1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 513 J != JE; ++J) 514 WorkSet.push_back(*J); 515 } 516 } 517 } 518 519 return false; 520 } 521 522 // Is this an intrinsic that cannot be speculated but also cannot trap? 523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 524 if (const CallInst *CI = dyn_cast<CallInst>(I)) 525 if (Function *F = CI->getCalledFunction()) 526 switch (F->getIntrinsicID()) { 527 default: break; 528 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 529 case Intrinsic::assume: 530 case Intrinsic::sideeffect: 531 case Intrinsic::pseudoprobe: 532 case Intrinsic::dbg_declare: 533 case Intrinsic::dbg_value: 534 case Intrinsic::dbg_label: 535 case Intrinsic::invariant_start: 536 case Intrinsic::invariant_end: 537 case Intrinsic::lifetime_start: 538 case Intrinsic::lifetime_end: 539 case Intrinsic::objectsize: 540 case Intrinsic::ptr_annotation: 541 case Intrinsic::var_annotation: 542 return true; 543 } 544 545 return false; 546 } 547 548 bool llvm::isValidAssumeForContext(const Instruction *Inv, 549 const Instruction *CxtI, 550 const DominatorTree *DT) { 551 // There are two restrictions on the use of an assume: 552 // 1. The assume must dominate the context (or the control flow must 553 // reach the assume whenever it reaches the context). 554 // 2. The context must not be in the assume's set of ephemeral values 555 // (otherwise we will use the assume to prove that the condition 556 // feeding the assume is trivially true, thus causing the removal of 557 // the assume). 558 559 if (Inv->getParent() == CxtI->getParent()) { 560 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 561 // in the BB. 562 if (Inv->comesBefore(CxtI)) 563 return true; 564 565 // Don't let an assume affect itself - this would cause the problems 566 // `isEphemeralValueOf` is trying to prevent, and it would also make 567 // the loop below go out of bounds. 568 if (Inv == CxtI) 569 return false; 570 571 // The context comes first, but they're both in the same block. 572 // Make sure there is nothing in between that might interrupt 573 // the control flow, not even CxtI itself. 574 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 575 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 576 return false; 577 578 return !isEphemeralValueOf(Inv, CxtI); 579 } 580 581 // Inv and CxtI are in different blocks. 582 if (DT) { 583 if (DT->dominates(Inv, CxtI)) 584 return true; 585 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 586 // We don't have a DT, but this trivially dominates. 587 return true; 588 } 589 590 return false; 591 } 592 593 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 594 // v u> y implies v != 0. 595 if (Pred == ICmpInst::ICMP_UGT) 596 return true; 597 598 // Special-case v != 0 to also handle v != null. 599 if (Pred == ICmpInst::ICMP_NE) 600 return match(RHS, m_Zero()); 601 602 // All other predicates - rely on generic ConstantRange handling. 603 const APInt *C; 604 if (!match(RHS, m_APInt(C))) 605 return false; 606 607 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 608 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 609 } 610 611 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 612 // Use of assumptions is context-sensitive. If we don't have a context, we 613 // cannot use them! 614 if (!Q.AC || !Q.CxtI) 615 return false; 616 617 if (Q.CxtI && V->getType()->isPointerTy()) { 618 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 619 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 620 V->getType()->getPointerAddressSpace())) 621 AttrKinds.push_back(Attribute::Dereferenceable); 622 623 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 624 return true; 625 } 626 627 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 628 if (!AssumeVH) 629 continue; 630 CallInst *I = cast<CallInst>(AssumeVH); 631 assert(I->getFunction() == Q.CxtI->getFunction() && 632 "Got assumption for the wrong function!"); 633 if (Q.isExcluded(I)) 634 continue; 635 636 // Warning: This loop can end up being somewhat performance sensitive. 637 // We're running this loop for once for each value queried resulting in a 638 // runtime of ~O(#assumes * #values). 639 640 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 641 "must be an assume intrinsic"); 642 643 Value *RHS; 644 CmpInst::Predicate Pred; 645 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 646 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 647 return false; 648 649 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 650 return true; 651 } 652 653 return false; 654 } 655 656 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 657 unsigned Depth, const Query &Q) { 658 // Use of assumptions is context-sensitive. If we don't have a context, we 659 // cannot use them! 660 if (!Q.AC || !Q.CxtI) 661 return; 662 663 unsigned BitWidth = Known.getBitWidth(); 664 665 // Refine Known set if the pointer alignment is set by assume bundles. 666 if (V->getType()->isPointerTy()) { 667 if (RetainedKnowledge RK = getKnowledgeValidInContext( 668 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 669 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 670 } 671 } 672 673 // Note that the patterns below need to be kept in sync with the code 674 // in AssumptionCache::updateAffectedValues. 675 676 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 677 if (!AssumeVH) 678 continue; 679 CallInst *I = cast<CallInst>(AssumeVH); 680 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 681 "Got assumption for the wrong function!"); 682 if (Q.isExcluded(I)) 683 continue; 684 685 // Warning: This loop can end up being somewhat performance sensitive. 686 // We're running this loop for once for each value queried resulting in a 687 // runtime of ~O(#assumes * #values). 688 689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 690 "must be an assume intrinsic"); 691 692 Value *Arg = I->getArgOperand(0); 693 694 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 assert(BitWidth == 1 && "assume operand is not i1?"); 696 Known.setAllOnes(); 697 return; 698 } 699 if (match(Arg, m_Not(m_Specific(V))) && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 assert(BitWidth == 1 && "assume operand is not i1?"); 702 Known.setAllZero(); 703 return; 704 } 705 706 // The remaining tests are all recursive, so bail out if we hit the limit. 707 if (Depth == MaxAnalysisRecursionDepth) 708 continue; 709 710 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 711 if (!Cmp) 712 continue; 713 714 // Note that ptrtoint may change the bitwidth. 715 Value *A, *B; 716 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 717 718 CmpInst::Predicate Pred; 719 uint64_t C; 720 switch (Cmp->getPredicate()) { 721 default: 722 break; 723 case ICmpInst::ICMP_EQ: 724 // assume(v = a) 725 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown = 728 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 729 Known.Zero |= RHSKnown.Zero; 730 Known.One |= RHSKnown.One; 731 // assume(v & b = a) 732 } else if (match(Cmp, 733 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 KnownBits MaskKnown = 738 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 740 // For those bits in the mask that are known to be one, we can propagate 741 // known bits from the RHS to V. 742 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 743 Known.One |= RHSKnown.One & MaskKnown.One; 744 // assume(~(v & b) = a) 745 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 746 m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // inverted known bits from the RHS to V. 755 Known.Zero |= RHSKnown.One & MaskKnown.One; 756 Known.One |= RHSKnown.Zero & MaskKnown.One; 757 // assume(v | b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 763 KnownBits BKnown = 764 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 766 // For those bits in B that are known to be zero, we can propagate known 767 // bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 769 Known.One |= RHSKnown.One & BKnown.Zero; 770 // assume(~(v | b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & BKnown.Zero; 782 Known.One |= RHSKnown.Zero & BKnown.Zero; 783 // assume(v ^ b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. For those bits in B that are known to be one, 794 // we can propagate inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 Known.Zero |= RHSKnown.One & BKnown.One; 798 Known.One |= RHSKnown.Zero & BKnown.One; 799 // assume(~(v ^ b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 KnownBits BKnown = 806 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 808 // For those bits in B that are known to be zero, we can propagate 809 // inverted known bits from the RHS to V. For those bits in B that are 810 // known to be one, we can propagate known bits from the RHS to V. 811 Known.Zero |= RHSKnown.One & BKnown.Zero; 812 Known.One |= RHSKnown.Zero & BKnown.Zero; 813 Known.Zero |= RHSKnown.Zero & BKnown.One; 814 Known.One |= RHSKnown.One & BKnown.One; 815 // assume(v << c = a) 816 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 817 m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 819 KnownBits RHSKnown = 820 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 821 822 // For those bits in RHS that are known, we can propagate them to known 823 // bits in V shifted to the right by C. 824 RHSKnown.Zero.lshrInPlace(C); 825 Known.Zero |= RHSKnown.Zero; 826 RHSKnown.One.lshrInPlace(C); 827 Known.One |= RHSKnown.One; 828 // assume(~(v << c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 RHSKnown.One.lshrInPlace(C); 837 Known.Zero |= RHSKnown.One; 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.One |= RHSKnown.Zero; 840 // assume(v >> c = a) 841 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 842 m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 846 // For those bits in RHS that are known, we can propagate them to known 847 // bits in V shifted to the right by C. 848 Known.Zero |= RHSKnown.Zero << C; 849 Known.One |= RHSKnown.One << C; 850 // assume(~(v >> c) = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them inverted 857 // to known bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.One << C; 859 Known.One |= RHSKnown.Zero << C; 860 } 861 break; 862 case ICmpInst::ICMP_SGE: 863 // assume(v >=_s c) where c is non-negative 864 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 865 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 866 KnownBits RHSKnown = 867 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 868 869 if (RHSKnown.isNonNegative()) { 870 // We know that the sign bit is zero. 871 Known.makeNonNegative(); 872 } 873 } 874 break; 875 case ICmpInst::ICMP_SGT: 876 // assume(v >_s c) where c is at least -1. 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SLE: 889 // assume(v <=_s c) where c is negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNegative()) { 896 // We know that the sign bit is one. 897 Known.makeNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLT: 902 // assume(v <_s c) where c is non-positive 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_ULE: 915 // assume(v <=_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 921 // Whatever high bits in c are zero are known to be zero. 922 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 923 } 924 break; 925 case ICmpInst::ICMP_ULT: 926 // assume(v <_u c) 927 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 928 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 929 KnownBits RHSKnown = 930 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 931 932 // If the RHS is known zero, then this assumption must be wrong (nothing 933 // is unsigned less than zero). Signal a conflict and get out of here. 934 if (RHSKnown.isZero()) { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 break; 938 } 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 943 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 944 else 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 946 } 947 break; 948 } 949 } 950 951 // If assumptions conflict with each other or previous known bits, then we 952 // have a logical fallacy. It's possible that the assumption is not reachable, 953 // so this isn't a real bug. On the other hand, the program may have undefined 954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 955 // clear out the known bits, try to warn the user, and hope for the best. 956 if (Known.Zero.intersects(Known.One)) { 957 Known.resetAll(); 958 959 if (Q.ORE) 960 Q.ORE->emit([&]() { 961 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 963 CxtI) 964 << "Detected conflicting code assumptions. Program may " 965 "have undefined behavior, or compiler may have " 966 "internal error."; 967 }); 968 } 969 } 970 971 /// Compute known bits from a shift operator, including those with a 972 /// non-constant shift amount. Known is the output of this function. Known2 is a 973 /// pre-allocated temporary with the same bit width as Known and on return 974 /// contains the known bit of the shift value source. KF is an 975 /// operator-specific function that, given the known-bits and a shift amount, 976 /// compute the implied known-bits of the shift operator's result respectively 977 /// for that shift amount. The results from calling KF are conservatively 978 /// combined for all permitted shift amounts. 979 static void computeKnownBitsFromShiftOperator( 980 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 981 KnownBits &Known2, unsigned Depth, const Query &Q, 982 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 983 unsigned BitWidth = Known.getBitWidth(); 984 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 985 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 986 987 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 988 // BitWidth > 64 and any upper bits are known, we'll end up returning the 989 // limit value (which implies all bits are known). 990 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 991 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 992 bool ShiftAmtIsConstant = Known.isConstant(); 993 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 994 995 if (ShiftAmtIsConstant) { 996 Known = KF(Known2, Known); 997 998 // If the known bits conflict, this must be an overflowing left shift, so 999 // the shift result is poison. We can return anything we want. Choose 0 for 1000 // the best folding opportunity. 1001 if (Known.hasConflict()) 1002 Known.setAllZero(); 1003 1004 return; 1005 } 1006 1007 // If the shift amount could be greater than or equal to the bit-width of the 1008 // LHS, the value could be poison, but bail out because the check below is 1009 // expensive. 1010 // TODO: Should we just carry on? 1011 if (MaxShiftAmtIsOutOfRange) { 1012 Known.resetAll(); 1013 return; 1014 } 1015 1016 // It would be more-clearly correct to use the two temporaries for this 1017 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1018 Known.resetAll(); 1019 1020 // If we know the shifter operand is nonzero, we can sometimes infer more 1021 // known bits. However this is expensive to compute, so be lazy about it and 1022 // only compute it when absolutely necessary. 1023 Optional<bool> ShifterOperandIsNonZero; 1024 1025 // Early exit if we can't constrain any well-defined shift amount. 1026 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1027 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1028 ShifterOperandIsNonZero = 1029 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1030 if (!*ShifterOperandIsNonZero) 1031 return; 1032 } 1033 1034 Known.Zero.setAllBits(); 1035 Known.One.setAllBits(); 1036 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1037 // Combine the shifted known input bits only for those shift amounts 1038 // compatible with its known constraints. 1039 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1040 continue; 1041 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1042 continue; 1043 // If we know the shifter is nonzero, we may be able to infer more known 1044 // bits. This check is sunk down as far as possible to avoid the expensive 1045 // call to isKnownNonZero if the cheaper checks above fail. 1046 if (ShiftAmt == 0) { 1047 if (!ShifterOperandIsNonZero.hasValue()) 1048 ShifterOperandIsNonZero = 1049 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1050 if (*ShifterOperandIsNonZero) 1051 continue; 1052 } 1053 1054 Known = KnownBits::commonBits( 1055 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1056 } 1057 1058 // If the known bits conflict, the result is poison. Return a 0 and hope the 1059 // caller can further optimize that. 1060 if (Known.hasConflict()) 1061 Known.setAllZero(); 1062 } 1063 1064 static void computeKnownBitsFromOperator(const Operator *I, 1065 const APInt &DemandedElts, 1066 KnownBits &Known, unsigned Depth, 1067 const Query &Q) { 1068 unsigned BitWidth = Known.getBitWidth(); 1069 1070 KnownBits Known2(BitWidth); 1071 switch (I->getOpcode()) { 1072 default: break; 1073 case Instruction::Load: 1074 if (MDNode *MD = 1075 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1076 computeKnownBitsFromRangeMetadata(*MD, Known); 1077 break; 1078 case Instruction::And: { 1079 // If either the LHS or the RHS are Zero, the result is zero. 1080 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1081 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1082 1083 Known &= Known2; 1084 1085 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1086 // here we handle the more general case of adding any odd number by 1087 // matching the form add(x, add(x, y)) where y is odd. 1088 // TODO: This could be generalized to clearing any bit set in y where the 1089 // following bit is known to be unset in y. 1090 Value *X = nullptr, *Y = nullptr; 1091 if (!Known.Zero[0] && !Known.One[0] && 1092 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1093 Known2.resetAll(); 1094 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1095 if (Known2.countMinTrailingOnes() > 0) 1096 Known.Zero.setBit(0); 1097 } 1098 break; 1099 } 1100 case Instruction::Or: 1101 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1102 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1103 1104 Known |= Known2; 1105 break; 1106 case Instruction::Xor: 1107 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1109 1110 Known ^= Known2; 1111 break; 1112 case Instruction::Mul: { 1113 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1114 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1115 Known, Known2, Depth, Q); 1116 break; 1117 } 1118 case Instruction::UDiv: { 1119 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1120 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1121 Known = KnownBits::udiv(Known, Known2); 1122 break; 1123 } 1124 case Instruction::Select: { 1125 const Value *LHS = nullptr, *RHS = nullptr; 1126 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1127 if (SelectPatternResult::isMinOrMax(SPF)) { 1128 computeKnownBits(RHS, Known, Depth + 1, Q); 1129 computeKnownBits(LHS, Known2, Depth + 1, Q); 1130 switch (SPF) { 1131 default: 1132 llvm_unreachable("Unhandled select pattern flavor!"); 1133 case SPF_SMAX: 1134 Known = KnownBits::smax(Known, Known2); 1135 break; 1136 case SPF_SMIN: 1137 Known = KnownBits::smin(Known, Known2); 1138 break; 1139 case SPF_UMAX: 1140 Known = KnownBits::umax(Known, Known2); 1141 break; 1142 case SPF_UMIN: 1143 Known = KnownBits::umin(Known, Known2); 1144 break; 1145 } 1146 break; 1147 } 1148 1149 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1150 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1151 1152 // Only known if known in both the LHS and RHS. 1153 Known = KnownBits::commonBits(Known, Known2); 1154 1155 if (SPF == SPF_ABS) { 1156 // RHS from matchSelectPattern returns the negation part of abs pattern. 1157 // If the negate has an NSW flag we can assume the sign bit of the result 1158 // will be 0 because that makes abs(INT_MIN) undefined. 1159 if (match(RHS, m_Neg(m_Specific(LHS))) && 1160 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1161 Known.Zero.setSignBit(); 1162 } 1163 1164 break; 1165 } 1166 case Instruction::FPTrunc: 1167 case Instruction::FPExt: 1168 case Instruction::FPToUI: 1169 case Instruction::FPToSI: 1170 case Instruction::SIToFP: 1171 case Instruction::UIToFP: 1172 break; // Can't work with floating point. 1173 case Instruction::PtrToInt: 1174 case Instruction::IntToPtr: 1175 // Fall through and handle them the same as zext/trunc. 1176 LLVM_FALLTHROUGH; 1177 case Instruction::ZExt: 1178 case Instruction::Trunc: { 1179 Type *SrcTy = I->getOperand(0)->getType(); 1180 1181 unsigned SrcBitWidth; 1182 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1183 // which fall through here. 1184 Type *ScalarTy = SrcTy->getScalarType(); 1185 SrcBitWidth = ScalarTy->isPointerTy() ? 1186 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1187 Q.DL.getTypeSizeInBits(ScalarTy); 1188 1189 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1190 Known = Known.anyextOrTrunc(SrcBitWidth); 1191 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1192 Known = Known.zextOrTrunc(BitWidth); 1193 break; 1194 } 1195 case Instruction::BitCast: { 1196 Type *SrcTy = I->getOperand(0)->getType(); 1197 if (SrcTy->isIntOrPtrTy() && 1198 // TODO: For now, not handling conversions like: 1199 // (bitcast i64 %x to <2 x i32>) 1200 !I->getType()->isVectorTy()) { 1201 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1202 break; 1203 } 1204 break; 1205 } 1206 case Instruction::SExt: { 1207 // Compute the bits in the result that are not present in the input. 1208 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1209 1210 Known = Known.trunc(SrcBitWidth); 1211 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1212 // If the sign bit of the input is known set or clear, then we know the 1213 // top bits of the result. 1214 Known = Known.sext(BitWidth); 1215 break; 1216 } 1217 case Instruction::Shl: { 1218 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1219 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1220 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1221 // If this shift has "nsw" keyword, then the result is either a poison 1222 // value or has the same sign bit as the first operand. 1223 if (NSW) { 1224 if (KnownVal.Zero.isSignBitSet()) 1225 Result.Zero.setSignBit(); 1226 if (KnownVal.One.isSignBitSet()) 1227 Result.One.setSignBit(); 1228 } 1229 return Result; 1230 }; 1231 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1232 KF); 1233 break; 1234 } 1235 case Instruction::LShr: { 1236 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1237 return KnownBits::lshr(KnownVal, KnownAmt); 1238 }; 1239 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1240 KF); 1241 break; 1242 } 1243 case Instruction::AShr: { 1244 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1245 return KnownBits::ashr(KnownVal, KnownAmt); 1246 }; 1247 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1248 KF); 1249 break; 1250 } 1251 case Instruction::Sub: { 1252 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1253 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1254 DemandedElts, Known, Known2, Depth, Q); 1255 break; 1256 } 1257 case Instruction::Add: { 1258 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1259 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1260 DemandedElts, Known, Known2, Depth, Q); 1261 break; 1262 } 1263 case Instruction::SRem: 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1266 Known = KnownBits::srem(Known, Known2); 1267 break; 1268 1269 case Instruction::URem: 1270 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1271 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1272 Known = KnownBits::urem(Known, Known2); 1273 break; 1274 case Instruction::Alloca: 1275 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1276 break; 1277 case Instruction::GetElementPtr: { 1278 // Analyze all of the subscripts of this getelementptr instruction 1279 // to determine if we can prove known low zero bits. 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 // Accumulate the constant indices in a separate variable 1282 // to minimize the number of calls to computeForAddSub. 1283 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1284 1285 gep_type_iterator GTI = gep_type_begin(I); 1286 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1287 // TrailZ can only become smaller, short-circuit if we hit zero. 1288 if (Known.isUnknown()) 1289 break; 1290 1291 Value *Index = I->getOperand(i); 1292 1293 // Handle case when index is zero. 1294 Constant *CIndex = dyn_cast<Constant>(Index); 1295 if (CIndex && CIndex->isZeroValue()) 1296 continue; 1297 1298 if (StructType *STy = GTI.getStructTypeOrNull()) { 1299 // Handle struct member offset arithmetic. 1300 1301 assert(CIndex && 1302 "Access to structure field must be known at compile time"); 1303 1304 if (CIndex->getType()->isVectorTy()) 1305 Index = CIndex->getSplatValue(); 1306 1307 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1308 const StructLayout *SL = Q.DL.getStructLayout(STy); 1309 uint64_t Offset = SL->getElementOffset(Idx); 1310 AccConstIndices += Offset; 1311 continue; 1312 } 1313 1314 // Handle array index arithmetic. 1315 Type *IndexedTy = GTI.getIndexedType(); 1316 if (!IndexedTy->isSized()) { 1317 Known.resetAll(); 1318 break; 1319 } 1320 1321 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1322 KnownBits IndexBits(IndexBitWidth); 1323 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1324 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1325 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1326 KnownBits ScalingFactor(IndexBitWidth); 1327 // Multiply by current sizeof type. 1328 // &A[i] == A + i * sizeof(*A[i]). 1329 if (IndexTypeSize.isScalable()) { 1330 // For scalable types the only thing we know about sizeof is 1331 // that this is a multiple of the minimum size. 1332 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1333 } else if (IndexBits.isConstant()) { 1334 APInt IndexConst = IndexBits.getConstant(); 1335 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1336 IndexConst *= ScalingFactor; 1337 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1338 continue; 1339 } else { 1340 ScalingFactor.Zero = ~TypeSizeInBytes; 1341 ScalingFactor.One = TypeSizeInBytes; 1342 } 1343 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1344 1345 // If the offsets have a different width from the pointer, according 1346 // to the language reference we need to sign-extend or truncate them 1347 // to the width of the pointer. 1348 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1349 1350 // Note that inbounds does *not* guarantee nsw for the addition, as only 1351 // the offset is signed, while the base address is unsigned. 1352 Known = KnownBits::computeForAddSub( 1353 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1354 } 1355 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1356 KnownBits Index(BitWidth); 1357 Index.Zero = ~AccConstIndices; 1358 Index.One = AccConstIndices; 1359 Known = KnownBits::computeForAddSub( 1360 /*Add=*/true, /*NSW=*/false, Known, Index); 1361 } 1362 break; 1363 } 1364 case Instruction::PHI: { 1365 const PHINode *P = cast<PHINode>(I); 1366 // Handle the case of a simple two-predecessor recurrence PHI. 1367 // There's a lot more that could theoretically be done here, but 1368 // this is sufficient to catch some interesting cases. 