1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/EHPersonalities.h" 30 #include "llvm/Analysis/GuardUtils.h" 31 #include "llvm/Analysis/InstructionSimplify.h" 32 #include "llvm/Analysis/Loads.h" 33 #include "llvm/Analysis/LoopInfo.h" 34 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/IR/Argument.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/Constant.h" 40 #include "llvm/IR/ConstantRange.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/IntrinsicsAArch64.h" 56 #include "llvm/IR/IntrinsicsRISCV.h" 57 #include "llvm/IR/IntrinsicsX86.h" 58 #include "llvm/IR/LLVMContext.h" 59 #include "llvm/IR/Metadata.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PatternMatch.h" 63 #include "llvm/IR/Type.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/CommandLine.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/KnownBits.h" 71 #include "llvm/Support/MathExtras.h" 72 #include <algorithm> 73 #include <array> 74 #include <cassert> 75 #include <cstdint> 76 #include <iterator> 77 #include <utility> 78 79 using namespace llvm; 80 using namespace llvm::PatternMatch; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// If true, it is safe to use metadata during simplification. 113 InstrInfoQuery IIQ; 114 115 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 116 const DominatorTree *DT, bool UseInstrInfo, 117 OptimizationRemarkEmitter *ORE = nullptr) 118 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 119 }; 120 121 } // end anonymous namespace 122 123 // Given the provided Value and, potentially, a context instruction, return 124 // the preferred context instruction (if any). 125 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 126 // If we've been provided with a context instruction, then use that (provided 127 // it has been inserted). 128 if (CxtI && CxtI->getParent()) 129 return CxtI; 130 131 // If the value is really an already-inserted instruction, then use that. 132 CxtI = dyn_cast<Instruction>(V); 133 if (CxtI && CxtI->getParent()) 134 return CxtI; 135 136 return nullptr; 137 } 138 139 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 140 // If we've been provided with a context instruction, then use that (provided 141 // it has been inserted). 142 if (CxtI && CxtI->getParent()) 143 return CxtI; 144 145 // If the value is really an already-inserted instruction, then use that. 146 CxtI = dyn_cast<Instruction>(V1); 147 if (CxtI && CxtI->getParent()) 148 return CxtI; 149 150 CxtI = dyn_cast<Instruction>(V2); 151 if (CxtI && CxtI->getParent()) 152 return CxtI; 153 154 return nullptr; 155 } 156 157 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 158 const APInt &DemandedElts, 159 APInt &DemandedLHS, APInt &DemandedRHS) { 160 // The length of scalable vectors is unknown at compile time, thus we 161 // cannot check their values 162 if (isa<ScalableVectorType>(Shuf->getType())) 163 return false; 164 165 int NumElts = 166 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 167 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 168 DemandedLHS = DemandedRHS = APInt::getZero(NumElts); 169 if (DemandedElts.isZero()) 170 return true; 171 // Simple case of a shuffle with zeroinitializer. 172 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 173 DemandedLHS.setBit(0); 174 return true; 175 } 176 for (int i = 0; i != NumMaskElts; ++i) { 177 if (!DemandedElts[i]) 178 continue; 179 int M = Shuf->getMaskValue(i); 180 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 181 182 // For undef elements, we don't know anything about the common state of 183 // the shuffle result. 184 if (M == -1) 185 return false; 186 if (M < NumElts) 187 DemandedLHS.setBit(M % NumElts); 188 else 189 DemandedRHS.setBit(M % NumElts); 190 } 191 192 return true; 193 } 194 195 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 196 KnownBits &Known, unsigned Depth, const Query &Q); 197 198 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 199 const Query &Q) { 200 // FIXME: We currently have no way to represent the DemandedElts of a scalable 201 // vector 202 if (isa<ScalableVectorType>(V->getType())) { 203 Known.resetAll(); 204 return; 205 } 206 207 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 208 APInt DemandedElts = 209 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 210 computeKnownBits(V, DemandedElts, Known, Depth, Q); 211 } 212 213 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 214 const DataLayout &DL, unsigned Depth, 215 AssumptionCache *AC, const Instruction *CxtI, 216 const DominatorTree *DT, 217 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 218 ::computeKnownBits(V, Known, Depth, 219 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 220 } 221 222 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 223 KnownBits &Known, const DataLayout &DL, 224 unsigned Depth, AssumptionCache *AC, 225 const Instruction *CxtI, const DominatorTree *DT, 226 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 227 ::computeKnownBits(V, DemandedElts, Known, Depth, 228 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 232 unsigned Depth, const Query &Q); 233 234 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 235 const Query &Q); 236 237 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 238 unsigned Depth, AssumptionCache *AC, 239 const Instruction *CxtI, 240 const DominatorTree *DT, 241 OptimizationRemarkEmitter *ORE, 242 bool UseInstrInfo) { 243 return ::computeKnownBits( 244 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 const DataLayout &DL, unsigned Depth, 249 AssumptionCache *AC, const Instruction *CxtI, 250 const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, 252 bool UseInstrInfo) { 253 return ::computeKnownBits( 254 V, DemandedElts, Depth, 255 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 256 } 257 258 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 259 const DataLayout &DL, AssumptionCache *AC, 260 const Instruction *CxtI, const DominatorTree *DT, 261 bool UseInstrInfo) { 262 assert(LHS->getType() == RHS->getType() && 263 "LHS and RHS should have the same type"); 264 assert(LHS->getType()->isIntOrIntVectorTy() && 265 "LHS and RHS should be integers"); 266 // Look for an inverted mask: (X & ~M) op (Y & M). 267 Value *M; 268 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 269 match(RHS, m_c_And(m_Specific(M), m_Value()))) 270 return true; 271 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 272 match(LHS, m_c_And(m_Specific(M), m_Value()))) 273 return true; 274 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 275 KnownBits LHSKnown(IT->getBitWidth()); 276 KnownBits RHSKnown(IT->getBitWidth()); 277 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 278 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 279 return KnownBits::haveNoCommonBitsSet(LHSKnown, RHSKnown); 280 } 281 282 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *I) { 283 return !I->user_empty() && all_of(I->users(), [](const User *U) { 284 ICmpInst::Predicate P; 285 return match(U, m_ICmp(P, m_Value(), m_Zero())) && ICmpInst::isEquality(P); 286 }); 287 } 288 289 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 290 const Query &Q); 291 292 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 293 bool OrZero, unsigned Depth, 294 AssumptionCache *AC, const Instruction *CxtI, 295 const DominatorTree *DT, bool UseInstrInfo) { 296 return ::isKnownToBeAPowerOfTwo( 297 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 298 } 299 300 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 301 unsigned Depth, const Query &Q); 302 303 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 304 305 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownNonZero(V, Depth, 309 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 313 unsigned Depth, AssumptionCache *AC, 314 const Instruction *CxtI, const DominatorTree *DT, 315 bool UseInstrInfo) { 316 KnownBits Known = 317 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 318 return Known.isNonNegative(); 319 } 320 321 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 322 AssumptionCache *AC, const Instruction *CxtI, 323 const DominatorTree *DT, bool UseInstrInfo) { 324 if (auto *CI = dyn_cast<ConstantInt>(V)) 325 return CI->getValue().isStrictlyPositive(); 326 327 // TODO: We'd doing two recursive queries here. We should factor this such 328 // that only a single query is needed. 329 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 330 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 331 } 332 333 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 KnownBits Known = 337 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 338 return Known.isNegative(); 339 } 340 341 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 342 const Query &Q); 343 344 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 345 const DataLayout &DL, AssumptionCache *AC, 346 const Instruction *CxtI, const DominatorTree *DT, 347 bool UseInstrInfo) { 348 return ::isKnownNonEqual(V1, V2, 0, 349 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 350 UseInstrInfo, /*ORE=*/nullptr)); 351 } 352 353 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 357 const DataLayout &DL, unsigned Depth, 358 AssumptionCache *AC, const Instruction *CxtI, 359 const DominatorTree *DT, bool UseInstrInfo) { 360 return ::MaskedValueIsZero( 361 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 362 } 363 364 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 365 unsigned Depth, const Query &Q); 366 367 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 368 const Query &Q) { 369 // FIXME: We currently have no way to represent the DemandedElts of a scalable 370 // vector 371 if (isa<ScalableVectorType>(V->getType())) 372 return 1; 373 374 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 375 APInt DemandedElts = 376 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 377 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 378 } 379 380 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 381 unsigned Depth, AssumptionCache *AC, 382 const Instruction *CxtI, 383 const DominatorTree *DT, bool UseInstrInfo) { 384 return ::ComputeNumSignBits( 385 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 386 } 387 388 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 389 bool NSW, const APInt &DemandedElts, 390 KnownBits &KnownOut, KnownBits &Known2, 391 unsigned Depth, const Query &Q) { 392 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 393 394 // If one operand is unknown and we have no nowrap information, 395 // the result will be unknown independently of the second operand. 396 if (KnownOut.isUnknown() && !NSW) 397 return; 398 399 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 400 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 401 } 402 403 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 404 const APInt &DemandedElts, KnownBits &Known, 405 KnownBits &Known2, unsigned Depth, 406 const Query &Q) { 407 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 408 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 409 410 bool isKnownNegative = false; 411 bool isKnownNonNegative = false; 412 // If the multiplication is known not to overflow, compute the sign bit. 413 if (NSW) { 414 if (Op0 == Op1) { 415 // The product of a number with itself is non-negative. 416 isKnownNonNegative = true; 417 } else { 418 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 419 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 420 bool isKnownNegativeOp1 = Known.isNegative(); 421 bool isKnownNegativeOp0 = Known2.isNegative(); 422 // The product of two numbers with the same sign is non-negative. 423 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 424 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 425 // The product of a negative number and a non-negative number is either 426 // negative or zero. 427 if (!isKnownNonNegative) 428 isKnownNegative = 429 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 430 Known2.isNonZero()) || 431 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 432 } 433 } 434 435 Known = KnownBits::mul(Known, Known2); 436 437 // Only make use of no-wrap flags if we failed to compute the sign bit 438 // directly. This matters if the multiplication always overflows, in 439 // which case we prefer to follow the result of the direct computation, 440 // though as the program is invoking undefined behaviour we can choose 441 // whatever we like here. 442 if (isKnownNonNegative && !Known.isNegative()) 443 Known.makeNonNegative(); 444 else if (isKnownNegative && !Known.isNonNegative()) 445 Known.makeNegative(); 446 } 447 448 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 449 KnownBits &Known) { 450 unsigned BitWidth = Known.getBitWidth(); 451 unsigned NumRanges = Ranges.getNumOperands() / 2; 452 assert(NumRanges >= 1); 453 454 Known.Zero.setAllBits(); 455 Known.One.setAllBits(); 456 457 for (unsigned i = 0; i < NumRanges; ++i) { 458 ConstantInt *Lower = 459 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 460 ConstantInt *Upper = 461 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 462 ConstantRange Range(Lower->getValue(), Upper->getValue()); 463 464 // The first CommonPrefixBits of all values in Range are equal. 465 unsigned CommonPrefixBits = 466 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 467 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 468 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 469 Known.One &= UnsignedMax & Mask; 470 Known.Zero &= ~UnsignedMax & Mask; 471 } 472 } 473 474 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 475 SmallVector<const Value *, 16> WorkSet(1, I); 476 SmallPtrSet<const Value *, 32> Visited; 477 SmallPtrSet<const Value *, 16> EphValues; 478 479 // The instruction defining an assumption's condition itself is always 480 // considered ephemeral to that assumption (even if it has other 481 // non-ephemeral users). See r246696's test case for an example. 482 if (is_contained(I->operands(), E)) 483 return true; 484 485 while (!WorkSet.empty()) { 486 const Value *V = WorkSet.pop_back_val(); 487 if (!Visited.insert(V).second) 488 continue; 489 490 // If all uses of this value are ephemeral, then so is this value. 491 if (llvm::all_of(V->users(), [&](const User *U) { 492 return EphValues.count(U); 493 })) { 494 if (V == E) 495 return true; 496 497 if (V == I || (isa<Instruction>(V) && 498 !cast<Instruction>(V)->mayHaveSideEffects() && 499 !cast<Instruction>(V)->isTerminator())) { 500 EphValues.insert(V); 501 if (const User *U = dyn_cast<User>(V)) 502 append_range(WorkSet, U->operands()); 503 } 504 } 505 } 506 507 return false; 508 } 509 510 // Is this an intrinsic that cannot be speculated but also cannot trap? 511 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 512 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 513 return CI->isAssumeLikeIntrinsic(); 514 515 return false; 516 } 517 518 bool llvm::isValidAssumeForContext(const Instruction *Inv, 519 const Instruction *CxtI, 520 const DominatorTree *DT) { 521 // There are two restrictions on the use of an assume: 522 // 1. The assume must dominate the context (or the control flow must 523 // reach the assume whenever it reaches the context). 524 // 2. The context must not be in the assume's set of ephemeral values 525 // (otherwise we will use the assume to prove that the condition 526 // feeding the assume is trivially true, thus causing the removal of 527 // the assume). 528 529 if (Inv->getParent() == CxtI->getParent()) { 530 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 531 // in the BB. 532 if (Inv->comesBefore(CxtI)) 533 return true; 534 535 // Don't let an assume affect itself - this would cause the problems 536 // `isEphemeralValueOf` is trying to prevent, and it would also make 537 // the loop below go out of bounds. 538 if (Inv == CxtI) 539 return false; 540 541 // The context comes first, but they're both in the same block. 542 // Make sure there is nothing in between that might interrupt 543 // the control flow, not even CxtI itself. 544 // We limit the scan distance between the assume and its context instruction 545 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 546 // it can be adjusted if needed (could be turned into a cl::opt). 547 auto Range = make_range(CxtI->getIterator(), Inv->getIterator()); 548 if (!isGuaranteedToTransferExecutionToSuccessor(Range, 15)) 549 return false; 550 551 return !isEphemeralValueOf(Inv, CxtI); 552 } 553 554 // Inv and CxtI are in different blocks. 555 if (DT) { 556 if (DT->dominates(Inv, CxtI)) 557 return true; 558 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 559 // We don't have a DT, but this trivially dominates. 560 return true; 561 } 562 563 return false; 564 } 565 566 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 567 // v u> y implies v != 0. 568 if (Pred == ICmpInst::ICMP_UGT) 569 return true; 570 571 // Special-case v != 0 to also handle v != null. 572 if (Pred == ICmpInst::ICMP_NE) 573 return match(RHS, m_Zero()); 574 575 // All other predicates - rely on generic ConstantRange handling. 576 const APInt *C; 577 if (!match(RHS, m_APInt(C))) 578 return false; 579 580 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 581 return !TrueValues.contains(APInt::getZero(C->getBitWidth())); 582 } 583 584 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 585 // Use of assumptions is context-sensitive. If we don't have a context, we 586 // cannot use them! 587 if (!Q.AC || !Q.CxtI) 588 return false; 589 590 if (Q.CxtI && V->getType()->isPointerTy()) { 591 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 592 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 593 V->getType()->getPointerAddressSpace())) 594 AttrKinds.push_back(Attribute::Dereferenceable); 595 596 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 597 return true; 598 } 599 600 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 601 if (!AssumeVH) 602 continue; 603 CallInst *I = cast<CallInst>(AssumeVH); 604 assert(I->getFunction() == Q.CxtI->getFunction() && 605 "Got assumption for the wrong function!"); 606 607 // Warning: This loop can end up being somewhat performance sensitive. 608 // We're running this loop for once for each value queried resulting in a 609 // runtime of ~O(#assumes * #values). 610 611 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 612 "must be an assume intrinsic"); 613 614 Value *RHS; 615 CmpInst::Predicate Pred; 616 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 617 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 618 return false; 619 620 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 621 return true; 622 } 623 624 return false; 625 } 626 627 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 628 unsigned Depth, const Query &Q) { 629 // Use of assumptions is context-sensitive. If we don't have a context, we 630 // cannot use them! 631 if (!Q.AC || !Q.CxtI) 632 return; 633 634 unsigned BitWidth = Known.getBitWidth(); 635 636 // Refine Known set if the pointer alignment is set by assume bundles. 637 if (V->getType()->isPointerTy()) { 638 if (RetainedKnowledge RK = getKnowledgeValidInContext( 639 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 640 Known.Zero.setLowBits(Log2_64(RK.ArgValue)); 641 } 642 } 643 644 // Note that the patterns below need to be kept in sync with the code 645 // in AssumptionCache::updateAffectedValues. 646 647 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 648 if (!AssumeVH) 649 continue; 650 CallInst *I = cast<CallInst>(AssumeVH); 651 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 652 "Got assumption for the wrong function!"); 653 654 // Warning: This loop can end up being somewhat performance sensitive. 655 // We're running this loop for once for each value queried resulting in a 656 // runtime of ~O(#assumes * #values). 657 658 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 659 "must be an assume intrinsic"); 660 661 Value *Arg = I->getArgOperand(0); 662 663 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 664 assert(BitWidth == 1 && "assume operand is not i1?"); 665 Known.setAllOnes(); 666 return; 667 } 668 if (match(Arg, m_Not(m_Specific(V))) && 669 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 670 assert(BitWidth == 1 && "assume operand is not i1?"); 671 Known.setAllZero(); 672 return; 673 } 674 675 // The remaining tests are all recursive, so bail out if we hit the limit. 676 if (Depth == MaxAnalysisRecursionDepth) 677 continue; 678 679 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 680 if (!Cmp) 681 continue; 682 683 // We are attempting to compute known bits for the operands of an assume. 684 // Do not try to use other assumptions for those recursive calls because 685 // that can lead to mutual recursion and a compile-time explosion. 686 // An example of the mutual recursion: computeKnownBits can call 687 // isKnownNonZero which calls computeKnownBitsFromAssume (this function) 688 // and so on. 689 Query QueryNoAC = Q; 690 QueryNoAC.AC = nullptr; 691 692 // Note that ptrtoint may change the bitwidth. 693 Value *A, *B; 694 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 695 696 CmpInst::Predicate Pred; 697 uint64_t C; 698 switch (Cmp->getPredicate()) { 699 default: 700 break; 701 case ICmpInst::ICMP_EQ: 702 // assume(v = a) 703 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 704 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 705 KnownBits RHSKnown = 706 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 707 Known.Zero |= RHSKnown.Zero; 708 Known.One |= RHSKnown.One; 709 // assume(v & b = a) 710 } else if (match(Cmp, 711 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 712 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 713 KnownBits RHSKnown = 714 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 715 KnownBits MaskKnown = 716 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 717 718 // For those bits in the mask that are known to be one, we can propagate 719 // known bits from the RHS to V. 720 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 721 Known.One |= RHSKnown.One & MaskKnown.One; 722 // assume(~(v & b) = a) 723 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 724 m_Value(A))) && 725 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 726 KnownBits RHSKnown = 727 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 728 KnownBits MaskKnown = 729 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 730 731 // For those bits in the mask that are known to be one, we can propagate 732 // inverted known bits from the RHS to V. 733 Known.Zero |= RHSKnown.One & MaskKnown.One; 734 Known.One |= RHSKnown.Zero & MaskKnown.One; 735 // assume(v | b = a) 736 } else if (match(Cmp, 737 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 738 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 739 KnownBits RHSKnown = 740 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 741 KnownBits BKnown = 742 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 743 744 // For those bits in B that are known to be zero, we can propagate known 745 // bits from the RHS to V. 746 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 747 Known.One |= RHSKnown.One & BKnown.Zero; 748 // assume(~(v | b) = a) 749 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 750 m_Value(A))) && 751 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 752 KnownBits RHSKnown = 753 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 754 KnownBits BKnown = 755 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 756 757 // For those bits in B that are known to be zero, we can propagate 758 // inverted known bits from the RHS to V. 759 Known.Zero |= RHSKnown.One & BKnown.Zero; 760 Known.One |= RHSKnown.Zero & BKnown.Zero; 761 // assume(v ^ b = a) 762 } else if (match(Cmp, 763 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 764 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 765 KnownBits RHSKnown = 766 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 767 KnownBits BKnown = 768 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 769 770 // For those bits in B that are known to be zero, we can propagate known 771 // bits from the RHS to V. For those bits in B that are known to be one, 772 // we can propagate inverted known bits from the RHS to V. 773 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 774 Known.One |= RHSKnown.One & BKnown.Zero; 775 Known.Zero |= RHSKnown.One & BKnown.One; 776 Known.One |= RHSKnown.Zero & BKnown.One; 777 // assume(~(v ^ b) = a) 778 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 779 m_Value(A))) && 780 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 781 KnownBits RHSKnown = 782 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 783 KnownBits BKnown = 784 computeKnownBits(B, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 785 786 // For those bits in B that are known to be zero, we can propagate 787 // inverted known bits from the RHS to V. For those bits in B that are 788 // known to be one, we can propagate known bits from the RHS to V. 789 Known.Zero |= RHSKnown.One & BKnown.Zero; 790 Known.One |= RHSKnown.Zero & BKnown.Zero; 791 Known.Zero |= RHSKnown.Zero & BKnown.One; 792 Known.One |= RHSKnown.One & BKnown.One; 793 // assume(v << c = a) 794 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 795 m_Value(A))) && 796 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 797 KnownBits RHSKnown = 798 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 799 800 // For those bits in RHS that are known, we can propagate them to known 801 // bits in V shifted to the right by C. 802 RHSKnown.Zero.lshrInPlace(C); 803 Known.Zero |= RHSKnown.Zero; 804 RHSKnown.One.lshrInPlace(C); 805 Known.One |= RHSKnown.One; 806 // assume(~(v << c) = a) 807 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 808 m_Value(A))) && 809 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 810 KnownBits RHSKnown = 811 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 812 // For those bits in RHS that are known, we can propagate them inverted 813 // to known bits in V shifted to the right by C. 814 RHSKnown.One.lshrInPlace(C); 815 Known.Zero |= RHSKnown.One; 816 RHSKnown.Zero.lshrInPlace(C); 817 Known.One |= RHSKnown.Zero; 818 // assume(v >> c = a) 819 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 820 m_Value(A))) && 821 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 822 KnownBits RHSKnown = 823 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 Known.Zero |= RHSKnown.Zero << C; 827 Known.One |= RHSKnown.One << C; 828 // assume(~(v >> c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 Known.Zero |= RHSKnown.One << C; 837 Known.One |= RHSKnown.Zero << C; 838 } 839 break; 840 case ICmpInst::ICMP_SGE: 841 // assume(v >=_s c) where c is non-negative 842 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 846 847 if (RHSKnown.isNonNegative()) { 848 // We know that the sign bit is zero. 849 Known.makeNonNegative(); 850 } 851 } 852 break; 853 case ICmpInst::ICMP_SGT: 854 // assume(v >_s c) where c is at least -1. 855 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 856 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 857 KnownBits RHSKnown = 858 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 859 860 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 861 // We know that the sign bit is zero. 862 Known.makeNonNegative(); 863 } 864 } 865 break; 866 case ICmpInst::ICMP_SLE: 867 // assume(v <=_s c) where c is negative 868 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 869 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 870 KnownBits RHSKnown = 871 computeKnownBits(A, Depth + 1, QueryNoAC).anyextOrTrunc(BitWidth); 872 873 if (RHSKnown.isNegative()) { 874 // We know that the sign bit is one. 875 Known.makeNegative(); 876 } 877 } 878 break; 879 case ICmpInst::ICMP_SLT: 880 // assume(v <_s c) where c is non-positive 881 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 882 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 883 KnownBits RHSKnown = 884 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 885 886 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 887 // We know that the sign bit is one. 888 Known.makeNegative(); 889 } 890 } 891 break; 892 case ICmpInst::ICMP_ULE: 893 // assume(v <=_u c) 894 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 895 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 896 KnownBits RHSKnown = 897 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 898 899 // Whatever high bits in c are zero are known to be zero. 900 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 901 } 902 break; 903 case ICmpInst::ICMP_ULT: 904 // assume(v <_u c) 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, QueryNoAC).anyextOrTrunc(BitWidth); 909 910 // If the RHS is known zero, then this assumption must be wrong (nothing 911 // is unsigned less than zero). Signal a conflict and get out of here. 912 if (RHSKnown.isZero()) { 913 Known.Zero.setAllBits(); 914 Known.One.setAllBits(); 915 break; 916 } 917 918 // Whatever high bits in c are zero are known to be zero (if c is a power 919 // of 2, then one more). 920 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, QueryNoAC)) 921 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 922 else 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 924 } 925 break; 926 } 927 } 928 929 // If assumptions conflict with each other or previous known bits, then we 930 // have a logical fallacy. It's possible that the assumption is not reachable, 931 // so this isn't a real bug. On the other hand, the program may have undefined 932 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 933 // clear out the known bits, try to warn the user, and hope for the best. 934 if (Known.Zero.intersects(Known.One)) { 935 Known.resetAll(); 936 937 if (Q.ORE) 938 Q.ORE->emit([&]() { 939 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 940 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 941 CxtI) 942 << "Detected conflicting code assumptions. Program may " 943 "have undefined behavior, or compiler may have " 944 "internal error."; 945 }); 946 } 947 } 948 949 /// Compute known bits from a shift operator, including those with a 950 /// non-constant shift amount. Known is the output of this function. Known2 is a 951 /// pre-allocated temporary with the same bit width as Known and on return 952 /// contains the known bit of the shift value source. KF is an 953 /// operator-specific function that, given the known-bits and a shift amount, 954 /// compute the implied known-bits of the shift operator's result respectively 955 /// for that shift amount. The results from calling KF are conservatively 956 /// combined for all permitted shift amounts. 957 static void computeKnownBitsFromShiftOperator( 958 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 959 KnownBits &Known2, unsigned Depth, const Query &Q, 960 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 961 unsigned BitWidth = Known.getBitWidth(); 962 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 963 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 964 965 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 966 // BitWidth > 64 and any upper bits are known, we'll end up returning the 967 // limit value (which implies all bits are known). 968 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 969 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 970 bool ShiftAmtIsConstant = Known.isConstant(); 971 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 972 973 if (ShiftAmtIsConstant) { 974 Known = KF(Known2, Known); 975 976 // If the known bits conflict, this must be an overflowing left shift, so 977 // the shift result is poison. We can return anything we want. Choose 0 for 978 // the best folding opportunity. 