1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/Analysis/AssumptionCache.h" 18 #include "llvm/Analysis/InstructionSimplify.h" 19 #include "llvm/Analysis/MemoryBuiltins.h" 20 #include "llvm/Analysis/LoopInfo.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/ConstantRange.h" 23 #include "llvm/IR/Constants.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/GetElementPtrTypeIterator.h" 27 #include "llvm/IR/GlobalAlias.h" 28 #include "llvm/IR/GlobalVariable.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/LLVMContext.h" 32 #include "llvm/IR/Metadata.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Statepoint.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/MathExtras.h" 38 #include <cstring> 39 using namespace llvm; 40 using namespace llvm::PatternMatch; 41 42 const unsigned MaxDepth = 6; 43 44 /// Enable an experimental feature to leverage information about dominating 45 /// conditions to compute known bits. The individual options below control how 46 /// hard we search. The defaults are chosen to be fairly aggressive. If you 47 /// run into compile time problems when testing, scale them back and report 48 /// your findings. 49 static cl::opt<bool> EnableDomConditions("value-tracking-dom-conditions", 50 cl::Hidden, cl::init(false)); 51 52 // This is expensive, so we only do it for the top level query value. 53 // (TODO: evaluate cost vs profit, consider higher thresholds) 54 static cl::opt<unsigned> DomConditionsMaxDepth("dom-conditions-max-depth", 55 cl::Hidden, cl::init(1)); 56 57 /// How many dominating blocks should be scanned looking for dominating 58 /// conditions? 59 static cl::opt<unsigned> DomConditionsMaxDomBlocks("dom-conditions-dom-blocks", 60 cl::Hidden, 61 cl::init(20)); 62 63 // Controls the number of uses of the value searched for possible 64 // dominating comparisons. 65 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 66 cl::Hidden, cl::init(20)); 67 68 // If true, don't consider only compares whose only use is a branch. 69 static cl::opt<bool> DomConditionsSingleCmpUse("dom-conditions-single-cmp-use", 70 cl::Hidden, cl::init(false)); 71 72 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 73 /// 0). For vector types, returns the element type's bitwidth. 74 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 75 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 76 return BitWidth; 77 78 return DL.getPointerTypeSizeInBits(Ty); 79 } 80 81 // Many of these functions have internal versions that take an assumption 82 // exclusion set. This is because of the potential for mutual recursion to 83 // cause computeKnownBits to repeatedly visit the same assume intrinsic. The 84 // classic case of this is assume(x = y), which will attempt to determine 85 // bits in x from bits in y, which will attempt to determine bits in y from 86 // bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 87 // isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 88 // isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so on. 89 typedef SmallPtrSet<const Value *, 8> ExclInvsSet; 90 91 namespace { 92 // Simplifying using an assume can only be done in a particular control-flow 93 // context (the context instruction provides that context). If an assume and 94 // the context instruction are not in the same block then the DT helps in 95 // figuring out if we can use it. 96 struct Query { 97 ExclInvsSet ExclInvs; 98 AssumptionCache *AC; 99 const Instruction *CxtI; 100 const DominatorTree *DT; 101 102 Query(AssumptionCache *AC = nullptr, const Instruction *CxtI = nullptr, 103 const DominatorTree *DT = nullptr) 104 : AC(AC), CxtI(CxtI), DT(DT) {} 105 106 Query(const Query &Q, const Value *NewExcl) 107 : ExclInvs(Q.ExclInvs), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT) { 108 ExclInvs.insert(NewExcl); 109 } 110 }; 111 } // end anonymous namespace 112 113 // Given the provided Value and, potentially, a context instruction, return 114 // the preferred context instruction (if any). 115 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 116 // If we've been provided with a context instruction, then use that (provided 117 // it has been inserted). 118 if (CxtI && CxtI->getParent()) 119 return CxtI; 120 121 // If the value is really an already-inserted instruction, then use that. 122 CxtI = dyn_cast<Instruction>(V); 123 if (CxtI && CxtI->getParent()) 124 return CxtI; 125 126 return nullptr; 127 } 128 129 static void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 130 const DataLayout &DL, unsigned Depth, 131 const Query &Q); 132 133 void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 134 const DataLayout &DL, unsigned Depth, 135 AssumptionCache *AC, const Instruction *CxtI, 136 const DominatorTree *DT) { 137 ::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, 138 Query(AC, safeCxtI(V, CxtI), DT)); 139 } 140 141 bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL, 142 AssumptionCache *AC, const Instruction *CxtI, 143 const DominatorTree *DT) { 144 assert(LHS->getType() == RHS->getType() && 145 "LHS and RHS should have the same type"); 146 assert(LHS->getType()->isIntOrIntVectorTy() && 147 "LHS and RHS should be integers"); 148 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 149 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 150 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 151 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 152 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 153 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 154 } 155 156 static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 157 const DataLayout &DL, unsigned Depth, 158 const Query &Q); 159 160 void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 161 const DataLayout &DL, unsigned Depth, 162 AssumptionCache *AC, const Instruction *CxtI, 163 const DominatorTree *DT) { 164 ::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, 165 Query(AC, safeCxtI(V, CxtI), DT)); 166 } 167 168 static bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 169 const Query &Q, const DataLayout &DL); 170 171 bool llvm::isKnownToBeAPowerOfTwo(Value *V, const DataLayout &DL, bool OrZero, 172 unsigned Depth, AssumptionCache *AC, 173 const Instruction *CxtI, 174 const DominatorTree *DT) { 175 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 176 Query(AC, safeCxtI(V, CxtI), DT), DL); 177 } 178 179 static bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 180 const Query &Q); 181 182 bool llvm::isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 183 AssumptionCache *AC, const Instruction *CxtI, 184 const DominatorTree *DT) { 185 return ::isKnownNonZero(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 186 } 187 188 bool llvm::isKnownNonNegative(Value *V, const DataLayout &DL, unsigned Depth, 189 AssumptionCache *AC, const Instruction *CxtI, 190 const DominatorTree *DT) { 191 bool NonNegative, Negative; 192 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 193 return NonNegative; 194 } 195 196 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 197 const Query &Q); 198 199 bool llvm::isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 200 AssumptionCache *AC, const Instruction *CxtI, 201 const DominatorTree *DT) { 202 return ::isKnownNonEqual(V1, V2, DL, Query(AC, 203 safeCxtI(V1, safeCxtI(V2, CxtI)), 204 DT)); 205 } 206 207 static bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 208 unsigned Depth, const Query &Q); 209 210 bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 211 unsigned Depth, AssumptionCache *AC, 212 const Instruction *CxtI, const DominatorTree *DT) { 213 return ::MaskedValueIsZero(V, Mask, DL, Depth, 214 Query(AC, safeCxtI(V, CxtI), DT)); 215 } 216 217 static unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, 218 unsigned Depth, const Query &Q); 219 220 unsigned llvm::ComputeNumSignBits(Value *V, const DataLayout &DL, 221 unsigned Depth, AssumptionCache *AC, 222 const Instruction *CxtI, 223 const DominatorTree *DT) { 224 return ::ComputeNumSignBits(V, DL, Depth, Query(AC, safeCxtI(V, CxtI), DT)); 225 } 226 227 static void computeKnownBitsAddSub(bool Add, Value *Op0, Value *Op1, bool NSW, 228 APInt &KnownZero, APInt &KnownOne, 229 APInt &KnownZero2, APInt &KnownOne2, 230 const DataLayout &DL, unsigned Depth, 231 const Query &Q) { 232 if (!Add) { 233 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(Op0)) { 234 // We know that the top bits of C-X are clear if X contains less bits 235 // than C (i.e. no wrap-around can happen). For example, 20-X is 236 // positive if we can prove that X is >= 0 and < 16. 237 if (!CLHS->getValue().isNegative()) { 238 unsigned BitWidth = KnownZero.getBitWidth(); 239 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros(); 240 // NLZ can't be BitWidth with no sign bit 241 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1); 242 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 243 244 // If all of the MaskV bits are known to be zero, then we know the 245 // output top bits are zero, because we now know that the output is 246 // from [0-C]. 247 if ((KnownZero2 & MaskV) == MaskV) { 248 unsigned NLZ2 = CLHS->getValue().countLeadingZeros(); 249 // Top bits known zero. 250 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2); 251 } 252 } 253 } 254 } 255 256 unsigned BitWidth = KnownZero.getBitWidth(); 257 258 // If an initial sequence of bits in the result is not needed, the 259 // corresponding bits in the operands are not needed. 260 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 261 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, DL, Depth + 1, Q); 262 computeKnownBits(Op1, KnownZero2, KnownOne2, DL, Depth + 1, Q); 263 264 // Carry in a 1 for a subtract, rather than a 0. 265 APInt CarryIn(BitWidth, 0); 266 if (!Add) { 267 // Sum = LHS + ~RHS + 1 268 std::swap(KnownZero2, KnownOne2); 269 CarryIn.setBit(0); 270 } 271 272 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 273 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 274 275 // Compute known bits of the carry. 276 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 277 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 278 279 // Compute set of known bits (where all three relevant bits are known). 280 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 281 APInt RHSKnown = KnownZero2 | KnownOne2; 282 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 283 APInt Known = LHSKnown & RHSKnown & CarryKnown; 284 285 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 286 "known bits of sum differ"); 287 288 // Compute known bits of the result. 289 KnownZero = ~PossibleSumOne & Known; 290 KnownOne = PossibleSumOne & Known; 291 292 // Are we still trying to solve for the sign bit? 293 if (!Known.isNegative()) { 294 if (NSW) { 295 // Adding two non-negative numbers, or subtracting a negative number from 296 // a non-negative one, can't wrap into negative. 297 if (LHSKnownZero.isNegative() && KnownZero2.isNegative()) 298 KnownZero |= APInt::getSignBit(BitWidth); 299 // Adding two negative numbers, or subtracting a non-negative number from 300 // a negative one, can't wrap into non-negative. 301 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative()) 302 KnownOne |= APInt::getSignBit(BitWidth); 303 } 304 } 305 } 306 307 static void computeKnownBitsMul(Value *Op0, Value *Op1, bool NSW, 308 APInt &KnownZero, APInt &KnownOne, 309 APInt &KnownZero2, APInt &KnownOne2, 310 const DataLayout &DL, unsigned Depth, 311 const Query &Q) { 312 unsigned BitWidth = KnownZero.getBitWidth(); 313 computeKnownBits(Op1, KnownZero, KnownOne, DL, Depth + 1, Q); 314 computeKnownBits(Op0, KnownZero2, KnownOne2, DL, Depth + 1, Q); 315 316 bool isKnownNegative = false; 317 bool isKnownNonNegative = false; 318 // If the multiplication is known not to overflow, compute the sign bit. 319 if (NSW) { 320 if (Op0 == Op1) { 321 // The product of a number with itself is non-negative. 322 isKnownNonNegative = true; 323 } else { 324 bool isKnownNonNegativeOp1 = KnownZero.isNegative(); 325 bool isKnownNonNegativeOp0 = KnownZero2.isNegative(); 326 bool isKnownNegativeOp1 = KnownOne.isNegative(); 327 bool isKnownNegativeOp0 = KnownOne2.isNegative(); 328 // The product of two numbers with the same sign is non-negative. 329 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 330 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 331 // The product of a negative number and a non-negative number is either 332 // negative or zero. 333 if (!isKnownNonNegative) 334 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 335 isKnownNonZero(Op0, DL, Depth, Q)) || 336 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 337 isKnownNonZero(Op1, DL, Depth, Q)); 338 } 339 } 340 341 // If low bits are zero in either operand, output low known-0 bits. 342 // Also compute a conservative estimate for high known-0 bits. 343 // More trickiness is possible, but this is sufficient for the 344 // interesting case of alignment computation. 345 KnownOne.clearAllBits(); 346 unsigned TrailZ = KnownZero.countTrailingOnes() + 347 KnownZero2.countTrailingOnes(); 348 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 349 KnownZero2.countLeadingOnes(), 350 BitWidth) - BitWidth; 351 352 TrailZ = std::min(TrailZ, BitWidth); 353 LeadZ = std::min(LeadZ, BitWidth); 354 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) | 355 APInt::getHighBitsSet(BitWidth, LeadZ); 356 357 // Only make use of no-wrap flags if we failed to compute the sign bit 358 // directly. This matters if the multiplication always overflows, in 359 // which case we prefer to follow the result of the direct computation, 360 // though as the program is invoking undefined behaviour we can choose 361 // whatever we like here. 362 if (isKnownNonNegative && !KnownOne.isNegative()) 363 KnownZero.setBit(BitWidth - 1); 364 else if (isKnownNegative && !KnownZero.isNegative()) 365 KnownOne.setBit(BitWidth - 1); 366 } 367 368 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 369 APInt &KnownZero) { 370 unsigned BitWidth = KnownZero.getBitWidth(); 371 unsigned NumRanges = Ranges.getNumOperands() / 2; 372 assert(NumRanges >= 1); 373 374 // Use the high end of the ranges to find leading zeros. 375 unsigned MinLeadingZeros = BitWidth; 376 for (unsigned i = 0; i < NumRanges; ++i) { 377 ConstantInt *Lower = 378 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 379 ConstantInt *Upper = 380 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 381 ConstantRange Range(Lower->getValue(), Upper->getValue()); 382 if (Range.isWrappedSet()) 383 MinLeadingZeros = 0; // -1 has no zeros 384 unsigned LeadingZeros = (Upper->getValue() - 1).countLeadingZeros(); 385 MinLeadingZeros = std::min(LeadingZeros, MinLeadingZeros); 386 } 387 388 KnownZero = APInt::getHighBitsSet(BitWidth, MinLeadingZeros); 389 } 390 391 static bool isEphemeralValueOf(Instruction *I, const Value *E) { 392 SmallVector<const Value *, 16> WorkSet(1, I); 393 SmallPtrSet<const Value *, 32> Visited; 394 SmallPtrSet<const Value *, 16> EphValues; 395 396 while (!WorkSet.empty()) { 397 const Value *V = WorkSet.pop_back_val(); 398 if (!Visited.insert(V).second) 399 continue; 400 401 // If all uses of this value are ephemeral, then so is this value. 402 bool FoundNEUse = false; 403 for (const User *I : V->users()) 404 if (!EphValues.count(I)) { 405 FoundNEUse = true; 406 break; 407 } 408 409 if (!FoundNEUse) { 410 if (V == E) 411 return true; 412 413 EphValues.insert(V); 414 if (const User *U = dyn_cast<User>(V)) 415 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 416 J != JE; ++J) { 417 if (isSafeToSpeculativelyExecute(*J)) 418 WorkSet.push_back(*J); 419 } 420 } 421 } 422 423 return false; 424 } 425 426 // Is this an intrinsic that cannot be speculated but also cannot trap? 427 static bool isAssumeLikeIntrinsic(const Instruction *I) { 428 if (const CallInst *CI = dyn_cast<CallInst>(I)) 429 if (Function *F = CI->getCalledFunction()) 430 switch (F->getIntrinsicID()) { 431 default: break; 432 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 433 case Intrinsic::assume: 434 case Intrinsic::dbg_declare: 435 case Intrinsic::dbg_value: 436 case Intrinsic::invariant_start: 437 case Intrinsic::invariant_end: 438 case Intrinsic::lifetime_start: 439 case Intrinsic::lifetime_end: 440 case Intrinsic::objectsize: 441 case Intrinsic::ptr_annotation: 442 case Intrinsic::var_annotation: 443 return true; 444 } 445 446 return false; 447 } 448 449 static bool isValidAssumeForContext(Value *V, const Query &Q) { 450 Instruction *Inv = cast<Instruction>(V); 451 452 // There are two restrictions on the use of an assume: 453 // 1. The assume must dominate the context (or the control flow must 454 // reach the assume whenever it reaches the context). 455 // 2. The context must not be in the assume's set of ephemeral values 456 // (otherwise we will use the assume to prove that the condition 457 // feeding the assume is trivially true, thus causing the removal of 458 // the assume). 459 460 if (Q.DT) { 461 if (Q.DT->dominates(Inv, Q.CxtI)) { 462 return true; 463 } else if (Inv->getParent() == Q.CxtI->getParent()) { 464 // The context comes first, but they're both in the same block. Make sure 465 // there is nothing in between that might interrupt the control flow. 466 for (BasicBlock::const_iterator I = 467 std::next(BasicBlock::const_iterator(Q.CxtI)), 468 IE(Inv); I != IE; ++I) 469 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 470 return false; 471 472 return !isEphemeralValueOf(Inv, Q.CxtI); 473 } 474 475 return false; 476 } 477 478 // When we don't have a DT, we do a limited search... 479 if (Inv->getParent() == Q.CxtI->getParent()->getSinglePredecessor()) { 480 return true; 481 } else if (Inv->getParent() == Q.CxtI->getParent()) { 482 // Search forward from the assume until we reach the context (or the end 483 // of the block); the common case is that the assume will come first. 484 for (BasicBlock::iterator I = std::next(BasicBlock::iterator(Inv)), 485 IE = Inv->getParent()->end(); I != IE; ++I) 486 if (&*I == Q.CxtI) 487 return true; 488 489 // The context must come first... 