1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains routines that help analyze properties that chains of
11 // computations have.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "llvm/Analysis/ValueTracking.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/MemoryBuiltins.h"
21 #include "llvm/Analysis/Loads.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/ConstantRange.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/GetElementPtrTypeIterator.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/Metadata.h"
37 #include "llvm/IR/Operator.h"
38 #include "llvm/IR/PatternMatch.h"
39 #include "llvm/IR/Statepoint.h"
40 #include "llvm/Support/Debug.h"
41 #include "llvm/Support/MathExtras.h"
42 #include <algorithm>
43 #include <array>
44 #include <cstring>
45 using namespace llvm;
46 using namespace llvm::PatternMatch;
47 
48 const unsigned MaxDepth = 6;
49 
50 // Controls the number of uses of the value searched for possible
51 // dominating comparisons.
52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
53                                               cl::Hidden, cl::init(20));
54 
55 // This optimization is known to cause performance regressions is some cases,
56 // keep it under a temporary flag for now.
57 static cl::opt<bool>
58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits",
59                               cl::Hidden, cl::init(true));
60 
61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns
62 /// 0). For vector types, returns the element type's bitwidth.
63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
64   if (unsigned BitWidth = Ty->getScalarSizeInBits())
65     return BitWidth;
66 
67   return DL.getPointerTypeSizeInBits(Ty);
68 }
69 
70 namespace {
71 // Simplifying using an assume can only be done in a particular control-flow
72 // context (the context instruction provides that context). If an assume and
73 // the context instruction are not in the same block then the DT helps in
74 // figuring out if we can use it.
75 struct Query {
76   const DataLayout &DL;
77   AssumptionCache *AC;
78   const Instruction *CxtI;
79   const DominatorTree *DT;
80   // Unlike the other analyses, this may be a nullptr because not all clients
81   // provide it currently.
82   OptimizationRemarkEmitter *ORE;
83 
84   /// Set of assumptions that should be excluded from further queries.
85   /// This is because of the potential for mutual recursion to cause
86   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
87   /// classic case of this is assume(x = y), which will attempt to determine
88   /// bits in x from bits in y, which will attempt to determine bits in y from
89   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
90   /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and
91   /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so
92   /// on.
93   std::array<const Value *, MaxDepth> Excluded;
94   unsigned NumExcluded;
95 
96   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
97         const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr)
98       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {}
99 
100   Query(const Query &Q, const Value *NewExcl)
101       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE),
102         NumExcluded(Q.NumExcluded) {
103     Excluded = Q.Excluded;
104     Excluded[NumExcluded++] = NewExcl;
105     assert(NumExcluded <= Excluded.size());
106   }
107 
108   bool isExcluded(const Value *Value) const {
109     if (NumExcluded == 0)
110       return false;
111     auto End = Excluded.begin() + NumExcluded;
112     return std::find(Excluded.begin(), End, Value) != End;
113   }
114 };
115 } // end anonymous namespace
116 
117 // Given the provided Value and, potentially, a context instruction, return
118 // the preferred context instruction (if any).
119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
120   // If we've been provided with a context instruction, then use that (provided
121   // it has been inserted).
122   if (CxtI && CxtI->getParent())
123     return CxtI;
124 
125   // If the value is really an already-inserted instruction, then use that.
126   CxtI = dyn_cast<Instruction>(V);
127   if (CxtI && CxtI->getParent())
128     return CxtI;
129 
130   return nullptr;
131 }
132 
133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
134                              unsigned Depth, const Query &Q);
135 
136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
137                             const DataLayout &DL, unsigned Depth,
138                             AssumptionCache *AC, const Instruction *CxtI,
139                             const DominatorTree *DT,
140                             OptimizationRemarkEmitter *ORE) {
141   ::computeKnownBits(V, KnownZero, KnownOne, Depth,
142                      Query(DL, AC, safeCxtI(V, CxtI), DT, ORE));
143 }
144 
145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
146                                const DataLayout &DL,
147                                AssumptionCache *AC, const Instruction *CxtI,
148                                const DominatorTree *DT) {
149   assert(LHS->getType() == RHS->getType() &&
150          "LHS and RHS should have the same type");
151   assert(LHS->getType()->isIntOrIntVectorTy() &&
152          "LHS and RHS should be integers");
153   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
154   APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
155   APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
156   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
157   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
158   return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
159 }
160 
161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
162                            unsigned Depth, const Query &Q);
163 
164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
165                           const DataLayout &DL, unsigned Depth,
166                           AssumptionCache *AC, const Instruction *CxtI,
167                           const DominatorTree *DT) {
168   ::ComputeSignBit(V, KnownZero, KnownOne, Depth,
169                    Query(DL, AC, safeCxtI(V, CxtI), DT));
170 }
171 
172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
173                                    const Query &Q);
174 
175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
176                                   bool OrZero,
177                                   unsigned Depth, AssumptionCache *AC,
178                                   const Instruction *CxtI,
179                                   const DominatorTree *DT) {
180   return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth,
181                                   Query(DL, AC, safeCxtI(V, CxtI), DT));
182 }
183 
184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
185 
186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
187                           AssumptionCache *AC, const Instruction *CxtI,
188                           const DominatorTree *DT) {
189   return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
190 }
191 
192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
193                               unsigned Depth,
194                               AssumptionCache *AC, const Instruction *CxtI,
195                               const DominatorTree *DT) {
196   bool NonNegative, Negative;
197   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
198   return NonNegative;
199 }
200 
201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
202                            AssumptionCache *AC, const Instruction *CxtI,
203                            const DominatorTree *DT) {
204   if (auto *CI = dyn_cast<ConstantInt>(V))
205     return CI->getValue().isStrictlyPositive();
206 
207   // TODO: We'd doing two recursive queries here.  We should factor this such
208   // that only a single query is needed.
209   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) &&
210     isKnownNonZero(V, DL, Depth, AC, CxtI, DT);
211 }
212 
213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
214                            AssumptionCache *AC, const Instruction *CxtI,
215                            const DominatorTree *DT) {
216   bool NonNegative, Negative;
217   ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT);
218   return Negative;
219 }
220 
221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
222 
223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
224                            const DataLayout &DL,
225                            AssumptionCache *AC, const Instruction *CxtI,
226                            const DominatorTree *DT) {
227   return ::isKnownNonEqual(V1, V2, Query(DL, AC,
228                                          safeCxtI(V1, safeCxtI(V2, CxtI)),
229                                          DT));
230 }
231 
232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
233                               const Query &Q);
234 
235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
236                              const DataLayout &DL,
237                              unsigned Depth, AssumptionCache *AC,
238                              const Instruction *CxtI, const DominatorTree *DT) {
239   return ::MaskedValueIsZero(V, Mask, Depth,
240                              Query(DL, AC, safeCxtI(V, CxtI), DT));
241 }
242 
243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
244                                    const Query &Q);
245 
246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
247                                   unsigned Depth, AssumptionCache *AC,
248                                   const Instruction *CxtI,
249                                   const DominatorTree *DT) {
250   return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT));
251 }
252 
253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
254                                    bool NSW,
255                                    APInt &KnownZero, APInt &KnownOne,
256                                    APInt &KnownZero2, APInt &KnownOne2,
257                                    unsigned Depth, const Query &Q) {
258   unsigned BitWidth = KnownZero.getBitWidth();
259 
260   // If an initial sequence of bits in the result is not needed, the
261   // corresponding bits in the operands are not needed.
262   APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
263   computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q);
264   computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q);
265 
266   // Carry in a 1 for a subtract, rather than a 0.
267   uint64_t CarryIn = 0;
268   if (!Add) {
269     // Sum = LHS + ~RHS + 1
270     std::swap(KnownZero2, KnownOne2);
271     CarryIn = 1;
272   }
273 
274   APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn;
275   APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn;
276 
277   // Compute known bits of the carry.
278   APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2);
279   APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2;
280 
281   // Compute set of known bits (where all three relevant bits are known).
282   APInt LHSKnown = LHSKnownZero | LHSKnownOne;
283   APInt RHSKnown = KnownZero2 | KnownOne2;
284   APInt CarryKnown = CarryKnownZero | CarryKnownOne;
285   APInt Known = LHSKnown & RHSKnown & CarryKnown;
286 
287   assert((PossibleSumZero & Known) == (PossibleSumOne & Known) &&
288          "known bits of sum differ");
289 
290   // Compute known bits of the result.
291   KnownZero = ~PossibleSumOne & Known;
292   KnownOne = PossibleSumOne & Known;
293 
294   // Are we still trying to solve for the sign bit?
295   if (!Known.isSignBitSet()) {
296     if (NSW) {
297       // Adding two non-negative numbers, or subtracting a negative number from
298       // a non-negative one, can't wrap into negative.
299       if (LHSKnownZero.isSignBitSet() && KnownZero2.isSignBitSet())
300         KnownZero.setSignBit();
301       // Adding two negative numbers, or subtracting a non-negative number from
302       // a negative one, can't wrap into non-negative.
303       else if (LHSKnownOne.isSignBitSet() && KnownOne2.isSignBitSet())
304         KnownOne.setSignBit();
305     }
306   }
307 }
308 
309 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
310                                 APInt &KnownZero, APInt &KnownOne,
311                                 APInt &KnownZero2, APInt &KnownOne2,
312                                 unsigned Depth, const Query &Q) {
313   unsigned BitWidth = KnownZero.getBitWidth();
314   computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q);
315   computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q);
316 
317   bool isKnownNegative = false;
318   bool isKnownNonNegative = false;
319   // If the multiplication is known not to overflow, compute the sign bit.
320   if (NSW) {
321     if (Op0 == Op1) {
322       // The product of a number with itself is non-negative.
323       isKnownNonNegative = true;
324     } else {
325       bool isKnownNonNegativeOp1 = KnownZero.isSignBitSet();
326       bool isKnownNonNegativeOp0 = KnownZero2.isSignBitSet();
327       bool isKnownNegativeOp1 = KnownOne.isSignBitSet();
328       bool isKnownNegativeOp0 = KnownOne2.isSignBitSet();
329       // The product of two numbers with the same sign is non-negative.
330       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
331         (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
332       // The product of a negative number and a non-negative number is either
333       // negative or zero.
334       if (!isKnownNonNegative)
335         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
336                            isKnownNonZero(Op0, Depth, Q)) ||
337                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
338                            isKnownNonZero(Op1, Depth, Q));
339     }
340   }
341 
342   // If low bits are zero in either operand, output low known-0 bits.
343   // Also compute a conservative estimate for high known-0 bits.
344   // More trickiness is possible, but this is sufficient for the
345   // interesting case of alignment computation.
346   KnownOne.clearAllBits();
347   unsigned TrailZ = KnownZero.countTrailingOnes() +
348                     KnownZero2.countTrailingOnes();
349   unsigned LeadZ =  std::max(KnownZero.countLeadingOnes() +
350                              KnownZero2.countLeadingOnes(),
351                              BitWidth) - BitWidth;
352 
353   TrailZ = std::min(TrailZ, BitWidth);
354   LeadZ = std::min(LeadZ, BitWidth);
355   KnownZero.clearAllBits();
356   KnownZero.setLowBits(TrailZ);
357   KnownZero.setHighBits(LeadZ);
358 
359   // Only make use of no-wrap flags if we failed to compute the sign bit
360   // directly.  This matters if the multiplication always overflows, in
361   // which case we prefer to follow the result of the direct computation,
362   // though as the program is invoking undefined behaviour we can choose
363   // whatever we like here.
364   if (isKnownNonNegative && !KnownOne.isSignBitSet())
365     KnownZero.setSignBit();
366   else if (isKnownNegative && !KnownZero.isSignBitSet())
367     KnownOne.setSignBit();
368 }
369 
370 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
371                                              APInt &KnownZero,
372                                              APInt &KnownOne) {
373   unsigned BitWidth = KnownZero.getBitWidth();
374   unsigned NumRanges = Ranges.getNumOperands() / 2;
375   assert(NumRanges >= 1);
376 
377   KnownZero.setAllBits();
378   KnownOne.setAllBits();
379 
380   for (unsigned i = 0; i < NumRanges; ++i) {
381     ConstantInt *Lower =
382         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
383     ConstantInt *Upper =
384         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
385     ConstantRange Range(Lower->getValue(), Upper->getValue());
386 
387     // The first CommonPrefixBits of all values in Range are equal.
388     unsigned CommonPrefixBits =
389         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
390 
391     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
392     KnownOne &= Range.getUnsignedMax() & Mask;
393     KnownZero &= ~Range.getUnsignedMax() & Mask;
394   }
395 }
396 
397 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
398   SmallVector<const Value *, 16> WorkSet(1, I);
399   SmallPtrSet<const Value *, 32> Visited;
400   SmallPtrSet<const Value *, 16> EphValues;
401 
402   // The instruction defining an assumption's condition itself is always
403   // considered ephemeral to that assumption (even if it has other
404   // non-ephemeral users). See r246696's test case for an example.
405   if (is_contained(I->operands(), E))
406     return true;
407 
408   while (!WorkSet.empty()) {
409     const Value *V = WorkSet.pop_back_val();
410     if (!Visited.insert(V).second)
411       continue;
412 
413     // If all uses of this value are ephemeral, then so is this value.
414     if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) {
415       if (V == E)
416         return true;
417 
418       EphValues.insert(V);
419       if (const User *U = dyn_cast<User>(V))
420         for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
421              J != JE; ++J) {
422           if (isSafeToSpeculativelyExecute(*J))
423             WorkSet.push_back(*J);
424         }
425     }
426   }
427 
428   return false;
429 }
430 
431 // Is this an intrinsic that cannot be speculated but also cannot trap?
432 static bool isAssumeLikeIntrinsic(const Instruction *I) {
433   if (const CallInst *CI = dyn_cast<CallInst>(I))
434     if (Function *F = CI->getCalledFunction())
435       switch (F->getIntrinsicID()) {
436       default: break;
437       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
438       case Intrinsic::assume:
439       case Intrinsic::dbg_declare:
440       case Intrinsic::dbg_value:
441       case Intrinsic::invariant_start:
442       case Intrinsic::invariant_end:
443       case Intrinsic::lifetime_start:
444       case Intrinsic::lifetime_end:
445       case Intrinsic::objectsize:
446       case Intrinsic::ptr_annotation:
447       case Intrinsic::var_annotation:
448         return true;
449       }
450 
451   return false;
452 }
453 
454 bool llvm::isValidAssumeForContext(const Instruction *Inv,
455                                    const Instruction *CxtI,
456                                    const DominatorTree *DT) {
457 
458   // There are two restrictions on the use of an assume:
459   //  1. The assume must dominate the context (or the control flow must
460   //     reach the assume whenever it reaches the context).
461   //  2. The context must not be in the assume's set of ephemeral values
462   //     (otherwise we will use the assume to prove that the condition
463   //     feeding the assume is trivially true, thus causing the removal of
464   //     the assume).
465 
466   if (DT) {
467     if (DT->dominates(Inv, CxtI))
468       return true;
469   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
470     // We don't have a DT, but this trivially dominates.
471     return true;
472   }
473 
474   // With or without a DT, the only remaining case we will check is if the
475   // instructions are in the same BB.  Give up if that is not the case.
476   if (Inv->getParent() != CxtI->getParent())
477     return false;
478 
479   // If we have a dom tree, then we now know that the assume doens't dominate
480   // the other instruction.  If we don't have a dom tree then we can check if
481   // the assume is first in the BB.
482   if (!DT) {
483     // Search forward from the assume until we reach the context (or the end
484     // of the block); the common case is that the assume will come first.
485     for (auto I = std::next(BasicBlock::const_iterator(Inv)),
486          IE = Inv->getParent()->end(); I != IE; ++I)
487       if (&*I == CxtI)
488         return true;
489   }
490 
491   // The context comes first, but they're both in the same block. Make sure
492   // there is nothing in between that might interrupt the control flow.
493   for (BasicBlock::const_iterator I =
494          std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
495        I != IE; ++I)
496     if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
497       return false;
498 
499   return !isEphemeralValueOf(Inv, CxtI);
500 }
501 
502 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero,
503                                        APInt &KnownOne, unsigned Depth,
504                                        const Query &Q) {
505   // Use of assumptions is context-sensitive. If we don't have a context, we
506   // cannot use them!
507   if (!Q.AC || !Q.CxtI)
508     return;
509 
510   unsigned BitWidth = KnownZero.getBitWidth();
511 
512   // Note that the patterns below need to be kept in sync with the code
513   // in AssumptionCache::updateAffectedValues.
514 
515   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
516     if (!AssumeVH)
517       continue;
518     CallInst *I = cast<CallInst>(AssumeVH);
519     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
520            "Got assumption for the wrong function!");
521     if (Q.isExcluded(I))
522       continue;
523 
524     // Warning: This loop can end up being somewhat performance sensetive.
525     // We're running this loop for once for each value queried resulting in a
526     // runtime of ~O(#assumes * #values).
527 
528     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
529            "must be an assume intrinsic");
530 
531     Value *Arg = I->getArgOperand(0);
532 
533     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
534       assert(BitWidth == 1 && "assume operand is not i1?");
535       KnownZero.clearAllBits();
536       KnownOne.setAllBits();
537       return;
538     }
539     if (match(Arg, m_Not(m_Specific(V))) &&
540         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
541       assert(BitWidth == 1 && "assume operand is not i1?");
542       KnownZero.setAllBits();
543       KnownOne.clearAllBits();
544       return;
545     }
546 
547     // The remaining tests are all recursive, so bail out if we hit the limit.
548     if (Depth == MaxDepth)
549       continue;
550 
551     Value *A, *B;
552     auto m_V = m_CombineOr(m_Specific(V),
553                            m_CombineOr(m_PtrToInt(m_Specific(V)),
554                            m_BitCast(m_Specific(V))));
555 
556     CmpInst::Predicate Pred;
557     ConstantInt *C;
558     // assume(v = a)
559     if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
560         Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
561       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
562       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
563       KnownZero |= RHSKnownZero;
564       KnownOne  |= RHSKnownOne;
565     // assume(v & b = a)
566     } else if (match(Arg,
567                      m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
568                Pred == ICmpInst::ICMP_EQ &&
569                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
570       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
571       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
572       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
573       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
574 
575       // For those bits in the mask that are known to be one, we can propagate
576       // known bits from the RHS to V.