1369 if (P->getNumIncomingValues() == 2) { 1370 for (unsigned i = 0; i != 2; ++i) { 1371 Value *L = P->getIncomingValue(i); 1372 Value *R = P->getIncomingValue(!i); 1373 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1374 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1375 Operator *LU = dyn_cast<Operator>(L); 1376 if (!LU) 1377 continue; 1378 unsigned Opcode = LU->getOpcode(); 1379 // Check for operations that have the property that if 1380 // both their operands have low zero bits, the result 1381 // will have low zero bits. 1382 if (Opcode == Instruction::Add || 1383 Opcode == Instruction::Sub || 1384 Opcode == Instruction::And || 1385 Opcode == Instruction::Or || 1386 Opcode == Instruction::Mul) { 1387 Value *LL = LU->getOperand(0); 1388 Value *LR = LU->getOperand(1); 1389 // Find a recurrence. 1390 if (LL == I) 1391 L = LR; 1392 else if (LR == I) 1393 L = LL; 1394 else 1395 continue; // Check for recurrence with L and R flipped. 1396 1397 // Change the context instruction to the "edge" that flows into the 1398 // phi. This is important because that is where the value is actually 1399 // "evaluated" even though it is used later somewhere else. (see also 1400 // D69571). 1401 Query RecQ = Q; 1402 1403 // Ok, we have a PHI of the form L op= R. Check for low 1404 // zero bits. 1405 RecQ.CxtI = RInst; 1406 computeKnownBits(R, Known2, Depth + 1, RecQ); 1407 1408 // We need to take the minimum number of known bits 1409 KnownBits Known3(BitWidth); 1410 RecQ.CxtI = LInst; 1411 computeKnownBits(L, Known3, Depth + 1, RecQ); 1412 1413 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1414 Known3.countMinTrailingZeros())); 1415 1416 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1417 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1418 // If initial value of recurrence is nonnegative, and we are adding 1419 // a nonnegative number with nsw, the result can only be nonnegative 1420 // or poison value regardless of the number of times we execute the 1421 // add in phi recurrence. If initial value is negative and we are 1422 // adding a negative number with nsw, the result can only be 1423 // negative or poison value. Similar arguments apply to sub and mul. 1424 // 1425 // (add non-negative, non-negative) --> non-negative 1426 // (add negative, negative) --> negative 1427 if (Opcode == Instruction::Add) { 1428 if (Known2.isNonNegative() && Known3.isNonNegative()) 1429 Known.makeNonNegative(); 1430 else if (Known2.isNegative() && Known3.isNegative()) 1431 Known.makeNegative(); 1432 } 1433 1434 // (sub nsw non-negative, negative) --> non-negative 1435 // (sub nsw negative, non-negative) --> negative 1436 else if (Opcode == Instruction::Sub && LL == I) { 1437 if (Known2.isNonNegative() && Known3.isNegative()) 1438 Known.makeNonNegative(); 1439 else if (Known2.isNegative() && Known3.isNonNegative()) 1440 Known.makeNegative(); 1441 } 1442 1443 // (mul nsw non-negative, non-negative) --> non-negative 1444 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1445 Known3.isNonNegative()) 1446 Known.makeNonNegative(); 1447 } 1448 1449 break; 1450 } 1451 } 1452 } 1453 1454 // Unreachable blocks may have zero-operand PHI nodes. 1455 if (P->getNumIncomingValues() == 0) 1456 break; 1457 1458 // Otherwise take the unions of the known bit sets of the operands, 1459 // taking conservative care to avoid excessive recursion. 1460 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1461 // Skip if every incoming value references to ourself. 1462 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1463 break; 1464 1465 Known.Zero.setAllBits(); 1466 Known.One.setAllBits(); 1467 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1468 Value *IncValue = P->getIncomingValue(u); 1469 // Skip direct self references. 1470 if (IncValue == P) continue; 1471 1472 // Change the context instruction to the "edge" that flows into the 1473 // phi. This is important because that is where the value is actually 1474 // "evaluated" even though it is used later somewhere else. (see also 1475 // D69571). 1476 Query RecQ = Q; 1477 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1478 1479 Known2 = KnownBits(BitWidth); 1480 // Recurse, but cap the recursion to one level, because we don't 1481 // want to waste time spinning around in loops. 1482 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1483 Known = KnownBits::commonBits(Known, Known2); 1484 // If all bits have been ruled out, there's no need to check 1485 // more operands. 1486 if (Known.isUnknown()) 1487 break; 1488 } 1489 } 1490 break; 1491 } 1492 case Instruction::Call: 1493 case Instruction::Invoke: 1494 // If range metadata is attached to this call, set known bits from that, 1495 // and then intersect with known bits based on other properties of the 1496 // function. 1497 if (MDNode *MD = 1498 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1499 computeKnownBitsFromRangeMetadata(*MD, Known); 1500 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1501 computeKnownBits(RV, Known2, Depth + 1, Q); 1502 Known.Zero |= Known2.Zero; 1503 Known.One |= Known2.One; 1504 } 1505 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1506 switch (II->getIntrinsicID()) { 1507 default: break; 1508 case Intrinsic::abs: { 1509 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1510 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1511 Known = Known2.abs(IntMinIsPoison); 1512 break; 1513 } 1514 case Intrinsic::bitreverse: 1515 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1516 Known.Zero |= Known2.Zero.reverseBits(); 1517 Known.One |= Known2.One.reverseBits(); 1518 break; 1519 case Intrinsic::bswap: 1520 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1521 Known.Zero |= Known2.Zero.byteSwap(); 1522 Known.One |= Known2.One.byteSwap(); 1523 break; 1524 case Intrinsic::ctlz: { 1525 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1526 // If we have a known 1, its position is our upper bound. 1527 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1528 // If this call is undefined for 0, the result will be less than 2^n. 1529 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1530 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1531 unsigned LowBits = Log2_32(PossibleLZ)+1; 1532 Known.Zero.setBitsFrom(LowBits); 1533 break; 1534 } 1535 case Intrinsic::cttz: { 1536 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1537 // If we have a known 1, its position is our upper bound. 1538 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1539 // If this call is undefined for 0, the result will be less than 2^n. 1540 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1541 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1542 unsigned LowBits = Log2_32(PossibleTZ)+1; 1543 Known.Zero.setBitsFrom(LowBits); 1544 break; 1545 } 1546 case Intrinsic::ctpop: { 1547 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1548 // We can bound the space the count needs. Also, bits known to be zero 1549 // can't contribute to the population. 1550 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1551 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1552 Known.Zero.setBitsFrom(LowBits); 1553 // TODO: we could bound KnownOne using the lower bound on the number 1554 // of bits which might be set provided by popcnt KnownOne2. 1555 break; 1556 } 1557 case Intrinsic::fshr: 1558 case Intrinsic::fshl: { 1559 const APInt *SA; 1560 if (!match(I->getOperand(2), m_APInt(SA))) 1561 break; 1562 1563 // Normalize to funnel shift left. 1564 uint64_t ShiftAmt = SA->urem(BitWidth); 1565 if (II->getIntrinsicID() == Intrinsic::fshr) 1566 ShiftAmt = BitWidth - ShiftAmt; 1567 1568 KnownBits Known3(BitWidth); 1569 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1570 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1571 1572 Known.Zero = 1573 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1574 Known.One = 1575 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1576 break; 1577 } 1578 case Intrinsic::uadd_sat: 1579 case Intrinsic::usub_sat: { 1580 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1581 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1582 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1583 1584 // Add: Leading ones of either operand are preserved. 1585 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1586 // as leading zeros in the result. 1587 unsigned LeadingKnown; 1588 if (IsAdd) 1589 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1590 Known2.countMinLeadingOnes()); 1591 else 1592 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1593 Known2.countMinLeadingOnes()); 1594 1595 Known = KnownBits::computeForAddSub( 1596 IsAdd, /* NSW */ false, Known, Known2); 1597 1598 // We select between the operation result and all-ones/zero 1599 // respectively, so we can preserve known ones/zeros. 1600 if (IsAdd) { 1601 Known.One.setHighBits(LeadingKnown); 1602 Known.Zero.clearAllBits(); 1603 } else { 1604 Known.Zero.setHighBits(LeadingKnown); 1605 Known.One.clearAllBits(); 1606 } 1607 break; 1608 } 1609 case Intrinsic::umin: 1610 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1611 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1612 Known = KnownBits::umin(Known, Known2); 1613 break; 1614 case Intrinsic::umax: 1615 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1616 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1617 Known = KnownBits::umax(Known, Known2); 1618 break; 1619 case Intrinsic::smin: 1620 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1621 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1622 Known = KnownBits::smin(Known, Known2); 1623 break; 1624 case Intrinsic::smax: 1625 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1626 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1627 Known = KnownBits::smax(Known, Known2); 1628 break; 1629 case Intrinsic::x86_sse42_crc32_64_64: 1630 Known.Zero.setBitsFrom(32); 1631 break; 1632 } 1633 } 1634 break; 1635 case Instruction::ShuffleVector: { 1636 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1637 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1638 if (!Shuf) { 1639 Known.resetAll(); 1640 return; 1641 } 1642 // For undef elements, we don't know anything about the common state of 1643 // the shuffle result. 1644 APInt DemandedLHS, DemandedRHS; 1645 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1646 Known.resetAll(); 1647 return; 1648 } 1649 Known.One.setAllBits(); 1650 Known.Zero.setAllBits(); 1651 if (!!DemandedLHS) { 1652 const Value *LHS = Shuf->getOperand(0); 1653 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1654 // If we don't know any bits, early out. 1655 if (Known.isUnknown()) 1656 break; 1657 } 1658 if (!!DemandedRHS) { 1659 const Value *RHS = Shuf->getOperand(1); 1660 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1661 Known = KnownBits::commonBits(Known, Known2); 1662 } 1663 break; 1664 } 1665 case Instruction::InsertElement: { 1666 const Value *Vec = I->getOperand(0); 1667 const Value *Elt = I->getOperand(1); 1668 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1669 // Early out if the index is non-constant or out-of-range. 1670 unsigned NumElts = DemandedElts.getBitWidth(); 1671 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1672 Known.resetAll(); 1673 return; 1674 } 1675 Known.One.setAllBits(); 1676 Known.Zero.setAllBits(); 1677 unsigned EltIdx = CIdx->getZExtValue(); 1678 // Do we demand the inserted element? 1679 if (DemandedElts[EltIdx]) { 1680 computeKnownBits(Elt, Known, Depth + 1, Q); 1681 // If we don't know any bits, early out. 1682 if (Known.isUnknown()) 1683 break; 1684 } 1685 // We don't need the base vector element that has been inserted. 1686 APInt DemandedVecElts = DemandedElts; 1687 DemandedVecElts.clearBit(EltIdx); 1688 if (!!DemandedVecElts) { 1689 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1690 Known = KnownBits::commonBits(Known, Known2); 1691 } 1692 break; 1693 } 1694 case Instruction::ExtractElement: { 1695 // Look through extract element. If the index is non-constant or 1696 // out-of-range demand all elements, otherwise just the extracted element. 1697 const Value *Vec = I->getOperand(0); 1698 const Value *Idx = I->getOperand(1); 1699 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1700 if (isa<ScalableVectorType>(Vec->getType())) { 1701 // FIXME: there's probably *something* we can do with scalable vectors 1702 Known.resetAll(); 1703 break; 1704 } 1705 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1706 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1707 if (CIdx && CIdx->getValue().ult(NumElts)) 1708 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1709 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1710 break; 1711 } 1712 case Instruction::ExtractValue: 1713 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1714 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1715 if (EVI->getNumIndices() != 1) break; 1716 if (EVI->getIndices()[0] == 0) { 1717 switch (II->getIntrinsicID()) { 1718 default: break; 1719 case Intrinsic::uadd_with_overflow: 1720 case Intrinsic::sadd_with_overflow: 1721 computeKnownBitsAddSub(true, II->getArgOperand(0), 1722 II->getArgOperand(1), false, DemandedElts, 1723 Known, Known2, Depth, Q); 1724 break; 1725 case Intrinsic::usub_with_overflow: 1726 case Intrinsic::ssub_with_overflow: 1727 computeKnownBitsAddSub(false, II->getArgOperand(0), 1728 II->getArgOperand(1), false, DemandedElts, 1729 Known, Known2, Depth, Q); 1730 break; 1731 case Intrinsic::umul_with_overflow: 1732 case Intrinsic::smul_with_overflow: 1733 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1734 DemandedElts, Known, Known2, Depth, Q); 1735 break; 1736 } 1737 } 1738 } 1739 break; 1740 case Instruction::Freeze: 1741 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1742 Depth + 1)) 1743 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1744 break; 1745 } 1746 } 1747 1748 /// Determine which bits of V are known to be either zero or one and return 1749 /// them. 1750 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1751 unsigned Depth, const Query &Q) { 1752 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1753 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1754 return Known; 1755 } 1756 1757 /// Determine which bits of V are known to be either zero or one and return 1758 /// them. 1759 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1760 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1761 computeKnownBits(V, Known, Depth, Q); 1762 return Known; 1763 } 1764 1765 /// Determine which bits of V are known to be either zero or one and return 1766 /// them in the Known bit set. 1767 /// 1768 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1769 /// we cannot optimize based on the assumption that it is zero without changing 1770 /// it to be an explicit zero. If we don't change it to zero, other code could 1771 /// optimized based on the contradictory assumption that it is non-zero. 1772 /// Because instcombine aggressively folds operations with undef args anyway, 1773 /// this won't lose us code quality. 1774 /// 1775 /// This function is defined on values with integer type, values with pointer 1776 /// type, and vectors of integers. In the case 1777 /// where V is a vector, known zero, and known one values are the 1778 /// same width as the vector element, and the bit is set only if it is true 1779 /// for all of the demanded elements in the vector specified by DemandedElts. 1780 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1781 KnownBits &Known, unsigned Depth, const Query &Q) { 1782 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1783 // No demanded elts or V is a scalable vector, better to assume we don't 1784 // know anything. 1785 Known.resetAll(); 1786 return; 1787 } 1788 1789 assert(V && "No Value?"); 1790 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1791 1792 #ifndef NDEBUG 1793 Type *Ty = V->getType(); 1794 unsigned BitWidth = Known.getBitWidth(); 1795 1796 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1797 "Not integer or pointer type!"); 1798 1799 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1800 assert( 1801 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1802 "DemandedElt width should equal the fixed vector number of elements"); 1803 } else { 1804 assert(DemandedElts == APInt(1, 1) && 1805 "DemandedElt width should be 1 for scalars"); 1806 } 1807 1808 Type *ScalarTy = Ty->getScalarType(); 1809 if (ScalarTy->isPointerTy()) { 1810 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1811 "V and Known should have same BitWidth"); 1812 } else { 1813 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1814 "V and Known should have same BitWidth"); 1815 } 1816 #endif 1817 1818 const APInt *C; 1819 if (match(V, m_APInt(C))) { 1820 // We know all of the bits for a scalar constant or a splat vector constant! 1821 Known.One = *C; 1822 Known.Zero = ~Known.One; 1823 return; 1824 } 1825 // Null and aggregate-zero are all-zeros. 1826 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1827 Known.setAllZero(); 1828 return; 1829 } 1830 // Handle a constant vector by taking the intersection of the known bits of 1831 // each element. 1832 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1833 // We know that CDV must be a vector of integers. Take the intersection of 1834 // each element. 1835 Known.Zero.setAllBits(); Known.One.setAllBits(); 1836 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1837 if (!DemandedElts[i]) 1838 continue; 1839 APInt Elt = CDV->getElementAsAPInt(i); 1840 Known.Zero &= ~Elt; 1841 Known.One &= Elt; 1842 } 1843 return; 1844 } 1845 1846 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1847 // We know that CV must be a vector of integers. Take the intersection of 1848 // each element. 1849 Known.Zero.setAllBits(); Known.One.setAllBits(); 1850 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1851 if (!DemandedElts[i]) 1852 continue; 1853 Constant *Element = CV->getAggregateElement(i); 1854 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1855 if (!ElementCI) { 1856 Known.resetAll(); 1857 return; 1858 } 1859 const APInt &Elt = ElementCI->getValue(); 1860 Known.Zero &= ~Elt; 1861 Known.One &= Elt; 1862 } 1863 return; 1864 } 1865 1866 // Start out not knowing anything. 1867 Known.resetAll(); 1868 1869 // We can't imply anything about undefs. 1870 if (isa<UndefValue>(V)) 1871 return; 1872 1873 // There's no point in looking through other users of ConstantData for 1874 // assumptions. Confirm that we've handled them all. 1875 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1876 1877 // All recursive calls that increase depth must come after this. 1878 if (Depth == MaxAnalysisRecursionDepth) 1879 return; 1880 1881 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1882 // the bits of its aliasee. 1883 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1884 if (!GA->isInterposable()) 1885 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1886 return; 1887 } 1888 1889 if (const Operator *I = dyn_cast<Operator>(V)) 1890 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1891 1892 // Aligned pointers have trailing zeros - refine Known.Zero set 1893 if (isa<PointerType>(V->getType())) { 1894 Align Alignment = V->getPointerAlignment(Q.DL); 1895 Known.Zero.setLowBits(Log2(Alignment)); 1896 } 1897 1898 // computeKnownBitsFromAssume strictly refines Known. 1899 // Therefore, we run them after computeKnownBitsFromOperator. 1900 1901 // Check whether a nearby assume intrinsic can determine some known bits. 1902 computeKnownBitsFromAssume(V, Known, Depth, Q); 1903 1904 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1905 } 1906 1907 /// Return true if the given value is known to have exactly one 1908 /// bit set when defined. For vectors return true if every element is known to 1909 /// be a power of two when defined. Supports values with integer or pointer 1910 /// types and vectors of integers. 1911 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1912 const Query &Q) { 1913 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1914 1915 // Attempt to match against constants. 1916 if (OrZero && match(V, m_Power2OrZero())) 1917 return true; 1918 if (match(V, m_Power2())) 1919 return true; 1920 1921 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1922 // it is shifted off the end then the result is undefined. 1923 if (match(V, m_Shl(m_One(), m_Value()))) 1924 return true; 1925 1926 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1927 // the bottom. If it is shifted off the bottom then the result is undefined. 1928 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1929 return true; 1930 1931 // The remaining tests are all recursive, so bail out if we hit the limit. 1932 if (Depth++ == MaxAnalysisRecursionDepth) 1933 return false; 1934 1935 Value *X = nullptr, *Y = nullptr; 1936 // A shift left or a logical shift right of a power of two is a power of two 1937 // or zero. 1938 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1939 match(V, m_LShr(m_Value(X), m_Value())))) 1940 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1941 1942 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1943 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1944 1945 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1946 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1947 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1948 1949 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1950 // A power of two and'd with anything is a power of two or zero. 1951 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1952 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1953 return true; 1954 // X & (-X) is always a power of two or zero. 1955 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1956 return true; 1957 return false; 1958 } 1959 1960 // Adding a power-of-two or zero to the same power-of-two or zero yields 1961 // either the original power-of-two, a larger power-of-two or zero. 1962 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1963 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1964 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1965 Q.IIQ.hasNoSignedWrap(VOBO)) { 1966 if (match(X, m_And(m_Specific(Y), m_Value())) || 1967 match(X, m_And(m_Value(), m_Specific(Y)))) 1968 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1969 return true; 1970 if (match(Y, m_And(m_Specific(X), m_Value())) || 1971 match(Y, m_And(m_Value(), m_Specific(X)))) 1972 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1973 return true; 1974 1975 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1976 KnownBits LHSBits(BitWidth); 1977 computeKnownBits(X, LHSBits, Depth, Q); 1978 1979 KnownBits RHSBits(BitWidth); 1980 computeKnownBits(Y, RHSBits, Depth, Q); 1981 // If i8 V is a power of two or zero: 1982 // ZeroBits: 1 1 1 0 1 1 1 1 1983 // ~ZeroBits: 0 0 0 1 0 0 0 0 1984 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1985 // If OrZero isn't set, we cannot give back a zero result. 1986 // Make sure either the LHS or RHS has a bit set. 1987 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1988 return true; 1989 } 1990 } 1991 1992 // An exact divide or right shift can only shift off zero bits, so the result 1993 // is a power of two only if the first operand is a power of two and not 1994 // copying a sign bit (sdiv int_min, 2). 1995 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1996 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1997 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1998 Depth, Q); 1999 } 2000 2001 return false; 2002 } 2003 2004 /// Test whether a GEP's result is known to be non-null. 2005 /// 2006 /// Uses properties inherent in a GEP to try to determine whether it is known 2007 /// to be non-null. 2008 /// 2009 /// Currently this routine does not support vector GEPs. 2010 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2011 const Query &Q) { 2012 const Function *F = nullptr; 2013 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2014 F = I->getFunction(); 2015 2016 if (!GEP->isInBounds() || 2017 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2018 return false; 2019 2020 // FIXME: Support vector-GEPs. 2021 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2022 2023 // If the base pointer is non-null, we cannot walk to a null address with an 2024 // inbounds GEP in address space zero. 2025 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2026 return true; 2027 2028 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2029 // If so, then the GEP cannot produce a null pointer, as doing so would 2030 // inherently violate the inbounds contract within address space zero. 2031 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2032 GTI != GTE; ++GTI) { 2033 // Struct types are easy -- they must always be indexed by a constant. 2034 if (StructType *STy = GTI.getStructTypeOrNull()) { 2035 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2036 unsigned ElementIdx = OpC->getZExtValue(); 2037 const StructLayout *SL = Q.DL.getStructLayout(STy); 2038 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2039 if (ElementOffset > 0) 2040 return true; 2041 continue; 2042 } 2043 2044 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2045 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2046 continue; 2047 2048 // Fast path the constant operand case both for efficiency and so we don't 2049 // increment Depth when just zipping down an all-constant GEP. 2050 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2051 if (!OpC->isZero()) 2052 return true; 2053 continue; 2054 } 2055 2056 // We post-increment Depth here because while isKnownNonZero increments it 2057 // as well, when we pop back up that increment won't persist. We don't want 2058 // to recurse 10k times just because we have 10k GEP operands. We don't 2059 // bail completely out because we want to handle constant GEPs regardless 2060 // of depth. 2061 if (Depth++ >= MaxAnalysisRecursionDepth) 2062 continue; 2063 2064 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2065 return true; 2066 } 2067 2068 return false; 2069 } 2070 2071 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2072 const Instruction *CtxI, 2073 const DominatorTree *DT) { 2074 if (isa<Constant>(V)) 2075 return false; 2076 2077 if (!CtxI || !DT) 2078 return false; 2079 2080 unsigned NumUsesExplored = 0; 2081 for (auto *U : V->users()) { 2082 // Avoid massive lists 2083 if (NumUsesExplored >= DomConditionsMaxUses) 2084 break; 2085 NumUsesExplored++; 2086 2087 // If the value is used as an argument to a call or invoke, then argument 2088 // attributes may provide an answer about null-ness. 2089 if (const auto *CB = dyn_cast<CallBase>(U)) 2090 if (auto *CalledFunc = CB->getCalledFunction()) 2091 for (const Argument &Arg : CalledFunc->args()) 2092 if (CB->getArgOperand(Arg.getArgNo()) == V && 2093 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2094 return true; 2095 2096 // If the value is used as a load/store, then the pointer must be non null. 2097 if (V == getLoadStorePointerOperand(U)) { 2098 const Instruction *I = cast<Instruction>(U); 2099 if (!NullPointerIsDefined(I->getFunction(), 2100 V->getType()->getPointerAddressSpace()) && 2101 DT->dominates(I, CtxI)) 2102 return true; 2103 } 2104 2105 // Consider only compare instructions uniquely controlling a branch 2106 Value *RHS; 2107 CmpInst::Predicate Pred; 2108 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2109 continue; 2110 2111 bool NonNullIfTrue; 2112 if (cmpExcludesZero(Pred, RHS)) 2113 NonNullIfTrue = true; 2114 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2115 NonNullIfTrue = false; 2116 else 2117 continue; 2118 2119 SmallVector<const User *, 4> WorkList; 2120 SmallPtrSet<const User *, 4> Visited; 2121 for (auto *CmpU : U->users()) { 2122 assert(WorkList.empty() && "Should be!"); 2123 if (Visited.insert(CmpU).second) 2124 WorkList.push_back(CmpU); 2125 2126 while (!WorkList.empty()) { 2127 auto *Curr = WorkList.pop_back_val(); 2128 2129 // If a user is an AND, add all its users to the work list. We only 2130 // propagate "pred != null" condition through AND because it is only 2131 // correct to assume that all conditions of AND are met in true branch. 