979 if (Known.hasConflict()) 980 Known.setAllZero(); 981 982 return; 983 } 984 985 // If the shift amount could be greater than or equal to the bit-width of the 986 // LHS, the value could be poison, but bail out because the check below is 987 // expensive. 988 // TODO: Should we just carry on? 989 if (MaxShiftAmtIsOutOfRange) { 990 Known.resetAll(); 991 return; 992 } 993 994 // It would be more-clearly correct to use the two temporaries for this 995 // calculation. Reusing the APInts here to prevent unnecessary allocations. 996 Known.resetAll(); 997 998 // If we know the shifter operand is nonzero, we can sometimes infer more 999 // known bits. However this is expensive to compute, so be lazy about it and 1000 // only compute it when absolutely necessary. 1001 Optional<bool> ShifterOperandIsNonZero; 1002 1003 // Early exit if we can't constrain any well-defined shift amount. 1004 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1005 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1006 ShifterOperandIsNonZero = 1007 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1008 if (!*ShifterOperandIsNonZero) 1009 return; 1010 } 1011 1012 Known.Zero.setAllBits(); 1013 Known.One.setAllBits(); 1014 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1015 // Combine the shifted known input bits only for those shift amounts 1016 // compatible with its known constraints. 1017 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1018 continue; 1019 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1020 continue; 1021 // If we know the shifter is nonzero, we may be able to infer more known 1022 // bits. This check is sunk down as far as possible to avoid the expensive 1023 // call to isKnownNonZero if the cheaper checks above fail. 1024 if (ShiftAmt == 0) { 1025 if (!ShifterOperandIsNonZero.hasValue()) 1026 ShifterOperandIsNonZero = 1027 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1028 if (*ShifterOperandIsNonZero) 1029 continue; 1030 } 1031 1032 Known = KnownBits::commonBits( 1033 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1034 } 1035 1036 // If the known bits conflict, the result is poison. Return a 0 and hope the 1037 // caller can further optimize that. 1038 if (Known.hasConflict()) 1039 Known.setAllZero(); 1040 } 1041 1042 static void computeKnownBitsFromOperator(const Operator *I, 1043 const APInt &DemandedElts, 1044 KnownBits &Known, unsigned Depth, 1045 const Query &Q) { 1046 unsigned BitWidth = Known.getBitWidth(); 1047 1048 KnownBits Known2(BitWidth); 1049 switch (I->getOpcode()) { 1050 default: break; 1051 case Instruction::Load: 1052 if (MDNode *MD = 1053 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1054 computeKnownBitsFromRangeMetadata(*MD, Known); 1055 break; 1056 case Instruction::And: { 1057 // If either the LHS or the RHS are Zero, the result is zero. 1058 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1059 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1060 1061 Known &= Known2; 1062 1063 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1064 // here we handle the more general case of adding any odd number by 1065 // matching the form add(x, add(x, y)) where y is odd. 1066 // TODO: This could be generalized to clearing any bit set in y where the 1067 // following bit is known to be unset in y. 1068 Value *X = nullptr, *Y = nullptr; 1069 if (!Known.Zero[0] && !Known.One[0] && 1070 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1071 Known2.resetAll(); 1072 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1073 if (Known2.countMinTrailingOnes() > 0) 1074 Known.Zero.setBit(0); 1075 } 1076 break; 1077 } 1078 case Instruction::Or: 1079 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1080 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1081 1082 Known |= Known2; 1083 break; 1084 case Instruction::Xor: 1085 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1086 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1087 1088 Known ^= Known2; 1089 break; 1090 case Instruction::Mul: { 1091 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1092 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1093 Known, Known2, Depth, Q); 1094 break; 1095 } 1096 case Instruction::UDiv: { 1097 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1098 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1099 Known = KnownBits::udiv(Known, Known2); 1100 break; 1101 } 1102 case Instruction::Select: { 1103 const Value *LHS = nullptr, *RHS = nullptr; 1104 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1105 if (SelectPatternResult::isMinOrMax(SPF)) { 1106 computeKnownBits(RHS, Known, Depth + 1, Q); 1107 computeKnownBits(LHS, Known2, Depth + 1, Q); 1108 switch (SPF) { 1109 default: 1110 llvm_unreachable("Unhandled select pattern flavor!"); 1111 case SPF_SMAX: 1112 Known = KnownBits::smax(Known, Known2); 1113 break; 1114 case SPF_SMIN: 1115 Known = KnownBits::smin(Known, Known2); 1116 break; 1117 case SPF_UMAX: 1118 Known = KnownBits::umax(Known, Known2); 1119 break; 1120 case SPF_UMIN: 1121 Known = KnownBits::umin(Known, Known2); 1122 break; 1123 } 1124 break; 1125 } 1126 1127 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1128 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1129 1130 // Only known if known in both the LHS and RHS. 1131 Known = KnownBits::commonBits(Known, Known2); 1132 1133 if (SPF == SPF_ABS) { 1134 // RHS from matchSelectPattern returns the negation part of abs pattern. 1135 // If the negate has an NSW flag we can assume the sign bit of the result 1136 // will be 0 because that makes abs(INT_MIN) undefined. 1137 if (match(RHS, m_Neg(m_Specific(LHS))) && 1138 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1139 Known.Zero.setSignBit(); 1140 } 1141 1142 break; 1143 } 1144 case Instruction::FPTrunc: 1145 case Instruction::FPExt: 1146 case Instruction::FPToUI: 1147 case Instruction::FPToSI: 1148 case Instruction::SIToFP: 1149 case Instruction::UIToFP: 1150 break; // Can't work with floating point. 1151 case Instruction::PtrToInt: 1152 case Instruction::IntToPtr: 1153 // Fall through and handle them the same as zext/trunc. 1154 LLVM_FALLTHROUGH; 1155 case Instruction::ZExt: 1156 case Instruction::Trunc: { 1157 Type *SrcTy = I->getOperand(0)->getType(); 1158 1159 unsigned SrcBitWidth; 1160 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1161 // which fall through here. 1162 Type *ScalarTy = SrcTy->getScalarType(); 1163 SrcBitWidth = ScalarTy->isPointerTy() ? 1164 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1165 Q.DL.getTypeSizeInBits(ScalarTy); 1166 1167 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1168 Known = Known.anyextOrTrunc(SrcBitWidth); 1169 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1170 Known = Known.zextOrTrunc(BitWidth); 1171 break; 1172 } 1173 case Instruction::BitCast: { 1174 Type *SrcTy = I->getOperand(0)->getType(); 1175 if (SrcTy->isIntOrPtrTy() && 1176 // TODO: For now, not handling conversions like: 1177 // (bitcast i64 %x to <2 x i32>) 1178 !I->getType()->isVectorTy()) { 1179 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1180 break; 1181 } 1182 1183 // Handle cast from vector integer type to scalar or vector integer. 1184 auto *SrcVecTy = dyn_cast<FixedVectorType>(SrcTy); 1185 if (!SrcVecTy || !SrcVecTy->getElementType()->isIntegerTy() || 1186 !I->getType()->isIntOrIntVectorTy()) 1187 break; 1188 1189 // Look through a cast from narrow vector elements to wider type. 1190 // Examples: v4i32 -> v2i64, v3i8 -> v24 1191 unsigned SubBitWidth = SrcVecTy->getScalarSizeInBits(); 1192 if (BitWidth % SubBitWidth == 0) { 1193 // Known bits are automatically intersected across demanded elements of a 1194 // vector. So for example, if a bit is computed as known zero, it must be 1195 // zero across all demanded elements of the vector. 1196 // 1197 // For this bitcast, each demanded element of the output is sub-divided 1198 // across a set of smaller vector elements in the source vector. To get 1199 // the known bits for an entire element of the output, compute the known 1200 // bits for each sub-element sequentially. This is done by shifting the 1201 // one-set-bit demanded elements parameter across the sub-elements for 1202 // consecutive calls to computeKnownBits. We are using the demanded 1203 // elements parameter as a mask operator. 1204 // 1205 // The known bits of each sub-element are then inserted into place 1206 // (dependent on endian) to form the full result of known bits. 1207 unsigned NumElts = DemandedElts.getBitWidth(); 1208 unsigned SubScale = BitWidth / SubBitWidth; 1209 APInt SubDemandedElts = APInt::getZero(NumElts * SubScale); 1210 for (unsigned i = 0; i != NumElts; ++i) { 1211 if (DemandedElts[i]) 1212 SubDemandedElts.setBit(i * SubScale); 1213 } 1214 1215 KnownBits KnownSrc(SubBitWidth); 1216 for (unsigned i = 0; i != SubScale; ++i) { 1217 computeKnownBits(I->getOperand(0), SubDemandedElts.shl(i), KnownSrc, 1218 Depth + 1, Q); 1219 unsigned ShiftElt = Q.DL.isLittleEndian() ? i : SubScale - 1 - i; 1220 Known.insertBits(KnownSrc, ShiftElt * SubBitWidth); 1221 } 1222 } 1223 break; 1224 } 1225 case Instruction::SExt: { 1226 // Compute the bits in the result that are not present in the input. 1227 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1228 1229 Known = Known.trunc(SrcBitWidth); 1230 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1231 // If the sign bit of the input is known set or clear, then we know the 1232 // top bits of the result. 1233 Known = Known.sext(BitWidth); 1234 break; 1235 } 1236 case Instruction::Shl: { 1237 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1238 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1239 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1240 // If this shift has "nsw" keyword, then the result is either a poison 1241 // value or has the same sign bit as the first operand. 1242 if (NSW) { 1243 if (KnownVal.Zero.isSignBitSet()) 1244 Result.Zero.setSignBit(); 1245 if (KnownVal.One.isSignBitSet()) 1246 Result.One.setSignBit(); 1247 } 1248 return Result; 1249 }; 1250 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1251 KF); 1252 // Trailing zeros of a right-shifted constant never decrease. 1253 const APInt *C; 1254 if (match(I->getOperand(0), m_APInt(C))) 1255 Known.Zero.setLowBits(C->countTrailingZeros()); 1256 break; 1257 } 1258 case Instruction::LShr: { 1259 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1260 return KnownBits::lshr(KnownVal, KnownAmt); 1261 }; 1262 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1263 KF); 1264 // Leading zeros of a left-shifted constant never decrease. 1265 const APInt *C; 1266 if (match(I->getOperand(0), m_APInt(C))) 1267 Known.Zero.setHighBits(C->countLeadingZeros()); 1268 break; 1269 } 1270 case Instruction::AShr: { 1271 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1272 return KnownBits::ashr(KnownVal, KnownAmt); 1273 }; 1274 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1275 KF); 1276 break; 1277 } 1278 case Instruction::Sub: { 1279 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1280 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1281 DemandedElts, Known, Known2, Depth, Q); 1282 break; 1283 } 1284 case Instruction::Add: { 1285 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1286 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1287 DemandedElts, Known, Known2, Depth, Q); 1288 break; 1289 } 1290 case Instruction::SRem: 1291 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1292 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1293 Known = KnownBits::srem(Known, Known2); 1294 break; 1295 1296 case Instruction::URem: 1297 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1298 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1299 Known = KnownBits::urem(Known, Known2); 1300 break; 1301 case Instruction::Alloca: 1302 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1303 break; 1304 case Instruction::GetElementPtr: { 1305 // Analyze all of the subscripts of this getelementptr instruction 1306 // to determine if we can prove known low zero bits. 1307 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1308 // Accumulate the constant indices in a separate variable 1309 // to minimize the number of calls to computeForAddSub. 1310 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1311 1312 gep_type_iterator GTI = gep_type_begin(I); 1313 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1314 // TrailZ can only become smaller, short-circuit if we hit zero. 1315 if (Known.isUnknown()) 1316 break; 1317 1318 Value *Index = I->getOperand(i); 1319 1320 // Handle case when index is zero. 1321 Constant *CIndex = dyn_cast<Constant>(Index); 1322 if (CIndex && CIndex->isZeroValue()) 1323 continue; 1324 1325 if (StructType *STy = GTI.getStructTypeOrNull()) { 1326 // Handle struct member offset arithmetic. 1327 1328 assert(CIndex && 1329 "Access to structure field must be known at compile time"); 1330 1331 if (CIndex->getType()->isVectorTy()) 1332 Index = CIndex->getSplatValue(); 1333 1334 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1335 const StructLayout *SL = Q.DL.getStructLayout(STy); 1336 uint64_t Offset = SL->getElementOffset(Idx); 1337 AccConstIndices += Offset; 1338 continue; 1339 } 1340 1341 // Handle array index arithmetic. 1342 Type *IndexedTy = GTI.getIndexedType(); 1343 if (!IndexedTy->isSized()) { 1344 Known.resetAll(); 1345 break; 1346 } 1347 1348 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1349 KnownBits IndexBits(IndexBitWidth); 1350 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1351 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1352 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1353 KnownBits ScalingFactor(IndexBitWidth); 1354 // Multiply by current sizeof type. 1355 // &A[i] == A + i * sizeof(*A[i]). 1356 if (IndexTypeSize.isScalable()) { 1357 // For scalable types the only thing we know about sizeof is 1358 // that this is a multiple of the minimum size. 1359 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1360 } else if (IndexBits.isConstant()) { 1361 APInt IndexConst = IndexBits.getConstant(); 1362 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1363 IndexConst *= ScalingFactor; 1364 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1365 continue; 1366 } else { 1367 ScalingFactor = 1368 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1369 } 1370 IndexBits = KnownBits::mul(IndexBits, ScalingFactor); 1371 1372 // If the offsets have a different width from the pointer, according 1373 // to the language reference we need to sign-extend or truncate them 1374 // to the width of the pointer. 1375 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1376 1377 // Note that inbounds does *not* guarantee nsw for the addition, as only 1378 // the offset is signed, while the base address is unsigned. 1379 Known = KnownBits::computeForAddSub( 1380 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1381 } 1382 if (!Known.isUnknown() && !AccConstIndices.isZero()) { 1383 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1384 Known = KnownBits::computeForAddSub( 1385 /*Add=*/true, /*NSW=*/false, Known, Index); 1386 } 1387 break; 1388 } 1389 case Instruction::PHI: { 1390 const PHINode *P = cast<PHINode>(I); 1391 BinaryOperator *BO = nullptr; 1392 Value *R = nullptr, *L = nullptr; 1393 if (matchSimpleRecurrence(P, BO, R, L)) { 1394 // Handle the case of a simple two-predecessor recurrence PHI. 1395 // There's a lot more that could theoretically be done here, but 1396 // this is sufficient to catch some interesting cases. 1397 unsigned Opcode = BO->getOpcode(); 1398 1399 // If this is a shift recurrence, we know the bits being shifted in. 1400 // We can combine that with information about the start value of the 1401 // recurrence to conclude facts about the result. 1402 if ((Opcode == Instruction::LShr || Opcode == Instruction::AShr || 1403 Opcode == Instruction::Shl) && 1404 BO->getOperand(0) == I) { 1405 1406 // We have matched a recurrence of the form: 1407 // %iv = [R, %entry], [%iv.next, %backedge] 1408 // %iv.next = shift_op %iv, L 1409 1410 // Recurse with the phi context to avoid concern about whether facts 1411 // inferred hold at original context instruction. TODO: It may be 1412 // correct to use the original context. IF warranted, explore and 1413 // add sufficient tests to cover. 1414 Query RecQ = Q; 1415 RecQ.CxtI = P; 1416 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1417 switch (Opcode) { 1418 case Instruction::Shl: 1419 // A shl recurrence will only increase the tailing zeros 1420 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1421 break; 1422 case Instruction::LShr: 1423 // A lshr recurrence will preserve the leading zeros of the 1424 // start value 1425 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1426 break; 1427 case Instruction::AShr: 1428 // An ashr recurrence will extend the initial sign bit 1429 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1430 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1431 break; 1432 }; 1433 } 1434 1435 // Check for operations that have the property that if 1436 // both their operands have low zero bits, the result 1437 // will have low zero bits. 1438 if (Opcode == Instruction::Add || 1439 Opcode == Instruction::Sub || 1440 Opcode == Instruction::And || 1441 Opcode == Instruction::Or || 1442 Opcode == Instruction::Mul) { 1443 // Change the context instruction to the "edge" that flows into the 1444 // phi. This is important because that is where the value is actually 1445 // "evaluated" even though it is used later somewhere else. (see also 1446 // D69571). 1447 Query RecQ = Q; 1448 1449 unsigned OpNum = P->getOperand(0) == R ? 0 : 1; 1450 Instruction *RInst = P->getIncomingBlock(OpNum)->getTerminator(); 1451 Instruction *LInst = P->getIncomingBlock(1-OpNum)->getTerminator(); 1452 1453 // Ok, we have a PHI of the form L op= R. Check for low 1454 // zero bits. 1455 RecQ.CxtI = RInst; 1456 computeKnownBits(R, Known2, Depth + 1, RecQ); 1457 1458 // We need to take the minimum number of known bits 1459 KnownBits Known3(BitWidth); 1460 RecQ.CxtI = LInst; 1461 computeKnownBits(L, Known3, Depth + 1, RecQ); 1462 1463 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1464 Known3.countMinTrailingZeros())); 1465 1466 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(BO); 1467 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1468 // If initial value of recurrence is nonnegative, and we are adding 1469 // a nonnegative number with nsw, the result can only be nonnegative 1470 // or poison value regardless of the number of times we execute the 1471 // add in phi recurrence. If initial value is negative and we are 1472 // adding a negative number with nsw, the result can only be 1473 // negative or poison value. Similar arguments apply to sub and mul. 1474 // 1475 // (add non-negative, non-negative) --> non-negative 1476 // (add negative, negative) --> negative 1477 if (Opcode == Instruction::Add) { 1478 if (Known2.isNonNegative() && Known3.isNonNegative()) 1479 Known.makeNonNegative(); 1480 else if (Known2.isNegative() && Known3.isNegative()) 1481 Known.makeNegative(); 1482 } 1483 1484 // (sub nsw non-negative, negative) --> non-negative 1485 // (sub nsw negative, non-negative) --> negative 1486 else if (Opcode == Instruction::Sub && BO->getOperand(0) == I) { 1487 if (Known2.isNonNegative() && Known3.isNegative()) 1488 Known.makeNonNegative(); 1489 else if (Known2.isNegative() && Known3.isNonNegative()) 1490 Known.makeNegative(); 1491 } 1492 1493 // (mul nsw non-negative, non-negative) --> non-negative 1494 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1495 Known3.isNonNegative()) 1496 Known.makeNonNegative(); 1497 } 1498 1499 break; 1500 } 1501 } 1502 1503 // Unreachable blocks may have zero-operand PHI nodes. 1504 if (P->getNumIncomingValues() == 0) 1505 break; 1506 1507 // Otherwise take the unions of the known bit sets of the operands, 1508 // taking conservative care to avoid excessive recursion. 1509 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1510 // Skip if every incoming value references to ourself. 1511 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1512 break; 1513 1514 Known.Zero.setAllBits(); 1515 Known.One.setAllBits(); 1516 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1517 Value *IncValue = P->getIncomingValue(u); 1518 // Skip direct self references. 1519 if (IncValue == P) continue; 1520 1521 // Change the context instruction to the "edge" that flows into the 1522 // phi. This is important because that is where the value is actually 1523 // "evaluated" even though it is used later somewhere else. (see also 1524 // D69571). 1525 Query RecQ = Q; 1526 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1527 1528 Known2 = KnownBits(BitWidth); 1529 // Recurse, but cap the recursion to one level, because we don't 1530 // want to waste time spinning around in loops. 1531 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1532 Known = KnownBits::commonBits(Known, Known2); 1533 // If all bits have been ruled out, there's no need to check 1534 // more operands. 1535 if (Known.isUnknown()) 1536 break; 1537 } 1538 } 1539 break; 1540 } 1541 case Instruction::Call: 1542 case Instruction::Invoke: 1543 // If range metadata is attached to this call, set known bits from that, 1544 // and then intersect with known bits based on other properties of the 1545 // function. 1546 if (MDNode *MD = 1547 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1548 computeKnownBitsFromRangeMetadata(*MD, Known); 1549 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1550 computeKnownBits(RV, Known2, Depth + 1, Q); 1551 Known.Zero |= Known2.Zero; 1552 Known.One |= Known2.One; 1553 } 1554 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1555 switch (II->getIntrinsicID()) { 1556 default: break; 1557 case Intrinsic::abs: { 1558 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1559 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1560 Known = Known2.abs(IntMinIsPoison); 1561 break; 1562 } 1563 case Intrinsic::bitreverse: 1564 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1565 Known.Zero |= Known2.Zero.reverseBits(); 1566 Known.One |= Known2.One.reverseBits(); 1567 break; 1568 case Intrinsic::bswap: 1569 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1570 Known.Zero |= Known2.Zero.byteSwap(); 1571 Known.One |= Known2.One.byteSwap(); 1572 break; 1573 case Intrinsic::ctlz: { 1574 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1575 // If we have a known 1, its position is our upper bound. 1576 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1577 // If this call is undefined for 0, the result will be less than 2^n. 1578 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1579 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1580 unsigned LowBits = Log2_32(PossibleLZ)+1; 1581 Known.Zero.setBitsFrom(LowBits); 1582 break; 1583 } 1584 case Intrinsic::cttz: { 1585 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1586 // If we have a known 1, its position is our upper bound. 1587 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1588 // If this call is undefined for 0, the result will be less than 2^n. 1589 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1590 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1591 unsigned LowBits = Log2_32(PossibleTZ)+1; 1592 Known.Zero.setBitsFrom(LowBits); 1593 break; 1594 } 1595 case Intrinsic::ctpop: { 1596 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1597 // We can bound the space the count needs. Also, bits known to be zero 1598 // can't contribute to the population. 1599 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1600 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1601 Known.Zero.setBitsFrom(LowBits); 1602 // TODO: we could bound KnownOne using the lower bound on the number 1603 // of bits which might be set provided by popcnt KnownOne2. 1604 break; 1605 } 1606 case Intrinsic::fshr: 1607 case Intrinsic::fshl: { 1608 const APInt *SA; 1609 if (!match(I->getOperand(2), m_APInt(SA))) 1610 break; 1611 1612 // Normalize to funnel shift left. 1613 uint64_t ShiftAmt = SA->urem(BitWidth); 1614 if (II->getIntrinsicID() == Intrinsic::fshr) 1615 ShiftAmt = BitWidth - ShiftAmt; 1616 1617 KnownBits Known3(BitWidth); 1618 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1619 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1620 1621 Known.Zero = 1622 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1623 Known.One = 1624 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1625 break; 1626 } 1627 case Intrinsic::uadd_sat: 1628 case Intrinsic::usub_sat: { 1629 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1630 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1632 1633 // Add: Leading ones of either operand are preserved. 1634 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1635 // as leading zeros in the result. 1636 unsigned LeadingKnown; 1637 if (IsAdd) 1638 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1639 Known2.countMinLeadingOnes()); 1640 else 1641 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1642 Known2.countMinLeadingOnes()); 1643 1644 Known = KnownBits::computeForAddSub( 1645 IsAdd, /* NSW */ false, Known, Known2); 1646 1647 // We select between the operation result and all-ones/zero 1648 // respectively, so we can preserve known ones/zeros. 1649 if (IsAdd) { 1650 Known.One.setHighBits(LeadingKnown); 1651 Known.Zero.clearAllBits(); 1652 } else { 1653 Known.Zero.setHighBits(LeadingKnown); 1654 Known.One.clearAllBits(); 1655 } 1656 break; 1657 } 1658 case Intrinsic::umin: 1659 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1660 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1661 Known = KnownBits::umin(Known, Known2); 1662 break; 1663 case Intrinsic::umax: 1664 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1665 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1666 Known = KnownBits::umax(Known, Known2); 1667 break; 1668 case Intrinsic::smin: 1669 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1670 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1671 Known = KnownBits::smin(Known, Known2); 1672 break; 1673 case Intrinsic::smax: 1674 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1675 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1676 Known = KnownBits::smax(Known, Known2); 1677 break; 1678 case Intrinsic::x86_sse42_crc32_64_64: 1679 Known.Zero.setBitsFrom(32); 1680 break; 1681 case Intrinsic::riscv_vsetvli: 1682 case Intrinsic::riscv_vsetvlimax: 1683 // Assume that VL output is positive and would fit in an int32_t. 1684 // TODO: VLEN might be capped at 16 bits in a future V spec update. 1685 if (BitWidth >= 32) 1686 Known.Zero.setBitsFrom(31); 1687 break; 1688 case Intrinsic::vscale: { 1689 if (!II->getParent() || !II->getFunction() || 1690 !II->getFunction()->hasFnAttribute(Attribute::VScaleRange)) 1691 break; 1692 1693 auto VScaleRange = II->getFunction() 1694 ->getFnAttribute(Attribute::VScaleRange) 1695 .getVScaleRangeArgs(); 1696 1697 if (VScaleRange.second == 0) 1698 break; 1699 1700 // If vscale min = max then we know the exact value at compile time 1701 // and hence we know the exact bits. 1702 if (VScaleRange.first == VScaleRange.second) { 1703 Known.One = VScaleRange.first; 1704 Known.Zero = VScaleRange.first; 1705 Known.Zero.flipAllBits(); 1706 break; 1707 } 1708 1709 unsigned FirstZeroHighBit = 32 - countLeadingZeros(VScaleRange.second); 1710 if (FirstZeroHighBit < BitWidth) 1711 Known.Zero.setBitsFrom(FirstZeroHighBit); 1712 1713 break; 1714 } 1715 } 1716 } 1717 break; 1718 case Instruction::ShuffleVector: { 1719 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1720 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1721 if (!Shuf) { 1722 Known.resetAll(); 1723 return; 1724 } 1725 // For undef elements, we don't know anything about the common state of 1726 // the shuffle result. 1727 APInt DemandedLHS, DemandedRHS; 1728 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1729 Known.resetAll(); 1730 return; 1731 } 1732 Known.One.setAllBits(); 1733 Known.Zero.setAllBits(); 1734 if (!!DemandedLHS) { 1735 const Value *LHS = Shuf->getOperand(0); 1736 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1737 // If we don't know any bits, early out. 1738 if (Known.isUnknown()) 1739 break; 1740 } 1741 if (!!DemandedRHS) { 1742 const Value *RHS = Shuf->getOperand(1); 1743 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1744 Known = KnownBits::commonBits(Known, Known2); 1745 } 1746 break; 1747 } 1748 case Instruction::InsertElement: { 1749 const Value *Vec = I->getOperand(0); 1750 const Value *Elt = I->getOperand(1); 1751 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1752 // Early out if the index is non-constant or out-of-range. 1753 unsigned NumElts = DemandedElts.getBitWidth(); 1754 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1755 Known.resetAll(); 1756 return; 1757 } 1758 Known.One.setAllBits(); 1759 Known.Zero.setAllBits(); 1760 unsigned EltIdx = CIdx->getZExtValue(); 1761 // Do we demand the inserted element? 1762 if (DemandedElts[EltIdx]) { 1763 computeKnownBits(Elt, Known, Depth + 1, Q); 1764 // If we don't know any bits, early out. 1765 if (Known.isUnknown()) 1766 break; 1767 } 1768 // We don't need the base vector element that has been inserted. 1769 APInt DemandedVecElts = DemandedElts; 1770 DemandedVecElts.clearBit(EltIdx); 1771 if (!!DemandedVecElts) { 1772 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1773 Known = KnownBits::commonBits(Known, Known2); 1774 } 1775 break; 1776 } 1777 case Instruction::ExtractElement: { 1778 // Look through extract element. If the index is non-constant or 1779 // out-of-range demand all elements, otherwise just the extracted element. 1780 const Value *Vec = I->getOperand(0); 1781 const Value *Idx = I->getOperand(1); 1782 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1783 if (isa<ScalableVectorType>(Vec->getType())) { 1784 // FIXME: there's probably *something* we can do with scalable vectors 1785 Known.resetAll(); 1786 break; 1787 } 1788 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1789 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 1790 if (CIdx && CIdx->getValue().ult(NumElts)) 1791 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1792 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1793 break; 1794 } 1795 case Instruction::ExtractValue: 1796 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1797 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1798 if (EVI->getNumIndices() != 1) break; 1799 if (EVI->getIndices()[0] == 0) { 1800 switch (II->getIntrinsicID()) { 1801 default: break; 1802 case Intrinsic::uadd_with_overflow: 1803 case Intrinsic::sadd_with_overflow: 1804 computeKnownBitsAddSub(true, II->getArgOperand(0), 1805 II->getArgOperand(1), false, DemandedElts, 1806 Known, Known2, Depth, Q); 1807 break; 1808 case Intrinsic::usub_with_overflow: 1809 case Intrinsic::ssub_with_overflow: 1810 computeKnownBitsAddSub(false, II->getArgOperand(0), 1811 II->getArgOperand(1), false, DemandedElts, 1812 Known, Known2, Depth, Q); 1813 break; 1814 case Intrinsic::umul_with_overflow: 1815 case Intrinsic::smul_with_overflow: 1816 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1817 DemandedElts, Known, Known2, Depth, Q); 1818 break; 1819 } 1820 } 1821 } 1822 break; 1823 case Instruction::Freeze: 1824 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1825 Depth + 1)) 1826 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1827 break; 1828 } 1829 } 1830 1831 /// Determine which bits of V are known to be either zero or one and return 1832 /// them. 1833 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1834 unsigned Depth, const Query &Q) { 1835 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1836 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1837 return Known; 1838 } 1839 1840 /// Determine which bits of V are known to be either zero or one and return 1841 /// them. 1842 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1843 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1844 computeKnownBits(V, Known, Depth, Q); 1845 return Known; 1846 } 1847 1848 /// Determine which bits of V are known to be either zero or one and return 1849 /// them in the Known bit set. 1850 /// 1851 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1852 /// we cannot optimize based on the assumption that it is zero without changing 1853 /// it to be an explicit zero. If we don't change it to zero, other code could 1854 /// optimized based on the contradictory assumption that it is non-zero. 1855 /// Because instcombine aggressively folds operations with undef args anyway, 1856 /// this won't lose us code quality. 