490 for (BasicBlock::const_iterator I = 491 std::next(BasicBlock::const_iterator(Q.CxtI)), 492 IE(Inv); I != IE; ++I) 493 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 494 return false; 495 496 return !isEphemeralValueOf(Inv, Q.CxtI); 497 } 498 499 return false; 500 } 501 502 bool llvm::isValidAssumeForContext(const Instruction *I, 503 const Instruction *CxtI, 504 const DominatorTree *DT) { 505 return ::isValidAssumeForContext(const_cast<Instruction *>(I), 506 Query(nullptr, CxtI, DT)); 507 } 508 509 template<typename LHS, typename RHS> 510 inline match_combine_or<CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>, 511 CmpClass_match<RHS, LHS, ICmpInst, ICmpInst::Predicate>> 512 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) { 513 return m_CombineOr(m_ICmp(Pred, L, R), m_ICmp(Pred, R, L)); 514 } 515 516 template<typename LHS, typename RHS> 517 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::And>, 518 BinaryOp_match<RHS, LHS, Instruction::And>> 519 m_c_And(const LHS &L, const RHS &R) { 520 return m_CombineOr(m_And(L, R), m_And(R, L)); 521 } 522 523 template<typename LHS, typename RHS> 524 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Or>, 525 BinaryOp_match<RHS, LHS, Instruction::Or>> 526 m_c_Or(const LHS &L, const RHS &R) { 527 return m_CombineOr(m_Or(L, R), m_Or(R, L)); 528 } 529 530 template<typename LHS, typename RHS> 531 inline match_combine_or<BinaryOp_match<LHS, RHS, Instruction::Xor>, 532 BinaryOp_match<RHS, LHS, Instruction::Xor>> 533 m_c_Xor(const LHS &L, const RHS &R) { 534 return m_CombineOr(m_Xor(L, R), m_Xor(R, L)); 535 } 536 537 /// Compute known bits in 'V' under the assumption that the condition 'Cmp' is 538 /// true (at the context instruction.) This is mostly a utility function for 539 /// the prototype dominating conditions reasoning below. 540 static void computeKnownBitsFromTrueCondition(Value *V, ICmpInst *Cmp, 541 APInt &KnownZero, 542 APInt &KnownOne, 543 const DataLayout &DL, 544 unsigned Depth, const Query &Q) { 545 Value *LHS = Cmp->getOperand(0); 546 Value *RHS = Cmp->getOperand(1); 547 // TODO: We could potentially be more aggressive here. This would be worth 548 // evaluating. If we can, explore commoning this code with the assume 549 // handling logic. 550 if (LHS != V && RHS != V) 551 return; 552 553 const unsigned BitWidth = KnownZero.getBitWidth(); 554 555 switch (Cmp->getPredicate()) { 556 default: 557 // We know nothing from this condition 558 break; 559 // TODO: implement unsigned bound from below (known one bits) 560 // TODO: common condition check implementations with assumes 561 // TODO: implement other patterns from assume (e.g. V & B == A) 562 case ICmpInst::ICMP_SGT: 563 if (LHS == V) { 564 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 565 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 566 if (KnownOneTemp.isAllOnesValue() || KnownZeroTemp.isNegative()) { 567 // We know that the sign bit is zero. 568 KnownZero |= APInt::getSignBit(BitWidth); 569 } 570 } 571 break; 572 case ICmpInst::ICMP_EQ: 573 { 574 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 575 if (LHS == V) 576 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 577 else if (RHS == V) 578 computeKnownBits(LHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 579 else 580 llvm_unreachable("missing use?"); 581 KnownZero |= KnownZeroTemp; 582 KnownOne |= KnownOneTemp; 583 } 584 break; 585 case ICmpInst::ICMP_ULE: 586 if (LHS == V) { 587 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 588 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 589 // The known zero bits carry over 590 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 591 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 592 } 593 break; 594 case ICmpInst::ICMP_ULT: 595 if (LHS == V) { 596 APInt KnownZeroTemp(BitWidth, 0), KnownOneTemp(BitWidth, 0); 597 computeKnownBits(RHS, KnownZeroTemp, KnownOneTemp, DL, Depth + 1, Q); 598 // Whatever high bits in rhs are zero are known to be zero (if rhs is a 599 // power of 2, then one more). 600 unsigned SignBits = KnownZeroTemp.countLeadingOnes(); 601 if (isKnownToBeAPowerOfTwo(RHS, false, Depth + 1, Query(Q, Cmp), DL)) 602 SignBits++; 603 KnownZero |= APInt::getHighBitsSet(BitWidth, SignBits); 604 } 605 break; 606 }; 607 } 608 609 /// Compute known bits in 'V' from conditions which are known to be true along 610 /// all paths leading to the context instruction. In particular, look for 611 /// cases where one branch of an interesting condition dominates the context 612 /// instruction. This does not do general dataflow. 613 /// NOTE: This code is EXPERIMENTAL and currently off by default. 614 static void computeKnownBitsFromDominatingCondition(Value *V, APInt &KnownZero, 615 APInt &KnownOne, 616 const DataLayout &DL, 617 unsigned Depth, 618 const Query &Q) { 619 // Need both the dominator tree and the query location to do anything useful 620 if (!Q.DT || !Q.CxtI) 621 return; 622 Instruction *Cxt = const_cast<Instruction *>(Q.CxtI); 623 // The context instruction might be in a statically unreachable block. If 624 // so, asking dominator queries may yield suprising results. (e.g. the block 625 // may not have a dom tree node) 626 if (!Q.DT->isReachableFromEntry(Cxt->getParent())) 627 return; 628 629 // Avoid useless work 630 if (auto VI = dyn_cast<Instruction>(V)) 631 if (VI->getParent() == Cxt->getParent()) 632 return; 633 634 // Note: We currently implement two options. It's not clear which of these 635 // will survive long term, we need data for that. 636 // Option 1 - Try walking the dominator tree looking for conditions which 637 // might apply. This works well for local conditions (loop guards, etc..), 638 // but not as well for things far from the context instruction (presuming a 639 // low max blocks explored). If we can set an high enough limit, this would 640 // be all we need. 641 // Option 2 - We restrict out search to those conditions which are uses of 642 // the value we're interested in. This is independent of dom structure, 643 // but is slightly less powerful without looking through lots of use chains. 644 // It does handle conditions far from the context instruction (e.g. early 645 // function exits on entry) really well though. 646 647 // Option 1 - Search the dom tree 648 unsigned NumBlocksExplored = 0; 649 BasicBlock *Current = Cxt->getParent(); 650 while (true) { 651 // Stop searching if we've gone too far up the chain 652 if (NumBlocksExplored >= DomConditionsMaxDomBlocks) 653 break; 654 NumBlocksExplored++; 655 656 if (!Q.DT->getNode(Current)->getIDom()) 657 break; 658 Current = Q.DT->getNode(Current)->getIDom()->getBlock(); 659 if (!Current) 660 // found function entry 661 break; 662 663 BranchInst *BI = dyn_cast<BranchInst>(Current->getTerminator()); 664 if (!BI || BI->isUnconditional()) 665 continue; 666 ICmpInst *Cmp = dyn_cast<ICmpInst>(BI->getCondition()); 667 if (!Cmp) 668 continue; 669 670 // We're looking for conditions that are guaranteed to hold at the context 671 // instruction. Finding a condition where one path dominates the context 672 // isn't enough because both the true and false cases could merge before 673 // the context instruction we're actually interested in. Instead, we need 674 // to ensure that the taken *edge* dominates the context instruction. We 675 // know that the edge must be reachable since we started from a reachable 676 // block. 677 BasicBlock *BB0 = BI->getSuccessor(0); 678 BasicBlockEdge Edge(BI->getParent(), BB0); 679 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 680 continue; 681 682 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 683 Q); 684 } 685 686 // Option 2 - Search the other uses of V 687 unsigned NumUsesExplored = 0; 688 for (auto U : V->users()) { 689 // Avoid massive lists 690 if (NumUsesExplored >= DomConditionsMaxUses) 691 break; 692 NumUsesExplored++; 693 // Consider only compare instructions uniquely controlling a branch 694 ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 695 if (!Cmp) 696 continue; 697 698 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 699 continue; 700 701 for (auto *CmpU : Cmp->users()) { 702 BranchInst *BI = dyn_cast<BranchInst>(CmpU); 703 if (!BI || BI->isUnconditional()) 704 continue; 705 // We're looking for conditions that are guaranteed to hold at the 706 // context instruction. Finding a condition where one path dominates 707 // the context isn't enough because both the true and false cases could 708 // merge before the context instruction we're actually interested in. 709 // Instead, we need to ensure that the taken *edge* dominates the context 710 // instruction. 711 BasicBlock *BB0 = BI->getSuccessor(0); 712 BasicBlockEdge Edge(BI->getParent(), BB0); 713 if (!Edge.isSingleEdge() || !Q.DT->dominates(Edge, Q.CxtI->getParent())) 714 continue; 715 716 computeKnownBitsFromTrueCondition(V, Cmp, KnownZero, KnownOne, DL, Depth, 717 Q); 718 } 719 } 720 } 721 722 static void computeKnownBitsFromAssume(Value *V, APInt &KnownZero, 723 APInt &KnownOne, const DataLayout &DL, 724 unsigned Depth, const Query &Q) { 725 // Use of assumptions is context-sensitive. If we don't have a context, we 726 // cannot use them! 727 if (!Q.AC || !Q.CxtI) 728 return; 729 730 unsigned BitWidth = KnownZero.getBitWidth(); 731 732 for (auto &AssumeVH : Q.AC->assumptions()) { 733 if (!AssumeVH) 734 continue; 735 CallInst *I = cast<CallInst>(AssumeVH); 736 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 737 "Got assumption for the wrong function!"); 738 if (Q.ExclInvs.count(I)) 739 continue; 740 741 // Warning: This loop can end up being somewhat performance sensetive. 742 // We're running this loop for once for each value queried resulting in a 743 // runtime of ~O(#assumes * #values). 744 745 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 746 "must be an assume intrinsic"); 747 748 Value *Arg = I->getArgOperand(0); 749 750 if (Arg == V && isValidAssumeForContext(I, Q)) { 751 assert(BitWidth == 1 && "assume operand is not i1?"); 752 KnownZero.clearAllBits(); 753 KnownOne.setAllBits(); 754 return; 755 } 756 757 // The remaining tests are all recursive, so bail out if we hit the limit. 758 if (Depth == MaxDepth) 759 continue; 760 761 Value *A, *B; 762 auto m_V = m_CombineOr(m_Specific(V), 763 m_CombineOr(m_PtrToInt(m_Specific(V)), 764 m_BitCast(m_Specific(V)))); 765 766 CmpInst::Predicate Pred; 767 ConstantInt *C; 768 // assume(v = a) 769 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 770 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 771 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 772 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 773 KnownZero |= RHSKnownZero; 774 KnownOne |= RHSKnownOne; 775 // assume(v & b = a) 776 } else if (match(Arg, 777 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 778 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 779 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 780 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 781 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 782 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 783 784 // For those bits in the mask that are known to be one, we can propagate 785 // known bits from the RHS to V. 786 KnownZero |= RHSKnownZero & MaskKnownOne; 787 KnownOne |= RHSKnownOne & MaskKnownOne; 788 // assume(~(v & b) = a) 789 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 790 m_Value(A))) && 791 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 792 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 793 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 794 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 795 computeKnownBits(B, MaskKnownZero, MaskKnownOne, DL, Depth+1, Query(Q, I)); 796 797 // For those bits in the mask that are known to be one, we can propagate 798 // inverted known bits from the RHS to V. 799 KnownZero |= RHSKnownOne & MaskKnownOne; 800 KnownOne |= RHSKnownZero & MaskKnownOne; 801 // assume(v | b = a) 802 } else if (match(Arg, 803 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 804 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 805 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 806 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 807 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 808 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 809 810 // For those bits in B that are known to be zero, we can propagate known 811 // bits from the RHS to V. 812 KnownZero |= RHSKnownZero & BKnownZero; 813 KnownOne |= RHSKnownOne & BKnownZero; 814 // assume(~(v | b) = a) 815 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 816 m_Value(A))) && 817 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 818 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 819 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 820 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 821 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 822 823 // For those bits in B that are known to be zero, we can propagate 824 // inverted known bits from the RHS to V. 825 KnownZero |= RHSKnownOne & BKnownZero; 826 KnownOne |= RHSKnownZero & BKnownZero; 827 // assume(v ^ b = a) 828 } else if (match(Arg, 829 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 830 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 831 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 832 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 833 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 834 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 835 836 // For those bits in B that are known to be zero, we can propagate known 837 // bits from the RHS to V. For those bits in B that are known to be one, 838 // we can propagate inverted known bits from the RHS to V. 839 KnownZero |= RHSKnownZero & BKnownZero; 840 KnownOne |= RHSKnownOne & BKnownZero; 841 KnownZero |= RHSKnownOne & BKnownOne; 842 KnownOne |= RHSKnownZero & BKnownOne; 843 // assume(~(v ^ b) = a) 844 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 845 m_Value(A))) && 846 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 847 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 848 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 849 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 850 computeKnownBits(B, BKnownZero, BKnownOne, DL, Depth+1, Query(Q, I)); 851 852 // For those bits in B that are known to be zero, we can propagate 853 // inverted known bits from the RHS to V. For those bits in B that are 854 // known to be one, we can propagate known bits from the RHS to V. 855 KnownZero |= RHSKnownOne & BKnownZero; 856 KnownOne |= RHSKnownZero & BKnownZero; 857 KnownZero |= RHSKnownZero & BKnownOne; 858 KnownOne |= RHSKnownOne & BKnownOne; 859 // assume(v << c = a) 860 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 861 m_Value(A))) && 862 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 863 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 864 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 865 // For those bits in RHS that are known, we can propagate them to known 866 // bits in V shifted to the right by C. 867 KnownZero |= RHSKnownZero.lshr(C->getZExtValue()); 868 KnownOne |= RHSKnownOne.lshr(C->getZExtValue()); 869 // assume(~(v << c) = a) 870 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 871 m_Value(A))) && 872 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 873 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 874 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 875 // For those bits in RHS that are known, we can propagate them inverted 876 // to known bits in V shifted to the right by C. 877 KnownZero |= RHSKnownOne.lshr(C->getZExtValue()); 878 KnownOne |= RHSKnownZero.lshr(C->getZExtValue()); 879 // assume(v >> c = a) 880 } else if (match(Arg, 881 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 882 m_AShr(m_V, m_ConstantInt(C))), 883 m_Value(A))) && 884 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 885 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 886 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 887 // For those bits in RHS that are known, we can propagate them to known 888 // bits in V shifted to the right by C. 889 KnownZero |= RHSKnownZero << C->getZExtValue(); 890 KnownOne |= RHSKnownOne << C->getZExtValue(); 891 // assume(~(v >> c) = a) 892 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 893 m_LShr(m_V, m_ConstantInt(C)), 894 m_AShr(m_V, m_ConstantInt(C)))), 895 m_Value(A))) && 896 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q)) { 897 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 898 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 899 // For those bits in RHS that are known, we can propagate them inverted 900 // to known bits in V shifted to the right by C. 901 KnownZero |= RHSKnownOne << C->getZExtValue(); 902 KnownOne |= RHSKnownZero << C->getZExtValue(); 903 // assume(v >=_s c) where c is non-negative 904 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 905 Pred == ICmpInst::ICMP_SGE && isValidAssumeForContext(I, Q)) { 906 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 907 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 908 909 if (RHSKnownZero.isNegative()) { 910 // We know that the sign bit is zero. 911 KnownZero |= APInt::getSignBit(BitWidth); 912 } 913 // assume(v >_s c) where c is at least -1. 914 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 915 Pred == ICmpInst::ICMP_SGT && isValidAssumeForContext(I, Q)) { 916 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 917 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 918 919 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isNegative()) { 920 // We know that the sign bit is zero. 921 KnownZero |= APInt::getSignBit(BitWidth); 922 } 923 // assume(v <=_s c) where c is negative 924 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 925 Pred == ICmpInst::ICMP_SLE && isValidAssumeForContext(I, Q)) { 926 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 927 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 928 929 if (RHSKnownOne.isNegative()) { 930 // We know that the sign bit is one. 931 KnownOne |= APInt::getSignBit(BitWidth); 932 } 933 // assume(v <_s c) where c is non-positive 934 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 935 Pred == ICmpInst::ICMP_SLT && isValidAssumeForContext(I, Q)) { 936 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 937 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 938 939 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isNegative()) { 940 // We know that the sign bit is one. 941 KnownOne |= APInt::getSignBit(BitWidth); 942 } 943 // assume(v <=_u c) 944 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 945 Pred == ICmpInst::ICMP_ULE && isValidAssumeForContext(I, Q)) { 946 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 947 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 948 949 // Whatever high bits in c are zero are known to be zero. 950 KnownZero |= 951 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 952 // assume(v <_u c) 953 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 954 Pred == ICmpInst::ICMP_ULT && isValidAssumeForContext(I, Q)) { 955 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 956 computeKnownBits(A, RHSKnownZero, RHSKnownOne, DL, Depth+1, Query(Q, I)); 957 958 // Whatever high bits in c are zero are known to be zero (if c is a power 959 // of 2, then one more). 