577       KnownZero |= RHSKnownZero & MaskKnownOne;
578       KnownOne  |= RHSKnownOne  & MaskKnownOne;
579     // assume(~(v & b) = a)
580     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
581                                    m_Value(A))) &&
582                Pred == ICmpInst::ICMP_EQ &&
583                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
584       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
585       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
586       APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0);
587       computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I));
588 
589       // For those bits in the mask that are known to be one, we can propagate
590       // inverted known bits from the RHS to V.
591       KnownZero |= RHSKnownOne  & MaskKnownOne;
592       KnownOne  |= RHSKnownZero & MaskKnownOne;
593     // assume(v | b = a)
594     } else if (match(Arg,
595                      m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
596                Pred == ICmpInst::ICMP_EQ &&
597                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
598       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
599       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
600       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
601       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
602 
603       // For those bits in B that are known to be zero, we can propagate known
604       // bits from the RHS to V.
605       KnownZero |= RHSKnownZero & BKnownZero;
606       KnownOne  |= RHSKnownOne  & BKnownZero;
607     // assume(~(v | b) = a)
608     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
609                                    m_Value(A))) &&
610                Pred == ICmpInst::ICMP_EQ &&
611                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
612       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
613       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
614       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
615       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
616 
617       // For those bits in B that are known to be zero, we can propagate
618       // inverted known bits from the RHS to V.
619       KnownZero |= RHSKnownOne  & BKnownZero;
620       KnownOne  |= RHSKnownZero & BKnownZero;
621     // assume(v ^ b = a)
622     } else if (match(Arg,
623                      m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
624                Pred == ICmpInst::ICMP_EQ &&
625                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
626       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
627       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
628       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
629       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
630 
631       // For those bits in B that are known to be zero, we can propagate known
632       // bits from the RHS to V. For those bits in B that are known to be one,
633       // we can propagate inverted known bits from the RHS to V.
634       KnownZero |= RHSKnownZero & BKnownZero;
635       KnownOne  |= RHSKnownOne  & BKnownZero;
636       KnownZero |= RHSKnownOne  & BKnownOne;
637       KnownOne  |= RHSKnownZero & BKnownOne;
638     // assume(~(v ^ b) = a)
639     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
640                                    m_Value(A))) &&
641                Pred == ICmpInst::ICMP_EQ &&
642                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
643       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
644       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
645       APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0);
646       computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I));
647 
648       // For those bits in B that are known to be zero, we can propagate
649       // inverted known bits from the RHS to V. For those bits in B that are
650       // known to be one, we can propagate known bits from the RHS to V.
651       KnownZero |= RHSKnownOne  & BKnownZero;
652       KnownOne  |= RHSKnownZero & BKnownZero;
653       KnownZero |= RHSKnownZero & BKnownOne;
654       KnownOne  |= RHSKnownOne  & BKnownOne;
655     // assume(v << c = a)
656     } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
657                                    m_Value(A))) &&
658                Pred == ICmpInst::ICMP_EQ &&
659                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
660       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
661       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
662       // For those bits in RHS that are known, we can propagate them to known
663       // bits in V shifted to the right by C.
664       RHSKnownZero.lshrInPlace(C->getZExtValue());
665       KnownZero |= RHSKnownZero;
666       RHSKnownOne.lshrInPlace(C->getZExtValue());
667       KnownOne  |= RHSKnownOne;
668     // assume(~(v << c) = a)
669     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
670                                    m_Value(A))) &&
671                Pred == ICmpInst::ICMP_EQ &&
672                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
673       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
674       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
675       // For those bits in RHS that are known, we can propagate them inverted
676       // to known bits in V shifted to the right by C.
677       RHSKnownOne.lshrInPlace(C->getZExtValue());
678       KnownZero |= RHSKnownOne;
679       RHSKnownZero.lshrInPlace(C->getZExtValue());
680       KnownOne  |= RHSKnownZero;
681     // assume(v >> c = a)
682     } else if (match(Arg,
683                      m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)),
684                                                 m_AShr(m_V, m_ConstantInt(C))),
685                               m_Value(A))) &&
686                Pred == ICmpInst::ICMP_EQ &&
687                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
688       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
689       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
690       // For those bits in RHS that are known, we can propagate them to known
691       // bits in V shifted to the right by C.
692       KnownZero |= RHSKnownZero << C->getZExtValue();
693       KnownOne  |= RHSKnownOne  << C->getZExtValue();
694     // assume(~(v >> c) = a)
695     } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr(
696                                              m_LShr(m_V, m_ConstantInt(C)),
697                                              m_AShr(m_V, m_ConstantInt(C)))),
698                                    m_Value(A))) &&
699                Pred == ICmpInst::ICMP_EQ &&
700                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
701       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
702       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
703       // For those bits in RHS that are known, we can propagate them inverted
704       // to known bits in V shifted to the right by C.
705       KnownZero |= RHSKnownOne  << C->getZExtValue();
706       KnownOne  |= RHSKnownZero << C->getZExtValue();
707     // assume(v >=_s c) where c is non-negative
708     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
709                Pred == ICmpInst::ICMP_SGE &&
710                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
711       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
712       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
713 
714       if (RHSKnownZero.isSignBitSet()) {
715         // We know that the sign bit is zero.
716         KnownZero.setSignBit();
717       }
718     // assume(v >_s c) where c is at least -1.
719     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
720                Pred == ICmpInst::ICMP_SGT &&
721                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
722       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
723       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
724 
725       if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isSignBitSet()) {
726         // We know that the sign bit is zero.
727         KnownZero.setSignBit();
728       }
729     // assume(v <=_s c) where c is negative
730     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
731                Pred == ICmpInst::ICMP_SLE &&
732                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
733       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
734       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
735 
736       if (RHSKnownOne.isSignBitSet()) {
737         // We know that the sign bit is one.
738         KnownOne.setSignBit();
739       }
740     // assume(v <_s c) where c is non-positive
741     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
742                Pred == ICmpInst::ICMP_SLT &&
743                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
744       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
745       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
746 
747       if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isSignBitSet()) {
748         // We know that the sign bit is one.
749         KnownOne.setSignBit();
750       }
751     // assume(v <=_u c)
752     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
753                Pred == ICmpInst::ICMP_ULE &&
754                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
755       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
756       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
757 
758       // Whatever high bits in c are zero are known to be zero.
759       KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
760     // assume(v <_u c)
761     } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
762                Pred == ICmpInst::ICMP_ULT &&
763                isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
764       APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0);
765       computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I));
766 
767       // Whatever high bits in c are zero are known to be zero (if c is a power
768       // of 2, then one more).
769       if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
770         KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()+1);
771       else
772         KnownZero.setHighBits(RHSKnownZero.countLeadingOnes());
773     }
774   }
775 
776   // If assumptions conflict with each other or previous known bits, then we
777   // have a logical fallacy. It's possible that the assumption is not reachable,
778   // so this isn't a real bug. On the other hand, the program may have undefined
779   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
780   // clear out the known bits, try to warn the user, and hope for the best.
781   if ((KnownZero & KnownOne) != 0) {
782     KnownZero.clearAllBits();
783     KnownOne.clearAllBits();
784 
785     if (Q.ORE) {
786       auto *CxtI = const_cast<Instruction *>(Q.CxtI);
787       OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI);
788       Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may "
789                          "have undefined behavior, or compiler may have "
790                          "internal error.");
791     }
792   }
793 }
794 
795 // Compute known bits from a shift operator, including those with a
796 // non-constant shift amount. KnownZero and KnownOne are the outputs of this
797 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the
798 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific
799 // functors that, given the known-zero or known-one bits respectively, and a
800 // shift amount, compute the implied known-zero or known-one bits of the shift
801 // operator's result respectively for that shift amount. The results from calling
802 // KZF and KOF are conservatively combined for all permitted shift amounts.
803 static void computeKnownBitsFromShiftOperator(
804     const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2,
805     APInt &KnownOne2, unsigned Depth, const Query &Q,
806     function_ref<APInt(const APInt &, unsigned)> KZF,
807     function_ref<APInt(const APInt &, unsigned)> KOF) {
808   unsigned BitWidth = KnownZero.getBitWidth();
809 
810   if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
811     unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
812 
813     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
814     KnownZero = KZF(KnownZero, ShiftAmt);
815     KnownOne  = KOF(KnownOne, ShiftAmt);
816     // If there is conflict between KnownZero and KnownOne, this must be an
817     // overflowing left shift, so the shift result is undefined. Clear KnownZero
818     // and KnownOne bits so that other code could propagate this undef.
819     if ((KnownZero & KnownOne) != 0) {
820       KnownZero.clearAllBits();
821       KnownOne.clearAllBits();
822     }
823 
824     return;
825   }
826 
827   computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
828 
829   // If the shift amount could be greater than or equal to the bit-width of the LHS, the
830   // value could be undef, so we don't know anything about it.
831   if ((~KnownZero).uge(BitWidth)) {
832     KnownZero.clearAllBits();
833     KnownOne.clearAllBits();
834     return;
835   }
836 
837   // Note: We cannot use KnownZero.getLimitedValue() here, because if
838   // BitWidth > 64 and any upper bits are known, we'll end up returning the
839   // limit value (which implies all bits are known).
840   uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue();
841   uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue();
842 
843   // It would be more-clearly correct to use the two temporaries for this
844   // calculation. Reusing the APInts here to prevent unnecessary allocations.
845   KnownZero.clearAllBits();
846   KnownOne.clearAllBits();
847 
848   // If we know the shifter operand is nonzero, we can sometimes infer more
849   // known bits. However this is expensive to compute, so be lazy about it and
850   // only compute it when absolutely necessary.
851   Optional<bool> ShifterOperandIsNonZero;
852 
853   // Early exit if we can't constrain any well-defined shift amount.
854   if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) {
855     ShifterOperandIsNonZero =
856         isKnownNonZero(I->getOperand(1), Depth + 1, Q);
857     if (!*ShifterOperandIsNonZero)
858       return;
859   }
860 
861   computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
862 
863   KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth);
864   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
865     // Combine the shifted known input bits only for those shift amounts
866     // compatible with its known constraints.
867     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
868       continue;
869     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
870       continue;
871     // If we know the shifter is nonzero, we may be able to infer more known
872     // bits. This check is sunk down as far as possible to avoid the expensive
873     // call to isKnownNonZero if the cheaper checks above fail.
874     if (ShiftAmt == 0) {
875       if (!ShifterOperandIsNonZero.hasValue())
876         ShifterOperandIsNonZero =
877             isKnownNonZero(I->getOperand(1), Depth + 1, Q);
878       if (*ShifterOperandIsNonZero)
879         continue;
880     }
881 
882     KnownZero &= KZF(KnownZero2, ShiftAmt);
883     KnownOne  &= KOF(KnownOne2, ShiftAmt);
884   }
885 
886   // If there are no compatible shift amounts, then we've proven that the shift
887   // amount must be >= the BitWidth, and the result is undefined. We could
888   // return anything we'd like, but we need to make sure the sets of known bits
889   // stay disjoint (it should be better for some other code to actually
890   // propagate the undef than to pick a value here using known bits).
891   if ((KnownZero & KnownOne) != 0) {
892     KnownZero.clearAllBits();
893     KnownOne.clearAllBits();
894   }
895 }
896 
897 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero,
898                                          APInt &KnownOne, unsigned Depth,
899                                          const Query &Q) {
900   unsigned BitWidth = KnownZero.getBitWidth();
901 
902   APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
903   switch (I->getOpcode()) {
904   default: break;
905   case Instruction::Load:
906     if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range))
907       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
908     break;
909   case Instruction::And: {
910     // If either the LHS or the RHS are Zero, the result is zero.
911     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
912     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
913 
914     // Output known-1 bits are only known if set in both the LHS & RHS.
915     KnownOne &= KnownOne2;
916     // Output known-0 are known to be clear if zero in either the LHS | RHS.
917     KnownZero |= KnownZero2;
918 
919     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
920     // here we handle the more general case of adding any odd number by
921     // matching the form add(x, add(x, y)) where y is odd.
922     // TODO: This could be generalized to clearing any bit set in y where the
923     // following bit is known to be unset in y.
924     Value *Y = nullptr;
925     if (!KnownZero[0] && !KnownOne[0] &&
926         (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)),
927                                        m_Value(Y))) ||
928          match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)),
929                                        m_Value(Y))))) {
930       KnownZero2.clearAllBits(); KnownOne2.clearAllBits();
931       computeKnownBits(Y, KnownZero2, KnownOne2, Depth + 1, Q);
932       if (KnownOne2.countTrailingOnes() > 0)
933         KnownZero.setBit(0);
934     }
935     break;
936   }
937   case Instruction::Or: {
938     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
939     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
940 
941     // Output known-0 bits are only known if clear in both the LHS & RHS.
942     KnownZero &= KnownZero2;
943     // Output known-1 are known to be set if set in either the LHS | RHS.
944     KnownOne |= KnownOne2;
945     break;
946   }
947   case Instruction::Xor: {
948     computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
949     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
950 
951     // Output known-0 bits are known if clear or set in both the LHS & RHS.
952     APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
953     // Output known-1 are known to be set if set in only one of the LHS, RHS.
954     KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
955     KnownZero = std::move(KnownZeroOut);
956     break;
957   }
958   case Instruction::Mul: {
959     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
960     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero,
961                         KnownOne, KnownZero2, KnownOne2, Depth, Q);
962     break;
963   }
964   case Instruction::UDiv: {
965     // For the purposes of computing leading zeros we can conservatively
966     // treat a udiv as a logical right shift by the power of 2 known to
967     // be less than the denominator.
968     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
969     unsigned LeadZ = KnownZero2.countLeadingOnes();
970 
971     KnownOne2.clearAllBits();
972     KnownZero2.clearAllBits();
973     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
974     unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
975     if (RHSUnknownLeadingOnes != BitWidth)
976       LeadZ = std::min(BitWidth,
977                        LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
978 
979     KnownZero.setHighBits(LeadZ);
980     break;
981   }
982   case Instruction::Select: {
983     const Value *LHS, *RHS;
984     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
985     if (SelectPatternResult::isMinOrMax(SPF)) {
986       computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q);
987       computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q);
988     } else {
989       computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q);
990       computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
991     }
992 
993     unsigned MaxHighOnes = 0;
994     unsigned MaxHighZeros = 0;
995     if (SPF == SPF_SMAX) {
996       // If both sides are negative, the result is negative.
997       if (KnownOne.isSignBitSet() && KnownOne2.isSignBitSet())
998         // We can derive a lower bound on the result by taking the max of the
999         // leading one bits.
1000         MaxHighOnes =
1001             std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1002       // If either side is non-negative, the result is non-negative.
1003       else if (KnownZero.isSignBitSet() || KnownZero2.isSignBitSet())
1004         MaxHighZeros = 1;
1005     } else if (SPF == SPF_SMIN) {
1006       // If both sides are non-negative, the result is non-negative.
1007       if (KnownZero.isSignBitSet() && KnownZero2.isSignBitSet())
1008         // We can derive an upper bound on the result by taking the max of the
1009         // leading zero bits.
1010         MaxHighZeros = std::max(KnownZero.countLeadingOnes(),
1011                                 KnownZero2.countLeadingOnes());
1012       // If either side is negative, the result is negative.
1013       else if (KnownOne.isSignBitSet() || KnownOne2.isSignBitSet())
1014         MaxHighOnes = 1;
1015     } else if (SPF == SPF_UMAX) {
1016       // We can derive a lower bound on the result by taking the max of the
1017       // leading one bits.
1018       MaxHighOnes =
1019           std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes());
1020     } else if (SPF == SPF_UMIN) {
1021       // We can derive an upper bound on the result by taking the max of the
1022       // leading zero bits.
1023       MaxHighZeros =
1024           std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes());
1025     }
1026 
1027     // Only known if known in both the LHS and RHS.
1028     KnownOne &= KnownOne2;
1029     KnownZero &= KnownZero2;
1030     if (MaxHighOnes > 0)
1031       KnownOne.setHighBits(MaxHighOnes);
1032     if (MaxHighZeros > 0)
1033       KnownZero.setHighBits(MaxHighZeros);
1034     break;
1035   }
1036   case Instruction::FPTrunc:
1037   case Instruction::FPExt:
1038   case Instruction::FPToUI:
1039   case Instruction::FPToSI:
1040   case Instruction::SIToFP:
1041   case Instruction::UIToFP:
1042     break; // Can't work with floating point.
1043   case Instruction::PtrToInt:
1044   case Instruction::IntToPtr:
1045     // Fall through and handle them the same as zext/trunc.
1046     LLVM_FALLTHROUGH;
1047   case Instruction::ZExt:
1048   case Instruction::Trunc: {
1049     Type *SrcTy = I->getOperand(0)->getType();
1050 
1051     unsigned SrcBitWidth;
1052     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1053     // which fall through here.
1054     SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType());
1055 
1056     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1057     KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
1058     KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
1059     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1060     KnownZero = KnownZero.zextOrTrunc(BitWidth);
1061     KnownOne = KnownOne.zextOrTrunc(BitWidth);
1062     // Any top bits are known to be zero.
1063     if (BitWidth > SrcBitWidth)
1064       KnownZero.setBitsFrom(SrcBitWidth);
1065     break;
1066   }
1067   case Instruction::BitCast: {
1068     Type *SrcTy = I->getOperand(0)->getType();
1069     if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
1070         // TODO: For now, not handling conversions like:
1071         // (bitcast i64 %x to <2 x i32>)
1072         !I->getType()->isVectorTy()) {
1073       computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1074       break;
1075     }
1076     break;
1077   }
1078   case Instruction::SExt: {
1079     // Compute the bits in the result that are not present in the input.
1080     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1081 
1082     KnownZero = KnownZero.trunc(SrcBitWidth);
1083     KnownOne = KnownOne.trunc(SrcBitWidth);
1084     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1085     // If the sign bit of the input is known set or clear, then we know the
1086     // top bits of the result.
1087     KnownZero = KnownZero.sext(BitWidth);
1088     KnownOne = KnownOne.sext(BitWidth);
1089     break;
1090   }
1091   case Instruction::Shl: {
1092     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1093     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1094     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1095       APInt KZResult = KnownZero << ShiftAmt;
1096       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1097       // If this shift has "nsw" keyword, then the result is either a poison
1098       // value or has the same sign bit as the first operand.
1099       if (NSW && KnownZero.isSignBitSet())
1100         KZResult.setSignBit();
1101       return KZResult;
1102     };
1103 
1104     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1105       APInt KOResult = KnownOne << ShiftAmt;
1106       if (NSW && KnownOne.isSignBitSet())
1107         KOResult.setSignBit();
1108       return KOResult;
1109     };
1110 
1111     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1112                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1113                                       KOF);
1114     break;
1115   }
1116   case Instruction::LShr: {
1117     // (ushr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1118     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1119       APInt KZResult = KnownZero.lshr(ShiftAmt);
1120       // High bits known zero.