1857 /// 1858 /// This function is defined on values with integer type, values with pointer 1859 /// type, and vectors of integers. In the case 1860 /// where V is a vector, known zero, and known one values are the 1861 /// same width as the vector element, and the bit is set only if it is true 1862 /// for all of the demanded elements in the vector specified by DemandedElts. 1863 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1864 KnownBits &Known, unsigned Depth, const Query &Q) { 1865 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1866 // No demanded elts or V is a scalable vector, better to assume we don't 1867 // know anything. 1868 Known.resetAll(); 1869 return; 1870 } 1871 1872 assert(V && "No Value?"); 1873 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1874 1875 #ifndef NDEBUG 1876 Type *Ty = V->getType(); 1877 unsigned BitWidth = Known.getBitWidth(); 1878 1879 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1880 "Not integer or pointer type!"); 1881 1882 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1883 assert( 1884 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1885 "DemandedElt width should equal the fixed vector number of elements"); 1886 } else { 1887 assert(DemandedElts == APInt(1, 1) && 1888 "DemandedElt width should be 1 for scalars"); 1889 } 1890 1891 Type *ScalarTy = Ty->getScalarType(); 1892 if (ScalarTy->isPointerTy()) { 1893 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1894 "V and Known should have same BitWidth"); 1895 } else { 1896 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1897 "V and Known should have same BitWidth"); 1898 } 1899 #endif 1900 1901 const APInt *C; 1902 if (match(V, m_APInt(C))) { 1903 // We know all of the bits for a scalar constant or a splat vector constant! 1904 Known = KnownBits::makeConstant(*C); 1905 return; 1906 } 1907 // Null and aggregate-zero are all-zeros. 1908 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1909 Known.setAllZero(); 1910 return; 1911 } 1912 // Handle a constant vector by taking the intersection of the known bits of 1913 // each element. 1914 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1915 // We know that CDV must be a vector of integers. Take the intersection of 1916 // each element. 1917 Known.Zero.setAllBits(); Known.One.setAllBits(); 1918 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1919 if (!DemandedElts[i]) 1920 continue; 1921 APInt Elt = CDV->getElementAsAPInt(i); 1922 Known.Zero &= ~Elt; 1923 Known.One &= Elt; 1924 } 1925 return; 1926 } 1927 1928 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1929 // We know that CV must be a vector of integers. Take the intersection of 1930 // each element. 1931 Known.Zero.setAllBits(); Known.One.setAllBits(); 1932 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1933 if (!DemandedElts[i]) 1934 continue; 1935 Constant *Element = CV->getAggregateElement(i); 1936 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1937 if (!ElementCI) { 1938 Known.resetAll(); 1939 return; 1940 } 1941 const APInt &Elt = ElementCI->getValue(); 1942 Known.Zero &= ~Elt; 1943 Known.One &= Elt; 1944 } 1945 return; 1946 } 1947 1948 // Start out not knowing anything. 1949 Known.resetAll(); 1950 1951 // We can't imply anything about undefs. 1952 if (isa<UndefValue>(V)) 1953 return; 1954 1955 // There's no point in looking through other users of ConstantData for 1956 // assumptions. Confirm that we've handled them all. 1957 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1958 1959 // All recursive calls that increase depth must come after this. 1960 if (Depth == MaxAnalysisRecursionDepth) 1961 return; 1962 1963 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1964 // the bits of its aliasee. 1965 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1966 if (!GA->isInterposable()) 1967 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1968 return; 1969 } 1970 1971 if (const Operator *I = dyn_cast<Operator>(V)) 1972 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1973 1974 // Aligned pointers have trailing zeros - refine Known.Zero set 1975 if (isa<PointerType>(V->getType())) { 1976 Align Alignment = V->getPointerAlignment(Q.DL); 1977 Known.Zero.setLowBits(Log2(Alignment)); 1978 } 1979 1980 // computeKnownBitsFromAssume strictly refines Known. 1981 // Therefore, we run them after computeKnownBitsFromOperator. 1982 1983 // Check whether a nearby assume intrinsic can determine some known bits. 1984 computeKnownBitsFromAssume(V, Known, Depth, Q); 1985 1986 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1987 } 1988 1989 /// Return true if the given value is known to have exactly one 1990 /// bit set when defined. For vectors return true if every element is known to 1991 /// be a power of two when defined. Supports values with integer or pointer 1992 /// types and vectors of integers. 1993 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1994 const Query &Q) { 1995 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1996 1997 // Attempt to match against constants. 1998 if (OrZero && match(V, m_Power2OrZero())) 1999 return true; 2000 if (match(V, m_Power2())) 2001 return true; 2002 2003 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2004 // it is shifted off the end then the result is undefined. 2005 if (match(V, m_Shl(m_One(), m_Value()))) 2006 return true; 2007 2008 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2009 // the bottom. If it is shifted off the bottom then the result is undefined. 2010 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2011 return true; 2012 2013 // The remaining tests are all recursive, so bail out if we hit the limit. 2014 if (Depth++ == MaxAnalysisRecursionDepth) 2015 return false; 2016 2017 Value *X = nullptr, *Y = nullptr; 2018 // A shift left or a logical shift right of a power of two is a power of two 2019 // or zero. 2020 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2021 match(V, m_LShr(m_Value(X), m_Value())))) 2022 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2023 2024 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2025 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2026 2027 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2028 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2029 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2030 2031 // Peek through min/max. 2032 if (match(V, m_MaxOrMin(m_Value(X), m_Value(Y)))) { 2033 return isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q) && 2034 isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q); 2035 } 2036 2037 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2038 // A power of two and'd with anything is a power of two or zero. 2039 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2040 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2041 return true; 2042 // X & (-X) is always a power of two or zero. 2043 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2044 return true; 2045 return false; 2046 } 2047 2048 // Adding a power-of-two or zero to the same power-of-two or zero yields 2049 // either the original power-of-two, a larger power-of-two or zero. 2050 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2051 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2052 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2053 Q.IIQ.hasNoSignedWrap(VOBO)) { 2054 if (match(X, m_And(m_Specific(Y), m_Value())) || 2055 match(X, m_And(m_Value(), m_Specific(Y)))) 2056 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2057 return true; 2058 if (match(Y, m_And(m_Specific(X), m_Value())) || 2059 match(Y, m_And(m_Value(), m_Specific(X)))) 2060 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2061 return true; 2062 2063 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2064 KnownBits LHSBits(BitWidth); 2065 computeKnownBits(X, LHSBits, Depth, Q); 2066 2067 KnownBits RHSBits(BitWidth); 2068 computeKnownBits(Y, RHSBits, Depth, Q); 2069 // If i8 V is a power of two or zero: 2070 // ZeroBits: 1 1 1 0 1 1 1 1 2071 // ~ZeroBits: 0 0 0 1 0 0 0 0 2072 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2073 // If OrZero isn't set, we cannot give back a zero result. 2074 // Make sure either the LHS or RHS has a bit set. 2075 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2076 return true; 2077 } 2078 } 2079 2080 // An exact divide or right shift can only shift off zero bits, so the result 2081 // is a power of two only if the first operand is a power of two and not 2082 // copying a sign bit (sdiv int_min, 2). 2083 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2084 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2085 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2086 Depth, Q); 2087 } 2088 2089 return false; 2090 } 2091 2092 /// Test whether a GEP's result is known to be non-null. 2093 /// 2094 /// Uses properties inherent in a GEP to try to determine whether it is known 2095 /// to be non-null. 2096 /// 2097 /// Currently this routine does not support vector GEPs. 2098 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2099 const Query &Q) { 2100 const Function *F = nullptr; 2101 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2102 F = I->getFunction(); 2103 2104 if (!GEP->isInBounds() || 2105 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2106 return false; 2107 2108 // FIXME: Support vector-GEPs. 2109 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2110 2111 // If the base pointer is non-null, we cannot walk to a null address with an 2112 // inbounds GEP in address space zero. 2113 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2114 return true; 2115 2116 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2117 // If so, then the GEP cannot produce a null pointer, as doing so would 2118 // inherently violate the inbounds contract within address space zero. 2119 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2120 GTI != GTE; ++GTI) { 2121 // Struct types are easy -- they must always be indexed by a constant. 2122 if (StructType *STy = GTI.getStructTypeOrNull()) { 2123 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2124 unsigned ElementIdx = OpC->getZExtValue(); 2125 const StructLayout *SL = Q.DL.getStructLayout(STy); 2126 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2127 if (ElementOffset > 0) 2128 return true; 2129 continue; 2130 } 2131 2132 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2133 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2134 continue; 2135 2136 // Fast path the constant operand case both for efficiency and so we don't 2137 // increment Depth when just zipping down an all-constant GEP. 2138 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2139 if (!OpC->isZero()) 2140 return true; 2141 continue; 2142 } 2143 2144 // We post-increment Depth here because while isKnownNonZero increments it 2145 // as well, when we pop back up that increment won't persist. We don't want 2146 // to recurse 10k times just because we have 10k GEP operands. We don't 2147 // bail completely out because we want to handle constant GEPs regardless 2148 // of depth. 2149 if (Depth++ >= MaxAnalysisRecursionDepth) 2150 continue; 2151 2152 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2153 return true; 2154 } 2155 2156 return false; 2157 } 2158 2159 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2160 const Instruction *CtxI, 2161 const DominatorTree *DT) { 2162 if (isa<Constant>(V)) 2163 return false; 2164 2165 if (!CtxI || !DT) 2166 return false; 2167 2168 unsigned NumUsesExplored = 0; 2169 for (auto *U : V->users()) { 2170 // Avoid massive lists 2171 if (NumUsesExplored >= DomConditionsMaxUses) 2172 break; 2173 NumUsesExplored++; 2174 2175 // If the value is used as an argument to a call or invoke, then argument 2176 // attributes may provide an answer about null-ness. 2177 if (const auto *CB = dyn_cast<CallBase>(U)) 2178 if (auto *CalledFunc = CB->getCalledFunction()) 2179 for (const Argument &Arg : CalledFunc->args()) 2180 if (CB->getArgOperand(Arg.getArgNo()) == V && 2181 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2182 DT->dominates(CB, CtxI)) 2183 return true; 2184 2185 // If the value is used as a load/store, then the pointer must be non null. 2186 if (V == getLoadStorePointerOperand(U)) { 2187 const Instruction *I = cast<Instruction>(U); 2188 if (!NullPointerIsDefined(I->getFunction(), 2189 V->getType()->getPointerAddressSpace()) && 2190 DT->dominates(I, CtxI)) 2191 return true; 2192 } 2193 2194 // Consider only compare instructions uniquely controlling a branch 2195 Value *RHS; 2196 CmpInst::Predicate Pred; 2197 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2198 continue; 2199 2200 bool NonNullIfTrue; 2201 if (cmpExcludesZero(Pred, RHS)) 2202 NonNullIfTrue = true; 2203 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2204 NonNullIfTrue = false; 2205 else 2206 continue; 2207 2208 SmallVector<const User *, 4> WorkList; 2209 SmallPtrSet<const User *, 4> Visited; 2210 for (auto *CmpU : U->users()) { 2211 assert(WorkList.empty() && "Should be!"); 2212 if (Visited.insert(CmpU).second) 2213 WorkList.push_back(CmpU); 2214 2215 while (!WorkList.empty()) { 2216 auto *Curr = WorkList.pop_back_val(); 2217 2218 // If a user is an AND, add all its users to the work list. We only 2219 // propagate "pred != null" condition through AND because it is only 2220 // correct to assume that all conditions of AND are met in true branch. 2221 // TODO: Support similar logic of OR and EQ predicate? 2222 if (NonNullIfTrue) 2223 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2224 for (auto *CurrU : Curr->users()) 2225 if (Visited.insert(CurrU).second) 2226 WorkList.push_back(CurrU); 2227 continue; 2228 } 2229 2230 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2231 assert(BI->isConditional() && "uses a comparison!"); 2232 2233 BasicBlock *NonNullSuccessor = 2234 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2235 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2236 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2237 return true; 2238 } else if (NonNullIfTrue && isGuard(Curr) && 2239 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2240 return true; 2241 } 2242 } 2243 } 2244 } 2245 2246 return false; 2247 } 2248 2249 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2250 /// ensure that the value it's attached to is never Value? 'RangeType' is 2251 /// is the type of the value described by the range. 2252 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2253 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2254 assert(NumRanges >= 1); 2255 for (unsigned i = 0; i < NumRanges; ++i) { 2256 ConstantInt *Lower = 2257 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2258 ConstantInt *Upper = 2259 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2260 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2261 if (Range.contains(Value)) 2262 return false; 2263 } 2264 return true; 2265 } 2266 2267 /// Try to detect a recurrence that monotonically increases/decreases from a 2268 /// non-zero starting value. These are common as induction variables. 2269 static bool isNonZeroRecurrence(const PHINode *PN) { 2270 BinaryOperator *BO = nullptr; 2271 Value *Start = nullptr, *Step = nullptr; 2272 const APInt *StartC, *StepC; 2273 if (!matchSimpleRecurrence(PN, BO, Start, Step) || 2274 !match(Start, m_APInt(StartC)) || StartC->isZero()) 2275 return false; 2276 2277 switch (BO->getOpcode()) { 2278 case Instruction::Add: 2279 // Starting from non-zero and stepping away from zero can never wrap back 2280 // to zero. 2281 return BO->hasNoUnsignedWrap() || 2282 (BO->hasNoSignedWrap() && match(Step, m_APInt(StepC)) && 2283 StartC->isNegative() == StepC->isNegative()); 2284 case Instruction::Mul: 2285 return (BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap()) && 2286 match(Step, m_APInt(StepC)) && !StepC->isZero(); 2287 case Instruction::Shl: 2288 return BO->hasNoUnsignedWrap() || BO->hasNoSignedWrap(); 2289 case Instruction::AShr: 2290 case Instruction::LShr: 2291 return BO->isExact(); 2292 default: 2293 return false; 2294 } 2295 } 2296 2297 /// Return true if the given value is known to be non-zero when defined. For 2298 /// vectors, return true if every demanded element is known to be non-zero when 2299 /// defined. For pointers, if the context instruction and dominator tree are 2300 /// specified, perform context-sensitive analysis and return true if the 2301 /// pointer couldn't possibly be null at the specified instruction. 2302 /// Supports values with integer or pointer type and vectors of integers. 2303 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2304 const Query &Q) { 2305 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2306 // vector 2307 if (isa<ScalableVectorType>(V->getType())) 2308 return false; 2309 2310 if (auto *C = dyn_cast<Constant>(V)) { 2311 if (C->isNullValue()) 2312 return false; 2313 if (isa<ConstantInt>(C)) 2314 // Must be non-zero due to null test above. 2315 return true; 2316 2317 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2318 // See the comment for IntToPtr/PtrToInt instructions below. 2319 if (CE->getOpcode() == Instruction::IntToPtr || 2320 CE->getOpcode() == Instruction::PtrToInt) 2321 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2322 .getFixedSize() <= 2323 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2324 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2325 } 2326 2327 // For constant vectors, check that all elements are undefined or known 2328 // non-zero to determine that the whole vector is known non-zero. 2329 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2330 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2331 if (!DemandedElts[i]) 2332 continue; 2333 Constant *Elt = C->getAggregateElement(i); 2334 if (!Elt || Elt->isNullValue()) 2335 return false; 2336 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2337 return false; 2338 } 2339 return true; 2340 } 2341 2342 // A global variable in address space 0 is non null unless extern weak 2343 // or an absolute symbol reference. Other address spaces may have null as a 2344 // valid address for a global, so we can't assume anything. 2345 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2346 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2347 GV->getType()->getAddressSpace() == 0) 2348 return true; 2349 } else 2350 return false; 2351 } 2352 2353 if (auto *I = dyn_cast<Instruction>(V)) { 2354 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2355 // If the possible ranges don't contain zero, then the value is 2356 // definitely non-zero. 2357 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2358 const APInt ZeroValue(Ty->getBitWidth(), 0); 2359 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2360 return true; 2361 } 2362 } 2363 } 2364 2365 if (isKnownNonZeroFromAssume(V, Q)) 2366 return true; 2367 2368 // Some of the tests below are recursive, so bail out if we hit the limit. 2369 if (Depth++ >= MaxAnalysisRecursionDepth) 2370 return false; 2371 2372 // Check for pointer simplifications. 2373 2374 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2375 // Alloca never returns null, malloc might. 2376 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2377 return true; 2378 2379 // A byval, inalloca may not be null in a non-default addres space. A 2380 // nonnull argument is assumed never 0. 2381 if (const Argument *A = dyn_cast<Argument>(V)) { 2382 if (((A->hasPassPointeeByValueCopyAttr() && 2383 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2384 A->hasNonNullAttr())) 2385 return true; 2386 } 2387 2388 // A Load tagged with nonnull metadata is never null. 2389 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2390 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2391 return true; 2392 2393 if (const auto *Call = dyn_cast<CallBase>(V)) { 2394 if (Call->isReturnNonNull()) 2395 return true; 2396 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2397 return isKnownNonZero(RP, Depth, Q); 2398 } 2399 } 2400 2401 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2402 return true; 2403 2404 // Check for recursive pointer simplifications. 2405 if (V->getType()->isPointerTy()) { 2406 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2407 // do not alter the value, or at least not the nullness property of the 2408 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2409 // 2410 // Note that we have to take special care to avoid looking through 2411 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2412 // as casts that can alter the value, e.g., AddrSpaceCasts. 2413 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2414 return isGEPKnownNonNull(GEP, Depth, Q); 2415 2416 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2417 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2418 2419 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2420 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2421 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2422 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2423 } 2424 2425 // Similar to int2ptr above, we can look through ptr2int here if the cast 2426 // is a no-op or an extend and not a truncate. 2427 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2428 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2429 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2430 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2431 2432 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2433 2434 // X | Y != 0 if X != 0 or Y != 0. 2435 Value *X = nullptr, *Y = nullptr; 2436 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2437 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2438 isKnownNonZero(Y, DemandedElts, Depth, Q); 2439 2440 // ext X != 0 if X != 0. 2441 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2442 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2443 2444 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2445 // if the lowest bit is shifted off the end. 2446 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2447 // shl nuw can't remove any non-zero bits. 2448 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2449 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2450 return isKnownNonZero(X, Depth, Q); 2451 2452 KnownBits Known(BitWidth); 2453 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2454 if (Known.One[0]) 2455 return true; 2456 } 2457 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2458 // defined if the sign bit is shifted off the end. 2459 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2460 // shr exact can only shift out zero bits. 2461 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2462 if (BO->isExact()) 2463 return isKnownNonZero(X, Depth, Q); 2464 2465 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2466 if (Known.isNegative()) 2467 return true; 2468 2469 // If the shifter operand is a constant, and all of the bits shifted 2470 // out are known to be zero, and X is known non-zero then at least one 2471 // non-zero bit must remain. 2472 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2473 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2474 // Is there a known one in the portion not shifted out? 2475 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2476 return true; 2477 // Are all the bits to be shifted out known zero? 2478 if (Known.countMinTrailingZeros() >= ShiftVal) 2479 return isKnownNonZero(X, DemandedElts, Depth, Q); 2480 } 2481 } 2482 // div exact can only produce a zero if the dividend is zero. 2483 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2484 return isKnownNonZero(X, DemandedElts, Depth, Q); 2485 } 2486 // X + Y. 2487 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2488 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2489 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2490 2491 // If X and Y are both non-negative (as signed values) then their sum is not 2492 // zero unless both X and Y are zero. 2493 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2494 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2495 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2496 return true; 2497 2498 // If X and Y are both negative (as signed values) then their sum is not 2499 // zero unless both X and Y equal INT_MIN. 2500 if (XKnown.isNegative() && YKnown.isNegative()) { 2501 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2502 // The sign bit of X is set. If some other bit is set then X is not equal 2503 // to INT_MIN. 2504 if (XKnown.One.intersects(Mask)) 2505 return true; 2506 // The sign bit of Y is set. If some other bit is set then Y is not equal 2507 // to INT_MIN. 2508 if (YKnown.One.intersects(Mask)) 2509 return true; 2510 } 2511 2512 // The sum of a non-negative number and a power of two is not zero. 2513 if (XKnown.isNonNegative() && 2514 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2515 return true; 2516 if (YKnown.isNonNegative() && 2517 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2518 return true; 2519 } 2520 // X * Y. 2521 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2522 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2523 // If X and Y are non-zero then so is X * Y as long as the multiplication 2524 // does not overflow. 2525 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2526 isKnownNonZero(X, DemandedElts, Depth, Q) && 2527 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2528 return true; 2529 } 2530 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2531 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2532 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2533 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2534 return true; 2535 } 2536 // PHI 2537 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2538 if (Q.IIQ.UseInstrInfo && isNonZeroRecurrence(PN)) 2539 return true; 2540 2541 // Check if all incoming values are non-zero using recursion. 2542 Query RecQ = Q; 2543 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2544 return llvm::all_of(PN->operands(), [&](const Use &U) { 2545 if (U.get() == PN) 2546 return true; 2547 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2548 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2549 }); 2550 } 2551 // ExtractElement 2552 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2553 const Value *Vec = EEI->getVectorOperand(); 2554 const Value *Idx = EEI->getIndexOperand(); 2555 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2556 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2557 unsigned NumElts = VecTy->getNumElements(); 2558 APInt DemandedVecElts = APInt::getAllOnes(NumElts); 2559 if (CIdx && CIdx->getValue().ult(NumElts)) 2560 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2561 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2562 } 2563 } 2564 // Freeze 2565 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2566 auto *Op = FI->getOperand(0); 2567 if (isKnownNonZero(Op, Depth, Q) && 2568 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2569 return true; 2570 } 2571 2572 KnownBits Known(BitWidth); 2573 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2574 return Known.One != 0; 2575 } 2576 2577 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2578 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2579 // vector 2580 if (isa<ScalableVectorType>(V->getType())) 2581 return false; 2582 2583 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2584 APInt DemandedElts = 2585 FVTy ? APInt::getAllOnes(FVTy->getNumElements()) : APInt(1, 1); 2586 return isKnownNonZero(V, DemandedElts, Depth, Q); 2587 } 2588 2589 /// If the pair of operators are the same invertible function, return the 2590 /// the operands of the function corresponding to each input. Otherwise, 2591 /// return None. An invertible function is one that is 1-to-1 and maps 2592 /// every input value to exactly one output value. This is equivalent to 2593 /// saying that Op1 and Op2 are equal exactly when the specified pair of 2594 /// operands are equal, (except that Op1 and Op2 may be poison more often.) 2595 static Optional<std::pair<Value*, Value*>> 2596 getInvertibleOperands(const Operator *Op1, 2597 const Operator *Op2) { 2598 if (Op1->getOpcode() != Op2->getOpcode()) 2599 return None; 2600 2601 auto getOperands = [&](unsigned OpNum) -> auto { 2602 return std::make_pair(Op1->getOperand(OpNum), Op2->getOperand(OpNum)); 2603 }; 2604 2605 switch (Op1->getOpcode()) { 2606 default: 2607 break; 2608 case Instruction::Add: 2609 case Instruction::Sub: 2610 if (Op1->getOperand(0) == Op2->getOperand(0)) 2611 return getOperands(1); 2612 if (Op1->getOperand(1) == Op2->getOperand(1)) 2613 return getOperands(0); 2614 break; 2615 case Instruction::Mul: { 2616 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2617 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2618 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2619 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2620 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2621 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2622 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2623 break; 2624 2625 // Assume operand order has been canonicalized 2626 if (Op1->getOperand(1) == Op2->getOperand(1) && 2627 isa<ConstantInt>(Op1->getOperand(1)) && 2628 !cast<ConstantInt>(Op1->getOperand(1))->isZero()) 2629 return getOperands(0); 2630 break; 2631 } 2632 case Instruction::Shl: { 2633 // Same as multiplies, with the difference that we don't need to check 2634 // for a non-zero multiply. Shifts always multiply by non-zero. 2635 auto *OBO1 = cast<OverflowingBinaryOperator>(Op1); 2636 auto *OBO2 = cast<OverflowingBinaryOperator>(Op2); 2637 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2638 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2639 break; 2640 2641 if (Op1->getOperand(1) == Op2->getOperand(1)) 2642 return getOperands(0); 2643 break; 2644 } 2645 case Instruction::AShr: 2646 case Instruction::LShr: { 2647 auto *PEO1 = cast<PossiblyExactOperator>(Op1); 2648 auto *PEO2 = cast<PossiblyExactOperator>(Op2); 2649 if (!PEO1->isExact() || !PEO2->isExact()) 2650 break; 2651 2652 if (Op1->getOperand(1) == Op2->getOperand(1)) 2653 return getOperands(0); 2654 break; 2655 } 2656 case Instruction::SExt: 2657 case Instruction::ZExt: 2658 if (Op1->getOperand(0)->getType() == Op2->getOperand(0)->getType()) 2659 return getOperands(0); 2660 break; 2661 case Instruction::PHI: { 2662 const PHINode *PN1 = cast<PHINode>(Op1); 2663 const PHINode *PN2 = cast<PHINode>(Op2); 2664 2665 // If PN1 and PN2 are both recurrences, can we prove the entire recurrences 2666 // are a single invertible function of the start values? Note that repeated 2667 // application of an invertible function is also invertible 2668 BinaryOperator *BO1 = nullptr; 2669 Value *Start1 = nullptr, *Step1 = nullptr; 2670 BinaryOperator *BO2 = nullptr; 2671 Value *Start2 = nullptr, *Step2 = nullptr; 2672 if (PN1->getParent() != PN2->getParent() || 2673 !matchSimpleRecurrence(PN1, BO1, Start1, Step1) || 2674 !matchSimpleRecurrence(PN2, BO2, Start2, Step2)) 2675 break; 2676 2677 auto Values = getInvertibleOperands(cast<Operator>(BO1), 2678 cast<Operator>(BO2)); 2679 if (!Values) 2680 break; 2681 2682 // We have to be careful of mutually defined recurrences here. Ex: 2683 // * X_i = X_(i-1) OP Y_(i-1), and Y_i = X_(i-1) OP V 2684 // * X_i = Y_i = X_(i-1) OP Y_(i-1) 2685 // The invertibility of these is complicated, and not worth reasoning 2686 // about (yet?). 