960 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I), DL)) 961 KnownZero |= 962 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()+1); 963 else 964 KnownZero |= 965 APInt::getHighBitsSet(BitWidth, RHSKnownZero.countLeadingOnes()); 966 } 967 } 968 } 969 970 static void computeKnownBitsFromOperator(Operator *I, APInt &KnownZero, 971 APInt &KnownOne, const DataLayout &DL, 972 unsigned Depth, const Query &Q) { 973 unsigned BitWidth = KnownZero.getBitWidth(); 974 975 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 976 switch (I->getOpcode()) { 977 default: break; 978 case Instruction::Load: 979 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 980 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 981 break; 982 case Instruction::And: { 983 // If either the LHS or the RHS are Zero, the result is zero. 984 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 985 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 986 987 // Output known-1 bits are only known if set in both the LHS & RHS. 988 KnownOne &= KnownOne2; 989 // Output known-0 are known to be clear if zero in either the LHS | RHS. 990 KnownZero |= KnownZero2; 991 break; 992 } 993 case Instruction::Or: { 994 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 995 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 996 997 // Output known-0 bits are only known if clear in both the LHS & RHS. 998 KnownZero &= KnownZero2; 999 // Output known-1 are known to be set if set in either the LHS | RHS. 1000 KnownOne |= KnownOne2; 1001 break; 1002 } 1003 case Instruction::Xor: { 1004 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, Q); 1005 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1006 1007 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1008 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 1009 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1010 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 1011 KnownZero = KnownZeroOut; 1012 break; 1013 } 1014 case Instruction::Mul: { 1015 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1016 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 1017 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1018 break; 1019 } 1020 case Instruction::UDiv: { 1021 // For the purposes of computing leading zeros we can conservatively 1022 // treat a udiv as a logical right shift by the power of 2 known to 1023 // be less than the denominator. 1024 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1025 unsigned LeadZ = KnownZero2.countLeadingOnes(); 1026 1027 KnownOne2.clearAllBits(); 1028 KnownZero2.clearAllBits(); 1029 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1030 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 1031 if (RHSUnknownLeadingOnes != BitWidth) 1032 LeadZ = std::min(BitWidth, 1033 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 1034 1035 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ); 1036 break; 1037 } 1038 case Instruction::Select: 1039 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, DL, Depth + 1, Q); 1040 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1041 1042 // Only known if known in both the LHS and RHS. 1043 KnownOne &= KnownOne2; 1044 KnownZero &= KnownZero2; 1045 break; 1046 case Instruction::FPTrunc: 1047 case Instruction::FPExt: 1048 case Instruction::FPToUI: 1049 case Instruction::FPToSI: 1050 case Instruction::SIToFP: 1051 case Instruction::UIToFP: 1052 break; // Can't work with floating point. 1053 case Instruction::PtrToInt: 1054 case Instruction::IntToPtr: 1055 case Instruction::AddrSpaceCast: // Pointers could be different sizes. 1056 // FALL THROUGH and handle them the same as zext/trunc. 1057 case Instruction::ZExt: 1058 case Instruction::Trunc: { 1059 Type *SrcTy = I->getOperand(0)->getType(); 1060 1061 unsigned SrcBitWidth; 1062 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1063 // which fall through here. 1064 SrcBitWidth = DL.getTypeSizeInBits(SrcTy->getScalarType()); 1065 1066 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1067 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1068 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1069 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1070 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1071 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1072 // Any top bits are known to be zero. 1073 if (BitWidth > SrcBitWidth) 1074 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1075 break; 1076 } 1077 case Instruction::BitCast: { 1078 Type *SrcTy = I->getOperand(0)->getType(); 1079 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy() || 1080 SrcTy->isFloatingPointTy()) && 1081 // TODO: For now, not handling conversions like: 1082 // (bitcast i64 %x to <2 x i32>) 1083 !I->getType()->isVectorTy()) { 1084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1085 break; 1086 } 1087 break; 1088 } 1089 case Instruction::SExt: { 1090 // Compute the bits in the result that are not present in the input. 1091 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1092 1093 KnownZero = KnownZero.trunc(SrcBitWidth); 1094 KnownOne = KnownOne.trunc(SrcBitWidth); 1095 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1096 KnownZero = KnownZero.zext(BitWidth); 1097 KnownOne = KnownOne.zext(BitWidth); 1098 1099 // If the sign bit of the input is known set or clear, then we know the 1100 // top bits of the result. 1101 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero 1102 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1103 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set 1104 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth); 1105 break; 1106 } 1107 case Instruction::Shl: 1108 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1109 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1110 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1111 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1112 KnownZero <<= ShiftAmt; 1113 KnownOne <<= ShiftAmt; 1114 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0 1115 } 1116 break; 1117 case Instruction::LShr: 1118 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1119 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1120 // Compute the new bits that are at the top now. 1121 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth); 1122 1123 // Unsigned shift right. 1124 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1125 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1126 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1127 // high bits known zero. 1128 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt); 1129 } 1130 break; 1131 case Instruction::AShr: 1132 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1133 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1134 // Compute the new bits that are at the top now. 1135 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1); 1136 1137 // Signed shift right. 1138 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1139 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt); 1140 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt); 1141 1142 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt)); 1143 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero. 1144 KnownZero |= HighBits; 1145 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one. 1146 KnownOne |= HighBits; 1147 } 1148 break; 1149 case Instruction::Sub: { 1150 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1151 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1152 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1153 Depth, Q); 1154 break; 1155 } 1156 case Instruction::Add: { 1157 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1158 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1159 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1160 Depth, Q); 1161 break; 1162 } 1163 case Instruction::SRem: 1164 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1165 APInt RA = Rem->getValue().abs(); 1166 if (RA.isPowerOf2()) { 1167 APInt LowBits = RA - 1; 1168 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, Depth + 1, 1169 Q); 1170 1171 // The low bits of the first operand are unchanged by the srem. 1172 KnownZero = KnownZero2 & LowBits; 1173 KnownOne = KnownOne2 & LowBits; 1174 1175 // If the first operand is non-negative or has all low bits zero, then 1176 // the upper bits are all zero. 1177 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits)) 1178 KnownZero |= ~LowBits; 1179 1180 // If the first operand is negative and not all low bits are zero, then 1181 // the upper bits are all one. 1182 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0)) 1183 KnownOne |= ~LowBits; 1184 1185 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1186 } 1187 } 1188 1189 // The sign bit is the LHS's sign bit, except when the result of the 1190 // remainder is zero. 1191 if (KnownZero.isNonNegative()) { 1192 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 1193 computeKnownBits(I->getOperand(0), LHSKnownZero, LHSKnownOne, DL, 1194 Depth + 1, Q); 1195 // If it's known zero, our sign bit is also zero. 1196 if (LHSKnownZero.isNegative()) 1197 KnownZero.setBit(BitWidth - 1); 1198 } 1199 1200 break; 1201 case Instruction::URem: { 1202 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1203 APInt RA = Rem->getValue(); 1204 if (RA.isPowerOf2()) { 1205 APInt LowBits = (RA - 1); 1206 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 1207 Q); 1208 KnownZero |= ~LowBits; 1209 KnownOne &= LowBits; 1210 break; 1211 } 1212 } 1213 1214 // Since the result is less than or equal to either operand, any leading 1215 // zero bits in either operand must also exist in the result. 1216 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, Q); 1217 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, DL, Depth + 1, Q); 1218 1219 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1220 KnownZero2.countLeadingOnes()); 1221 KnownOne.clearAllBits(); 1222 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders); 1223 break; 1224 } 1225 1226 case Instruction::Alloca: { 1227 AllocaInst *AI = cast<AllocaInst>(I); 1228 unsigned Align = AI->getAlignment(); 1229 if (Align == 0) 1230 Align = DL.getABITypeAlignment(AI->getType()->getElementType()); 1231 1232 if (Align > 0) 1233 KnownZero = APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1234 break; 1235 } 1236 case Instruction::GetElementPtr: { 1237 // Analyze all of the subscripts of this getelementptr instruction 1238 // to determine if we can prove known low zero bits. 1239 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1240 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, DL, 1241 Depth + 1, Q); 1242 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1243 1244 gep_type_iterator GTI = gep_type_begin(I); 1245 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1246 Value *Index = I->getOperand(i); 1247 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1248 // Handle struct member offset arithmetic. 1249 1250 // Handle case when index is vector zeroinitializer 1251 Constant *CIndex = cast<Constant>(Index); 1252 if (CIndex->isZeroValue()) 1253 continue; 1254 1255 if (CIndex->getType()->isVectorTy()) 1256 Index = CIndex->getSplatValue(); 1257 1258 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1259 const StructLayout *SL = DL.getStructLayout(STy); 1260 uint64_t Offset = SL->getElementOffset(Idx); 1261 TrailZ = std::min<unsigned>(TrailZ, 1262 countTrailingZeros(Offset)); 1263 } else { 1264 // Handle array index arithmetic. 1265 Type *IndexedTy = GTI.getIndexedType(); 1266 if (!IndexedTy->isSized()) { 1267 TrailZ = 0; 1268 break; 1269 } 1270 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1271 uint64_t TypeSize = DL.getTypeAllocSize(IndexedTy); 1272 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1273 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, DL, Depth + 1, 1274 Q); 1275 TrailZ = std::min(TrailZ, 1276 unsigned(countTrailingZeros(TypeSize) + 1277 LocalKnownZero.countTrailingOnes())); 1278 } 1279 } 1280 1281 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ); 1282 break; 1283 } 1284 case Instruction::PHI: { 1285 PHINode *P = cast<PHINode>(I); 1286 // Handle the case of a simple two-predecessor recurrence PHI. 1287 // There's a lot more that could theoretically be done here, but 1288 // this is sufficient to catch some interesting cases. 1289 if (P->getNumIncomingValues() == 2) { 1290 for (unsigned i = 0; i != 2; ++i) { 1291 Value *L = P->getIncomingValue(i); 1292 Value *R = P->getIncomingValue(!i); 1293 Operator *LU = dyn_cast<Operator>(L); 1294 if (!LU) 1295 continue; 1296 unsigned Opcode = LU->getOpcode(); 1297 // Check for operations that have the property that if 1298 // both their operands have low zero bits, the result 1299 // will have low zero bits. 1300 if (Opcode == Instruction::Add || 1301 Opcode == Instruction::Sub || 1302 Opcode == Instruction::And || 1303 Opcode == Instruction::Or || 1304 Opcode == Instruction::Mul) { 1305 Value *LL = LU->getOperand(0); 1306 Value *LR = LU->getOperand(1); 1307 // Find a recurrence. 1308 if (LL == I) 1309 L = LR; 1310 else if (LR == I) 1311 L = LL; 1312 else 1313 break; 1314 // Ok, we have a PHI of the form L op= R. Check for low 1315 // zero bits. 1316 computeKnownBits(R, KnownZero2, KnownOne2, DL, Depth + 1, Q); 1317 1318 // We need to take the minimum number of known bits 1319 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1320 computeKnownBits(L, KnownZero3, KnownOne3, DL, Depth + 1, Q); 1321 1322 KnownZero = APInt::getLowBitsSet(BitWidth, 1323 std::min(KnownZero2.countTrailingOnes(), 1324 KnownZero3.countTrailingOnes())); 1325 break; 1326 } 1327 } 1328 } 1329 1330 // Unreachable blocks may have zero-operand PHI nodes. 1331 if (P->getNumIncomingValues() == 0) 1332 break; 1333 1334 // Otherwise take the unions of the known bit sets of the operands, 1335 // taking conservative care to avoid excessive recursion. 1336 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1337 // Skip if every incoming value references to ourself. 1338 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1339 break; 1340 1341 KnownZero = APInt::getAllOnesValue(BitWidth); 1342 KnownOne = APInt::getAllOnesValue(BitWidth); 1343 for (Value *IncValue : P->incoming_values()) { 1344 // Skip direct self references. 1345 if (IncValue == P) continue; 1346 1347 KnownZero2 = APInt(BitWidth, 0); 1348 KnownOne2 = APInt(BitWidth, 0); 1349 // Recurse, but cap the recursion to one level, because we don't 1350 // want to waste time spinning around in loops. 1351 computeKnownBits(IncValue, KnownZero2, KnownOne2, DL, 1352 MaxDepth - 1, Q); 1353 KnownZero &= KnownZero2; 1354 KnownOne &= KnownOne2; 1355 // If all bits have been ruled out, there's no need to check 1356 // more operands. 1357 if (!KnownZero && !KnownOne) 1358 break; 1359 } 1360 } 1361 break; 1362 } 1363 case Instruction::Call: 1364 case Instruction::Invoke: 1365 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1366 computeKnownBitsFromRangeMetadata(*MD, KnownZero); 1367 // If a range metadata is attached to this IntrinsicInst, intersect the 1368 // explicit range specified by the metadata and the implicit range of 1369 // the intrinsic. 1370 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1371 switch (II->getIntrinsicID()) { 1372 default: break; 1373 case Intrinsic::bswap: 1374 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1375 Depth + 1, Q); 1376 KnownZero |= KnownZero2.byteSwap(); 1377 KnownOne |= KnownOne2.byteSwap(); 1378 break; 1379 case Intrinsic::ctlz: 1380 case Intrinsic::cttz: { 1381 unsigned LowBits = Log2_32(BitWidth)+1; 1382 // If this call is undefined for 0, the result will be less than 2^n. 1383 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1384 LowBits -= 1; 1385 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - LowBits); 1386 break; 1387 } 1388 case Intrinsic::ctpop: { 1389 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, DL, 1390 Depth + 1, Q); 1391 // We can bound the space the count needs. Also, bits known to be zero 1392 // can't contribute to the population. 1393 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1394 unsigned LeadingZeros = 1395 APInt(BitWidth, BitsPossiblySet).countLeadingZeros(); 1396 assert(LeadingZeros <= BitWidth); 1397 KnownZero |= APInt::getHighBitsSet(BitWidth, LeadingZeros); 1398 KnownOne &= ~KnownZero; 1399 // TODO: we could bound KnownOne using the lower bound on the number 1400 // of bits which might be set provided by popcnt KnownOne2. 1401 break; 1402 } 1403 case Intrinsic::fabs: { 1404 Type *Ty = II->getType(); 1405 APInt SignBit = APInt::getSignBit(Ty->getScalarSizeInBits()); 1406 KnownZero |= APInt::getSplat(Ty->getPrimitiveSizeInBits(), SignBit); 1407 break; 1408 } 1409 case Intrinsic::x86_sse42_crc32_64_64: 1410 KnownZero |= APInt::getHighBitsSet(64, 32); 1411 break; 1412 } 1413 } 1414 break; 1415 case Instruction::ExtractValue: 1416 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1417 ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1418 if (EVI->getNumIndices() != 1) break; 1419 if (EVI->getIndices()[0] == 0) { 1420 switch (II->getIntrinsicID()) { 1421 default: break; 1422 case Intrinsic::uadd_with_overflow: 1423 case Intrinsic::sadd_with_overflow: 1424 computeKnownBitsAddSub(true, II->getArgOperand(0), 1425 II->getArgOperand(1), false, KnownZero, 1426 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1427 break; 1428 case Intrinsic::usub_with_overflow: 1429 case Intrinsic::ssub_with_overflow: 1430 computeKnownBitsAddSub(false, II->getArgOperand(0), 1431 II->getArgOperand(1), false, KnownZero, 1432 KnownOne, KnownZero2, KnownOne2, DL, Depth, Q); 1433 break; 1434 case Intrinsic::umul_with_overflow: 1435 case Intrinsic::smul_with_overflow: 1436 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1437 KnownZero, KnownOne, KnownZero2, KnownOne2, DL, 1438 Depth, Q); 1439 break; 1440 } 1441 } 1442 } 1443 } 1444 } 1445 1446 static unsigned getAlignment(const Value *V, const DataLayout &DL) { 1447 unsigned Align = 0; 1448 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1449 Align = GO->getAlignment(); 1450 if (Align == 0) { 1451 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) { 1452 Type *ObjectType = GVar->getType()->getElementType(); 1453 if (ObjectType->isSized()) { 1454 // If the object is defined in the current Module, we'll be giving 1455 // it the preferred alignment. Otherwise, we have to assume that it 1456 // may only have the minimum ABI alignment. 