1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/InstructionSimplify.h" 20 #include "llvm/Analysis/MemoryBuiltins.h" 21 #include "llvm/Analysis/Loads.h" 22 #include "llvm/Analysis/LoopInfo.h" 23 #include "llvm/Analysis/OptimizationDiagnosticInfo.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/CallSite.h" 26 #include "llvm/IR/ConstantRange.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Dominators.h" 30 #include "llvm/IR/GetElementPtrTypeIterator.h" 31 #include "llvm/IR/GlobalAlias.h" 32 #include "llvm/IR/GlobalVariable.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/Metadata.h" 37 #include "llvm/IR/Operator.h" 38 #include "llvm/IR/PatternMatch.h" 39 #include "llvm/IR/Statepoint.h" 40 #include "llvm/Support/Debug.h" 41 #include "llvm/Support/MathExtras.h" 42 #include <algorithm> 43 #include <array> 44 #include <cstring> 45 using namespace llvm; 46 using namespace llvm::PatternMatch; 47 48 const unsigned MaxDepth = 6; 49 50 // Controls the number of uses of the value searched for possible 51 // dominating comparisons. 52 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 53 cl::Hidden, cl::init(20)); 54 55 // This optimization is known to cause performance regressions is some cases, 56 // keep it under a temporary flag for now. 57 static cl::opt<bool> 58 DontImproveNonNegativePhiBits("dont-improve-non-negative-phi-bits", 59 cl::Hidden, cl::init(true)); 60 61 /// Returns the bitwidth of the given scalar or pointer type (if unknown returns 62 /// 0). For vector types, returns the element type's bitwidth. 63 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 64 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 65 return BitWidth; 66 67 return DL.getPointerTypeSizeInBits(Ty); 68 } 69 70 namespace { 71 // Simplifying using an assume can only be done in a particular control-flow 72 // context (the context instruction provides that context). If an assume and 73 // the context instruction are not in the same block then the DT helps in 74 // figuring out if we can use it. 75 struct Query { 76 const DataLayout &DL; 77 AssumptionCache *AC; 78 const Instruction *CxtI; 79 const DominatorTree *DT; 80 // Unlike the other analyses, this may be a nullptr because not all clients 81 // provide it currently. 82 OptimizationRemarkEmitter *ORE; 83 84 /// Set of assumptions that should be excluded from further queries. 85 /// This is because of the potential for mutual recursion to cause 86 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 87 /// classic case of this is assume(x = y), which will attempt to determine 88 /// bits in x from bits in y, which will attempt to determine bits in y from 89 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 90 /// isKnownNonZero, which calls computeKnownBits and ComputeSignBit and 91 /// isKnownToBeAPowerOfTwo (all of which can call computeKnownBits), and so 92 /// on. 93 std::array<const Value *, MaxDepth> Excluded; 94 unsigned NumExcluded; 95 96 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 97 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 98 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), NumExcluded(0) {} 99 100 Query(const Query &Q, const Value *NewExcl) 101 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 102 NumExcluded(Q.NumExcluded) { 103 Excluded = Q.Excluded; 104 Excluded[NumExcluded++] = NewExcl; 105 assert(NumExcluded <= Excluded.size()); 106 } 107 108 bool isExcluded(const Value *Value) const { 109 if (NumExcluded == 0) 110 return false; 111 auto End = Excluded.begin() + NumExcluded; 112 return std::find(Excluded.begin(), End, Value) != End; 113 } 114 }; 115 } // end anonymous namespace 116 117 // Given the provided Value and, potentially, a context instruction, return 118 // the preferred context instruction (if any). 119 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 120 // If we've been provided with a context instruction, then use that (provided 121 // it has been inserted). 122 if (CxtI && CxtI->getParent()) 123 return CxtI; 124 125 // If the value is really an already-inserted instruction, then use that. 126 CxtI = dyn_cast<Instruction>(V); 127 if (CxtI && CxtI->getParent()) 128 return CxtI; 129 130 return nullptr; 131 } 132 133 static void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 134 unsigned Depth, const Query &Q); 135 136 void llvm::computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 137 const DataLayout &DL, unsigned Depth, 138 AssumptionCache *AC, const Instruction *CxtI, 139 const DominatorTree *DT, 140 OptimizationRemarkEmitter *ORE) { 141 ::computeKnownBits(V, KnownZero, KnownOne, Depth, 142 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 143 } 144 145 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 146 const DataLayout &DL, 147 AssumptionCache *AC, const Instruction *CxtI, 148 const DominatorTree *DT) { 149 assert(LHS->getType() == RHS->getType() && 150 "LHS and RHS should have the same type"); 151 assert(LHS->getType()->isIntOrIntVectorTy() && 152 "LHS and RHS should be integers"); 153 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 154 APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0); 155 APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0); 156 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT); 157 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT); 158 return (LHSKnownZero | RHSKnownZero).isAllOnesValue(); 159 } 160 161 static void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 162 unsigned Depth, const Query &Q); 163 164 void llvm::ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT) { 168 ::ComputeSignBit(V, KnownZero, KnownOne, Depth, 169 Query(DL, AC, safeCxtI(V, CxtI), DT)); 170 } 171 172 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 173 const Query &Q); 174 175 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 176 bool OrZero, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT) { 180 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 181 Query(DL, AC, safeCxtI(V, CxtI), DT)); 182 } 183 184 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 185 186 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 190 } 191 192 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 193 unsigned Depth, 194 AssumptionCache *AC, const Instruction *CxtI, 195 const DominatorTree *DT) { 196 bool NonNegative, Negative; 197 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 198 return NonNegative; 199 } 200 201 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 202 AssumptionCache *AC, const Instruction *CxtI, 203 const DominatorTree *DT) { 204 if (auto *CI = dyn_cast<ConstantInt>(V)) 205 return CI->getValue().isStrictlyPositive(); 206 207 // TODO: We'd doing two recursive queries here. We should factor this such 208 // that only a single query is needed. 209 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 210 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 211 } 212 213 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 214 AssumptionCache *AC, const Instruction *CxtI, 215 const DominatorTree *DT) { 216 bool NonNegative, Negative; 217 ComputeSignBit(V, NonNegative, Negative, DL, Depth, AC, CxtI, DT); 218 return Negative; 219 } 220 221 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 222 223 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 224 const DataLayout &DL, 225 AssumptionCache *AC, const Instruction *CxtI, 226 const DominatorTree *DT) { 227 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 228 safeCxtI(V1, safeCxtI(V2, CxtI)), 229 DT)); 230 } 231 232 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 233 const Query &Q); 234 235 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 236 const DataLayout &DL, 237 unsigned Depth, AssumptionCache *AC, 238 const Instruction *CxtI, const DominatorTree *DT) { 239 return ::MaskedValueIsZero(V, Mask, Depth, 240 Query(DL, AC, safeCxtI(V, CxtI), DT)); 241 } 242 243 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 244 const Query &Q); 245 246 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 247 unsigned Depth, AssumptionCache *AC, 248 const Instruction *CxtI, 249 const DominatorTree *DT) { 250 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 251 } 252 253 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 254 bool NSW, 255 APInt &KnownZero, APInt &KnownOne, 256 APInt &KnownZero2, APInt &KnownOne2, 257 unsigned Depth, const Query &Q) { 258 unsigned BitWidth = KnownZero.getBitWidth(); 259 260 // If an initial sequence of bits in the result is not needed, the 261 // corresponding bits in the operands are not needed. 262 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0); 263 computeKnownBits(Op0, LHSKnownZero, LHSKnownOne, Depth + 1, Q); 264 computeKnownBits(Op1, KnownZero2, KnownOne2, Depth + 1, Q); 265 266 // Carry in a 1 for a subtract, rather than a 0. 267 uint64_t CarryIn = 0; 268 if (!Add) { 269 // Sum = LHS + ~RHS + 1 270 std::swap(KnownZero2, KnownOne2); 271 CarryIn = 1; 272 } 273 274 APInt PossibleSumZero = ~LHSKnownZero + ~KnownZero2 + CarryIn; 275 APInt PossibleSumOne = LHSKnownOne + KnownOne2 + CarryIn; 276 277 // Compute known bits of the carry. 278 APInt CarryKnownZero = ~(PossibleSumZero ^ LHSKnownZero ^ KnownZero2); 279 APInt CarryKnownOne = PossibleSumOne ^ LHSKnownOne ^ KnownOne2; 280 281 // Compute set of known bits (where all three relevant bits are known). 282 APInt LHSKnown = LHSKnownZero | LHSKnownOne; 283 APInt RHSKnown = KnownZero2 | KnownOne2; 284 APInt CarryKnown = CarryKnownZero | CarryKnownOne; 285 APInt Known = LHSKnown & RHSKnown & CarryKnown; 286 287 assert((PossibleSumZero & Known) == (PossibleSumOne & Known) && 288 "known bits of sum differ"); 289 290 // Compute known bits of the result. 291 KnownZero = ~PossibleSumOne & Known; 292 KnownOne = PossibleSumOne & Known; 293 294 // Are we still trying to solve for the sign bit? 295 if (!Known.isSignBitSet()) { 296 if (NSW) { 297 // Adding two non-negative numbers, or subtracting a negative number from 298 // a non-negative one, can't wrap into negative. 299 if (LHSKnownZero.isSignBitSet() && KnownZero2.isSignBitSet()) 300 KnownZero.setSignBit(); 301 // Adding two negative numbers, or subtracting a non-negative number from 302 // a negative one, can't wrap into non-negative. 