2132 // TODO: Support similar logic of OR and EQ predicate? 2133 if (NonNullIfTrue) 2134 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2135 for (auto *CurrU : Curr->users()) 2136 if (Visited.insert(CurrU).second) 2137 WorkList.push_back(CurrU); 2138 continue; 2139 } 2140 2141 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2142 assert(BI->isConditional() && "uses a comparison!"); 2143 2144 BasicBlock *NonNullSuccessor = 2145 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2146 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2147 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2148 return true; 2149 } else if (NonNullIfTrue && isGuard(Curr) && 2150 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2151 return true; 2152 } 2153 } 2154 } 2155 } 2156 2157 return false; 2158 } 2159 2160 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2161 /// ensure that the value it's attached to is never Value? 'RangeType' is 2162 /// is the type of the value described by the range. 2163 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2164 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2165 assert(NumRanges >= 1); 2166 for (unsigned i = 0; i < NumRanges; ++i) { 2167 ConstantInt *Lower = 2168 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2169 ConstantInt *Upper = 2170 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2171 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2172 if (Range.contains(Value)) 2173 return false; 2174 } 2175 return true; 2176 } 2177 2178 /// Return true if the given value is known to be non-zero when defined. For 2179 /// vectors, return true if every demanded element is known to be non-zero when 2180 /// defined. For pointers, if the context instruction and dominator tree are 2181 /// specified, perform context-sensitive analysis and return true if the 2182 /// pointer couldn't possibly be null at the specified instruction. 2183 /// Supports values with integer or pointer type and vectors of integers. 2184 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2185 const Query &Q) { 2186 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2187 // vector 2188 if (isa<ScalableVectorType>(V->getType())) 2189 return false; 2190 2191 if (auto *C = dyn_cast<Constant>(V)) { 2192 if (C->isNullValue()) 2193 return false; 2194 if (isa<ConstantInt>(C)) 2195 // Must be non-zero due to null test above. 2196 return true; 2197 2198 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2199 // See the comment for IntToPtr/PtrToInt instructions below. 2200 if (CE->getOpcode() == Instruction::IntToPtr || 2201 CE->getOpcode() == Instruction::PtrToInt) 2202 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2203 .getFixedSize() <= 2204 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2205 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2206 } 2207 2208 // For constant vectors, check that all elements are undefined or known 2209 // non-zero to determine that the whole vector is known non-zero. 2210 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2211 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2212 if (!DemandedElts[i]) 2213 continue; 2214 Constant *Elt = C->getAggregateElement(i); 2215 if (!Elt || Elt->isNullValue()) 2216 return false; 2217 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2218 return false; 2219 } 2220 return true; 2221 } 2222 2223 // A global variable in address space 0 is non null unless extern weak 2224 // or an absolute symbol reference. Other address spaces may have null as a 2225 // valid address for a global, so we can't assume anything. 2226 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2227 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2228 GV->getType()->getAddressSpace() == 0) 2229 return true; 2230 } else 2231 return false; 2232 } 2233 2234 if (auto *I = dyn_cast<Instruction>(V)) { 2235 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2236 // If the possible ranges don't contain zero, then the value is 2237 // definitely non-zero. 2238 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2239 const APInt ZeroValue(Ty->getBitWidth(), 0); 2240 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2241 return true; 2242 } 2243 } 2244 } 2245 2246 if (isKnownNonZeroFromAssume(V, Q)) 2247 return true; 2248 2249 // Some of the tests below are recursive, so bail out if we hit the limit. 2250 if (Depth++ >= MaxAnalysisRecursionDepth) 2251 return false; 2252 2253 // Check for pointer simplifications. 2254 2255 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2256 // Alloca never returns null, malloc might. 2257 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2258 return true; 2259 2260 // A byval, inalloca may not be null in a non-default addres space. A 2261 // nonnull argument is assumed never 0. 2262 if (const Argument *A = dyn_cast<Argument>(V)) { 2263 if (((A->hasPassPointeeByValueCopyAttr() && 2264 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2265 A->hasNonNullAttr())) 2266 return true; 2267 } 2268 2269 // A Load tagged with nonnull metadata is never null. 2270 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2271 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2272 return true; 2273 2274 if (const auto *Call = dyn_cast<CallBase>(V)) { 2275 if (Call->isReturnNonNull()) 2276 return true; 2277 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2278 return isKnownNonZero(RP, Depth, Q); 2279 } 2280 } 2281 2282 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2283 return true; 2284 2285 // Check for recursive pointer simplifications. 2286 if (V->getType()->isPointerTy()) { 2287 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2288 // do not alter the value, or at least not the nullness property of the 2289 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2290 // 2291 // Note that we have to take special care to avoid looking through 2292 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2293 // as casts that can alter the value, e.g., AddrSpaceCasts. 2294 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2295 return isGEPKnownNonNull(GEP, Depth, Q); 2296 2297 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2298 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2299 2300 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2301 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2302 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2303 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2304 } 2305 2306 // Similar to int2ptr above, we can look through ptr2int here if the cast 2307 // is a no-op or an extend and not a truncate. 2308 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2309 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2310 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2311 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2312 2313 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2314 2315 // X | Y != 0 if X != 0 or Y != 0. 2316 Value *X = nullptr, *Y = nullptr; 2317 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2318 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2319 isKnownNonZero(Y, DemandedElts, Depth, Q); 2320 2321 // ext X != 0 if X != 0. 2322 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2323 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2324 2325 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2326 // if the lowest bit is shifted off the end. 2327 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2328 // shl nuw can't remove any non-zero bits. 2329 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2330 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2331 return isKnownNonZero(X, Depth, Q); 2332 2333 KnownBits Known(BitWidth); 2334 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2335 if (Known.One[0]) 2336 return true; 2337 } 2338 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2339 // defined if the sign bit is shifted off the end. 2340 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2341 // shr exact can only shift out zero bits. 2342 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2343 if (BO->isExact()) 2344 return isKnownNonZero(X, Depth, Q); 2345 2346 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2347 if (Known.isNegative()) 2348 return true; 2349 2350 // If the shifter operand is a constant, and all of the bits shifted 2351 // out are known to be zero, and X is known non-zero then at least one 2352 // non-zero bit must remain. 2353 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2354 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2355 // Is there a known one in the portion not shifted out? 2356 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2357 return true; 2358 // Are all the bits to be shifted out known zero? 2359 if (Known.countMinTrailingZeros() >= ShiftVal) 2360 return isKnownNonZero(X, DemandedElts, Depth, Q); 2361 } 2362 } 2363 // div exact can only produce a zero if the dividend is zero. 2364 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2365 return isKnownNonZero(X, DemandedElts, Depth, Q); 2366 } 2367 // X + Y. 2368 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2369 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2370 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2371 2372 // If X and Y are both non-negative (as signed values) then their sum is not 2373 // zero unless both X and Y are zero. 2374 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2375 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2376 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2377 return true; 2378 2379 // If X and Y are both negative (as signed values) then their sum is not 2380 // zero unless both X and Y equal INT_MIN. 2381 if (XKnown.isNegative() && YKnown.isNegative()) { 2382 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2383 // The sign bit of X is set. If some other bit is set then X is not equal 2384 // to INT_MIN. 2385 if (XKnown.One.intersects(Mask)) 2386 return true; 2387 // The sign bit of Y is set. If some other bit is set then Y is not equal 2388 // to INT_MIN. 2389 if (YKnown.One.intersects(Mask)) 2390 return true; 2391 } 2392 2393 // The sum of a non-negative number and a power of two is not zero. 2394 if (XKnown.isNonNegative() && 2395 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2396 return true; 2397 if (YKnown.isNonNegative() && 2398 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2399 return true; 2400 } 2401 // X * Y. 2402 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2403 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2404 // If X and Y are non-zero then so is X * Y as long as the multiplication 2405 // does not overflow. 2406 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2407 isKnownNonZero(X, DemandedElts, Depth, Q) && 2408 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2409 return true; 2410 } 2411 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2412 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2413 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2414 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2415 return true; 2416 } 2417 // PHI 2418 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2419 // Try and detect a recurrence that monotonically increases from a 2420 // starting value, as these are common as induction variables. 2421 if (PN->getNumIncomingValues() == 2) { 2422 Value *Start = PN->getIncomingValue(0); 2423 Value *Induction = PN->getIncomingValue(1); 2424 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2425 std::swap(Start, Induction); 2426 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2427 if (!C->isZero() && !C->isNegative()) { 2428 ConstantInt *X; 2429 if (Q.IIQ.UseInstrInfo && 2430 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2431 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2432 !X->isNegative()) 2433 return true; 2434 } 2435 } 2436 } 2437 // Check if all incoming values are non-zero using recursion. 2438 Query RecQ = Q; 2439 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2440 return llvm::all_of(PN->operands(), [&](const Use &U) { 2441 if (U.get() == PN) 2442 return true; 2443 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2444 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2445 }); 2446 } 2447 // ExtractElement 2448 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2449 const Value *Vec = EEI->getVectorOperand(); 2450 const Value *Idx = EEI->getIndexOperand(); 2451 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2452 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2453 unsigned NumElts = VecTy->getNumElements(); 2454 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2455 if (CIdx && CIdx->getValue().ult(NumElts)) 2456 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2457 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2458 } 2459 } 2460 // Freeze 2461 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2462 auto *Op = FI->getOperand(0); 2463 if (isKnownNonZero(Op, Depth, Q) && 2464 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2465 return true; 2466 } 2467 2468 KnownBits Known(BitWidth); 2469 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2470 return Known.One != 0; 2471 } 2472 2473 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2474 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2475 // vector 2476 if (isa<ScalableVectorType>(V->getType())) 2477 return false; 2478 2479 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2480 APInt DemandedElts = 2481 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2482 return isKnownNonZero(V, DemandedElts, Depth, Q); 2483 } 2484 2485 /// Return true if V2 == V1 + X, where X is known non-zero. 2486 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2487 const Query &Q) { 2488 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2489 if (!BO || BO->getOpcode() != Instruction::Add) 2490 return false; 2491 Value *Op = nullptr; 2492 if (V2 == BO->getOperand(0)) 2493 Op = BO->getOperand(1); 2494 else if (V2 == BO->getOperand(1)) 2495 Op = BO->getOperand(0); 2496 else 2497 return false; 2498 return isKnownNonZero(Op, Depth + 1, Q); 2499 } 2500 2501 2502 /// Return true if it is known that V1 != V2. 2503 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2504 const Query &Q) { 2505 if (V1 == V2) 2506 return false; 2507 if (V1->getType() != V2->getType()) 2508 // We can't look through casts yet. 2509 return false; 2510 2511 if (Depth >= MaxAnalysisRecursionDepth) 2512 return false; 2513 2514 // See if we can recurse through (exactly one of) our operands. This 2515 // requires our operation be 1-to-1 and map every input value to exactly 2516 // one output value. Such an operation is invertible. 2517 auto *O1 = dyn_cast<Operator>(V1); 2518 auto *O2 = dyn_cast<Operator>(V2); 2519 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2520 switch (O1->getOpcode()) { 2521 default: break; 2522 case Instruction::Add: 2523 case Instruction::Sub: 2524 // Assume operand order has been canonicalized 2525 if (O1->getOperand(0) == O2->getOperand(0)) 2526 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2527 Depth + 1, Q); 2528 if (O1->getOperand(1) == O2->getOperand(1)) 2529 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2530 Depth + 1, Q); 2531 break; 2532 case Instruction::Mul: { 2533 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2534 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2535 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2536 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2537 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2538 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2539 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2540 break; 2541 2542 // Assume operand order has been canonicalized 2543 if (O1->getOperand(1) == O2->getOperand(1) && 2544 isa<ConstantInt>(O1->getOperand(1)) && 2545 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2546 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2547 Depth + 1, Q); 2548 break; 2549 } 2550 case Instruction::SExt: 2551 case Instruction::ZExt: 2552 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2553 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2554 Depth + 1, Q); 2555 break; 2556 }; 2557 } 2558 2559 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2560 return true; 2561 2562 if (V1->getType()->isIntOrIntVectorTy()) { 2563 // Are any known bits in V1 contradictory to known bits in V2? If V1 2564 // has a known zero where V2 has a known one, they must not be equal. 2565 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2566 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2567 2568 if (Known1.Zero.intersects(Known2.One) || 2569 Known2.Zero.intersects(Known1.One)) 2570 return true; 2571 } 2572 return false; 2573 } 2574 2575 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2576 /// simplify operations downstream. Mask is known to be zero for bits that V 2577 /// cannot have. 2578 /// 2579 /// This function is defined on values with integer type, values with pointer 2580 /// type, and vectors of integers. In the case 2581 /// where V is a vector, the mask, known zero, and known one values are the 2582 /// same width as the vector element, and the bit is set only if it is true 2583 /// for all of the elements in the vector. 2584 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2585 const Query &Q) { 2586 KnownBits Known(Mask.getBitWidth()); 2587 computeKnownBits(V, Known, Depth, Q); 2588 return Mask.isSubsetOf(Known.Zero); 2589 } 2590 2591 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2592 // Returns the input and lower/upper bounds. 2593 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2594 const APInt *&CLow, const APInt *&CHigh) { 2595 assert(isa<Operator>(Select) && 2596 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2597 "Input should be a Select!"); 2598 2599 const Value *LHS = nullptr, *RHS = nullptr; 2600 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2601 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2602 return false; 2603 2604 if (!match(RHS, m_APInt(CLow))) 2605 return false; 2606 2607 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2608 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2609 if (getInverseMinMaxFlavor(SPF) != SPF2) 2610 return false; 2611 2612 if (!match(RHS2, m_APInt(CHigh))) 2613 return false; 2614 2615 if (SPF == SPF_SMIN) 2616 std::swap(CLow, CHigh); 2617 2618 In = LHS2; 2619 return CLow->sle(*CHigh); 2620 } 2621 2622 /// For vector constants, loop over the elements and find the constant with the 2623 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2624 /// or if any element was not analyzed; otherwise, return the count for the 2625 /// element with the minimum number of sign bits. 2626 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2627 const APInt &DemandedElts, 2628 unsigned TyBits) { 2629 const auto *CV = dyn_cast<Constant>(V); 2630 if (!CV || !isa<FixedVectorType>(CV->getType())) 2631 return 0; 2632 2633 unsigned MinSignBits = TyBits; 2634 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2635 for (unsigned i = 0; i != NumElts; ++i) { 2636 if (!DemandedElts[i]) 2637 continue; 2638 // If we find a non-ConstantInt, bail out. 2639 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2640 if (!Elt) 2641 return 0; 2642 2643 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2644 } 2645 2646 return MinSignBits; 2647 } 2648 2649 static unsigned ComputeNumSignBitsImpl(const Value *V, 2650 const APInt &DemandedElts, 2651 unsigned Depth, const Query &Q); 2652 2653 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2654 unsigned Depth, const Query &Q) { 2655 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2656 assert(Result > 0 && "At least one sign bit needs to be present!"); 2657 return Result; 2658 } 2659 2660 /// Return the number of times the sign bit of the register is replicated into 2661 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2662 /// (itself), but other cases can give us information. For example, immediately 2663 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2664 /// other, so we return 3. For vectors, return the number of sign bits for the 2665 /// vector element with the minimum number of known sign bits of the demanded 2666 /// elements in the vector specified by DemandedElts. 2667 static unsigned ComputeNumSignBitsImpl(const Value *V, 2668 const APInt &DemandedElts, 2669 unsigned Depth, const Query &Q) { 2670 Type *Ty = V->getType(); 2671 2672 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2673 // vector 2674 if (isa<ScalableVectorType>(Ty)) 2675 return 1; 2676 2677 #ifndef NDEBUG 2678 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2679 2680 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2681 assert( 2682 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2683 "DemandedElt width should equal the fixed vector number of elements"); 2684 } else { 2685 assert(DemandedElts == APInt(1, 1) && 2686 "DemandedElt width should be 1 for scalars"); 2687 } 2688 #endif 2689 2690 // We return the minimum number of sign bits that are guaranteed to be present 2691 // in V, so for undef we have to conservatively return 1. We don't have the 2692 // same behavior for poison though -- that's a FIXME today. 2693 2694 Type *ScalarTy = Ty->getScalarType(); 2695 unsigned TyBits = ScalarTy->isPointerTy() ? 2696 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2697 Q.DL.getTypeSizeInBits(ScalarTy); 2698 2699 unsigned Tmp, Tmp2; 2700 unsigned FirstAnswer = 1; 2701 2702 // Note that ConstantInt is handled by the general computeKnownBits case 2703 // below. 2704 2705 if (Depth == MaxAnalysisRecursionDepth) 2706 return 1; 2707 2708 if (auto *U = dyn_cast<Operator>(V)) { 2709 switch (Operator::getOpcode(V)) { 2710 default: break; 2711 case Instruction::SExt: 2712 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2713 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2714 2715 case Instruction::SDiv: { 2716 const APInt *Denominator; 2717 // sdiv X, C -> adds log(C) sign bits. 2718 if (match(U->getOperand(1), m_APInt(Denominator))) { 2719 2720 // Ignore non-positive denominator. 2721 if (!Denominator->isStrictlyPositive()) 2722 break; 2723 2724 // Calculate the incoming numerator bits. 2725 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2726 2727 // Add floor(log(C)) bits to the numerator bits. 2728 return std::min(TyBits, NumBits + Denominator->logBase2()); 2729 } 2730 break; 2731 } 2732 2733 case Instruction::SRem: { 2734 const APInt *Denominator; 2735 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2736 // positive constant. This let us put a lower bound on the number of sign 2737 // bits. 2738 if (match(U->getOperand(1), m_APInt(Denominator))) { 2739 2740 // Ignore non-positive denominator. 2741 if (!Denominator->isStrictlyPositive()) 2742 break; 2743 2744 // Calculate the incoming numerator bits. SRem by a positive constant 2745 // can't lower the number of sign bits. 2746 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2747 2748 // Calculate the leading sign bit constraints by examining the 2749 // denominator. Given that the denominator is positive, there are two 2750 // cases: 2751 // 2752 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2753 // (1 << ceilLogBase2(C)). 2754 // 2755 // 2. the numerator is negative. Then the result range is (-C,0] and 2756 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2757 // 2758 // Thus a lower bound on the number of sign bits is `TyBits - 2759 // ceilLogBase2(C)`. 2760 2761 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2762 return std::max(NumrBits, ResBits); 2763 } 2764 break; 2765 } 2766 2767 case Instruction::AShr: { 2768 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2769 // ashr X, C -> adds C sign bits. Vectors too. 2770 const APInt *ShAmt; 2771 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2772 if (ShAmt->uge(TyBits)) 2773 break; // Bad shift. 2774 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2775 Tmp += ShAmtLimited; 2776 if (Tmp > TyBits) Tmp = TyBits; 2777 } 2778 return Tmp; 2779 } 2780 case Instruction::Shl: { 2781 const APInt *ShAmt; 2782 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2783 // shl destroys sign bits. 2784 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2785 if (ShAmt->uge(TyBits) || // Bad shift. 2786 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2787 Tmp2 = ShAmt->getZExtValue(); 2788 return Tmp - Tmp2; 2789 } 2790 break; 2791 } 2792 case Instruction::And: 2793 case Instruction::Or: 2794 case Instruction::Xor: // NOT is handled here. 2795 // Logical binary ops preserve the number of sign bits at the worst. 2796 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2797 if (Tmp != 1) { 2798 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2799 FirstAnswer = std::min(Tmp, Tmp2); 2800 // We computed what we know about the sign bits as our first 2801 // answer. Now proceed to the generic code that uses 2802 // computeKnownBits, and pick whichever answer is better. 2803 } 2804 break; 2805 2806 case Instruction::Select: { 2807 // If we have a clamp pattern, we know that the number of sign bits will 2808 // be the minimum of the clamp min/max range. 2809 const Value *X; 2810 const APInt *CLow, *CHigh; 2811 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2812 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2813 2814 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2815 if (Tmp == 1) break; 2816 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2817 return std::min(Tmp, Tmp2); 2818 } 2819 2820 case Instruction::Add: 2821 // Add can have at most one carry bit. Thus we know that the output 2822 // is, at worst, one more bit than the inputs. 2823 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2824 if (Tmp == 1) break; 2825 2826 // Special case decrementing a value (ADD X, -1): 2827 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2828 if (CRHS->isAllOnesValue()) { 2829 KnownBits Known(TyBits); 2830 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2831 2832 // If the input is known to be 0 or 1, the output is 0/-1, which is 2833 // all sign bits set. 2834 if ((Known.Zero | 1).isAllOnesValue()) 2835 return TyBits; 2836 2837 // If we are subtracting one from a positive number, there is no carry 2838 // out of the result. 