1457 if (GVar->isStrongDefinitionForLinker()) 1458 Align = DL.getPreferredAlignment(GVar); 1459 else 1460 Align = DL.getABITypeAlignment(ObjectType); 1461 } 1462 } 1463 } 1464 } else if (const Argument *A = dyn_cast<Argument>(V)) { 1465 Align = A->getType()->isPointerTy() ? A->getParamAlignment() : 0; 1466 1467 if (!Align && A->hasStructRetAttr()) { 1468 // An sret parameter has at least the ABI alignment of the return type. 1469 Type *EltTy = cast<PointerType>(A->getType())->getElementType(); 1470 if (EltTy->isSized()) 1471 Align = DL.getABITypeAlignment(EltTy); 1472 } 1473 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 1474 Align = AI->getAlignment(); 1475 else if (auto CS = ImmutableCallSite(V)) 1476 Align = CS.getAttributes().getParamAlignment(AttributeSet::ReturnIndex); 1477 else if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1478 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) { 1479 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 1480 Align = CI->getLimitedValue(); 1481 } 1482 1483 return Align; 1484 } 1485 1486 /// Determine which bits of V are known to be either zero or one and return 1487 /// them in the KnownZero/KnownOne bit sets. 1488 /// 1489 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1490 /// we cannot optimize based on the assumption that it is zero without changing 1491 /// it to be an explicit zero. If we don't change it to zero, other code could 1492 /// optimized based on the contradictory assumption that it is non-zero. 1493 /// Because instcombine aggressively folds operations with undef args anyway, 1494 /// this won't lose us code quality. 1495 /// 1496 /// This function is defined on values with integer type, values with pointer 1497 /// type, and vectors of integers. In the case 1498 /// where V is a vector, known zero, and known one values are the 1499 /// same width as the vector element, and the bit is set only if it is true 1500 /// for all of the elements in the vector. 1501 void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne, 1502 const DataLayout &DL, unsigned Depth, const Query &Q) { 1503 assert(V && "No Value?"); 1504 assert(Depth <= MaxDepth && "Limit Search Depth"); 1505 unsigned BitWidth = KnownZero.getBitWidth(); 1506 1507 assert((V->getType()->isIntOrIntVectorTy() || 1508 V->getType()->isFPOrFPVectorTy() || 1509 V->getType()->getScalarType()->isPointerTy()) && 1510 "Not integer, floating point, or pointer type!"); 1511 assert((DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1512 (!V->getType()->isIntOrIntVectorTy() || 1513 V->getType()->getScalarSizeInBits() == BitWidth) && 1514 KnownZero.getBitWidth() == BitWidth && 1515 KnownOne.getBitWidth() == BitWidth && 1516 "V, KnownOne and KnownZero should have same BitWidth"); 1517 1518 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 1519 // We know all of the bits for a constant! 1520 KnownOne = CI->getValue(); 1521 KnownZero = ~KnownOne; 1522 return; 1523 } 1524 // Null and aggregate-zero are all-zeros. 1525 if (isa<ConstantPointerNull>(V) || 1526 isa<ConstantAggregateZero>(V)) { 1527 KnownOne.clearAllBits(); 1528 KnownZero = APInt::getAllOnesValue(BitWidth); 1529 return; 1530 } 1531 // Handle a constant vector by taking the intersection of the known bits of 1532 // each element. There is no real need to handle ConstantVector here, because 1533 // we don't handle undef in any particularly useful way. 1534 if (ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1535 // We know that CDS must be a vector of integers. Take the intersection of 1536 // each element. 1537 KnownZero.setAllBits(); KnownOne.setAllBits(); 1538 APInt Elt(KnownZero.getBitWidth(), 0); 1539 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1540 Elt = CDS->getElementAsInteger(i); 1541 KnownZero &= ~Elt; 1542 KnownOne &= Elt; 1543 } 1544 return; 1545 } 1546 1547 // Start out not knowing anything. 1548 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1549 1550 // Limit search depth. 1551 // All recursive calls that increase depth must come after this. 1552 if (Depth == MaxDepth) 1553 return; 1554 1555 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1556 // the bits of its aliasee. 1557 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1558 if (!GA->mayBeOverridden()) 1559 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, DL, Depth + 1, Q); 1560 return; 1561 } 1562 1563 if (Operator *I = dyn_cast<Operator>(V)) 1564 computeKnownBitsFromOperator(I, KnownZero, KnownOne, DL, Depth, Q); 1565 1566 // Aligned pointers have trailing zeros - refine KnownZero set 1567 if (V->getType()->isPointerTy()) { 1568 unsigned Align = getAlignment(V, DL); 1569 if (Align) 1570 KnownZero |= APInt::getLowBitsSet(BitWidth, countTrailingZeros(Align)); 1571 } 1572 1573 // computeKnownBitsFromAssume and computeKnownBitsFromDominatingCondition 1574 // strictly refines KnownZero and KnownOne. Therefore, we run them after 1575 // computeKnownBitsFromOperator. 1576 1577 // Check whether a nearby assume intrinsic can determine some known bits. 1578 computeKnownBitsFromAssume(V, KnownZero, KnownOne, DL, Depth, Q); 1579 1580 // Check whether there's a dominating condition which implies something about 1581 // this value at the given context. 1582 if (EnableDomConditions && Depth <= DomConditionsMaxDepth) 1583 computeKnownBitsFromDominatingCondition(V, KnownZero, KnownOne, DL, Depth, 1584 Q); 1585 1586 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1587 } 1588 1589 /// Determine whether the sign bit is known to be zero or one. 1590 /// Convenience wrapper around computeKnownBits. 1591 void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne, 1592 const DataLayout &DL, unsigned Depth, const Query &Q) { 1593 unsigned BitWidth = getBitWidth(V->getType(), DL); 1594 if (!BitWidth) { 1595 KnownZero = false; 1596 KnownOne = false; 1597 return; 1598 } 1599 APInt ZeroBits(BitWidth, 0); 1600 APInt OneBits(BitWidth, 0); 1601 computeKnownBits(V, ZeroBits, OneBits, DL, Depth, Q); 1602 KnownOne = OneBits[BitWidth - 1]; 1603 KnownZero = ZeroBits[BitWidth - 1]; 1604 } 1605 1606 /// Return true if the given value is known to have exactly one 1607 /// bit set when defined. For vectors return true if every element is known to 1608 /// be a power of two when defined. Supports values with integer or pointer 1609 /// types and vectors of integers. 1610 bool isKnownToBeAPowerOfTwo(Value *V, bool OrZero, unsigned Depth, 1611 const Query &Q, const DataLayout &DL) { 1612 if (Constant *C = dyn_cast<Constant>(V)) { 1613 if (C->isNullValue()) 1614 return OrZero; 1615 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1616 return CI->getValue().isPowerOf2(); 1617 // TODO: Handle vector constants. 1618 } 1619 1620 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1621 // it is shifted off the end then the result is undefined. 1622 if (match(V, m_Shl(m_One(), m_Value()))) 1623 return true; 1624 1625 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1626 // bottom. If it is shifted off the bottom then the result is undefined. 1627 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1628 return true; 1629 1630 // The remaining tests are all recursive, so bail out if we hit the limit. 1631 if (Depth++ == MaxDepth) 1632 return false; 1633 1634 Value *X = nullptr, *Y = nullptr; 1635 // A shift of a power of two is a power of two or zero. 1636 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1637 match(V, m_Shr(m_Value(X), m_Value())))) 1638 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL); 1639 1640 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1641 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q, DL); 1642 1643 if (SelectInst *SI = dyn_cast<SelectInst>(V)) 1644 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q, DL) && 1645 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q, DL); 1646 1647 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1648 // A power of two and'd with anything is a power of two or zero. 1649 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q, DL) || 1650 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q, DL)) 1651 return true; 1652 // X & (-X) is always a power of two or zero. 1653 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1654 return true; 1655 return false; 1656 } 1657 1658 // Adding a power-of-two or zero to the same power-of-two or zero yields 1659 // either the original power-of-two, a larger power-of-two or zero. 1660 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1661 OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1662 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1663 if (match(X, m_And(m_Specific(Y), m_Value())) || 1664 match(X, m_And(m_Value(), m_Specific(Y)))) 1665 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q, DL)) 1666 return true; 1667 if (match(Y, m_And(m_Specific(X), m_Value())) || 1668 match(Y, m_And(m_Value(), m_Specific(X)))) 1669 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q, DL)) 1670 return true; 1671 1672 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1673 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1674 computeKnownBits(X, LHSZeroBits, LHSOneBits, DL, Depth, Q); 1675 1676 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1677 computeKnownBits(Y, RHSZeroBits, RHSOneBits, DL, Depth, Q); 1678 // If i8 V is a power of two or zero: 1679 // ZeroBits: 1 1 1 0 1 1 1 1 1680 // ~ZeroBits: 0 0 0 1 0 0 0 0 1681 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1682 // If OrZero isn't set, we cannot give back a zero result. 1683 // Make sure either the LHS or RHS has a bit set. 1684 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1685 return true; 1686 } 1687 } 1688 1689 // An exact divide or right shift can only shift off zero bits, so the result 1690 // is a power of two only if the first operand is a power of two and not 1691 // copying a sign bit (sdiv int_min, 2). 1692 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1693 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1694 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1695 Depth, Q, DL); 1696 } 1697 1698 return false; 1699 } 1700 1701 /// \brief Test whether a GEP's result is known to be non-null. 1702 /// 1703 /// Uses properties inherent in a GEP to try to determine whether it is known 1704 /// to be non-null. 1705 /// 1706 /// Currently this routine does not support vector GEPs. 1707 static bool isGEPKnownNonNull(GEPOperator *GEP, const DataLayout &DL, 1708 unsigned Depth, const Query &Q) { 1709 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1710 return false; 1711 1712 // FIXME: Support vector-GEPs. 1713 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1714 1715 // If the base pointer is non-null, we cannot walk to a null address with an 1716 // inbounds GEP in address space zero. 1717 if (isKnownNonZero(GEP->getPointerOperand(), DL, Depth, Q)) 1718 return true; 1719 1720 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1721 // If so, then the GEP cannot produce a null pointer, as doing so would 1722 // inherently violate the inbounds contract within address space zero. 1723 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1724 GTI != GTE; ++GTI) { 1725 // Struct types are easy -- they must always be indexed by a constant. 1726 if (StructType *STy = dyn_cast<StructType>(*GTI)) { 1727 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1728 unsigned ElementIdx = OpC->getZExtValue(); 1729 const StructLayout *SL = DL.getStructLayout(STy); 1730 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1731 if (ElementOffset > 0) 1732 return true; 1733 continue; 1734 } 1735 1736 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1737 if (DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1738 continue; 1739 1740 // Fast path the constant operand case both for efficiency and so we don't 1741 // increment Depth when just zipping down an all-constant GEP. 1742 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1743 if (!OpC->isZero()) 1744 return true; 1745 continue; 1746 } 1747 1748 // We post-increment Depth here because while isKnownNonZero increments it 1749 // as well, when we pop back up that increment won't persist. We don't want 1750 // to recurse 10k times just because we have 10k GEP operands. We don't 1751 // bail completely out because we want to handle constant GEPs regardless 1752 // of depth. 1753 if (Depth++ >= MaxDepth) 1754 continue; 1755 1756 if (isKnownNonZero(GTI.getOperand(), DL, Depth, Q)) 1757 return true; 1758 } 1759 1760 return false; 1761 } 1762 1763 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1764 /// ensure that the value it's attached to is never Value? 'RangeType' is 1765 /// is the type of the value described by the range. 1766 static bool rangeMetadataExcludesValue(MDNode* Ranges, 1767 const APInt& Value) { 1768 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1769 assert(NumRanges >= 1); 1770 for (unsigned i = 0; i < NumRanges; ++i) { 1771 ConstantInt *Lower = 1772 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1773 ConstantInt *Upper = 1774 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1775 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1776 if (Range.contains(Value)) 1777 return false; 1778 } 1779 return true; 1780 } 1781 1782 /// Return true if the given value is known to be non-zero when defined. 1783 /// For vectors return true if every element is known to be non-zero when 1784 /// defined. Supports values with integer or pointer type and vectors of 1785 /// integers. 1786 bool isKnownNonZero(Value *V, const DataLayout &DL, unsigned Depth, 1787 const Query &Q) { 1788 if (Constant *C = dyn_cast<Constant>(V)) { 1789 if (C->isNullValue()) 1790 return false; 1791 if (isa<ConstantInt>(C)) 1792 // Must be non-zero due to null test above. 1793 return true; 1794 // TODO: Handle vectors 1795 return false; 1796 } 1797 1798 if (Instruction* I = dyn_cast<Instruction>(V)) { 1799 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1800 // If the possible ranges don't contain zero, then the value is 1801 // definitely non-zero. 1802 if (IntegerType* Ty = dyn_cast<IntegerType>(V->getType())) { 1803 const APInt ZeroValue(Ty->getBitWidth(), 0); 1804 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1805 return true; 1806 } 1807 } 1808 } 1809 1810 // The remaining tests are all recursive, so bail out if we hit the limit. 1811 if (Depth++ >= MaxDepth) 1812 return false; 1813 1814 // Check for pointer simplifications. 1815 if (V->getType()->isPointerTy()) { 1816 if (isKnownNonNull(V)) 1817 return true; 1818 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1819 if (isGEPKnownNonNull(GEP, DL, Depth, Q)) 1820 return true; 1821 } 1822 1823 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), DL); 1824 1825 // X | Y != 0 if X != 0 or Y != 0. 1826 Value *X = nullptr, *Y = nullptr; 1827 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1828 return isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q); 1829 1830 // ext X != 0 if X != 0. 1831 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1832 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), DL, Depth, Q); 1833 1834 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1835 // if the lowest bit is shifted off the end. 1836 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1837 // shl nuw can't remove any non-zero bits. 1838 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1839 if (BO->hasNoUnsignedWrap()) 1840 return isKnownNonZero(X, DL, Depth, Q); 1841 1842 APInt KnownZero(BitWidth, 0); 1843 APInt KnownOne(BitWidth, 0); 1844 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1845 if (KnownOne[0]) 1846 return true; 1847 } 1848 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1849 // defined if the sign bit is shifted off the end. 1850 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1851 // shr exact can only shift out zero bits. 1852 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1853 if (BO->isExact()) 1854 return isKnownNonZero(X, DL, Depth, Q); 1855 1856 bool XKnownNonNegative, XKnownNegative; 1857 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1858 if (XKnownNegative) 1859 return true; 1860 1861 // If the shifter operand is a constant, and all of the bits shifted 1862 // out are known to be zero, and X is known non-zero then at least one 1863 // non-zero bit must remain. 1864 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1865 APInt KnownZero(BitWidth, 0); 1866 APInt KnownOne(BitWidth, 0); 1867 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1868 1869 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1870 // Is there a known one in the portion not shifted out? 1871 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1872 return true; 1873 // Are all the bits to be shifted out known zero? 1874 if (KnownZero.countTrailingOnes() >= ShiftVal) 1875 return isKnownNonZero(X, DL, Depth, Q); 1876 } 1877 } 1878 // div exact can only produce a zero if the dividend is zero. 1879 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1880 return isKnownNonZero(X, DL, Depth, Q); 1881 } 1882 // X + Y. 1883 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1884 bool XKnownNonNegative, XKnownNegative; 1885 bool YKnownNonNegative, YKnownNegative; 1886 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, DL, Depth, Q); 1887 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, DL, Depth, Q); 1888 1889 // If X and Y are both non-negative (as signed values) then their sum is not 1890 // zero unless both X and Y are zero. 1891 if (XKnownNonNegative && YKnownNonNegative) 1892 if (isKnownNonZero(X, DL, Depth, Q) || isKnownNonZero(Y, DL, Depth, Q)) 1893 return true; 1894 1895 // If X and Y are both negative (as signed values) then their sum is not 1896 // zero unless both X and Y equal INT_MIN. 1897 if (BitWidth && XKnownNegative && YKnownNegative) { 1898 APInt KnownZero(BitWidth, 0); 1899 APInt KnownOne(BitWidth, 0); 1900 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1901 // The sign bit of X is set. If some other bit is set then X is not equal 1902 // to INT_MIN. 1903 computeKnownBits(X, KnownZero, KnownOne, DL, Depth, Q); 1904 if ((KnownOne & Mask) != 0) 1905 return true; 1906 // The sign bit of Y is set. If some other bit is set then Y is not equal 1907 // to INT_MIN. 1908 computeKnownBits(Y, KnownZero, KnownOne, DL, Depth, Q); 1909 if ((KnownOne & Mask) != 0) 1910 return true; 1911 } 1912 1913 // The sum of a non-negative number and a power of two is not zero. 1914 if (XKnownNonNegative && 1915 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q, DL)) 1916 return true; 1917 if (YKnownNonNegative && 1918 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q, DL)) 1919 return true; 1920 } 1921 // X * Y. 1922 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1923 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1924 // If X and Y are non-zero then so is X * Y as long as the multiplication 1925 // does not overflow. 