303 else if (LHSKnownOne.isSignBitSet() && KnownOne2.isSignBitSet()) 304 KnownOne.setSignBit(); 305 } 306 } 307 } 308 309 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 310 APInt &KnownZero, APInt &KnownOne, 311 APInt &KnownZero2, APInt &KnownOne2, 312 unsigned Depth, const Query &Q) { 313 unsigned BitWidth = KnownZero.getBitWidth(); 314 computeKnownBits(Op1, KnownZero, KnownOne, Depth + 1, Q); 315 computeKnownBits(Op0, KnownZero2, KnownOne2, Depth + 1, Q); 316 317 bool isKnownNegative = false; 318 bool isKnownNonNegative = false; 319 // If the multiplication is known not to overflow, compute the sign bit. 320 if (NSW) { 321 if (Op0 == Op1) { 322 // The product of a number with itself is non-negative. 323 isKnownNonNegative = true; 324 } else { 325 bool isKnownNonNegativeOp1 = KnownZero.isSignBitSet(); 326 bool isKnownNonNegativeOp0 = KnownZero2.isSignBitSet(); 327 bool isKnownNegativeOp1 = KnownOne.isSignBitSet(); 328 bool isKnownNegativeOp0 = KnownOne2.isSignBitSet(); 329 // The product of two numbers with the same sign is non-negative. 330 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 331 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 332 // The product of a negative number and a non-negative number is either 333 // negative or zero. 334 if (!isKnownNonNegative) 335 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 336 isKnownNonZero(Op0, Depth, Q)) || 337 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 338 isKnownNonZero(Op1, Depth, Q)); 339 } 340 } 341 342 // If low bits are zero in either operand, output low known-0 bits. 343 // Also compute a conservative estimate for high known-0 bits. 344 // More trickiness is possible, but this is sufficient for the 345 // interesting case of alignment computation. 346 KnownOne.clearAllBits(); 347 unsigned TrailZ = KnownZero.countTrailingOnes() + 348 KnownZero2.countTrailingOnes(); 349 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() + 350 KnownZero2.countLeadingOnes(), 351 BitWidth) - BitWidth; 352 353 TrailZ = std::min(TrailZ, BitWidth); 354 LeadZ = std::min(LeadZ, BitWidth); 355 KnownZero.clearAllBits(); 356 KnownZero.setLowBits(TrailZ); 357 KnownZero.setHighBits(LeadZ); 358 359 // Only make use of no-wrap flags if we failed to compute the sign bit 360 // directly. This matters if the multiplication always overflows, in 361 // which case we prefer to follow the result of the direct computation, 362 // though as the program is invoking undefined behaviour we can choose 363 // whatever we like here. 364 if (isKnownNonNegative && !KnownOne.isSignBitSet()) 365 KnownZero.setSignBit(); 366 else if (isKnownNegative && !KnownZero.isSignBitSet()) 367 KnownOne.setSignBit(); 368 } 369 370 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 371 APInt &KnownZero, 372 APInt &KnownOne) { 373 unsigned BitWidth = KnownZero.getBitWidth(); 374 unsigned NumRanges = Ranges.getNumOperands() / 2; 375 assert(NumRanges >= 1); 376 377 KnownZero.setAllBits(); 378 KnownOne.setAllBits(); 379 380 for (unsigned i = 0; i < NumRanges; ++i) { 381 ConstantInt *Lower = 382 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 383 ConstantInt *Upper = 384 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 385 ConstantRange Range(Lower->getValue(), Upper->getValue()); 386 387 // The first CommonPrefixBits of all values in Range are equal. 388 unsigned CommonPrefixBits = 389 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 390 391 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 392 KnownOne &= Range.getUnsignedMax() & Mask; 393 KnownZero &= ~Range.getUnsignedMax() & Mask; 394 } 395 } 396 397 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 398 SmallVector<const Value *, 16> WorkSet(1, I); 399 SmallPtrSet<const Value *, 32> Visited; 400 SmallPtrSet<const Value *, 16> EphValues; 401 402 // The instruction defining an assumption's condition itself is always 403 // considered ephemeral to that assumption (even if it has other 404 // non-ephemeral users). See r246696's test case for an example. 405 if (is_contained(I->operands(), E)) 406 return true; 407 408 while (!WorkSet.empty()) { 409 const Value *V = WorkSet.pop_back_val(); 410 if (!Visited.insert(V).second) 411 continue; 412 413 // If all uses of this value are ephemeral, then so is this value. 414 if (all_of(V->users(), [&](const User *U) { return EphValues.count(U); })) { 415 if (V == E) 416 return true; 417 418 EphValues.insert(V); 419 if (const User *U = dyn_cast<User>(V)) 420 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 421 J != JE; ++J) { 422 if (isSafeToSpeculativelyExecute(*J)) 423 WorkSet.push_back(*J); 424 } 425 } 426 } 427 428 return false; 429 } 430 431 // Is this an intrinsic that cannot be speculated but also cannot trap? 432 static bool isAssumeLikeIntrinsic(const Instruction *I) { 433 if (const CallInst *CI = dyn_cast<CallInst>(I)) 434 if (Function *F = CI->getCalledFunction()) 435 switch (F->getIntrinsicID()) { 436 default: break; 437 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 438 case Intrinsic::assume: 439 case Intrinsic::dbg_declare: 440 case Intrinsic::dbg_value: 441 case Intrinsic::invariant_start: 442 case Intrinsic::invariant_end: 443 case Intrinsic::lifetime_start: 444 case Intrinsic::lifetime_end: 445 case Intrinsic::objectsize: 446 case Intrinsic::ptr_annotation: 447 case Intrinsic::var_annotation: 448 return true; 449 } 450 451 return false; 452 } 453 454 bool llvm::isValidAssumeForContext(const Instruction *Inv, 455 const Instruction *CxtI, 456 const DominatorTree *DT) { 457 458 // There are two restrictions on the use of an assume: 459 // 1. The assume must dominate the context (or the control flow must 460 // reach the assume whenever it reaches the context). 