1121       KZResult.setHighBits(ShiftAmt);
1122       return KZResult;
1123     };
1124 
1125     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1126       return KnownOne.lshr(ShiftAmt);
1127     };
1128 
1129     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1130                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1131                                       KOF);
1132     break;
1133   }
1134   case Instruction::AShr: {
1135     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1136     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1137       return KnownZero.ashr(ShiftAmt);
1138     };
1139 
1140     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1141       return KnownOne.ashr(ShiftAmt);
1142     };
1143 
1144     computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne,
1145                                       KnownZero2, KnownOne2, Depth, Q, KZF,
1146                                       KOF);
1147     break;
1148   }
1149   case Instruction::Sub: {
1150     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1151     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1152                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1153                            Q);
1154     break;
1155   }
1156   case Instruction::Add: {
1157     bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
1158     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1159                            KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1160                            Q);
1161     break;
1162   }
1163   case Instruction::SRem:
1164     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1165       APInt RA = Rem->getValue().abs();
1166       if (RA.isPowerOf2()) {
1167         APInt LowBits = RA - 1;
1168         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1,
1169                          Q);
1170 
1171         // The low bits of the first operand are unchanged by the srem.
1172         KnownZero = KnownZero2 & LowBits;
1173         KnownOne = KnownOne2 & LowBits;
1174 
1175         // If the first operand is non-negative or has all low bits zero, then
1176         // the upper bits are all zero.
1177         if (KnownZero2.isSignBitSet() || ((KnownZero2 & LowBits) == LowBits))
1178           KnownZero |= ~LowBits;
1179 
1180         // If the first operand is negative and not all low bits are zero, then
1181         // the upper bits are all one.
1182         if (KnownOne2.isSignBitSet() && ((KnownOne2 & LowBits) != 0))
1183           KnownOne |= ~LowBits;
1184 
1185         assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1186         break;
1187       }
1188     }
1189 
1190     // The sign bit is the LHS's sign bit, except when the result of the
1191     // remainder is zero.
1192     computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1193     // If it's known zero, our sign bit is also zero.
1194     if (KnownZero2.isSignBitSet())
1195       KnownZero.setSignBit();
1196 
1197     break;
1198   case Instruction::URem: {
1199     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1200       const APInt &RA = Rem->getValue();
1201       if (RA.isPowerOf2()) {
1202         APInt LowBits = (RA - 1);
1203         computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1204         KnownZero |= ~LowBits;
1205         KnownOne &= LowBits;
1206         break;
1207       }
1208     }
1209 
1210     // Since the result is less than or equal to either operand, any leading
1211     // zero bits in either operand must also exist in the result.
1212     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1213     computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q);
1214 
1215     unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
1216                                 KnownZero2.countLeadingOnes());
1217     KnownOne.clearAllBits();
1218     KnownZero.clearAllBits();
1219     KnownZero.setHighBits(Leaders);
1220     break;
1221   }
1222 
1223   case Instruction::Alloca: {
1224     const AllocaInst *AI = cast<AllocaInst>(I);
1225     unsigned Align = AI->getAlignment();
1226     if (Align == 0)
1227       Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
1228 
1229     if (Align > 0)
1230       KnownZero.setLowBits(countTrailingZeros(Align));
1231     break;
1232   }
1233   case Instruction::GetElementPtr: {
1234     // Analyze all of the subscripts of this getelementptr instruction
1235     // to determine if we can prove known low zero bits.
1236     APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
1237     computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1,
1238                      Q);
1239     unsigned TrailZ = LocalKnownZero.countTrailingOnes();
1240 
1241     gep_type_iterator GTI = gep_type_begin(I);
1242     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1243       Value *Index = I->getOperand(i);
1244       if (StructType *STy = GTI.getStructTypeOrNull()) {
1245         // Handle struct member offset arithmetic.
1246 
1247         // Handle case when index is vector zeroinitializer
1248         Constant *CIndex = cast<Constant>(Index);
1249         if (CIndex->isZeroValue())
1250           continue;
1251 
1252         if (CIndex->getType()->isVectorTy())
1253           Index = CIndex->getSplatValue();
1254 
1255         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1256         const StructLayout *SL = Q.DL.getStructLayout(STy);
1257         uint64_t Offset = SL->getElementOffset(Idx);
1258         TrailZ = std::min<unsigned>(TrailZ,
1259                                     countTrailingZeros(Offset));
1260       } else {
1261         // Handle array index arithmetic.
1262         Type *IndexedTy = GTI.getIndexedType();
1263         if (!IndexedTy->isSized()) {
1264           TrailZ = 0;
1265           break;
1266         }
1267         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1268         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
1269         LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
1270         computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q);
1271         TrailZ = std::min(TrailZ,
1272                           unsigned(countTrailingZeros(TypeSize) +
1273                                    LocalKnownZero.countTrailingOnes()));
1274       }
1275     }
1276 
1277     KnownZero.setLowBits(TrailZ);
1278     break;
1279   }
1280   case Instruction::PHI: {
1281     const PHINode *P = cast<PHINode>(I);
1282     // Handle the case of a simple two-predecessor recurrence PHI.
1283     // There's a lot more that could theoretically be done here, but
1284     // this is sufficient to catch some interesting cases.
1285     if (P->getNumIncomingValues() == 2) {
1286       for (unsigned i = 0; i != 2; ++i) {
1287         Value *L = P->getIncomingValue(i);
1288         Value *R = P->getIncomingValue(!i);
1289         Operator *LU = dyn_cast<Operator>(L);
1290         if (!LU)
1291           continue;
1292         unsigned Opcode = LU->getOpcode();
1293         // Check for operations that have the property that if
1294         // both their operands have low zero bits, the result
1295         // will have low zero bits.
1296         if (Opcode == Instruction::Add ||
1297             Opcode == Instruction::Sub ||
1298             Opcode == Instruction::And ||
1299             Opcode == Instruction::Or ||
1300             Opcode == Instruction::Mul) {
1301           Value *LL = LU->getOperand(0);
1302           Value *LR = LU->getOperand(1);
1303           // Find a recurrence.
1304           if (LL == I)
1305             L = LR;
1306           else if (LR == I)
1307             L = LL;
1308           else
1309             break;
1310           // Ok, we have a PHI of the form L op= R. Check for low
1311           // zero bits.
1312           computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q);
1313 
1314           // We need to take the minimum number of known bits
1315           APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
1316           computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q);
1317 
1318           KnownZero.setLowBits(std::min(KnownZero2.countTrailingOnes(),
1319                                         KnownZero3.countTrailingOnes()));
1320 
1321           if (DontImproveNonNegativePhiBits)
1322             break;
1323 
1324           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1325           if (OverflowOp && OverflowOp->hasNoSignedWrap()) {
1326             // If initial value of recurrence is nonnegative, and we are adding
1327             // a nonnegative number with nsw, the result can only be nonnegative
1328             // or poison value regardless of the number of times we execute the
1329             // add in phi recurrence. If initial value is negative and we are
1330             // adding a negative number with nsw, the result can only be
1331             // negative or poison value. Similar arguments apply to sub and mul.
1332             //
1333             // (add non-negative, non-negative) --> non-negative
1334             // (add negative, negative) --> negative
1335             if (Opcode == Instruction::Add) {
1336               if (KnownZero2.isSignBitSet() && KnownZero3.isSignBitSet())
1337                 KnownZero.setSignBit();
1338               else if (KnownOne2.isSignBitSet() && KnownOne3.isSignBitSet())
1339                 KnownOne.setSignBit();
1340             }
1341 
1342             // (sub nsw non-negative, negative) --> non-negative
1343             // (sub nsw negative, non-negative) --> negative
1344             else if (Opcode == Instruction::Sub && LL == I) {
1345               if (KnownZero2.isSignBitSet() && KnownOne3.isSignBitSet())
1346                 KnownZero.setSignBit();
1347               else if (KnownOne2.isSignBitSet() && KnownZero3.isSignBitSet())
1348                 KnownOne.setSignBit();
1349             }
1350 
1351             // (mul nsw non-negative, non-negative) --> non-negative
1352             else if (Opcode == Instruction::Mul && KnownZero2.isSignBitSet() &&
1353                      KnownZero3.isSignBitSet())
1354               KnownZero.setSignBit();
1355           }
1356 
1357           break;
1358         }
1359       }
1360     }
1361 
1362     // Unreachable blocks may have zero-operand PHI nodes.
1363     if (P->getNumIncomingValues() == 0)
1364       break;
1365 
1366     // Otherwise take the unions of the known bit sets of the operands,
1367     // taking conservative care to avoid excessive recursion.
1368     if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
1369       // Skip if every incoming value references to ourself.
1370       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1371         break;
1372 
1373       KnownZero.setAllBits();
1374       KnownOne.setAllBits();
1375       for (Value *IncValue : P->incoming_values()) {
1376         // Skip direct self references.
1377         if (IncValue == P) continue;
1378 
1379         KnownZero2 = APInt(BitWidth, 0);
1380         KnownOne2 = APInt(BitWidth, 0);
1381         // Recurse, but cap the recursion to one level, because we don't
1382         // want to waste time spinning around in loops.
1383         computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q);
1384         KnownZero &= KnownZero2;
1385         KnownOne &= KnownOne2;
1386         // If all bits have been ruled out, there's no need to check
1387         // more operands.
1388         if (!KnownZero && !KnownOne)
1389           break;
1390       }
1391     }
1392     break;
1393   }
1394   case Instruction::Call:
1395   case Instruction::Invoke:
1396     // If range metadata is attached to this call, set known bits from that,
1397     // and then intersect with known bits based on other properties of the
1398     // function.
1399     if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range))
1400       computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne);
1401     if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
1402       computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q);
1403       KnownZero |= KnownZero2;
1404       KnownOne |= KnownOne2;
1405     }
1406     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1407       switch (II->getIntrinsicID()) {
1408       default: break;
1409       case Intrinsic::bitreverse:
1410         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1411         KnownZero |= KnownZero2.reverseBits();
1412         KnownOne |= KnownOne2.reverseBits();
1413         break;
1414       case Intrinsic::bswap:
1415         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1416         KnownZero |= KnownZero2.byteSwap();
1417         KnownOne |= KnownOne2.byteSwap();
1418         break;
1419       case Intrinsic::ctlz:
1420       case Intrinsic::cttz: {
1421         unsigned LowBits = Log2_32(BitWidth)+1;
1422         // If this call is undefined for 0, the result will be less than 2^n.
1423         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1424           LowBits -= 1;
1425         KnownZero.setBitsFrom(LowBits);
1426         break;
1427       }
1428       case Intrinsic::ctpop: {
1429         computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q);
1430         // We can bound the space the count needs.  Also, bits known to be zero
1431         // can't contribute to the population.
1432         unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation();
1433         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1434         KnownZero.setBitsFrom(LowBits);
1435         // TODO: we could bound KnownOne using the lower bound on the number
1436         // of bits which might be set provided by popcnt KnownOne2.
1437         break;
1438       }
1439       case Intrinsic::x86_sse42_crc32_64_64:
1440         KnownZero.setBitsFrom(32);
1441         break;
1442       }
1443     }
1444     break;
1445   case Instruction::ExtractElement:
1446     // Look through extract element. At the moment we keep this simple and skip
1447     // tracking the specific element. But at least we might find information
1448     // valid for all elements of the vector (for example if vector is sign
1449     // extended, shifted, etc).
1450     computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
1451     break;
1452   case Instruction::ExtractValue:
1453     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1454       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1455       if (EVI->getNumIndices() != 1) break;
1456       if (EVI->getIndices()[0] == 0) {
1457         switch (II->getIntrinsicID()) {
1458         default: break;
1459         case Intrinsic::uadd_with_overflow:
1460         case Intrinsic::sadd_with_overflow:
1461           computeKnownBitsAddSub(true, II->getArgOperand(0),
1462                                  II->getArgOperand(1), false, KnownZero,
1463                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1464           break;
1465         case Intrinsic::usub_with_overflow:
1466         case Intrinsic::ssub_with_overflow:
1467           computeKnownBitsAddSub(false, II->getArgOperand(0),
1468                                  II->getArgOperand(1), false, KnownZero,
1469                                  KnownOne, KnownZero2, KnownOne2, Depth, Q);
1470           break;
1471         case Intrinsic::umul_with_overflow:
1472         case Intrinsic::smul_with_overflow:
1473           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1474                               KnownZero, KnownOne, KnownZero2, KnownOne2, Depth,
1475                               Q);
1476           break;
1477         }
1478       }
1479     }
1480   }
1481 }
1482 
1483 /// Determine which bits of V are known to be either zero or one and return
1484 /// them in the KnownZero/KnownOne bit sets.
1485 ///
1486 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1487 /// we cannot optimize based on the assumption that it is zero without changing
1488 /// it to be an explicit zero.  If we don't change it to zero, other code could
1489 /// optimized based on the contradictory assumption that it is non-zero.
1490 /// Because instcombine aggressively folds operations with undef args anyway,
1491 /// this won't lose us code quality.
1492 ///
1493 /// This function is defined on values with integer type, values with pointer
1494 /// type, and vectors of integers.  In the case
1495 /// where V is a vector, known zero, and known one values are the
1496 /// same width as the vector element, and the bit is set only if it is true
1497 /// for all of the elements in the vector.
1498 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne,
1499                       unsigned Depth, const Query &Q) {
1500   assert(V && "No Value?");
1501   assert(Depth <= MaxDepth && "Limit Search Depth");
1502   unsigned BitWidth = KnownZero.getBitWidth();
1503 
1504   assert((V->getType()->isIntOrIntVectorTy() ||
1505           V->getType()->getScalarType()->isPointerTy()) &&
1506          "Not integer or pointer type!");
1507   assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
1508          (!V->getType()->isIntOrIntVectorTy() ||
1509           V->getType()->getScalarSizeInBits() == BitWidth) &&
1510          KnownZero.getBitWidth() == BitWidth &&
1511          KnownOne.getBitWidth() == BitWidth &&
1512          "V, KnownOne and KnownZero should have same BitWidth");
1513   (void)BitWidth;
1514 
1515   const APInt *C;
1516   if (match(V, m_APInt(C))) {
1517     // We know all of the bits for a scalar constant or a splat vector constant!
1518     KnownOne = *C;
1519     KnownZero = ~KnownOne;
1520     return;
1521   }
1522   // Null and aggregate-zero are all-zeros.
1523   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1524     KnownOne.clearAllBits();
1525     KnownZero.setAllBits();
1526     return;
1527   }
1528   // Handle a constant vector by taking the intersection of the known bits of
1529   // each element.
1530   if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
1531     // We know that CDS must be a vector of integers. Take the intersection of
1532     // each element.
1533     KnownZero.setAllBits(); KnownOne.setAllBits();
1534     APInt Elt(KnownZero.getBitWidth(), 0);
1535     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1536       Elt = CDS->getElementAsInteger(i);
1537       KnownZero &= ~Elt;
1538       KnownOne &= Elt;
1539     }
1540     return;
1541   }
1542 
1543   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1544     // We know that CV must be a vector of integers. Take the intersection of
1545     // each element.
1546     KnownZero.setAllBits(); KnownOne.setAllBits();
1547     APInt Elt(KnownZero.getBitWidth(), 0);
1548     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1549       Constant *Element = CV->getAggregateElement(i);
1550       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1551       if (!ElementCI) {
1552         KnownZero.clearAllBits();
1553         KnownOne.clearAllBits();
1554         return;
1555       }
1556       Elt = ElementCI->getValue();
1557       KnownZero &= ~Elt;
1558       KnownOne &= Elt;
1559     }
1560     return;
1561   }
1562 
1563   // Start out not knowing anything.
1564   KnownZero.clearAllBits(); KnownOne.clearAllBits();
1565 
1566   // We can't imply anything about undefs.
1567   if (isa<UndefValue>(V))
1568     return;
1569 
1570   // There's no point in looking through other users of ConstantData for
1571   // assumptions.  Confirm that we've handled them all.
1572   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1573 
1574   // Limit search depth.
1575   // All recursive calls that increase depth must come after this.
1576   if (Depth == MaxDepth)
1577     return;
1578 
1579   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1580   // the bits of its aliasee.
1581   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1582     if (!GA->isInterposable())
1583       computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q);
1584     return;
1585   }
1586 
1587   if (const Operator *I = dyn_cast<Operator>(V))
1588     computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q);
1589 
1590   // Aligned pointers have trailing zeros - refine KnownZero set
1591   if (V->getType()->isPointerTy()) {
1592     unsigned Align = V->getPointerAlignment(Q.DL);
1593     if (Align)
1594       KnownZero.setLowBits(countTrailingZeros(Align));
1595   }
1596 
1597   // computeKnownBitsFromAssume strictly refines KnownZero and
1598   // KnownOne. Therefore, we run them after computeKnownBitsFromOperator.
1599 
1600   // Check whether a nearby assume intrinsic can determine some known bits.
1601   computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q);
1602 
1603   assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1604 }
1605 
1606 /// Determine whether the sign bit is known to be zero or one.
1607 /// Convenience wrapper around computeKnownBits.
1608 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne,
1609                     unsigned Depth, const Query &Q) {
1610   unsigned BitWidth = getBitWidth(V->getType(), Q.DL);
1611   if (!BitWidth) {
1612     KnownZero = false;
1613     KnownOne = false;
1614     return;
1615   }
1616   APInt ZeroBits(BitWidth, 0);
1617   APInt OneBits(BitWidth, 0);
1618   computeKnownBits(V, ZeroBits, OneBits, Depth, Q);
1619   KnownOne = OneBits.isSignBitSet();
1620   KnownZero = ZeroBits.isSignBitSet();
1621 }
1622 
1623 /// Return true if the given value is known to have exactly one
1624 /// bit set when defined. For vectors return true if every element is known to
1625 /// be a power of two when defined. Supports values with integer or pointer
1626 /// types and vectors of integers.
1627 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1628                             const Query &Q) {
1629   if (const Constant *C = dyn_cast<Constant>(V)) {
1630     if (C->isNullValue())
1631       return OrZero;
1632 
1633     const APInt *ConstIntOrConstSplatInt;
1634     if (match(C, m_APInt(ConstIntOrConstSplatInt)))
1635       return ConstIntOrConstSplatInt->isPowerOf2();
1636   }
1637 
1638   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1639   // it is shifted off the end then the result is undefined.