2687 if (Values->first != PN1 || Values->second != PN2) 2688 break; 2689 2690 return std::make_pair(Start1, Start2); 2691 } 2692 } 2693 return None; 2694 } 2695 2696 /// Return true if V2 == V1 + X, where X is known non-zero. 2697 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2698 const Query &Q) { 2699 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2700 if (!BO || BO->getOpcode() != Instruction::Add) 2701 return false; 2702 Value *Op = nullptr; 2703 if (V2 == BO->getOperand(0)) 2704 Op = BO->getOperand(1); 2705 else if (V2 == BO->getOperand(1)) 2706 Op = BO->getOperand(0); 2707 else 2708 return false; 2709 return isKnownNonZero(Op, Depth + 1, Q); 2710 } 2711 2712 /// Return true if V2 == V1 * C, where V1 is known non-zero, C is not 0/1 and 2713 /// the multiplication is nuw or nsw. 2714 static bool isNonEqualMul(const Value *V1, const Value *V2, unsigned Depth, 2715 const Query &Q) { 2716 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2717 const APInt *C; 2718 return match(OBO, m_Mul(m_Specific(V1), m_APInt(C))) && 2719 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2720 !C->isZero() && !C->isOne() && isKnownNonZero(V1, Depth + 1, Q); 2721 } 2722 return false; 2723 } 2724 2725 /// Return true if V2 == V1 << C, where V1 is known non-zero, C is not 0 and 2726 /// the shift is nuw or nsw. 2727 static bool isNonEqualShl(const Value *V1, const Value *V2, unsigned Depth, 2728 const Query &Q) { 2729 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(V2)) { 2730 const APInt *C; 2731 return match(OBO, m_Shl(m_Specific(V1), m_APInt(C))) && 2732 (OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap()) && 2733 !C->isZero() && isKnownNonZero(V1, Depth + 1, Q); 2734 } 2735 return false; 2736 } 2737 2738 static bool isNonEqualPHIs(const PHINode *PN1, const PHINode *PN2, 2739 unsigned Depth, const Query &Q) { 2740 // Check two PHIs are in same block. 2741 if (PN1->getParent() != PN2->getParent()) 2742 return false; 2743 2744 SmallPtrSet<const BasicBlock *, 8> VisitedBBs; 2745 bool UsedFullRecursion = false; 2746 for (const BasicBlock *IncomBB : PN1->blocks()) { 2747 if (!VisitedBBs.insert(IncomBB).second) 2748 continue; // Don't reprocess blocks that we have dealt with already. 2749 const Value *IV1 = PN1->getIncomingValueForBlock(IncomBB); 2750 const Value *IV2 = PN2->getIncomingValueForBlock(IncomBB); 2751 const APInt *C1, *C2; 2752 if (match(IV1, m_APInt(C1)) && match(IV2, m_APInt(C2)) && *C1 != *C2) 2753 continue; 2754 2755 // Only one pair of phi operands is allowed for full recursion. 2756 if (UsedFullRecursion) 2757 return false; 2758 2759 Query RecQ = Q; 2760 RecQ.CxtI = IncomBB->getTerminator(); 2761 if (!isKnownNonEqual(IV1, IV2, Depth + 1, RecQ)) 2762 return false; 2763 UsedFullRecursion = true; 2764 } 2765 return true; 2766 } 2767 2768 /// Return true if it is known that V1 != V2. 2769 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2770 const Query &Q) { 2771 if (V1 == V2) 2772 return false; 2773 if (V1->getType() != V2->getType()) 2774 // We can't look through casts yet. 2775 return false; 2776 2777 if (Depth >= MaxAnalysisRecursionDepth) 2778 return false; 2779 2780 // See if we can recurse through (exactly one of) our operands. This 2781 // requires our operation be 1-to-1 and map every input value to exactly 2782 // one output value. Such an operation is invertible. 2783 auto *O1 = dyn_cast<Operator>(V1); 2784 auto *O2 = dyn_cast<Operator>(V2); 2785 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2786 if (auto Values = getInvertibleOperands(O1, O2)) 2787 return isKnownNonEqual(Values->first, Values->second, Depth + 1, Q); 2788 2789 if (const PHINode *PN1 = dyn_cast<PHINode>(V1)) { 2790 const PHINode *PN2 = cast<PHINode>(V2); 2791 // FIXME: This is missing a generalization to handle the case where one is 2792 // a PHI and another one isn't. 2793 if (isNonEqualPHIs(PN1, PN2, Depth, Q)) 2794 return true; 2795 }; 2796 } 2797 2798 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2799 return true; 2800 2801 if (isNonEqualMul(V1, V2, Depth, Q) || isNonEqualMul(V2, V1, Depth, Q)) 2802 return true; 2803 2804 if (isNonEqualShl(V1, V2, Depth, Q) || isNonEqualShl(V2, V1, Depth, Q)) 2805 return true; 2806 2807 if (V1->getType()->isIntOrIntVectorTy()) { 2808 // Are any known bits in V1 contradictory to known bits in V2? If V1 2809 // has a known zero where V2 has a known one, they must not be equal. 2810 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2811 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2812 2813 if (Known1.Zero.intersects(Known2.One) || 2814 Known2.Zero.intersects(Known1.One)) 2815 return true; 2816 } 2817 return false; 2818 } 2819 2820 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2821 /// simplify operations downstream. Mask is known to be zero for bits that V 2822 /// cannot have. 2823 /// 2824 /// This function is defined on values with integer type, values with pointer 2825 /// type, and vectors of integers. In the case 2826 /// where V is a vector, the mask, known zero, and known one values are the 2827 /// same width as the vector element, and the bit is set only if it is true 2828 /// for all of the elements in the vector. 2829 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2830 const Query &Q) { 2831 KnownBits Known(Mask.getBitWidth()); 2832 computeKnownBits(V, Known, Depth, Q); 2833 return Mask.isSubsetOf(Known.Zero); 2834 } 2835 2836 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2837 // Returns the input and lower/upper bounds. 2838 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2839 const APInt *&CLow, const APInt *&CHigh) { 2840 assert(isa<Operator>(Select) && 2841 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2842 "Input should be a Select!"); 2843 2844 const Value *LHS = nullptr, *RHS = nullptr; 2845 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2846 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2847 return false; 2848 2849 if (!match(RHS, m_APInt(CLow))) 2850 return false; 2851 2852 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2853 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2854 if (getInverseMinMaxFlavor(SPF) != SPF2) 2855 return false; 2856 2857 if (!match(RHS2, m_APInt(CHigh))) 2858 return false; 2859 2860 if (SPF == SPF_SMIN) 2861 std::swap(CLow, CHigh); 2862 2863 In = LHS2; 2864 return CLow->sle(*CHigh); 2865 } 2866 2867 /// For vector constants, loop over the elements and find the constant with the 2868 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2869 /// or if any element was not analyzed; otherwise, return the count for the 2870 /// element with the minimum number of sign bits. 2871 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2872 const APInt &DemandedElts, 2873 unsigned TyBits) { 2874 const auto *CV = dyn_cast<Constant>(V); 2875 if (!CV || !isa<FixedVectorType>(CV->getType())) 2876 return 0; 2877 2878 unsigned MinSignBits = TyBits; 2879 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2880 for (unsigned i = 0; i != NumElts; ++i) { 2881 if (!DemandedElts[i]) 2882 continue; 2883 // If we find a non-ConstantInt, bail out. 2884 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2885 if (!Elt) 2886 return 0; 2887 2888 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2889 } 2890 2891 return MinSignBits; 2892 } 2893 2894 static unsigned ComputeNumSignBitsImpl(const Value *V, 2895 const APInt &DemandedElts, 2896 unsigned Depth, const Query &Q); 2897 2898 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2899 unsigned Depth, const Query &Q) { 2900 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2901 assert(Result > 0 && "At least one sign bit needs to be present!"); 2902 return Result; 2903 } 2904 2905 /// Return the number of times the sign bit of the register is replicated into 2906 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2907 /// (itself), but other cases can give us information. For example, immediately 2908 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2909 /// other, so we return 3. For vectors, return the number of sign bits for the 2910 /// vector element with the minimum number of known sign bits of the demanded 2911 /// elements in the vector specified by DemandedElts. 2912 static unsigned ComputeNumSignBitsImpl(const Value *V, 2913 const APInt &DemandedElts, 2914 unsigned Depth, const Query &Q) { 2915 Type *Ty = V->getType(); 2916 2917 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2918 // vector 2919 if (isa<ScalableVectorType>(Ty)) 2920 return 1; 2921 2922 #ifndef NDEBUG 2923 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2924 2925 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2926 assert( 2927 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2928 "DemandedElt width should equal the fixed vector number of elements"); 2929 } else { 2930 assert(DemandedElts == APInt(1, 1) && 2931 "DemandedElt width should be 1 for scalars"); 2932 } 2933 #endif 2934 2935 // We return the minimum number of sign bits that are guaranteed to be present 2936 // in V, so for undef we have to conservatively return 1. We don't have the 2937 // same behavior for poison though -- that's a FIXME today. 2938 2939 Type *ScalarTy = Ty->getScalarType(); 2940 unsigned TyBits = ScalarTy->isPointerTy() ? 2941 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2942 Q.DL.getTypeSizeInBits(ScalarTy); 2943 2944 unsigned Tmp, Tmp2; 2945 unsigned FirstAnswer = 1; 2946 2947 // Note that ConstantInt is handled by the general computeKnownBits case 2948 // below. 2949 2950 if (Depth == MaxAnalysisRecursionDepth) 2951 return 1; 2952 2953 if (auto *U = dyn_cast<Operator>(V)) { 2954 switch (Operator::getOpcode(V)) { 2955 default: break; 2956 case Instruction::SExt: 2957 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2958 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2959 2960 case Instruction::SDiv: { 2961 const APInt *Denominator; 2962 // sdiv X, C -> adds log(C) sign bits. 2963 if (match(U->getOperand(1), m_APInt(Denominator))) { 2964 2965 // Ignore non-positive denominator. 2966 if (!Denominator->isStrictlyPositive()) 2967 break; 2968 2969 // Calculate the incoming numerator bits. 2970 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2971 2972 // Add floor(log(C)) bits to the numerator bits. 2973 return std::min(TyBits, NumBits + Denominator->logBase2()); 2974 } 2975 break; 2976 } 2977 2978 case Instruction::SRem: { 2979 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2980 2981 const APInt *Denominator; 2982 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2983 // positive constant. This let us put a lower bound on the number of sign 2984 // bits. 2985 if (match(U->getOperand(1), m_APInt(Denominator))) { 2986 2987 // Ignore non-positive denominator. 2988 if (Denominator->isStrictlyPositive()) { 2989 // Calculate the leading sign bit constraints by examining the 2990 // denominator. Given that the denominator is positive, there are two 2991 // cases: 2992 // 2993 // 1. The numerator is positive. The result range is [0,C) and 2994 // [0,C) u< (1 << ceilLogBase2(C)). 2995 // 2996 // 2. The numerator is negative. Then the result range is (-C,0] and 2997 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2998 // 2999 // Thus a lower bound on the number of sign bits is `TyBits - 3000 // ceilLogBase2(C)`. 3001 3002 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 3003 Tmp = std::max(Tmp, ResBits); 3004 } 3005 } 3006 return Tmp; 3007 } 3008 3009 case Instruction::AShr: { 3010 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3011 // ashr X, C -> adds C sign bits. Vectors too. 3012 const APInt *ShAmt; 3013 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3014 if (ShAmt->uge(TyBits)) 3015 break; // Bad shift. 3016 unsigned ShAmtLimited = ShAmt->getZExtValue(); 3017 Tmp += ShAmtLimited; 3018 if (Tmp > TyBits) Tmp = TyBits; 3019 } 3020 return Tmp; 3021 } 3022 case Instruction::Shl: { 3023 const APInt *ShAmt; 3024 if (match(U->getOperand(1), m_APInt(ShAmt))) { 3025 // shl destroys sign bits. 3026 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3027 if (ShAmt->uge(TyBits) || // Bad shift. 3028 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 3029 Tmp2 = ShAmt->getZExtValue(); 3030 return Tmp - Tmp2; 3031 } 3032 break; 3033 } 3034 case Instruction::And: 3035 case Instruction::Or: 3036 case Instruction::Xor: // NOT is handled here. 3037 // Logical binary ops preserve the number of sign bits at the worst. 3038 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3039 if (Tmp != 1) { 3040 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3041 FirstAnswer = std::min(Tmp, Tmp2); 3042 // We computed what we know about the sign bits as our first 3043 // answer. Now proceed to the generic code that uses 3044 // computeKnownBits, and pick whichever answer is better. 3045 } 3046 break; 3047 3048 case Instruction::Select: { 3049 // If we have a clamp pattern, we know that the number of sign bits will 3050 // be the minimum of the clamp min/max range. 3051 const Value *X; 3052 const APInt *CLow, *CHigh; 3053 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 3054 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 3055 3056 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3057 if (Tmp == 1) break; 3058 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 3059 return std::min(Tmp, Tmp2); 3060 } 3061 3062 case Instruction::Add: 3063 // Add can have at most one carry bit. Thus we know that the output 3064 // is, at worst, one more bit than the inputs. 3065 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3066 if (Tmp == 1) break; 3067 3068 // Special case decrementing a value (ADD X, -1): 3069 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 3070 if (CRHS->isAllOnesValue()) { 3071 KnownBits Known(TyBits); 3072 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 3073 3074 // If the input is known to be 0 or 1, the output is 0/-1, which is 3075 // all sign bits set. 3076 if ((Known.Zero | 1).isAllOnes()) 3077 return TyBits; 3078 3079 // If we are subtracting one from a positive number, there is no carry 3080 // out of the result. 3081 if (Known.isNonNegative()) 3082 return Tmp; 3083 } 3084 3085 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3086 if (Tmp2 == 1) break; 3087 return std::min(Tmp, Tmp2) - 1; 3088 3089 case Instruction::Sub: 3090 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3091 if (Tmp2 == 1) break; 3092 3093 // Handle NEG. 3094 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 3095 if (CLHS->isNullValue()) { 3096 KnownBits Known(TyBits); 3097 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 3098 // If the input is known to be 0 or 1, the output is 0/-1, which is 3099 // all sign bits set. 3100 if ((Known.Zero | 1).isAllOnes()) 3101 return TyBits; 3102 3103 // If the input is known to be positive (the sign bit is known clear), 3104 // the output of the NEG has the same number of sign bits as the 3105 // input. 3106 if (Known.isNonNegative()) 3107 return Tmp2; 3108 3109 // Otherwise, we treat this like a SUB. 3110 } 3111 3112 // Sub can have at most one carry bit. Thus we know that the output 3113 // is, at worst, one more bit than the inputs. 3114 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3115 if (Tmp == 1) break; 3116 return std::min(Tmp, Tmp2) - 1; 3117 3118 case Instruction::Mul: { 3119 // The output of the Mul can be at most twice the valid bits in the 3120 // inputs. 3121 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3122 if (SignBitsOp0 == 1) break; 3123 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 3124 if (SignBitsOp1 == 1) break; 3125 unsigned OutValidBits = 3126 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 3127 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 3128 } 3129 3130 case Instruction::PHI: { 3131 const PHINode *PN = cast<PHINode>(U); 3132 unsigned NumIncomingValues = PN->getNumIncomingValues(); 3133 // Don't analyze large in-degree PHIs. 3134 if (NumIncomingValues > 4) break; 3135 // Unreachable blocks may have zero-operand PHI nodes. 3136 if (NumIncomingValues == 0) break; 3137 3138 // Take the minimum of all incoming values. This can't infinitely loop 3139 // because of our depth threshold. 3140 Query RecQ = Q; 3141 Tmp = TyBits; 3142 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 3143 if (Tmp == 1) return Tmp; 3144 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 3145 Tmp = std::min( 3146 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 3147 } 3148 return Tmp; 3149 } 3150 3151 case Instruction::Trunc: 3152 // FIXME: it's tricky to do anything useful for this, but it is an 3153 // important case for targets like X86. 3154 break; 3155 3156 case Instruction::ExtractElement: 3157 // Look through extract element. At the moment we keep this simple and 3158 // skip tracking the specific element. But at least we might find 3159 // information valid for all elements of the vector (for example if vector 3160 // is sign extended, shifted, etc). 3161 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3162 3163 case Instruction::ShuffleVector: { 3164 // Collect the minimum number of sign bits that are shared by every vector 3165 // element referenced by the shuffle. 3166 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 3167 if (!Shuf) { 3168 // FIXME: Add support for shufflevector constant expressions. 3169 return 1; 3170 } 3171 APInt DemandedLHS, DemandedRHS; 3172 // For undef elements, we don't know anything about the common state of 3173 // the shuffle result. 3174 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 3175 return 1; 3176 Tmp = std::numeric_limits<unsigned>::max(); 3177 if (!!DemandedLHS) { 3178 const Value *LHS = Shuf->getOperand(0); 3179 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 3180 } 3181 // If we don't know anything, early out and try computeKnownBits 3182 // fall-back. 3183 if (Tmp == 1) 3184 break; 3185 if (!!DemandedRHS) { 3186 const Value *RHS = Shuf->getOperand(1); 3187 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 3188 Tmp = std::min(Tmp, Tmp2); 3189 } 3190 // If we don't know anything, early out and try computeKnownBits 3191 // fall-back. 3192 if (Tmp == 1) 3193 break; 3194 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3195 return Tmp; 3196 } 3197 case Instruction::Call: { 3198 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3199 switch (II->getIntrinsicID()) { 3200 default: break; 3201 case Intrinsic::abs: 3202 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3203 if (Tmp == 1) break; 3204 3205 // Absolute value reduces number of sign bits by at most 1. 3206 return Tmp - 1; 3207 } 3208 } 3209 } 3210 } 3211 } 3212 3213 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3214 // use this information. 3215 3216 // If we can examine all elements of a vector constant successfully, we're 3217 // done (we can't do any better than that). If not, keep trying. 3218 if (unsigned VecSignBits = 3219 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3220 return VecSignBits; 3221 3222 KnownBits Known(TyBits); 3223 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3224 3225 // If we know that the sign bit is either zero or one, determine the number of 3226 // identical bits in the top of the input value. 3227 return std::max(FirstAnswer, Known.countMinSignBits()); 3228 } 3229 3230 /// This function computes the integer multiple of Base that equals V. 3231 /// If successful, it returns true and returns the multiple in 3232 /// Multiple. If unsuccessful, it returns false. It looks 3233 /// through SExt instructions only if LookThroughSExt is true. 3234 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3235 bool LookThroughSExt, unsigned Depth) { 3236 assert(V && "No Value?"); 3237 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3238 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3239 3240 Type *T = V->getType(); 3241 3242 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3243 3244 if (Base == 0) 3245 return false; 3246 3247 if (Base == 1) { 3248 Multiple = V; 3249 return true; 3250 } 3251 3252 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3253 Constant *BaseVal = ConstantInt::get(T, Base); 3254 if (CO && CO == BaseVal) { 3255 // Multiple is 1. 3256 Multiple = ConstantInt::get(T, 1); 3257 return true; 3258 } 3259 3260 if (CI && CI->getZExtValue() % Base == 0) { 3261 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3262 return true; 3263 } 3264 3265 if (Depth == MaxAnalysisRecursionDepth) return false; 3266 3267 Operator *I = dyn_cast<Operator>(V); 3268 if (!I) return false; 3269 3270 switch (I->getOpcode()) { 3271 default: break; 3272 case Instruction::SExt: 3273 if (!LookThroughSExt) return false; 3274 // otherwise fall through to ZExt 3275 LLVM_FALLTHROUGH; 3276 case Instruction::ZExt: 3277 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3278 LookThroughSExt, Depth+1); 3279 case Instruction::Shl: 3280 case Instruction::Mul: { 3281 Value *Op0 = I->getOperand(0); 3282 Value *Op1 = I->getOperand(1); 3283 3284 if (I->getOpcode() == Instruction::Shl) { 3285 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3286 if (!Op1CI) return false; 3287 // Turn Op0 << Op1 into Op0 * 2^Op1 3288 APInt Op1Int = Op1CI->getValue(); 3289 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3290 APInt API(Op1Int.getBitWidth(), 0); 3291 API.setBit(BitToSet); 3292 Op1 = ConstantInt::get(V->getContext(), API); 3293 } 3294 3295 Value *Mul0 = nullptr; 3296 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3297 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3298 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3299 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3300 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3301 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3302 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3303 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3304 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3305 3306 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3307 Multiple = ConstantExpr::getMul(MulC, Op1C); 3308 return true; 3309 } 3310 3311 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3312 if (Mul0CI->getValue() == 1) { 3313 // V == Base * Op1, so return Op1 3314 Multiple = Op1; 3315 return true; 3316 } 3317 } 3318 3319 Value *Mul1 = nullptr; 3320 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3321 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3322 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3323 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3324 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3325 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3326 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3327 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3328 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3329 3330 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3331 Multiple = ConstantExpr::getMul(MulC, Op0C); 3332 return true; 3333 } 3334 3335 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3336 if (Mul1CI->getValue() == 1) { 3337 // V == Base * Op0, so return Op0 3338 Multiple = Op0; 3339 return true; 3340 } 3341 } 3342 } 3343 } 3344 3345 // We could not determine if V is a multiple of Base. 3346 return false; 3347 } 3348 3349 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3350 const TargetLibraryInfo *TLI) { 3351 const Function *F = CB.getCalledFunction(); 3352 if (!F) 3353 return Intrinsic::not_intrinsic; 3354 3355 if (F->isIntrinsic()) 3356 return F->getIntrinsicID(); 3357 3358 // We are going to infer semantics of a library function based on mapping it 3359 // to an LLVM intrinsic. Check that the library function is available from 3360 // this callbase and in this environment. 3361 LibFunc Func; 3362 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3363 !CB.onlyReadsMemory()) 3364 return Intrinsic::not_intrinsic; 3365 3366 switch (Func) { 3367 default: 3368 break; 3369 case LibFunc_sin: 3370 case LibFunc_sinf: 3371 case LibFunc_sinl: 3372 return Intrinsic::sin; 3373 case LibFunc_cos: 3374 case LibFunc_cosf: 3375 case LibFunc_cosl: 3376 return Intrinsic::cos; 3377 case LibFunc_exp: 3378 case LibFunc_expf: 3379 case LibFunc_expl: 3380 return Intrinsic::exp; 3381 case LibFunc_exp2: 3382 case LibFunc_exp2f: 3383 case LibFunc_exp2l: 3384 return Intrinsic::exp2; 3385 case LibFunc_log: 3386 case LibFunc_logf: 3387 case LibFunc_logl: 3388 return Intrinsic::log; 3389 case LibFunc_log10: 3390 case LibFunc_log10f: 3391 case LibFunc_log10l: 3392 return Intrinsic::log10; 3393 case LibFunc_log2: 3394 case LibFunc_log2f: 3395 case LibFunc_log2l: 3396 return Intrinsic::log2; 3397 case LibFunc_fabs: 3398 case LibFunc_fabsf: 3399 case LibFunc_fabsl: 3400 return Intrinsic::fabs; 3401 case LibFunc_fmin: 3402 case LibFunc_fminf: 3403 case LibFunc_fminl: 3404 return Intrinsic::minnum; 3405 case LibFunc_fmax: 3406 case LibFunc_fmaxf: 3407 case LibFunc_fmaxl: 3408 return Intrinsic::maxnum; 3409 case LibFunc_copysign: 3410 case LibFunc_copysignf: 3411 case LibFunc_copysignl: 3412 return Intrinsic::copysign; 3413 case LibFunc_floor: 3414 case LibFunc_floorf: 3415 case LibFunc_floorl: 3416 return Intrinsic::floor; 3417 case LibFunc_ceil: 3418 case LibFunc_ceilf: 3419 case LibFunc_ceill: 3420 return Intrinsic::ceil; 3421 case LibFunc_trunc: 3422 case LibFunc_truncf: 3423 case LibFunc_truncl: 3424 return Intrinsic::trunc; 3425 case LibFunc_rint: 3426 case LibFunc_rintf: 3427 case LibFunc_rintl: 3428 return Intrinsic::rint; 3429 case LibFunc_nearbyint: 3430 case LibFunc_nearbyintf: 3431 case LibFunc_nearbyintl: 3432 return Intrinsic::nearbyint; 3433 case LibFunc_round: 3434 case LibFunc_roundf: 3435 case LibFunc_roundl: 3436 return Intrinsic::round; 3437 case LibFunc_roundeven: 3438 case LibFunc_roundevenf: 3439 case LibFunc_roundevenl: 3440 return Intrinsic::roundeven; 3441 case LibFunc_pow: 3442 case LibFunc_powf: 3443 case LibFunc_powl: 3444 return Intrinsic::pow; 3445 case LibFunc_sqrt: 3446 case LibFunc_sqrtf: 3447 case LibFunc_sqrtl: 3448 return Intrinsic::sqrt; 3449 } 3450 3451 return Intrinsic::not_intrinsic; 3452 } 3453 3454 /// Return true if we can prove that the specified FP value is never equal to 3455 /// -0.0. 3456 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3457 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3458 /// the same as +0.0 in floating-point ops. 3459 /// 3460 /// NOTE: this function will need to be revisited when we support non-default 3461 /// rounding modes! 3462 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3463 unsigned Depth) { 3464 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3465 return !CFP->getValueAPF().isNegZero(); 3466 3467 if (Depth == MaxAnalysisRecursionDepth) 3468 return false; 3469 3470 auto *Op = dyn_cast<Operator>(V); 3471 if (!Op) 3472 return false; 3473 3474 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3475 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3476 return true; 3477 3478 // sitofp and uitofp turn into +0.0 for zero. 3479 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3480 return true; 3481 3482 if (auto *Call = dyn_cast<CallInst>(Op)) { 3483 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3484 switch (IID) { 3485 default: 3486 break; 3487 // sqrt(-0.0) = -0.0, no other negative results are possible. 3488 case Intrinsic::sqrt: 3489 case Intrinsic::canonicalize: 3490 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3491 // fabs(x) != -0.0 3492 case Intrinsic::fabs: 3493 return true; 3494 } 3495 } 3496 3497 return false; 3498 } 3499 3500 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3501 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3502 /// bit despite comparing equal. 3503 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3504 const TargetLibraryInfo *TLI, 3505 bool SignBitOnly, 3506 unsigned Depth) { 3507 // TODO: This function does not do the right thing when SignBitOnly is true 3508 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3509 // which flips the sign bits of NaNs. See 3510 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3511 3512 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3513 return !CFP->getValueAPF().isNegative() || 3514 (!SignBitOnly && CFP->getValueAPF().isZero()); 3515 } 3516 3517 // Handle vector of constants. 3518 if (auto *CV = dyn_cast<Constant>(V)) { 3519 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3520 unsigned NumElts = CVFVTy->getNumElements(); 3521 for (unsigned i = 0; i != NumElts; ++i) { 3522 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3523 if (!CFP) 3524 return false; 3525 if (CFP->getValueAPF().isNegative() && 3526 (SignBitOnly || !CFP->getValueAPF().isZero())) 3527 return false; 3528 } 3529 3530 // All non-negative ConstantFPs. 3531 return true; 3532 } 3533 } 3534 3535 if (Depth == MaxAnalysisRecursionDepth) 3536 return false; 3537 3538 const Operator *I = dyn_cast<Operator>(V); 3539 if (!I) 3540 return false; 3541 3542 switch (I->getOpcode()) { 3543 default: 3544 break; 3545 // Unsigned integers are always nonnegative. 3546 case Instruction::UIToFP: 3547 return true; 3548 case Instruction::FMul: 3549 case Instruction::FDiv: 3550 // X * X is always non-negative or a NaN. 3551 // X / X is always exactly 1.0 or a NaN. 3552 if (I->getOperand(0) == I->getOperand(1) && 3553 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3554 return true; 3555 3556 LLVM_FALLTHROUGH; 3557 case Instruction::FAdd: 3558 case Instruction::FRem: 3559 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3560 Depth + 1) && 3561 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3562 Depth + 1); 3563 case Instruction::Select: 3564 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3565 Depth + 1) && 3566 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3567 Depth + 1); 3568 case Instruction::FPExt: 3569 case Instruction::FPTrunc: 3570 // Widening/narrowing never change sign. 3571 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3572 Depth + 1); 3573 case Instruction::ExtractElement: 3574 // Look through extract element. At the moment we keep this simple and skip 3575 // tracking the specific element. But at least we might find information 3576 // valid for all elements of the vector. 3577 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3578 Depth + 1); 3579 case Instruction::Call: 3580 const auto *CI = cast<CallInst>(I); 3581 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3582 switch (IID) { 3583 default: 3584 break; 3585 case Intrinsic::maxnum: { 3586 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3587 auto isPositiveNum = [&](Value *V) { 3588 if (SignBitOnly) { 3589 // With SignBitOnly, this is tricky because the result of 3590 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3591 // a constant strictly greater than 0.0. 