461 // 2. The context must not be in the assume's set of ephemeral values 462 // (otherwise we will use the assume to prove that the condition 463 // feeding the assume is trivially true, thus causing the removal of 464 // the assume). 465 466 if (DT) { 467 if (DT->dominates(Inv, CxtI)) 468 return true; 469 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 470 // We don't have a DT, but this trivially dominates. 471 return true; 472 } 473 474 // With or without a DT, the only remaining case we will check is if the 475 // instructions are in the same BB. Give up if that is not the case. 476 if (Inv->getParent() != CxtI->getParent()) 477 return false; 478 479 // If we have a dom tree, then we now know that the assume doens't dominate 480 // the other instruction. If we don't have a dom tree then we can check if 481 // the assume is first in the BB. 482 if (!DT) { 483 // Search forward from the assume until we reach the context (or the end 484 // of the block); the common case is that the assume will come first. 485 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 486 IE = Inv->getParent()->end(); I != IE; ++I) 487 if (&*I == CxtI) 488 return true; 489 } 490 491 // The context comes first, but they're both in the same block. Make sure 492 // there is nothing in between that might interrupt the control flow. 493 for (BasicBlock::const_iterator I = 494 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 495 I != IE; ++I) 496 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 497 return false; 498 499 return !isEphemeralValueOf(Inv, CxtI); 500 } 501 502 static void computeKnownBitsFromAssume(const Value *V, APInt &KnownZero, 503 APInt &KnownOne, unsigned Depth, 504 const Query &Q) { 505 // Use of assumptions is context-sensitive. If we don't have a context, we 506 // cannot use them! 507 if (!Q.AC || !Q.CxtI) 508 return; 509 510 unsigned BitWidth = KnownZero.getBitWidth(); 511 512 // Note that the patterns below need to be kept in sync with the code 513 // in AssumptionCache::updateAffectedValues. 514 515 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 516 if (!AssumeVH) 517 continue; 518 CallInst *I = cast<CallInst>(AssumeVH); 519 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 520 "Got assumption for the wrong function!"); 521 if (Q.isExcluded(I)) 522 continue; 523 524 // Warning: This loop can end up being somewhat performance sensetive. 525 // We're running this loop for once for each value queried resulting in a 526 // runtime of ~O(#assumes * #values). 527 528 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 529 "must be an assume intrinsic"); 530 531 Value *Arg = I->getArgOperand(0); 532 533 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 534 assert(BitWidth == 1 && "assume operand is not i1?"); 535 KnownZero.clearAllBits(); 536 KnownOne.setAllBits(); 537 return; 538 } 539 if (match(Arg, m_Not(m_Specific(V))) && 540 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 541 assert(BitWidth == 1 && "assume operand is not i1?"); 542 KnownZero.setAllBits(); 543 KnownOne.clearAllBits(); 544 return; 545 } 546 547 // The remaining tests are all recursive, so bail out if we hit the limit. 548 if (Depth == MaxDepth) 549 continue; 550 551 Value *A, *B; 552 auto m_V = m_CombineOr(m_Specific(V), 553 m_CombineOr(m_PtrToInt(m_Specific(V)), 554 m_BitCast(m_Specific(V)))); 555 556 CmpInst::Predicate Pred; 557 ConstantInt *C; 558 // assume(v = a) 559 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 560 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 561 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 562 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 563 KnownZero |= RHSKnownZero; 564 KnownOne |= RHSKnownOne; 565 // assume(v & b = a) 566 } else if (match(Arg, 567 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 568 Pred == ICmpInst::ICMP_EQ && 569 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 570 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 571 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 572 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 573 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 574 575 // For those bits in the mask that are known to be one, we can propagate 576 // known bits from the RHS to V. 577 KnownZero |= RHSKnownZero & MaskKnownOne; 578 KnownOne |= RHSKnownOne & MaskKnownOne; 579 // assume(~(v & b) = a) 580 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 