1640   if (match(V, m_Shl(m_One(), m_Value())))
1641     return true;
1642 
1643   // (signbit) >>l X is clearly a power of two if the one is not shifted off the
1644   // bottom.  If it is shifted off the bottom then the result is undefined.
1645   if (match(V, m_LShr(m_SignBit(), m_Value())))
1646     return true;
1647 
1648   // The remaining tests are all recursive, so bail out if we hit the limit.
1649   if (Depth++ == MaxDepth)
1650     return false;
1651 
1652   Value *X = nullptr, *Y = nullptr;
1653   // A shift left or a logical shift right of a power of two is a power of two
1654   // or zero.
1655   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
1656                  match(V, m_LShr(m_Value(X), m_Value()))))
1657     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
1658 
1659   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
1660     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
1661 
1662   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
1663     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
1664            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
1665 
1666   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
1667     // A power of two and'd with anything is a power of two or zero.
1668     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
1669         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
1670       return true;
1671     // X & (-X) is always a power of two or zero.
1672     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
1673       return true;
1674     return false;
1675   }
1676 
1677   // Adding a power-of-two or zero to the same power-of-two or zero yields
1678   // either the original power-of-two, a larger power-of-two or zero.
1679   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1680     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
1681     if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) {
1682       if (match(X, m_And(m_Specific(Y), m_Value())) ||
1683           match(X, m_And(m_Value(), m_Specific(Y))))
1684         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
1685           return true;
1686       if (match(Y, m_And(m_Specific(X), m_Value())) ||
1687           match(Y, m_And(m_Value(), m_Specific(X))))
1688         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
1689           return true;
1690 
1691       unsigned BitWidth = V->getType()->getScalarSizeInBits();
1692       APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0);
1693       computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q);
1694 
1695       APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0);
1696       computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q);
1697       // If i8 V is a power of two or zero:
1698       //  ZeroBits: 1 1 1 0 1 1 1 1
1699       // ~ZeroBits: 0 0 0 1 0 0 0 0
1700       if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2())
1701         // If OrZero isn't set, we cannot give back a zero result.
1702         // Make sure either the LHS or RHS has a bit set.
1703         if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue())
1704           return true;
1705     }
1706   }
1707 
1708   // An exact divide or right shift can only shift off zero bits, so the result
1709   // is a power of two only if the first operand is a power of two and not
1710   // copying a sign bit (sdiv int_min, 2).
1711   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
1712       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
1713     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
1714                                   Depth, Q);
1715   }
1716 
1717   return false;
1718 }
1719 
1720 /// \brief Test whether a GEP's result is known to be non-null.
1721 ///
1722 /// Uses properties inherent in a GEP to try to determine whether it is known
1723 /// to be non-null.
1724 ///
1725 /// Currently this routine does not support vector GEPs.
1726 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
1727                               const Query &Q) {
1728   if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0)
1729     return false;
1730 
1731   // FIXME: Support vector-GEPs.
1732   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
1733 
1734   // If the base pointer is non-null, we cannot walk to a null address with an
1735   // inbounds GEP in address space zero.
1736   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
1737     return true;
1738 
1739   // Walk the GEP operands and see if any operand introduces a non-zero offset.
1740   // If so, then the GEP cannot produce a null pointer, as doing so would
1741   // inherently violate the inbounds contract within address space zero.
1742   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
1743        GTI != GTE; ++GTI) {
1744     // Struct types are easy -- they must always be indexed by a constant.
1745     if (StructType *STy = GTI.getStructTypeOrNull()) {
1746       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
1747       unsigned ElementIdx = OpC->getZExtValue();
1748       const StructLayout *SL = Q.DL.getStructLayout(STy);
1749       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
1750       if (ElementOffset > 0)
1751         return true;
1752       continue;
1753     }
1754 
1755     // If we have a zero-sized type, the index doesn't matter. Keep looping.
1756     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
1757       continue;
1758 
1759     // Fast path the constant operand case both for efficiency and so we don't
1760     // increment Depth when just zipping down an all-constant GEP.
1761     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
1762       if (!OpC->isZero())
1763         return true;
1764       continue;
1765     }
1766 
1767     // We post-increment Depth here because while isKnownNonZero increments it
1768     // as well, when we pop back up that increment won't persist. We don't want
1769     // to recurse 10k times just because we have 10k GEP operands. We don't
1770     // bail completely out because we want to handle constant GEPs regardless
1771     // of depth.
1772     if (Depth++ >= MaxDepth)
1773       continue;
1774 
1775     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
1776       return true;
1777   }
1778 
1779   return false;
1780 }
1781 
1782 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
1783 /// ensure that the value it's attached to is never Value?  'RangeType' is
1784 /// is the type of the value described by the range.
1785 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
1786   const unsigned NumRanges = Ranges->getNumOperands() / 2;
1787   assert(NumRanges >= 1);
1788   for (unsigned i = 0; i < NumRanges; ++i) {
1789     ConstantInt *Lower =
1790         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
1791     ConstantInt *Upper =
1792         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
1793     ConstantRange Range(Lower->getValue(), Upper->getValue());
1794     if (Range.contains(Value))
1795       return false;
1796   }
1797   return true;
1798 }
1799 
1800 /// Return true if the given value is known to be non-zero when defined. For
1801 /// vectors, return true if every element is known to be non-zero when
1802 /// defined. For pointers, if the context instruction and dominator tree are
1803 /// specified, perform context-sensitive analysis and return true if the
1804 /// pointer couldn't possibly be null at the specified instruction.
1805 /// Supports values with integer or pointer type and vectors of integers.
1806 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
1807   if (auto *C = dyn_cast<Constant>(V)) {
1808     if (C->isNullValue())
1809       return false;
1810     if (isa<ConstantInt>(C))
1811       // Must be non-zero due to null test above.
1812       return true;
1813 
1814     // For constant vectors, check that all elements are undefined or known
1815     // non-zero to determine that the whole vector is known non-zero.
1816     if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
1817       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
1818         Constant *Elt = C->getAggregateElement(i);
1819         if (!Elt || Elt->isNullValue())
1820           return false;
1821         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
1822           return false;
1823       }
1824       return true;
1825     }
1826 
1827     return false;
1828   }
1829 
1830   if (auto *I = dyn_cast<Instruction>(V)) {
1831     if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) {
1832       // If the possible ranges don't contain zero, then the value is
1833       // definitely non-zero.
1834       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
1835         const APInt ZeroValue(Ty->getBitWidth(), 0);
1836         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
1837           return true;
1838       }
1839     }
1840   }
1841 
1842   // The remaining tests are all recursive, so bail out if we hit the limit.
1843   if (Depth++ >= MaxDepth)
1844     return false;
1845 
1846   // Check for pointer simplifications.
1847   if (V->getType()->isPointerTy()) {
1848     if (isKnownNonNullAt(V, Q.CxtI, Q.DT))
1849       return true;
1850     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
1851       if (isGEPKnownNonNull(GEP, Depth, Q))
1852         return true;
1853   }
1854 
1855   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
1856 
1857   // X | Y != 0 if X != 0 or Y != 0.
1858   Value *X = nullptr, *Y = nullptr;
1859   if (match(V, m_Or(m_Value(X), m_Value(Y))))
1860     return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
1861 
1862   // ext X != 0 if X != 0.
1863   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
1864     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
1865 
1866   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
1867   // if the lowest bit is shifted off the end.
1868   if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
1869     // shl nuw can't remove any non-zero bits.
1870     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1871     if (BO->hasNoUnsignedWrap())
1872       return isKnownNonZero(X, Depth, Q);
1873 
1874     APInt KnownZero(BitWidth, 0);
1875     APInt KnownOne(BitWidth, 0);
1876     computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1877     if (KnownOne[0])
1878       return true;
1879   }
1880   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
1881   // defined if the sign bit is shifted off the end.
1882   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
1883     // shr exact can only shift out zero bits.
1884     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
1885     if (BO->isExact())
1886       return isKnownNonZero(X, Depth, Q);
1887 
1888     bool XKnownNonNegative, XKnownNegative;
1889     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1890     if (XKnownNegative)
1891       return true;
1892 
1893     // If the shifter operand is a constant, and all of the bits shifted
1894     // out are known to be zero, and X is known non-zero then at least one
1895     // non-zero bit must remain.
1896     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
1897       APInt KnownZero(BitWidth, 0);
1898       APInt KnownOne(BitWidth, 0);
1899       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1900 
1901       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
1902       // Is there a known one in the portion not shifted out?
1903       if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal)
1904         return true;
1905       // Are all the bits to be shifted out known zero?
1906       if (KnownZero.countTrailingOnes() >= ShiftVal)
1907         return isKnownNonZero(X, Depth, Q);
1908     }
1909   }
1910   // div exact can only produce a zero if the dividend is zero.
1911   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
1912     return isKnownNonZero(X, Depth, Q);
1913   }
1914   // X + Y.
1915   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
1916     bool XKnownNonNegative, XKnownNegative;
1917     bool YKnownNonNegative, YKnownNegative;
1918     ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q);
1919     ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q);
1920 
1921     // If X and Y are both non-negative (as signed values) then their sum is not
1922     // zero unless both X and Y are zero.
1923     if (XKnownNonNegative && YKnownNonNegative)
1924       if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
1925         return true;
1926 
1927     // If X and Y are both negative (as signed values) then their sum is not
1928     // zero unless both X and Y equal INT_MIN.
1929     if (BitWidth && XKnownNegative && YKnownNegative) {
1930       APInt KnownZero(BitWidth, 0);
1931       APInt KnownOne(BitWidth, 0);
1932       APInt Mask = APInt::getSignedMaxValue(BitWidth);
1933       // The sign bit of X is set.  If some other bit is set then X is not equal
1934       // to INT_MIN.
1935       computeKnownBits(X, KnownZero, KnownOne, Depth, Q);
1936       if ((KnownOne & Mask) != 0)
1937         return true;
1938       // The sign bit of Y is set.  If some other bit is set then Y is not equal
1939       // to INT_MIN.
1940       computeKnownBits(Y, KnownZero, KnownOne, Depth, Q);
1941       if ((KnownOne & Mask) != 0)
1942         return true;
1943     }
1944 
1945     // The sum of a non-negative number and a power of two is not zero.
1946     if (XKnownNonNegative &&
1947         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
1948       return true;
1949     if (YKnownNonNegative &&
1950         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
1951       return true;
1952   }
1953   // X * Y.
1954   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
1955     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
1956     // If X and Y are non-zero then so is X * Y as long as the multiplication
1957     // does not overflow.
1958     if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
1959         isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
1960       return true;
1961   }
1962   // (C ? X : Y) != 0 if X != 0 and Y != 0.
1963   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
1964     if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
1965         isKnownNonZero(SI->getFalseValue(), Depth, Q))
1966       return true;
1967   }
1968   // PHI
1969   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
1970     // Try and detect a recurrence that monotonically increases from a
1971     // starting value, as these are common as induction variables.
1972     if (PN->getNumIncomingValues() == 2) {
1973       Value *Start = PN->getIncomingValue(0);
1974       Value *Induction = PN->getIncomingValue(1);
1975       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
1976         std::swap(Start, Induction);
1977       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
1978         if (!C->isZero() && !C->isNegative()) {
1979           ConstantInt *X;
1980           if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
1981                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
1982               !X->isNegative())
1983             return true;
1984         }
1985       }
1986     }
1987     // Check if all incoming values are non-zero constant.
1988     bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) {
1989       return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue();
1990     });
1991     if (AllNonZeroConstants)
1992       return true;
1993   }
1994 
1995   if (!BitWidth) return false;
1996   APInt KnownZero(BitWidth, 0);
1997   APInt KnownOne(BitWidth, 0);
1998   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
1999   return KnownOne != 0;
2000 }
2001 
2002 /// Return true if V2 == V1 + X, where X is known non-zero.
2003 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2004   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2005   if (!BO || BO->getOpcode() != Instruction::Add)
2006     return false;
2007   Value *Op = nullptr;
2008   if (V2 == BO->getOperand(0))
2009     Op = BO->getOperand(1);
2010   else if (V2 == BO->getOperand(1))
2011     Op = BO->getOperand(0);
2012   else
2013     return false;
2014   return isKnownNonZero(Op, 0, Q);
2015 }
2016 
2017 /// Return true if it is known that V1 != V2.
2018 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2019   if (V1->getType()->isVectorTy() || V1 == V2)
2020     return false;
2021   if (V1->getType() != V2->getType())
2022     // We can't look through casts yet.
2023     return false;
2024   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2025     return true;
2026 
2027   if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) {
2028     // Are any known bits in V1 contradictory to known bits in V2? If V1
2029     // has a known zero where V2 has a known one, they must not be equal.
2030     auto BitWidth = Ty->getBitWidth();
2031     APInt KnownZero1(BitWidth, 0);
2032     APInt KnownOne1(BitWidth, 0);
2033     computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q);
2034     APInt KnownZero2(BitWidth, 0);
2035     APInt KnownOne2(BitWidth, 0);
2036     computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q);
2037 
2038     auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1);
2039     if (OppositeBits.getBoolValue())
2040       return true;
2041   }
2042   return false;
2043 }
2044 
2045 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2046 /// simplify operations downstream. Mask is known to be zero for bits that V
2047 /// cannot have.
2048 ///
2049 /// This function is defined on values with integer type, values with pointer
2050 /// type, and vectors of integers.  In the case
2051 /// where V is a vector, the mask, known zero, and known one values are the
2052 /// same width as the vector element, and the bit is set only if it is true
2053 /// for all of the elements in the vector.
2054 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2055                        const Query &Q) {
2056   APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
2057   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2058   return (KnownZero & Mask) == Mask;
2059 }
2060 
2061 /// For vector constants, loop over the elements and find the constant with the
2062 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2063 /// or if any element was not analyzed; otherwise, return the count for the
2064 /// element with the minimum number of sign bits.
2065 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2066                                                  unsigned TyBits) {
2067   const auto *CV = dyn_cast<Constant>(V);
2068   if (!CV || !CV->getType()->isVectorTy())
2069     return 0;
2070 
2071   unsigned MinSignBits = TyBits;
2072   unsigned NumElts = CV->getType()->getVectorNumElements();
2073   for (unsigned i = 0; i != NumElts; ++i) {
2074     // If we find a non-ConstantInt, bail out.
2075     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2076     if (!Elt)
2077       return 0;
2078 
2079     // If the sign bit is 1, flip the bits, so we always count leading zeros.
2080     APInt EltVal = Elt->getValue();
2081     if (EltVal.isNegative())
2082       EltVal = ~EltVal;
2083     MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros());
2084   }
2085 
2086   return MinSignBits;
2087 }
2088 
2089 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2090                                        const Query &Q);
2091 
2092 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
2093                                    const Query &Q) {
2094   unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
2095   assert(Result > 0 && "At least one sign bit needs to be present!");
2096   return Result;
2097 }
2098 
2099 /// Return the number of times the sign bit of the register is replicated into
2100 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2101 /// (itself), but other cases can give us information. For example, immediately
2102 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2103 /// other, so we return 3. For vectors, return the number of sign bits for the
2104 /// vector element with the mininum number of known sign bits.
2105 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
2106                                        const Query &Q) {
2107 
2108   // We return the minimum number of sign bits that are guaranteed to be present
2109   // in V, so for undef we have to conservatively return 1.  We don't have the
2110   // same behavior for poison though -- that's a FIXME today.
2111 
2112   unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType());
2113   unsigned Tmp, Tmp2;
2114   unsigned FirstAnswer = 1;
2115 
2116   // Note that ConstantInt is handled by the general computeKnownBits case
2117   // below.
2118 
2119   if (Depth == MaxDepth)
2120     return 1;  // Limit search depth.
2121 
2122   const Operator *U = dyn_cast<Operator>(V);
2123   switch (Operator::getOpcode(V)) {
2124   default: break;
2125   case Instruction::SExt:
2126     Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2127     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2128 
2129   case Instruction::SDiv: {
2130     const APInt *Denominator;
2131     // sdiv X, C -> adds log(C) sign bits.
2132     if (match(U->getOperand(1), m_APInt(Denominator))) {
2133 
2134       // Ignore non-positive denominator.
2135       if (!Denominator->isStrictlyPositive())
2136         break;
2137 
2138       // Calculate the incoming numerator bits.
2139       unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2140 
2141       // Add floor(log(C)) bits to the numerator bits.
2142       return std::min(TyBits, NumBits + Denominator->logBase2());
2143     }
2144     break;
2145   }
2146 
2147   case Instruction::SRem: {
2148     const APInt *Denominator;
2149     // srem X, C -> we know that the result is within [-C+1,C) when C is a
2150     // positive constant.  This let us put a lower bound on the number of sign
2151     // bits.
2152     if (match(U->getOperand(1), m_APInt(Denominator))) {
2153 
2154       // Ignore non-positive denominator.
2155       if (!Denominator->isStrictlyPositive())
2156         break;
2157 
2158       // Calculate the incoming numerator bits. SRem by a positive constant
2159       // can't lower the number of sign bits.
2160       unsigned NumrBits =
2161           ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2162 
2163       // Calculate the leading sign bit constraints by examining the
2164       // denominator.  Given that the denominator is positive, there are two
2165       // cases:
2166       //
2167       //  1. the numerator is positive.  The result range is [0,C) and [0,C) u<
2168       //     (1 << ceilLogBase2(C)).
2169       //
2170       //  2. the numerator is negative.  Then the result range is (-C,0] and
2171       //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2172       //
2173       // Thus a lower bound on the number of sign bits is `TyBits -
2174       // ceilLogBase2(C)`.
2175 
2176       unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2177       return std::max(NumrBits, ResBits);
2178     }
2179     break;
2180   }
2181 
2182   case Instruction::AShr: {
2183     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2184     // ashr X, C   -> adds C sign bits.  Vectors too.
2185     const APInt *ShAmt;
2186     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2187       unsigned ShAmtLimited = ShAmt->getZExtValue();
2188       if (ShAmtLimited >= TyBits)
2189         break;  // Bad shift.
2190       Tmp += ShAmtLimited;
2191       if (Tmp > TyBits) Tmp = TyBits;
2192     }
2193     return Tmp;
2194   }
2195   case Instruction::Shl: {
2196     const APInt *ShAmt;
2197     if (match(U->getOperand(1), m_APInt(ShAmt))) {
2198       // shl destroys sign bits.