3592 const APFloat *C; 3593 return match(V, m_APFloat(C)) && 3594 *C > APFloat::getZero(C->getSemantics()); 3595 } 3596 3597 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3598 // maxnum can't be ordered-less-than-zero. 3599 return isKnownNeverNaN(V, TLI) && 3600 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3601 }; 3602 3603 // TODO: This could be improved. We could also check that neither operand 3604 // has its sign bit set (and at least 1 is not-NAN?). 3605 return isPositiveNum(V0) || isPositiveNum(V1); 3606 } 3607 3608 case Intrinsic::maximum: 3609 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3610 Depth + 1) || 3611 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3612 Depth + 1); 3613 case Intrinsic::minnum: 3614 case Intrinsic::minimum: 3615 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3616 Depth + 1) && 3617 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3618 Depth + 1); 3619 case Intrinsic::exp: 3620 case Intrinsic::exp2: 3621 case Intrinsic::fabs: 3622 return true; 3623 3624 case Intrinsic::sqrt: 3625 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3626 if (!SignBitOnly) 3627 return true; 3628 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3629 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3630 3631 case Intrinsic::powi: 3632 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3633 // powi(x,n) is non-negative if n is even. 3634 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3635 return true; 3636 } 3637 // TODO: This is not correct. Given that exp is an integer, here are the 3638 // ways that pow can return a negative value: 3639 // 3640 // pow(x, exp) --> negative if exp is odd and x is negative. 3641 // pow(-0, exp) --> -inf if exp is negative odd. 3642 // pow(-0, exp) --> -0 if exp is positive odd. 3643 // pow(-inf, exp) --> -0 if exp is negative odd. 3644 // pow(-inf, exp) --> -inf if exp is positive odd. 3645 // 3646 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3647 // but we must return false if x == -0. Unfortunately we do not currently 3648 // have a way of expressing this constraint. See details in 3649 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3650 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3651 Depth + 1); 3652 3653 case Intrinsic::fma: 3654 case Intrinsic::fmuladd: 3655 // x*x+y is non-negative if y is non-negative. 3656 return I->getOperand(0) == I->getOperand(1) && 3657 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3658 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3659 Depth + 1); 3660 } 3661 break; 3662 } 3663 return false; 3664 } 3665 3666 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3667 const TargetLibraryInfo *TLI) { 3668 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3669 } 3670 3671 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3672 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3673 } 3674 3675 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3676 unsigned Depth) { 3677 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3678 3679 // If we're told that infinities won't happen, assume they won't. 3680 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3681 if (FPMathOp->hasNoInfs()) 3682 return true; 3683 3684 // Handle scalar constants. 3685 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3686 return !CFP->isInfinity(); 3687 3688 if (Depth == MaxAnalysisRecursionDepth) 3689 return false; 3690 3691 if (auto *Inst = dyn_cast<Instruction>(V)) { 3692 switch (Inst->getOpcode()) { 3693 case Instruction::Select: { 3694 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3695 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3696 } 3697 case Instruction::SIToFP: 3698 case Instruction::UIToFP: { 3699 // Get width of largest magnitude integer (remove a bit if signed). 3700 // This still works for a signed minimum value because the largest FP 3701 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3702 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3703 if (Inst->getOpcode() == Instruction::SIToFP) 3704 --IntSize; 3705 3706 // If the exponent of the largest finite FP value can hold the largest 3707 // integer, the result of the cast must be finite. 3708 Type *FPTy = Inst->getType()->getScalarType(); 3709 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3710 } 3711 default: 3712 break; 3713 } 3714 } 3715 3716 // try to handle fixed width vector constants 3717 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3718 if (VFVTy && isa<Constant>(V)) { 3719 // For vectors, verify that each element is not infinity. 3720 unsigned NumElts = VFVTy->getNumElements(); 3721 for (unsigned i = 0; i != NumElts; ++i) { 3722 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3723 if (!Elt) 3724 return false; 3725 if (isa<UndefValue>(Elt)) 3726 continue; 3727 auto *CElt = dyn_cast<ConstantFP>(Elt); 3728 if (!CElt || CElt->isInfinity()) 3729 return false; 3730 } 3731 // All elements were confirmed non-infinity or undefined. 3732 return true; 3733 } 3734 3735 // was not able to prove that V never contains infinity 3736 return false; 3737 } 3738 3739 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3740 unsigned Depth) { 3741 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3742 3743 // If we're told that NaNs won't happen, assume they won't. 3744 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3745 if (FPMathOp->hasNoNaNs()) 3746 return true; 3747 3748 // Handle scalar constants. 3749 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3750 return !CFP->isNaN(); 3751 3752 if (Depth == MaxAnalysisRecursionDepth) 3753 return false; 3754 3755 if (auto *Inst = dyn_cast<Instruction>(V)) { 3756 switch (Inst->getOpcode()) { 3757 case Instruction::FAdd: 3758 case Instruction::FSub: 3759 // Adding positive and negative infinity produces NaN. 3760 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3761 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3762 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3763 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3764 3765 case Instruction::FMul: 3766 // Zero multiplied with infinity produces NaN. 3767 // FIXME: If neither side can be zero fmul never produces NaN. 3768 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3769 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3770 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3771 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3772 3773 case Instruction::FDiv: 3774 case Instruction::FRem: 3775 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3776 return false; 3777 3778 case Instruction::Select: { 3779 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3780 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3781 } 3782 case Instruction::SIToFP: 3783 case Instruction::UIToFP: 3784 return true; 3785 case Instruction::FPTrunc: 3786 case Instruction::FPExt: 3787 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3788 default: 3789 break; 3790 } 3791 } 3792 3793 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3794 switch (II->getIntrinsicID()) { 3795 case Intrinsic::canonicalize: 3796 case Intrinsic::fabs: 3797 case Intrinsic::copysign: 3798 case Intrinsic::exp: 3799 case Intrinsic::exp2: 3800 case Intrinsic::floor: 3801 case Intrinsic::ceil: 3802 case Intrinsic::trunc: 3803 case Intrinsic::rint: 3804 case Intrinsic::nearbyint: 3805 case Intrinsic::round: 3806 case Intrinsic::roundeven: 3807 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3808 case Intrinsic::sqrt: 3809 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3810 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3811 case Intrinsic::minnum: 3812 case Intrinsic::maxnum: 3813 // If either operand is not NaN, the result is not NaN. 3814 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3815 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3816 default: 3817 return false; 3818 } 3819 } 3820 3821 // Try to handle fixed width vector constants 3822 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3823 if (VFVTy && isa<Constant>(V)) { 3824 // For vectors, verify that each element is not NaN. 3825 unsigned NumElts = VFVTy->getNumElements(); 3826 for (unsigned i = 0; i != NumElts; ++i) { 3827 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3828 if (!Elt) 3829 return false; 3830 if (isa<UndefValue>(Elt)) 3831 continue; 3832 auto *CElt = dyn_cast<ConstantFP>(Elt); 3833 if (!CElt || CElt->isNaN()) 3834 return false; 3835 } 3836 // All elements were confirmed not-NaN or undefined. 3837 return true; 3838 } 3839 3840 // Was not able to prove that V never contains NaN 3841 return false; 3842 } 3843 3844 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3845 3846 // All byte-wide stores are splatable, even of arbitrary variables. 3847 if (V->getType()->isIntegerTy(8)) 3848 return V; 3849 3850 LLVMContext &Ctx = V->getContext(); 3851 3852 // Undef don't care. 3853 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3854 if (isa<UndefValue>(V)) 3855 return UndefInt8; 3856 3857 // Return Undef for zero-sized type. 3858 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3859 return UndefInt8; 3860 3861 Constant *C = dyn_cast<Constant>(V); 3862 if (!C) { 3863 // Conceptually, we could handle things like: 3864 // %a = zext i8 %X to i16 3865 // %b = shl i16 %a, 8 3866 // %c = or i16 %a, %b 3867 // but until there is an example that actually needs this, it doesn't seem 3868 // worth worrying about. 3869 return nullptr; 3870 } 3871 3872 // Handle 'null' ConstantArrayZero etc. 3873 if (C->isNullValue()) 3874 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3875 3876 // Constant floating-point values can be handled as integer values if the 3877 // corresponding integer value is "byteable". An important case is 0.0. 3878 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3879 Type *Ty = nullptr; 3880 if (CFP->getType()->isHalfTy()) 3881 Ty = Type::getInt16Ty(Ctx); 3882 else if (CFP->getType()->isFloatTy()) 3883 Ty = Type::getInt32Ty(Ctx); 3884 else if (CFP->getType()->isDoubleTy()) 3885 Ty = Type::getInt64Ty(Ctx); 3886 // Don't handle long double formats, which have strange constraints. 3887 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3888 : nullptr; 3889 } 3890 3891 // We can handle constant integers that are multiple of 8 bits. 3892 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3893 if (CI->getBitWidth() % 8 == 0) { 3894 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3895 if (!CI->getValue().isSplat(8)) 3896 return nullptr; 3897 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3898 } 3899 } 3900 3901 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3902 if (CE->getOpcode() == Instruction::IntToPtr) { 3903 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3904 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3905 return isBytewiseValue( 3906 ConstantExpr::getIntegerCast(CE->getOperand(0), 3907 Type::getIntNTy(Ctx, BitWidth), false), 3908 DL); 3909 } 3910 } 3911 } 3912 3913 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3914 if (LHS == RHS) 3915 return LHS; 3916 if (!LHS || !RHS) 3917 return nullptr; 3918 if (LHS == UndefInt8) 3919 return RHS; 3920 if (RHS == UndefInt8) 3921 return LHS; 3922 return nullptr; 3923 }; 3924 3925 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3926 Value *Val = UndefInt8; 3927 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3928 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3929 return nullptr; 3930 return Val; 3931 } 3932 3933 if (isa<ConstantAggregate>(C)) { 3934 Value *Val = UndefInt8; 3935 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3936 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3937 return nullptr; 3938 return Val; 3939 } 3940 3941 // Don't try to handle the handful of other constants. 3942 return nullptr; 3943 } 3944 3945 // This is the recursive version of BuildSubAggregate. It takes a few different 3946 // arguments. Idxs is the index within the nested struct From that we are 3947 // looking at now (which is of type IndexedType). IdxSkip is the number of 3948 // indices from Idxs that should be left out when inserting into the resulting 3949 // struct. To is the result struct built so far, new insertvalue instructions 3950 // build on that. 3951 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3952 SmallVectorImpl<unsigned> &Idxs, 3953 unsigned IdxSkip, 3954 Instruction *InsertBefore) { 3955 StructType *STy = dyn_cast<StructType>(IndexedType); 3956 if (STy) { 3957 // Save the original To argument so we can modify it 3958 Value *OrigTo = To; 3959 // General case, the type indexed by Idxs is a struct 3960 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3961 // Process each struct element recursively 3962 Idxs.push_back(i); 3963 Value *PrevTo = To; 3964 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3965 InsertBefore); 3966 Idxs.pop_back(); 3967 if (!To) { 3968 // Couldn't find any inserted value for this index? Cleanup 3969 while (PrevTo != OrigTo) { 3970 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3971 PrevTo = Del->getAggregateOperand(); 3972 Del->eraseFromParent(); 3973 } 3974 // Stop processing elements 3975 break; 3976 } 3977 } 3978 // If we successfully found a value for each of our subaggregates 3979 if (To) 3980 return To; 3981 } 3982 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3983 // the struct's elements had a value that was inserted directly. In the latter 3984 // case, perhaps we can't determine each of the subelements individually, but 3985 // we might be able to find the complete struct somewhere. 3986 3987 // Find the value that is at that particular spot 3988 Value *V = FindInsertedValue(From, Idxs); 3989 3990 if (!V) 3991 return nullptr; 3992 3993 // Insert the value in the new (sub) aggregate 3994 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3995 "tmp", InsertBefore); 3996 } 3997 3998 // This helper takes a nested struct and extracts a part of it (which is again a 3999 // struct) into a new value. For example, given the struct: 4000 // { a, { b, { c, d }, e } } 4001 // and the indices "1, 1" this returns 4002 // { c, d }. 4003 // 4004 // It does this by inserting an insertvalue for each element in the resulting 4005 // struct, as opposed to just inserting a single struct. This will only work if 4006 // each of the elements of the substruct are known (ie, inserted into From by an 4007 // insertvalue instruction somewhere). 4008 // 4009 // All inserted insertvalue instructions are inserted before InsertBefore 4010 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 4011 Instruction *InsertBefore) { 4012 assert(InsertBefore && "Must have someplace to insert!"); 4013 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 4014 idx_range); 4015 Value *To = UndefValue::get(IndexedType); 4016 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 4017 unsigned IdxSkip = Idxs.size(); 4018 4019 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 4020 } 4021 4022 /// Given an aggregate and a sequence of indices, see if the scalar value 4023 /// indexed is already around as a register, for example if it was inserted 4024 /// directly into the aggregate. 4025 /// 4026 /// If InsertBefore is not null, this function will duplicate (modified) 4027 /// insertvalues when a part of a nested struct is extracted. 4028 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 4029 Instruction *InsertBefore) { 4030 // Nothing to index? Just return V then (this is useful at the end of our 4031 // recursion). 4032 if (idx_range.empty()) 4033 return V; 4034 // We have indices, so V should have an indexable type. 4035 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 4036 "Not looking at a struct or array?"); 4037 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 4038 "Invalid indices for type?"); 4039 4040 if (Constant *C = dyn_cast<Constant>(V)) { 4041 C = C->getAggregateElement(idx_range[0]); 4042 if (!C) return nullptr; 4043 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 4044 } 4045 4046 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 4047 // Loop the indices for the insertvalue instruction in parallel with the 4048 // requested indices 4049 const unsigned *req_idx = idx_range.begin(); 4050 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 4051 i != e; ++i, ++req_idx) { 4052 if (req_idx == idx_range.end()) { 4053 // We can't handle this without inserting insertvalues 4054 if (!InsertBefore) 4055 return nullptr; 4056 4057 // The requested index identifies a part of a nested aggregate. Handle 4058 // this specially. For example, 4059 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 4060 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 4061 // %C = extractvalue {i32, { i32, i32 } } %B, 1 4062 // This can be changed into 4063 // %A = insertvalue {i32, i32 } undef, i32 10, 0 4064 // %C = insertvalue {i32, i32 } %A, i32 11, 1 4065 // which allows the unused 0,0 element from the nested struct to be 4066 // removed. 4067 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 4068 InsertBefore); 4069 } 4070 4071 // This insert value inserts something else than what we are looking for. 4072 // See if the (aggregate) value inserted into has the value we are 4073 // looking for, then. 4074 if (*req_idx != *i) 4075 return FindInsertedValue(I->getAggregateOperand(), idx_range, 4076 InsertBefore); 4077 } 4078 // If we end up here, the indices of the insertvalue match with those 4079 // requested (though possibly only partially). Now we recursively look at 4080 // the inserted value, passing any remaining indices. 4081 return FindInsertedValue(I->getInsertedValueOperand(), 4082 makeArrayRef(req_idx, idx_range.end()), 4083 InsertBefore); 4084 } 4085 4086 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 4087 // If we're extracting a value from an aggregate that was extracted from 4088 // something else, we can extract from that something else directly instead. 4089 // However, we will need to chain I's indices with the requested indices. 4090 4091 // Calculate the number of indices required 4092 unsigned size = I->getNumIndices() + idx_range.size(); 4093 // Allocate some space to put the new indices in 4094 SmallVector<unsigned, 5> Idxs; 4095 Idxs.reserve(size); 4096 // Add indices from the extract value instruction 4097 Idxs.append(I->idx_begin(), I->idx_end()); 4098 4099 // Add requested indices 4100 Idxs.append(idx_range.begin(), idx_range.end()); 4101 4102 assert(Idxs.size() == size 4103 && "Number of indices added not correct?"); 4104 4105 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 4106 } 4107 // Otherwise, we don't know (such as, extracting from a function return value 4108 // or load instruction) 4109 return nullptr; 4110 } 4111 4112 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 4113 unsigned CharSize) { 4114 // Make sure the GEP has exactly three arguments. 4115 if (GEP->getNumOperands() != 3) 4116 return false; 4117 4118 // Make sure the index-ee is a pointer to array of \p CharSize integers. 4119 // CharSize. 4120 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 4121 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 4122 return false; 4123 4124 // Check to make sure that the first operand of the GEP is an integer and 4125 // has value 0 so that we are sure we're indexing into the initializer. 4126 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 4127 if (!FirstIdx || !FirstIdx->isZero()) 4128 return false; 4129 4130 return true; 4131 } 4132 4133 bool llvm::getConstantDataArrayInfo(const Value *V, 4134 ConstantDataArraySlice &Slice, 4135 unsigned ElementSize, uint64_t Offset) { 4136 assert(V); 4137 4138 // Look through bitcast instructions and geps. 4139 V = V->stripPointerCasts(); 4140 4141 // If the value is a GEP instruction or constant expression, treat it as an 4142 // offset. 4143 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4144 // The GEP operator should be based on a pointer to string constant, and is 4145 // indexing into the string constant. 4146 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 4147 return false; 4148 4149 // If the second index isn't a ConstantInt, then this is a variable index 4150 // into the array. If this occurs, we can't say anything meaningful about 4151 // the string. 4152 uint64_t StartIdx = 0; 4153 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 4154 StartIdx = CI->getZExtValue(); 4155 else 4156 return false; 4157 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 4158 StartIdx + Offset); 4159 } 4160 4161 // The GEP instruction, constant or instruction, must reference a global 4162 // variable that is a constant and is initialized. The referenced constant 4163 // initializer is the array that we'll use for optimization. 4164 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 4165 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 4166 return false; 4167 4168 const ConstantDataArray *Array; 4169 ArrayType *ArrayTy; 4170 if (GV->getInitializer()->isNullValue()) { 4171 Type *GVTy = GV->getValueType(); 4172 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 4173 // A zeroinitializer for the array; there is no ConstantDataArray. 4174 Array = nullptr; 4175 } else { 4176 const DataLayout &DL = GV->getParent()->getDataLayout(); 4177 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 4178 uint64_t Length = SizeInBytes / (ElementSize / 8); 4179 if (Length <= Offset) 4180 return false; 4181 4182 Slice.Array = nullptr; 4183 Slice.Offset = 0; 4184 Slice.Length = Length - Offset; 4185 return true; 4186 } 4187 } else { 4188 // This must be a ConstantDataArray. 4189 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 4190 if (!Array) 4191 return false; 4192 ArrayTy = Array->getType(); 4193 } 4194 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4195 return false; 4196 4197 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4198 if (Offset > NumElts) 4199 return false; 4200 4201 Slice.Array = Array; 4202 Slice.Offset = Offset; 4203 Slice.Length = NumElts - Offset; 4204 return true; 4205 } 4206 4207 /// This function computes the length of a null-terminated C string pointed to 4208 /// by V. If successful, it returns true and returns the string in Str. 4209 /// If unsuccessful, it returns false. 4210 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4211 uint64_t Offset, bool TrimAtNul) { 4212 ConstantDataArraySlice Slice; 4213 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4214 return false; 4215 4216 if (Slice.Array == nullptr) { 4217 if (TrimAtNul) { 4218 Str = StringRef(); 4219 return true; 4220 } 4221 if (Slice.Length == 1) { 4222 Str = StringRef("", 1); 4223 return true; 4224 } 4225 // We cannot instantiate a StringRef as we do not have an appropriate string 4226 // of 0s at hand. 4227 return false; 4228 } 4229 4230 // Start out with the entire array in the StringRef. 4231 Str = Slice.Array->getAsString(); 4232 // Skip over 'offset' bytes. 4233 Str = Str.substr(Slice.Offset); 4234 4235 if (TrimAtNul) { 4236 // Trim off the \0 and anything after it. If the array is not nul 4237 // terminated, we just return the whole end of string. The client may know 4238 // some other way that the string is length-bound. 4239 Str = Str.substr(0, Str.find('\0')); 4240 } 4241 return true; 4242 } 4243 4244 // These next two are very similar to the above, but also look through PHI 4245 // nodes. 4246 // TODO: See if we can integrate these two together. 4247 4248 /// If we can compute the length of the string pointed to by 4249 /// the specified pointer, return 'len+1'. If we can't, return 0. 4250 static uint64_t GetStringLengthH(const Value *V, 4251 SmallPtrSetImpl<const PHINode*> &PHIs, 4252 unsigned CharSize) { 4253 // Look through noop bitcast instructions. 4254 V = V->stripPointerCasts(); 4255 4256 // If this is a PHI node, there are two cases: either we have already seen it 4257 // or we haven't. 4258 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4259 if (!PHIs.insert(PN).second) 4260 return ~0ULL; // already in the set. 4261 4262 // If it was new, see if all the input strings are the same length. 4263 uint64_t LenSoFar = ~0ULL; 4264 for (Value *IncValue : PN->incoming_values()) { 4265 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4266 if (Len == 0) return 0; // Unknown length -> unknown. 4267 4268 if (Len == ~0ULL) continue; 4269 4270 if (Len != LenSoFar && LenSoFar != ~0ULL) 4271 return 0; // Disagree -> unknown. 4272 LenSoFar = Len; 4273 } 4274 4275 // Success, all agree. 4276 return LenSoFar; 4277 } 4278 4279 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4280 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4281 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4282 if (Len1 == 0) return 0; 4283 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4284 if (Len2 == 0) return 0; 4285 if (Len1 == ~0ULL) return Len2; 4286 if (Len2 == ~0ULL) return Len1; 4287 if (Len1 != Len2) return 0; 4288 return Len1; 4289 } 4290 4291 // Otherwise, see if we can read the string. 4292 ConstantDataArraySlice Slice; 4293 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4294 return 0; 4295 4296 if (Slice.Array == nullptr) 4297 return 1; 4298 4299 // Search for nul characters 4300 unsigned NullIndex = 0; 4301 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4302 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4303 break; 4304 } 4305 4306 return NullIndex + 1; 4307 } 4308 4309 /// If we can compute the length of the string pointed to by 4310 /// the specified pointer, return 'len+1'. If we can't, return 0. 4311 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4312 if (!V->getType()->isPointerTy()) 4313 return 0; 4314 4315 SmallPtrSet<const PHINode*, 32> PHIs; 4316 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4317 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4318 // an empty string as a length. 4319 return Len == ~0ULL ? 1 : Len; 4320 } 4321 4322 const Value * 4323 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4324 bool MustPreserveNullness) { 4325 assert(Call && 4326 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4327 if (const Value *RV = Call->getReturnedArgOperand()) 4328 return RV; 4329 // This can be used only as a aliasing property. 4330 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4331 Call, MustPreserveNullness)) 4332 return Call->getArgOperand(0); 4333 return nullptr; 4334 } 4335 4336 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4337 const CallBase *Call, bool MustPreserveNullness) { 4338 switch (Call->getIntrinsicID()) { 4339 case Intrinsic::launder_invariant_group: 4340 case Intrinsic::strip_invariant_group: 4341 case Intrinsic::aarch64_irg: 4342 case Intrinsic::aarch64_tagp: 4343 return true; 4344 case Intrinsic::ptrmask: 4345 return !MustPreserveNullness; 4346 default: 4347 return false; 4348 } 4349 } 4350 4351 /// \p PN defines a loop-variant pointer to an object. Check if the 4352 /// previous iteration of the loop was referring to the same object as \p PN. 4353 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4354 const LoopInfo *LI) { 4355 // Find the loop-defined value. 4356 Loop *L = LI->getLoopFor(PN->getParent()); 4357 if (PN->getNumIncomingValues() != 2) 4358 return true; 4359 4360 // Find the value from previous iteration. 4361 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4362 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4363 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4364 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4365 return true; 4366 4367 // If a new pointer is loaded in the loop, the pointer references a different 4368 // object in every iteration. E.g.: 4369 // for (i) 4370 // int *p = a[i]; 4371 // ... 4372 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4373 if (!L->isLoopInvariant(Load->getPointerOperand())) 4374 return false; 4375 return true; 4376 } 4377 4378 const Value *llvm::getUnderlyingObject(const Value *V, unsigned MaxLookup) { 4379 if (!V->getType()->isPointerTy()) 4380 return V; 4381 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4382 if (auto *GEP = dyn_cast<GEPOperator>(V)) { 4383 V = GEP->getPointerOperand(); 4384 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4385 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4386 V = cast<Operator>(V)->getOperand(0); 4387 if (!V->getType()->isPointerTy()) 4388 return V; 4389 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) { 4390 if (GA->isInterposable()) 4391 return V; 4392 V = GA->getAliasee(); 4393 } else { 4394 if (auto *PHI = dyn_cast<PHINode>(V)) { 4395 // Look through single-arg phi nodes created by LCSSA. 4396 if (PHI->getNumIncomingValues() == 1) { 4397 V = PHI->getIncomingValue(0); 4398 continue; 4399 } 4400 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4401 // CaptureTracking can know about special capturing properties of some 4402 // intrinsics like launder.invariant.group, that can't be expressed with 4403 // the attributes, but have properties like returning aliasing pointer. 4404 // Because some analysis may assume that nocaptured pointer is not 4405 // returned from some special intrinsic (because function would have to 4406 // be marked with returns attribute), it is crucial to use this function 4407 // because it should be in sync with CaptureTracking. Not using it may 4408 // cause weird miscompilations where 2 aliasing pointers are assumed to 4409 // noalias. 4410 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4411 V = RP; 4412 continue; 4413 } 4414 } 4415 4416 return V; 4417 } 4418 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4419 } 4420 return V; 4421 } 4422 4423 void llvm::getUnderlyingObjects(const Value *V, 4424 SmallVectorImpl<const Value *> &Objects, 4425 LoopInfo *LI, unsigned MaxLookup) { 4426 SmallPtrSet<const Value *, 4> Visited; 4427 SmallVector<const Value *, 4> Worklist; 4428 Worklist.push_back(V); 4429 do { 4430 const Value *P = Worklist.pop_back_val(); 4431 P = getUnderlyingObject(P, MaxLookup); 4432 4433 if (!Visited.insert(P).second) 4434 continue; 4435 4436 if (auto *SI = dyn_cast<SelectInst>(P)) { 4437 Worklist.push_back(SI->getTrueValue()); 4438 Worklist.push_back(SI->getFalseValue()); 4439 continue; 4440 } 4441 4442 if (auto *PN = dyn_cast<PHINode>(P)) { 4443 // If this PHI changes the underlying object in every iteration of the 4444 // loop, don't look through it. Consider: 4445 // int **A; 4446 // for (i) { 4447 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4448 // Curr = A[i]; 4449 // *Prev, *Curr; 4450 // 4451 // Prev is tracking Curr one iteration behind so they refer to different 4452 // underlying objects. 4453 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4454 isSameUnderlyingObjectInLoop(PN, LI)) 4455 append_range(Worklist, PN->incoming_values()); 4456 continue; 4457 } 4458 4459 Objects.push_back(P); 4460 } while (!Worklist.empty()); 4461 } 4462 4463 /// This is the function that does the work of looking through basic 4464 /// ptrtoint+arithmetic+inttoptr sequences. 4465 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4466 do { 4467 if (const Operator *U = dyn_cast<Operator>(V)) { 4468 // If we find a ptrtoint, we can transfer control back to the 4469 // regular getUnderlyingObjectFromInt. 4470 if (U->getOpcode() == Instruction::PtrToInt) 4471 return U->getOperand(0); 4472 // If we find an add of a constant, a multiplied value, or a phi, it's 4473 // likely that the other operand will lead us to the base 4474 // object. We don't have to worry about the case where the 4475 // object address is somehow being computed by the multiply, 4476 // because our callers only care when the result is an 4477 // identifiable object. 