2839 if (Known.isNonNegative()) 2840 return Tmp; 2841 } 2842 2843 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2844 if (Tmp2 == 1) break; 2845 return std::min(Tmp, Tmp2) - 1; 2846 2847 case Instruction::Sub: 2848 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2849 if (Tmp2 == 1) break; 2850 2851 // Handle NEG. 2852 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2853 if (CLHS->isNullValue()) { 2854 KnownBits Known(TyBits); 2855 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2856 // If the input is known to be 0 or 1, the output is 0/-1, which is 2857 // all sign bits set. 2858 if ((Known.Zero | 1).isAllOnesValue()) 2859 return TyBits; 2860 2861 // If the input is known to be positive (the sign bit is known clear), 2862 // the output of the NEG has the same number of sign bits as the 2863 // input. 2864 if (Known.isNonNegative()) 2865 return Tmp2; 2866 2867 // Otherwise, we treat this like a SUB. 2868 } 2869 2870 // Sub can have at most one carry bit. Thus we know that the output 2871 // is, at worst, one more bit than the inputs. 2872 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2873 if (Tmp == 1) break; 2874 return std::min(Tmp, Tmp2) - 1; 2875 2876 case Instruction::Mul: { 2877 // The output of the Mul can be at most twice the valid bits in the 2878 // inputs. 2879 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2880 if (SignBitsOp0 == 1) break; 2881 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2882 if (SignBitsOp1 == 1) break; 2883 unsigned OutValidBits = 2884 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2885 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2886 } 2887 2888 case Instruction::PHI: { 2889 const PHINode *PN = cast<PHINode>(U); 2890 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2891 // Don't analyze large in-degree PHIs. 2892 if (NumIncomingValues > 4) break; 2893 // Unreachable blocks may have zero-operand PHI nodes. 2894 if (NumIncomingValues == 0) break; 2895 2896 // Take the minimum of all incoming values. This can't infinitely loop 2897 // because of our depth threshold. 2898 Query RecQ = Q; 2899 Tmp = TyBits; 2900 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2901 if (Tmp == 1) return Tmp; 2902 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2903 Tmp = std::min( 2904 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2905 } 2906 return Tmp; 2907 } 2908 2909 case Instruction::Trunc: 2910 // FIXME: it's tricky to do anything useful for this, but it is an 2911 // important case for targets like X86. 2912 break; 2913 2914 case Instruction::ExtractElement: 2915 // Look through extract element. At the moment we keep this simple and 2916 // skip tracking the specific element. But at least we might find 2917 // information valid for all elements of the vector (for example if vector 2918 // is sign extended, shifted, etc). 2919 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2920 2921 case Instruction::ShuffleVector: { 2922 // Collect the minimum number of sign bits that are shared by every vector 2923 // element referenced by the shuffle. 2924 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2925 if (!Shuf) { 2926 // FIXME: Add support for shufflevector constant expressions. 2927 return 1; 2928 } 2929 APInt DemandedLHS, DemandedRHS; 2930 // For undef elements, we don't know anything about the common state of 2931 // the shuffle result. 2932 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2933 return 1; 2934 Tmp = std::numeric_limits<unsigned>::max(); 2935 if (!!DemandedLHS) { 2936 const Value *LHS = Shuf->getOperand(0); 2937 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2938 } 2939 // If we don't know anything, early out and try computeKnownBits 2940 // fall-back. 2941 if (Tmp == 1) 2942 break; 2943 if (!!DemandedRHS) { 2944 const Value *RHS = Shuf->getOperand(1); 2945 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2946 Tmp = std::min(Tmp, Tmp2); 2947 } 2948 // If we don't know anything, early out and try computeKnownBits 2949 // fall-back. 2950 if (Tmp == 1) 2951 break; 2952 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2953 return Tmp; 2954 } 2955 case Instruction::Call: { 2956 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2957 switch (II->getIntrinsicID()) { 2958 default: break; 2959 case Intrinsic::abs: 2960 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2961 if (Tmp == 1) break; 2962 2963 // Absolute value reduces number of sign bits by at most 1. 2964 return Tmp - 1; 2965 } 2966 } 2967 } 2968 } 2969 } 2970 2971 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2972 // use this information. 2973 2974 // If we can examine all elements of a vector constant successfully, we're 2975 // done (we can't do any better than that). If not, keep trying. 2976 if (unsigned VecSignBits = 2977 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2978 return VecSignBits; 2979 2980 KnownBits Known(TyBits); 2981 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2982 2983 // If we know that the sign bit is either zero or one, determine the number of 2984 // identical bits in the top of the input value. 2985 return std::max(FirstAnswer, Known.countMinSignBits()); 2986 } 2987 2988 /// This function computes the integer multiple of Base that equals V. 2989 /// If successful, it returns true and returns the multiple in 2990 /// Multiple. If unsuccessful, it returns false. It looks 2991 /// through SExt instructions only if LookThroughSExt is true. 2992 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2993 bool LookThroughSExt, unsigned Depth) { 2994 assert(V && "No Value?"); 2995 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2996 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2997 2998 Type *T = V->getType(); 2999 3000 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3001 3002 if (Base == 0) 3003 return false; 3004 3005 if (Base == 1) { 3006 Multiple = V; 3007 return true; 3008 } 3009 3010 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3011 Constant *BaseVal = ConstantInt::get(T, Base); 3012 if (CO && CO == BaseVal) { 3013 // Multiple is 1. 3014 Multiple = ConstantInt::get(T, 1); 3015 return true; 3016 } 3017 3018 if (CI && CI->getZExtValue() % Base == 0) { 3019 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3020 return true; 3021 } 3022 3023 if (Depth == MaxAnalysisRecursionDepth) return false; 3024 3025 Operator *I = dyn_cast<Operator>(V); 3026 if (!I) return false; 3027 3028 switch (I->getOpcode()) { 3029 default: break; 3030 case Instruction::SExt: 3031 if (!LookThroughSExt) return false; 3032 // otherwise fall through to ZExt 3033 LLVM_FALLTHROUGH; 3034 case Instruction::ZExt: 3035 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3036 LookThroughSExt, Depth+1); 3037 case Instruction::Shl: 3038 case Instruction::Mul: { 3039 Value *Op0 = I->getOperand(0); 3040 Value *Op1 = I->getOperand(1); 3041 3042 if (I->getOpcode() == Instruction::Shl) { 3043 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3044 if (!Op1CI) return false; 3045 // Turn Op0 << Op1 into Op0 * 2^Op1 3046 APInt Op1Int = Op1CI->getValue(); 3047 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3048 APInt API(Op1Int.getBitWidth(), 0); 3049 API.setBit(BitToSet); 3050 Op1 = ConstantInt::get(V->getContext(), API); 3051 } 3052 3053 Value *Mul0 = nullptr; 3054 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3055 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3056 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3057 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3058 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3059 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3060 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3061 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3062 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3063 3064 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3065 Multiple = ConstantExpr::getMul(MulC, Op1C); 3066 return true; 3067 } 3068 3069 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3070 if (Mul0CI->getValue() == 1) { 3071 // V == Base * Op1, so return Op1 3072 Multiple = Op1; 3073 return true; 3074 } 3075 } 3076 3077 Value *Mul1 = nullptr; 3078 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3079 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3080 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3081 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3082 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3083 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3084 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3085 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3086 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3087 3088 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3089 Multiple = ConstantExpr::getMul(MulC, Op0C); 3090 return true; 3091 } 3092 3093 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3094 if (Mul1CI->getValue() == 1) { 3095 // V == Base * Op0, so return Op0 3096 Multiple = Op0; 3097 return true; 3098 } 3099 } 3100 } 3101 } 3102 3103 // We could not determine if V is a multiple of Base. 3104 return false; 3105 } 3106 3107 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3108 const TargetLibraryInfo *TLI) { 3109 const Function *F = CB.getCalledFunction(); 3110 if (!F) 3111 return Intrinsic::not_intrinsic; 3112 3113 if (F->isIntrinsic()) 3114 return F->getIntrinsicID(); 3115 3116 // We are going to infer semantics of a library function based on mapping it 3117 // to an LLVM intrinsic. Check that the library function is available from 3118 // this callbase and in this environment. 3119 LibFunc Func; 3120 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3121 !CB.onlyReadsMemory()) 3122 return Intrinsic::not_intrinsic; 3123 3124 switch (Func) { 3125 default: 3126 break; 3127 case LibFunc_sin: 3128 case LibFunc_sinf: 3129 case LibFunc_sinl: 3130 return Intrinsic::sin; 3131 case LibFunc_cos: 3132 case LibFunc_cosf: 3133 case LibFunc_cosl: 3134 return Intrinsic::cos; 3135 case LibFunc_exp: 3136 case LibFunc_expf: 3137 case LibFunc_expl: 3138 return Intrinsic::exp; 3139 case LibFunc_exp2: 3140 case LibFunc_exp2f: 3141 case LibFunc_exp2l: 3142 return Intrinsic::exp2; 3143 case LibFunc_log: 3144 case LibFunc_logf: 3145 case LibFunc_logl: 3146 return Intrinsic::log; 3147 case LibFunc_log10: 3148 case LibFunc_log10f: 3149 case LibFunc_log10l: 3150 return Intrinsic::log10; 3151 case LibFunc_log2: 3152 case LibFunc_log2f: 3153 case LibFunc_log2l: 3154 return Intrinsic::log2; 3155 case LibFunc_fabs: 3156 case LibFunc_fabsf: 3157 case LibFunc_fabsl: 3158 return Intrinsic::fabs; 3159 case LibFunc_fmin: 3160 case LibFunc_fminf: 3161 case LibFunc_fminl: 3162 return Intrinsic::minnum; 3163 case LibFunc_fmax: 3164 case LibFunc_fmaxf: 3165 case LibFunc_fmaxl: 3166 return Intrinsic::maxnum; 3167 case LibFunc_copysign: 3168 case LibFunc_copysignf: 3169 case LibFunc_copysignl: 3170 return Intrinsic::copysign; 3171 case LibFunc_floor: 3172 case LibFunc_floorf: 3173 case LibFunc_floorl: 3174 return Intrinsic::floor; 3175 case LibFunc_ceil: 3176 case LibFunc_ceilf: 3177 case LibFunc_ceill: 3178 return Intrinsic::ceil; 3179 case LibFunc_trunc: 3180 case LibFunc_truncf: 3181 case LibFunc_truncl: 3182 return Intrinsic::trunc; 3183 case LibFunc_rint: 3184 case LibFunc_rintf: 3185 case LibFunc_rintl: 3186 return Intrinsic::rint; 3187 case LibFunc_nearbyint: 3188 case LibFunc_nearbyintf: 3189 case LibFunc_nearbyintl: 3190 return Intrinsic::nearbyint; 3191 case LibFunc_round: 3192 case LibFunc_roundf: 3193 case LibFunc_roundl: 3194 return Intrinsic::round; 3195 case LibFunc_roundeven: 3196 case LibFunc_roundevenf: 3197 case LibFunc_roundevenl: 3198 return Intrinsic::roundeven; 3199 case LibFunc_pow: 3200 case LibFunc_powf: 3201 case LibFunc_powl: 3202 return Intrinsic::pow; 3203 case LibFunc_sqrt: 3204 case LibFunc_sqrtf: 3205 case LibFunc_sqrtl: 3206 return Intrinsic::sqrt; 3207 } 3208 3209 return Intrinsic::not_intrinsic; 3210 } 3211 3212 /// Return true if we can prove that the specified FP value is never equal to 3213 /// -0.0. 3214 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3215 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3216 /// the same as +0.0 in floating-point ops. 3217 /// 3218 /// NOTE: this function will need to be revisited when we support non-default 3219 /// rounding modes! 3220 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3221 unsigned Depth) { 3222 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3223 return !CFP->getValueAPF().isNegZero(); 3224 3225 if (Depth == MaxAnalysisRecursionDepth) 3226 return false; 3227 3228 auto *Op = dyn_cast<Operator>(V); 3229 if (!Op) 3230 return false; 3231 3232 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3233 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3234 return true; 3235 3236 // sitofp and uitofp turn into +0.0 for zero. 3237 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3238 return true; 3239 3240 if (auto *Call = dyn_cast<CallInst>(Op)) { 3241 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3242 switch (IID) { 3243 default: 3244 break; 3245 // sqrt(-0.0) = -0.0, no other negative results are possible. 3246 case Intrinsic::sqrt: 3247 case Intrinsic::canonicalize: 3248 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3249 // fabs(x) != -0.0 3250 case Intrinsic::fabs: 3251 return true; 3252 } 3253 } 3254 3255 return false; 3256 } 3257 3258 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3259 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3260 /// bit despite comparing equal. 3261 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3262 const TargetLibraryInfo *TLI, 3263 bool SignBitOnly, 3264 unsigned Depth) { 3265 // TODO: This function does not do the right thing when SignBitOnly is true 3266 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3267 // which flips the sign bits of NaNs. See 3268 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3269 3270 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3271 return !CFP->getValueAPF().isNegative() || 3272 (!SignBitOnly && CFP->getValueAPF().isZero()); 3273 } 3274 3275 // Handle vector of constants. 3276 if (auto *CV = dyn_cast<Constant>(V)) { 3277 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3278 unsigned NumElts = CVFVTy->getNumElements(); 3279 for (unsigned i = 0; i != NumElts; ++i) { 3280 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3281 if (!CFP) 3282 return false; 3283 if (CFP->getValueAPF().isNegative() && 3284 (SignBitOnly || !CFP->getValueAPF().isZero())) 3285 return false; 3286 } 3287 3288 // All non-negative ConstantFPs. 3289 return true; 3290 } 3291 } 3292 3293 if (Depth == MaxAnalysisRecursionDepth) 3294 return false; 3295 3296 const Operator *I = dyn_cast<Operator>(V); 3297 if (!I) 3298 return false; 3299 3300 switch (I->getOpcode()) { 3301 default: 3302 break; 3303 // Unsigned integers are always nonnegative. 3304 case Instruction::UIToFP: 3305 return true; 3306 case Instruction::FMul: 3307 case Instruction::FDiv: 3308 // X * X is always non-negative or a NaN. 3309 // X / X is always exactly 1.0 or a NaN. 3310 if (I->getOperand(0) == I->getOperand(1) && 3311 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3312 return true; 3313 3314 LLVM_FALLTHROUGH; 3315 case Instruction::FAdd: 3316 case Instruction::FRem: 3317 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3318 Depth + 1) && 3319 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3320 Depth + 1); 3321 case Instruction::Select: 3322 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3323 Depth + 1) && 3324 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Instruction::FPExt: 3327 case Instruction::FPTrunc: 3328 // Widening/narrowing never change sign. 3329 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3330 Depth + 1); 3331 case Instruction::ExtractElement: 3332 // Look through extract element. At the moment we keep this simple and skip 3333 // tracking the specific element. But at least we might find information 3334 // valid for all elements of the vector. 3335 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3336 Depth + 1); 3337 case Instruction::Call: 3338 const auto *CI = cast<CallInst>(I); 3339 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3340 switch (IID) { 3341 default: 3342 break; 3343 case Intrinsic::maxnum: { 3344 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3345 auto isPositiveNum = [&](Value *V) { 3346 if (SignBitOnly) { 3347 // With SignBitOnly, this is tricky because the result of 3348 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3349 // a constant strictly greater than 0.0. 3350 const APFloat *C; 3351 return match(V, m_APFloat(C)) && 3352 *C > APFloat::getZero(C->getSemantics()); 3353 } 3354 3355 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3356 // maxnum can't be ordered-less-than-zero. 3357 return isKnownNeverNaN(V, TLI) && 3358 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3359 }; 3360 3361 // TODO: This could be improved. We could also check that neither operand 3362 // has its sign bit set (and at least 1 is not-NAN?). 3363 return isPositiveNum(V0) || isPositiveNum(V1); 3364 } 3365 3366 case Intrinsic::maximum: 3367 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3368 Depth + 1) || 3369 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3370 Depth + 1); 3371 case Intrinsic::minnum: 3372 case Intrinsic::minimum: 3373 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3374 Depth + 1) && 3375 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3376 Depth + 1); 3377 case Intrinsic::exp: 3378 case Intrinsic::exp2: 3379 case Intrinsic::fabs: 3380 return true; 3381 3382 case Intrinsic::sqrt: 3383 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3384 if (!SignBitOnly) 3385 return true; 3386 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3387 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3388 3389 case Intrinsic::powi: 3390 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3391 // powi(x,n) is non-negative if n is even. 3392 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3393 return true; 3394 } 3395 // TODO: This is not correct. Given that exp is an integer, here are the 3396 // ways that pow can return a negative value: 3397 // 3398 // pow(x, exp) --> negative if exp is odd and x is negative. 3399 // pow(-0, exp) --> -inf if exp is negative odd. 3400 // pow(-0, exp) --> -0 if exp is positive odd. 3401 // pow(-inf, exp) --> -0 if exp is negative odd. 3402 // pow(-inf, exp) --> -inf if exp is positive odd. 3403 // 3404 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3405 // but we must return false if x == -0. Unfortunately we do not currently 3406 // have a way of expressing this constraint. See details in 3407 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3408 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3409 Depth + 1); 3410 3411 case Intrinsic::fma: 3412 case Intrinsic::fmuladd: 3413 // x*x+y is non-negative if y is non-negative. 3414 return I->getOperand(0) == I->getOperand(1) && 3415 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3416 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3417 Depth + 1); 3418 } 3419 break; 3420 } 3421 return false; 3422 } 3423 3424 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3425 const TargetLibraryInfo *TLI) { 3426 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3427 } 3428 3429 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3430 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3431 } 3432 3433 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3434 unsigned Depth) { 3435 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3436 3437 // If we're told that infinities won't happen, assume they won't. 3438 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3439 if (FPMathOp->hasNoInfs()) 3440 return true; 3441 3442 // Handle scalar constants. 3443 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3444 return !CFP->isInfinity(); 3445 3446 if (Depth == MaxAnalysisRecursionDepth) 3447 return false; 3448 3449 if (auto *Inst = dyn_cast<Instruction>(V)) { 3450 switch (Inst->getOpcode()) { 3451 case Instruction::Select: { 3452 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3453 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3454 } 3455 case Instruction::SIToFP: 3456 case Instruction::UIToFP: { 3457 // Get width of largest magnitude integer (remove a bit if signed). 3458 // This still works for a signed minimum value because the largest FP 3459 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3460 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3461 if (Inst->getOpcode() == Instruction::SIToFP) 3462 --IntSize; 3463 3464 // If the exponent of the largest finite FP value can hold the largest 3465 // integer, the result of the cast must be finite. 3466 Type *FPTy = Inst->getType()->getScalarType(); 3467 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3468 } 3469 default: 3470 break; 3471 } 3472 } 3473 3474 // try to handle fixed width vector constants 3475 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3476 if (VFVTy && isa<Constant>(V)) { 3477 // For vectors, verify that each element is not infinity. 3478 unsigned NumElts = VFVTy->getNumElements(); 3479 for (unsigned i = 0; i != NumElts; ++i) { 3480 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3481 if (!Elt) 3482 return false; 3483 if (isa<UndefValue>(Elt)) 3484 continue; 3485 auto *CElt = dyn_cast<ConstantFP>(Elt); 3486 if (!CElt || CElt->isInfinity()) 3487 return false; 3488 } 3489 // All elements were confirmed non-infinity or undefined. 3490 return true; 3491 } 3492 3493 // was not able to prove that V never contains infinity 3494 return false; 3495 } 3496 3497 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3498 unsigned Depth) { 3499 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3500 3501 // If we're told that NaNs won't happen, assume they won't. 3502 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3503 if (FPMathOp->hasNoNaNs()) 3504 return true; 3505 3506 // Handle scalar constants. 3507 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3508 return !CFP->isNaN(); 3509 3510 if (Depth == MaxAnalysisRecursionDepth) 3511 return false; 3512 3513 if (auto *Inst = dyn_cast<Instruction>(V)) { 3514 switch (Inst->getOpcode()) { 3515 case Instruction::FAdd: 3516 case Instruction::FSub: 3517 // Adding positive and negative infinity produces NaN. 3518 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3519 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3520 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3521 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3522 3523 case Instruction::FMul: 3524 // Zero multiplied with infinity produces NaN. 3525 // FIXME: If neither side can be zero fmul never produces NaN. 3526 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3527 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3528 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3529 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3530 3531 case Instruction::FDiv: 3532 case Instruction::FRem: 3533 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3534 return false; 3535 3536 case Instruction::Select: { 3537 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3538 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3539 } 3540 case Instruction::SIToFP: 3541 case Instruction::UIToFP: 3542 return true; 3543 case Instruction::FPTrunc: 3544 case Instruction::FPExt: 3545 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3546 default: 3547 break; 3548 } 3549 } 3550 3551 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3552 switch (II->getIntrinsicID()) { 3553 case Intrinsic::canonicalize: 3554 case Intrinsic::fabs: 3555 case Intrinsic::copysign: 3556 case Intrinsic::exp: 3557 case Intrinsic::exp2: 3558 case Intrinsic::floor: 3559 case Intrinsic::ceil: 3560 case Intrinsic::trunc: 3561 case Intrinsic::rint: 3562 case Intrinsic::nearbyint: 3563 case Intrinsic::round: 3564 case Intrinsic::roundeven: 3565 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3566 case Intrinsic::sqrt: 3567 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3568 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3569 case Intrinsic::minnum: 3570 case Intrinsic::maxnum: 3571 // If either operand is not NaN, the result is not NaN. 3572 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3573 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3574 default: 3575 return false; 3576 } 3577 } 3578 3579 // Try to handle fixed width vector constants 3580 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3581 if (VFVTy && isa<Constant>(V)) { 3582 // For vectors, verify that each element is not NaN. 3583 unsigned NumElts = VFVTy->getNumElements(); 3584 for (unsigned i = 0; i != NumElts; ++i) { 3585 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3586 if (!Elt) 3587 return false; 3588 if (isa<UndefValue>(Elt)) 3589 continue; 3590 auto *CElt = dyn_cast<ConstantFP>(Elt); 3591 if (!CElt || CElt->isNaN()) 3592 return false; 3593 } 3594 // All elements were confirmed not-NaN or undefined. 3595 return true; 3596 } 3597 3598 // Was not able to prove that V never contains NaN 3599 return false; 3600 } 3601 3602 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3603 3604 // All byte-wide stores are splatable, even of arbitrary variables. 3605 if (V->getType()->isIntegerTy(8)) 3606 return V; 3607 3608 LLVMContext &Ctx = V->getContext(); 3609 3610 // Undef don't care. 3611 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3612 if (isa<UndefValue>(V)) 3613 return UndefInt8; 3614 3615 // Return Undef for zero-sized type. 3616 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3617 return UndefInt8; 3618 3619 Constant *C = dyn_cast<Constant>(V); 3620 if (!C) { 3621 // Conceptually, we could handle things like: 3622 // %a = zext i8 %X to i16 3623 // %b = shl i16 %a, 8 3624 // %c = or i16 %a, %b 3625 // but until there is an example that actually needs this, it doesn't seem 3626 // worth worrying about. 3627 return nullptr; 3628 } 3629 3630 // Handle 'null' ConstantArrayZero etc. 3631 if (C->isNullValue()) 3632 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3633 3634 // Constant floating-point values can be handled as integer values if the 3635 // corresponding integer value is "byteable". An important case is 0.0. 3636 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3637 Type *Ty = nullptr; 3638 if (CFP->getType()->isHalfTy()) 3639 Ty = Type::getInt16Ty(Ctx); 3640 else if (CFP->getType()->isFloatTy()) 3641 Ty = Type::getInt32Ty(Ctx); 3642 else if (CFP->getType()->isDoubleTy()) 3643 Ty = Type::getInt64Ty(Ctx); 3644 // Don't handle long double formats, which have strange constraints. 