2199       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2200       Tmp2 = ShAmt->getZExtValue();
2201       if (Tmp2 >= TyBits ||      // Bad shift.
2202           Tmp2 >= Tmp) break;    // Shifted all sign bits out.
2203       return Tmp - Tmp2;
2204     }
2205     break;
2206   }
2207   case Instruction::And:
2208   case Instruction::Or:
2209   case Instruction::Xor:    // NOT is handled here.
2210     // Logical binary ops preserve the number of sign bits at the worst.
2211     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2212     if (Tmp != 1) {
2213       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2214       FirstAnswer = std::min(Tmp, Tmp2);
2215       // We computed what we know about the sign bits as our first
2216       // answer. Now proceed to the generic code that uses
2217       // computeKnownBits, and pick whichever answer is better.
2218     }
2219     break;
2220 
2221   case Instruction::Select:
2222     Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2223     if (Tmp == 1) return 1;  // Early out.
2224     Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2225     return std::min(Tmp, Tmp2);
2226 
2227   case Instruction::Add:
2228     // Add can have at most one carry bit.  Thus we know that the output
2229     // is, at worst, one more bit than the inputs.
2230     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2231     if (Tmp == 1) return 1;  // Early out.
2232 
2233     // Special case decrementing a value (ADD X, -1):
2234     if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2235       if (CRHS->isAllOnesValue()) {
2236         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2237         computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q);
2238 
2239         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2240         // sign bits set.
2241         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2242           return TyBits;
2243 
2244         // If we are subtracting one from a positive number, there is no carry
2245         // out of the result.
2246         if (KnownZero.isSignBitSet())
2247           return Tmp;
2248       }
2249 
2250     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2251     if (Tmp2 == 1) return 1;
2252     return std::min(Tmp, Tmp2)-1;
2253 
2254   case Instruction::Sub:
2255     Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2256     if (Tmp2 == 1) return 1;
2257 
2258     // Handle NEG.
2259     if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2260       if (CLHS->isNullValue()) {
2261         APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2262         computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q);
2263         // If the input is known to be 0 or 1, the output is 0/-1, which is all
2264         // sign bits set.
2265         if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue())
2266           return TyBits;
2267 
2268         // If the input is known to be positive (the sign bit is known clear),
2269         // the output of the NEG has the same number of sign bits as the input.
2270         if (KnownZero.isSignBitSet())
2271           return Tmp2;
2272 
2273         // Otherwise, we treat this like a SUB.
2274       }
2275 
2276     // Sub can have at most one carry bit.  Thus we know that the output
2277     // is, at worst, one more bit than the inputs.
2278     Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2279     if (Tmp == 1) return 1;  // Early out.
2280     return std::min(Tmp, Tmp2)-1;
2281 
2282   case Instruction::PHI: {
2283     const PHINode *PN = cast<PHINode>(U);
2284     unsigned NumIncomingValues = PN->getNumIncomingValues();
2285     // Don't analyze large in-degree PHIs.
2286     if (NumIncomingValues > 4) break;
2287     // Unreachable blocks may have zero-operand PHI nodes.
2288     if (NumIncomingValues == 0) break;
2289 
2290     // Take the minimum of all incoming values.  This can't infinitely loop
2291     // because of our depth threshold.
2292     Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
2293     for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
2294       if (Tmp == 1) return Tmp;
2295       Tmp = std::min(
2296           Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
2297     }
2298     return Tmp;
2299   }
2300 
2301   case Instruction::Trunc:
2302     // FIXME: it's tricky to do anything useful for this, but it is an important
2303     // case for targets like X86.
2304     break;
2305 
2306   case Instruction::ExtractElement:
2307     // Look through extract element. At the moment we keep this simple and skip
2308     // tracking the specific element. But at least we might find information
2309     // valid for all elements of the vector (for example if vector is sign
2310     // extended, shifted, etc).
2311     return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2312   }
2313 
2314   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2315   // use this information.
2316 
2317   // If we can examine all elements of a vector constant successfully, we're
2318   // done (we can't do any better than that). If not, keep trying.
2319   if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
2320     return VecSignBits;
2321 
2322   APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
2323   computeKnownBits(V, KnownZero, KnownOne, Depth, Q);
2324 
2325   // If we know that the sign bit is either zero or one, determine the number of
2326   // identical bits in the top of the input value.
2327   if (KnownZero.isSignBitSet())
2328     return std::max(FirstAnswer, KnownZero.countLeadingOnes());
2329 
2330   if (KnownOne.isSignBitSet())
2331     return std::max(FirstAnswer, KnownOne.countLeadingOnes());
2332 
2333   // computeKnownBits gave us no extra information about the top bits.
2334   return FirstAnswer;
2335 }
2336 
2337 /// This function computes the integer multiple of Base that equals V.
2338 /// If successful, it returns true and returns the multiple in
2339 /// Multiple. If unsuccessful, it returns false. It looks
2340 /// through SExt instructions only if LookThroughSExt is true.
2341 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2342                            bool LookThroughSExt, unsigned Depth) {
2343   const unsigned MaxDepth = 6;
2344 
2345   assert(V && "No Value?");
2346   assert(Depth <= MaxDepth && "Limit Search Depth");
2347   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
2348 
2349   Type *T = V->getType();
2350 
2351   ConstantInt *CI = dyn_cast<ConstantInt>(V);
2352 
2353   if (Base == 0)
2354     return false;
2355 
2356   if (Base == 1) {
2357     Multiple = V;
2358     return true;
2359   }
2360 
2361   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
2362   Constant *BaseVal = ConstantInt::get(T, Base);
2363   if (CO && CO == BaseVal) {
2364     // Multiple is 1.
2365     Multiple = ConstantInt::get(T, 1);
2366     return true;
2367   }
2368 
2369   if (CI && CI->getZExtValue() % Base == 0) {
2370     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
2371     return true;
2372   }
2373 
2374   if (Depth == MaxDepth) return false;  // Limit search depth.
2375 
2376   Operator *I = dyn_cast<Operator>(V);
2377   if (!I) return false;
2378 
2379   switch (I->getOpcode()) {
2380   default: break;
2381   case Instruction::SExt:
2382     if (!LookThroughSExt) return false;
2383     // otherwise fall through to ZExt
2384   case Instruction::ZExt:
2385     return ComputeMultiple(I->getOperand(0), Base, Multiple,
2386                            LookThroughSExt, Depth+1);
2387   case Instruction::Shl:
2388   case Instruction::Mul: {
2389     Value *Op0 = I->getOperand(0);
2390     Value *Op1 = I->getOperand(1);
2391 
2392     if (I->getOpcode() == Instruction::Shl) {
2393       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
2394       if (!Op1CI) return false;
2395       // Turn Op0 << Op1 into Op0 * 2^Op1
2396       APInt Op1Int = Op1CI->getValue();
2397       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
2398       APInt API(Op1Int.getBitWidth(), 0);
2399       API.setBit(BitToSet);
2400       Op1 = ConstantInt::get(V->getContext(), API);
2401     }
2402 
2403     Value *Mul0 = nullptr;
2404     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
2405       if (Constant *Op1C = dyn_cast<Constant>(Op1))
2406         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
2407           if (Op1C->getType()->getPrimitiveSizeInBits() <
2408               MulC->getType()->getPrimitiveSizeInBits())
2409             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
2410           if (Op1C->getType()->getPrimitiveSizeInBits() >
2411               MulC->getType()->getPrimitiveSizeInBits())
2412             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
2413 
2414           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
2415           Multiple = ConstantExpr::getMul(MulC, Op1C);
2416           return true;
2417         }
2418 
2419       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
2420         if (Mul0CI->getValue() == 1) {
2421           // V == Base * Op1, so return Op1
2422           Multiple = Op1;
2423           return true;
2424         }
2425     }
2426 
2427     Value *Mul1 = nullptr;
2428     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
2429       if (Constant *Op0C = dyn_cast<Constant>(Op0))
2430         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
2431           if (Op0C->getType()->getPrimitiveSizeInBits() <
2432               MulC->getType()->getPrimitiveSizeInBits())
2433             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
2434           if (Op0C->getType()->getPrimitiveSizeInBits() >
2435               MulC->getType()->getPrimitiveSizeInBits())
2436             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
2437 
2438           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
2439           Multiple = ConstantExpr::getMul(MulC, Op0C);
2440           return true;
2441         }
2442 
2443       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
2444         if (Mul1CI->getValue() == 1) {
2445           // V == Base * Op0, so return Op0
2446           Multiple = Op0;
2447           return true;
2448         }
2449     }
2450   }
2451   }
2452 
2453   // We could not determine if V is a multiple of Base.
2454   return false;
2455 }
2456 
2457 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
2458                                             const TargetLibraryInfo *TLI) {
2459   const Function *F = ICS.getCalledFunction();
2460   if (!F)
2461     return Intrinsic::not_intrinsic;
2462 
2463   if (F->isIntrinsic())
2464     return F->getIntrinsicID();
2465 
2466   if (!TLI)
2467     return Intrinsic::not_intrinsic;
2468 
2469   LibFunc Func;
2470   // We're going to make assumptions on the semantics of the functions, check
2471   // that the target knows that it's available in this environment and it does
2472   // not have local linkage.
2473   if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
2474     return Intrinsic::not_intrinsic;
2475 
2476   if (!ICS.onlyReadsMemory())
2477     return Intrinsic::not_intrinsic;
2478 
2479   // Otherwise check if we have a call to a function that can be turned into a
2480   // vector intrinsic.
2481   switch (Func) {
2482   default:
2483     break;
2484   case LibFunc_sin:
2485   case LibFunc_sinf:
2486   case LibFunc_sinl:
2487     return Intrinsic::sin;
2488   case LibFunc_cos:
2489   case LibFunc_cosf:
2490   case LibFunc_cosl:
2491     return Intrinsic::cos;
2492   case LibFunc_exp:
2493   case LibFunc_expf:
2494   case LibFunc_expl:
2495     return Intrinsic::exp;
2496   case LibFunc_exp2:
2497   case LibFunc_exp2f:
2498   case LibFunc_exp2l:
2499     return Intrinsic::exp2;
2500   case LibFunc_log:
2501   case LibFunc_logf:
2502   case LibFunc_logl:
2503     return Intrinsic::log;
2504   case LibFunc_log10:
2505   case LibFunc_log10f:
2506   case LibFunc_log10l:
2507     return Intrinsic::log10;
2508   case LibFunc_log2:
2509   case LibFunc_log2f:
2510   case LibFunc_log2l:
2511     return Intrinsic::log2;
2512   case LibFunc_fabs:
2513   case LibFunc_fabsf:
2514   case LibFunc_fabsl:
2515     return Intrinsic::fabs;
2516   case LibFunc_fmin:
2517   case LibFunc_fminf:
2518   case LibFunc_fminl:
2519     return Intrinsic::minnum;
2520   case LibFunc_fmax:
2521   case LibFunc_fmaxf:
2522   case LibFunc_fmaxl:
2523     return Intrinsic::maxnum;
2524   case LibFunc_copysign:
2525   case LibFunc_copysignf:
2526   case LibFunc_copysignl:
2527     return Intrinsic::copysign;
2528   case LibFunc_floor:
2529   case LibFunc_floorf:
2530   case LibFunc_floorl:
2531     return Intrinsic::floor;
2532   case LibFunc_ceil:
2533   case LibFunc_ceilf:
2534   case LibFunc_ceill:
2535     return Intrinsic::ceil;
2536   case LibFunc_trunc:
2537   case LibFunc_truncf:
2538   case LibFunc_truncl:
2539     return Intrinsic::trunc;
2540   case LibFunc_rint:
2541   case LibFunc_rintf:
2542   case LibFunc_rintl:
2543     return Intrinsic::rint;
2544   case LibFunc_nearbyint:
2545   case LibFunc_nearbyintf:
2546   case LibFunc_nearbyintl:
2547     return Intrinsic::nearbyint;
2548   case LibFunc_round:
2549   case LibFunc_roundf:
2550   case LibFunc_roundl:
2551     return Intrinsic::round;
2552   case LibFunc_pow:
2553   case LibFunc_powf:
2554   case LibFunc_powl:
2555     return Intrinsic::pow;
2556   case LibFunc_sqrt:
2557   case LibFunc_sqrtf:
2558   case LibFunc_sqrtl:
2559     if (ICS->hasNoNaNs())
2560       return Intrinsic::sqrt;
2561     return Intrinsic::not_intrinsic;
2562   }
2563 
2564   return Intrinsic::not_intrinsic;
2565 }
2566 
2567 /// Return true if we can prove that the specified FP value is never equal to
2568 /// -0.0.
2569 ///
2570 /// NOTE: this function will need to be revisited when we support non-default
2571 /// rounding modes!
2572 ///
2573 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
2574                                 unsigned Depth) {
2575   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
2576     return !CFP->getValueAPF().isNegZero();
2577 
2578   if (Depth == MaxDepth)
2579     return false;  // Limit search depth.
2580 
2581   const Operator *I = dyn_cast<Operator>(V);
2582   if (!I) return false;
2583 
2584   // Check if the nsz fast-math flag is set
2585   if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I))
2586     if (FPO->hasNoSignedZeros())
2587       return true;
2588 
2589   // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
2590   if (I->getOpcode() == Instruction::FAdd)
2591     if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1)))
2592       if (CFP->isNullValue())
2593         return true;
2594 
2595   // sitofp and uitofp turn into +0.0 for zero.
2596   if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
2597     return true;
2598 
2599   if (const CallInst *CI = dyn_cast<CallInst>(I)) {
2600     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2601     switch (IID) {
2602     default:
2603       break;
2604     // sqrt(-0.0) = -0.0, no other negative results are possible.
2605     case Intrinsic::sqrt:
2606       return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1);
2607     // fabs(x) != -0.0
2608     case Intrinsic::fabs:
2609       return true;
2610     }
2611   }
2612 
2613   return false;
2614 }
2615 
2616 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
2617 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
2618 /// bit despite comparing equal.
2619 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
2620                                             const TargetLibraryInfo *TLI,
2621                                             bool SignBitOnly,
2622                                             unsigned Depth) {
2623   // TODO: This function does not do the right thing when SignBitOnly is true
2624   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
2625   // which flips the sign bits of NaNs.  See
2626   // https://llvm.org/bugs/show_bug.cgi?id=31702.
2627 
2628   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2629     return !CFP->getValueAPF().isNegative() ||
2630            (!SignBitOnly && CFP->getValueAPF().isZero());
2631   }
2632 
2633   if (Depth == MaxDepth)
2634     return false; // Limit search depth.
2635 
2636   const Operator *I = dyn_cast<Operator>(V);
2637   if (!I)
2638     return false;
2639 
2640   switch (I->getOpcode()) {
2641   default:
2642     break;
2643   // Unsigned integers are always nonnegative.
2644   case Instruction::UIToFP:
2645     return true;
2646   case Instruction::FMul:
2647     // x*x is always non-negative or a NaN.
2648     if (I->getOperand(0) == I->getOperand(1) &&
2649         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
2650       return true;
2651 
2652     LLVM_FALLTHROUGH;
2653   case Instruction::FAdd:
2654   case Instruction::FDiv:
2655   case Instruction::FRem:
2656     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2657                                            Depth + 1) &&
2658            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2659                                            Depth + 1);
2660   case Instruction::Select:
2661     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2662                                            Depth + 1) &&
2663            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2664                                            Depth + 1);
2665   case Instruction::FPExt:
2666   case Instruction::FPTrunc:
2667     // Widening/narrowing never change sign.
2668     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2669                                            Depth + 1);
2670   case Instruction::Call:
2671     const auto *CI = cast<CallInst>(I);
2672     Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
2673     switch (IID) {
2674     default:
2675       break;
2676     case Intrinsic::maxnum:
2677       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2678                                              Depth + 1) ||
2679              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2680                                              Depth + 1);
2681     case Intrinsic::minnum:
2682       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2683                                              Depth + 1) &&
2684              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
2685                                              Depth + 1);
2686     case Intrinsic::exp:
2687     case Intrinsic::exp2:
2688     case Intrinsic::fabs:
2689       return true;
2690 
2691     case Intrinsic::sqrt:
2692       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
2693       if (!SignBitOnly)
2694         return true;
2695       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
2696                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
2697 
2698     case Intrinsic::powi:
2699       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
2700         // powi(x,n) is non-negative if n is even.
2701         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
2702           return true;
2703       }
2704       // TODO: This is not correct.  Given that exp is an integer, here are the
2705       // ways that pow can return a negative value:
2706       //
2707       //   pow(x, exp)    --> negative if exp is odd and x is negative.
2708       //   pow(-0, exp)   --> -inf if exp is negative odd.
2709       //   pow(-0, exp)   --> -0 if exp is positive odd.
2710       //   pow(-inf, exp) --> -0 if exp is negative odd.
2711       //   pow(-inf, exp) --> -inf if exp is positive odd.
2712       //
2713       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
2714       // but we must return false if x == -0.  Unfortunately we do not currently
2715       // have a way of expressing this constraint.  See details in
2716       // https://llvm.org/bugs/show_bug.cgi?id=31702.
2717       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
2718                                              Depth + 1);
2719 
2720     case Intrinsic::fma:
2721     case Intrinsic::fmuladd:
2722       // x*x+y is non-negative if y is non-negative.
2723       return I->getOperand(0) == I->getOperand(1) &&
2724              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
2725              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
2726                                              Depth + 1);
2727     }
2728     break;
2729   }
2730   return false;
2731 }
2732 
2733 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
2734                                        const TargetLibraryInfo *TLI) {
2735   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
2736 }
2737 
2738 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
2739   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
2740 }
2741 
2742 /// If the specified value can be set by repeating the same byte in memory,
2743 /// return the i8 value that it is represented with.  This is
2744 /// true for all i8 values obviously, but is also true for i32 0, i32 -1,
2745 /// i16 0xF0F0, double 0.0 etc.  If the value can't be handled with a repeated
2746 /// byte store (e.g. i16 0x1234), return null.
2747 Value *llvm::isBytewiseValue(Value *V) {
2748   // All byte-wide stores are splatable, even of arbitrary variables.
2749   if (V->getType()->isIntegerTy(8)) return V;
2750 
2751   // Handle 'null' ConstantArrayZero etc.
2752   if (Constant *C = dyn_cast<Constant>(V))
2753     if (C->isNullValue())
2754       return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
2755 
2756   // Constant float and double values can be handled as integer values if the
2757   // corresponding integer value is "byteable".  An important case is 0.0.