1926 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1927 isKnownNonZero(X, DL, Depth, Q) && isKnownNonZero(Y, DL, Depth, Q)) 1928 return true; 1929 } 1930 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1931 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1932 if (isKnownNonZero(SI->getTrueValue(), DL, Depth, Q) && 1933 isKnownNonZero(SI->getFalseValue(), DL, Depth, Q)) 1934 return true; 1935 } 1936 // PHI 1937 else if (PHINode *PN = dyn_cast<PHINode>(V)) { 1938 // Try and detect a recurrence that monotonically increases from a 1939 // starting value, as these are common as induction variables. 1940 if (PN->getNumIncomingValues() == 2) { 1941 Value *Start = PN->getIncomingValue(0); 1942 Value *Induction = PN->getIncomingValue(1); 1943 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1944 std::swap(Start, Induction); 1945 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1946 if (!C->isZero() && !C->isNegative()) { 1947 ConstantInt *X; 1948 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1949 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1950 !X->isNegative()) 1951 return true; 1952 } 1953 } 1954 } 1955 } 1956 1957 if (!BitWidth) return false; 1958 APInt KnownZero(BitWidth, 0); 1959 APInt KnownOne(BitWidth, 0); 1960 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 1961 return KnownOne != 0; 1962 } 1963 1964 /// Return true if V2 == V1 + X, where X is known non-zero. 1965 static bool isAddOfNonZero(Value *V1, Value *V2, const DataLayout &DL, 1966 const Query &Q) { 1967 BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 1968 if (!BO || BO->getOpcode() != Instruction::Add) 1969 return false; 1970 Value *Op = nullptr; 1971 if (V2 == BO->getOperand(0)) 1972 Op = BO->getOperand(1); 1973 else if (V2 == BO->getOperand(1)) 1974 Op = BO->getOperand(0); 1975 else 1976 return false; 1977 return isKnownNonZero(Op, DL, 0, Q); 1978 } 1979 1980 /// Return true if it is known that V1 != V2. 1981 static bool isKnownNonEqual(Value *V1, Value *V2, const DataLayout &DL, 1982 const Query &Q) { 1983 if (V1->getType()->isVectorTy() || V1 == V2) 1984 return false; 1985 if (V1->getType() != V2->getType()) 1986 // We can't look through casts yet. 1987 return false; 1988 if (isAddOfNonZero(V1, V2, DL, Q) || isAddOfNonZero(V2, V1, DL, Q)) 1989 return true; 1990 1991 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 1992 // Are any known bits in V1 contradictory to known bits in V2? If V1 1993 // has a known zero where V2 has a known one, they must not be equal. 1994 auto BitWidth = Ty->getBitWidth(); 1995 APInt KnownZero1(BitWidth, 0); 1996 APInt KnownOne1(BitWidth, 0); 1997 computeKnownBits(V1, KnownZero1, KnownOne1, DL, 0, Q); 1998 APInt KnownZero2(BitWidth, 0); 1999 APInt KnownOne2(BitWidth, 0); 2000 computeKnownBits(V2, KnownZero2, KnownOne2, DL, 0, Q); 2001 2002 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2003 if (OppositeBits.getBoolValue()) 2004 return true; 2005 } 2006 return false; 2007 } 2008 2009 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2010 /// simplify operations downstream. Mask is known to be zero for bits that V 2011 /// cannot have. 2012 /// 2013 /// This function is defined on values with integer type, values with pointer 2014 /// type, and vectors of integers. In the case 2015 /// where V is a vector, the mask, known zero, and known one values are the 2016 /// same width as the vector element, and the bit is set only if it is true 2017 /// for all of the elements in the vector. 2018 bool MaskedValueIsZero(Value *V, const APInt &Mask, const DataLayout &DL, 2019 unsigned Depth, const Query &Q) { 2020 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2021 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2022 return (KnownZero & Mask) == Mask; 2023 } 2024 2025 2026 2027 /// Return the number of times the sign bit of the register is replicated into 2028 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2029 /// (itself), but other cases can give us information. For example, immediately 2030 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2031 /// other, so we return 3. 2032 /// 2033 /// 'Op' must have a scalar integer type. 2034 /// 2035 unsigned ComputeNumSignBits(Value *V, const DataLayout &DL, unsigned Depth, 2036 const Query &Q) { 2037 unsigned TyBits = DL.getTypeSizeInBits(V->getType()->getScalarType()); 2038 unsigned Tmp, Tmp2; 2039 unsigned FirstAnswer = 1; 2040 2041 // Note that ConstantInt is handled by the general computeKnownBits case 2042 // below. 2043 2044 if (Depth == 6) 2045 return 1; // Limit search depth. 2046 2047 Operator *U = dyn_cast<Operator>(V); 2048 switch (Operator::getOpcode(V)) { 2049 default: break; 2050 case Instruction::SExt: 2051 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2052 return ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q) + Tmp; 2053 2054 case Instruction::SDiv: { 2055 const APInt *Denominator; 2056 // sdiv X, C -> adds log(C) sign bits. 2057 if (match(U->getOperand(1), m_APInt(Denominator))) { 2058 2059 // Ignore non-positive denominator. 2060 if (!Denominator->isStrictlyPositive()) 2061 break; 2062 2063 // Calculate the incoming numerator bits. 2064 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2065 2066 // Add floor(log(C)) bits to the numerator bits. 2067 return std::min(TyBits, NumBits + Denominator->logBase2()); 2068 } 2069 break; 2070 } 2071 2072 case Instruction::SRem: { 2073 const APInt *Denominator; 2074 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2075 // positive constant. This let us put a lower bound on the number of sign 2076 // bits. 2077 if (match(U->getOperand(1), m_APInt(Denominator))) { 2078 2079 // Ignore non-positive denominator. 2080 if (!Denominator->isStrictlyPositive()) 2081 break; 2082 2083 // Calculate the incoming numerator bits. SRem by a positive constant 2084 // can't lower the number of sign bits. 2085 unsigned NumrBits = 2086 ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2087 2088 // Calculate the leading sign bit constraints by examining the 2089 // denominator. Given that the denominator is positive, there are two 2090 // cases: 2091 // 2092 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2093 // (1 << ceilLogBase2(C)). 2094 // 2095 // 2. the numerator is negative. Then the result range is (-C,0] and 2096 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2097 // 2098 // Thus a lower bound on the number of sign bits is `TyBits - 2099 // ceilLogBase2(C)`. 2100 2101 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2102 return std::max(NumrBits, ResBits); 2103 } 2104 break; 2105 } 2106 2107 case Instruction::AShr: { 2108 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2109 // ashr X, C -> adds C sign bits. Vectors too. 2110 const APInt *ShAmt; 2111 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2112 Tmp += ShAmt->getZExtValue(); 2113 if (Tmp > TyBits) Tmp = TyBits; 2114 } 2115 return Tmp; 2116 } 2117 case Instruction::Shl: { 2118 const APInt *ShAmt; 2119 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2120 // shl destroys sign bits. 2121 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2122 Tmp2 = ShAmt->getZExtValue(); 2123 if (Tmp2 >= TyBits || // Bad shift. 2124 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2125 return Tmp - Tmp2; 2126 } 2127 break; 2128 } 2129 case Instruction::And: 2130 case Instruction::Or: 2131 case Instruction::Xor: // NOT is handled here. 2132 // Logical binary ops preserve the number of sign bits at the worst. 2133 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2134 if (Tmp != 1) { 2135 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2136 FirstAnswer = std::min(Tmp, Tmp2); 2137 // We computed what we know about the sign bits as our first 2138 // answer. Now proceed to the generic code that uses 2139 // computeKnownBits, and pick whichever answer is better. 2140 } 2141 break; 2142 2143 case Instruction::Select: 2144 Tmp = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2145 if (Tmp == 1) return 1; // Early out. 2146 Tmp2 = ComputeNumSignBits(U->getOperand(2), DL, Depth + 1, Q); 2147 return std::min(Tmp, Tmp2); 2148 2149 case Instruction::Add: 2150 // Add can have at most one carry bit. Thus we know that the output 2151 // is, at worst, one more bit than the inputs. 2152 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2153 if (Tmp == 1) return 1; // Early out. 2154 2155 // Special case decrementing a value (ADD X, -1): 2156 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2157 if (CRHS->isAllOnesValue()) { 2158 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2159 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, DL, Depth + 1, 2160 Q); 2161 2162 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2163 // sign bits set. 2164 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2165 return TyBits; 2166 2167 // If we are subtracting one from a positive number, there is no carry 2168 // out of the result. 2169 if (KnownZero.isNegative()) 2170 return Tmp; 2171 } 2172 2173 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2174 if (Tmp2 == 1) return 1; 2175 return std::min(Tmp, Tmp2)-1; 2176 2177 case Instruction::Sub: 2178 Tmp2 = ComputeNumSignBits(U->getOperand(1), DL, Depth + 1, Q); 2179 if (Tmp2 == 1) return 1; 2180 2181 // Handle NEG. 2182 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2183 if (CLHS->isNullValue()) { 2184 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2185 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, DL, Depth + 1, 2186 Q); 2187 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2188 // sign bits set. 2189 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2190 return TyBits; 2191 2192 // If the input is known to be positive (the sign bit is known clear), 2193 // the output of the NEG has the same number of sign bits as the input. 2194 if (KnownZero.isNegative()) 2195 return Tmp2; 2196 2197 // Otherwise, we treat this like a SUB. 2198 } 2199 2200 // Sub can have at most one carry bit. Thus we know that the output 2201 // is, at worst, one more bit than the inputs. 2202 Tmp = ComputeNumSignBits(U->getOperand(0), DL, Depth + 1, Q); 2203 if (Tmp == 1) return 1; // Early out. 2204 return std::min(Tmp, Tmp2)-1; 2205 2206 case Instruction::PHI: { 2207 PHINode *PN = cast<PHINode>(U); 2208 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2209 // Don't analyze large in-degree PHIs. 2210 if (NumIncomingValues > 4) break; 2211 // Unreachable blocks may have zero-operand PHI nodes. 2212 if (NumIncomingValues == 0) break; 2213 2214 // Take the minimum of all incoming values. This can't infinitely loop 2215 // because of our depth threshold. 2216 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), DL, Depth + 1, Q); 2217 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2218 if (Tmp == 1) return Tmp; 2219 Tmp = std::min( 2220 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), DL, Depth + 1, Q)); 2221 } 2222 return Tmp; 2223 } 2224 2225 case Instruction::Trunc: 2226 // FIXME: it's tricky to do anything useful for this, but it is an important 2227 // case for targets like X86. 2228 break; 2229 } 2230 2231 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2232 // use this information. 2233 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2234 APInt Mask; 2235 computeKnownBits(V, KnownZero, KnownOne, DL, Depth, Q); 2236 2237 if (KnownZero.isNegative()) { // sign bit is 0 2238 Mask = KnownZero; 2239 } else if (KnownOne.isNegative()) { // sign bit is 1; 2240 Mask = KnownOne; 2241 } else { 2242 // Nothing known. 2243 return FirstAnswer; 2244 } 2245 2246 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine 2247 // the number of identical bits in the top of the input value. 2248 Mask = ~Mask; 2249 Mask <<= Mask.getBitWidth()-TyBits; 2250 // Return # leading zeros. We use 'min' here in case Val was zero before 2251 // shifting. We don't want to return '64' as for an i32 "0". 2252 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros())); 2253 } 2254 2255 /// This function computes the integer multiple of Base that equals V. 2256 /// If successful, it returns true and returns the multiple in 2257 /// Multiple. If unsuccessful, it returns false. It looks 2258 /// through SExt instructions only if LookThroughSExt is true. 2259 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2260 bool LookThroughSExt, unsigned Depth) { 2261 const unsigned MaxDepth = 6; 2262 2263 assert(V && "No Value?"); 2264 assert(Depth <= MaxDepth && "Limit Search Depth"); 2265 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2266 2267 Type *T = V->getType(); 2268 2269 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2270 2271 if (Base == 0) 2272 return false; 2273 2274 if (Base == 1) { 2275 Multiple = V; 2276 return true; 2277 } 2278 2279 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2280 Constant *BaseVal = ConstantInt::get(T, Base); 2281 if (CO && CO == BaseVal) { 2282 // Multiple is 1. 2283 Multiple = ConstantInt::get(T, 1); 2284 return true; 2285 } 2286 2287 if (CI && CI->getZExtValue() % Base == 0) { 2288 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2289 return true; 2290 } 2291 2292 if (Depth == MaxDepth) return false; // Limit search depth. 2293 2294 Operator *I = dyn_cast<Operator>(V); 2295 if (!I) return false; 2296 2297 switch (I->getOpcode()) { 2298 default: break; 2299 case Instruction::SExt: 2300 if (!LookThroughSExt) return false; 2301 // otherwise fall through to ZExt 2302 case Instruction::ZExt: 2303 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2304 LookThroughSExt, Depth+1); 2305 case Instruction::Shl: 2306 case Instruction::Mul: { 2307 Value *Op0 = I->getOperand(0); 2308 Value *Op1 = I->getOperand(1); 2309 2310 if (I->getOpcode() == Instruction::Shl) { 2311 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2312 if (!Op1CI) return false; 2313 // Turn Op0 << Op1 into Op0 * 2^Op1 2314 APInt Op1Int = Op1CI->getValue(); 2315 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2316 APInt API(Op1Int.getBitWidth(), 0); 2317 API.setBit(BitToSet); 2318 Op1 = ConstantInt::get(V->getContext(), API); 2319 } 2320 2321 Value *Mul0 = nullptr; 2322 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2323 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2324 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2325 if (Op1C->getType()->getPrimitiveSizeInBits() < 2326 MulC->getType()->getPrimitiveSizeInBits()) 2327 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2328 if (Op1C->getType()->getPrimitiveSizeInBits() > 2329 MulC->getType()->getPrimitiveSizeInBits()) 2330 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2331 2332 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2333 Multiple = ConstantExpr::getMul(MulC, Op1C); 2334 return true; 2335 } 2336 2337 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2338 if (Mul0CI->getValue() == 1) { 2339 // V == Base * Op1, so return Op1 2340 Multiple = Op1; 2341 return true; 2342 } 2343 } 2344 2345 Value *Mul1 = nullptr; 2346 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2347 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2348 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2349 if (Op0C->getType()->getPrimitiveSizeInBits() < 2350 MulC->getType()->getPrimitiveSizeInBits()) 2351 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2352 if (Op0C->getType()->getPrimitiveSizeInBits() > 2353 MulC->getType()->getPrimitiveSizeInBits()) 2354 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2355 2356 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2357 Multiple = ConstantExpr::getMul(MulC, Op0C); 2358 return true; 2359 } 2360 2361 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2362 if (Mul1CI->getValue() == 1) { 2363 // V == Base * Op0, so return Op0 2364 Multiple = Op0; 2365 return true; 2366 } 2367 } 2368 } 2369 } 2370 2371 // We could not determine if V is a multiple of Base. 2372 return false; 2373 } 2374 2375 /// Return true if we can prove that the specified FP value is never equal to 2376 /// -0.0. 2377 /// 2378 /// NOTE: this function will need to be revisited when we support non-default 2379 /// rounding modes! 2380 /// 2381 bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) { 2382 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2383 return !CFP->getValueAPF().isNegZero(); 2384 2385 // FIXME: Magic number! At the least, this should be given a name because it's 2386 // used similarly in CannotBeOrderedLessThanZero(). A better fix may be to 2387 // expose it as a parameter, so it can be used for testing / experimenting. 2388 if (Depth == 6) 2389 return false; // Limit search depth. 2390 2391 const Operator *I = dyn_cast<Operator>(V); 2392 if (!I) return false; 2393 2394 // Check if the nsz fast-math flag is set 2395 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2396 if (FPO->hasNoSignedZeros()) 2397 return true; 2398 2399 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2400 if (I->getOpcode() == Instruction::FAdd) 2401 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2402 if (CFP->isNullValue()) 2403 return true; 2404 2405 // sitofp and uitofp turn into +0.0 for zero. 2406 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2407 return true; 2408 2409 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2410 // sqrt(-0.0) = -0.0, no other negative results are possible. 2411 if (II->getIntrinsicID() == Intrinsic::sqrt) 2412 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1); 2413 2414 if (const CallInst *CI = dyn_cast<CallInst>(I)) 2415 if (const Function *F = CI->getCalledFunction()) { 2416 if (F->isDeclaration()) { 2417 // abs(x) != -0.0 2418 if (F->getName() == "abs") return true; 2419 // fabs[lf](x) != -0.0 2420 if (F->getName() == "fabs") return true; 2421 if (F->getName() == "fabsf") return true; 2422 if (F->getName() == "fabsl") return true; 2423 if (F->getName() == "sqrt" || F->getName() == "sqrtf" || 2424 F->getName() == "sqrtl") 2425 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1); 2426 } 2427 } 2428 2429 return false; 2430 } 2431 2432 bool llvm::CannotBeOrderedLessThanZero(const Value *V, unsigned Depth) { 2433 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2434 return !CFP->getValueAPF().isNegative() || CFP->getValueAPF().isZero(); 2435 2436 // FIXME: Magic number! At the least, this should be given a name because it's 2437 // used similarly in CannotBeNegativeZero(). A better fix may be to 2438 // expose it as a parameter, so it can be used for testing / experimenting. 2439 if (Depth == 6) 2440 return false; // Limit search depth. 