4478 if (U->getOpcode() != Instruction::Add || 4479 (!isa<ConstantInt>(U->getOperand(1)) && 4480 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4481 !isa<PHINode>(U->getOperand(1)))) 4482 return V; 4483 V = U->getOperand(0); 4484 } else { 4485 return V; 4486 } 4487 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4488 } while (true); 4489 } 4490 4491 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4492 /// ptrtoint+arithmetic+inttoptr sequences. 4493 /// It returns false if unidentified object is found in getUnderlyingObjects. 4494 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4495 SmallVectorImpl<Value *> &Objects) { 4496 SmallPtrSet<const Value *, 16> Visited; 4497 SmallVector<const Value *, 4> Working(1, V); 4498 do { 4499 V = Working.pop_back_val(); 4500 4501 SmallVector<const Value *, 4> Objs; 4502 getUnderlyingObjects(V, Objs); 4503 4504 for (const Value *V : Objs) { 4505 if (!Visited.insert(V).second) 4506 continue; 4507 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4508 const Value *O = 4509 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4510 if (O->getType()->isPointerTy()) { 4511 Working.push_back(O); 4512 continue; 4513 } 4514 } 4515 // If getUnderlyingObjects fails to find an identifiable object, 4516 // getUnderlyingObjectsForCodeGen also fails for safety. 4517 if (!isIdentifiedObject(V)) { 4518 Objects.clear(); 4519 return false; 4520 } 4521 Objects.push_back(const_cast<Value *>(V)); 4522 } 4523 } while (!Working.empty()); 4524 return true; 4525 } 4526 4527 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4528 AllocaInst *Result = nullptr; 4529 SmallPtrSet<Value *, 4> Visited; 4530 SmallVector<Value *, 4> Worklist; 4531 4532 auto AddWork = [&](Value *V) { 4533 if (Visited.insert(V).second) 4534 Worklist.push_back(V); 4535 }; 4536 4537 AddWork(V); 4538 do { 4539 V = Worklist.pop_back_val(); 4540 assert(Visited.count(V)); 4541 4542 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4543 if (Result && Result != AI) 4544 return nullptr; 4545 Result = AI; 4546 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4547 AddWork(CI->getOperand(0)); 4548 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4549 for (Value *IncValue : PN->incoming_values()) 4550 AddWork(IncValue); 4551 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4552 AddWork(SI->getTrueValue()); 4553 AddWork(SI->getFalseValue()); 4554 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4555 if (OffsetZero && !GEP->hasAllZeroIndices()) 4556 return nullptr; 4557 AddWork(GEP->getPointerOperand()); 4558 } else if (CallBase *CB = dyn_cast<CallBase>(V)) { 4559 Value *Returned = CB->getReturnedArgOperand(); 4560 if (Returned) 4561 AddWork(Returned); 4562 else 4563 return nullptr; 4564 } else { 4565 return nullptr; 4566 } 4567 } while (!Worklist.empty()); 4568 4569 return Result; 4570 } 4571 4572 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4573 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4574 for (const User *U : V->users()) { 4575 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4576 if (!II) 4577 return false; 4578 4579 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4580 continue; 4581 4582 if (AllowDroppable && II->isDroppable()) 4583 continue; 4584 4585 return false; 4586 } 4587 return true; 4588 } 4589 4590 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4591 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4592 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4593 } 4594 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4595 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4596 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4597 } 4598 4599 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4600 if (!LI.isUnordered()) 4601 return true; 4602 const Function &F = *LI.getFunction(); 4603 // Speculative load may create a race that did not exist in the source. 4604 return F.hasFnAttribute(Attribute::SanitizeThread) || 4605 // Speculative load may load data from dirty regions. 4606 F.hasFnAttribute(Attribute::SanitizeAddress) || 4607 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4608 } 4609 4610 4611 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4612 const Instruction *CtxI, 4613 const DominatorTree *DT, 4614 const TargetLibraryInfo *TLI) { 4615 const Operator *Inst = dyn_cast<Operator>(V); 4616 if (!Inst) 4617 return false; 4618 4619 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4620 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4621 if (C->canTrap()) 4622 return false; 4623 4624 switch (Inst->getOpcode()) { 4625 default: 4626 return true; 4627 case Instruction::UDiv: 4628 case Instruction::URem: { 4629 // x / y is undefined if y == 0. 4630 const APInt *V; 4631 if (match(Inst->getOperand(1), m_APInt(V))) 4632 return *V != 0; 4633 return false; 4634 } 4635 case Instruction::SDiv: 4636 case Instruction::SRem: { 4637 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4638 const APInt *Numerator, *Denominator; 4639 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4640 return false; 4641 // We cannot hoist this division if the denominator is 0. 4642 if (*Denominator == 0) 4643 return false; 4644 // It's safe to hoist if the denominator is not 0 or -1. 4645 if (!Denominator->isAllOnes()) 4646 return true; 4647 // At this point we know that the denominator is -1. It is safe to hoist as 4648 // long we know that the numerator is not INT_MIN. 4649 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4650 return !Numerator->isMinSignedValue(); 4651 // The numerator *might* be MinSignedValue. 4652 return false; 4653 } 4654 case Instruction::Load: { 4655 const LoadInst *LI = cast<LoadInst>(Inst); 4656 if (mustSuppressSpeculation(*LI)) 4657 return false; 4658 const DataLayout &DL = LI->getModule()->getDataLayout(); 4659 return isDereferenceableAndAlignedPointer( 4660 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4661 DL, CtxI, DT, TLI); 4662 } 4663 case Instruction::Call: { 4664 auto *CI = cast<const CallInst>(Inst); 4665 const Function *Callee = CI->getCalledFunction(); 4666 4667 // The called function could have undefined behavior or side-effects, even 4668 // if marked readnone nounwind. 4669 return Callee && Callee->isSpeculatable(); 4670 } 4671 case Instruction::VAArg: 4672 case Instruction::Alloca: 4673 case Instruction::Invoke: 4674 case Instruction::CallBr: 4675 case Instruction::PHI: 4676 case Instruction::Store: 4677 case Instruction::Ret: 4678 case Instruction::Br: 4679 case Instruction::IndirectBr: 4680 case Instruction::Switch: 4681 case Instruction::Unreachable: 4682 case Instruction::Fence: 4683 case Instruction::AtomicRMW: 4684 case Instruction::AtomicCmpXchg: 4685 case Instruction::LandingPad: 4686 case Instruction::Resume: 4687 case Instruction::CatchSwitch: 4688 case Instruction::CatchPad: 4689 case Instruction::CatchRet: 4690 case Instruction::CleanupPad: 4691 case Instruction::CleanupRet: 4692 return false; // Misc instructions which have effects 4693 } 4694 } 4695 4696 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4697 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4698 } 4699 4700 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4701 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4702 switch (OR) { 4703 case ConstantRange::OverflowResult::MayOverflow: 4704 return OverflowResult::MayOverflow; 4705 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4706 return OverflowResult::AlwaysOverflowsLow; 4707 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4708 return OverflowResult::AlwaysOverflowsHigh; 4709 case ConstantRange::OverflowResult::NeverOverflows: 4710 return OverflowResult::NeverOverflows; 4711 } 4712 llvm_unreachable("Unknown OverflowResult"); 4713 } 4714 4715 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4716 static ConstantRange computeConstantRangeIncludingKnownBits( 4717 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4718 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4719 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4720 KnownBits Known = computeKnownBits( 4721 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4722 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4723 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4724 ConstantRange::PreferredRangeType RangeType = 4725 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4726 return CR1.intersectWith(CR2, RangeType); 4727 } 4728 4729 OverflowResult llvm::computeOverflowForUnsignedMul( 4730 const Value *LHS, const Value *RHS, const DataLayout &DL, 4731 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4732 bool UseInstrInfo) { 4733 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4734 nullptr, UseInstrInfo); 4735 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4736 nullptr, UseInstrInfo); 4737 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4738 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4739 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4740 } 4741 4742 OverflowResult 4743 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4744 const DataLayout &DL, AssumptionCache *AC, 4745 const Instruction *CxtI, 4746 const DominatorTree *DT, bool UseInstrInfo) { 4747 // Multiplying n * m significant bits yields a result of n + m significant 4748 // bits. If the total number of significant bits does not exceed the 4749 // result bit width (minus 1), there is no overflow. 4750 // This means if we have enough leading sign bits in the operands 4751 // we can guarantee that the result does not overflow. 4752 // Ref: "Hacker's Delight" by Henry Warren 4753 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4754 4755 // Note that underestimating the number of sign bits gives a more 4756 // conservative answer. 4757 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4758 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4759 4760 // First handle the easy case: if we have enough sign bits there's 4761 // definitely no overflow. 4762 if (SignBits > BitWidth + 1) 4763 return OverflowResult::NeverOverflows; 4764 4765 // There are two ambiguous cases where there can be no overflow: 4766 // SignBits == BitWidth + 1 and 4767 // SignBits == BitWidth 4768 // The second case is difficult to check, therefore we only handle the 4769 // first case. 4770 if (SignBits == BitWidth + 1) { 4771 // It overflows only when both arguments are negative and the true 4772 // product is exactly the minimum negative number. 4773 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4774 // For simplicity we just check if at least one side is not negative. 4775 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4776 nullptr, UseInstrInfo); 4777 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4778 nullptr, UseInstrInfo); 4779 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4780 return OverflowResult::NeverOverflows; 4781 } 4782 return OverflowResult::MayOverflow; 4783 } 4784 4785 OverflowResult llvm::computeOverflowForUnsignedAdd( 4786 const Value *LHS, const Value *RHS, const DataLayout &DL, 4787 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4788 bool UseInstrInfo) { 4789 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4790 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4791 nullptr, UseInstrInfo); 4792 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4793 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4794 nullptr, UseInstrInfo); 4795 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4796 } 4797 4798 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4799 const Value *RHS, 4800 const AddOperator *Add, 4801 const DataLayout &DL, 4802 AssumptionCache *AC, 4803 const Instruction *CxtI, 4804 const DominatorTree *DT) { 4805 if (Add && Add->hasNoSignedWrap()) { 4806 return OverflowResult::NeverOverflows; 4807 } 4808 4809 // If LHS and RHS each have at least two sign bits, the addition will look 4810 // like 4811 // 4812 // XX..... + 4813 // YY..... 4814 // 4815 // If the carry into the most significant position is 0, X and Y can't both 4816 // be 1 and therefore the carry out of the addition is also 0. 4817 // 4818 // If the carry into the most significant position is 1, X and Y can't both 4819 // be 0 and therefore the carry out of the addition is also 1. 4820 // 4821 // Since the carry into the most significant position is always equal to 4822 // the carry out of the addition, there is no signed overflow. 4823 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4824 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4825 return OverflowResult::NeverOverflows; 4826 4827 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4828 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4829 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4830 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4831 OverflowResult OR = 4832 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4833 if (OR != OverflowResult::MayOverflow) 4834 return OR; 4835 4836 // The remaining code needs Add to be available. Early returns if not so. 4837 if (!Add) 4838 return OverflowResult::MayOverflow; 4839 4840 // If the sign of Add is the same as at least one of the operands, this add 4841 // CANNOT overflow. If this can be determined from the known bits of the 4842 // operands the above signedAddMayOverflow() check will have already done so. 4843 // The only other way to improve on the known bits is from an assumption, so 4844 // call computeKnownBitsFromAssume() directly. 4845 bool LHSOrRHSKnownNonNegative = 4846 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4847 bool LHSOrRHSKnownNegative = 4848 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4849 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4850 KnownBits AddKnown(LHSRange.getBitWidth()); 4851 computeKnownBitsFromAssume( 4852 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4853 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4854 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4855 return OverflowResult::NeverOverflows; 4856 } 4857 4858 return OverflowResult::MayOverflow; 4859 } 4860 4861 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4862 const Value *RHS, 4863 const DataLayout &DL, 4864 AssumptionCache *AC, 4865 const Instruction *CxtI, 4866 const DominatorTree *DT) { 4867 // Checking for conditions implied by dominating conditions may be expensive. 4868 // Limit it to usub_with_overflow calls for now. 4869 if (match(CxtI, 4870 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4871 if (auto C = 4872 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4873 if (*C) 4874 return OverflowResult::NeverOverflows; 4875 return OverflowResult::AlwaysOverflowsLow; 4876 } 4877 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4878 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4879 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4880 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4881 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4882 } 4883 4884 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4885 const Value *RHS, 4886 const DataLayout &DL, 4887 AssumptionCache *AC, 4888 const Instruction *CxtI, 4889 const DominatorTree *DT) { 4890 // If LHS and RHS each have at least two sign bits, the subtraction 4891 // cannot overflow. 4892 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4893 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4894 return OverflowResult::NeverOverflows; 4895 4896 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4897 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4898 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4899 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4900 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4901 } 4902 4903 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4904 const DominatorTree &DT) { 4905 SmallVector<const BranchInst *, 2> GuardingBranches; 4906 SmallVector<const ExtractValueInst *, 2> Results; 4907 4908 for (const User *U : WO->users()) { 4909 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4910 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4911 4912 if (EVI->getIndices()[0] == 0) 4913 Results.push_back(EVI); 4914 else { 4915 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4916 4917 for (const auto *U : EVI->users()) 4918 if (const auto *B = dyn_cast<BranchInst>(U)) { 4919 assert(B->isConditional() && "How else is it using an i1?"); 4920 GuardingBranches.push_back(B); 4921 } 4922 } 4923 } else { 4924 // We are using the aggregate directly in a way we don't want to analyze 4925 // here (storing it to a global, say). 4926 return false; 4927 } 4928 } 4929 4930 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4931 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4932 if (!NoWrapEdge.isSingleEdge()) 4933 return false; 4934 4935 // Check if all users of the add are provably no-wrap. 4936 for (const auto *Result : Results) { 4937 // If the extractvalue itself is not executed on overflow, the we don't 4938 // need to check each use separately, since domination is transitive. 4939 if (DT.dominates(NoWrapEdge, Result->getParent())) 4940 continue; 4941 4942 for (auto &RU : Result->uses()) 4943 if (!DT.dominates(NoWrapEdge, RU)) 4944 return false; 4945 } 4946 4947 return true; 4948 }; 4949 4950 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4951 } 4952 4953 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly, 4954 bool ConsiderFlags) { 4955 if (ConsiderFlags) { 4956 // See whether I has flags that may create poison 4957 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4958 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4959 return true; 4960 } 4961 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4962 if (ExactOp->isExact()) 4963 return true; 4964 if (const auto *GEP = dyn_cast<GEPOperator>(Op)) 4965 if (GEP->isInBounds()) 4966 return true; 4967 } 4968 4969 // TODO: this should really be under the ConsiderFlags block, but currently 4970 // these are not dropped by dropPoisonGeneratingFlags 4971 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4972 auto FMF = FP->getFastMathFlags(); 4973 if (FMF.noNaNs() || FMF.noInfs()) 4974 return true; 4975 } 4976 4977 unsigned Opcode = Op->getOpcode(); 4978 4979 // Check whether opcode is a poison/undef-generating operation 4980 switch (Opcode) { 4981 case Instruction::Shl: 4982 case Instruction::AShr: 4983 case Instruction::LShr: { 4984 // Shifts return poison if shiftwidth is larger than the bitwidth. 4985 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4986 SmallVector<Constant *, 4> ShiftAmounts; 4987 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4988 unsigned NumElts = FVTy->getNumElements(); 4989 for (unsigned i = 0; i < NumElts; ++i) 4990 ShiftAmounts.push_back(C->getAggregateElement(i)); 4991 } else if (isa<ScalableVectorType>(C->getType())) 4992 return true; // Can't tell, just return true to be safe 4993 else 4994 ShiftAmounts.push_back(C); 4995 4996 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4997 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4998 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4999 }); 5000 return !Safe; 5001 } 5002 return true; 5003 } 5004 case Instruction::FPToSI: 5005 case Instruction::FPToUI: 5006 // fptosi/ui yields poison if the resulting value does not fit in the 5007 // destination type. 5008 return true; 5009 case Instruction::Call: 5010 if (auto *II = dyn_cast<IntrinsicInst>(Op)) { 5011 switch (II->getIntrinsicID()) { 5012 // TODO: Add more intrinsics. 5013 case Intrinsic::ctpop: 5014 case Intrinsic::sadd_with_overflow: 5015 case Intrinsic::ssub_with_overflow: 5016 case Intrinsic::smul_with_overflow: 5017 case Intrinsic::uadd_with_overflow: 5018 case Intrinsic::usub_with_overflow: 5019 case Intrinsic::umul_with_overflow: 5020 return false; 5021 } 5022 } 5023 LLVM_FALLTHROUGH; 5024 case Instruction::CallBr: 5025 case Instruction::Invoke: { 5026 const auto *CB = cast<CallBase>(Op); 5027 return !CB->hasRetAttr(Attribute::NoUndef); 5028 } 5029 case Instruction::InsertElement: 5030 case Instruction::ExtractElement: { 5031 // If index exceeds the length of the vector, it returns poison 5032 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 5033 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 5034 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 5035 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 5036 return true; 5037 return false; 5038 } 5039 case Instruction::ShuffleVector: { 5040 // shufflevector may return undef. 5041 if (PoisonOnly) 5042 return false; 5043 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 5044 ? cast<ConstantExpr>(Op)->getShuffleMask() 5045 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 5046 return is_contained(Mask, UndefMaskElem); 5047 } 5048 case Instruction::FNeg: 5049 case Instruction::PHI: 5050 case Instruction::Select: 5051 case Instruction::URem: 5052 case Instruction::SRem: 5053 case Instruction::ExtractValue: 5054 case Instruction::InsertValue: 5055 case Instruction::Freeze: 5056 case Instruction::ICmp: 5057 case Instruction::FCmp: 5058 return false; 5059 case Instruction::GetElementPtr: 5060 // inbounds is handled above 5061 // TODO: what about inrange on constexpr? 5062 return false; 5063 default: { 5064 const auto *CE = dyn_cast<ConstantExpr>(Op); 5065 if (isa<CastInst>(Op) || (CE && CE->isCast())) 5066 return false; 5067 else if (Instruction::isBinaryOp(Opcode)) 5068 return false; 5069 // Be conservative and return true. 5070 return true; 5071 } 5072 } 5073 } 5074 5075 bool llvm::canCreateUndefOrPoison(const Operator *Op, bool ConsiderFlags) { 5076 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false, ConsiderFlags); 5077 } 5078 5079 bool llvm::canCreatePoison(const Operator *Op, bool ConsiderFlags) { 5080 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true, ConsiderFlags); 5081 } 5082 5083 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 5084 const Value *V, unsigned Depth) { 5085 if (ValAssumedPoison == V) 5086 return true; 5087 5088 const unsigned MaxDepth = 2; 5089 if (Depth >= MaxDepth) 5090 return false; 5091 5092 if (const auto *I = dyn_cast<Instruction>(V)) { 5093 if (propagatesPoison(cast<Operator>(I))) 5094 return any_of(I->operands(), [=](const Value *Op) { 5095 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 5096 }); 5097 5098 // 'select ValAssumedPoison, _, _' is poison. 5099 if (const auto *SI = dyn_cast<SelectInst>(I)) 5100 return directlyImpliesPoison(ValAssumedPoison, SI->getCondition(), 5101 Depth + 1); 5102 // V = extractvalue V0, idx 5103 // V2 = extractvalue V0, idx2 5104 // V0's elements are all poison or not. (e.g., add_with_overflow) 5105 const WithOverflowInst *II; 5106 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 5107 (match(ValAssumedPoison, m_ExtractValue(m_Specific(II))) || 5108 llvm::is_contained(II->args(), ValAssumedPoison))) 5109 return true; 5110 } 5111 return false; 5112 } 5113 5114 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 5115 unsigned Depth) { 5116 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 5117 return true; 5118 5119 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 5120 return true; 5121 5122 const unsigned MaxDepth = 2; 5123 if (Depth >= MaxDepth) 5124 return false; 5125 5126 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 5127 if (I && !canCreatePoison(cast<Operator>(I))) { 5128 return all_of(I->operands(), [=](const Value *Op) { 5129 return impliesPoison(Op, V, Depth + 1); 5130 }); 5131 } 5132 return false; 5133 } 5134 5135 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 5136 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 5137 } 5138 5139 static bool programUndefinedIfUndefOrPoison(const Value *V, 5140 bool PoisonOnly); 5141 5142 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 5143 AssumptionCache *AC, 5144 const Instruction *CtxI, 5145 const DominatorTree *DT, 5146 unsigned Depth, bool PoisonOnly) { 5147 if (Depth >= MaxAnalysisRecursionDepth) 5148 return false; 5149 5150 if (isa<MetadataAsValue>(V)) 5151 return false; 5152 5153 if (const auto *A = dyn_cast<Argument>(V)) { 5154 if (A->hasAttribute(Attribute::NoUndef)) 5155 return true; 5156 } 5157 5158 if (auto *C = dyn_cast<Constant>(V)) { 5159 if (isa<UndefValue>(C)) 5160 return PoisonOnly && !isa<PoisonValue>(C); 5161 5162 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 5163 isa<ConstantPointerNull>(C) || isa<Function>(C)) 5164 return true; 5165 5166 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 5167 return (PoisonOnly ? !C->containsPoisonElement() 5168 : !C->containsUndefOrPoisonElement()) && 5169 !C->containsConstantExpression(); 5170 } 5171 5172 // Strip cast operations from a pointer value. 5173 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 5174 // inbounds with zero offset. To guarantee that the result isn't poison, the 5175 // stripped pointer is checked as it has to be pointing into an allocated 5176 // object or be null `null` to ensure `inbounds` getelement pointers with a 5177 // zero offset could not produce poison. 5178 // It can strip off addrspacecast that do not change bit representation as 5179 // well. We believe that such addrspacecast is equivalent to no-op. 5180 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 5181 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 5182 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 5183 return true; 5184 5185 auto OpCheck = [&](const Value *V) { 5186 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 5187 PoisonOnly); 5188 }; 5189 5190 if (auto *Opr = dyn_cast<Operator>(V)) { 5191 // If the value is a freeze instruction, then it can never 5192 // be undef or poison. 5193 if (isa<FreezeInst>(V)) 5194 return true; 5195 5196 if (const auto *CB = dyn_cast<CallBase>(V)) { 5197 if (CB->hasRetAttr(Attribute::NoUndef)) 5198 return true; 5199 } 5200 5201 if (const auto *PN = dyn_cast<PHINode>(V)) { 5202 unsigned Num = PN->getNumIncomingValues(); 5203 bool IsWellDefined = true; 5204 for (unsigned i = 0; i < Num; ++i) { 5205 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 5206 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 5207 DT, Depth + 1, PoisonOnly)) { 5208 IsWellDefined = false; 5209 break; 5210 } 5211 } 5212 if (IsWellDefined) 5213 return true; 5214 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 5215 return true; 5216 } 5217 5218 if (auto *I = dyn_cast<LoadInst>(V)) 5219 if (I->getMetadata(LLVMContext::MD_noundef)) 5220 return true; 5221 5222 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 5223 return true; 5224 5225 // CxtI may be null or a cloned instruction. 5226 if (!CtxI || !CtxI->getParent() || !DT) 5227 return false; 5228 5229 auto *DNode = DT->getNode(CtxI->getParent()); 5230 if (!DNode) 5231 // Unreachable block 5232 return false; 5233 5234 // If V is used as a branch condition before reaching CtxI, V cannot be 5235 // undef or poison. 5236 // br V, BB1, BB2 5237 // BB1: 5238 // CtxI ; V cannot be undef or poison here 5239 auto *Dominator = DNode->getIDom(); 5240 while (Dominator) { 5241 auto *TI = Dominator->getBlock()->getTerminator(); 5242 5243 Value *Cond = nullptr; 5244 if (auto BI = dyn_cast<BranchInst>(TI)) { 5245 if (BI->isConditional()) 5246 Cond = BI->getCondition(); 5247 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5248 Cond = SI->getCondition(); 5249 } 5250 5251 if (Cond) { 5252 if (Cond == V) 5253 return true; 5254 else if (PoisonOnly && isa<Operator>(Cond)) { 5255 // For poison, we can analyze further 5256 auto *Opr = cast<Operator>(Cond); 5257 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5258 return true; 5259 } 5260 } 5261 5262 Dominator = Dominator->getIDom(); 5263 } 5264 5265 if (getKnowledgeValidInContext(V, {Attribute::NoUndef}, CtxI, DT, AC)) 5266 return true; 5267 5268 return false; 5269 } 5270 5271 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5272 const Instruction *CtxI, 5273 const DominatorTree *DT, 5274 unsigned Depth) { 5275 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5276 } 5277 5278 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5279 const Instruction *CtxI, 5280 const DominatorTree *DT, unsigned Depth) { 5281 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5282 } 5283 5284 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5285 const DataLayout &DL, 5286 AssumptionCache *AC, 5287 const Instruction *CxtI, 5288 const DominatorTree *DT) { 5289 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5290 Add, DL, AC, CxtI, DT); 5291 } 5292 5293 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5294 const Value *RHS, 5295 const DataLayout &DL, 5296 AssumptionCache *AC, 5297 const Instruction *CxtI, 5298 const DominatorTree *DT) { 5299 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5300 } 5301 5302 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5303 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5304 // of time because it's possible for another thread to interfere with it for an 5305 // arbitrary length of time, but programs aren't allowed to rely on that. 5306 5307 // If there is no successor, then execution can't transfer to it. 5308 if (isa<ReturnInst>(I)) 5309 return false; 5310 if (isa<UnreachableInst>(I)) 5311 return false; 5312 5313 // Note: Do not add new checks here; instead, change Instruction::mayThrow or 5314 // Instruction::willReturn. 5315 // 5316 // FIXME: Move this check into Instruction::willReturn. 5317 if (isa<CatchPadInst>(I)) { 5318 switch (classifyEHPersonality(I->getFunction()->getPersonalityFn())) { 5319 default: 5320 // A catchpad may invoke exception object constructors and such, which 5321 // in some languages can be arbitrary code, so be conservative by default. 5322 return false; 5323 case EHPersonality::CoreCLR: 5324 // For CoreCLR, it just involves a type test. 5325 return true; 5326 } 5327 } 5328 5329 // An instruction that returns without throwing must transfer control flow 5330 // to a successor. 5331 return !I->mayThrow() && I->willReturn(); 5332 } 5333 5334 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5335 // TODO: This is slightly conservative for invoke instruction since exiting 5336 // via an exception *is* normal control for them. 5337 for (const Instruction &I : *BB) 5338 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5339 return false; 5340 return true; 5341 } 5342 5343 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5344 BasicBlock::const_iterator Begin, BasicBlock::const_iterator End, 5345 unsigned ScanLimit) { 5346 return isGuaranteedToTransferExecutionToSuccessor(make_range(Begin, End), 5347 ScanLimit); 5348 } 5349 5350 bool llvm::isGuaranteedToTransferExecutionToSuccessor( 5351 iterator_range<BasicBlock::const_iterator> Range, unsigned ScanLimit) { 5352 assert(ScanLimit && "scan limit must be non-zero"); 5353 for (const Instruction &I : Range) { 5354 if (isa<DbgInfoIntrinsic>(I)) 5355 continue; 5356 if (--ScanLimit == 0) 5357 return false; 5358 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5359 return false; 5360 } 5361 return true; 5362 } 5363 5364 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5365 const Loop *L) { 5366 // The loop header is guaranteed to be executed for every iteration. 5367 // 5368 // FIXME: Relax this constraint to cover all basic blocks that are 5369 // guaranteed to be executed at every iteration. 5370 if (I->getParent() != L->getHeader()) return false; 5371 5372 for (const Instruction &LI : *L->getHeader()) { 5373 if (&LI == I) return true; 5374 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5375 } 5376 llvm_unreachable("Instruction not contained in its own parent basic block."); 5377 } 5378 5379 bool llvm::propagatesPoison(const Operator *I) { 5380 switch (I->getOpcode()) { 5381 case Instruction::Freeze: 5382 case Instruction::Select: 5383 case Instruction::PHI: 5384 case Instruction::Invoke: 5385 return false; 5386 case Instruction::Call: 5387 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 5388 switch (II->getIntrinsicID()) { 5389 // TODO: Add more intrinsics. 