2758   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2759     if (CFP->getType()->isFloatTy())
2760       V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
2761     if (CFP->getType()->isDoubleTy())
2762       V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
2763     // Don't handle long double formats, which have strange constraints.
2764   }
2765 
2766   // We can handle constant integers that are multiple of 8 bits.
2767   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2768     if (CI->getBitWidth() % 8 == 0) {
2769       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
2770 
2771       if (!CI->getValue().isSplat(8))
2772         return nullptr;
2773       return ConstantInt::get(V->getContext(), CI->getValue().trunc(8));
2774     }
2775   }
2776 
2777   // A ConstantDataArray/Vector is splatable if all its members are equal and
2778   // also splatable.
2779   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) {
2780     Value *Elt = CA->getElementAsConstant(0);
2781     Value *Val = isBytewiseValue(Elt);
2782     if (!Val)
2783       return nullptr;
2784 
2785     for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I)
2786       if (CA->getElementAsConstant(I) != Elt)
2787         return nullptr;
2788 
2789     return Val;
2790   }
2791 
2792   // Conceptually, we could handle things like:
2793   //   %a = zext i8 %X to i16
2794   //   %b = shl i16 %a, 8
2795   //   %c = or i16 %a, %b
2796   // but until there is an example that actually needs this, it doesn't seem
2797   // worth worrying about.
2798   return nullptr;
2799 }
2800 
2801 
2802 // This is the recursive version of BuildSubAggregate. It takes a few different
2803 // arguments. Idxs is the index within the nested struct From that we are
2804 // looking at now (which is of type IndexedType). IdxSkip is the number of
2805 // indices from Idxs that should be left out when inserting into the resulting
2806 // struct. To is the result struct built so far, new insertvalue instructions
2807 // build on that.
2808 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
2809                                 SmallVectorImpl<unsigned> &Idxs,
2810                                 unsigned IdxSkip,
2811                                 Instruction *InsertBefore) {
2812   llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType);
2813   if (STy) {
2814     // Save the original To argument so we can modify it
2815     Value *OrigTo = To;
2816     // General case, the type indexed by Idxs is a struct
2817     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2818       // Process each struct element recursively
2819       Idxs.push_back(i);
2820       Value *PrevTo = To;
2821       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
2822                              InsertBefore);
2823       Idxs.pop_back();
2824       if (!To) {
2825         // Couldn't find any inserted value for this index? Cleanup
2826         while (PrevTo != OrigTo) {
2827           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
2828           PrevTo = Del->getAggregateOperand();
2829           Del->eraseFromParent();
2830         }
2831         // Stop processing elements
2832         break;
2833       }
2834     }
2835     // If we successfully found a value for each of our subaggregates
2836     if (To)
2837       return To;
2838   }
2839   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
2840   // the struct's elements had a value that was inserted directly. In the latter
2841   // case, perhaps we can't determine each of the subelements individually, but
2842   // we might be able to find the complete struct somewhere.
2843 
2844   // Find the value that is at that particular spot
2845   Value *V = FindInsertedValue(From, Idxs);
2846 
2847   if (!V)
2848     return nullptr;
2849 
2850   // Insert the value in the new (sub) aggregrate
2851   return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
2852                                        "tmp", InsertBefore);
2853 }
2854 
2855 // This helper takes a nested struct and extracts a part of it (which is again a
2856 // struct) into a new value. For example, given the struct:
2857 // { a, { b, { c, d }, e } }
2858 // and the indices "1, 1" this returns
2859 // { c, d }.
2860 //
2861 // It does this by inserting an insertvalue for each element in the resulting
2862 // struct, as opposed to just inserting a single struct. This will only work if
2863 // each of the elements of the substruct are known (ie, inserted into From by an
2864 // insertvalue instruction somewhere).
2865 //
2866 // All inserted insertvalue instructions are inserted before InsertBefore
2867 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
2868                                 Instruction *InsertBefore) {
2869   assert(InsertBefore && "Must have someplace to insert!");
2870   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
2871                                                              idx_range);
2872   Value *To = UndefValue::get(IndexedType);
2873   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
2874   unsigned IdxSkip = Idxs.size();
2875 
2876   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
2877 }
2878 
2879 /// Given an aggregrate and an sequence of indices, see if
2880 /// the scalar value indexed is already around as a register, for example if it
2881 /// were inserted directly into the aggregrate.
2882 ///
2883 /// If InsertBefore is not null, this function will duplicate (modified)
2884 /// insertvalues when a part of a nested struct is extracted.
2885 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
2886                                Instruction *InsertBefore) {
2887   // Nothing to index? Just return V then (this is useful at the end of our
2888   // recursion).
2889   if (idx_range.empty())
2890     return V;
2891   // We have indices, so V should have an indexable type.
2892   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
2893          "Not looking at a struct or array?");
2894   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
2895          "Invalid indices for type?");
2896 
2897   if (Constant *C = dyn_cast<Constant>(V)) {
2898     C = C->getAggregateElement(idx_range[0]);
2899     if (!C) return nullptr;
2900     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
2901   }
2902 
2903   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
2904     // Loop the indices for the insertvalue instruction in parallel with the
2905     // requested indices
2906     const unsigned *req_idx = idx_range.begin();
2907     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
2908          i != e; ++i, ++req_idx) {
2909       if (req_idx == idx_range.end()) {
2910         // We can't handle this without inserting insertvalues
2911         if (!InsertBefore)
2912           return nullptr;
2913 
2914         // The requested index identifies a part of a nested aggregate. Handle
2915         // this specially. For example,
2916         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
2917         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
2918         // %C = extractvalue {i32, { i32, i32 } } %B, 1
2919         // This can be changed into
2920         // %A = insertvalue {i32, i32 } undef, i32 10, 0
2921         // %C = insertvalue {i32, i32 } %A, i32 11, 1
2922         // which allows the unused 0,0 element from the nested struct to be
2923         // removed.
2924         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
2925                                  InsertBefore);
2926       }
2927 
2928       // This insert value inserts something else than what we are looking for.
2929       // See if the (aggregate) value inserted into has the value we are
2930       // looking for, then.
2931       if (*req_idx != *i)
2932         return FindInsertedValue(I->getAggregateOperand(), idx_range,
2933                                  InsertBefore);
2934     }
2935     // If we end up here, the indices of the insertvalue match with those
2936     // requested (though possibly only partially). Now we recursively look at
2937     // the inserted value, passing any remaining indices.
2938     return FindInsertedValue(I->getInsertedValueOperand(),
2939                              makeArrayRef(req_idx, idx_range.end()),
2940                              InsertBefore);
2941   }
2942 
2943   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
2944     // If we're extracting a value from an aggregate that was extracted from
2945     // something else, we can extract from that something else directly instead.
2946     // However, we will need to chain I's indices with the requested indices.
2947 
2948     // Calculate the number of indices required
2949     unsigned size = I->getNumIndices() + idx_range.size();
2950     // Allocate some space to put the new indices in
2951     SmallVector<unsigned, 5> Idxs;
2952     Idxs.reserve(size);
2953     // Add indices from the extract value instruction
2954     Idxs.append(I->idx_begin(), I->idx_end());
2955 
2956     // Add requested indices
2957     Idxs.append(idx_range.begin(), idx_range.end());
2958 
2959     assert(Idxs.size() == size
2960            && "Number of indices added not correct?");
2961 
2962     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
2963   }
2964   // Otherwise, we don't know (such as, extracting from a function return value
2965   // or load instruction)
2966   return nullptr;
2967 }
2968 
2969 /// Analyze the specified pointer to see if it can be expressed as a base
2970 /// pointer plus a constant offset. Return the base and offset to the caller.
2971 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
2972                                               const DataLayout &DL) {
2973   unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType());
2974   APInt ByteOffset(BitWidth, 0);
2975 
2976   // We walk up the defs but use a visited set to handle unreachable code. In
2977   // that case, we stop after accumulating the cycle once (not that it
2978   // matters).
2979   SmallPtrSet<Value *, 16> Visited;
2980   while (Visited.insert(Ptr).second) {
2981     if (Ptr->getType()->isVectorTy())
2982       break;
2983 
2984     if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
2985       // If one of the values we have visited is an addrspacecast, then
2986       // the pointer type of this GEP may be different from the type
2987       // of the Ptr parameter which was passed to this function.  This
2988       // means when we construct GEPOffset, we need to use the size
2989       // of GEP's pointer type rather than the size of the original
2990       // pointer type.
2991       APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0);
2992       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
2993         break;
2994 
2995       ByteOffset += GEPOffset.getSExtValue();
2996 
2997       Ptr = GEP->getPointerOperand();
2998     } else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
2999                Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
3000       Ptr = cast<Operator>(Ptr)->getOperand(0);
3001     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
3002       if (GA->isInterposable())
3003         break;
3004       Ptr = GA->getAliasee();
3005     } else {
3006       break;
3007     }
3008   }
3009   Offset = ByteOffset.getSExtValue();
3010   return Ptr;
3011 }
3012 
3013 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) {
3014   // Make sure the GEP has exactly three arguments.
3015   if (GEP->getNumOperands() != 3)
3016     return false;
3017 
3018   // Make sure the index-ee is a pointer to array of i8.
3019   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3020   if (!AT || !AT->getElementType()->isIntegerTy(8))
3021     return false;
3022 
3023   // Check to make sure that the first operand of the GEP is an integer and
3024   // has value 0 so that we are sure we're indexing into the initializer.
3025   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3026   if (!FirstIdx || !FirstIdx->isZero())
3027     return false;
3028 
3029   return true;
3030 }
3031 
3032 /// This function computes the length of a null-terminated C string pointed to
3033 /// by V. If successful, it returns true and returns the string in Str.
3034 /// If unsuccessful, it returns false.
3035 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3036                                  uint64_t Offset, bool TrimAtNul) {
3037   assert(V);
3038 
3039   // Look through bitcast instructions and geps.
3040   V = V->stripPointerCasts();
3041 
3042   // If the value is a GEP instruction or constant expression, treat it as an
3043   // offset.
3044   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3045     // The GEP operator should be based on a pointer to string constant, and is
3046     // indexing into the string constant.
3047     if (!isGEPBasedOnPointerToString(GEP))
3048       return false;
3049 
3050     // If the second index isn't a ConstantInt, then this is a variable index
3051     // into the array.  If this occurs, we can't say anything meaningful about
3052     // the string.
3053     uint64_t StartIdx = 0;
3054     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3055       StartIdx = CI->getZExtValue();
3056     else
3057       return false;
3058     return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset,
3059                                  TrimAtNul);
3060   }
3061 
3062   // The GEP instruction, constant or instruction, must reference a global
3063   // variable that is a constant and is initialized. The referenced constant
3064   // initializer is the array that we'll use for optimization.
3065   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3066   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3067     return false;
3068 
3069   // Handle the all-zeros case.
3070   if (GV->getInitializer()->isNullValue()) {
3071     // This is a degenerate case. The initializer is constant zero so the
3072     // length of the string must be zero.
3073     Str = "";
3074     return true;
3075   }
3076 
3077   // This must be a ConstantDataArray.
3078   const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3079   if (!Array || !Array->isString())
3080     return false;
3081 
3082   // Get the number of elements in the array.
3083   uint64_t NumElts = Array->getType()->getArrayNumElements();
3084 
3085   // Start out with the entire array in the StringRef.
3086   Str = Array->getAsString();
3087 
3088   if (Offset > NumElts)
3089     return false;
3090 
3091   // Skip over 'offset' bytes.
3092   Str = Str.substr(Offset);
3093 
3094   if (TrimAtNul) {
3095     // Trim off the \0 and anything after it.  If the array is not nul
3096     // terminated, we just return the whole end of string.  The client may know
3097     // some other way that the string is length-bound.
3098     Str = Str.substr(0, Str.find('\0'));
3099   }
3100   return true;
3101 }
3102 
3103 // These next two are very similar to the above, but also look through PHI
3104 // nodes.
3105 // TODO: See if we can integrate these two together.
3106 
3107 /// If we can compute the length of the string pointed to by
3108 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3109 static uint64_t GetStringLengthH(const Value *V,
3110                                  SmallPtrSetImpl<const PHINode*> &PHIs) {
3111   // Look through noop bitcast instructions.
3112   V = V->stripPointerCasts();
3113 
3114   // If this is a PHI node, there are two cases: either we have already seen it
3115   // or we haven't.
3116   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
3117     if (!PHIs.insert(PN).second)
3118       return ~0ULL;  // already in the set.
3119 
3120     // If it was new, see if all the input strings are the same length.
3121     uint64_t LenSoFar = ~0ULL;
3122     for (Value *IncValue : PN->incoming_values()) {
3123       uint64_t Len = GetStringLengthH(IncValue, PHIs);
3124       if (Len == 0) return 0; // Unknown length -> unknown.
3125 
3126       if (Len == ~0ULL) continue;
3127 
3128       if (Len != LenSoFar && LenSoFar != ~0ULL)
3129         return 0;    // Disagree -> unknown.
3130       LenSoFar = Len;
3131     }
3132 
3133     // Success, all agree.
3134     return LenSoFar;
3135   }
3136 
3137   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
3138   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
3139     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
3140     if (Len1 == 0) return 0;
3141     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
3142     if (Len2 == 0) return 0;
3143     if (Len1 == ~0ULL) return Len2;
3144     if (Len2 == ~0ULL) return Len1;
3145     if (Len1 != Len2) return 0;
3146     return Len1;
3147   }
3148 
3149   // Otherwise, see if we can read the string.
3150   StringRef StrData;
3151   if (!getConstantStringInfo(V, StrData))
3152     return 0;
3153 
3154   return StrData.size()+1;
3155 }
3156 
3157 /// If we can compute the length of the string pointed to by
3158 /// the specified pointer, return 'len+1'.  If we can't, return 0.
3159 uint64_t llvm::GetStringLength(const Value *V) {
3160   if (!V->getType()->isPointerTy()) return 0;
3161 
3162   SmallPtrSet<const PHINode*, 32> PHIs;
3163   uint64_t Len = GetStringLengthH(V, PHIs);
3164   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
3165   // an empty string as a length.
3166   return Len == ~0ULL ? 1 : Len;
3167 }
3168 
3169 /// \brief \p PN defines a loop-variant pointer to an object.  Check if the
3170 /// previous iteration of the loop was referring to the same object as \p PN.
3171 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
3172                                          const LoopInfo *LI) {
3173   // Find the loop-defined value.
3174   Loop *L = LI->getLoopFor(PN->getParent());
3175   if (PN->getNumIncomingValues() != 2)
3176     return true;
3177 
3178   // Find the value from previous iteration.
3179   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
3180   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3181     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
3182   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
3183     return true;
3184 
3185   // If a new pointer is loaded in the loop, the pointer references a different
3186   // object in every iteration.  E.g.:
3187   //    for (i)
3188   //       int *p = a[i];
3189   //       ...
3190   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
3191     if (!L->isLoopInvariant(Load->getPointerOperand()))
3192       return false;
3193   return true;
3194 }
3195 
3196 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
3197                                  unsigned MaxLookup) {
3198   if (!V->getType()->isPointerTy())
3199     return V;
3200   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
3201     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3202       V = GEP->getPointerOperand();
3203     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
3204                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
3205       V = cast<Operator>(V)->getOperand(0);
3206     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
3207       if (GA->isInterposable())
3208         return V;
3209       V = GA->getAliasee();
3210     } else if (isa<AllocaInst>(V)) {
3211       // An alloca can't be further simplified.
3212       return V;
3213     } else {
3214       if (auto CS = CallSite(V))
3215         if (Value *RV = CS.getReturnedArgOperand()) {
3216           V = RV;
3217           continue;
3218         }
3219 
3220       // See if InstructionSimplify knows any relevant tricks.
3221       if (Instruction *I = dyn_cast<Instruction>(V))
3222         // TODO: Acquire a DominatorTree and AssumptionCache and use them.
3223         if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) {
3224           V = Simplified;
3225           continue;
3226         }
3227 
3228       return V;
3229     }
3230     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
3231   }
3232   return V;
3233 }
3234 
3235 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
3236                                 const DataLayout &DL, LoopInfo *LI,
3237                                 unsigned MaxLookup) {
3238   SmallPtrSet<Value *, 4> Visited;
3239   SmallVector<Value *, 4> Worklist;
3240   Worklist.push_back(V);
3241   do {
3242     Value *P = Worklist.pop_back_val();
3243     P = GetUnderlyingObject(P, DL, MaxLookup);
3244 
3245     if (!Visited.insert(P).second)
3246       continue;
3247 
3248     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
3249       Worklist.push_back(SI->getTrueValue());
3250       Worklist.push_back(SI->getFalseValue());
3251       continue;
3252     }
3253 
3254     if (PHINode *PN = dyn_cast<PHINode>(P)) {
3255       // If this PHI changes the underlying object in every iteration of the
3256       // loop, don't look through it.  Consider:
3257       //   int **A;
3258       //   for (i) {
3259       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
3260       //     Curr = A[i];
3261       //     *Prev, *Curr;
3262       //
3263       // Prev is tracking Curr one iteration behind so they refer to different
3264       // underlying objects.
3265       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
3266           isSameUnderlyingObjectInLoop(PN, LI))
3267         for (Value *IncValue : PN->incoming_values())
3268           Worklist.push_back(IncValue);
3269       continue;
3270     }
3271 
3272     Objects.push_back(P);
3273   } while (!Worklist.empty());
3274 }
3275 
3276 /// Return true if the only users of this pointer are lifetime markers.
3277 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
3278   for (const User *U : V->users()) {
3279     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3280     if (!II) return false;
3281 
3282     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
3283         II->getIntrinsicID() != Intrinsic::lifetime_end)
3284       return false;
3285   }
3286   return true;
3287 }
3288 
3289 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
3290                                         const Instruction *CtxI,
3291                                         const DominatorTree *DT) {
3292   const Operator *Inst = dyn_cast<Operator>(V);
3293   if (!Inst)
3294     return false;
3295 
3296   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
3297     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
3298       if (C->canTrap())
3299         return false;
3300 
3301   switch (Inst->getOpcode()) {
3302   default:
3303     return true;
3304   case Instruction::UDiv:
3305   case Instruction::URem: {
3306     // x / y is undefined if y == 0.
3307     const APInt *V;
3308     if (match(Inst->getOperand(1), m_APInt(V)))
3309       return *V != 0;
3310     return false;
3311   }
3312   case Instruction::SDiv:
3313   case Instruction::SRem: {
3314     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
3315     const APInt *Numerator, *Denominator;
3316     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
3317       return false;
3318     // We cannot hoist this division if the denominator is 0.