581 m_Value(A))) && 582 Pred == ICmpInst::ICMP_EQ && 583 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 584 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 585 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 586 APInt MaskKnownZero(BitWidth, 0), MaskKnownOne(BitWidth, 0); 587 computeKnownBits(B, MaskKnownZero, MaskKnownOne, Depth+1, Query(Q, I)); 588 589 // For those bits in the mask that are known to be one, we can propagate 590 // inverted known bits from the RHS to V. 591 KnownZero |= RHSKnownOne & MaskKnownOne; 592 KnownOne |= RHSKnownZero & MaskKnownOne; 593 // assume(v | b = a) 594 } else if (match(Arg, 595 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 596 Pred == ICmpInst::ICMP_EQ && 597 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 598 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 599 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 600 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 601 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 602 603 // For those bits in B that are known to be zero, we can propagate known 604 // bits from the RHS to V. 605 KnownZero |= RHSKnownZero & BKnownZero; 606 KnownOne |= RHSKnownOne & BKnownZero; 607 // assume(~(v | b) = a) 608 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 609 m_Value(A))) && 610 Pred == ICmpInst::ICMP_EQ && 611 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 612 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 613 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 614 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 615 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 616 617 // For those bits in B that are known to be zero, we can propagate 618 // inverted known bits from the RHS to V. 619 KnownZero |= RHSKnownOne & BKnownZero; 620 KnownOne |= RHSKnownZero & BKnownZero; 621 // assume(v ^ b = a) 622 } else if (match(Arg, 623 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 624 Pred == ICmpInst::ICMP_EQ && 625 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 626 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 627 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 628 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 629 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 630 631 // For those bits in B that are known to be zero, we can propagate known 632 // bits from the RHS to V. For those bits in B that are known to be one, 633 // we can propagate inverted known bits from the RHS to V. 634 KnownZero |= RHSKnownZero & BKnownZero; 635 KnownOne |= RHSKnownOne & BKnownZero; 636 KnownZero |= RHSKnownOne & BKnownOne; 637 KnownOne |= RHSKnownZero & BKnownOne; 638 // assume(~(v ^ b) = a) 639 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 640 m_Value(A))) && 641 Pred == ICmpInst::ICMP_EQ && 642 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 643 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 644 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 645 APInt BKnownZero(BitWidth, 0), BKnownOne(BitWidth, 0); 646 computeKnownBits(B, BKnownZero, BKnownOne, Depth+1, Query(Q, I)); 647 648 // For those bits in B that are known to be zero, we can propagate 649 // inverted known bits from the RHS to V. For those bits in B that are 650 // known to be one, we can propagate known bits from the RHS to V. 651 KnownZero |= RHSKnownOne & BKnownZero; 652 KnownOne |= RHSKnownZero & BKnownZero; 653 KnownZero |= RHSKnownZero & BKnownOne; 654 KnownOne |= RHSKnownOne & BKnownOne; 655 // assume(v << c = a) 656 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 657 m_Value(A))) && 658 Pred == ICmpInst::ICMP_EQ && 659 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 660 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 661 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 662 // For those bits in RHS that are known, we can propagate them to known 663 // bits in V shifted to the right by C. 664 RHSKnownZero.lshrInPlace(C->getZExtValue()); 665 KnownZero |= RHSKnownZero; 666 RHSKnownOne.lshrInPlace(C->getZExtValue()); 667 KnownOne |= RHSKnownOne; 668 // assume(~(v << c) = a) 669 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 670 m_Value(A))) && 671 Pred == ICmpInst::ICMP_EQ && 672 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 673 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 674 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 675 // For those bits in RHS that are known, we can propagate them inverted 676 // to known bits in V shifted to the right by C. 677 RHSKnownOne.lshrInPlace(C->getZExtValue()); 678 KnownZero |= RHSKnownOne; 679 RHSKnownZero.lshrInPlace(C->getZExtValue()); 680 KnownOne |= RHSKnownZero; 681 // assume(v >> c = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_CombineOr(m_LShr(m_V, m_ConstantInt(C)), 684 m_AShr(m_V, m_ConstantInt(C))), 685 m_Value(A))) && 686 Pred == ICmpInst::ICMP_EQ && 687 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 688 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 689 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 690 // For