3645 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3646 : nullptr; 3647 } 3648 3649 // We can handle constant integers that are multiple of 8 bits. 3650 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3651 if (CI->getBitWidth() % 8 == 0) { 3652 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3653 if (!CI->getValue().isSplat(8)) 3654 return nullptr; 3655 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3656 } 3657 } 3658 3659 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3660 if (CE->getOpcode() == Instruction::IntToPtr) { 3661 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3662 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3663 return isBytewiseValue( 3664 ConstantExpr::getIntegerCast(CE->getOperand(0), 3665 Type::getIntNTy(Ctx, BitWidth), false), 3666 DL); 3667 } 3668 } 3669 } 3670 3671 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3672 if (LHS == RHS) 3673 return LHS; 3674 if (!LHS || !RHS) 3675 return nullptr; 3676 if (LHS == UndefInt8) 3677 return RHS; 3678 if (RHS == UndefInt8) 3679 return LHS; 3680 return nullptr; 3681 }; 3682 3683 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3684 Value *Val = UndefInt8; 3685 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3686 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3687 return nullptr; 3688 return Val; 3689 } 3690 3691 if (isa<ConstantAggregate>(C)) { 3692 Value *Val = UndefInt8; 3693 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3694 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3695 return nullptr; 3696 return Val; 3697 } 3698 3699 // Don't try to handle the handful of other constants. 3700 return nullptr; 3701 } 3702 3703 // This is the recursive version of BuildSubAggregate. It takes a few different 3704 // arguments. Idxs is the index within the nested struct From that we are 3705 // looking at now (which is of type IndexedType). IdxSkip is the number of 3706 // indices from Idxs that should be left out when inserting into the resulting 3707 // struct. To is the result struct built so far, new insertvalue instructions 3708 // build on that. 3709 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3710 SmallVectorImpl<unsigned> &Idxs, 3711 unsigned IdxSkip, 3712 Instruction *InsertBefore) { 3713 StructType *STy = dyn_cast<StructType>(IndexedType); 3714 if (STy) { 3715 // Save the original To argument so we can modify it 3716 Value *OrigTo = To; 3717 // General case, the type indexed by Idxs is a struct 3718 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3719 // Process each struct element recursively 3720 Idxs.push_back(i); 3721 Value *PrevTo = To; 3722 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3723 InsertBefore); 3724 Idxs.pop_back(); 3725 if (!To) { 3726 // Couldn't find any inserted value for this index? Cleanup 3727 while (PrevTo != OrigTo) { 3728 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3729 PrevTo = Del->getAggregateOperand(); 3730 Del->eraseFromParent(); 3731 } 3732 // Stop processing elements 3733 break; 3734 } 3735 } 3736 // If we successfully found a value for each of our subaggregates 3737 if (To) 3738 return To; 3739 } 3740 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3741 // the struct's elements had a value that was inserted directly. In the latter 3742 // case, perhaps we can't determine each of the subelements individually, but 3743 // we might be able to find the complete struct somewhere. 3744 3745 // Find the value that is at that particular spot 3746 Value *V = FindInsertedValue(From, Idxs); 3747 3748 if (!V) 3749 return nullptr; 3750 3751 // Insert the value in the new (sub) aggregate 3752 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3753 "tmp", InsertBefore); 3754 } 3755 3756 // This helper takes a nested struct and extracts a part of it (which is again a 3757 // struct) into a new value. For example, given the struct: 3758 // { a, { b, { c, d }, e } } 3759 // and the indices "1, 1" this returns 3760 // { c, d }. 3761 // 3762 // It does this by inserting an insertvalue for each element in the resulting 3763 // struct, as opposed to just inserting a single struct. This will only work if 3764 // each of the elements of the substruct are known (ie, inserted into From by an 3765 // insertvalue instruction somewhere). 3766 // 3767 // All inserted insertvalue instructions are inserted before InsertBefore 3768 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3769 Instruction *InsertBefore) { 3770 assert(InsertBefore && "Must have someplace to insert!"); 3771 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3772 idx_range); 3773 Value *To = UndefValue::get(IndexedType); 3774 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3775 unsigned IdxSkip = Idxs.size(); 3776 3777 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3778 } 3779 3780 /// Given an aggregate and a sequence of indices, see if the scalar value 3781 /// indexed is already around as a register, for example if it was inserted 3782 /// directly into the aggregate. 3783 /// 3784 /// If InsertBefore is not null, this function will duplicate (modified) 3785 /// insertvalues when a part of a nested struct is extracted. 3786 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3787 Instruction *InsertBefore) { 3788 // Nothing to index? Just return V then (this is useful at the end of our 3789 // recursion). 3790 if (idx_range.empty()) 3791 return V; 3792 // We have indices, so V should have an indexable type. 3793 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3794 "Not looking at a struct or array?"); 3795 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3796 "Invalid indices for type?"); 3797 3798 if (Constant *C = dyn_cast<Constant>(V)) { 3799 C = C->getAggregateElement(idx_range[0]); 3800 if (!C) return nullptr; 3801 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3802 } 3803 3804 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3805 // Loop the indices for the insertvalue instruction in parallel with the 3806 // requested indices 3807 const unsigned *req_idx = idx_range.begin(); 3808 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3809 i != e; ++i, ++req_idx) { 3810 if (req_idx == idx_range.end()) { 3811 // We can't handle this without inserting insertvalues 3812 if (!InsertBefore) 3813 return nullptr; 3814 3815 // The requested index identifies a part of a nested aggregate. Handle 3816 // this specially. For example, 3817 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3818 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3819 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3820 // This can be changed into 3821 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3822 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3823 // which allows the unused 0,0 element from the nested struct to be 3824 // removed. 3825 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3826 InsertBefore); 3827 } 3828 3829 // This insert value inserts something else than what we are looking for. 3830 // See if the (aggregate) value inserted into has the value we are 3831 // looking for, then. 3832 if (*req_idx != *i) 3833 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3834 InsertBefore); 3835 } 3836 // If we end up here, the indices of the insertvalue match with those 3837 // requested (though possibly only partially). Now we recursively look at 3838 // the inserted value, passing any remaining indices. 3839 return FindInsertedValue(I->getInsertedValueOperand(), 3840 makeArrayRef(req_idx, idx_range.end()), 3841 InsertBefore); 3842 } 3843 3844 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3845 // If we're extracting a value from an aggregate that was extracted from 3846 // something else, we can extract from that something else directly instead. 3847 // However, we will need to chain I's indices with the requested indices. 3848 3849 // Calculate the number of indices required 3850 unsigned size = I->getNumIndices() + idx_range.size(); 3851 // Allocate some space to put the new indices in 3852 SmallVector<unsigned, 5> Idxs; 3853 Idxs.reserve(size); 3854 // Add indices from the extract value instruction 3855 Idxs.append(I->idx_begin(), I->idx_end()); 3856 3857 // Add requested indices 3858 Idxs.append(idx_range.begin(), idx_range.end()); 3859 3860 assert(Idxs.size() == size 3861 && "Number of indices added not correct?"); 3862 3863 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3864 } 3865 // Otherwise, we don't know (such as, extracting from a function return value 3866 // or load instruction) 3867 return nullptr; 3868 } 3869 3870 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3871 unsigned CharSize) { 3872 // Make sure the GEP has exactly three arguments. 3873 if (GEP->getNumOperands() != 3) 3874 return false; 3875 3876 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3877 // CharSize. 3878 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3879 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3880 return false; 3881 3882 // Check to make sure that the first operand of the GEP is an integer and 3883 // has value 0 so that we are sure we're indexing into the initializer. 3884 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3885 if (!FirstIdx || !FirstIdx->isZero()) 3886 return false; 3887 3888 return true; 3889 } 3890 3891 bool llvm::getConstantDataArrayInfo(const Value *V, 3892 ConstantDataArraySlice &Slice, 3893 unsigned ElementSize, uint64_t Offset) { 3894 assert(V); 3895 3896 // Look through bitcast instructions and geps. 3897 V = V->stripPointerCasts(); 3898 3899 // If the value is a GEP instruction or constant expression, treat it as an 3900 // offset. 3901 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3902 // The GEP operator should be based on a pointer to string constant, and is 3903 // indexing into the string constant. 3904 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3905 return false; 3906 3907 // If the second index isn't a ConstantInt, then this is a variable index 3908 // into the array. If this occurs, we can't say anything meaningful about 3909 // the string. 3910 uint64_t StartIdx = 0; 3911 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3912 StartIdx = CI->getZExtValue(); 3913 else 3914 return false; 3915 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3916 StartIdx + Offset); 3917 } 3918 3919 // The GEP instruction, constant or instruction, must reference a global 3920 // variable that is a constant and is initialized. The referenced constant 3921 // initializer is the array that we'll use for optimization. 3922 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3923 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3924 return false; 3925 3926 const ConstantDataArray *Array; 3927 ArrayType *ArrayTy; 3928 if (GV->getInitializer()->isNullValue()) { 3929 Type *GVTy = GV->getValueType(); 3930 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3931 // A zeroinitializer for the array; there is no ConstantDataArray. 3932 Array = nullptr; 3933 } else { 3934 const DataLayout &DL = GV->getParent()->getDataLayout(); 3935 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3936 uint64_t Length = SizeInBytes / (ElementSize / 8); 3937 if (Length <= Offset) 3938 return false; 3939 3940 Slice.Array = nullptr; 3941 Slice.Offset = 0; 3942 Slice.Length = Length - Offset; 3943 return true; 3944 } 3945 } else { 3946 // This must be a ConstantDataArray. 3947 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3948 if (!Array) 3949 return false; 3950 ArrayTy = Array->getType(); 3951 } 3952 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3953 return false; 3954 3955 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3956 if (Offset > NumElts) 3957 return false; 3958 3959 Slice.Array = Array; 3960 Slice.Offset = Offset; 3961 Slice.Length = NumElts - Offset; 3962 return true; 3963 } 3964 3965 /// This function computes the length of a null-terminated C string pointed to 3966 /// by V. If successful, it returns true and returns the string in Str. 3967 /// If unsuccessful, it returns false. 3968 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3969 uint64_t Offset, bool TrimAtNul) { 3970 ConstantDataArraySlice Slice; 3971 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3972 return false; 3973 3974 if (Slice.Array == nullptr) { 3975 if (TrimAtNul) { 3976 Str = StringRef(); 3977 return true; 3978 } 3979 if (Slice.Length == 1) { 3980 Str = StringRef("", 1); 3981 return true; 3982 } 3983 // We cannot instantiate a StringRef as we do not have an appropriate string 3984 // of 0s at hand. 3985 return false; 3986 } 3987 3988 // Start out with the entire array in the StringRef. 3989 Str = Slice.Array->getAsString(); 3990 // Skip over 'offset' bytes. 3991 Str = Str.substr(Slice.Offset); 3992 3993 if (TrimAtNul) { 3994 // Trim off the \0 and anything after it. If the array is not nul 3995 // terminated, we just return the whole end of string. The client may know 3996 // some other way that the string is length-bound. 3997 Str = Str.substr(0, Str.find('\0')); 3998 } 3999 return true; 4000 } 4001 4002 // These next two are very similar to the above, but also look through PHI 4003 // nodes. 4004 // TODO: See if we can integrate these two together. 4005 4006 /// If we can compute the length of the string pointed to by 4007 /// the specified pointer, return 'len+1'. If we can't, return 0. 4008 static uint64_t GetStringLengthH(const Value *V, 4009 SmallPtrSetImpl<const PHINode*> &PHIs, 4010 unsigned CharSize) { 4011 // Look through noop bitcast instructions. 4012 V = V->stripPointerCasts(); 4013 4014 // If this is a PHI node, there are two cases: either we have already seen it 4015 // or we haven't. 4016 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4017 if (!PHIs.insert(PN).second) 4018 return ~0ULL; // already in the set. 4019 4020 // If it was new, see if all the input strings are the same length. 4021 uint64_t LenSoFar = ~0ULL; 4022 for (Value *IncValue : PN->incoming_values()) { 4023 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4024 if (Len == 0) return 0; // Unknown length -> unknown. 4025 4026 if (Len == ~0ULL) continue; 4027 4028 if (Len != LenSoFar && LenSoFar != ~0ULL) 4029 return 0; // Disagree -> unknown. 4030 LenSoFar = Len; 4031 } 4032 4033 // Success, all agree. 4034 return LenSoFar; 4035 } 4036 4037 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4038 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4039 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4040 if (Len1 == 0) return 0; 4041 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4042 if (Len2 == 0) return 0; 4043 if (Len1 == ~0ULL) return Len2; 4044 if (Len2 == ~0ULL) return Len1; 4045 if (Len1 != Len2) return 0; 4046 return Len1; 4047 } 4048 4049 // Otherwise, see if we can read the string. 4050 ConstantDataArraySlice Slice; 4051 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4052 return 0; 4053 4054 if (Slice.Array == nullptr) 4055 return 1; 4056 4057 // Search for nul characters 4058 unsigned NullIndex = 0; 4059 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4060 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4061 break; 4062 } 4063 4064 return NullIndex + 1; 4065 } 4066 4067 /// If we can compute the length of the string pointed to by 4068 /// the specified pointer, return 'len+1'. If we can't, return 0. 4069 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4070 if (!V->getType()->isPointerTy()) 4071 return 0; 4072 4073 SmallPtrSet<const PHINode*, 32> PHIs; 4074 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4075 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4076 // an empty string as a length. 4077 return Len == ~0ULL ? 1 : Len; 4078 } 4079 4080 const Value * 4081 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4082 bool MustPreserveNullness) { 4083 assert(Call && 4084 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4085 if (const Value *RV = Call->getReturnedArgOperand()) 4086 return RV; 4087 // This can be used only as a aliasing property. 4088 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4089 Call, MustPreserveNullness)) 4090 return Call->getArgOperand(0); 4091 return nullptr; 4092 } 4093 4094 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4095 const CallBase *Call, bool MustPreserveNullness) { 4096 switch (Call->getIntrinsicID()) { 4097 case Intrinsic::launder_invariant_group: 4098 case Intrinsic::strip_invariant_group: 4099 case Intrinsic::aarch64_irg: 4100 case Intrinsic::aarch64_tagp: 4101 return true; 4102 case Intrinsic::ptrmask: 4103 return !MustPreserveNullness; 4104 default: 4105 return false; 4106 } 4107 } 4108 4109 /// \p PN defines a loop-variant pointer to an object. Check if the 4110 /// previous iteration of the loop was referring to the same object as \p PN. 4111 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4112 const LoopInfo *LI) { 4113 // Find the loop-defined value. 4114 Loop *L = LI->getLoopFor(PN->getParent()); 4115 if (PN->getNumIncomingValues() != 2) 4116 return true; 4117 4118 // Find the value from previous iteration. 4119 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4120 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4121 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4122 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4123 return true; 4124 4125 // If a new pointer is loaded in the loop, the pointer references a different 4126 // object in every iteration. E.g.: 4127 // for (i) 4128 // int *p = a[i]; 4129 // ... 4130 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4131 if (!L->isLoopInvariant(Load->getPointerOperand())) 4132 return false; 4133 return true; 4134 } 4135 4136 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4137 if (!V->getType()->isPointerTy()) 4138 return V; 4139 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4140 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4141 V = GEP->getPointerOperand(); 4142 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4143 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4144 V = cast<Operator>(V)->getOperand(0); 4145 if (!V->getType()->isPointerTy()) 4146 return V; 4147 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4148 if (GA->isInterposable()) 4149 return V; 4150 V = GA->getAliasee(); 4151 } else { 4152 if (auto *PHI = dyn_cast<PHINode>(V)) { 4153 // Look through single-arg phi nodes created by LCSSA. 4154 if (PHI->getNumIncomingValues() == 1) { 4155 V = PHI->getIncomingValue(0); 4156 continue; 4157 } 4158 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4159 // CaptureTracking can know about special capturing properties of some 4160 // intrinsics like launder.invariant.group, that can't be expressed with 4161 // the attributes, but have properties like returning aliasing pointer. 4162 // Because some analysis may assume that nocaptured pointer is not 4163 // returned from some special intrinsic (because function would have to 4164 // be marked with returns attribute), it is crucial to use this function 4165 // because it should be in sync with CaptureTracking. Not using it may 4166 // cause weird miscompilations where 2 aliasing pointers are assumed to 4167 // noalias. 4168 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4169 V = RP; 4170 continue; 4171 } 4172 } 4173 4174 return V; 4175 } 4176 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4177 } 4178 return V; 4179 } 4180 4181 void llvm::getUnderlyingObjects(const Value *V, 4182 SmallVectorImpl<const Value *> &Objects, 4183 LoopInfo *LI, unsigned MaxLookup) { 4184 SmallPtrSet<const Value *, 4> Visited; 4185 SmallVector<const Value *, 4> Worklist; 4186 Worklist.push_back(V); 4187 do { 4188 const Value *P = Worklist.pop_back_val(); 4189 P = getUnderlyingObject(P, MaxLookup); 4190 4191 if (!Visited.insert(P).second) 4192 continue; 4193 4194 if (auto *SI = dyn_cast<SelectInst>(P)) { 4195 Worklist.push_back(SI->getTrueValue()); 4196 Worklist.push_back(SI->getFalseValue()); 4197 continue; 4198 } 4199 4200 if (auto *PN = dyn_cast<PHINode>(P)) { 4201 // If this PHI changes the underlying object in every iteration of the 4202 // loop, don't look through it. Consider: 4203 // int **A; 4204 // for (i) { 4205 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4206 // Curr = A[i]; 4207 // *Prev, *Curr; 4208 // 4209 // Prev is tracking Curr one iteration behind so they refer to different 4210 // underlying objects. 4211 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4212 isSameUnderlyingObjectInLoop(PN, LI)) 4213 for (Value *IncValue : PN->incoming_values()) 4214 Worklist.push_back(IncValue); 4215 continue; 4216 } 4217 4218 Objects.push_back(P); 4219 } while (!Worklist.empty()); 4220 } 4221 4222 /// This is the function that does the work of looking through basic 4223 /// ptrtoint+arithmetic+inttoptr sequences. 4224 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4225 do { 4226 if (const Operator *U = dyn_cast<Operator>(V)) { 4227 // If we find a ptrtoint, we can transfer control back to the 4228 // regular getUnderlyingObjectFromInt. 4229 if (U->getOpcode() == Instruction::PtrToInt) 4230 return U->getOperand(0); 4231 // If we find an add of a constant, a multiplied value, or a phi, it's 4232 // likely that the other operand will lead us to the base 4233 // object. We don't have to worry about the case where the 4234 // object address is somehow being computed by the multiply, 4235 // because our callers only care when the result is an 4236 // identifiable object. 4237 if (U->getOpcode() != Instruction::Add || 4238 (!isa<ConstantInt>(U->getOperand(1)) && 4239 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4240 !isa<PHINode>(U->getOperand(1)))) 4241 return V; 4242 V = U->getOperand(0); 4243 } else { 4244 return V; 4245 } 4246 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4247 } while (true); 4248 } 4249 4250 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4251 /// ptrtoint+arithmetic+inttoptr sequences. 4252 /// It returns false if unidentified object is found in getUnderlyingObjects. 4253 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4254 SmallVectorImpl<Value *> &Objects) { 4255 SmallPtrSet<const Value *, 16> Visited; 4256 SmallVector<const Value *, 4> Working(1, V); 4257 do { 4258 V = Working.pop_back_val(); 4259 4260 SmallVector<const Value *, 4> Objs; 4261 getUnderlyingObjects(V, Objs); 4262 4263 for (const Value *V : Objs) { 4264 if (!Visited.insert(V).second) 4265 continue; 4266 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4267 const Value *O = 4268 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4269 if (O->getType()->isPointerTy()) { 4270 Working.push_back(O); 4271 continue; 4272 } 4273 } 4274 // If getUnderlyingObjects fails to find an identifiable object, 4275 // getUnderlyingObjectsForCodeGen also fails for safety. 4276 if (!isIdentifiedObject(V)) { 4277 Objects.clear(); 4278 return false; 4279 } 4280 Objects.push_back(const_cast<Value *>(V)); 4281 } 4282 } while (!Working.empty()); 4283 return true; 4284 } 4285 4286 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4287 AllocaInst *Result = nullptr; 4288 SmallPtrSet<Value *, 4> Visited; 4289 SmallVector<Value *, 4> Worklist; 4290 4291 auto AddWork = [&](Value *V) { 4292 if (Visited.insert(V).second) 4293 Worklist.push_back(V); 4294 }; 4295 4296 AddWork(V); 4297 do { 4298 V = Worklist.pop_back_val(); 4299 assert(Visited.count(V)); 4300 4301 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4302 if (Result && Result != AI) 4303 return nullptr; 4304 Result = AI; 4305 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4306 AddWork(CI->getOperand(0)); 4307 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4308 for (Value *IncValue : PN->incoming_values()) 4309 AddWork(IncValue); 4310 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4311 AddWork(SI->getTrueValue()); 4312 AddWork(SI->getFalseValue()); 4313 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4314 if (OffsetZero && !GEP->hasAllZeroIndices()) 4315 return nullptr; 4316 AddWork(GEP->getPointerOperand()); 4317 } else { 4318 return nullptr; 4319 } 4320 } while (!Worklist.empty()); 4321 4322 return Result; 4323 } 4324 4325 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4326 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4327 for (const User *U : V->users()) { 4328 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4329 if (!II) 4330 return false; 4331 4332 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4333 continue; 4334 4335 if (AllowDroppable && II->isDroppable()) 4336 continue; 4337 4338 return false; 4339 } 4340 return true; 4341 } 4342 4343 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4344 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4345 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4346 } 4347 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4348 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4349 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4350 } 4351 4352 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4353 if (!LI.isUnordered()) 4354 return true; 4355 const Function &F = *LI.getFunction(); 4356 // Speculative load may create a race that did not exist in the source. 4357 return F.hasFnAttribute(Attribute::SanitizeThread) || 4358 // Speculative load may load data from dirty regions. 4359 F.hasFnAttribute(Attribute::SanitizeAddress) || 4360 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4361 } 4362 4363 4364 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4365 const Instruction *CtxI, 4366 const DominatorTree *DT) { 4367 const Operator *Inst = dyn_cast<Operator>(V); 4368 if (!Inst) 4369 return false; 4370 4371 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4372 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4373 if (C->canTrap()) 4374 return false; 4375 4376 switch (Inst->getOpcode()) { 4377 default: 4378 return true; 4379 case Instruction::UDiv: 4380 case Instruction::URem: { 4381 // x / y is undefined if y == 0. 4382 const APInt *V; 4383 if (match(Inst->getOperand(1), m_APInt(V))) 4384 return *V != 0; 4385 return false; 4386 } 4387 case Instruction::SDiv: 4388 case Instruction::SRem: { 4389 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4390 const APInt *Numerator, *Denominator; 4391 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4392 return false; 4393 // We cannot hoist this division if the denominator is 0. 4394 if (*Denominator == 0) 4395 return false; 4396 // It's safe to hoist if the denominator is not 0 or -1. 4397 if (*Denominator != -1) 4398 return true; 4399 // At this point we know that the denominator is -1. It is safe to hoist as 4400 // long we know that the numerator is not INT_MIN. 4401 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4402 return !Numerator->isMinSignedValue(); 4403 // The numerator *might* be MinSignedValue. 4404 return false; 4405 } 4406 case Instruction::Load: { 4407 const LoadInst *LI = cast<LoadInst>(Inst); 4408 if (mustSuppressSpeculation(*LI)) 4409 return false; 4410 const DataLayout &DL = LI->getModule()->getDataLayout(); 4411 return isDereferenceableAndAlignedPointer( 4412 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4413 DL, CtxI, DT); 4414 } 4415 case Instruction::Call: { 4416 auto *CI = cast<const CallInst>(Inst); 4417 const Function *Callee = CI->getCalledFunction(); 4418 4419 // The called function could have undefined behavior or side-effects, even 4420 // if marked readnone nounwind. 