5390 case Intrinsic::sadd_with_overflow: 5391 case Intrinsic::ssub_with_overflow: 5392 case Intrinsic::smul_with_overflow: 5393 case Intrinsic::uadd_with_overflow: 5394 case Intrinsic::usub_with_overflow: 5395 case Intrinsic::umul_with_overflow: 5396 // If an input is a vector containing a poison element, the 5397 // two output vectors (calculated results, overflow bits)' 5398 // corresponding lanes are poison. 5399 return true; 5400 case Intrinsic::ctpop: 5401 return true; 5402 } 5403 } 5404 return false; 5405 case Instruction::ICmp: 5406 case Instruction::FCmp: 5407 case Instruction::GetElementPtr: 5408 return true; 5409 default: 5410 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5411 return true; 5412 5413 // Be conservative and return false. 5414 return false; 5415 } 5416 } 5417 5418 void llvm::getGuaranteedWellDefinedOps( 5419 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5420 switch (I->getOpcode()) { 5421 case Instruction::Store: 5422 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5423 break; 5424 5425 case Instruction::Load: 5426 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5427 break; 5428 5429 // Since dereferenceable attribute imply noundef, atomic operations 5430 // also implicitly have noundef pointers too 5431 case Instruction::AtomicCmpXchg: 5432 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5433 break; 5434 5435 case Instruction::AtomicRMW: 5436 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5437 break; 5438 5439 case Instruction::Call: 5440 case Instruction::Invoke: { 5441 const CallBase *CB = cast<CallBase>(I); 5442 if (CB->isIndirectCall()) 5443 Operands.insert(CB->getCalledOperand()); 5444 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5445 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5446 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5447 Operands.insert(CB->getArgOperand(i)); 5448 } 5449 break; 5450 } 5451 case Instruction::Ret: 5452 if (I->getFunction()->hasRetAttribute(Attribute::NoUndef)) 5453 Operands.insert(I->getOperand(0)); 5454 break; 5455 default: 5456 break; 5457 } 5458 } 5459 5460 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5461 SmallPtrSetImpl<const Value *> &Operands) { 5462 getGuaranteedWellDefinedOps(I, Operands); 5463 switch (I->getOpcode()) { 5464 // Divisors of these operations are allowed to be partially undef. 5465 case Instruction::UDiv: 5466 case Instruction::SDiv: 5467 case Instruction::URem: 5468 case Instruction::SRem: 5469 Operands.insert(I->getOperand(1)); 5470 break; 5471 5472 default: 5473 break; 5474 } 5475 } 5476 5477 bool llvm::mustTriggerUB(const Instruction *I, 5478 const SmallSet<const Value *, 16>& KnownPoison) { 5479 SmallPtrSet<const Value *, 4> NonPoisonOps; 5480 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5481 5482 for (const auto *V : NonPoisonOps) 5483 if (KnownPoison.count(V)) 5484 return true; 5485 5486 return false; 5487 } 5488 5489 static bool programUndefinedIfUndefOrPoison(const Value *V, 5490 bool PoisonOnly) { 5491 // We currently only look for uses of values within the same basic 5492 // block, as that makes it easier to guarantee that the uses will be 5493 // executed given that Inst is executed. 5494 // 5495 // FIXME: Expand this to consider uses beyond the same basic block. To do 5496 // this, look out for the distinction between post-dominance and strong 5497 // post-dominance. 5498 const BasicBlock *BB = nullptr; 5499 BasicBlock::const_iterator Begin; 5500 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5501 BB = Inst->getParent(); 5502 Begin = Inst->getIterator(); 5503 Begin++; 5504 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5505 BB = &Arg->getParent()->getEntryBlock(); 5506 Begin = BB->begin(); 5507 } else { 5508 return false; 5509 } 5510 5511 // Limit number of instructions we look at, to avoid scanning through large 5512 // blocks. The current limit is chosen arbitrarily. 5513 unsigned ScanLimit = 32; 5514 BasicBlock::const_iterator End = BB->end(); 5515 5516 if (!PoisonOnly) { 5517 // Since undef does not propagate eagerly, be conservative & just check 5518 // whether a value is directly passed to an instruction that must take 5519 // well-defined operands. 5520 5521 for (auto &I : make_range(Begin, End)) { 5522 if (isa<DbgInfoIntrinsic>(I)) 5523 continue; 5524 if (--ScanLimit == 0) 5525 break; 5526 5527 SmallPtrSet<const Value *, 4> WellDefinedOps; 5528 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5529 if (WellDefinedOps.contains(V)) 5530 return true; 5531 5532 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5533 break; 5534 } 5535 return false; 5536 } 5537 5538 // Set of instructions that we have proved will yield poison if Inst 5539 // does. 5540 SmallSet<const Value *, 16> YieldsPoison; 5541 SmallSet<const BasicBlock *, 4> Visited; 5542 5543 YieldsPoison.insert(V); 5544 auto Propagate = [&](const User *User) { 5545 if (propagatesPoison(cast<Operator>(User))) 5546 YieldsPoison.insert(User); 5547 }; 5548 for_each(V->users(), Propagate); 5549 Visited.insert(BB); 5550 5551 while (true) { 5552 for (auto &I : make_range(Begin, End)) { 5553 if (isa<DbgInfoIntrinsic>(I)) 5554 continue; 5555 if (--ScanLimit == 0) 5556 return false; 5557 if (mustTriggerUB(&I, YieldsPoison)) 5558 return true; 5559 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5560 return false; 5561 5562 // Mark poison that propagates from I through uses of I. 5563 if (YieldsPoison.count(&I)) 5564 for_each(I.users(), Propagate); 5565 } 5566 5567 BB = BB->getSingleSuccessor(); 5568 if (!BB || !Visited.insert(BB).second) 5569 break; 5570 5571 Begin = BB->getFirstNonPHI()->getIterator(); 5572 End = BB->end(); 5573 } 5574 return false; 5575 } 5576 5577 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5578 return ::programUndefinedIfUndefOrPoison(Inst, false); 5579 } 5580 5581 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5582 return ::programUndefinedIfUndefOrPoison(Inst, true); 5583 } 5584 5585 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5586 if (FMF.noNaNs()) 5587 return true; 5588 5589 if (auto *C = dyn_cast<ConstantFP>(V)) 5590 return !C->isNaN(); 5591 5592 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5593 if (!C->getElementType()->isFloatingPointTy()) 5594 return false; 5595 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5596 if (C->getElementAsAPFloat(I).isNaN()) 5597 return false; 5598 } 5599 return true; 5600 } 5601 5602 if (isa<ConstantAggregateZero>(V)) 5603 return true; 5604 5605 return false; 5606 } 5607 5608 static bool isKnownNonZero(const Value *V) { 5609 if (auto *C = dyn_cast<ConstantFP>(V)) 5610 return !C->isZero(); 5611 5612 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5613 if (!C->getElementType()->isFloatingPointTy()) 5614 return false; 5615 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5616 if (C->getElementAsAPFloat(I).isZero()) 5617 return false; 5618 } 5619 return true; 5620 } 5621 5622 return false; 5623 } 5624 5625 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5626 /// Given non-min/max outer cmp/select from the clamp pattern this 5627 /// function recognizes if it can be substitued by a "canonical" min/max 5628 /// pattern. 5629 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5630 Value *CmpLHS, Value *CmpRHS, 5631 Value *TrueVal, Value *FalseVal, 5632 Value *&LHS, Value *&RHS) { 5633 // Try to match 5634 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5635 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5636 // and return description of the outer Max/Min. 5637 5638 // First, check if select has inverse order: 5639 if (CmpRHS == FalseVal) { 5640 std::swap(TrueVal, FalseVal); 5641 Pred = CmpInst::getInversePredicate(Pred); 5642 } 5643 5644 // Assume success now. If there's no match, callers should not use these anyway. 5645 LHS = TrueVal; 5646 RHS = FalseVal; 5647 5648 const APFloat *FC1; 5649 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5650 return {SPF_UNKNOWN, SPNB_NA, false}; 5651 5652 const APFloat *FC2; 5653 switch (Pred) { 5654 case CmpInst::FCMP_OLT: 5655 case CmpInst::FCMP_OLE: 5656 case CmpInst::FCMP_ULT: 5657 case CmpInst::FCMP_ULE: 5658 if (match(FalseVal, 5659 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5660 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5661 *FC1 < *FC2) 5662 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5663 break; 5664 case CmpInst::FCMP_OGT: 5665 case CmpInst::FCMP_OGE: 5666 case CmpInst::FCMP_UGT: 5667 case CmpInst::FCMP_UGE: 5668 if (match(FalseVal, 5669 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5670 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5671 *FC1 > *FC2) 5672 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5673 break; 5674 default: 5675 break; 5676 } 5677 5678 return {SPF_UNKNOWN, SPNB_NA, false}; 5679 } 5680 5681 /// Recognize variations of: 5682 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5683 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5684 Value *CmpLHS, Value *CmpRHS, 5685 Value *TrueVal, Value *FalseVal) { 5686 // Swap the select operands and predicate to match the patterns below. 5687 if (CmpRHS != TrueVal) { 5688 Pred = ICmpInst::getSwappedPredicate(Pred); 5689 std::swap(TrueVal, FalseVal); 5690 } 5691 const APInt *C1; 5692 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5693 const APInt *C2; 5694 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5695 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5696 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5697 return {SPF_SMAX, SPNB_NA, false}; 5698 5699 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5700 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5701 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5702 return {SPF_SMIN, SPNB_NA, false}; 5703 5704 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5705 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5706 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5707 return {SPF_UMAX, SPNB_NA, false}; 5708 5709 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5710 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5711 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5712 return {SPF_UMIN, SPNB_NA, false}; 5713 } 5714 return {SPF_UNKNOWN, SPNB_NA, false}; 5715 } 5716 5717 /// Recognize variations of: 5718 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5719 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5720 Value *CmpLHS, Value *CmpRHS, 5721 Value *TVal, Value *FVal, 5722 unsigned Depth) { 5723 // TODO: Allow FP min/max with nnan/nsz. 5724 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5725 5726 Value *A = nullptr, *B = nullptr; 5727 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5728 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5729 return {SPF_UNKNOWN, SPNB_NA, false}; 5730 5731 Value *C = nullptr, *D = nullptr; 5732 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5733 if (L.Flavor != R.Flavor) 5734 return {SPF_UNKNOWN, SPNB_NA, false}; 5735 5736 // We have something like: x Pred y ? min(a, b) : min(c, d). 5737 // Try to match the compare to the min/max operations of the select operands. 5738 // First, make sure we have the right compare predicate. 5739 switch (L.Flavor) { 5740 case SPF_SMIN: 5741 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5742 Pred = ICmpInst::getSwappedPredicate(Pred); 5743 std::swap(CmpLHS, CmpRHS); 5744 } 5745 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5746 break; 5747 return {SPF_UNKNOWN, SPNB_NA, false}; 5748 case SPF_SMAX: 5749 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5750 Pred = ICmpInst::getSwappedPredicate(Pred); 5751 std::swap(CmpLHS, CmpRHS); 5752 } 5753 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5754 break; 5755 return {SPF_UNKNOWN, SPNB_NA, false}; 5756 case SPF_UMIN: 5757 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5758 Pred = ICmpInst::getSwappedPredicate(Pred); 5759 std::swap(CmpLHS, CmpRHS); 5760 } 5761 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5762 break; 5763 return {SPF_UNKNOWN, SPNB_NA, false}; 5764 case SPF_UMAX: 5765 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5766 Pred = ICmpInst::getSwappedPredicate(Pred); 5767 std::swap(CmpLHS, CmpRHS); 5768 } 5769 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5770 break; 5771 return {SPF_UNKNOWN, SPNB_NA, false}; 5772 default: 5773 return {SPF_UNKNOWN, SPNB_NA, false}; 5774 } 5775 5776 // If there is a common operand in the already matched min/max and the other 5777 // min/max operands match the compare operands (either directly or inverted), 5778 // then this is min/max of the same flavor. 5779 5780 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5781 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5782 if (D == B) { 5783 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5784 match(A, m_Not(m_Specific(CmpRHS))))) 5785 return {L.Flavor, SPNB_NA, false}; 5786 } 5787 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5788 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5789 if (C == B) { 5790 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5791 match(A, m_Not(m_Specific(CmpRHS))))) 5792 return {L.Flavor, SPNB_NA, false}; 5793 } 5794 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5795 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5796 if (D == A) { 5797 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5798 match(B, m_Not(m_Specific(CmpRHS))))) 5799 return {L.Flavor, SPNB_NA, false}; 5800 } 5801 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5802 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5803 if (C == A) { 5804 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5805 match(B, m_Not(m_Specific(CmpRHS))))) 5806 return {L.Flavor, SPNB_NA, false}; 5807 } 5808 5809 return {SPF_UNKNOWN, SPNB_NA, false}; 5810 } 5811 5812 /// If the input value is the result of a 'not' op, constant integer, or vector 5813 /// splat of a constant integer, return the bitwise-not source value. 5814 /// TODO: This could be extended to handle non-splat vector integer constants. 5815 static Value *getNotValue(Value *V) { 5816 Value *NotV; 5817 if (match(V, m_Not(m_Value(NotV)))) 5818 return NotV; 5819 5820 const APInt *C; 5821 if (match(V, m_APInt(C))) 5822 return ConstantInt::get(V->getType(), ~(*C)); 5823 5824 return nullptr; 5825 } 5826 5827 /// Match non-obvious integer minimum and maximum sequences. 5828 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5829 Value *CmpLHS, Value *CmpRHS, 5830 Value *TrueVal, Value *FalseVal, 5831 Value *&LHS, Value *&RHS, 5832 unsigned Depth) { 5833 // Assume success. If there's no match, callers should not use these anyway. 5834 LHS = TrueVal; 5835 RHS = FalseVal; 5836 5837 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5838 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5839 return SPR; 5840 5841 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5842 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5843 return SPR; 5844 5845 // Look through 'not' ops to find disguised min/max. 5846 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5847 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5848 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5849 switch (Pred) { 5850 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5851 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5852 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5853 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5854 default: break; 5855 } 5856 } 5857 5858 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5859 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5860 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5861 switch (Pred) { 5862 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5863 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5864 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5865 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5866 default: break; 5867 } 5868 } 5869 5870 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5871 return {SPF_UNKNOWN, SPNB_NA, false}; 5872 5873 // Z = X -nsw Y 5874 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5875 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5876 if (match(TrueVal, m_Zero()) && 5877 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5878 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5879 5880 // Z = X -nsw Y 5881 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5882 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5883 if (match(FalseVal, m_Zero()) && 5884 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5885 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5886 5887 const APInt *C1; 5888 if (!match(CmpRHS, m_APInt(C1))) 5889 return {SPF_UNKNOWN, SPNB_NA, false}; 5890 5891 // An unsigned min/max can be written with a signed compare. 5892 const APInt *C2; 5893 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5894 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5895 // Is the sign bit set? 5896 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5897 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5898 if (Pred == CmpInst::ICMP_SLT && C1->isZero() && C2->isMaxSignedValue()) 5899 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5900 5901 // Is the sign bit clear? 5902 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5903 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5904 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnes() && C2->isMinSignedValue()) 5905 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5906 } 5907 5908 return {SPF_UNKNOWN, SPNB_NA, false}; 5909 } 5910 5911 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5912 assert(X && Y && "Invalid operand"); 5913 5914 // X = sub (0, Y) || X = sub nsw (0, Y) 5915 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5916 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5917 return true; 5918 5919 // Y = sub (0, X) || Y = sub nsw (0, X) 5920 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5921 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5922 return true; 5923 5924 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5925 Value *A, *B; 5926 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5927 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5928 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5929 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5930 } 5931 5932 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5933 FastMathFlags FMF, 5934 Value *CmpLHS, Value *CmpRHS, 5935 Value *TrueVal, Value *FalseVal, 5936 Value *&LHS, Value *&RHS, 5937 unsigned Depth) { 5938 if (CmpInst::isFPPredicate(Pred)) { 5939 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5940 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5941 // purpose of identifying min/max. Disregard vector constants with undefined 5942 // elements because those can not be back-propagated for analysis. 5943 Value *OutputZeroVal = nullptr; 5944 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5945 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5946 OutputZeroVal = TrueVal; 5947 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5948 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5949 OutputZeroVal = FalseVal; 5950 5951 if (OutputZeroVal) { 5952 if (match(CmpLHS, m_AnyZeroFP())) 5953 CmpLHS = OutputZeroVal; 5954 if (match(CmpRHS, m_AnyZeroFP())) 5955 CmpRHS = OutputZeroVal; 5956 } 5957 } 5958 5959 LHS = CmpLHS; 5960 RHS = CmpRHS; 5961 5962 // Signed zero may return inconsistent results between implementations. 5963 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5964 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5965 // Therefore, we behave conservatively and only proceed if at least one of the 5966 // operands is known to not be zero or if we don't care about signed zero. 5967 switch (Pred) { 5968 default: break; 5969 // FIXME: Include OGT/OLT/UGT/ULT. 5970 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5971 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5972 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5973 !isKnownNonZero(CmpRHS)) 5974 return {SPF_UNKNOWN, SPNB_NA, false}; 5975 } 5976 5977 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5978 bool Ordered = false; 5979 5980 // When given one NaN and one non-NaN input: 5981 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5982 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5983 // ordered comparison fails), which could be NaN or non-NaN. 5984 // so here we discover exactly what NaN behavior is required/accepted. 5985 if (CmpInst::isFPPredicate(Pred)) { 5986 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5987 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5988 5989 if (LHSSafe && RHSSafe) { 5990 // Both operands are known non-NaN. 5991 NaNBehavior = SPNB_RETURNS_ANY; 5992 } else if (CmpInst::isOrdered(Pred)) { 5993 // An ordered comparison will return false when given a NaN, so it 5994 // returns the RHS. 5995 Ordered = true; 5996 if (LHSSafe) 5997 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5998 NaNBehavior = SPNB_RETURNS_NAN; 5999 else if (RHSSafe) 6000 NaNBehavior = SPNB_RETURNS_OTHER; 6001 else 6002 // Completely unsafe. 6003 return {SPF_UNKNOWN, SPNB_NA, false}; 6004 } else { 6005 Ordered = false; 6006 // An unordered comparison will return true when given a NaN, so it 6007 // returns the LHS. 6008 if (LHSSafe) 6009 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 6010 NaNBehavior = SPNB_RETURNS_OTHER; 6011 else if (RHSSafe) 6012 NaNBehavior = SPNB_RETURNS_NAN; 6013 else 6014 // Completely unsafe. 6015 return {SPF_UNKNOWN, SPNB_NA, false}; 6016 } 6017 } 6018 6019 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 6020 std::swap(CmpLHS, CmpRHS); 6021 Pred = CmpInst::getSwappedPredicate(Pred); 6022 if (NaNBehavior == SPNB_RETURNS_NAN) 6023 NaNBehavior = SPNB_RETURNS_OTHER; 6024 else if (NaNBehavior == SPNB_RETURNS_OTHER) 6025 NaNBehavior = SPNB_RETURNS_NAN; 6026 Ordered = !Ordered; 6027 } 6028 6029 // ([if]cmp X, Y) ? X : Y 6030 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 6031 switch (Pred) { 6032 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 6033 case ICmpInst::ICMP_UGT: 6034 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 6035 case ICmpInst::ICMP_SGT: 6036 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 6037 case ICmpInst::ICMP_ULT: 6038 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 6039 case ICmpInst::ICMP_SLT: 6040 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 6041 case FCmpInst::FCMP_UGT: 6042 case FCmpInst::FCMP_UGE: 6043 case FCmpInst::FCMP_OGT: 6044 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 6045 case FCmpInst::FCMP_ULT: 6046 case FCmpInst::FCMP_ULE: 6047 case FCmpInst::FCMP_OLT: 6048 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 6049 } 6050 } 6051 6052 if (isKnownNegation(TrueVal, FalseVal)) { 6053 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 6054 // match against either LHS or sext(LHS). 6055 auto MaybeSExtCmpLHS = 6056 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 6057 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 6058 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 6059 if (match(TrueVal, MaybeSExtCmpLHS)) { 6060 // Set the return values. If the compare uses the negated value (-X >s 0), 6061 // swap the return values because the negated value is always 'RHS'. 6062 LHS = TrueVal; 6063 RHS = FalseVal; 6064 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 6065 std::swap(LHS, RHS); 6066 6067 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 6068 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 6069 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6070 return {SPF_ABS, SPNB_NA, false}; 6071 6072 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 6073 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 6074 return {SPF_ABS, SPNB_NA, false}; 6075 6076 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 6077 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 6078 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6079 return {SPF_NABS, SPNB_NA, false}; 6080 } 6081 else if (match(FalseVal, MaybeSExtCmpLHS)) { 6082 // Set the return values. If the compare uses the negated value (-X >s 0), 6083 // swap the return values because the negated value is always 'RHS'. 6084 LHS = FalseVal; 6085 RHS = TrueVal; 6086 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 6087 std::swap(LHS, RHS); 6088 6089 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 6090 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 6091 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 6092 return {SPF_NABS, SPNB_NA, false}; 6093 6094 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 6095 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 6096 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 6097 return {SPF_ABS, SPNB_NA, false}; 6098 } 6099 } 6100 6101 if (CmpInst::isIntPredicate(Pred)) 6102 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 6103 6104 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 6105 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 6106 // semantics than minNum. Be conservative in such case. 6107 if (NaNBehavior != SPNB_RETURNS_ANY || 6108 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 6109 !isKnownNonZero(CmpRHS))) 6110 return {SPF_UNKNOWN, SPNB_NA, false}; 6111 6112 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 6113 } 6114 6115 /// Helps to match a select pattern in case of a type mismatch. 6116 /// 6117 /// The function processes the case when type of true and false values of a 6118 /// select instruction differs from type of the cmp instruction operands because 6119 /// of a cast instruction. The function checks if it is legal to move the cast 6120 /// operation after "select". If yes, it returns the new second value of 6121 /// "select" (with the assumption that cast is moved): 6122 /// 1. As operand of cast instruction when both values of "select" are same cast 6123 /// instructions. 6124 /// 2. As restored constant (by applying reverse cast operation) when the first 6125 /// value of the "select" is a cast operation and the second value is a 6126 /// constant. 6127 /// NOTE: We return only the new second value because the first value could be 6128 /// accessed as operand of cast instruction. 6129 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 6130 Instruction::CastOps *CastOp) { 6131 auto *Cast1 = dyn_cast<CastInst>(V1); 6132 if (!Cast1) 6133 return nullptr; 6134 6135 *CastOp = Cast1->getOpcode(); 6136 Type *SrcTy = Cast1->getSrcTy(); 6137 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 6138 // If V1 and V2 are both the same cast from the same type, look through V1. 6139 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 6140 return Cast2->getOperand(0); 6141 return nullptr; 6142 } 6143 6144 auto *C = dyn_cast<Constant>(V2); 6145 if (!C) 6146 return nullptr; 6147 6148 Constant *CastedTo = nullptr; 6149 switch (*CastOp) { 6150 case Instruction::ZExt: 6151 if (CmpI->isUnsigned()) 6152 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 6153 break; 6154 case Instruction::SExt: 6155 if (CmpI->isSigned()) 6156 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 6157 break; 6158 case Instruction::Trunc: 6159 Constant *CmpConst; 6160 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 6161 CmpConst->getType() == SrcTy) { 6162 // Here we have the following case: 6163 // 6164 // %cond = cmp iN %x, CmpConst 6165 // %tr = trunc iN %x to iK 6166 // %narrowsel = select i1 %cond, iK %t, iK C 6167 // 6168 // We can always move trunc after select operation: 6169 // 6170 // %cond = cmp iN %x, CmpConst 6171 // %widesel = select i1 %cond, iN %x, iN CmpConst 6172 // %tr = trunc iN %widesel to iK 6173 // 6174 // Note that C could be extended in any way because we don't care about 6175 // upper bits after truncation. It can't be abs pattern, because it would 6176 // look like: 6177 // 6178 // select i1 %cond, x, -x. 6179 // 6180 // So only min/max pattern could be matched. Such match requires widened C 6181 // == CmpConst. That is why set widened C = CmpConst, condition trunc 6182 // CmpConst == C is checked below. 6183 CastedTo = CmpConst; 6184 } else { 6185 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 6186 } 6187 break; 6188 case Instruction::FPTrunc: 6189 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 6190 break; 6191 case Instruction::FPExt: 6192 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 6193 break; 6194 case Instruction::FPToUI: 6195 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 6196 break; 6197 case Instruction::FPToSI: 6198 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 6199 break; 6200 case Instruction::UIToFP: 6201 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 6202 break; 6203 case Instruction::SIToFP: 6204 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 6205 break; 6206 default: 6207 break; 6208 } 6209 6210 if (!CastedTo) 6211 return nullptr; 6212 6213 // Make sure the cast doesn't lose any information. 6214 Constant *CastedBack = 6215 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 6216 if (CastedBack != C) 6217 return nullptr; 6218 6219 return CastedTo; 6220 } 6221 6222 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 6223 Instruction::CastOps *CastOp, 6224 unsigned Depth) { 6225 if (Depth >= MaxAnalysisRecursionDepth) 6226 return {SPF_UNKNOWN, SPNB_NA, false}; 6227 6228 SelectInst *SI = dyn_cast<SelectInst>(V); 6229 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 6230 6231 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 6232 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 6233 6234 Value *TrueVal = SI->getTrueValue(); 6235 Value *FalseVal = SI->getFalseValue(); 6236 6237 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 6238 CastOp, Depth); 6239 } 6240 6241 SelectPatternResult llvm::matchDecomposedSelectPattern( 6242 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 6243 Instruction::CastOps *CastOp, unsigned Depth) { 6244 CmpInst::Predicate Pred = CmpI->getPredicate(); 6245 Value *CmpLHS = CmpI->getOperand(0); 6246 Value *CmpRHS = CmpI->getOperand(1); 6247 FastMathFlags FMF; 6248 if (isa<FPMathOperator>(CmpI)) 6249 FMF = CmpI->getFastMathFlags(); 6250 6251 // Bail out early. 6252 if (CmpI->isEquality()) 6253 return {SPF_UNKNOWN, SPNB_NA, false}; 6254 6255 // Deal with type mismatches. 6256 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 6257 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 6258 // If this is a potential fmin/fmax with a cast to integer, then ignore 6259 // -0.0 because there is no corresponding integer value. 6260 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6261 FMF.setNoSignedZeros(); 6262 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6263 cast<CastInst>(TrueVal)->getOperand(0), C, 6264 LHS, RHS, Depth); 6265 } 6266 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 6267 // If this is a potential fmin/fmax with a cast to integer, then ignore 6268 // -0.0 because there is no corresponding integer value. 