3319     if (*Denominator == 0)
3320       return false;
3321     // It's safe to hoist if the denominator is not 0 or -1.
3322     if (*Denominator != -1)
3323       return true;
3324     // At this point we know that the denominator is -1.  It is safe to hoist as
3325     // long we know that the numerator is not INT_MIN.
3326     if (match(Inst->getOperand(0), m_APInt(Numerator)))
3327       return !Numerator->isMinSignedValue();
3328     // The numerator *might* be MinSignedValue.
3329     return false;
3330   }
3331   case Instruction::Load: {
3332     const LoadInst *LI = cast<LoadInst>(Inst);
3333     if (!LI->isUnordered() ||
3334         // Speculative load may create a race that did not exist in the source.
3335         LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
3336         // Speculative load may load data from dirty regions.
3337         LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress))
3338       return false;
3339     const DataLayout &DL = LI->getModule()->getDataLayout();
3340     return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
3341                                               LI->getAlignment(), DL, CtxI, DT);
3342   }
3343   case Instruction::Call: {
3344     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
3345       switch (II->getIntrinsicID()) {
3346       // These synthetic intrinsics have no side-effects and just mark
3347       // information about their operands.
3348       // FIXME: There are other no-op synthetic instructions that potentially
3349       // should be considered at least *safe* to speculate...
3350       case Intrinsic::dbg_declare:
3351       case Intrinsic::dbg_value:
3352         return true;
3353 
3354       case Intrinsic::bitreverse:
3355       case Intrinsic::bswap:
3356       case Intrinsic::ctlz:
3357       case Intrinsic::ctpop:
3358       case Intrinsic::cttz:
3359       case Intrinsic::objectsize:
3360       case Intrinsic::sadd_with_overflow:
3361       case Intrinsic::smul_with_overflow:
3362       case Intrinsic::ssub_with_overflow:
3363       case Intrinsic::uadd_with_overflow:
3364       case Intrinsic::umul_with_overflow:
3365       case Intrinsic::usub_with_overflow:
3366         return true;
3367       // These intrinsics are defined to have the same behavior as libm
3368       // functions except for setting errno.
3369       case Intrinsic::sqrt:
3370       case Intrinsic::fma:
3371       case Intrinsic::fmuladd:
3372         return true;
3373       // These intrinsics are defined to have the same behavior as libm
3374       // functions, and the corresponding libm functions never set errno.
3375       case Intrinsic::trunc:
3376       case Intrinsic::copysign:
3377       case Intrinsic::fabs:
3378       case Intrinsic::minnum:
3379       case Intrinsic::maxnum:
3380         return true;
3381       // These intrinsics are defined to have the same behavior as libm
3382       // functions, which never overflow when operating on the IEEE754 types
3383       // that we support, and never set errno otherwise.
3384       case Intrinsic::ceil:
3385       case Intrinsic::floor:
3386       case Intrinsic::nearbyint:
3387       case Intrinsic::rint:
3388       case Intrinsic::round:
3389         return true;
3390       // These intrinsics do not correspond to any libm function, and
3391       // do not set errno.
3392       case Intrinsic::powi:
3393         return true;
3394       // TODO: are convert_{from,to}_fp16 safe?
3395       // TODO: can we list target-specific intrinsics here?
3396       default: break;
3397       }
3398     }
3399     return false; // The called function could have undefined behavior or
3400                   // side-effects, even if marked readnone nounwind.
3401   }
3402   case Instruction::VAArg:
3403   case Instruction::Alloca:
3404   case Instruction::Invoke:
3405   case Instruction::PHI:
3406   case Instruction::Store:
3407   case Instruction::Ret:
3408   case Instruction::Br:
3409   case Instruction::IndirectBr:
3410   case Instruction::Switch:
3411   case Instruction::Unreachable:
3412   case Instruction::Fence:
3413   case Instruction::AtomicRMW:
3414   case Instruction::AtomicCmpXchg:
3415   case Instruction::LandingPad:
3416   case Instruction::Resume:
3417   case Instruction::CatchSwitch:
3418   case Instruction::CatchPad:
3419   case Instruction::CatchRet:
3420   case Instruction::CleanupPad:
3421   case Instruction::CleanupRet:
3422     return false; // Misc instructions which have effects
3423   }
3424 }
3425 
3426 bool llvm::mayBeMemoryDependent(const Instruction &I) {
3427   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
3428 }
3429 
3430 /// Return true if we know that the specified value is never null.
3431 bool llvm::isKnownNonNull(const Value *V) {
3432   assert(V->getType()->isPointerTy() && "V must be pointer type");
3433 
3434   // Alloca never returns null, malloc might.
3435   if (isa<AllocaInst>(V)) return true;
3436 
3437   // A byval, inalloca, or nonnull argument is never null.
3438   if (const Argument *A = dyn_cast<Argument>(V))
3439     return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr();
3440 
3441   // A global variable in address space 0 is non null unless extern weak
3442   // or an absolute symbol reference. Other address spaces may have null as a
3443   // valid address for a global, so we can't assume anything.
3444   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
3445     return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
3446            GV->getType()->getAddressSpace() == 0;
3447 
3448   // A Load tagged with nonnull metadata is never null.
3449   if (const LoadInst *LI = dyn_cast<LoadInst>(V))
3450     return LI->getMetadata(LLVMContext::MD_nonnull);
3451 
3452   if (auto CS = ImmutableCallSite(V))
3453     if (CS.isReturnNonNull())
3454       return true;
3455 
3456   return false;
3457 }
3458 
3459 static bool isKnownNonNullFromDominatingCondition(const Value *V,
3460                                                   const Instruction *CtxI,
3461                                                   const DominatorTree *DT) {
3462   assert(V->getType()->isPointerTy() && "V must be pointer type");
3463   assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
3464   assert(CtxI && "Context instruction required for analysis");
3465   assert(DT && "Dominator tree required for analysis");
3466 
3467   unsigned NumUsesExplored = 0;
3468   for (auto *U : V->users()) {
3469     // Avoid massive lists
3470     if (NumUsesExplored >= DomConditionsMaxUses)
3471       break;
3472     NumUsesExplored++;
3473 
3474     // If the value is used as an argument to a call or invoke, then argument
3475     // attributes may provide an answer about null-ness.
3476     if (auto CS = ImmutableCallSite(U))
3477       if (auto *CalledFunc = CS.getCalledFunction())
3478         for (const Argument &Arg : CalledFunc->args())
3479           if (CS.getArgOperand(Arg.getArgNo()) == V &&
3480               Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
3481             return true;
3482 
3483     // Consider only compare instructions uniquely controlling a branch
3484     CmpInst::Predicate Pred;
3485     if (!match(const_cast<User *>(U),
3486                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
3487         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
3488       continue;
3489 
3490     for (auto *CmpU : U->users()) {
3491       if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) {
3492         assert(BI->isConditional() && "uses a comparison!");
3493 
3494         BasicBlock *NonNullSuccessor =
3495             BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
3496         BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
3497         if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
3498           return true;
3499       } else if (Pred == ICmpInst::ICMP_NE &&
3500                  match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) &&
3501                  DT->dominates(cast<Instruction>(CmpU), CtxI)) {
3502         return true;
3503       }
3504     }
3505   }
3506 
3507   return false;
3508 }
3509 
3510 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI,
3511                             const DominatorTree *DT) {
3512   if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V))
3513     return false;
3514 
3515   if (isKnownNonNull(V))
3516     return true;
3517 
3518   if (!CtxI || !DT)
3519     return false;
3520 
3521   return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT);
3522 }
3523 
3524 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS,
3525                                                    const Value *RHS,
3526                                                    const DataLayout &DL,
3527                                                    AssumptionCache *AC,
3528                                                    const Instruction *CxtI,
3529                                                    const DominatorTree *DT) {
3530   // Multiplying n * m significant bits yields a result of n + m significant
3531   // bits. If the total number of significant bits does not exceed the
3532   // result bit width (minus 1), there is no overflow.
3533   // This means if we have enough leading zero bits in the operands
3534   // we can guarantee that the result does not overflow.
3535   // Ref: "Hacker's Delight" by Henry Warren
3536   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
3537   APInt LHSKnownZero(BitWidth, 0);
3538   APInt LHSKnownOne(BitWidth, 0);
3539   APInt RHSKnownZero(BitWidth, 0);
3540   APInt RHSKnownOne(BitWidth, 0);
3541   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3542                    DT);
3543   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI,
3544                    DT);
3545   // Note that underestimating the number of zero bits gives a more
3546   // conservative answer.
3547   unsigned ZeroBits = LHSKnownZero.countLeadingOnes() +
3548                       RHSKnownZero.countLeadingOnes();
3549   // First handle the easy case: if we have enough zero bits there's
3550   // definitely no overflow.
3551   if (ZeroBits >= BitWidth)
3552     return OverflowResult::NeverOverflows;
3553 
3554   // Get the largest possible values for each operand.
3555   APInt LHSMax = ~LHSKnownZero;
3556   APInt RHSMax = ~RHSKnownZero;
3557 
3558   // We know the multiply operation doesn't overflow if the maximum values for
3559   // each operand will not overflow after we multiply them together.
3560   bool MaxOverflow;
3561   LHSMax.umul_ov(RHSMax, MaxOverflow);
3562   if (!MaxOverflow)
3563     return OverflowResult::NeverOverflows;
3564 
3565   // We know it always overflows if multiplying the smallest possible values for
3566   // the operands also results in overflow.
3567   bool MinOverflow;
3568   LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow);
3569   if (MinOverflow)
3570     return OverflowResult::AlwaysOverflows;
3571 
3572   return OverflowResult::MayOverflow;
3573 }
3574 
3575 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS,
3576                                                    const Value *RHS,
3577                                                    const DataLayout &DL,
3578                                                    AssumptionCache *AC,
3579                                                    const Instruction *CxtI,
3580                                                    const DominatorTree *DT) {
3581   bool LHSKnownNonNegative, LHSKnownNegative;
3582   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3583                  AC, CxtI, DT);
3584   if (LHSKnownNonNegative || LHSKnownNegative) {
3585     bool RHSKnownNonNegative, RHSKnownNegative;
3586     ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3587                    AC, CxtI, DT);
3588 
3589     if (LHSKnownNegative && RHSKnownNegative) {
3590       // The sign bit is set in both cases: this MUST overflow.
3591       // Create a simple add instruction, and insert it into the struct.
3592       return OverflowResult::AlwaysOverflows;
3593     }
3594 
3595     if (LHSKnownNonNegative && RHSKnownNonNegative) {
3596       // The sign bit is clear in both cases: this CANNOT overflow.
3597       // Create a simple add instruction, and insert it into the struct.
3598       return OverflowResult::NeverOverflows;
3599     }
3600   }
3601 
3602   return OverflowResult::MayOverflow;
3603 }
3604 
3605 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
3606                                                   const Value *RHS,
3607                                                   const AddOperator *Add,
3608                                                   const DataLayout &DL,
3609                                                   AssumptionCache *AC,
3610                                                   const Instruction *CxtI,
3611                                                   const DominatorTree *DT) {
3612   if (Add && Add->hasNoSignedWrap()) {
3613     return OverflowResult::NeverOverflows;
3614   }
3615 
3616   bool LHSKnownNonNegative, LHSKnownNegative;
3617   bool RHSKnownNonNegative, RHSKnownNegative;
3618   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0,
3619                  AC, CxtI, DT);
3620   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0,
3621                  AC, CxtI, DT);
3622 
3623   if ((LHSKnownNonNegative && RHSKnownNegative) ||
3624       (LHSKnownNegative && RHSKnownNonNegative)) {
3625     // The sign bits are opposite: this CANNOT overflow.
3626     return OverflowResult::NeverOverflows;
3627   }
3628 
3629   // The remaining code needs Add to be available. Early returns if not so.
3630   if (!Add)
3631     return OverflowResult::MayOverflow;
3632 
3633   // If the sign of Add is the same as at least one of the operands, this add
3634   // CANNOT overflow. This is particularly useful when the sum is
3635   // @llvm.assume'ed non-negative rather than proved so from analyzing its
3636   // operands.
3637   bool LHSOrRHSKnownNonNegative =
3638       (LHSKnownNonNegative || RHSKnownNonNegative);
3639   bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative);
3640   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
3641     bool AddKnownNonNegative, AddKnownNegative;
3642     ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL,
3643                    /*Depth=*/0, AC, CxtI, DT);
3644     if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) ||
3645         (AddKnownNegative && LHSOrRHSKnownNegative)) {
3646       return OverflowResult::NeverOverflows;
3647     }
3648   }
3649 
3650   return OverflowResult::MayOverflow;
3651 }
3652 
3653 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
3654                                      const DominatorTree &DT) {
3655 #ifndef NDEBUG
3656   auto IID = II->getIntrinsicID();
3657   assert((IID == Intrinsic::sadd_with_overflow ||
3658           IID == Intrinsic::uadd_with_overflow ||
3659           IID == Intrinsic::ssub_with_overflow ||
3660           IID == Intrinsic::usub_with_overflow ||
3661           IID == Intrinsic::smul_with_overflow ||
3662           IID == Intrinsic::umul_with_overflow) &&
3663          "Not an overflow intrinsic!");
3664 #endif
3665 
3666   SmallVector<const BranchInst *, 2> GuardingBranches;
3667   SmallVector<const ExtractValueInst *, 2> Results;
3668 
3669   for (const User *U : II->users()) {
3670     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
3671       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
3672 
3673       if (EVI->getIndices()[0] == 0)
3674         Results.push_back(EVI);
3675       else {
3676         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
3677 
3678         for (const auto *U : EVI->users())
3679           if (const auto *B = dyn_cast<BranchInst>(U)) {
3680             assert(B->isConditional() && "How else is it using an i1?");
3681             GuardingBranches.push_back(B);
3682           }
3683       }
3684     } else {
3685       // We are using the aggregate directly in a way we don't want to analyze
3686       // here (storing it to a global, say).
3687       return false;
3688     }
3689   }
3690 
3691   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
3692     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
3693     if (!NoWrapEdge.isSingleEdge())
3694       return false;
3695 
3696     // Check if all users of the add are provably no-wrap.
3697     for (const auto *Result : Results) {
3698       // If the extractvalue itself is not executed on overflow, the we don't
3699       // need to check each use separately, since domination is transitive.
3700       if (DT.dominates(NoWrapEdge, Result->getParent()))
3701         continue;
3702 
3703       for (auto &RU : Result->uses())
3704         if (!DT.dominates(NoWrapEdge, RU))
3705           return false;
3706     }
3707 
3708     return true;
3709   };
3710 
3711   return any_of(GuardingBranches, AllUsesGuardedByBranch);
3712 }
3713 
3714 
3715 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
3716                                                  const DataLayout &DL,
3717                                                  AssumptionCache *AC,
3718                                                  const Instruction *CxtI,
3719                                                  const DominatorTree *DT) {
3720   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
3721                                        Add, DL, AC, CxtI, DT);
3722 }
3723 
3724 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
3725                                                  const Value *RHS,
3726                                                  const DataLayout &DL,
3727                                                  AssumptionCache *AC,
3728                                                  const Instruction *CxtI,
3729                                                  const DominatorTree *DT) {
3730   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
3731 }
3732 
3733 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
3734   // A memory operation returns normally if it isn't volatile. A volatile
3735   // operation is allowed to trap.
3736   //
3737   // An atomic operation isn't guaranteed to return in a reasonable amount of
3738   // time because it's possible for another thread to interfere with it for an
3739   // arbitrary length of time, but programs aren't allowed to rely on that.
3740   if (const LoadInst *LI = dyn_cast<LoadInst>(I))
3741     return !LI->isVolatile();
3742   if (const StoreInst *SI = dyn_cast<StoreInst>(I))
3743     return !SI->isVolatile();
3744   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
3745     return !CXI->isVolatile();
3746   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
3747     return !RMWI->isVolatile();
3748   if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
3749     return !MII->isVolatile();
3750 
3751   // If there is no successor, then execution can't transfer to it.
3752   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
3753     return !CRI->unwindsToCaller();
3754   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
3755     return !CatchSwitch->unwindsToCaller();
3756   if (isa<ResumeInst>(I))
3757     return false;
3758   if (isa<ReturnInst>(I))
3759     return false;
3760   if (isa<UnreachableInst>(I))
3761     return false;
3762 
3763   // Calls can throw, or contain an infinite loop, or kill the process.
3764   if (auto CS = ImmutableCallSite(I)) {
3765     // Call sites that throw have implicit non-local control flow.
3766     if (!CS.doesNotThrow())
3767       return false;
3768 
3769     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
3770     // etc. and thus not return.  However, LLVM already assumes that
3771     //
3772     //  - Thread exiting actions are modeled as writes to memory invisible to
3773     //    the program.
3774     //
3775     //  - Loops that don't have side effects (side effects are volatile/atomic
3776     //    stores and IO) always terminate (see http://llvm.org/PR965).
3777     //    Furthermore IO itself is also modeled as writes to memory invisible to
3778     //    the program.
3779     //
3780     // We rely on those assumptions here, and use the memory effects of the call
3781     // target as a proxy for checking that it always returns.
3782 
3783     // FIXME: This isn't aggressive enough; a call which only writes to a global
3784     // is guaranteed to return.
3785     return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
3786            match(I, m_Intrinsic<Intrinsic::assume>());
3787   }
3788 
3789   // Other instructions return normally.
3790   return true;
3791 }
3792 
3793 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
3794                                                   const Loop *L) {
3795   // The loop header is guaranteed to be executed for every iteration.
3796   //
3797   // FIXME: Relax this constraint to cover all basic blocks that are
3798   // guaranteed to be executed at every iteration.
3799   if (I->getParent() != L->getHeader()) return false;
3800 
3801   for (const Instruction &LI : *L->getHeader()) {
3802     if (&LI == I) return true;
3803     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
3804   }
3805   llvm_unreachable("Instruction not contained in its own parent basic block.");
3806 }
3807 
3808 bool llvm::propagatesFullPoison(const Instruction *I) {
3809   switch (I->getOpcode()) {
3810   case Instruction::Add:
3811   case Instruction::Sub:
3812   case Instruction::Xor:
3813   case Instruction::Trunc:
3814   case Instruction::BitCast:
3815   case Instruction::AddrSpaceCast:
3816   case Instruction::Mul:
3817   case Instruction::Shl:
3818   case Instruction::GetElementPtr:
3819     // These operations all propagate poison unconditionally. Note that poison
3820     // is not any particular value, so xor or subtraction of poison with
3821     // itself still yields poison, not zero.