4421 return Callee && Callee->isSpeculatable(); 4422 } 4423 case Instruction::VAArg: 4424 case Instruction::Alloca: 4425 case Instruction::Invoke: 4426 case Instruction::CallBr: 4427 case Instruction::PHI: 4428 case Instruction::Store: 4429 case Instruction::Ret: 4430 case Instruction::Br: 4431 case Instruction::IndirectBr: 4432 case Instruction::Switch: 4433 case Instruction::Unreachable: 4434 case Instruction::Fence: 4435 case Instruction::AtomicRMW: 4436 case Instruction::AtomicCmpXchg: 4437 case Instruction::LandingPad: 4438 case Instruction::Resume: 4439 case Instruction::CatchSwitch: 4440 case Instruction::CatchPad: 4441 case Instruction::CatchRet: 4442 case Instruction::CleanupPad: 4443 case Instruction::CleanupRet: 4444 return false; // Misc instructions which have effects 4445 } 4446 } 4447 4448 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4449 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4450 } 4451 4452 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4453 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4454 switch (OR) { 4455 case ConstantRange::OverflowResult::MayOverflow: 4456 return OverflowResult::MayOverflow; 4457 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4458 return OverflowResult::AlwaysOverflowsLow; 4459 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4460 return OverflowResult::AlwaysOverflowsHigh; 4461 case ConstantRange::OverflowResult::NeverOverflows: 4462 return OverflowResult::NeverOverflows; 4463 } 4464 llvm_unreachable("Unknown OverflowResult"); 4465 } 4466 4467 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4468 static ConstantRange computeConstantRangeIncludingKnownBits( 4469 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4470 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4471 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4472 KnownBits Known = computeKnownBits( 4473 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4474 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4475 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4476 ConstantRange::PreferredRangeType RangeType = 4477 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4478 return CR1.intersectWith(CR2, RangeType); 4479 } 4480 4481 OverflowResult llvm::computeOverflowForUnsignedMul( 4482 const Value *LHS, const Value *RHS, const DataLayout &DL, 4483 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4484 bool UseInstrInfo) { 4485 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4486 nullptr, UseInstrInfo); 4487 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4488 nullptr, UseInstrInfo); 4489 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4490 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4491 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4492 } 4493 4494 OverflowResult 4495 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4496 const DataLayout &DL, AssumptionCache *AC, 4497 const Instruction *CxtI, 4498 const DominatorTree *DT, bool UseInstrInfo) { 4499 // Multiplying n * m significant bits yields a result of n + m significant 4500 // bits. If the total number of significant bits does not exceed the 4501 // result bit width (minus 1), there is no overflow. 4502 // This means if we have enough leading sign bits in the operands 4503 // we can guarantee that the result does not overflow. 4504 // Ref: "Hacker's Delight" by Henry Warren 4505 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4506 4507 // Note that underestimating the number of sign bits gives a more 4508 // conservative answer. 4509 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4510 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4511 4512 // First handle the easy case: if we have enough sign bits there's 4513 // definitely no overflow. 4514 if (SignBits > BitWidth + 1) 4515 return OverflowResult::NeverOverflows; 4516 4517 // There are two ambiguous cases where there can be no overflow: 4518 // SignBits == BitWidth + 1 and 4519 // SignBits == BitWidth 4520 // The second case is difficult to check, therefore we only handle the 4521 // first case. 4522 if (SignBits == BitWidth + 1) { 4523 // It overflows only when both arguments are negative and the true 4524 // product is exactly the minimum negative number. 4525 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4526 // For simplicity we just check if at least one side is not negative. 4527 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4528 nullptr, UseInstrInfo); 4529 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4530 nullptr, UseInstrInfo); 4531 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4532 return OverflowResult::NeverOverflows; 4533 } 4534 return OverflowResult::MayOverflow; 4535 } 4536 4537 OverflowResult llvm::computeOverflowForUnsignedAdd( 4538 const Value *LHS, const Value *RHS, const DataLayout &DL, 4539 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4540 bool UseInstrInfo) { 4541 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4542 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4543 nullptr, UseInstrInfo); 4544 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4545 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4546 nullptr, UseInstrInfo); 4547 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4548 } 4549 4550 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4551 const Value *RHS, 4552 const AddOperator *Add, 4553 const DataLayout &DL, 4554 AssumptionCache *AC, 4555 const Instruction *CxtI, 4556 const DominatorTree *DT) { 4557 if (Add && Add->hasNoSignedWrap()) { 4558 return OverflowResult::NeverOverflows; 4559 } 4560 4561 // If LHS and RHS each have at least two sign bits, the addition will look 4562 // like 4563 // 4564 // XX..... + 4565 // YY..... 4566 // 4567 // If the carry into the most significant position is 0, X and Y can't both 4568 // be 1 and therefore the carry out of the addition is also 0. 4569 // 4570 // If the carry into the most significant position is 1, X and Y can't both 4571 // be 0 and therefore the carry out of the addition is also 1. 4572 // 4573 // Since the carry into the most significant position is always equal to 4574 // the carry out of the addition, there is no signed overflow. 4575 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4576 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4577 return OverflowResult::NeverOverflows; 4578 4579 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4580 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4581 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4582 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4583 OverflowResult OR = 4584 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4585 if (OR != OverflowResult::MayOverflow) 4586 return OR; 4587 4588 // The remaining code needs Add to be available. Early returns if not so. 4589 if (!Add) 4590 return OverflowResult::MayOverflow; 4591 4592 // If the sign of Add is the same as at least one of the operands, this add 4593 // CANNOT overflow. If this can be determined from the known bits of the 4594 // operands the above signedAddMayOverflow() check will have already done so. 4595 // The only other way to improve on the known bits is from an assumption, so 4596 // call computeKnownBitsFromAssume() directly. 4597 bool LHSOrRHSKnownNonNegative = 4598 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4599 bool LHSOrRHSKnownNegative = 4600 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4601 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4602 KnownBits AddKnown(LHSRange.getBitWidth()); 4603 computeKnownBitsFromAssume( 4604 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4605 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4606 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4607 return OverflowResult::NeverOverflows; 4608 } 4609 4610 return OverflowResult::MayOverflow; 4611 } 4612 4613 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4614 const Value *RHS, 4615 const DataLayout &DL, 4616 AssumptionCache *AC, 4617 const Instruction *CxtI, 4618 const DominatorTree *DT) { 4619 // Checking for conditions implied by dominating conditions may be expensive. 4620 // Limit it to usub_with_overflow calls for now. 4621 if (match(CxtI, 4622 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4623 if (auto C = 4624 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4625 if (*C) 4626 return OverflowResult::NeverOverflows; 4627 return OverflowResult::AlwaysOverflowsLow; 4628 } 4629 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4630 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4631 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4632 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4633 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4634 } 4635 4636 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4637 const Value *RHS, 4638 const DataLayout &DL, 4639 AssumptionCache *AC, 4640 const Instruction *CxtI, 4641 const DominatorTree *DT) { 4642 // If LHS and RHS each have at least two sign bits, the subtraction 4643 // cannot overflow. 4644 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4645 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4646 return OverflowResult::NeverOverflows; 4647 4648 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4649 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4650 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4651 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4652 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4653 } 4654 4655 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4656 const DominatorTree &DT) { 4657 SmallVector<const BranchInst *, 2> GuardingBranches; 4658 SmallVector<const ExtractValueInst *, 2> Results; 4659 4660 for (const User *U : WO->users()) { 4661 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4662 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4663 4664 if (EVI->getIndices()[0] == 0) 4665 Results.push_back(EVI); 4666 else { 4667 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4668 4669 for (const auto *U : EVI->users()) 4670 if (const auto *B = dyn_cast<BranchInst>(U)) { 4671 assert(B->isConditional() && "How else is it using an i1?"); 4672 GuardingBranches.push_back(B); 4673 } 4674 } 4675 } else { 4676 // We are using the aggregate directly in a way we don't want to analyze 4677 // here (storing it to a global, say). 4678 return false; 4679 } 4680 } 4681 4682 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4683 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4684 if (!NoWrapEdge.isSingleEdge()) 4685 return false; 4686 4687 // Check if all users of the add are provably no-wrap. 4688 for (const auto *Result : Results) { 4689 // If the extractvalue itself is not executed on overflow, the we don't 4690 // need to check each use separately, since domination is transitive. 4691 if (DT.dominates(NoWrapEdge, Result->getParent())) 4692 continue; 4693 4694 for (auto &RU : Result->uses()) 4695 if (!DT.dominates(NoWrapEdge, RU)) 4696 return false; 4697 } 4698 4699 return true; 4700 }; 4701 4702 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4703 } 4704 4705 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4706 // See whether I has flags that may create poison 4707 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4708 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4709 return true; 4710 } 4711 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4712 if (ExactOp->isExact()) 4713 return true; 4714 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4715 auto FMF = FP->getFastMathFlags(); 4716 if (FMF.noNaNs() || FMF.noInfs()) 4717 return true; 4718 } 4719 4720 unsigned Opcode = Op->getOpcode(); 4721 4722 // Check whether opcode is a poison/undef-generating operation 4723 switch (Opcode) { 4724 case Instruction::Shl: 4725 case Instruction::AShr: 4726 case Instruction::LShr: { 4727 // Shifts return poison if shiftwidth is larger than the bitwidth. 4728 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4729 SmallVector<Constant *, 4> ShiftAmounts; 4730 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4731 unsigned NumElts = FVTy->getNumElements(); 4732 for (unsigned i = 0; i < NumElts; ++i) 4733 ShiftAmounts.push_back(C->getAggregateElement(i)); 4734 } else if (isa<ScalableVectorType>(C->getType())) 4735 return true; // Can't tell, just return true to be safe 4736 else 4737 ShiftAmounts.push_back(C); 4738 4739 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4740 auto *CI = dyn_cast<ConstantInt>(C); 4741 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4742 }); 4743 return !Safe; 4744 } 4745 return true; 4746 } 4747 case Instruction::FPToSI: 4748 case Instruction::FPToUI: 4749 // fptosi/ui yields poison if the resulting value does not fit in the 4750 // destination type. 4751 return true; 4752 case Instruction::Call: 4753 case Instruction::CallBr: 4754 case Instruction::Invoke: { 4755 const auto *CB = cast<CallBase>(Op); 4756 return !CB->hasRetAttr(Attribute::NoUndef); 4757 } 4758 case Instruction::InsertElement: 4759 case Instruction::ExtractElement: { 4760 // If index exceeds the length of the vector, it returns poison 4761 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4762 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4763 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4764 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4765 return true; 4766 return false; 4767 } 4768 case Instruction::ShuffleVector: { 4769 // shufflevector may return undef. 4770 if (PoisonOnly) 4771 return false; 4772 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4773 ? cast<ConstantExpr>(Op)->getShuffleMask() 4774 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4775 return is_contained(Mask, UndefMaskElem); 4776 } 4777 case Instruction::FNeg: 4778 case Instruction::PHI: 4779 case Instruction::Select: 4780 case Instruction::URem: 4781 case Instruction::SRem: 4782 case Instruction::ExtractValue: 4783 case Instruction::InsertValue: 4784 case Instruction::Freeze: 4785 case Instruction::ICmp: 4786 case Instruction::FCmp: 4787 return false; 4788 case Instruction::GetElementPtr: { 4789 const auto *GEP = cast<GEPOperator>(Op); 4790 return GEP->isInBounds(); 4791 } 4792 default: { 4793 const auto *CE = dyn_cast<ConstantExpr>(Op); 4794 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4795 return false; 4796 else if (Instruction::isBinaryOp(Opcode)) 4797 return false; 4798 // Be conservative and return true. 4799 return true; 4800 } 4801 } 4802 } 4803 4804 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4805 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4806 } 4807 4808 bool llvm::canCreatePoison(const Operator *Op) { 4809 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4810 } 4811 4812 static bool programUndefinedIfUndefOrPoison(const Value *V, 4813 bool PoisonOnly); 4814 4815 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4816 AssumptionCache *AC, 4817 const Instruction *CtxI, 4818 const DominatorTree *DT, 4819 unsigned Depth, bool PoisonOnly) { 4820 if (Depth >= MaxAnalysisRecursionDepth) 4821 return false; 4822 4823 if (isa<MetadataAsValue>(V)) 4824 return false; 4825 4826 if (const auto *A = dyn_cast<Argument>(V)) { 4827 if (A->hasAttribute(Attribute::NoUndef)) 4828 return true; 4829 } 4830 4831 if (auto *C = dyn_cast<Constant>(V)) { 4832 if (isa<UndefValue>(C)) 4833 return PoisonOnly; 4834 4835 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4836 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4837 return true; 4838 4839 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4840 return (PoisonOnly || !C->containsUndefElement()) && 4841 !C->containsConstantExpression(); 4842 } 4843 4844 // Strip cast operations from a pointer value. 4845 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4846 // inbounds with zero offset. To guarantee that the result isn't poison, the 4847 // stripped pointer is checked as it has to be pointing into an allocated 4848 // object or be null `null` to ensure `inbounds` getelement pointers with a 4849 // zero offset could not produce poison. 4850 // It can strip off addrspacecast that do not change bit representation as 4851 // well. We believe that such addrspacecast is equivalent to no-op. 4852 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4853 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4854 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4855 return true; 4856 4857 auto OpCheck = [&](const Value *V) { 4858 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4859 PoisonOnly); 4860 }; 4861 4862 if (auto *Opr = dyn_cast<Operator>(V)) { 4863 // If the value is a freeze instruction, then it can never 4864 // be undef or poison. 4865 if (isa<FreezeInst>(V)) 4866 return true; 4867 4868 if (const auto *CB = dyn_cast<CallBase>(V)) { 4869 if (CB->hasRetAttr(Attribute::NoUndef)) 4870 return true; 4871 } 4872 4873 if (const auto *PN = dyn_cast<PHINode>(V)) { 4874 unsigned Num = PN->getNumIncomingValues(); 4875 bool IsWellDefined = true; 4876 for (unsigned i = 0; i < Num; ++i) { 4877 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4878 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4879 DT, Depth + 1, PoisonOnly)) { 4880 IsWellDefined = false; 4881 break; 4882 } 4883 } 4884 if (IsWellDefined) 4885 return true; 4886 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4887 return true; 4888 } 4889 4890 if (auto *I = dyn_cast<LoadInst>(V)) 4891 if (I->getMetadata(LLVMContext::MD_noundef)) 4892 return true; 4893 4894 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4895 return true; 4896 4897 // CxtI may be null or a cloned instruction. 4898 if (!CtxI || !CtxI->getParent() || !DT) 4899 return false; 4900 4901 auto *DNode = DT->getNode(CtxI->getParent()); 4902 if (!DNode) 4903 // Unreachable block 4904 return false; 4905 4906 // If V is used as a branch condition before reaching CtxI, V cannot be 4907 // undef or poison. 4908 // br V, BB1, BB2 4909 // BB1: 4910 // CtxI ; V cannot be undef or poison here 4911 auto *Dominator = DNode->getIDom(); 4912 while (Dominator) { 4913 auto *TI = Dominator->getBlock()->getTerminator(); 4914 4915 Value *Cond = nullptr; 4916 if (auto BI = dyn_cast<BranchInst>(TI)) { 4917 if (BI->isConditional()) 4918 Cond = BI->getCondition(); 4919 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4920 Cond = SI->getCondition(); 4921 } 4922 4923 if (Cond) { 4924 if (Cond == V) 4925 return true; 4926 else if (PoisonOnly && isa<Operator>(Cond)) { 4927 // For poison, we can analyze further 4928 auto *Opr = cast<Operator>(Cond); 4929 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4930 return true; 4931 } 4932 } 4933 4934 Dominator = Dominator->getIDom(); 4935 } 4936 4937 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4938 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4939 return true; 4940 4941 return false; 4942 } 4943 4944 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4945 const Instruction *CtxI, 4946 const DominatorTree *DT, 4947 unsigned Depth) { 4948 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4949 } 4950 4951 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4952 const Instruction *CtxI, 4953 const DominatorTree *DT, unsigned Depth) { 4954 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4955 } 4956 4957 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4958 const DataLayout &DL, 4959 AssumptionCache *AC, 4960 const Instruction *CxtI, 4961 const DominatorTree *DT) { 4962 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4963 Add, DL, AC, CxtI, DT); 4964 } 4965 4966 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4967 const Value *RHS, 4968 const DataLayout &DL, 4969 AssumptionCache *AC, 4970 const Instruction *CxtI, 4971 const DominatorTree *DT) { 4972 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4973 } 4974 4975 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4976 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4977 // of time because it's possible for another thread to interfere with it for an 4978 // arbitrary length of time, but programs aren't allowed to rely on that. 4979 4980 // If there is no successor, then execution can't transfer to it. 4981 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4982 return !CRI->unwindsToCaller(); 4983 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4984 return !CatchSwitch->unwindsToCaller(); 4985 if (isa<ResumeInst>(I)) 4986 return false; 4987 if (isa<ReturnInst>(I)) 4988 return false; 4989 if (isa<UnreachableInst>(I)) 4990 return false; 4991 4992 // Calls can throw, or contain an infinite loop, or kill the process. 4993 if (const auto *CB = dyn_cast<CallBase>(I)) { 4994 // Call sites that throw have implicit non-local control flow. 4995 if (!CB->doesNotThrow()) 4996 return false; 4997 4998 // A function which doens't throw and has "willreturn" attribute will 4999 // always return. 5000 if (CB->hasFnAttr(Attribute::WillReturn)) 5001 return true; 5002 5003 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5004 // etc. and thus not return. However, LLVM already assumes that 5005 // 5006 // - Thread exiting actions are modeled as writes to memory invisible to 5007 // the program. 5008 // 5009 // - Loops that don't have side effects (side effects are volatile/atomic 5010 // stores and IO) always terminate (see http://llvm.org/PR965). 5011 // Furthermore IO itself is also modeled as writes to memory invisible to 5012 // the program. 5013 // 5014 // We rely on those assumptions here, and use the memory effects of the call 5015 // target as a proxy for checking that it always returns. 5016 5017 // FIXME: This isn't aggressive enough; a call which only writes to a global 5018 // is guaranteed to return. 5019 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5020 } 5021 5022 // Other instructions return normally. 5023 return true; 5024 } 5025 5026 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5027 // TODO: This is slightly conservative for invoke instruction since exiting 5028 // via an exception *is* normal control for them. 5029 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5030 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5031 return false; 5032 return true; 5033 } 5034 5035 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5036 const Loop *L) { 5037 // The loop header is guaranteed to be executed for every iteration. 5038 // 5039 // FIXME: Relax this constraint to cover all basic blocks that are 5040 // guaranteed to be executed at every iteration. 5041 if (I->getParent() != L->getHeader()) return false; 5042 5043 for (const Instruction &LI : *L->getHeader()) { 5044 if (&LI == I) return true; 5045 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5046 } 5047 llvm_unreachable("Instruction not contained in its own parent basic block."); 5048 } 5049 5050 bool llvm::propagatesPoison(const Operator *I) { 5051 switch (I->getOpcode()) { 5052 case Instruction::Freeze: 5053 case Instruction::Select: 5054 case Instruction::PHI: 5055 case Instruction::Call: 5056 case Instruction::Invoke: 5057 return false; 5058 case Instruction::ICmp: 5059 case Instruction::FCmp: 5060 case Instruction::GetElementPtr: 5061 return true; 5062 default: 5063 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5064 return true; 5065 5066 // Be conservative and return false. 5067 return false; 5068 } 5069 } 5070 5071 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5072 SmallPtrSetImpl<const Value *> &Operands) { 5073 switch (I->getOpcode()) { 5074 case Instruction::Store: 5075 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5076 break; 5077 5078 case Instruction::Load: 5079 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5080 break; 5081 5082 case Instruction::AtomicCmpXchg: 5083 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5084 break; 5085 5086 case Instruction::AtomicRMW: 5087 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5088 break; 5089 5090 case Instruction::UDiv: 5091 case Instruction::SDiv: 5092 case Instruction::URem: 5093 case Instruction::SRem: 5094 Operands.insert(I->getOperand(1)); 5095 break; 5096 5097 case Instruction::Call: 5098 case Instruction::Invoke: { 5099 const CallBase *CB = cast<CallBase>(I); 5100 if (CB->isIndirectCall()) 5101 Operands.insert(CB->getCalledOperand()); 5102 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5103 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5104 Operands.insert(CB->getArgOperand(i)); 5105 } 5106 break; 5107 } 5108 5109 default: 5110 break; 5111 } 5112 } 5113 5114 bool llvm::mustTriggerUB(const Instruction *I, 5115 const SmallSet<const Value *, 16>& KnownPoison) { 5116 SmallPtrSet<const Value *, 4> NonPoisonOps; 5117 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5118 5119 for (const auto *V : NonPoisonOps) 5120 if (KnownPoison.count(V)) 5121 return true; 5122 5123 return false; 5124 } 5125 5126 static bool programUndefinedIfUndefOrPoison(const Value *V, 5127 bool PoisonOnly) { 5128 // We currently only look for uses of values within the same basic 5129 // block, as that makes it easier to guarantee that the uses will be 5130 // executed given that Inst is executed. 5131 // 5132 // FIXME: Expand this to consider uses beyond the same basic block. To do 5133 // this, look out for the distinction between post-dominance and strong 5134 // post-dominance. 5135 const BasicBlock *BB = nullptr; 5136 BasicBlock::const_iterator Begin; 5137 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5138 BB = Inst->getParent(); 5139 Begin = Inst->getIterator(); 5140 Begin++; 5141 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5142 BB = &Arg->getParent()->getEntryBlock(); 5143 Begin = BB->begin(); 5144 } else { 5145 return false; 5146 } 5147 5148 BasicBlock::const_iterator End = BB->end(); 5149 5150 if (!PoisonOnly) { 5151 // Be conservative & just check whether a value is passed to a noundef 5152 // argument. 5153 // Instructions that raise UB with a poison operand are well-defined 5154 // or have unclear semantics when the input is partially undef. 5155 // For example, 'udiv x, (undef | 1)' isn't UB. 5156 5157 for (auto &I : make_range(Begin, End)) { 5158 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5159 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5160 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5161 CB->getArgOperand(i) == V) 5162 return true; 5163 } 5164 } 5165 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5166 break; 5167 } 5168 return false; 5169 } 5170 5171 // Set of instructions that we have proved will yield poison if Inst 5172 // does. 5173 SmallSet<const Value *, 16> YieldsPoison; 5174 SmallSet<const BasicBlock *, 4> Visited; 5175 5176 YieldsPoison.insert(V); 5177 auto Propagate = [&](const User *User) { 5178 if (propagatesPoison(cast<Operator>(User))) 5179 YieldsPoison.insert(User); 5180 }; 5181 for_each(V->users(), Propagate); 5182 Visited.insert(BB); 5183 5184 unsigned Iter = 0; 5185 while (Iter++ < MaxAnalysisRecursionDepth) { 5186 for (auto &I : make_range(Begin, End)) { 5187 if (mustTriggerUB(&I, YieldsPoison)) 5188 return true; 5189 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5190 return false; 5191 5192 // Mark poison that propagates from I through uses of I. 5193 if (YieldsPoison.count(&I)) 5194 for_each(I.users(), Propagate); 5195 } 5196 5197 if (auto *NextBB = BB->getSingleSuccessor()) { 5198 if (Visited.insert(NextBB).second) { 5199 BB = NextBB; 5200 Begin = BB->getFirstNonPHI()->getIterator(); 5201 End = BB->end(); 5202 continue; 5203 } 5204 } 5205 5206 break; 5207 } 5208 return false; 5209 } 5210 5211 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5212 return ::programUndefinedIfUndefOrPoison(Inst, false); 5213 } 5214 5215 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5216 return ::programUndefinedIfUndefOrPoison(Inst, true); 5217 } 5218 5219 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5220 if (FMF.noNaNs()) 5221 return true; 5222 5223 if (auto *C = dyn_cast<ConstantFP>(V)) 5224 return !C->isNaN(); 5225 5226 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5227 if (!C->getElementType()->isFloatingPointTy()) 5228 return false; 5229 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5230 if (C->getElementAsAPFloat(I).isNaN()) 5231 return false; 5232 } 5233 return true; 5234 } 5235 5236 if (isa<ConstantAggregateZero>(V)) 5237 return true; 5238 5239 return false; 5240 } 5241 5242 static bool isKnownNonZero(const Value *V) { 5243 if (auto *C = dyn_cast<ConstantFP>(V)) 5244 return !C->isZero(); 5245 5246 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5247 if (!C->getElementType()->isFloatingPointTy()) 5248 return false; 5249 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5250 if (C->getElementAsAPFloat(I).isZero()) 5251 return false; 5252 } 5253 return true; 5254 } 5255 5256 return false; 5257 } 5258 5259 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5260 /// Given non-min/max outer cmp/select from the clamp pattern this 5261 /// function recognizes if it can be substitued by a "canonical" min/max 5262 /// pattern. 