6269 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 6270 FMF.setNoSignedZeros(); 6271 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 6272 C, cast<CastInst>(FalseVal)->getOperand(0), 6273 LHS, RHS, Depth); 6274 } 6275 } 6276 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 6277 LHS, RHS, Depth); 6278 } 6279 6280 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 6281 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 6282 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 6283 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 6284 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 6285 if (SPF == SPF_FMINNUM) 6286 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 6287 if (SPF == SPF_FMAXNUM) 6288 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6289 llvm_unreachable("unhandled!"); 6290 } 6291 6292 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6293 if (SPF == SPF_SMIN) return SPF_SMAX; 6294 if (SPF == SPF_UMIN) return SPF_UMAX; 6295 if (SPF == SPF_SMAX) return SPF_SMIN; 6296 if (SPF == SPF_UMAX) return SPF_UMIN; 6297 llvm_unreachable("unhandled!"); 6298 } 6299 6300 Intrinsic::ID llvm::getInverseMinMaxIntrinsic(Intrinsic::ID MinMaxID) { 6301 switch (MinMaxID) { 6302 case Intrinsic::smax: return Intrinsic::smin; 6303 case Intrinsic::smin: return Intrinsic::smax; 6304 case Intrinsic::umax: return Intrinsic::umin; 6305 case Intrinsic::umin: return Intrinsic::umax; 6306 default: llvm_unreachable("Unexpected intrinsic"); 6307 } 6308 } 6309 6310 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6311 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6312 } 6313 6314 APInt llvm::getMinMaxLimit(SelectPatternFlavor SPF, unsigned BitWidth) { 6315 switch (SPF) { 6316 case SPF_SMAX: return APInt::getSignedMaxValue(BitWidth); 6317 case SPF_SMIN: return APInt::getSignedMinValue(BitWidth); 6318 case SPF_UMAX: return APInt::getMaxValue(BitWidth); 6319 case SPF_UMIN: return APInt::getMinValue(BitWidth); 6320 default: llvm_unreachable("Unexpected flavor"); 6321 } 6322 } 6323 6324 std::pair<Intrinsic::ID, bool> 6325 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6326 // Check if VL contains select instructions that can be folded into a min/max 6327 // vector intrinsic and return the intrinsic if it is possible. 6328 // TODO: Support floating point min/max. 6329 bool AllCmpSingleUse = true; 6330 SelectPatternResult SelectPattern; 6331 SelectPattern.Flavor = SPF_UNKNOWN; 6332 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6333 Value *LHS, *RHS; 6334 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6335 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6336 CurrentPattern.Flavor == SPF_FMINNUM || 6337 CurrentPattern.Flavor == SPF_FMAXNUM || 6338 !I->getType()->isIntOrIntVectorTy()) 6339 return false; 6340 if (SelectPattern.Flavor != SPF_UNKNOWN && 6341 SelectPattern.Flavor != CurrentPattern.Flavor) 6342 return false; 6343 SelectPattern = CurrentPattern; 6344 AllCmpSingleUse &= 6345 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6346 return true; 6347 })) { 6348 switch (SelectPattern.Flavor) { 6349 case SPF_SMIN: 6350 return {Intrinsic::smin, AllCmpSingleUse}; 6351 case SPF_UMIN: 6352 return {Intrinsic::umin, AllCmpSingleUse}; 6353 case SPF_SMAX: 6354 return {Intrinsic::smax, AllCmpSingleUse}; 6355 case SPF_UMAX: 6356 return {Intrinsic::umax, AllCmpSingleUse}; 6357 default: 6358 llvm_unreachable("unexpected select pattern flavor"); 6359 } 6360 } 6361 return {Intrinsic::not_intrinsic, false}; 6362 } 6363 6364 bool llvm::matchSimpleRecurrence(const PHINode *P, BinaryOperator *&BO, 6365 Value *&Start, Value *&Step) { 6366 // Handle the case of a simple two-predecessor recurrence PHI. 6367 // There's a lot more that could theoretically be done here, but 6368 // this is sufficient to catch some interesting cases. 6369 if (P->getNumIncomingValues() != 2) 6370 return false; 6371 6372 for (unsigned i = 0; i != 2; ++i) { 6373 Value *L = P->getIncomingValue(i); 6374 Value *R = P->getIncomingValue(!i); 6375 Operator *LU = dyn_cast<Operator>(L); 6376 if (!LU) 6377 continue; 6378 unsigned Opcode = LU->getOpcode(); 6379 6380 switch (Opcode) { 6381 default: 6382 continue; 6383 // TODO: Expand list -- xor, div, gep, uaddo, etc.. 6384 case Instruction::LShr: 6385 case Instruction::AShr: 6386 case Instruction::Shl: 6387 case Instruction::Add: 6388 case Instruction::Sub: 6389 case Instruction::And: 6390 case Instruction::Or: 6391 case Instruction::Mul: { 6392 Value *LL = LU->getOperand(0); 6393 Value *LR = LU->getOperand(1); 6394 // Find a recurrence. 6395 if (LL == P) 6396 L = LR; 6397 else if (LR == P) 6398 L = LL; 6399 else 6400 continue; // Check for recurrence with L and R flipped. 6401 6402 break; // Match! 6403 } 6404 }; 6405 6406 // We have matched a recurrence of the form: 6407 // %iv = [R, %entry], [%iv.next, %backedge] 6408 // %iv.next = binop %iv, L 6409 // OR 6410 // %iv = [R, %entry], [%iv.next, %backedge] 6411 // %iv.next = binop L, %iv 6412 BO = cast<BinaryOperator>(LU); 6413 Start = R; 6414 Step = L; 6415 return true; 6416 } 6417 return false; 6418 } 6419 6420 bool llvm::matchSimpleRecurrence(const BinaryOperator *I, PHINode *&P, 6421 Value *&Start, Value *&Step) { 6422 BinaryOperator *BO = nullptr; 6423 P = dyn_cast<PHINode>(I->getOperand(0)); 6424 if (!P) 6425 P = dyn_cast<PHINode>(I->getOperand(1)); 6426 return P && matchSimpleRecurrence(P, BO, Start, Step) && BO == I; 6427 } 6428 6429 /// Return true if "icmp Pred LHS RHS" is always true. 6430 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6431 const Value *RHS, const DataLayout &DL, 6432 unsigned Depth) { 6433 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6434 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6435 return true; 6436 6437 switch (Pred) { 6438 default: 6439 return false; 6440 6441 case CmpInst::ICMP_SLE: { 6442 const APInt *C; 6443 6444 // LHS s<= LHS +_{nsw} C if C >= 0 6445 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6446 return !C->isNegative(); 6447 return false; 6448 } 6449 6450 case CmpInst::ICMP_ULE: { 6451 const APInt *C; 6452 6453 // LHS u<= LHS +_{nuw} C for any C 6454 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6455 return true; 6456 6457 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6458 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6459 const Value *&X, 6460 const APInt *&CA, const APInt *&CB) { 6461 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6462 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6463 return true; 6464 6465 // If X & C == 0 then (X | C) == X +_{nuw} C 6466 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6467 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6468 KnownBits Known(CA->getBitWidth()); 6469 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6470 /*CxtI*/ nullptr, /*DT*/ nullptr); 6471 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6472 return true; 6473 } 6474 6475 return false; 6476 }; 6477 6478 const Value *X; 6479 const APInt *CLHS, *CRHS; 6480 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6481 return CLHS->ule(*CRHS); 6482 6483 return false; 6484 } 6485 } 6486 } 6487 6488 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6489 /// ALHS ARHS" is true. Otherwise, return None. 6490 static Optional<bool> 6491 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6492 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6493 const DataLayout &DL, unsigned Depth) { 6494 switch (Pred) { 6495 default: 6496 return None; 6497 6498 case CmpInst::ICMP_SLT: 6499 case CmpInst::ICMP_SLE: 6500 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6501 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6502 return true; 6503 return None; 6504 6505 case CmpInst::ICMP_ULT: 6506 case CmpInst::ICMP_ULE: 6507 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6508 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6509 return true; 6510 return None; 6511 } 6512 } 6513 6514 /// Return true if the operands of the two compares match. IsSwappedOps is true 6515 /// when the operands match, but are swapped. 6516 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6517 const Value *BLHS, const Value *BRHS, 6518 bool &IsSwappedOps) { 6519 6520 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6521 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6522 return IsMatchingOps || IsSwappedOps; 6523 } 6524 6525 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6526 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6527 /// Otherwise, return None if we can't infer anything. 6528 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6529 CmpInst::Predicate BPred, 6530 bool AreSwappedOps) { 6531 // Canonicalize the predicate as if the operands were not commuted. 6532 if (AreSwappedOps) 6533 BPred = ICmpInst::getSwappedPredicate(BPred); 6534 6535 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6536 return true; 6537 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6538 return false; 6539 6540 return None; 6541 } 6542 6543 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6544 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6545 /// Otherwise, return None if we can't infer anything. 6546 static Optional<bool> 6547 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6548 const ConstantInt *C1, 6549 CmpInst::Predicate BPred, 6550 const ConstantInt *C2) { 6551 ConstantRange DomCR = 6552 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6553 ConstantRange CR = ConstantRange::makeExactICmpRegion(BPred, C2->getValue()); 6554 ConstantRange Intersection = DomCR.intersectWith(CR); 6555 ConstantRange Difference = DomCR.difference(CR); 6556 if (Intersection.isEmptySet()) 6557 return false; 6558 if (Difference.isEmptySet()) 6559 return true; 6560 return None; 6561 } 6562 6563 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6564 /// false. Otherwise, return None if we can't infer anything. 6565 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6566 CmpInst::Predicate BPred, 6567 const Value *BLHS, const Value *BRHS, 6568 const DataLayout &DL, bool LHSIsTrue, 6569 unsigned Depth) { 6570 Value *ALHS = LHS->getOperand(0); 6571 Value *ARHS = LHS->getOperand(1); 6572 6573 // The rest of the logic assumes the LHS condition is true. If that's not the 6574 // case, invert the predicate to make it so. 6575 CmpInst::Predicate APred = 6576 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6577 6578 // Can we infer anything when the two compares have matching operands? 6579 bool AreSwappedOps; 6580 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6581 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6582 APred, BPred, AreSwappedOps)) 6583 return Implication; 6584 // No amount of additional analysis will infer the second condition, so 6585 // early exit. 6586 return None; 6587 } 6588 6589 // Can we infer anything when the LHS operands match and the RHS operands are 6590 // constants (not necessarily matching)? 6591 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6592 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6593 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6594 return Implication; 6595 // No amount of additional analysis will infer the second condition, so 6596 // early exit. 6597 return None; 6598 } 6599 6600 if (APred == BPred) 6601 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6602 return None; 6603 } 6604 6605 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6606 /// false. Otherwise, return None if we can't infer anything. We expect the 6607 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6608 static Optional<bool> 6609 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6610 const Value *RHSOp0, const Value *RHSOp1, 6611 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6612 // The LHS must be an 'or', 'and', or a 'select' instruction. 6613 assert((LHS->getOpcode() == Instruction::And || 6614 LHS->getOpcode() == Instruction::Or || 6615 LHS->getOpcode() == Instruction::Select) && 6616 "Expected LHS to be 'and', 'or', or 'select'."); 6617 6618 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6619 6620 // If the result of an 'or' is false, then we know both legs of the 'or' are 6621 // false. Similarly, if the result of an 'and' is true, then we know both 6622 // legs of the 'and' are true. 6623 const Value *ALHS, *ARHS; 6624 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6625 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6626 // FIXME: Make this non-recursion. 6627 if (Optional<bool> Implication = isImpliedCondition( 6628 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6629 return Implication; 6630 if (Optional<bool> Implication = isImpliedCondition( 6631 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6632 return Implication; 6633 return None; 6634 } 6635 return None; 6636 } 6637 6638 Optional<bool> 6639 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6640 const Value *RHSOp0, const Value *RHSOp1, 6641 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6642 // Bail out when we hit the limit. 6643 if (Depth == MaxAnalysisRecursionDepth) 6644 return None; 6645 6646 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6647 // example. 6648 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6649 return None; 6650 6651 Type *OpTy = LHS->getType(); 6652 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6653 6654 // FIXME: Extending the code below to handle vectors. 6655 if (OpTy->isVectorTy()) 6656 return None; 6657 6658 assert(OpTy->isIntegerTy(1) && "implied by above"); 6659 6660 // Both LHS and RHS are icmps. 6661 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6662 if (LHSCmp) 6663 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6664 Depth); 6665 6666 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6667 /// the RHS to be an icmp. 6668 /// FIXME: Add support for and/or/select on the RHS. 6669 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6670 if ((LHSI->getOpcode() == Instruction::And || 6671 LHSI->getOpcode() == Instruction::Or || 6672 LHSI->getOpcode() == Instruction::Select)) 6673 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6674 Depth); 6675 } 6676 return None; 6677 } 6678 6679 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6680 const DataLayout &DL, bool LHSIsTrue, 6681 unsigned Depth) { 6682 // LHS ==> RHS by definition 6683 if (LHS == RHS) 6684 return LHSIsTrue; 6685 6686 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6687 if (RHSCmp) 6688 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6689 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6690 LHSIsTrue, Depth); 6691 return None; 6692 } 6693 6694 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6695 // condition dominating ContextI or nullptr, if no condition is found. 6696 static std::pair<Value *, bool> 6697 getDomPredecessorCondition(const Instruction *ContextI) { 6698 if (!ContextI || !ContextI->getParent()) 6699 return {nullptr, false}; 6700 6701 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6702 // dominator tree (eg, from a SimplifyQuery) instead? 6703 const BasicBlock *ContextBB = ContextI->getParent(); 6704 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6705 if (!PredBB) 6706 return {nullptr, false}; 6707 6708 // We need a conditional branch in the predecessor. 6709 Value *PredCond; 6710 BasicBlock *TrueBB, *FalseBB; 6711 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6712 return {nullptr, false}; 6713 6714 // The branch should get simplified. Don't bother simplifying this condition. 6715 if (TrueBB == FalseBB) 6716 return {nullptr, false}; 6717 6718 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6719 "Predecessor block does not point to successor?"); 6720 6721 // Is this condition implied by the predecessor condition? 6722 return {PredCond, TrueBB == ContextBB}; 6723 } 6724 6725 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6726 const Instruction *ContextI, 6727 const DataLayout &DL) { 6728 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6729 auto PredCond = getDomPredecessorCondition(ContextI); 6730 if (PredCond.first) 6731 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6732 return None; 6733 } 6734 6735 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6736 const Value *LHS, const Value *RHS, 6737 const Instruction *ContextI, 6738 const DataLayout &DL) { 6739 auto PredCond = getDomPredecessorCondition(ContextI); 6740 if (PredCond.first) 6741 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6742 PredCond.second); 6743 return None; 6744 } 6745 6746 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6747 APInt &Upper, const InstrInfoQuery &IIQ) { 6748 unsigned Width = Lower.getBitWidth(); 6749 const APInt *C; 6750 switch (BO.getOpcode()) { 6751 case Instruction::Add: 6752 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6753 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6754 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6755 // 'add nuw x, C' produces [C, UINT_MAX]. 6756 Lower = *C; 6757 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6758 if (C->isNegative()) { 6759 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6760 Lower = APInt::getSignedMinValue(Width); 6761 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6762 } else { 6763 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6764 Lower = APInt::getSignedMinValue(Width) + *C; 6765 Upper = APInt::getSignedMaxValue(Width) + 1; 6766 } 6767 } 6768 } 6769 break; 6770 6771 case Instruction::And: 6772 if (match(BO.getOperand(1), m_APInt(C))) 6773 // 'and x, C' produces [0, C]. 6774 Upper = *C + 1; 6775 break; 6776 6777 case Instruction::Or: 6778 if (match(BO.getOperand(1), m_APInt(C))) 6779 // 'or x, C' produces [C, UINT_MAX]. 6780 Lower = *C; 6781 break; 6782 6783 case Instruction::AShr: 6784 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6785 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6786 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6787 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6788 } else if (match(BO.getOperand(0), m_APInt(C))) { 6789 unsigned ShiftAmount = Width - 1; 6790 if (!C->isZero() && IIQ.isExact(&BO)) 6791 ShiftAmount = C->countTrailingZeros(); 6792 if (C->isNegative()) { 6793 // 'ashr C, x' produces [C, C >> (Width-1)] 6794 Lower = *C; 6795 Upper = C->ashr(ShiftAmount) + 1; 6796 } else { 6797 // 'ashr C, x' produces [C >> (Width-1), C] 6798 Lower = C->ashr(ShiftAmount); 6799 Upper = *C + 1; 6800 } 6801 } 6802 break; 6803 6804 case Instruction::LShr: 6805 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6806 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6807 Upper = APInt::getAllOnes(Width).lshr(*C) + 1; 6808 } else if (match(BO.getOperand(0), m_APInt(C))) { 6809 // 'lshr C, x' produces [C >> (Width-1), C]. 6810 unsigned ShiftAmount = Width - 1; 6811 if (!C->isZero() && IIQ.isExact(&BO)) 6812 ShiftAmount = C->countTrailingZeros(); 6813 Lower = C->lshr(ShiftAmount); 6814 Upper = *C + 1; 6815 } 6816 break; 6817 6818 case Instruction::Shl: 6819 if (match(BO.getOperand(0), m_APInt(C))) { 6820 if (IIQ.hasNoUnsignedWrap(&BO)) { 6821 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6822 Lower = *C; 6823 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6824 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6825 if (C->isNegative()) { 6826 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6827 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6828 Lower = C->shl(ShiftAmount); 6829 Upper = *C + 1; 6830 } else { 6831 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6832 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6833 Lower = *C; 6834 Upper = C->shl(ShiftAmount) + 1; 6835 } 6836 } 6837 } 6838 break; 6839 6840 case Instruction::SDiv: 6841 if (match(BO.getOperand(1), m_APInt(C))) { 6842 APInt IntMin = APInt::getSignedMinValue(Width); 6843 APInt IntMax = APInt::getSignedMaxValue(Width); 6844 if (C->isAllOnes()) { 6845 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6846 // where C != -1 and C != 0 and C != 1 6847 Lower = IntMin + 1; 6848 Upper = IntMax + 1; 6849 } else if (C->countLeadingZeros() < Width - 1) { 6850 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6851 // where C != -1 and C != 0 and C != 1 6852 Lower = IntMin.sdiv(*C); 6853 Upper = IntMax.sdiv(*C); 6854 if (Lower.sgt(Upper)) 6855 std::swap(Lower, Upper); 6856 Upper = Upper + 1; 6857 assert(Upper != Lower && "Upper part of range has wrapped!"); 6858 } 6859 } else if (match(BO.getOperand(0), m_APInt(C))) { 6860 if (C->isMinSignedValue()) { 6861 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6862 Lower = *C; 6863 Upper = Lower.lshr(1) + 1; 6864 } else { 6865 // 'sdiv C, x' produces [-|C|, |C|]. 6866 Upper = C->abs() + 1; 6867 Lower = (-Upper) + 1; 6868 } 6869 } 6870 break; 6871 6872 case Instruction::UDiv: 6873 if (match(BO.getOperand(1), m_APInt(C)) && !C->isZero()) { 6874 // 'udiv x, C' produces [0, UINT_MAX / C]. 6875 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6876 } else if (match(BO.getOperand(0), m_APInt(C))) { 6877 // 'udiv C, x' produces [0, C]. 6878 Upper = *C + 1; 6879 } 6880 break; 6881 6882 case Instruction::SRem: 6883 if (match(BO.getOperand(1), m_APInt(C))) { 6884 // 'srem x, C' produces (-|C|, |C|). 6885 Upper = C->abs(); 6886 Lower = (-Upper) + 1; 6887 } 6888 break; 6889 6890 case Instruction::URem: 6891 if (match(BO.getOperand(1), m_APInt(C))) 6892 // 'urem x, C' produces [0, C). 6893 Upper = *C; 6894 break; 6895 6896 default: 6897 break; 6898 } 6899 } 6900 6901 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6902 APInt &Upper) { 6903 unsigned Width = Lower.getBitWidth(); 6904 const APInt *C; 6905 switch (II.getIntrinsicID()) { 6906 case Intrinsic::ctpop: 6907 case Intrinsic::ctlz: 6908 case Intrinsic::cttz: 6909 // Maximum of set/clear bits is the bit width. 6910 assert(Lower == 0 && "Expected lower bound to be zero"); 6911 Upper = Width + 1; 6912 break; 6913 case Intrinsic::uadd_sat: 6914 // uadd.sat(x, C) produces [C, UINT_MAX]. 6915 if (match(II.getOperand(0), m_APInt(C)) || 6916 match(II.getOperand(1), m_APInt(C))) 6917 Lower = *C; 6918 break; 6919 case Intrinsic::sadd_sat: 6920 if (match(II.getOperand(0), m_APInt(C)) || 6921 match(II.getOperand(1), m_APInt(C))) { 6922 if (C->isNegative()) { 6923 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6924 Lower = APInt::getSignedMinValue(Width); 6925 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6926 } else { 6927 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6928 Lower = APInt::getSignedMinValue(Width) + *C; 6929 Upper = APInt::getSignedMaxValue(Width) + 1; 6930 } 6931 } 6932 break; 6933 case Intrinsic::usub_sat: 6934 // usub.sat(C, x) produces [0, C]. 6935 if (match(II.getOperand(0), m_APInt(C))) 6936 Upper = *C + 1; 6937 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6938 else if (match(II.getOperand(1), m_APInt(C))) 6939 Upper = APInt::getMaxValue(Width) - *C + 1; 6940 break; 6941 case Intrinsic::ssub_sat: 6942 if (match(II.getOperand(0), m_APInt(C))) { 6943 if (C->isNegative()) { 6944 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6945 Lower = APInt::getSignedMinValue(Width); 6946 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6947 } else { 6948 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6949 Lower = *C - APInt::getSignedMaxValue(Width); 6950 Upper = APInt::getSignedMaxValue(Width) + 1; 6951 } 6952 } else if (match(II.getOperand(1), m_APInt(C))) { 6953 if (C->isNegative()) { 6954 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6955 Lower = APInt::getSignedMinValue(Width) - *C; 6956 Upper = APInt::getSignedMaxValue(Width) + 1; 6957 } else { 6958 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6959 Lower = APInt::getSignedMinValue(Width); 6960 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6961 } 6962 } 6963 break; 6964 case Intrinsic::umin: 6965 case Intrinsic::umax: 6966 case Intrinsic::smin: 6967 case Intrinsic::smax: 6968 if (!match(II.getOperand(0), m_APInt(C)) && 6969 !match(II.getOperand(1), m_APInt(C))) 6970 break; 6971 6972 switch (II.getIntrinsicID()) { 6973 case Intrinsic::umin: 6974 Upper = *C + 1; 6975 break; 6976 case Intrinsic::umax: 6977 Lower = *C; 6978 break; 6979 case Intrinsic::smin: 6980 Lower = APInt::getSignedMinValue(Width); 6981 Upper = *C + 1; 6982 break; 6983 case Intrinsic::smax: 6984 Lower = *C; 6985 Upper = APInt::getSignedMaxValue(Width) + 1; 6986 break; 6987 default: 6988 llvm_unreachable("Must be min/max intrinsic"); 6989 } 6990 break; 6991 case Intrinsic::abs: 6992 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6993 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6994 if (match(II.getOperand(1), m_One())) 6995 Upper = APInt::getSignedMaxValue(Width) + 1; 6996 else 6997 Upper = APInt::getSignedMinValue(Width) + 1; 6998 break; 6999 default: 7000 break; 7001 } 7002 } 7003 7004 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 7005 APInt &Upper, const InstrInfoQuery &IIQ) { 7006 const Value *LHS = nullptr, *RHS = nullptr; 7007 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 7008 if (R.Flavor == SPF_UNKNOWN) 7009 return; 7010 7011 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 7012 7013 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 7014 // If the negation part of the abs (in RHS) has the NSW flag, 7015 // then the result of abs(X) is [0..SIGNED_MAX], 7016 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 7017 Lower = APInt::getZero(BitWidth); 7018 if (match(RHS, m_Neg(m_Specific(LHS))) && 7019 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 7020 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7021 else 7022 Upper = APInt::getSignedMinValue(BitWidth) + 1; 7023 return; 7024 } 7025 7026 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 7027 // The result of -abs(X) is <= 0. 7028 Lower = APInt::getSignedMinValue(BitWidth); 7029 Upper = APInt(BitWidth, 1); 7030 return; 7031 } 7032 7033 const APInt *C; 7034 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 7035 return; 7036 7037 switch (R.Flavor) { 7038 case SPF_UMIN: 7039 Upper = *C + 1; 7040 break; 7041 case SPF_UMAX: 7042 Lower = *C; 7043 break; 7044 case SPF_SMIN: 7045 Lower = APInt::getSignedMinValue(BitWidth); 7046 Upper = *C + 1; 7047 break; 7048 case SPF_SMAX: 7049 Lower = *C; 7050 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 7051 break; 7052 default: 7053 break; 7054 } 7055 } 7056 7057 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 7058 AssumptionCache *AC, 7059 const Instruction *CtxI, 7060 const DominatorTree *DT, 7061 unsigned Depth) { 7062 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 7063 7064 if (Depth == MaxAnalysisRecursionDepth) 7065 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 7066 7067 const APInt *C; 7068 if (match(V, m_APInt(C))) 7069 return ConstantRange(*C); 7070 7071 InstrInfoQuery IIQ(UseInstrInfo); 7072 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 7073 APInt Lower = APInt(BitWidth, 0); 7074 APInt Upper = APInt(BitWidth, 0); 7075 if (auto *BO = dyn_cast<BinaryOperator>(V)) 7076 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 7077 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 7078 setLimitsForIntrinsic(*II, Lower, Upper); 7079 else if (auto *SI = dyn_cast<SelectInst>(V)) 7080 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 7081 7082 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 7083 7084 if (auto *I = dyn_cast<Instruction>(V)) 7085 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 7086 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 7087 7088 if (CtxI && AC) { 7089 // Try to restrict the range based on information from assumptions. 7090 for (auto &AssumeVH : AC->assumptionsFor(V)) { 7091 if (!AssumeVH) 7092 continue; 7093 CallInst *I = cast<CallInst>(AssumeVH); 7094 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 7095 "Got assumption for the wrong function!"); 7096 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 7097 "must be an assume intrinsic"); 7098 7099 if (!isValidAssumeForContext(I, CtxI, DT)) 7100 continue; 7101 Value *Arg = I->getArgOperand(0); 7102 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 7103 // Currently we just use information from comparisons. 7104 if (!Cmp || Cmp->getOperand(0) != V) 7105 continue; 7106 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 7107 AC, I, DT, Depth + 1); 7108 CR = CR.intersectWith( 7109 ConstantRange::makeAllowedICmpRegion(Cmp->getPredicate(), RHS)); 7110 } 7111 } 7112 7113 return CR; 7114 } 7115 7116 static Optional<int64_t> 7117 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 7118 // Skip over the first indices. 7119 gep_type_iterator GTI = gep_type_begin(GEP); 7120 for (unsigned i = 1; i != Idx; ++i, ++GTI) 7121 /*skip along*/; 7122 7123 // Compute the offset implied by the rest of the indices. 7124 int64_t Offset = 0; 7125 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 7126 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 7127 if (!OpC) 7128 return None; 7129 if (OpC->isZero()) 7130 continue; // No offset. 7131 7132 // Handle struct indices, which add their field offset to the pointer. 7133 if (StructType *STy = GTI.getStructTypeOrNull()) { 7134 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 7135 continue; 7136 } 7137 7138 // Otherwise, we have a sequential type like an array or fixed-length 7139 // vector. Multiply the index by the ElementSize. 7140 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 7141 if (Size.isScalable()) 7142 return None; 7143 Offset += Size.getFixedSize() * OpC->getSExtValue(); 7144 } 7145 7146 return Offset; 7147 } 7148 7149 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 7150 const DataLayout &DL) { 7151 Ptr1 = Ptr1->stripPointerCasts(); 7152 Ptr2 = Ptr2->stripPointerCasts(); 7153 7154 // Handle the trivial case first. 7155 if (Ptr1 == Ptr2) { 7156 return 0; 7157 } 7158 7159 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 7160 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 7161 7162 // If one pointer is a GEP see if the GEP is a constant offset from the base, 7163 // as in "P" and "gep P, 1". 7164 // Also do this iteratively to handle the the following case: 7165 // Ptr_t1 = GEP Ptr1, c1 7166 // Ptr_t2 = GEP Ptr_t1, c2 7167 // Ptr2 = GEP Ptr_t2, c3 7168 // where we will return c1+c2+c3. 7169 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 7170 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 7171 // are the same, and return the difference between offsets. 7172 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 7173 const Value *Ptr) -> Optional<int64_t> { 7174 const GEPOperator *GEP_T = GEP; 7175 int64_t OffsetVal = 0; 7176 bool HasSameBase = false; 7177 while (GEP_T) { 7178 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 7179 if (!Offset) 7180 return None; 7181 OffsetVal += *Offset; 7182 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 7183 if (Op0 == Ptr) { 7184 HasSameBase = true; 7185 break; 7186 } 7187 GEP_T = dyn_cast<GEPOperator>(Op0); 7188 } 7189 if (!HasSameBase) 7190 return None; 7191 return OffsetVal; 7192 }; 7193 7194 if (GEP1) { 7195 auto Offset = getOffsetFromBase(GEP1, Ptr2); 7196 if (Offset) 7197 return -*Offset; 7198 } 7199 if (GEP2) { 7200 auto Offset = getOffsetFromBase(GEP2, Ptr1); 7201 if (Offset) 7202 return Offset; 7203 } 7204 7205 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 7206 // base. After that base, they may have some number of common (and 7207 // potentially variable) indices. After that they handle some constant 7208 // offset, which determines their offset from each other. At this point, we 7209 // handle no other case. 7210 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 7211 return None; 7212 7213 // Skip any common indices and track the GEP types. 7214 unsigned Idx = 1; 7215 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 7216 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 7217 break; 7218 7219 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 7220 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 7221 if (!Offset1 || !Offset2) 7222 return None; 7223 return *Offset2 - *Offset1; 7224 } 7225