those bits in RHS that are known, we can propagate them to known 691 // bits in V shifted to the right by C. 692 KnownZero |= RHSKnownZero << C->getZExtValue(); 693 KnownOne |= RHSKnownOne << C->getZExtValue(); 694 // assume(~(v >> c) = a) 695 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_CombineOr( 696 m_LShr(m_V, m_ConstantInt(C)), 697 m_AShr(m_V, m_ConstantInt(C)))), 698 m_Value(A))) && 699 Pred == ICmpInst::ICMP_EQ && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 702 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 703 // For those bits in RHS that are known, we can propagate them inverted 704 // to known bits in V shifted to the right by C. 705 KnownZero |= RHSKnownOne << C->getZExtValue(); 706 KnownOne |= RHSKnownZero << C->getZExtValue(); 707 // assume(v >=_s c) where c is non-negative 708 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 709 Pred == ICmpInst::ICMP_SGE && 710 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 711 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 712 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 713 714 if (RHSKnownZero.isSignBitSet()) { 715 // We know that the sign bit is zero. 716 KnownZero.setSignBit(); 717 } 718 // assume(v >_s c) where c is at least -1. 719 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 720 Pred == ICmpInst::ICMP_SGT && 721 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 722 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 723 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 724 725 if (RHSKnownOne.isAllOnesValue() || RHSKnownZero.isSignBitSet()) { 726 // We know that the sign bit is zero. 727 KnownZero.setSignBit(); 728 } 729 // assume(v <=_s c) where c is negative 730 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 731 Pred == ICmpInst::ICMP_SLE && 732 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 733 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 734 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 735 736 if (RHSKnownOne.isSignBitSet()) { 737 // We know that the sign bit is one. 738 KnownOne.setSignBit(); 739 } 740 // assume(v <_s c) where c is non-positive 741 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 742 Pred == ICmpInst::ICMP_SLT && 743 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 744 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 745 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 746 747 if (RHSKnownZero.isAllOnesValue() || RHSKnownOne.isSignBitSet()) { 748 // We know that the sign bit is one. 749 KnownOne.setSignBit(); 750 } 751 // assume(v <=_u c) 752 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 753 Pred == ICmpInst::ICMP_ULE && 754 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 755 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 756 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 757 758 // Whatever high bits in c are zero are known to be zero. 759 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()); 760 // assume(v <_u c) 761 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 762 Pred == ICmpInst::ICMP_ULT && 763 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 764 APInt RHSKnownZero(BitWidth, 0), RHSKnownOne(BitWidth, 0); 765 computeKnownBits(A, RHSKnownZero, RHSKnownOne, Depth+1, Query(Q, I)); 766 767 // Whatever high bits in c are zero are known to be zero (if c is a power 768 // of 2, then one more). 769 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 770 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()+1); 771 else 772 KnownZero.setHighBits(RHSKnownZero.countLeadingOnes()); 773 } 774 } 775 776 // If assumptions conflict with each other or previous known bits, then we 777 // have a logical fallacy. It's possible that the assumption is not reachable, 778 // so this isn't a real bug. On the other hand, the program may have undefined 779 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 780 // clear out the known bits, try to warn the user, and hope for the best. 781 if ((KnownZero & KnownOne) != 0) { 782 KnownZero.clearAllBits(); 783 KnownOne.clearAllBits(); 784 785 if (Q.ORE) { 786 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 787 OptimizationRemarkAnalysis ORA("value-tracking", "BadAssumption", CxtI); 788 Q.ORE->emit(ORA << "Detected conflicting code assumptions. Program may " 789 "have undefined behavior, or compiler may have " 790 "internal error."); 791 } 792 } 793 } 794 795 // Compute known bits from a shift operator, including those with a 796 // non-constant shift amount. KnownZero and KnownOne are the outputs of this 797 // function. KnownZero2 and KnownOne2 are pre-allocated temporaries with the 798 // same bit width as KnownZero and KnownOne. KZF and KOF are operator-specific 799 // functors that, given the known-zero or known-one bits respectively, and a 800 // shift amount, compute the implied known-zero or known-one bits of the shift 801 // operator's result respectively for that shift amount. The results from calling 802 // KZF and KOF are conservatively combined for all permitted shift amounts. 