5263 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5264 Value *CmpLHS, Value *CmpRHS, 5265 Value *TrueVal, Value *FalseVal, 5266 Value *&LHS, Value *&RHS) { 5267 // Try to match 5268 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5269 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5270 // and return description of the outer Max/Min. 5271 5272 // First, check if select has inverse order: 5273 if (CmpRHS == FalseVal) { 5274 std::swap(TrueVal, FalseVal); 5275 Pred = CmpInst::getInversePredicate(Pred); 5276 } 5277 5278 // Assume success now. If there's no match, callers should not use these anyway. 5279 LHS = TrueVal; 5280 RHS = FalseVal; 5281 5282 const APFloat *FC1; 5283 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5284 return {SPF_UNKNOWN, SPNB_NA, false}; 5285 5286 const APFloat *FC2; 5287 switch (Pred) { 5288 case CmpInst::FCMP_OLT: 5289 case CmpInst::FCMP_OLE: 5290 case CmpInst::FCMP_ULT: 5291 case CmpInst::FCMP_ULE: 5292 if (match(FalseVal, 5293 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5294 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5295 *FC1 < *FC2) 5296 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5297 break; 5298 case CmpInst::FCMP_OGT: 5299 case CmpInst::FCMP_OGE: 5300 case CmpInst::FCMP_UGT: 5301 case CmpInst::FCMP_UGE: 5302 if (match(FalseVal, 5303 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5304 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5305 *FC1 > *FC2) 5306 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5307 break; 5308 default: 5309 break; 5310 } 5311 5312 return {SPF_UNKNOWN, SPNB_NA, false}; 5313 } 5314 5315 /// Recognize variations of: 5316 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5317 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5318 Value *CmpLHS, Value *CmpRHS, 5319 Value *TrueVal, Value *FalseVal) { 5320 // Swap the select operands and predicate to match the patterns below. 5321 if (CmpRHS != TrueVal) { 5322 Pred = ICmpInst::getSwappedPredicate(Pred); 5323 std::swap(TrueVal, FalseVal); 5324 } 5325 const APInt *C1; 5326 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5327 const APInt *C2; 5328 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5329 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5330 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5331 return {SPF_SMAX, SPNB_NA, false}; 5332 5333 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5334 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5335 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5336 return {SPF_SMIN, SPNB_NA, false}; 5337 5338 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5339 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5340 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5341 return {SPF_UMAX, SPNB_NA, false}; 5342 5343 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5344 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5345 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5346 return {SPF_UMIN, SPNB_NA, false}; 5347 } 5348 return {SPF_UNKNOWN, SPNB_NA, false}; 5349 } 5350 5351 /// Recognize variations of: 5352 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5353 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5354 Value *CmpLHS, Value *CmpRHS, 5355 Value *TVal, Value *FVal, 5356 unsigned Depth) { 5357 // TODO: Allow FP min/max with nnan/nsz. 5358 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5359 5360 Value *A = nullptr, *B = nullptr; 5361 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5362 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5363 return {SPF_UNKNOWN, SPNB_NA, false}; 5364 5365 Value *C = nullptr, *D = nullptr; 5366 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5367 if (L.Flavor != R.Flavor) 5368 return {SPF_UNKNOWN, SPNB_NA, false}; 5369 5370 // We have something like: x Pred y ? min(a, b) : min(c, d). 5371 // Try to match the compare to the min/max operations of the select operands. 5372 // First, make sure we have the right compare predicate. 5373 switch (L.Flavor) { 5374 case SPF_SMIN: 5375 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5376 Pred = ICmpInst::getSwappedPredicate(Pred); 5377 std::swap(CmpLHS, CmpRHS); 5378 } 5379 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5380 break; 5381 return {SPF_UNKNOWN, SPNB_NA, false}; 5382 case SPF_SMAX: 5383 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5384 Pred = ICmpInst::getSwappedPredicate(Pred); 5385 std::swap(CmpLHS, CmpRHS); 5386 } 5387 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5388 break; 5389 return {SPF_UNKNOWN, SPNB_NA, false}; 5390 case SPF_UMIN: 5391 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5392 Pred = ICmpInst::getSwappedPredicate(Pred); 5393 std::swap(CmpLHS, CmpRHS); 5394 } 5395 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5396 break; 5397 return {SPF_UNKNOWN, SPNB_NA, false}; 5398 case SPF_UMAX: 5399 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5400 Pred = ICmpInst::getSwappedPredicate(Pred); 5401 std::swap(CmpLHS, CmpRHS); 5402 } 5403 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5404 break; 5405 return {SPF_UNKNOWN, SPNB_NA, false}; 5406 default: 5407 return {SPF_UNKNOWN, SPNB_NA, false}; 5408 } 5409 5410 // If there is a common operand in the already matched min/max and the other 5411 // min/max operands match the compare operands (either directly or inverted), 5412 // then this is min/max of the same flavor. 5413 5414 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5415 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5416 if (D == B) { 5417 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5418 match(A, m_Not(m_Specific(CmpRHS))))) 5419 return {L.Flavor, SPNB_NA, false}; 5420 } 5421 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5422 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5423 if (C == B) { 5424 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5425 match(A, m_Not(m_Specific(CmpRHS))))) 5426 return {L.Flavor, SPNB_NA, false}; 5427 } 5428 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5429 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5430 if (D == A) { 5431 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5432 match(B, m_Not(m_Specific(CmpRHS))))) 5433 return {L.Flavor, SPNB_NA, false}; 5434 } 5435 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5436 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5437 if (C == A) { 5438 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5439 match(B, m_Not(m_Specific(CmpRHS))))) 5440 return {L.Flavor, SPNB_NA, false}; 5441 } 5442 5443 return {SPF_UNKNOWN, SPNB_NA, false}; 5444 } 5445 5446 /// If the input value is the result of a 'not' op, constant integer, or vector 5447 /// splat of a constant integer, return the bitwise-not source value. 5448 /// TODO: This could be extended to handle non-splat vector integer constants. 5449 static Value *getNotValue(Value *V) { 5450 Value *NotV; 5451 if (match(V, m_Not(m_Value(NotV)))) 5452 return NotV; 5453 5454 const APInt *C; 5455 if (match(V, m_APInt(C))) 5456 return ConstantInt::get(V->getType(), ~(*C)); 5457 5458 return nullptr; 5459 } 5460 5461 /// Match non-obvious integer minimum and maximum sequences. 5462 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5463 Value *CmpLHS, Value *CmpRHS, 5464 Value *TrueVal, Value *FalseVal, 5465 Value *&LHS, Value *&RHS, 5466 unsigned Depth) { 5467 // Assume success. If there's no match, callers should not use these anyway. 5468 LHS = TrueVal; 5469 RHS = FalseVal; 5470 5471 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5472 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5473 return SPR; 5474 5475 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5476 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5477 return SPR; 5478 5479 // Look through 'not' ops to find disguised min/max. 5480 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5481 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5482 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5483 switch (Pred) { 5484 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5485 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5486 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5487 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5488 default: break; 5489 } 5490 } 5491 5492 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5493 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5494 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5495 switch (Pred) { 5496 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5497 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5498 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5499 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5500 default: break; 5501 } 5502 } 5503 5504 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5505 return {SPF_UNKNOWN, SPNB_NA, false}; 5506 5507 // Z = X -nsw Y 5508 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5509 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5510 if (match(TrueVal, m_Zero()) && 5511 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5512 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5513 5514 // Z = X -nsw Y 5515 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5516 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5517 if (match(FalseVal, m_Zero()) && 5518 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5519 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5520 5521 const APInt *C1; 5522 if (!match(CmpRHS, m_APInt(C1))) 5523 return {SPF_UNKNOWN, SPNB_NA, false}; 5524 5525 // An unsigned min/max can be written with a signed compare. 5526 const APInt *C2; 5527 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5528 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5529 // Is the sign bit set? 5530 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5531 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5532 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5533 C2->isMaxSignedValue()) 5534 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5535 5536 // Is the sign bit clear? 5537 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5538 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5539 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5540 C2->isMinSignedValue()) 5541 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5542 } 5543 5544 return {SPF_UNKNOWN, SPNB_NA, false}; 5545 } 5546 5547 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5548 assert(X && Y && "Invalid operand"); 5549 5550 // X = sub (0, Y) || X = sub nsw (0, Y) 5551 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5552 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5553 return true; 5554 5555 // Y = sub (0, X) || Y = sub nsw (0, X) 5556 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5557 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5558 return true; 5559 5560 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5561 Value *A, *B; 5562 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5563 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5564 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5565 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5566 } 5567 5568 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5569 FastMathFlags FMF, 5570 Value *CmpLHS, Value *CmpRHS, 5571 Value *TrueVal, Value *FalseVal, 5572 Value *&LHS, Value *&RHS, 5573 unsigned Depth) { 5574 if (CmpInst::isFPPredicate(Pred)) { 5575 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5576 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5577 // purpose of identifying min/max. Disregard vector constants with undefined 5578 // elements because those can not be back-propagated for analysis. 5579 Value *OutputZeroVal = nullptr; 5580 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5581 !cast<Constant>(TrueVal)->containsUndefElement()) 5582 OutputZeroVal = TrueVal; 5583 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5584 !cast<Constant>(FalseVal)->containsUndefElement()) 5585 OutputZeroVal = FalseVal; 5586 5587 if (OutputZeroVal) { 5588 if (match(CmpLHS, m_AnyZeroFP())) 5589 CmpLHS = OutputZeroVal; 5590 if (match(CmpRHS, m_AnyZeroFP())) 5591 CmpRHS = OutputZeroVal; 5592 } 5593 } 5594 5595 LHS = CmpLHS; 5596 RHS = CmpRHS; 5597 5598 // Signed zero may return inconsistent results between implementations. 5599 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5600 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5601 // Therefore, we behave conservatively and only proceed if at least one of the 5602 // operands is known to not be zero or if we don't care about signed zero. 5603 switch (Pred) { 5604 default: break; 5605 // FIXME: Include OGT/OLT/UGT/ULT. 5606 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5607 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5608 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5609 !isKnownNonZero(CmpRHS)) 5610 return {SPF_UNKNOWN, SPNB_NA, false}; 5611 } 5612 5613 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5614 bool Ordered = false; 5615 5616 // When given one NaN and one non-NaN input: 5617 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5618 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5619 // ordered comparison fails), which could be NaN or non-NaN. 5620 // so here we discover exactly what NaN behavior is required/accepted. 5621 if (CmpInst::isFPPredicate(Pred)) { 5622 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5623 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5624 5625 if (LHSSafe && RHSSafe) { 5626 // Both operands are known non-NaN. 5627 NaNBehavior = SPNB_RETURNS_ANY; 5628 } else if (CmpInst::isOrdered(Pred)) { 5629 // An ordered comparison will return false when given a NaN, so it 5630 // returns the RHS. 5631 Ordered = true; 5632 if (LHSSafe) 5633 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5634 NaNBehavior = SPNB_RETURNS_NAN; 5635 else if (RHSSafe) 5636 NaNBehavior = SPNB_RETURNS_OTHER; 5637 else 5638 // Completely unsafe. 5639 return {SPF_UNKNOWN, SPNB_NA, false}; 5640 } else { 5641 Ordered = false; 5642 // An unordered comparison will return true when given a NaN, so it 5643 // returns the LHS. 5644 if (LHSSafe) 5645 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5646 NaNBehavior = SPNB_RETURNS_OTHER; 5647 else if (RHSSafe) 5648 NaNBehavior = SPNB_RETURNS_NAN; 5649 else 5650 // Completely unsafe. 5651 return {SPF_UNKNOWN, SPNB_NA, false}; 5652 } 5653 } 5654 5655 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5656 std::swap(CmpLHS, CmpRHS); 5657 Pred = CmpInst::getSwappedPredicate(Pred); 5658 if (NaNBehavior == SPNB_RETURNS_NAN) 5659 NaNBehavior = SPNB_RETURNS_OTHER; 5660 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5661 NaNBehavior = SPNB_RETURNS_NAN; 5662 Ordered = !Ordered; 5663 } 5664 5665 // ([if]cmp X, Y) ? X : Y 5666 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5667 switch (Pred) { 5668 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5669 case ICmpInst::ICMP_UGT: 5670 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5671 case ICmpInst::ICMP_SGT: 5672 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5673 case ICmpInst::ICMP_ULT: 5674 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5675 case ICmpInst::ICMP_SLT: 5676 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5677 case FCmpInst::FCMP_UGT: 5678 case FCmpInst::FCMP_UGE: 5679 case FCmpInst::FCMP_OGT: 5680 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5681 case FCmpInst::FCMP_ULT: 5682 case FCmpInst::FCMP_ULE: 5683 case FCmpInst::FCMP_OLT: 5684 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5685 } 5686 } 5687 5688 if (isKnownNegation(TrueVal, FalseVal)) { 5689 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5690 // match against either LHS or sext(LHS). 5691 auto MaybeSExtCmpLHS = 5692 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5693 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5694 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5695 if (match(TrueVal, MaybeSExtCmpLHS)) { 5696 // Set the return values. If the compare uses the negated value (-X >s 0), 5697 // swap the return values because the negated value is always 'RHS'. 5698 LHS = TrueVal; 5699 RHS = FalseVal; 5700 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5701 std::swap(LHS, RHS); 5702 5703 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5704 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5705 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5706 return {SPF_ABS, SPNB_NA, false}; 5707 5708 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5709 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5710 return {SPF_ABS, SPNB_NA, false}; 5711 5712 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5713 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5714 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5715 return {SPF_NABS, SPNB_NA, false}; 5716 } 5717 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5718 // Set the return values. If the compare uses the negated value (-X >s 0), 5719 // swap the return values because the negated value is always 'RHS'. 5720 LHS = FalseVal; 5721 RHS = TrueVal; 5722 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5723 std::swap(LHS, RHS); 5724 5725 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5726 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5727 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5728 return {SPF_NABS, SPNB_NA, false}; 5729 5730 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5731 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5732 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5733 return {SPF_ABS, SPNB_NA, false}; 5734 } 5735 } 5736 5737 if (CmpInst::isIntPredicate(Pred)) 5738 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5739 5740 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5741 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5742 // semantics than minNum. Be conservative in such case. 5743 if (NaNBehavior != SPNB_RETURNS_ANY || 5744 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5745 !isKnownNonZero(CmpRHS))) 5746 return {SPF_UNKNOWN, SPNB_NA, false}; 5747 5748 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5749 } 5750 5751 /// Helps to match a select pattern in case of a type mismatch. 5752 /// 5753 /// The function processes the case when type of true and false values of a 5754 /// select instruction differs from type of the cmp instruction operands because 5755 /// of a cast instruction. The function checks if it is legal to move the cast 5756 /// operation after "select". If yes, it returns the new second value of 5757 /// "select" (with the assumption that cast is moved): 5758 /// 1. As operand of cast instruction when both values of "select" are same cast 5759 /// instructions. 5760 /// 2. As restored constant (by applying reverse cast operation) when the first 5761 /// value of the "select" is a cast operation and the second value is a 5762 /// constant. 5763 /// NOTE: We return only the new second value because the first value could be 5764 /// accessed as operand of cast instruction. 5765 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5766 Instruction::CastOps *CastOp) { 5767 auto *Cast1 = dyn_cast<CastInst>(V1); 5768 if (!Cast1) 5769 return nullptr; 5770 5771 *CastOp = Cast1->getOpcode(); 5772 Type *SrcTy = Cast1->getSrcTy(); 5773 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5774 // If V1 and V2 are both the same cast from the same type, look through V1. 5775 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5776 return Cast2->getOperand(0); 5777 return nullptr; 5778 } 5779 5780 auto *C = dyn_cast<Constant>(V2); 5781 if (!C) 5782 return nullptr; 5783 5784 Constant *CastedTo = nullptr; 5785 switch (*CastOp) { 5786 case Instruction::ZExt: 5787 if (CmpI->isUnsigned()) 5788 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5789 break; 5790 case Instruction::SExt: 5791 if (CmpI->isSigned()) 5792 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5793 break; 5794 case Instruction::Trunc: 5795 Constant *CmpConst; 5796 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5797 CmpConst->getType() == SrcTy) { 5798 // Here we have the following case: 5799 // 5800 // %cond = cmp iN %x, CmpConst 5801 // %tr = trunc iN %x to iK 5802 // %narrowsel = select i1 %cond, iK %t, iK C 5803 // 5804 // We can always move trunc after select operation: 5805 // 5806 // %cond = cmp iN %x, CmpConst 5807 // %widesel = select i1 %cond, iN %x, iN CmpConst 5808 // %tr = trunc iN %widesel to iK 5809 // 5810 // Note that C could be extended in any way because we don't care about 5811 // upper bits after truncation. It can't be abs pattern, because it would 5812 // look like: 5813 // 5814 // select i1 %cond, x, -x. 5815 // 5816 // So only min/max pattern could be matched. Such match requires widened C 5817 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5818 // CmpConst == C is checked below. 5819 CastedTo = CmpConst; 5820 } else { 5821 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5822 } 5823 break; 5824 case Instruction::FPTrunc: 5825 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5826 break; 5827 case Instruction::FPExt: 5828 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5829 break; 5830 case Instruction::FPToUI: 5831 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5832 break; 5833 case Instruction::FPToSI: 5834 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5835 break; 5836 case Instruction::UIToFP: 5837 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5838 break; 5839 case Instruction::SIToFP: 5840 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5841 break; 5842 default: 5843 break; 5844 } 5845 5846 if (!CastedTo) 5847 return nullptr; 5848 5849 // Make sure the cast doesn't lose any information. 5850 Constant *CastedBack = 5851 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5852 if (CastedBack != C) 5853 return nullptr; 5854 5855 return CastedTo; 5856 } 5857 5858 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5859 Instruction::CastOps *CastOp, 5860 unsigned Depth) { 5861 if (Depth >= MaxAnalysisRecursionDepth) 5862 return {SPF_UNKNOWN, SPNB_NA, false}; 5863 5864 SelectInst *SI = dyn_cast<SelectInst>(V); 5865 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5866 5867 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5868 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5869 5870 Value *TrueVal = SI->getTrueValue(); 5871 Value *FalseVal = SI->getFalseValue(); 5872 5873 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5874 CastOp, Depth); 5875 } 5876 5877 SelectPatternResult llvm::matchDecomposedSelectPattern( 5878 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5879 Instruction::CastOps *CastOp, unsigned Depth) { 5880 CmpInst::Predicate Pred = CmpI->getPredicate(); 5881 Value *CmpLHS = CmpI->getOperand(0); 5882 Value *CmpRHS = CmpI->getOperand(1); 5883 FastMathFlags FMF; 5884 if (isa<FPMathOperator>(CmpI)) 5885 FMF = CmpI->getFastMathFlags(); 5886 5887 // Bail out early. 5888 if (CmpI->isEquality()) 5889 return {SPF_UNKNOWN, SPNB_NA, false}; 5890 5891 // Deal with type mismatches. 5892 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5893 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5894 // If this is a potential fmin/fmax with a cast to integer, then ignore 5895 // -0.0 because there is no corresponding integer value. 5896 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5897 FMF.setNoSignedZeros(); 5898 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5899 cast<CastInst>(TrueVal)->getOperand(0), C, 5900 LHS, RHS, Depth); 5901 } 5902 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5903 // If this is a potential fmin/fmax with a cast to integer, then ignore 5904 // -0.0 because there is no corresponding integer value. 5905 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5906 FMF.setNoSignedZeros(); 5907 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5908 C, cast<CastInst>(FalseVal)->getOperand(0), 5909 LHS, RHS, Depth); 5910 } 5911 } 5912 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5913 LHS, RHS, Depth); 5914 } 5915 5916 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5917 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5918 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5919 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5920 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5921 if (SPF == SPF_FMINNUM) 5922 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5923 if (SPF == SPF_FMAXNUM) 5924 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5925 llvm_unreachable("unhandled!"); 5926 } 5927 5928 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5929 if (SPF == SPF_SMIN) return SPF_SMAX; 5930 if (SPF == SPF_UMIN) return SPF_UMAX; 5931 if (SPF == SPF_SMAX) return SPF_SMIN; 5932 if (SPF == SPF_UMAX) return SPF_UMIN; 5933 llvm_unreachable("unhandled!"); 5934 } 5935 5936 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5937 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5938 } 5939 5940 std::pair<Intrinsic::ID, bool> 5941 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5942 // Check if VL contains select instructions that can be folded into a min/max 5943 // vector intrinsic and return the intrinsic if it is possible. 