(RHS, m_Neg(m_Specific(LHS))) && 6927 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6928 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6929 else 6930 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6931 return; 6932 } 6933 6934 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6935 // The result of -abs(X) is <= 0. 6936 Lower = APInt::getSignedMinValue(BitWidth); 6937 Upper = APInt(BitWidth, 1); 6938 return; 6939 } 6940 6941 const APInt *C; 6942 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6943 return; 6944 6945 switch (R.Flavor) { 6946 case SPF_UMIN: 6947 Upper = *C + 1; 6948 break; 6949 case SPF_UMAX: 6950 Lower = *C; 6951 break; 6952 case SPF_SMIN: 6953 Lower = APInt::getSignedMinValue(BitWidth); 6954 Upper = *C + 1; 6955 break; 6956 case SPF_SMAX: 6957 Lower = *C; 6958 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6959 break; 6960 default: 6961 break; 6962 } 6963 } 6964 6965 static void setLimitForFPToI(const Instruction *I, APInt &Lower, APInt &Upper) { 6966 // The maximum representable value of a half is 65504. For floats the maximum 6967 // value is 3.4e38 which requires roughly 129 bits. 6968 unsigned BitWidth = I->getType()->getScalarSizeInBits(); 6969 if (!I->getOperand(0)->getType()->getScalarType()->isHalfTy()) 6970 return; 6971 if (isa<FPToSIInst>(I) && BitWidth >= 17) { 6972 Lower = APInt(BitWidth, -65504); 6973 Upper = APInt(BitWidth, 65505); 6974 } 6975 6976 if (isa<FPToUIInst>(I) && BitWidth >= 16) { 6977 // For a fptoui the lower limit is left as 0. 6978 Upper = APInt(BitWidth, 65505); 6979 } 6980 } 6981 6982 ConstantRange llvm::computeConstantRange(const Value *V, bool ForSigned, 6983 bool UseInstrInfo, AssumptionCache *AC, 6984 const Instruction *CtxI, 6985 const DominatorTree *DT, 6986 unsigned Depth) { 6987 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6988 6989 if (Depth == MaxAnalysisRecursionDepth) 6990 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6991 6992 const APInt *C; 6993 if (match(V, m_APInt(C))) 6994 return ConstantRange(*C); 6995 6996 InstrInfoQuery IIQ(UseInstrInfo); 6997 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6998 APInt Lower = APInt(BitWidth, 0); 6999 APInt Upper = APInt(BitWidth, 0); 7000 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7001 setLimitsForBinOp(*BO, Lower, Upper, IIQ, ForSigned); 7002 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7003 setLimitsForIntrinsic(*II, Lower, Upper); 7004 else if (auto *SI = dyn_cast<SelectInst>(V)) 7005 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7006 else if (isa<FPToUIInst>(V) || isa<FPToSIInst>(V)) 7007 setLimitForFPToI(cast<Instruction>(V), Lower, Upper); 7008 7009 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7010 7011 if (auto *I = dyn_cast<Instruction>(V)) 7012 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7013 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7014 7015 if (CtxI && AC) { 7016 // Try to restrict the range based on information from assumptions. 7017 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7018 if (!AssumeVH) 7019 continue; 7020 CallInst *I = cast<CallInst>(AssumeVH); 7021 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7022 "Got assumption for the wrong function!"); 7023 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7024 "must be an assume intrinsic"); 7025 7026 if (!isValidAssumeForContext(I, CtxI, DT)) 7027 continue; 7028 Value *Arg = I->getArgOperand(0); 7029 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7030 // Currently we just use information from comparisons. 7031 if (!Cmp || Cmp->getOperand(0) != V) 7032 continue; 7033 // TODO: Set "ForSigned" parameter via Cmp->isSigned()? 7034 ConstantRange RHS = 7035 computeConstantRange(Cmp->getOperand(1), /* ForSigned */ false, 7036 UseInstrInfo, AC, I, DT, Depth + 1); 7037 CR = CR.intersectWith( 7038 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7039 } 7040 } 7041 7042 return CR; 7043 } 7044 7045 static Optional<int64_t> 7046 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7047 // Skip over the first indices. 7048 gep_type_iterator GTI = gep_type_begin(GEP); 7049 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7050 /*skip along*/; 7051 7052 // Compute the offset implied by the rest of the indices. 7053 int64_t Offset = 0; 7054 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7055 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7056 if (!OpC) 7057 return None; 7058 if (OpC->isZero()) 7059 continue; // No offset. 7060 7061 // Handle struct indices, which add their field offset to the pointer. 7062 if (StructType *STy = GTI.getStructTypeOrNull()) { 7063 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7064 continue; 7065 } 7066 7067 // Otherwise, we have a sequential type like an array or fixed-length 7068 // vector. Multiply the index by the ElementSize. 7069 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7070 if (Size.isScalable()) 7071 return None; 7072 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7073 } 7074 7075 return Offset; 7076 } 7077 7078 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7079 const DataLayout &DL) { 7080 Ptr1 = Ptr1->stripPointerCasts(); 7081 Ptr2 = Ptr2->stripPointerCasts(); 7082 7083 // Handle the trivial case first. 7084 if (Ptr1 == Ptr2) { 7085 return 0; 7086 } 7087 7088 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7089 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7090 7091 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7092 // as in "P" and "gep P, 1". 7093 // Also do this iteratively to handle the the following case: 7094 // Ptr_t1 = GEP Ptr1, c1 7095 // Ptr_t2 = GEP Ptr_t1, c2 7096 // Ptr2 = GEP Ptr_t2, c3 7097 // where we will return c1+c2+c3. 7098 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7099 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7100 // are the same, and return the difference between offsets. 7101 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7102 const Value *Ptr) -> Optional<int64_t> { 7103 const GEPOperator *GEP_T = GEP; 7104 int64_t OffsetVal = 0; 7105 bool HasSameBase = false; 7106 while (GEP_T) { 7107 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7108 if (!Offset) 7109 return None; 7110 OffsetVal += *Offset; 7111 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7112 if (Op0 == Ptr) { 7113 HasSameBase = true; 7114 break; 7115 } 7116 GEP_T = dyn_cast<GEPOperator>(Op0); 7117 } 7118 if (!HasSameBase) 7119 return None; 7120 return OffsetVal; 7121 }; 7122 7123 if (GEP1) { 7124 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7125 if (Offset) 7126 return -*Offset; 7127 } 7128 if (GEP2) { 7129 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7130 if (Offset) 7131 return Offset; 7132 } 7133 7134 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7135 // base. After that base, they may have some number of common (and 7136 // potentially variable) indices. After that they handle some constant 7137 // offset, which determines their offset from each other. At this point, we 7138 // handle no other case. 7139 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0) || 7140 GEP1->getSourceElementType() != GEP2->getSourceElementType()) 7141 return None; 7142 7143 // Skip any common indices and track the GEP types. 7144 unsigned Idx = 1; 7145 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7146 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7147 break; 7148 7149 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7150 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7151 if (!Offset1 || !Offset2) 7152 return None; 7153 return *Offset2 - *Offset1; 7154 } 7155