3822     return true;
3823 
3824   case Instruction::AShr:
3825   case Instruction::SExt:
3826     // For these operations, one bit of the input is replicated across
3827     // multiple output bits. A replicated poison bit is still poison.
3828     return true;
3829 
3830   case Instruction::ICmp:
3831     // Comparing poison with any value yields poison.  This is why, for
3832     // instance, x s< (x +nsw 1) can be folded to true.
3833     return true;
3834 
3835   default:
3836     return false;
3837   }
3838 }
3839 
3840 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
3841   switch (I->getOpcode()) {
3842     case Instruction::Store:
3843       return cast<StoreInst>(I)->getPointerOperand();
3844 
3845     case Instruction::Load:
3846       return cast<LoadInst>(I)->getPointerOperand();
3847 
3848     case Instruction::AtomicCmpXchg:
3849       return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
3850 
3851     case Instruction::AtomicRMW:
3852       return cast<AtomicRMWInst>(I)->getPointerOperand();
3853 
3854     case Instruction::UDiv:
3855     case Instruction::SDiv:
3856     case Instruction::URem:
3857     case Instruction::SRem:
3858       return I->getOperand(1);
3859 
3860     default:
3861       return nullptr;
3862   }
3863 }
3864 
3865 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) {
3866   // We currently only look for uses of poison values within the same basic
3867   // block, as that makes it easier to guarantee that the uses will be
3868   // executed given that PoisonI is executed.
3869   //
3870   // FIXME: Expand this to consider uses beyond the same basic block. To do
3871   // this, look out for the distinction between post-dominance and strong
3872   // post-dominance.
3873   const BasicBlock *BB = PoisonI->getParent();
3874 
3875   // Set of instructions that we have proved will yield poison if PoisonI
3876   // does.
3877   SmallSet<const Value *, 16> YieldsPoison;
3878   SmallSet<const BasicBlock *, 4> Visited;
3879   YieldsPoison.insert(PoisonI);
3880   Visited.insert(PoisonI->getParent());
3881 
3882   BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
3883 
3884   unsigned Iter = 0;
3885   while (Iter++ < MaxDepth) {
3886     for (auto &I : make_range(Begin, End)) {
3887       if (&I != PoisonI) {
3888         const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
3889         if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
3890           return true;
3891         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
3892           return false;
3893       }
3894 
3895       // Mark poison that propagates from I through uses of I.
3896       if (YieldsPoison.count(&I)) {
3897         for (const User *User : I.users()) {
3898           const Instruction *UserI = cast<Instruction>(User);
3899           if (propagatesFullPoison(UserI))
3900             YieldsPoison.insert(User);
3901         }
3902       }
3903     }
3904 
3905     if (auto *NextBB = BB->getSingleSuccessor()) {
3906       if (Visited.insert(NextBB).second) {
3907         BB = NextBB;
3908         Begin = BB->getFirstNonPHI()->getIterator();
3909         End = BB->end();
3910         continue;
3911       }
3912     }
3913 
3914     break;
3915   };
3916   return false;
3917 }
3918 
3919 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
3920   if (FMF.noNaNs())
3921     return true;
3922 
3923   if (auto *C = dyn_cast<ConstantFP>(V))
3924     return !C->isNaN();
3925   return false;
3926 }
3927 
3928 static bool isKnownNonZero(const Value *V) {
3929   if (auto *C = dyn_cast<ConstantFP>(V))
3930     return !C->isZero();
3931   return false;
3932 }
3933 
3934 /// Match non-obvious integer minimum and maximum sequences.
3935 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
3936                                        Value *CmpLHS, Value *CmpRHS,
3937                                        Value *TrueVal, Value *FalseVal,
3938                                        Value *&LHS, Value *&RHS) {
3939   // Assume success. If there's no match, callers should not use these anyway.
3940   LHS = TrueVal;
3941   RHS = FalseVal;
3942 
3943   // Recognize variations of:
3944   // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
3945   const APInt *C1;
3946   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
3947     const APInt *C2;
3948 
3949     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
3950     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
3951         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
3952       return {SPF_SMAX, SPNB_NA, false};
3953 
3954     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
3955     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
3956         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
3957       return {SPF_SMIN, SPNB_NA, false};
3958 
3959     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
3960     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
3961         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
3962       return {SPF_UMAX, SPNB_NA, false};
3963 
3964     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
3965     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
3966         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
3967       return {SPF_UMIN, SPNB_NA, false};
3968   }
3969 
3970   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
3971     return {SPF_UNKNOWN, SPNB_NA, false};
3972 
3973   // Z = X -nsw Y
3974   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
3975   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
3976   if (match(TrueVal, m_Zero()) &&
3977       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
3978     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
3979 
3980   // Z = X -nsw Y
3981   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
3982   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
3983   if (match(FalseVal, m_Zero()) &&
3984       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
3985     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
3986 
3987   if (!match(CmpRHS, m_APInt(C1)))
3988     return {SPF_UNKNOWN, SPNB_NA, false};
3989 
3990   // An unsigned min/max can be written with a signed compare.
3991   const APInt *C2;
3992   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
3993       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
3994     // Is the sign bit set?
3995     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
3996     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
3997     if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue())
3998       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
3999 
4000     // Is the sign bit clear?
4001     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
4002     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
4003     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
4004         C2->isMinSignedValue())
4005       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
4006   }
4007 
4008   // Look through 'not' ops to find disguised signed min/max.
4009   // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
4010   // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
4011   if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
4012       match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
4013     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
4014 
4015   // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
4016   // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
4017   if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
4018       match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
4019     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
4020 
4021   return {SPF_UNKNOWN, SPNB_NA, false};
4022 }
4023 
4024 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
4025                                               FastMathFlags FMF,
4026                                               Value *CmpLHS, Value *CmpRHS,
4027                                               Value *TrueVal, Value *FalseVal,
4028                                               Value *&LHS, Value *&RHS) {
4029   LHS = CmpLHS;
4030   RHS = CmpRHS;
4031 
4032   // If the predicate is an "or-equal"  (FP) predicate, then signed zeroes may
4033   // return inconsistent results between implementations.
4034   //   (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
4035   //   minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
4036   // Therefore we behave conservatively and only proceed if at least one of the
4037   // operands is known to not be zero, or if we don't care about signed zeroes.
4038   switch (Pred) {
4039   default: break;
4040   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
4041   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
4042     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
4043         !isKnownNonZero(CmpRHS))
4044       return {SPF_UNKNOWN, SPNB_NA, false};
4045   }
4046 
4047   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
4048   bool Ordered = false;
4049 
4050   // When given one NaN and one non-NaN input:
4051   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
4052   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
4053   //     ordered comparison fails), which could be NaN or non-NaN.
4054   // so here we discover exactly what NaN behavior is required/accepted.
4055   if (CmpInst::isFPPredicate(Pred)) {
4056     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
4057     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
4058 
4059     if (LHSSafe && RHSSafe) {
4060       // Both operands are known non-NaN.
4061       NaNBehavior = SPNB_RETURNS_ANY;
4062     } else if (CmpInst::isOrdered(Pred)) {
4063       // An ordered comparison will return false when given a NaN, so it
4064       // returns the RHS.
4065       Ordered = true;
4066       if (LHSSafe)
4067         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
4068         NaNBehavior = SPNB_RETURNS_NAN;
4069       else if (RHSSafe)
4070         NaNBehavior = SPNB_RETURNS_OTHER;
4071       else
4072         // Completely unsafe.
4073         return {SPF_UNKNOWN, SPNB_NA, false};
4074     } else {
4075       Ordered = false;
4076       // An unordered comparison will return true when given a NaN, so it
4077       // returns the LHS.
4078       if (LHSSafe)
4079         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
4080         NaNBehavior = SPNB_RETURNS_OTHER;
4081       else if (RHSSafe)
4082         NaNBehavior = SPNB_RETURNS_NAN;
4083       else
4084         // Completely unsafe.
4085         return {SPF_UNKNOWN, SPNB_NA, false};
4086     }
4087   }
4088 
4089   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
4090     std::swap(CmpLHS, CmpRHS);
4091     Pred = CmpInst::getSwappedPredicate(Pred);
4092     if (NaNBehavior == SPNB_RETURNS_NAN)
4093       NaNBehavior = SPNB_RETURNS_OTHER;
4094     else if (NaNBehavior == SPNB_RETURNS_OTHER)
4095       NaNBehavior = SPNB_RETURNS_NAN;
4096     Ordered = !Ordered;
4097   }
4098 
4099   // ([if]cmp X, Y) ? X : Y
4100   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
4101     switch (Pred) {
4102     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
4103     case ICmpInst::ICMP_UGT:
4104     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
4105     case ICmpInst::ICMP_SGT:
4106     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
4107     case ICmpInst::ICMP_ULT:
4108     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
4109     case ICmpInst::ICMP_SLT:
4110     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
4111     case FCmpInst::FCMP_UGT:
4112     case FCmpInst::FCMP_UGE:
4113     case FCmpInst::FCMP_OGT:
4114     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
4115     case FCmpInst::FCMP_ULT:
4116     case FCmpInst::FCMP_ULE:
4117     case FCmpInst::FCMP_OLT:
4118     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
4119     }
4120   }
4121 
4122   const APInt *C1;
4123   if (match(CmpRHS, m_APInt(C1))) {
4124     if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) ||
4125         (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) {
4126 
4127       // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X
4128       // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X
4129       if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) {
4130         return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4131       }
4132 
4133       // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X
4134       // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X
4135       if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) {
4136         return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false};
4137       }
4138     }
4139   }
4140 
4141   return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
4142 }
4143 
4144 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
4145                               Instruction::CastOps *CastOp) {
4146   auto *Cast1 = dyn_cast<CastInst>(V1);
4147   if (!Cast1)
4148     return nullptr;
4149 
4150   *CastOp = Cast1->getOpcode();
4151   Type *SrcTy = Cast1->getSrcTy();
4152   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
4153     // If V1 and V2 are both the same cast from the same type, look through V1.
4154     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
4155       return Cast2->getOperand(0);
4156     return nullptr;
4157   }
4158 
4159   auto *C = dyn_cast<Constant>(V2);
4160   if (!C)
4161     return nullptr;
4162 
4163   Constant *CastedTo = nullptr;
4164   switch (*CastOp) {
4165   case Instruction::ZExt:
4166     if (CmpI->isUnsigned())
4167       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
4168     break;
4169   case Instruction::SExt:
4170     if (CmpI->isSigned())
4171       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
4172     break;
4173   case Instruction::Trunc:
4174     CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
4175     break;
4176   case Instruction::FPTrunc:
4177     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
4178     break;
4179   case Instruction::FPExt:
4180     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
4181     break;
4182   case Instruction::FPToUI:
4183     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
4184     break;
4185   case Instruction::FPToSI:
4186     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
4187     break;
4188   case Instruction::UIToFP:
4189     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
4190     break;
4191   case Instruction::SIToFP:
4192     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
4193     break;
4194   default:
4195     break;
4196   }
4197 
4198   if (!CastedTo)
4199     return nullptr;
4200 
4201   // Make sure the cast doesn't lose any information.
4202   Constant *CastedBack =
4203       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
4204   if (CastedBack != C)
4205     return nullptr;
4206 
4207   return CastedTo;
4208 }
4209 
4210 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
4211                                              Instruction::CastOps *CastOp) {
4212   SelectInst *SI = dyn_cast<SelectInst>(V);
4213   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
4214 
4215   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
4216   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
4217 
4218   CmpInst::Predicate Pred = CmpI->getPredicate();
4219   Value *CmpLHS = CmpI->getOperand(0);
4220   Value *CmpRHS = CmpI->getOperand(1);
4221   Value *TrueVal = SI->getTrueValue();
4222   Value *FalseVal = SI->getFalseValue();
4223   FastMathFlags FMF;
4224   if (isa<FPMathOperator>(CmpI))
4225     FMF = CmpI->getFastMathFlags();
4226 
4227   // Bail out early.
4228   if (CmpI->isEquality())
4229     return {SPF_UNKNOWN, SPNB_NA, false};
4230 
4231   // Deal with type mismatches.
4232   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
4233     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp))
4234       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4235                                   cast<CastInst>(TrueVal)->getOperand(0), C,
4236                                   LHS, RHS);
4237     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp))
4238       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
4239                                   C, cast<CastInst>(FalseVal)->getOperand(0),
4240                                   LHS, RHS);
4241   }
4242   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
4243                               LHS, RHS);
4244 }
4245 
4246 /// Return true if "icmp Pred LHS RHS" is always true.
4247 static bool isTruePredicate(CmpInst::Predicate Pred,
4248                             const Value *LHS, const Value *RHS,
4249                             const DataLayout &DL, unsigned Depth,
4250                             AssumptionCache *AC, const Instruction *CxtI,
4251                             const DominatorTree *DT) {
4252   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
4253   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
4254     return true;
4255 
4256   switch (Pred) {
4257   default:
4258     return false;
4259 
4260   case CmpInst::ICMP_SLE: {
4261     const APInt *C;
4262 
4263     // LHS s<= LHS +_{nsw} C   if C >= 0
4264     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
4265       return !C->isNegative();
4266     return false;
4267   }
4268 
4269   case CmpInst::ICMP_ULE: {
4270     const APInt *C;
4271 
4272     // LHS u<= LHS +_{nuw} C   for any C
4273     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
4274       return true;
4275 
4276     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
4277     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
4278                                        const Value *&X,
4279                                        const APInt *&CA, const APInt *&CB) {
4280       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
4281           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
4282         return true;
4283 
4284       // If X & C == 0 then (X | C) == X +_{nuw} C
4285       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
4286           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
4287         unsigned BitWidth = CA->getBitWidth();
4288         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4289         computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT);
4290 
4291         if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB)
4292           return true;
4293       }
4294 
4295       return false;
4296     };
4297 
4298     const Value *X;
4299     const APInt *CLHS, *CRHS;
4300     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
4301       return CLHS->ule(*CRHS);
4302 
4303     return false;
4304   }
4305   }
4306 }
4307 
4308 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
4309 /// ALHS ARHS" is true.  Otherwise, return None.
4310 static Optional<bool>
4311 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
4312                       const Value *ARHS, const Value *BLHS,
4313                       const Value *BRHS, const DataLayout &DL,
4314                       unsigned Depth, AssumptionCache *AC,
4315                       const Instruction *CxtI, const DominatorTree *DT) {
4316   switch (Pred) {
4317   default:
4318     return None;
4319 
4320   case CmpInst::ICMP_SLT:
4321   case CmpInst::ICMP_SLE:
4322     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI,
4323                         DT) &&
4324         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4325       return true;
4326     return None;
4327 
4328   case CmpInst::ICMP_ULT:
4329   case CmpInst::ICMP_ULE:
4330     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI,
4331                         DT) &&
4332         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT))
4333       return true;
4334     return None;
4335   }
4336 }
4337 
4338 /// Return true if the operands of the two compares match.  IsSwappedOps is true
4339 /// when the operands match, but are swapped.
4340 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
4341                           const Value *BLHS, const Value *BRHS,
4342                           bool &IsSwappedOps) {
4343 
4344   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
4345   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
4346   return IsMatchingOps || IsSwappedOps;
4347 }
4348 
4349 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is
4350 /// true.  Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS
4351 /// BRHS" is false.  Otherwise, return None if we can't infer anything.
4352 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
4353                                                     const Value *ALHS,
4354                                                     const Value *ARHS,
4355                                                     CmpInst::Predicate BPred,
4356                                                     const Value *BLHS,
4357                                                     const Value *BRHS,
4358                                                     bool IsSwappedOps) {
4359   // Canonicalize the operands so they're matching.
4360   if (IsSwappedOps) {
4361     std::swap(BLHS, BRHS);
4362     BPred = ICmpInst::getSwappedPredicate(BPred);
4363   }
4364   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
4365     return true;
4366   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
4367     return false;
4368 
4369   return None;
4370 }
4371 
4372 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is
4373 /// true.  Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS
4374 /// C2" is false.  Otherwise, return None if we can't infer anything.
4375 static Optional<bool>
4376 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS,
4377                                  const ConstantInt *C1,
4378                                  CmpInst::Predicate BPred,
4379                                  const Value *BLHS, const ConstantInt *C2) {
4380   assert(ALHS == BLHS && "LHS operands must match.");
4381   ConstantRange DomCR =
4382       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
4383   ConstantRange CR =
4384       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
4385   ConstantRange Intersection = DomCR.intersectWith(CR);
4386   ConstantRange Difference = DomCR.difference(CR);
4387   if (Intersection.isEmptySet())
4388     return false;
4389   if (Difference.isEmptySet())
4390     return true;
4391   return None;
4392 }
4393 
4394 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
4395                                         const DataLayout &DL, bool InvertAPred,
4396                                         unsigned Depth, AssumptionCache *AC,
4397                                         const Instruction *CxtI,
4398                                         const DominatorTree *DT) {
4399   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example.
4400   if (LHS->getType() != RHS->getType())
4401     return None;
4402 
4403   Type *OpTy = LHS->getType();
4404   assert(OpTy->getScalarType()->isIntegerTy(1));
4405 
4406   // LHS ==> RHS by definition
4407   if (!InvertAPred && LHS == RHS)
4408     return true;
4409 
4410   if (OpTy->isVectorTy())
4411     // TODO: extending the code below to handle vectors
4412     return None;
4413   assert(OpTy->isIntegerTy(1) && "implied by above");
4414 
4415   ICmpInst::Predicate APred, BPred;
4416   Value *ALHS, *ARHS;
4417   Value *BLHS, *BRHS;
4418 
4419   if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) ||
4420       !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS))))
4421     return None;
4422 
4423   if (InvertAPred)
4424     APred = CmpInst::getInversePredicate(APred);
4425 
4426   // Can we infer anything when the two compares have matching operands?
4427   bool IsSwappedOps;
4428   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) {
4429     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
4430             APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps))
4431       return Implication;
4432     // No amount of additional analysis will infer the second condition, so
4433     // early exit.
4434     return None;
4435   }
4436 
4437   // Can we infer anything when the LHS operands match and the RHS operands are
4438   // constants (not necessarily matching)?
4439   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
4440     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
4441             APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS,
4442             cast<ConstantInt>(BRHS)))
4443       return Implication;
4444     // No amount of additional analysis will infer the second condition, so
4445     // early exit.
4446     return None;
4447   }
4448 
4449   if (APred == BPred)
4450     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC,
4451                                  CxtI, DT);
4452 
4453   return None;
4454 }
4455