5944 // TODO: Support floating point min/max. 5945 bool AllCmpSingleUse = true; 5946 SelectPatternResult SelectPattern; 5947 SelectPattern.Flavor = SPF_UNKNOWN; 5948 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5949 Value *LHS, *RHS; 5950 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5951 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5952 CurrentPattern.Flavor == SPF_FMINNUM || 5953 CurrentPattern.Flavor == SPF_FMAXNUM || 5954 !I->getType()->isIntOrIntVectorTy()) 5955 return false; 5956 if (SelectPattern.Flavor != SPF_UNKNOWN && 5957 SelectPattern.Flavor != CurrentPattern.Flavor) 5958 return false; 5959 SelectPattern = CurrentPattern; 5960 AllCmpSingleUse &= 5961 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 5962 return true; 5963 })) { 5964 switch (SelectPattern.Flavor) { 5965 case SPF_SMIN: 5966 return {Intrinsic::smin, AllCmpSingleUse}; 5967 case SPF_UMIN: 5968 return {Intrinsic::umin, AllCmpSingleUse}; 5969 case SPF_SMAX: 5970 return {Intrinsic::smax, AllCmpSingleUse}; 5971 case SPF_UMAX: 5972 return {Intrinsic::umax, AllCmpSingleUse}; 5973 default: 5974 llvm_unreachable("unexpected select pattern flavor"); 5975 } 5976 } 5977 return {Intrinsic::not_intrinsic, false}; 5978 } 5979 5980 /// Return true if "icmp Pred LHS RHS" is always true. 5981 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5982 const Value *RHS, const DataLayout &DL, 5983 unsigned Depth) { 5984 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5985 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5986 return true; 5987 5988 switch (Pred) { 5989 default: 5990 return false; 5991 5992 case CmpInst::ICMP_SLE: { 5993 const APInt *C; 5994 5995 // LHS s<= LHS +_{nsw} C if C >= 0 5996 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5997 return !C->isNegative(); 5998 return false; 5999 } 6000 6001 case CmpInst::ICMP_ULE: { 6002 const APInt *C; 6003 6004 // LHS u<= LHS +_{nuw} C for any C 6005 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6006 return true; 6007 6008 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6009 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6010 const Value *&X, 6011 const APInt *&CA, const APInt *&CB) { 6012 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6013 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6014 return true; 6015 6016 // If X & C == 0 then (X | C) == X +_{nuw} C 6017 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6018 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6019 KnownBits Known(CA->getBitWidth()); 6020 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6021 /*CxtI*/ nullptr, /*DT*/ nullptr); 6022 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6023 return true; 6024 } 6025 6026 return false; 6027 }; 6028 6029 const Value *X; 6030 const APInt *CLHS, *CRHS; 6031 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6032 return CLHS->ule(*CRHS); 6033 6034 return false; 6035 } 6036 } 6037 } 6038 6039 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6040 /// ALHS ARHS" is true. Otherwise, return None. 6041 static Optional<bool> 6042 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6043 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6044 const DataLayout &DL, unsigned Depth) { 6045 switch (Pred) { 6046 default: 6047 return None; 6048 6049 case CmpInst::ICMP_SLT: 6050 case CmpInst::ICMP_SLE: 6051 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6052 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6053 return true; 6054 return None; 6055 6056 case CmpInst::ICMP_ULT: 6057 case CmpInst::ICMP_ULE: 6058 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6059 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6060 return true; 6061 return None; 6062 } 6063 } 6064 6065 /// Return true if the operands of the two compares match. IsSwappedOps is true 6066 /// when the operands match, but are swapped. 6067 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6068 const Value *BLHS, const Value *BRHS, 6069 bool &IsSwappedOps) { 6070 6071 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6072 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6073 return IsMatchingOps || IsSwappedOps; 6074 } 6075 6076 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6077 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6078 /// Otherwise, return None if we can't infer anything. 6079 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6080 CmpInst::Predicate BPred, 6081 bool AreSwappedOps) { 6082 // Canonicalize the predicate as if the operands were not commuted. 6083 if (AreSwappedOps) 6084 BPred = ICmpInst::getSwappedPredicate(BPred); 6085 6086 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6087 return true; 6088 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6089 return false; 6090 6091 return None; 6092 } 6093 6094 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6095 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6096 /// Otherwise, return None if we can't infer anything. 6097 static Optional<bool> 6098 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6099 const ConstantInt *C1, 6100 CmpInst::Predicate BPred, 6101 const ConstantInt *C2) { 6102 ConstantRange DomCR = 6103 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6104 ConstantRange CR = 6105 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6106 ConstantRange Intersection = DomCR.intersectWith(CR); 6107 ConstantRange Difference = DomCR.difference(CR); 6108 if (Intersection.isEmptySet()) 6109 return false; 6110 if (Difference.isEmptySet()) 6111 return true; 6112 return None; 6113 } 6114 6115 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6116 /// false. Otherwise, return None if we can't infer anything. 6117 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6118 CmpInst::Predicate BPred, 6119 const Value *BLHS, const Value *BRHS, 6120 const DataLayout &DL, bool LHSIsTrue, 6121 unsigned Depth) { 6122 Value *ALHS = LHS->getOperand(0); 6123 Value *ARHS = LHS->getOperand(1); 6124 6125 // The rest of the logic assumes the LHS condition is true. If that's not the 6126 // case, invert the predicate to make it so. 6127 CmpInst::Predicate APred = 6128 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6129 6130 // Can we infer anything when the two compares have matching operands? 6131 bool AreSwappedOps; 6132 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6133 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6134 APred, BPred, AreSwappedOps)) 6135 return Implication; 6136 // No amount of additional analysis will infer the second condition, so 6137 // early exit. 6138 return None; 6139 } 6140 6141 // Can we infer anything when the LHS operands match and the RHS operands are 6142 // constants (not necessarily matching)? 6143 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6144 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6145 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6146 return Implication; 6147 // No amount of additional analysis will infer the second condition, so 6148 // early exit. 6149 return None; 6150 } 6151 6152 if (APred == BPred) 6153 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6154 return None; 6155 } 6156 6157 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6158 /// false. Otherwise, return None if we can't infer anything. We expect the 6159 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6160 static Optional<bool> 6161 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6162 const Value *RHSOp0, const Value *RHSOp1, 6163 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6164 // The LHS must be an 'or', 'and', or a 'select' instruction. 6165 assert((LHS->getOpcode() == Instruction::And || 6166 LHS->getOpcode() == Instruction::Or || 6167 LHS->getOpcode() == Instruction::Select) && 6168 "Expected LHS to be 'and', 'or', or 'select'."); 6169 6170 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6171 6172 // If the result of an 'or' is false, then we know both legs of the 'or' are 6173 // false. Similarly, if the result of an 'and' is true, then we know both 6174 // legs of the 'and' are true. 6175 const Value *ALHS, *ARHS; 6176 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6177 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6178 // FIXME: Make this non-recursion. 6179 if (Optional<bool> Implication = isImpliedCondition( 6180 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6181 return Implication; 6182 if (Optional<bool> Implication = isImpliedCondition( 6183 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6184 return Implication; 6185 return None; 6186 } 6187 return None; 6188 } 6189 6190 Optional<bool> 6191 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6192 const Value *RHSOp0, const Value *RHSOp1, 6193 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6194 // Bail out when we hit the limit. 6195 if (Depth == MaxAnalysisRecursionDepth) 6196 return None; 6197 6198 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6199 // example. 6200 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6201 return None; 6202 6203 Type *OpTy = LHS->getType(); 6204 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6205 6206 // FIXME: Extending the code below to handle vectors. 6207 if (OpTy->isVectorTy()) 6208 return None; 6209 6210 assert(OpTy->isIntegerTy(1) && "implied by above"); 6211 6212 // Both LHS and RHS are icmps. 6213 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6214 if (LHSCmp) 6215 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6216 Depth); 6217 6218 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6219 /// the RHS to be an icmp. 6220 /// FIXME: Add support for and/or/select on the RHS. 6221 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6222 if ((LHSI->getOpcode() == Instruction::And || 6223 LHSI->getOpcode() == Instruction::Or || 6224 LHSI->getOpcode() == Instruction::Select)) 6225 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6226 Depth); 6227 } 6228 return None; 6229 } 6230 6231 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6232 const DataLayout &DL, bool LHSIsTrue, 6233 unsigned Depth) { 6234 // LHS ==> RHS by definition 6235 if (LHS == RHS) 6236 return LHSIsTrue; 6237 6238 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6239 if (RHSCmp) 6240 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6241 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6242 LHSIsTrue, Depth); 6243 return None; 6244 } 6245 6246 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6247 // condition dominating ContextI or nullptr, if no condition is found. 6248 static std::pair<Value *, bool> 6249 getDomPredecessorCondition(const Instruction *ContextI) { 6250 if (!ContextI || !ContextI->getParent()) 6251 return {nullptr, false}; 6252 6253 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6254 // dominator tree (eg, from a SimplifyQuery) instead? 6255 const BasicBlock *ContextBB = ContextI->getParent(); 6256 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6257 if (!PredBB) 6258 return {nullptr, false}; 6259 6260 // We need a conditional branch in the predecessor. 6261 Value *PredCond; 6262 BasicBlock *TrueBB, *FalseBB; 6263 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6264 return {nullptr, false}; 6265 6266 // The branch should get simplified. Don't bother simplifying this condition. 6267 if (TrueBB == FalseBB) 6268 return {nullptr, false}; 6269 6270 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6271 "Predecessor block does not point to successor?"); 6272 6273 // Is this condition implied by the predecessor condition? 6274 return {PredCond, TrueBB == ContextBB}; 6275 } 6276 6277 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6278 const Instruction *ContextI, 6279 const DataLayout &DL) { 6280 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6281 auto PredCond = getDomPredecessorCondition(ContextI); 6282 if (PredCond.first) 6283 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6284 return None; 6285 } 6286 6287 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6288 const Value *LHS, const Value *RHS, 6289 const Instruction *ContextI, 6290 const DataLayout &DL) { 6291 auto PredCond = getDomPredecessorCondition(ContextI); 6292 if (PredCond.first) 6293 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6294 PredCond.second); 6295 return None; 6296 } 6297 6298 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6299 APInt &Upper, const InstrInfoQuery &IIQ) { 6300 unsigned Width = Lower.getBitWidth(); 6301 const APInt *C; 6302 switch (BO.getOpcode()) { 6303 case Instruction::Add: 6304 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6305 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6306 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6307 // 'add nuw x, C' produces [C, UINT_MAX]. 6308 Lower = *C; 6309 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6310 if (C->isNegative()) { 6311 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6312 Lower = APInt::getSignedMinValue(Width); 6313 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6314 } else { 6315 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6316 Lower = APInt::getSignedMinValue(Width) + *C; 6317 Upper = APInt::getSignedMaxValue(Width) + 1; 6318 } 6319 } 6320 } 6321 break; 6322 6323 case Instruction::And: 6324 if (match(BO.getOperand(1), m_APInt(C))) 6325 // 'and x, C' produces [0, C]. 6326 Upper = *C + 1; 6327 break; 6328 6329 case Instruction::Or: 6330 if (match(BO.getOperand(1), m_APInt(C))) 6331 // 'or x, C' produces [C, UINT_MAX]. 6332 Lower = *C; 6333 break; 6334 6335 case Instruction::AShr: 6336 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6337 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6338 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6339 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6340 } else if (match(BO.getOperand(0), m_APInt(C))) { 6341 unsigned ShiftAmount = Width - 1; 6342 if (!C->isNullValue() && IIQ.isExact(&BO)) 6343 ShiftAmount = C->countTrailingZeros(); 6344 if (C->isNegative()) { 6345 // 'ashr C, x' produces [C, C >> (Width-1)] 6346 Lower = *C; 6347 Upper = C->ashr(ShiftAmount) + 1; 6348 } else { 6349 // 'ashr C, x' produces [C >> (Width-1), C] 6350 Lower = C->ashr(ShiftAmount); 6351 Upper = *C + 1; 6352 } 6353 } 6354 break; 6355 6356 case Instruction::LShr: 6357 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6358 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6359 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6360 } else if (match(BO.getOperand(0), m_APInt(C))) { 6361 // 'lshr C, x' produces [C >> (Width-1), C]. 6362 unsigned ShiftAmount = Width - 1; 6363 if (!C->isNullValue() && IIQ.isExact(&BO)) 6364 ShiftAmount = C->countTrailingZeros(); 6365 Lower = C->lshr(ShiftAmount); 6366 Upper = *C + 1; 6367 } 6368 break; 6369 6370 case Instruction::Shl: 6371 if (match(BO.getOperand(0), m_APInt(C))) { 6372 if (IIQ.hasNoUnsignedWrap(&BO)) { 6373 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6374 Lower = *C; 6375 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6376 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6377 if (C->isNegative()) { 6378 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6379 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6380 Lower = C->shl(ShiftAmount); 6381 Upper = *C + 1; 6382 } else { 6383 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6384 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6385 Lower = *C; 6386 Upper = C->shl(ShiftAmount) + 1; 6387 } 6388 } 6389 } 6390 break; 6391 6392 case Instruction::SDiv: 6393 if (match(BO.getOperand(1), m_APInt(C))) { 6394 APInt IntMin = APInt::getSignedMinValue(Width); 6395 APInt IntMax = APInt::getSignedMaxValue(Width); 6396 if (C->isAllOnesValue()) { 6397 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6398 // where C != -1 and C != 0 and C != 1 6399 Lower = IntMin + 1; 6400 Upper = IntMax + 1; 6401 } else if (C->countLeadingZeros() < Width - 1) { 6402 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6403 // where C != -1 and C != 0 and C != 1 6404 Lower = IntMin.sdiv(*C); 6405 Upper = IntMax.sdiv(*C); 6406 if (Lower.sgt(Upper)) 6407 std::swap(Lower, Upper); 6408 Upper = Upper + 1; 6409 assert(Upper != Lower && "Upper part of range has wrapped!"); 6410 } 6411 } else if (match(BO.getOperand(0), m_APInt(C))) { 6412 if (C->isMinSignedValue()) { 6413 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6414 Lower = *C; 6415 Upper = Lower.lshr(1) + 1; 6416 } else { 6417 // 'sdiv C, x' produces [-|C|, |C|]. 6418 Upper = C->abs() + 1; 6419 Lower = (-Upper) + 1; 6420 } 6421 } 6422 break; 6423 6424 case Instruction::UDiv: 6425 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6426 // 'udiv x, C' produces [0, UINT_MAX / C]. 6427 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6428 } else if (match(BO.getOperand(0), m_APInt(C))) { 6429 // 'udiv C, x' produces [0, C]. 6430 Upper = *C + 1; 6431 } 6432 break; 6433 6434 case Instruction::SRem: 6435 if (match(BO.getOperand(1), m_APInt(C))) { 6436 // 'srem x, C' produces (-|C|, |C|). 6437 Upper = C->abs(); 6438 Lower = (-Upper) + 1; 6439 } 6440 break; 6441 6442 case Instruction::URem: 6443 if (match(BO.getOperand(1), m_APInt(C))) 6444 // 'urem x, C' produces [0, C). 6445 Upper = *C; 6446 break; 6447 6448 default: 6449 break; 6450 } 6451 } 6452 6453 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6454 APInt &Upper) { 6455 unsigned Width = Lower.getBitWidth(); 6456 const APInt *C; 6457 switch (II.getIntrinsicID()) { 6458 case Intrinsic::ctpop: 6459 case Intrinsic::ctlz: 6460 case Intrinsic::cttz: 6461 // Maximum of set/clear bits is the bit width. 6462 assert(Lower == 0 && "Expected lower bound to be zero"); 6463 Upper = Width + 1; 6464 break; 6465 case Intrinsic::uadd_sat: 6466 // uadd.sat(x, C) produces [C, UINT_MAX]. 6467 if (match(II.getOperand(0), m_APInt(C)) || 6468 match(II.getOperand(1), m_APInt(C))) 6469 Lower = *C; 6470 break; 6471 case Intrinsic::sadd_sat: 6472 if (match(II.getOperand(0), m_APInt(C)) || 6473 match(II.getOperand(1), m_APInt(C))) { 6474 if (C->isNegative()) { 6475 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6476 Lower = APInt::getSignedMinValue(Width); 6477 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6478 } else { 6479 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6480 Lower = APInt::getSignedMinValue(Width) + *C; 6481 Upper = APInt::getSignedMaxValue(Width) + 1; 6482 } 6483 } 6484 break; 6485 case Intrinsic::usub_sat: 6486 // usub.sat(C, x) produces [0, C]. 6487 if (match(II.getOperand(0), m_APInt(C))) 6488 Upper = *C + 1; 6489 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6490 else if (match(II.getOperand(1), m_APInt(C))) 6491 Upper = APInt::getMaxValue(Width) - *C + 1; 6492 break; 6493 case Intrinsic::ssub_sat: 6494 if (match(II.getOperand(0), m_APInt(C))) { 6495 if (C->isNegative()) { 6496 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6497 Lower = APInt::getSignedMinValue(Width); 6498 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6499 } else { 6500 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6501 Lower = *C - APInt::getSignedMaxValue(Width); 6502 Upper = APInt::getSignedMaxValue(Width) + 1; 6503 } 6504 } else if (match(II.getOperand(1), m_APInt(C))) { 6505 if (C->isNegative()) { 6506 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6507 Lower = APInt::getSignedMinValue(Width) - *C; 6508 Upper = APInt::getSignedMaxValue(Width) + 1; 6509 } else { 6510 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6511 Lower = APInt::getSignedMinValue(Width); 6512 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6513 } 6514 } 6515 break; 6516 case Intrinsic::umin: 6517 case Intrinsic::umax: 6518 case Intrinsic::smin: 6519 case Intrinsic::smax: 6520 if (!match(II.getOperand(0), m_APInt(C)) && 6521 !match(II.getOperand(1), m_APInt(C))) 6522 break; 6523 6524 switch (II.getIntrinsicID()) { 6525 case Intrinsic::umin: 6526 Upper = *C + 1; 6527 break; 6528 case Intrinsic::umax: 6529 Lower = *C; 6530 break; 6531 case Intrinsic::smin: 6532 Lower = APInt::getSignedMinValue(Width); 6533 Upper = *C + 1; 6534 break; 6535 case Intrinsic::smax: 6536 Lower = *C; 6537 Upper = APInt::getSignedMaxValue(Width) + 1; 6538 break; 6539 default: 6540 llvm_unreachable("Must be min/max intrinsic"); 6541 } 6542 break; 6543 case Intrinsic::abs: 6544 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6545 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6546 if (match(II.getOperand(1), m_One())) 6547 Upper = APInt::getSignedMaxValue(Width) + 1; 6548 else 6549 Upper = APInt::getSignedMinValue(Width) + 1; 6550 break; 6551 default: 6552 break; 6553 } 6554 } 6555 6556 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6557 APInt &Upper, const InstrInfoQuery &IIQ) { 6558 const Value *LHS = nullptr, *RHS = nullptr; 6559 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6560 if (R.Flavor == SPF_UNKNOWN) 6561 return; 6562 6563 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6564 6565 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6566 // If the negation part of the abs (in RHS) has the NSW flag, 6567 // then the result of abs(X) is [0..SIGNED_MAX], 6568 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6569 Lower = APInt::getNullValue(BitWidth); 6570 if (match(RHS, m_Neg(m_Specific(LHS))) && 6571 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6572 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6573 else 6574 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6575 return; 6576 } 6577 6578 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6579 // The result of -abs(X) is <= 0. 6580 Lower = APInt::getSignedMinValue(BitWidth); 6581 Upper = APInt(BitWidth, 1); 6582 return; 6583 } 6584 6585 const APInt *C; 6586 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6587 return; 6588 6589 switch (R.Flavor) { 6590 case SPF_UMIN: 6591 Upper = *C + 1; 6592 break; 6593 case SPF_UMAX: 6594 Lower = *C; 6595 break; 6596 case SPF_SMIN: 6597 Lower = APInt::getSignedMinValue(BitWidth); 6598 Upper = *C + 1; 6599 break; 6600 case SPF_SMAX: 6601 Lower = *C; 6602 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6603 break; 6604 default: 6605 break; 6606 } 6607 } 6608 6609 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6610 AssumptionCache *AC, 6611 const Instruction *CtxI, 6612 unsigned Depth) { 6613 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6614 6615 if (Depth == MaxAnalysisRecursionDepth) 6616 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6617 6618 const APInt *C; 6619 if (match(V, m_APInt(C))) 6620 return ConstantRange(*C); 6621 6622 InstrInfoQuery IIQ(UseInstrInfo); 6623 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6624 APInt Lower = APInt(BitWidth, 0); 6625 APInt Upper = APInt(BitWidth, 0); 6626 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6627 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6628 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6629 setLimitsForIntrinsic(*II, Lower, Upper); 6630 else if (auto *SI = dyn_cast<SelectInst>(V)) 6631 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6632 6633 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6634 6635 if (auto *I = dyn_cast<Instruction>(V)) 6636 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6637 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6638 6639 if (CtxI && AC) { 6640 // Try to restrict the range based on information from assumptions. 6641 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6642 if (!AssumeVH) 6643 continue; 6644 CallInst *I = cast<CallInst>(AssumeVH); 6645 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6646 "Got assumption for the wrong function!"); 6647 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6648 "must be an assume intrinsic"); 6649 6650 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6651 continue; 6652 Value *Arg = I->getArgOperand(0); 6653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6654 // Currently we just use information from comparisons. 6655 if (!Cmp || Cmp->getOperand(0) != V) 6656 continue; 6657 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6658 AC, I, Depth + 1); 6659 CR = CR.intersectWith( 6660 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6661 } 6662 } 6663 6664 return CR; 6665 } 6666 6667 static Optional<int64_t> 6668 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6669 // Skip over the first indices. 6670 gep_type_iterator GTI = gep_type_begin(GEP); 6671 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6672 /*skip along*/; 6673 6674 // Compute the offset implied by the rest of the indices. 6675 int64_t Offset = 0; 6676 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6677 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6678 if (!OpC) 6679 return None; 6680 if (OpC->isZero()) 6681 continue; // No offset. 6682 6683 // Handle struct indices, which add their field offset to the pointer. 6684 if (StructType *STy = GTI.getStructTypeOrNull()) { 6685 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6686 continue; 6687 } 6688 6689 // Otherwise, we have a sequential type like an array or fixed-length 6690 // vector. Multiply the index by the ElementSize. 6691 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6692 if (Size.isScalable()) 6693 return None; 6694 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6695 } 6696 6697 return Offset; 6698 } 6699 6700 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6701 const DataLayout &DL) { 6702 Ptr1 = Ptr1->stripPointerCasts(); 6703 Ptr2 = Ptr2->stripPointerCasts(); 6704 6705 // Handle the trivial case first. 6706 if (Ptr1 == Ptr2) { 6707 return 0; 6708 } 6709 6710 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6711 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6712 6713 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6714 // as in "P" and "gep P, 1". 6715 // Also do this iteratively to handle the the following case: 6716 // Ptr_t1 = GEP Ptr1, c1 6717 // Ptr_t2 = GEP Ptr_t1, c2 6718 // Ptr2 = GEP Ptr_t2, c3 6719 // where we will return c1+c2+c3. 6720 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6721 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6722 // are the same, and return the difference between offsets. 6723 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6724 const Value *Ptr) -> Optional<int64_t> { 6725 const GEPOperator *GEP_T = GEP; 6726 int64_t OffsetVal = 0; 6727 bool HasSameBase = false; 6728 while (GEP_T) { 6729 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6730 if (!Offset) 6731 return None; 6732 OffsetVal += *Offset; 6733 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6734 if (Op0 == Ptr) { 6735 HasSameBase = true; 6736 break; 6737 } 6738 GEP_T = dyn_cast<GEPOperator>(Op0); 6739 } 6740 if (!HasSameBase) 6741 return None; 6742 return OffsetVal; 6743 }; 6744 6745 if (GEP1) { 6746 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6747 if (Offset) 6748 return -*Offset; 6749 } 6750 if (GEP2) { 6751 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6752 if (Offset) 6753 return Offset; 6754 } 6755 6756 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6757 // base. After that base, they may have some number of common (and 6758 // potentially variable) indices. After that they handle some constant 6759 // offset, which determines their offset from each other. At this point, we 6760 // handle no other case. 6761 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6762 return None; 6763 6764 // Skip any common indices and track the GEP types. 6765 unsigned Idx = 1; 6766 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6767 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6768 break; 6769 6770 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6771 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6772 if (!Offset1 || !Offset2) 6773 return None; 6774 return *Offset2 - *Offset1; 6775 } 6776