2441 2442 const Operator *I = dyn_cast<Operator>(V); 2443 if (!I) return false; 2444 2445 switch (I->getOpcode()) { 2446 default: break; 2447 case Instruction::FMul: 2448 // x*x is always non-negative or a NaN. 2449 if (I->getOperand(0) == I->getOperand(1)) 2450 return true; 2451 // Fall through 2452 case Instruction::FAdd: 2453 case Instruction::FDiv: 2454 case Instruction::FRem: 2455 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1) && 2456 CannotBeOrderedLessThanZero(I->getOperand(1), Depth+1); 2457 case Instruction::FPExt: 2458 case Instruction::FPTrunc: 2459 // Widening/narrowing never change sign. 2460 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2461 case Instruction::Call: 2462 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) 2463 switch (II->getIntrinsicID()) { 2464 default: break; 2465 case Intrinsic::exp: 2466 case Intrinsic::exp2: 2467 case Intrinsic::fabs: 2468 case Intrinsic::sqrt: 2469 return true; 2470 case Intrinsic::powi: 2471 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 2472 // powi(x,n) is non-negative if n is even. 2473 if (CI->getBitWidth() <= 64 && CI->getSExtValue() % 2u == 0) 2474 return true; 2475 } 2476 return CannotBeOrderedLessThanZero(I->getOperand(0), Depth+1); 2477 case Intrinsic::fma: 2478 case Intrinsic::fmuladd: 2479 // x*x+y is non-negative if y is non-negative. 2480 return I->getOperand(0) == I->getOperand(1) && 2481 CannotBeOrderedLessThanZero(I->getOperand(2), Depth+1); 2482 } 2483 break; 2484 } 2485 return false; 2486 } 2487 2488 /// If the specified value can be set by repeating the same byte in memory, 2489 /// return the i8 value that it is represented with. This is 2490 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2491 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2492 /// byte store (e.g. i16 0x1234), return null. 2493 Value *llvm::isBytewiseValue(Value *V) { 2494 // All byte-wide stores are splatable, even of arbitrary variables. 2495 if (V->getType()->isIntegerTy(8)) return V; 2496 2497 // Handle 'null' ConstantArrayZero etc. 2498 if (Constant *C = dyn_cast<Constant>(V)) 2499 if (C->isNullValue()) 2500 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2501 2502 // Constant float and double values can be handled as integer values if the 2503 // corresponding integer value is "byteable". An important case is 0.0. 2504 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2505 if (CFP->getType()->isFloatTy()) 2506 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2507 if (CFP->getType()->isDoubleTy()) 2508 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2509 // Don't handle long double formats, which have strange constraints. 2510 } 2511 2512 // We can handle constant integers that are multiple of 8 bits. 2513 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2514 if (CI->getBitWidth() % 8 == 0) { 2515 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2516 2517 if (!CI->getValue().isSplat(8)) 2518 return nullptr; 2519 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2520 } 2521 } 2522 2523 // A ConstantDataArray/Vector is splatable if all its members are equal and 2524 // also splatable. 2525 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2526 Value *Elt = CA->getElementAsConstant(0); 2527 Value *Val = isBytewiseValue(Elt); 2528 if (!Val) 2529 return nullptr; 2530 2531 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2532 if (CA->getElementAsConstant(I) != Elt) 2533 return nullptr; 2534 2535 return Val; 2536 } 2537 2538 // Conceptually, we could handle things like: 2539 // %a = zext i8 %X to i16 2540 // %b = shl i16 %a, 8 2541 // %c = or i16 %a, %b 2542 // but until there is an example that actually needs this, it doesn't seem 2543 // worth worrying about. 2544 return nullptr; 2545 } 2546 2547 2548 // This is the recursive version of BuildSubAggregate. It takes a few different 2549 // arguments. Idxs is the index within the nested struct From that we are 2550 // looking at now (which is of type IndexedType). IdxSkip is the number of 2551 // indices from Idxs that should be left out when inserting into the resulting 2552 // struct. To is the result struct built so far, new insertvalue instructions 2553 // build on that. 2554 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2555 SmallVectorImpl<unsigned> &Idxs, 2556 unsigned IdxSkip, 2557 Instruction *InsertBefore) { 2558 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2559 if (STy) { 2560 // Save the original To argument so we can modify it 2561 Value *OrigTo = To; 2562 // General case, the type indexed by Idxs is a struct 2563 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2564 // Process each struct element recursively 2565 Idxs.push_back(i); 2566 Value *PrevTo = To; 2567 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2568 InsertBefore); 2569 Idxs.pop_back(); 2570 if (!To) { 2571 // Couldn't find any inserted value for this index? Cleanup 2572 while (PrevTo != OrigTo) { 2573 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2574 PrevTo = Del->getAggregateOperand(); 2575 Del->eraseFromParent(); 2576 } 2577 // Stop processing elements 2578 break; 2579 } 2580 } 2581 // If we successfully found a value for each of our subaggregates 2582 if (To) 2583 return To; 2584 } 2585 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2586 // the struct's elements had a value that was inserted directly. In the latter 2587 // case, perhaps we can't determine each of the subelements individually, but 2588 // we might be able to find the complete struct somewhere. 2589 2590 // Find the value that is at that particular spot 2591 Value *V = FindInsertedValue(From, Idxs); 2592 2593 if (!V) 2594 return nullptr; 2595 2596 // Insert the value in the new (sub) aggregrate 2597 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2598 "tmp", InsertBefore); 2599 } 2600 2601 // This helper takes a nested struct and extracts a part of it (which is again a 2602 // struct) into a new value. For example, given the struct: 2603 // { a, { b, { c, d }, e } } 2604 // and the indices "1, 1" this returns 2605 // { c, d }. 2606 // 2607 // It does this by inserting an insertvalue for each element in the resulting 2608 // struct, as opposed to just inserting a single struct. This will only work if 2609 // each of the elements of the substruct are known (ie, inserted into From by an 2610 // insertvalue instruction somewhere). 2611 // 2612 // All inserted insertvalue instructions are inserted before InsertBefore 2613 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2614 Instruction *InsertBefore) { 2615 assert(InsertBefore && "Must have someplace to insert!"); 2616 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2617 idx_range); 2618 Value *To = UndefValue::get(IndexedType); 2619 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2620 unsigned IdxSkip = Idxs.size(); 2621 2622 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2623 } 2624 2625 /// Given an aggregrate and an sequence of indices, see if 2626 /// the scalar value indexed is already around as a register, for example if it 2627 /// were inserted directly into the aggregrate. 2628 /// 2629 /// If InsertBefore is not null, this function will duplicate (modified) 2630 /// insertvalues when a part of a nested struct is extracted. 2631 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2632 Instruction *InsertBefore) { 2633 // Nothing to index? Just return V then (this is useful at the end of our 2634 // recursion). 2635 if (idx_range.empty()) 2636 return V; 2637 // We have indices, so V should have an indexable type. 2638 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2639 "Not looking at a struct or array?"); 2640 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2641 "Invalid indices for type?"); 2642 2643 if (Constant *C = dyn_cast<Constant>(V)) { 2644 C = C->getAggregateElement(idx_range[0]); 2645 if (!C) return nullptr; 2646 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2647 } 2648 2649 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2650 // Loop the indices for the insertvalue instruction in parallel with the 2651 // requested indices 2652 const unsigned *req_idx = idx_range.begin(); 2653 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2654 i != e; ++i, ++req_idx) { 2655 if (req_idx == idx_range.end()) { 2656 // We can't handle this without inserting insertvalues 2657 if (!InsertBefore) 2658 return nullptr; 2659 2660 // The requested index identifies a part of a nested aggregate. Handle 2661 // this specially. For example, 2662 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2663 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2664 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2665 // This can be changed into 2666 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2667 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2668 // which allows the unused 0,0 element from the nested struct to be 2669 // removed. 2670 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2671 InsertBefore); 2672 } 2673 2674 // This insert value inserts something else than what we are looking for. 2675 // See if the (aggregate) value inserted into has the value we are 2676 // looking for, then. 2677 if (*req_idx != *i) 2678 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2679 InsertBefore); 2680 } 2681 // If we end up here, the indices of the insertvalue match with those 2682 // requested (though possibly only partially). Now we recursively look at 2683 // the inserted value, passing any remaining indices. 2684 return FindInsertedValue(I->getInsertedValueOperand(), 2685 makeArrayRef(req_idx, idx_range.end()), 2686 InsertBefore); 2687 } 2688 2689 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2690 // If we're extracting a value from an aggregate that was extracted from 2691 // something else, we can extract from that something else directly instead. 2692 // However, we will need to chain I's indices with the requested indices. 2693 2694 // Calculate the number of indices required 2695 unsigned size = I->getNumIndices() + idx_range.size(); 2696 // Allocate some space to put the new indices in 2697 SmallVector<unsigned, 5> Idxs; 2698 Idxs.reserve(size); 2699 // Add indices from the extract value instruction 2700 Idxs.append(I->idx_begin(), I->idx_end()); 2701 2702 // Add requested indices 2703 Idxs.append(idx_range.begin(), idx_range.end()); 2704 2705 assert(Idxs.size() == size 2706 && "Number of indices added not correct?"); 2707 2708 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2709 } 2710 // Otherwise, we don't know (such as, extracting from a function return value 2711 // or load instruction) 2712 return nullptr; 2713 } 2714 2715 /// Analyze the specified pointer to see if it can be expressed as a base 2716 /// pointer plus a constant offset. Return the base and offset to the caller. 2717 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2718 const DataLayout &DL) { 2719 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2720 APInt ByteOffset(BitWidth, 0); 2721 while (1) { 2722 if (Ptr->getType()->isVectorTy()) 2723 break; 2724 2725 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2726 APInt GEPOffset(BitWidth, 0); 2727 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2728 break; 2729 2730 ByteOffset += GEPOffset; 2731 2732 Ptr = GEP->getPointerOperand(); 2733 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2734 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 2735 Ptr = cast<Operator>(Ptr)->getOperand(0); 2736 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 2737 if (GA->mayBeOverridden()) 2738 break; 2739 Ptr = GA->getAliasee(); 2740 } else { 2741 break; 2742 } 2743 } 2744 Offset = ByteOffset.getSExtValue(); 2745 return Ptr; 2746 } 2747 2748 2749 /// This function computes the length of a null-terminated C string pointed to 2750 /// by V. If successful, it returns true and returns the string in Str. 2751 /// If unsuccessful, it returns false. 2752 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 2753 uint64_t Offset, bool TrimAtNul) { 2754 assert(V); 2755 2756 // Look through bitcast instructions and geps. 2757 V = V->stripPointerCasts(); 2758 2759 // If the value is a GEP instruction or constant expression, treat it as an 2760 // offset. 2761 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2762 // Make sure the GEP has exactly three arguments. 2763 if (GEP->getNumOperands() != 3) 2764 return false; 2765 2766 // Make sure the index-ee is a pointer to array of i8. 2767 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType()); 2768 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType()); 2769 if (!AT || !AT->getElementType()->isIntegerTy(8)) 2770 return false; 2771 2772 // Check to make sure that the first operand of the GEP is an integer and 2773 // has value 0 so that we are sure we're indexing into the initializer. 2774 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 2775 if (!FirstIdx || !FirstIdx->isZero()) 2776 return false; 2777 2778 // If the second index isn't a ConstantInt, then this is a variable index 2779 // into the array. If this occurs, we can't say anything meaningful about 2780 // the string. 2781 uint64_t StartIdx = 0; 2782 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 2783 StartIdx = CI->getZExtValue(); 2784 else 2785 return false; 2786 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 2787 TrimAtNul); 2788 } 2789 2790 // The GEP instruction, constant or instruction, must reference a global 2791 // variable that is a constant and is initialized. The referenced constant 2792 // initializer is the array that we'll use for optimization. 2793 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 2794 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 2795 return false; 2796 2797 // Handle the all-zeros case 2798 if (GV->getInitializer()->isNullValue()) { 2799 // This is a degenerate case. The initializer is constant zero so the 2800 // length of the string must be zero. 2801 Str = ""; 2802 return true; 2803 } 2804 2805 // Must be a Constant Array 2806 const ConstantDataArray *Array = 2807 dyn_cast<ConstantDataArray>(GV->getInitializer()); 2808 if (!Array || !Array->isString()) 2809 return false; 2810 2811 // Get the number of elements in the array 2812 uint64_t NumElts = Array->getType()->getArrayNumElements(); 2813 2814 // Start out with the entire array in the StringRef. 2815 Str = Array->getAsString(); 2816 2817 if (Offset > NumElts) 2818 return false; 2819 2820 // Skip over 'offset' bytes. 2821 Str = Str.substr(Offset); 2822 2823 if (TrimAtNul) { 2824 // Trim off the \0 and anything after it. If the array is not nul 2825 // terminated, we just return the whole end of string. The client may know 2826 // some other way that the string is length-bound. 2827 Str = Str.substr(0, Str.find('\0')); 2828 } 2829 return true; 2830 } 2831 2832 // These next two are very similar to the above, but also look through PHI 2833 // nodes. 2834 // TODO: See if we can integrate these two together. 2835 2836 /// If we can compute the length of the string pointed to by 2837 /// the specified pointer, return 'len+1'. If we can't, return 0. 2838 static uint64_t GetStringLengthH(Value *V, SmallPtrSetImpl<PHINode*> &PHIs) { 2839 // Look through noop bitcast instructions. 2840 V = V->stripPointerCasts(); 2841 2842 // If this is a PHI node, there are two cases: either we have already seen it 2843 // or we haven't. 2844 if (PHINode *PN = dyn_cast<PHINode>(V)) { 2845 if (!PHIs.insert(PN).second) 2846 return ~0ULL; // already in the set. 2847 2848 // If it was new, see if all the input strings are the same length. 2849 uint64_t LenSoFar = ~0ULL; 2850 for (Value *IncValue : PN->incoming_values()) { 2851 uint64_t Len = GetStringLengthH(IncValue, PHIs); 2852 if (Len == 0) return 0; // Unknown length -> unknown. 2853 2854 if (Len == ~0ULL) continue; 2855 2856 if (Len != LenSoFar && LenSoFar != ~0ULL) 2857 return 0; // Disagree -> unknown. 2858 LenSoFar = Len; 2859 } 2860 2861 // Success, all agree. 2862 return LenSoFar; 2863 } 2864 2865 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 2866 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 2867 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 2868 if (Len1 == 0) return 0; 2869 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 2870 if (Len2 == 0) return 0; 2871 if (Len1 == ~0ULL) return Len2; 2872 if (Len2 == ~0ULL) return Len1; 2873 if (Len1 != Len2) return 0; 2874 return Len1; 2875 } 2876 2877 // Otherwise, see if we can read the string. 2878 StringRef StrData; 2879 if (!getConstantStringInfo(V, StrData)) 2880 return 0; 2881 2882 return StrData.size()+1; 2883 } 2884 2885 /// If we can compute the length of the string pointed to by 2886 /// the specified pointer, return 'len+1'. If we can't, return 0. 2887 uint64_t llvm::GetStringLength(Value *V) { 2888 if (!V->getType()->isPointerTy()) return 0; 2889 2890 SmallPtrSet<PHINode*, 32> PHIs; 2891 uint64_t Len = GetStringLengthH(V, PHIs); 2892 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 2893 // an empty string as a length. 2894 return Len == ~0ULL ? 1 : Len; 2895 } 2896 2897 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 2898 /// previous iteration of the loop was referring to the same object as \p PN. 2899 static bool isSameUnderlyingObjectInLoop(PHINode *PN, LoopInfo *LI) { 2900 // Find the loop-defined value. 2901 Loop *L = LI->getLoopFor(PN->getParent()); 2902 if (PN->getNumIncomingValues() != 2) 2903 return true; 2904 2905 // Find the value from previous iteration. 2906 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 2907 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2908 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 2909 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 2910 return true; 2911 2912 // If a new pointer is loaded in the loop, the pointer references a different 2913 // object in every iteration. E.g.: 2914 // for (i) 2915 // int *p = a[i]; 2916 // ... 2917 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 2918 if (!L->isLoopInvariant(Load->getPointerOperand())) 2919 return false; 2920 return true; 2921 } 2922 2923 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 2924 unsigned MaxLookup) { 2925 if (!V->getType()->isPointerTy()) 2926 return V; 2927 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 2928 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 2929 V = GEP->getPointerOperand(); 2930 } else if (Operator::getOpcode(V) == Instruction::BitCast || 2931 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 2932 V = cast<Operator>(V)->getOperand(0); 2933 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 2934 if (GA->mayBeOverridden()) 2935 return V; 2936 V = GA->getAliasee(); 2937 } else { 2938 // See if InstructionSimplify knows any relevant tricks. 