803 static void computeKnownBitsFromShiftOperator( 804 const Operator *I, APInt &KnownZero, APInt &KnownOne, APInt &KnownZero2, 805 APInt &KnownOne2, unsigned Depth, const Query &Q, 806 function_ref<APInt(const APInt &, unsigned)> KZF, 807 function_ref<APInt(const APInt &, unsigned)> KOF) { 808 unsigned BitWidth = KnownZero.getBitWidth(); 809 810 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 811 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 812 813 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 814 KnownZero = KZF(KnownZero, ShiftAmt); 815 KnownOne = KOF(KnownOne, ShiftAmt); 816 // If there is conflict between KnownZero and KnownOne, this must be an 817 // overflowing left shift, so the shift result is undefined. Clear KnownZero 818 // and KnownOne bits so that other code could propagate this undef. 819 if ((KnownZero & KnownOne) != 0) { 820 KnownZero.clearAllBits(); 821 KnownOne.clearAllBits(); 822 } 823 824 return; 825 } 826 827 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 828 829 // If the shift amount could be greater than or equal to the bit-width of the LHS, the 830 // value could be undef, so we don't know anything about it. 831 if ((~KnownZero).uge(BitWidth)) { 832 KnownZero.clearAllBits(); 833 KnownOne.clearAllBits(); 834 return; 835 } 836 837 // Note: We cannot use KnownZero.getLimitedValue() here, because if 838 // BitWidth > 64 and any upper bits are known, we'll end up returning the 839 // limit value (which implies all bits are known). 840 uint64_t ShiftAmtKZ = KnownZero.zextOrTrunc(64).getZExtValue(); 841 uint64_t ShiftAmtKO = KnownOne.zextOrTrunc(64).getZExtValue(); 842 843 // It would be more-clearly correct to use the two temporaries for this 844 // calculation. Reusing the APInts here to prevent unnecessary allocations. 845 KnownZero.clearAllBits(); 846 KnownOne.clearAllBits(); 847 848 // If we know the shifter operand is nonzero, we can sometimes infer more 849 // known bits. However this is expensive to compute, so be lazy about it and 850 // only compute it when absolutely necessary. 851 Optional<bool> ShifterOperandIsNonZero; 852 853 // Early exit if we can't constrain any well-defined shift amount. 854 if (!(ShiftAmtKZ & (BitWidth - 1)) && !(ShiftAmtKO & (BitWidth - 1))) { 855 ShifterOperandIsNonZero = 856 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 857 if (!*ShifterOperandIsNonZero) 858 return; 859 } 860 861 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 862 863 KnownZero = KnownOne = APInt::getAllOnesValue(BitWidth); 864 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 865 // Combine the shifted known input bits only for those shift amounts 866 // compatible with its known constraints. 867 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 868 continue; 869 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 870 continue; 871 // If we know the shifter is nonzero, we may be able to infer more known 872 // bits. This check is sunk down as far as possible to avoid the expensive 873 // call to isKnownNonZero if the cheaper checks above fail. 874 if (ShiftAmt == 0) { 875 if (!ShifterOperandIsNonZero.hasValue()) 876 ShifterOperandIsNonZero = 877 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 878 if (*ShifterOperandIsNonZero) 879 continue; 880 } 881 882 KnownZero &= KZF(KnownZero2, ShiftAmt); 883 KnownOne &= KOF(KnownOne2, ShiftAmt); 884 } 885 886 // If there are no compatible shift amounts, then we've proven that the shift 887 // amount must be >= the BitWidth, and the result is undefined. We could 888 // return anything we'd like, but we need to make sure the sets of known bits 889 // stay disjoint (it should be better for some other code to actually 890 // propagate the undef than to pick a value here using known bits). 891 if ((KnownZero & KnownOne) != 0) { 892 KnownZero.clearAllBits(); 893 KnownOne.clearAllBits(); 894 } 895 } 896 897 static void computeKnownBitsFromOperator(const Operator *I, APInt &KnownZero, 898 APInt &KnownOne, unsigned Depth, 899 const Query &Q) { 900 unsigned BitWidth = KnownZero.getBitWidth(); 901 902 APInt KnownZero2(KnownZero), KnownOne2(KnownOne); 903 switch (I->getOpcode()) { 904 default: break; 905 case Instruction::Load: 906 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 907 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 908 break; 909 case Instruction::And: { 910 // If either the LHS or the RHS are Zero, the result is zero. 911 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 912 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 913 914 // Output known-1 bits are only known if set in both the LHS & RHS. 915 KnownOne &= KnownOne2; 916 // Output known-0 are known to be clear if zero in either the LHS | RHS. 917 KnownZero |= KnownZero2; 918 919 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 920 // here we handle the more general case of adding any odd number by 921 // matching the form add(x, add(x, y)) where y is odd. 922 // TODO: This could be generalized to clearing any bit set in y where the 923 // following bit is known to be unset in y. 924 Value *Y = nullptr; 925 if (!KnownZero[0] && !KnownOne[0] && 