2939 if (Instruction *I = dyn_cast<Instruction>(V)) 2940 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 2941 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 2942 V = Simplified; 2943 continue; 2944 } 2945 2946 return V; 2947 } 2948 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 2949 } 2950 return V; 2951 } 2952 2953 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 2954 const DataLayout &DL, LoopInfo *LI, 2955 unsigned MaxLookup) { 2956 SmallPtrSet<Value *, 4> Visited; 2957 SmallVector<Value *, 4> Worklist; 2958 Worklist.push_back(V); 2959 do { 2960 Value *P = Worklist.pop_back_val(); 2961 P = GetUnderlyingObject(P, DL, MaxLookup); 2962 2963 if (!Visited.insert(P).second) 2964 continue; 2965 2966 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 2967 Worklist.push_back(SI->getTrueValue()); 2968 Worklist.push_back(SI->getFalseValue()); 2969 continue; 2970 } 2971 2972 if (PHINode *PN = dyn_cast<PHINode>(P)) { 2973 // If this PHI changes the underlying object in every iteration of the 2974 // loop, don't look through it. Consider: 2975 // int **A; 2976 // for (i) { 2977 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 2978 // Curr = A[i]; 2979 // *Prev, *Curr; 2980 // 2981 // Prev is tracking Curr one iteration behind so they refer to different 2982 // underlying objects. 2983 if (!LI || !LI->isLoopHeader(PN->getParent()) || 2984 isSameUnderlyingObjectInLoop(PN, LI)) 2985 for (Value *IncValue : PN->incoming_values()) 2986 Worklist.push_back(IncValue); 2987 continue; 2988 } 2989 2990 Objects.push_back(P); 2991 } while (!Worklist.empty()); 2992 } 2993 2994 /// Return true if the only users of this pointer are lifetime markers. 2995 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 2996 for (const User *U : V->users()) { 2997 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 2998 if (!II) return false; 2999 3000 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3001 II->getIntrinsicID() != Intrinsic::lifetime_end) 3002 return false; 3003 } 3004 return true; 3005 } 3006 3007 static bool isDereferenceableFromAttribute(const Value *BV, APInt Offset, 3008 Type *Ty, const DataLayout &DL, 3009 const Instruction *CtxI, 3010 const DominatorTree *DT, 3011 const TargetLibraryInfo *TLI) { 3012 assert(Offset.isNonNegative() && "offset can't be negative"); 3013 assert(Ty->isSized() && "must be sized"); 3014 3015 APInt DerefBytes(Offset.getBitWidth(), 0); 3016 bool CheckForNonNull = false; 3017 if (const Argument *A = dyn_cast<Argument>(BV)) { 3018 DerefBytes = A->getDereferenceableBytes(); 3019 if (!DerefBytes.getBoolValue()) { 3020 DerefBytes = A->getDereferenceableOrNullBytes(); 3021 CheckForNonNull = true; 3022 } 3023 } else if (auto CS = ImmutableCallSite(BV)) { 3024 DerefBytes = CS.getDereferenceableBytes(0); 3025 if (!DerefBytes.getBoolValue()) { 3026 DerefBytes = CS.getDereferenceableOrNullBytes(0); 3027 CheckForNonNull = true; 3028 } 3029 } else if (const LoadInst *LI = dyn_cast<LoadInst>(BV)) { 3030 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) { 3031 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3032 DerefBytes = CI->getLimitedValue(); 3033 } 3034 if (!DerefBytes.getBoolValue()) { 3035 if (MDNode *MD = 3036 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) { 3037 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0)); 3038 DerefBytes = CI->getLimitedValue(); 3039 } 3040 CheckForNonNull = true; 3041 } 3042 } 3043 3044 if (DerefBytes.getBoolValue()) 3045 if (DerefBytes.uge(Offset + DL.getTypeStoreSize(Ty))) 3046 if (!CheckForNonNull || isKnownNonNullAt(BV, CtxI, DT, TLI)) 3047 return true; 3048 3049 return false; 3050 } 3051 3052 static bool isDereferenceableFromAttribute(const Value *V, const DataLayout &DL, 3053 const Instruction *CtxI, 3054 const DominatorTree *DT, 3055 const TargetLibraryInfo *TLI) { 3056 Type *VTy = V->getType(); 3057 Type *Ty = VTy->getPointerElementType(); 3058 if (!Ty->isSized()) 3059 return false; 3060 3061 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3062 return isDereferenceableFromAttribute(V, Offset, Ty, DL, CtxI, DT, TLI); 3063 } 3064 3065 static bool isAligned(const Value *Base, APInt Offset, unsigned Align, 3066 const DataLayout &DL) { 3067 APInt BaseAlign(Offset.getBitWidth(), getAlignment(Base, DL)); 3068 3069 if (!BaseAlign) { 3070 Type *Ty = Base->getType()->getPointerElementType(); 3071 BaseAlign = DL.getABITypeAlignment(Ty); 3072 } 3073 3074 APInt Alignment(Offset.getBitWidth(), Align); 3075 3076 assert(Alignment.isPowerOf2() && "must be a power of 2!"); 3077 return BaseAlign.uge(Alignment) && !(Offset & (Alignment-1)); 3078 } 3079 3080 static bool isAligned(const Value *Base, unsigned Align, const DataLayout &DL) { 3081 APInt Offset(DL.getTypeStoreSizeInBits(Base->getType()), 0); 3082 return isAligned(Base, Offset, Align, DL); 3083 } 3084 3085 /// Test if V is always a pointer to allocated and suitably aligned memory for 3086 /// a simple load or store. 3087 static bool isDereferenceableAndAlignedPointer( 3088 const Value *V, unsigned Align, const DataLayout &DL, 3089 const Instruction *CtxI, const DominatorTree *DT, 3090 const TargetLibraryInfo *TLI, SmallPtrSetImpl<const Value *> &Visited) { 3091 // Note that it is not safe to speculate into a malloc'd region because 3092 // malloc may return null. 3093 3094 // These are obviously ok if aligned. 3095 if (isa<AllocaInst>(V)) 3096 return isAligned(V, Align, DL); 3097 3098 // It's not always safe to follow a bitcast, for example: 3099 // bitcast i8* (alloca i8) to i32* 3100 // would result in a 4-byte load from a 1-byte alloca. However, 3101 // if we're casting from a pointer from a type of larger size 3102 // to a type of smaller size (or the same size), and the alignment 3103 // is at least as large as for the resulting pointer type, then 3104 // we can look through the bitcast. 3105 if (const BitCastOperator *BC = dyn_cast<BitCastOperator>(V)) { 3106 Type *STy = BC->getSrcTy()->getPointerElementType(), 3107 *DTy = BC->getDestTy()->getPointerElementType(); 3108 if (STy->isSized() && DTy->isSized() && 3109 (DL.getTypeStoreSize(STy) >= DL.getTypeStoreSize(DTy)) && 3110 (DL.getABITypeAlignment(STy) >= DL.getABITypeAlignment(DTy))) 3111 return isDereferenceableAndAlignedPointer(BC->getOperand(0), Align, DL, 3112 CtxI, DT, TLI, Visited); 3113 } 3114 3115 // Global variables which can't collapse to null are ok. 3116 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 3117 if (!GV->hasExternalWeakLinkage()) 3118 return isAligned(V, Align, DL); 3119 3120 // byval arguments are okay. 3121 if (const Argument *A = dyn_cast<Argument>(V)) 3122 if (A->hasByValAttr()) 3123 return isAligned(V, Align, DL); 3124 3125 if (isDereferenceableFromAttribute(V, DL, CtxI, DT, TLI)) 3126 return isAligned(V, Align, DL); 3127 3128 // For GEPs, determine if the indexing lands within the allocated object. 3129 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3130 Type *VTy = GEP->getType(); 3131 Type *Ty = VTy->getPointerElementType(); 3132 const Value *Base = GEP->getPointerOperand(); 3133 3134 // Conservatively require that the base pointer be fully dereferenceable 3135 // and aligned. 3136 if (!Visited.insert(Base).second) 3137 return false; 3138 if (!isDereferenceableAndAlignedPointer(Base, Align, DL, CtxI, DT, TLI, 3139 Visited)) 3140 return false; 3141 3142 APInt Offset(DL.getPointerTypeSizeInBits(VTy), 0); 3143 if (!GEP->accumulateConstantOffset(DL, Offset)) 3144 return false; 3145 3146 // Check if the load is within the bounds of the underlying object 3147 // and offset is aligned. 3148 uint64_t LoadSize = DL.getTypeStoreSize(Ty); 3149 Type *BaseType = Base->getType()->getPointerElementType(); 3150 assert(isPowerOf2_32(Align) && "must be a power of 2!"); 3151 return (Offset + LoadSize).ule(DL.getTypeAllocSize(BaseType)) && 3152 !(Offset & APInt(Offset.getBitWidth(), Align-1)); 3153 } 3154 3155 // For gc.relocate, look through relocations 3156 if (const IntrinsicInst *I = dyn_cast<IntrinsicInst>(V)) 3157 if (I->getIntrinsicID() == Intrinsic::experimental_gc_relocate) { 3158 GCRelocateOperands RelocateInst(I); 3159 return isDereferenceableAndAlignedPointer( 3160 RelocateInst.getDerivedPtr(), Align, DL, CtxI, DT, TLI, Visited); 3161 } 3162 3163 if (const AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(V)) 3164 return isDereferenceableAndAlignedPointer(ASC->getOperand(0), Align, DL, 3165 CtxI, DT, TLI, Visited); 3166 3167 // If we don't know, assume the worst. 3168 return false; 3169 } 3170 3171 bool llvm::isDereferenceableAndAlignedPointer(const Value *V, unsigned Align, 3172 const DataLayout &DL, 3173 const Instruction *CtxI, 3174 const DominatorTree *DT, 3175 const TargetLibraryInfo *TLI) { 3176 // When dereferenceability information is provided by a dereferenceable 3177 // attribute, we know exactly how many bytes are dereferenceable. If we can 3178 // determine the exact offset to the attributed variable, we can use that 3179 // information here. 3180 Type *VTy = V->getType(); 3181 Type *Ty = VTy->getPointerElementType(); 3182 3183 // Require ABI alignment for loads without alignment specification 3184 if (Align == 0) 3185 Align = DL.getABITypeAlignment(Ty); 3186 3187 if (Ty->isSized()) { 3188 APInt Offset(DL.getTypeStoreSizeInBits(VTy), 0); 3189 const Value *BV = V->stripAndAccumulateInBoundsConstantOffsets(DL, Offset); 3190 3191 if (Offset.isNonNegative()) 3192 if (isDereferenceableFromAttribute(BV, Offset, Ty, DL, CtxI, DT, TLI) && 3193 isAligned(BV, Offset, Align, DL)) 3194 return true; 3195 } 3196 3197 SmallPtrSet<const Value *, 32> Visited; 3198 return ::isDereferenceableAndAlignedPointer(V, Align, DL, CtxI, DT, TLI, 3199 Visited); 3200 } 3201 3202 bool llvm::isDereferenceablePointer(const Value *V, const DataLayout &DL, 3203 const Instruction *CtxI, 3204 const DominatorTree *DT, 3205 const TargetLibraryInfo *TLI) { 3206 return isDereferenceableAndAlignedPointer(V, 1, DL, CtxI, DT, TLI); 3207 } 3208 3209 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3210 const Instruction *CtxI, 3211 const DominatorTree *DT, 3212 const TargetLibraryInfo *TLI) { 3213 const Operator *Inst = dyn_cast<Operator>(V); 3214 if (!Inst) 3215 return false; 3216 3217 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3218 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3219 if (C->canTrap()) 3220 return false; 3221 3222 switch (Inst->getOpcode()) { 3223 default: 3224 return true; 3225 case Instruction::UDiv: 3226 case Instruction::URem: { 3227 // x / y is undefined if y == 0. 3228 const APInt *V; 3229 if (match(Inst->getOperand(1), m_APInt(V))) 3230 return *V != 0; 3231 return false; 3232 } 3233 case Instruction::SDiv: 3234 case Instruction::SRem: { 3235 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3236 const APInt *Numerator, *Denominator; 3237 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3238 return false; 3239 // We cannot hoist this division if the denominator is 0. 3240 if (*Denominator == 0) 3241 return false; 3242 // It's safe to hoist if the denominator is not 0 or -1. 3243 if (*Denominator != -1) 3244 return true; 3245 // At this point we know that the denominator is -1. It is safe to hoist as 3246 // long we know that the numerator is not INT_MIN. 3247 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3248 return !Numerator->isMinSignedValue(); 3249 // The numerator *might* be MinSignedValue. 3250 return false; 3251 } 3252 case Instruction::Load: { 3253 const LoadInst *LI = cast<LoadInst>(Inst); 3254 if (!LI->isUnordered() || 3255 // Speculative load may create a race that did not exist in the source. 3256 LI->getParent()->getParent()->hasFnAttribute( 3257 Attribute::SanitizeThread) || 3258 // Speculative load may load data from dirty regions. 3259 LI->getParent()->getParent()->hasFnAttribute( 3260 Attribute::SanitizeAddress)) 3261 return false; 3262 const DataLayout &DL = LI->getModule()->getDataLayout(); 3263 return isDereferenceableAndAlignedPointer( 3264 LI->getPointerOperand(), LI->getAlignment(), DL, CtxI, DT, TLI); 3265 } 3266 case Instruction::Call: { 3267 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3268 switch (II->getIntrinsicID()) { 3269 // These synthetic intrinsics have no side-effects and just mark 3270 // information about their operands. 3271 // FIXME: There are other no-op synthetic instructions that potentially 3272 // should be considered at least *safe* to speculate... 3273 case Intrinsic::dbg_declare: 3274 case Intrinsic::dbg_value: 3275 return true; 3276 3277 case Intrinsic::bswap: 3278 case Intrinsic::ctlz: 3279 case Intrinsic::ctpop: 3280 case Intrinsic::cttz: 3281 case Intrinsic::objectsize: 3282 case Intrinsic::sadd_with_overflow: 3283 case Intrinsic::smul_with_overflow: 3284 case Intrinsic::ssub_with_overflow: 3285 case Intrinsic::uadd_with_overflow: 3286 case Intrinsic::umul_with_overflow: 3287 case Intrinsic::usub_with_overflow: 3288 return true; 3289 // Sqrt should be OK, since the llvm sqrt intrinsic isn't defined to set 3290 // errno like libm sqrt would. 3291 case Intrinsic::sqrt: 3292 case Intrinsic::fma: 3293 case Intrinsic::fmuladd: 3294 case Intrinsic::fabs: 3295 case Intrinsic::minnum: 3296 case Intrinsic::maxnum: 3297 return true; 3298 // TODO: some fp intrinsics are marked as having the same error handling 3299 // as libm. They're safe to speculate when they won't error. 3300 // TODO: are convert_{from,to}_fp16 safe? 3301 // TODO: can we list target-specific intrinsics here? 3302 default: break; 3303 } 3304 } 3305 return false; // The called function could have undefined behavior or 3306 // side-effects, even if marked readnone nounwind. 3307 } 3308 case Instruction::VAArg: 3309 case Instruction::Alloca: 3310 case Instruction::Invoke: 3311 case Instruction::PHI: 3312 case Instruction::Store: 3313 case Instruction::Ret: 3314 case Instruction::Br: 3315 case Instruction::IndirectBr: 3316 case Instruction::Switch: 3317 case Instruction::Unreachable: 3318 case Instruction::Fence: 3319 case Instruction::AtomicRMW: 3320 case Instruction::AtomicCmpXchg: 3321 case Instruction::LandingPad: 3322 case Instruction::Resume: 3323 case Instruction::CatchPad: 3324 case Instruction::CatchEndPad: 3325 case Instruction::CatchRet: 3326 case Instruction::CleanupPad: 3327 case Instruction::CleanupEndPad: 3328 case Instruction::CleanupRet: 3329 case Instruction::TerminatePad: 3330 return false; // Misc instructions which have effects 3331 } 3332 } 3333 3334 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3335 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3336 } 3337 3338 /// Return true if we know that the specified value is never null. 3339 bool llvm::isKnownNonNull(const Value *V, const TargetLibraryInfo *TLI) { 3340 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3341 3342 // Alloca never returns null, malloc might. 3343 if (isa<AllocaInst>(V)) return true; 3344 3345 // A byval, inalloca, or nonnull argument is never null. 3346 if (const Argument *A = dyn_cast<Argument>(V)) 3347 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3348 3349 // A global variable in address space 0 is non null unless extern weak. 3350 // Other address spaces may have null as a valid address for a global, 3351 // so we can't assume anything. 3352 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3353 return !GV->hasExternalWeakLinkage() && 3354 GV->getType()->getAddressSpace() == 0; 3355 3356 // A Load tagged w/nonnull metadata is never null. 3357 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3358 return LI->getMetadata(LLVMContext::MD_nonnull); 3359 3360 if (auto CS = ImmutableCallSite(V)) 3361 if (CS.isReturnNonNull()) 3362 return true; 3363 3364 // operator new never returns null. 3365 if (isOperatorNewLikeFn(V, TLI, /*LookThroughBitCast=*/true)) 3366 return true; 3367 3368 return false; 3369 } 3370 3371 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3372 const Instruction *CtxI, 3373 const DominatorTree *DT) { 3374 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3375 3376 unsigned NumUsesExplored = 0; 3377 for (auto U : V->users()) { 3378 // Avoid massive lists 3379 if (NumUsesExplored >= DomConditionsMaxUses) 3380 break; 3381 NumUsesExplored++; 3382 // Consider only compare instructions uniquely controlling a branch 3383 const ICmpInst *Cmp = dyn_cast<ICmpInst>(U); 3384 if (!Cmp) 3385 continue; 3386 3387 if (DomConditionsSingleCmpUse && !Cmp->hasOneUse()) 3388 continue; 3389 3390 for (auto *CmpU : Cmp->users()) { 3391 const BranchInst *BI = dyn_cast<BranchInst>(CmpU); 3392 if (!BI) 3393 continue; 3394 3395 assert(BI->isConditional() && "uses a comparison!"); 3396 3397 BasicBlock *NonNullSuccessor = nullptr; 3398 CmpInst::Predicate Pred; 3399 3400 if (match(const_cast<ICmpInst*>(Cmp), 3401 m_c_ICmp(Pred, m_Specific(V), m_Zero()))) { 3402 if (Pred == ICmpInst::ICMP_EQ) 3403 NonNullSuccessor = BI->getSuccessor(1); 3404 else if (Pred == ICmpInst::ICMP_NE) 3405 NonNullSuccessor = BI->getSuccessor(0); 3406 } 3407 3408 if (NonNullSuccessor) { 3409 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3410 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3411 return true; 3412 } 3413 } 3414 } 3415 3416 return false; 3417 } 3418 3419 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3420 const DominatorTree *DT, const TargetLibraryInfo *TLI) { 3421 if (isKnownNonNull(V, TLI)) 3422 return true; 3423 3424 return CtxI ? ::isKnownNonNullFromDominatingCondition(V, CtxI, DT) : false; 3425 } 3426 3427 OverflowResult llvm::computeOverflowForUnsignedMul(Value *LHS, Value *RHS, 3428 const DataLayout &DL, 3429 AssumptionCache *AC, 3430 const Instruction *CxtI, 3431 const DominatorTree *DT) { 3432 // Multiplying n * m significant bits yields a result of n + m significant 3433 // bits. If the total number of significant bits does not exceed the 3434 // result bit width (minus 1), there is no overflow. 3435 // This means if we have enough leading zero bits in the operands 3436 // we can guarantee that the result does not overflow. 3437 // Ref: "Hacker's Delight" by Henry Warren 3438 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3439 APInt LHSKnownZero(BitWidth, 0); 3440 APInt LHSKnownOne(BitWidth, 0); 3441 APInt RHSKnownZero(BitWidth, 0); 3442 APInt RHSKnownOne(BitWidth, 0); 3443 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3444 DT); 3445 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3446 DT); 3447 // Note that underestimating the number of zero bits gives a more 3448 // conservative answer. 3449 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3450 RHSKnownZero.countLeadingOnes(); 3451 // First handle the easy case: if we have enough zero bits there's 3452 // definitely no overflow. 3453 if (ZeroBits >= BitWidth) 3454 return OverflowResult::NeverOverflows; 3455 3456 // Get the largest possible values for each operand. 3457 APInt LHSMax = ~LHSKnownZero; 3458 APInt RHSMax = ~RHSKnownZero; 3459 3460 // We know the multiply operation doesn't overflow if the maximum values for 3461 // each operand will not overflow after we multiply them together. 3462 bool MaxOverflow; 3463 LHSMax.umul_ov(RHSMax, MaxOverflow); 3464 if (!MaxOverflow) 3465 return OverflowResult::NeverOverflows; 3466 3467 // We know it always overflows if multiplying the smallest possible values for 3468 // the operands also results in overflow. 3469 bool MinOverflow; 3470 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3471 if (MinOverflow) 3472 return OverflowResult::AlwaysOverflows; 3473 3474 return OverflowResult::MayOverflow; 3475 } 3476 3477 OverflowResult llvm::computeOverflowForUnsignedAdd(Value *LHS, Value *RHS, 3478 const DataLayout &DL, 3479 AssumptionCache *AC, 3480 const Instruction *CxtI, 3481 const DominatorTree *DT) { 3482 bool LHSKnownNonNegative, LHSKnownNegative; 3483 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3484 AC, CxtI, DT); 3485 if (LHSKnownNonNegative || LHSKnownNegative) { 3486 bool RHSKnownNonNegative, RHSKnownNegative; 3487 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3488 AC, CxtI, DT); 3489 3490 if (LHSKnownNegative && RHSKnownNegative) { 3491 // The sign bit is set in both cases: this MUST overflow. 3492 // Create a simple add instruction, and insert it into the struct. 3493 return OverflowResult::AlwaysOverflows; 3494 } 3495 3496 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3497 // The sign bit is clear in both cases: this CANNOT overflow. 3498 // Create a simple add instruction, and insert it into the struct. 3499 return OverflowResult::NeverOverflows; 3500 } 3501 } 3502 3503 return OverflowResult::MayOverflow; 3504 } 3505 3506 static OverflowResult computeOverflowForSignedAdd( 3507 Value *LHS, Value *RHS, AddOperator *Add, const DataLayout &DL, 3508 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT) { 3509 if (Add && Add->hasNoSignedWrap()) { 3510 return OverflowResult::NeverOverflows; 3511 } 3512 3513 bool LHSKnownNonNegative, LHSKnownNegative; 3514 bool RHSKnownNonNegative, RHSKnownNegative; 3515 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3516 AC, CxtI, DT); 3517 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3518 AC, CxtI, DT); 3519 3520 if ((LHSKnownNonNegative && RHSKnownNegative) || 3521 (LHSKnownNegative && RHSKnownNonNegative)) { 3522 // The sign bits are opposite: this CANNOT overflow. 3523 return OverflowResult::NeverOverflows; 3524 } 3525 3526 // The remaining code needs Add to be available. Early returns if not so. 3527 if (!Add) 3528 return OverflowResult::MayOverflow; 3529 3530 // If the sign of Add is the same as at least one of the operands, this add 3531 // CANNOT overflow. This is particularly useful when the sum is 3532 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3533 // operands. 3534 bool LHSOrRHSKnownNonNegative = 3535 (LHSKnownNonNegative || RHSKnownNonNegative); 3536 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3537 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3538 bool AddKnownNonNegative, AddKnownNegative; 3539 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3540 /*Depth=*/0, AC, CxtI, DT); 3541 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3542 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3543 return OverflowResult::NeverOverflows; 3544 } 3545 } 3546 3547 return OverflowResult::MayOverflow; 3548 } 3549 3550 OverflowResult llvm::computeOverflowForSignedAdd(AddOperator *Add, 3551 const DataLayout &DL, 3552 AssumptionCache *AC, 3553 const Instruction *CxtI, 3554 const DominatorTree *DT) { 3555 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3556 Add, DL, AC, CxtI, DT); 3557 } 3558 3559 OverflowResult llvm::computeOverflowForSignedAdd(Value *LHS, Value *RHS, 3560 const DataLayout &DL, 3561 AssumptionCache *AC, 3562 const Instruction *CxtI, 3563 const DominatorTree *DT) { 3564 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3565 } 3566 3567 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3568 // FIXME: This conservative implementation can be relaxed. E.g. most 3569 // atomic operations are guaranteed to terminate on most platforms 3570 // and most functions terminate. 3571 3572 return !I->isAtomic() && // atomics may never succeed on some platforms 3573 !isa<CallInst>(I) && // could throw and might not terminate 3574 !isa<InvokeInst>(I) && // might not terminate and could throw to 3575 // non-successor (see bug 24185 for details). 3576 !isa<ResumeInst>(I) && // has no successors 3577 !isa<ReturnInst>(I); // has no successors 3578 } 3579 3580 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3581 const Loop *L) { 3582 // The loop header is guaranteed to be executed for every iteration. 3583 // 3584 // FIXME: Relax this constraint to cover all basic blocks that are 3585 // guaranteed to be executed at every iteration. 3586 if (I->getParent() != L->getHeader()) return false; 3587 3588 for (const Instruction &LI : *L->getHeader()) { 3589 if (&LI == I) return true; 3590 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3591 } 3592 llvm_unreachable("Instruction not contained in its own parent basic block."); 3593 } 3594 3595 bool llvm::propagatesFullPoison(const Instruction *I) { 3596 switch (I->getOpcode()) { 3597 case Instruction::Add: 3598 case Instruction::Sub: 3599 case Instruction::Xor: 3600 case Instruction::Trunc: 3601 case Instruction::BitCast: 3602 case Instruction::AddrSpaceCast: 3603 // These operations all propagate poison unconditionally. Note that poison 3604 // is not any particular value, so xor or subtraction of poison with 3605 // itself still yields poison, not zero. 3606 return true; 3607 3608 case Instruction::AShr: 3609 case Instruction::SExt: 3610 // For these operations, one bit of the input is replicated across 3611 // multiple output bits. A replicated poison bit is still poison. 3612 return true; 3613 3614 case Instruction::Shl: { 3615 // Left shift *by* a poison value is poison. The number of 3616 // positions to shift is unsigned, so no negative values are 3617 // possible there. Left shift by zero places preserves poison. So 3618 // it only remains to consider left shift of poison by a positive 3619 // number of places. 3620 // 3621 // A left shift by a positive number of places leaves the lowest order bit 3622 // non-poisoned. However, if such a shift has a no-wrap flag, then we can 3623 // make the poison operand violate that flag, yielding a fresh full-poison 3624 // value. 3625 auto *OBO = cast<OverflowingBinaryOperator>(I); 3626 return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); 3627 } 3628 3629 case Instruction::Mul: { 3630 // A multiplication by zero yields a non-poison zero result, so we need to 3631 // rule out zero as an operand. Conservatively, multiplication by a 3632 // non-zero constant is not multiplication by zero. 3633 // 3634 // Multiplication by a non-zero constant can leave some bits 3635 // non-poisoned. For example, a multiplication by 2 leaves the lowest 3636 // order bit unpoisoned. So we need to consider that. 3637 // 3638 // Multiplication by 1 preserves poison. If the multiplication has a 3639 // no-wrap flag, then we can make the poison operand violate that flag 3640 // when multiplied by any integer other than 0 and 1. 3641 auto *OBO = cast<OverflowingBinaryOperator>(I); 3642 if (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) { 3643 for (Value *V : OBO->operands()) { 3644 if (auto *CI = dyn_cast<ConstantInt>(V)) { 3645 // A ConstantInt cannot yield poison, so we can assume that it is 3646 // the other operand that is poison. 3647 return !CI->isZero(); 3648 } 3649 } 3650 } 3651 return false; 3652 } 3653 3654 case Instruction::GetElementPtr: 3655 // A GEP implicitly represents a sequence of additions, subtractions, 3656 // truncations, sign extensions and multiplications. The multiplications 3657 // are by the non-zero sizes of some set of types, so we do not have to be 3658 // concerned with multiplication by zero. If the GEP is in-bounds, then 3659 // these operations are implicitly no-signed-wrap so poison is propagated 3660 // by the arguments above for Add, Sub, Trunc, SExt and Mul. 3661 return cast<GEPOperator>(I)->isInBounds(); 3662 3663 default: 3664 return false; 3665 } 3666 } 3667 3668 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3669 switch (I->getOpcode()) { 3670 case Instruction::Store: 3671 return cast<StoreInst>(I)->getPointerOperand(); 3672 3673 case Instruction::Load: 3674 return cast<LoadInst>(I)->getPointerOperand(); 3675 3676 case Instruction::AtomicCmpXchg: 3677 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3678 3679 case Instruction::AtomicRMW: 3680 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3681 3682 case Instruction::UDiv: 3683 case Instruction::SDiv: 3684 case Instruction::URem: 3685 case Instruction::SRem: 3686 return I->getOperand(1); 3687 3688 default: 3689 return nullptr; 3690 } 3691 } 3692 3693 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3694 // We currently only look for uses of poison values within the same basic 3695 // block, as that makes it easier to guarantee that the uses will be 3696 // executed given that PoisonI is executed. 3697 // 3698 // FIXME: Expand this to consider uses beyond the same basic block. To do 3699 // this, look out for the distinction between post-dominance and strong 3700 // post-dominance. 3701 const BasicBlock *BB = PoisonI->getParent(); 3702 3703 // Set of instructions that we have proved will yield poison if PoisonI 3704 // does. 3705 SmallSet<const Value *, 16> YieldsPoison; 3706 YieldsPoison.insert(PoisonI); 3707 3708 for (BasicBlock::const_iterator I = PoisonI->getIterator(), E = BB->end(); 3709 I != E; ++I) { 3710 if (&*I != PoisonI) { 3711 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&*I); 3712 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) return true; 3713 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 3714 return false; 3715 } 3716 3717 // Mark poison that propagates from I through uses of I. 3718 if (YieldsPoison.count(&*I)) { 3719 for (const User *User : I->users()) { 3720 const Instruction *UserI = cast<Instruction>(User); 3721 if (UserI->getParent() == BB && propagatesFullPoison(UserI)) 3722 YieldsPoison.insert(User); 3723 } 3724 } 3725 } 3726 return false; 3727 } 3728 3729 static bool isKnownNonNaN(Value *V, FastMathFlags FMF) { 3730 if (FMF.noNaNs()) 3731 return true; 3732 3733 if (auto *C = dyn_cast<ConstantFP>(V)) 3734 return !C->isNaN(); 3735 return false; 3736 } 3737 3738 static bool isKnownNonZero(Value *V) { 3739 if (auto *C = dyn_cast<ConstantFP>(V)) 3740 return !C->isZero(); 3741 return false; 3742 } 3743 3744 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 3745 FastMathFlags FMF, 3746 Value *CmpLHS, Value *CmpRHS, 3747 Value *TrueVal, Value *FalseVal, 3748 Value *&LHS, Value *&RHS) { 3749 LHS = CmpLHS; 3750 RHS = CmpRHS; 3751 3752 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 3753 // return inconsistent results between implementations. 3754 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 3755 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 3756 // Therefore we behave conservatively and only proceed if at least one of the 3757 // operands is known to not be zero, or if we don't care about signed zeroes. 3758 switch (Pred) { 3759 default: break; 3760 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 3761 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 3762 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 3763 !isKnownNonZero(CmpRHS)) 3764 return {SPF_UNKNOWN, SPNB_NA, false}; 3765 } 3766 3767 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 3768 bool Ordered = false; 3769 3770 // When given one NaN and one non-NaN input: 3771 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 3772 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 3773 // ordered comparison fails), which could be NaN or non-NaN. 3774 // so here we discover exactly what NaN behavior is required/accepted. 3775 if (CmpInst::isFPPredicate(Pred)) { 3776 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 3777 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 3778 3779 if (LHSSafe && RHSSafe) { 3780 // Both operands are known non-NaN. 3781 NaNBehavior = SPNB_RETURNS_ANY; 3782 } else if (CmpInst::isOrdered(Pred)) { 3783 // An ordered comparison will return false when given a NaN, so it 3784 // returns the RHS. 3785 Ordered = true; 3786 if (LHSSafe) 3787 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 3788 NaNBehavior = SPNB_RETURNS_NAN; 3789 else if (RHSSafe) 3790 NaNBehavior = SPNB_RETURNS_OTHER; 3791 else 3792 // Completely unsafe. 3793 return {SPF_UNKNOWN, SPNB_NA, false}; 3794 } else { 3795 Ordered = false; 3796 // An unordered comparison will return true when given a NaN, so it 3797 // returns the LHS. 3798 if (LHSSafe) 3799 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 3800 NaNBehavior = SPNB_RETURNS_OTHER; 3801 else if (RHSSafe) 3802 NaNBehavior = SPNB_RETURNS_NAN; 3803 else 3804 // Completely unsafe. 3805 return {SPF_UNKNOWN, SPNB_NA, false}; 3806 } 3807 } 3808 3809 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 3810 std::swap(CmpLHS, CmpRHS); 3811 Pred = CmpInst::getSwappedPredicate(Pred); 3812 if (NaNBehavior == SPNB_RETURNS_NAN) 3813 NaNBehavior = SPNB_RETURNS_OTHER; 3814 else if (NaNBehavior == SPNB_RETURNS_OTHER) 3815 NaNBehavior = SPNB_RETURNS_NAN; 3816 Ordered = !Ordered; 3817 } 3818 3819 // ([if]cmp X, Y) ? X : Y 3820 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 3821 switch (Pred) { 3822 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 3823 case ICmpInst::ICMP_UGT: 3824 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 3825 case ICmpInst::ICMP_SGT: 3826 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 3827 case ICmpInst::ICMP_ULT: 3828 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 3829 case ICmpInst::ICMP_SLT: 3830 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 3831 case FCmpInst::FCMP_UGT: 3832 case FCmpInst::FCMP_UGE: 3833 case FCmpInst::FCMP_OGT: 3834 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 3835 case FCmpInst::FCMP_ULT: 3836 case FCmpInst::FCMP_ULE: 3837 case FCmpInst::FCMP_OLT: 3838 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 3839 } 3840 } 3841 3842 if (ConstantInt *C1 = dyn_cast<ConstantInt>(CmpRHS)) { 3843 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 3844 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 3845 3846 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 3847 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 3848 if (Pred == ICmpInst::ICMP_SGT && (C1->isZero() || C1->isMinusOne())) { 3849 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3850 } 3851 3852 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 3853 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 3854 if (Pred == ICmpInst::ICMP_SLT && (C1->isZero() || C1->isOne())) { 3855 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 3856 } 3857 } 3858 3859 // Y >s C ? ~Y : ~C == ~Y <s ~C ? ~Y : ~C = SMIN(~Y, ~C) 3860 if (const auto *C2 = dyn_cast<ConstantInt>(FalseVal)) { 3861 if (C1->getType() == C2->getType() && ~C1->getValue() == C2->getValue() && 3862 (match(TrueVal, m_Not(m_Specific(CmpLHS))) || 3863 match(CmpLHS, m_Not(m_Specific(TrueVal))))) { 3864 LHS = TrueVal; 3865 RHS = FalseVal; 3866 return {SPF_SMIN, SPNB_NA, false}; 3867 } 3868 } 3869 } 3870 3871 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5) 3872 3873 return {SPF_UNKNOWN, SPNB_NA, false}; 3874 } 3875 3876 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 3877 Instruction::CastOps *CastOp) { 3878 CastInst *CI = dyn_cast<CastInst>(V1); 3879 Constant *C = dyn_cast<Constant>(V2); 3880 CastInst *CI2 = dyn_cast<CastInst>(V2); 3881 if (!CI) 3882 return nullptr; 3883 *CastOp = CI->getOpcode(); 3884 3885 if (CI2) { 3886 // If V1 and V2 are both the same cast from the same type, we can look 3887 // through V1. 3888 if (CI2->getOpcode() == CI->getOpcode() && 3889 CI2->getSrcTy() == CI->getSrcTy()) 3890 return CI2->getOperand(0); 3891 return nullptr; 3892 } else if (!C) { 3893 return nullptr; 3894 } 3895 3896 if (isa<SExtInst>(CI) && CmpI->isSigned()) { 3897 Constant *T = ConstantExpr::getTrunc(C, CI->getSrcTy()); 3898 // This is only valid if the truncated value can be sign-extended 3899 // back to the original value. 3900 if (ConstantExpr::getSExt(T, C->getType()) == C) 3901 return T; 3902 return nullptr; 3903 } 3904 if (isa<ZExtInst>(CI) && CmpI->isUnsigned()) 3905 return ConstantExpr::getTrunc(C, CI->getSrcTy()); 3906 3907 if (isa<TruncInst>(CI)) 3908 return ConstantExpr::getIntegerCast(C, CI->getSrcTy(), CmpI->isSigned()); 3909 3910 if (isa<FPToUIInst>(CI)) 3911 return ConstantExpr::getUIToFP(C, CI->getSrcTy(), true); 3912 3913 if (isa<FPToSIInst>(CI)) 3914 return ConstantExpr::getSIToFP(C, CI->getSrcTy(), true); 3915 3916 if (isa<UIToFPInst>(CI)) 3917 return ConstantExpr::getFPToUI(C, CI->getSrcTy(), true); 3918 3919 if (isa<SIToFPInst>(CI)) 3920 return ConstantExpr::getFPToSI(C, CI->getSrcTy(), true); 3921 3922 if (isa<FPTruncInst>(CI)) 3923 return ConstantExpr::getFPExtend(C, CI->getSrcTy(), true); 3924 3925 if (isa<FPExtInst>(CI)) 3926 return ConstantExpr::getFPTrunc(C, CI->getSrcTy(), true); 3927 3928 return nullptr; 3929 } 3930 3931 SelectPatternResult llvm::matchSelectPattern(Value *V, 3932 Value *&LHS, Value *&RHS, 3933 Instruction::CastOps *CastOp) { 3934 SelectInst *SI = dyn_cast<SelectInst>(V); 3935 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 3936 3937 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 3938 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 3939 3940 CmpInst::Predicate Pred = CmpI->getPredicate(); 3941 Value *CmpLHS = CmpI->getOperand(0); 3942 Value *CmpRHS = CmpI->getOperand(1); 3943 Value *TrueVal = SI->getTrueValue(); 3944 Value *FalseVal = SI->getFalseValue(); 3945 FastMathFlags FMF; 3946 if (isa<FPMathOperator>(CmpI)) 3947 FMF = CmpI->getFastMathFlags(); 3948 3949 // Bail out early. 3950 if (CmpI->isEquality()) 3951 return {SPF_UNKNOWN, SPNB_NA, false}; 3952 3953 // Deal with type mismatches. 3954 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 3955 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 3956 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3957 cast<CastInst>(TrueVal)->getOperand(0), C, 3958 LHS, RHS); 3959 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 3960 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 3961 C, cast<CastInst>(FalseVal)->getOperand(0), 3962 LHS, RHS); 3963 } 3964 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 3965 LHS, RHS); 3966 } 3967