926 (match(I->getOperand(0), m_Add(m_Specific(I->getOperand(1)), 927 m_Value(Y))) || 928 match(I->getOperand(1), m_Add(m_Specific(I->getOperand(0)), 929 m_Value(Y))))) { 930 KnownZero2.clearAllBits(); KnownOne2.clearAllBits(); 931 computeKnownBits(Y, KnownZero2, KnownOne2, Depth + 1, Q); 932 if (KnownOne2.countTrailingOnes() > 0) 933 KnownZero.setBit(0); 934 } 935 break; 936 } 937 case Instruction::Or: { 938 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 939 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 940 941 // Output known-0 bits are only known if clear in both the LHS & RHS. 942 KnownZero &= KnownZero2; 943 // Output known-1 are known to be set if set in either the LHS | RHS. 944 KnownOne |= KnownOne2; 945 break; 946 } 947 case Instruction::Xor: { 948 computeKnownBits(I->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 949 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 950 951 // Output known-0 bits are known if clear or set in both the LHS & RHS. 952 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2); 953 // Output known-1 are known to be set if set in only one of the LHS, RHS. 954 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2); 955 KnownZero = std::move(KnownZeroOut); 956 break; 957 } 958 case Instruction::Mul: { 959 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 960 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, KnownZero, 961 KnownOne, KnownZero2, KnownOne2, Depth, Q); 962 break; 963 } 964 case Instruction::UDiv: { 965 // For the purposes of computing leading zeros we can conservatively 966 // treat a udiv as a logical right shift by the power of 2 known to 967 // be less than the denominator. 968 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 969 unsigned LeadZ = KnownZero2.countLeadingOnes(); 970 971 KnownOne2.clearAllBits(); 972 KnownZero2.clearAllBits(); 973 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 974 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros(); 975 if (RHSUnknownLeadingOnes != BitWidth) 976 LeadZ = std::min(BitWidth, 977 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1); 978 979 KnownZero.setHighBits(LeadZ); 980 break; 981 } 982 case Instruction::Select: { 983 const Value *LHS, *RHS; 984 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 985 if (SelectPatternResult::isMinOrMax(SPF)) { 986 computeKnownBits(RHS, KnownZero, KnownOne, Depth + 1, Q); 987 computeKnownBits(LHS, KnownZero2, KnownOne2, Depth + 1, Q); 988 } else { 989 computeKnownBits(I->getOperand(2), KnownZero, KnownOne, Depth + 1, Q); 990 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 991 } 992 993 unsigned MaxHighOnes = 0; 994 unsigned MaxHighZeros = 0; 995 if (SPF == SPF_SMAX) { 996 // If both sides are negative, the result is negative. 997 if (KnownOne.isSignBitSet() && KnownOne2.isSignBitSet()) 998 // We can derive a lower bound on the result by taking the max of the 999 // leading one bits. 1000 MaxHighOnes = 1001 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1002 // If either side is non-negative, the result is non-negative. 1003 else if (KnownZero.isSignBitSet() || KnownZero2.isSignBitSet()) 1004 MaxHighZeros = 1; 1005 } else if (SPF == SPF_SMIN) { 1006 // If both sides are non-negative, the result is non-negative. 1007 if (KnownZero.isSignBitSet() && KnownZero2.isSignBitSet()) 1008 // We can derive an upper bound on the result by taking the max of the 1009 // leading zero bits. 1010 MaxHighZeros = std::max(KnownZero.countLeadingOnes(), 1011 KnownZero2.countLeadingOnes()); 1012 // If either side is negative, the result is negative. 1013 else if (KnownOne.isSignBitSet() || KnownOne2.isSignBitSet()) 1014 MaxHighOnes = 1; 1015 } else if (SPF == SPF_UMAX) { 1016 // We can derive a lower bound on the result by taking the max of the 1017 // leading one bits. 1018 MaxHighOnes = 1019 std::max(KnownOne.countLeadingOnes(), KnownOne2.countLeadingOnes()); 1020 } else if (SPF == SPF_UMIN) { 1021 // We can derive an upper bound on the result by taking the max of the 1022 // leading zero bits. 1023 MaxHighZeros = 1024 std::max(KnownZero.countLeadingOnes(), KnownZero2.countLeadingOnes()); 1025 } 1026 1027 // Only known if known in both the LHS and RHS. 1028 KnownOne &= KnownOne2; 1029 KnownZero &= KnownZero2; 1030 if (MaxHighOnes > 0) 1031 KnownOne.setHighBits(MaxHighOnes); 1032 if (MaxHighZeros > 0) 1033 KnownZero.setHighBits(MaxHighZeros); 1034 break; 1035 } 1036 case Instruction::FPTrunc: 1037 case Instruction::FPExt: 1038 case Instruction::FPToUI: 1039 case Instruction::FPToSI: 1040 case Instruction::SIToFP: 1041 case Instruction::UIToFP: 1042 break; // Can't work with floating point. 1043 case Instruction::PtrToInt: 1044 case Instruction::IntToPtr: 1045 // Fall through and handle them the same as zext/trunc. 1046 LLVM_FALLTHROUGH; 1047 case Instruction::ZExt: 1048 case Instruction::Trunc: { 1049 Type *SrcTy = I->getOperand(0)->getType(); 1050 1051 unsigned SrcBitWidth; 1052 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1053 // which fall through here. 1054 SrcBitWidth = Q.DL.getTypeSizeInBits(SrcTy->getScalarType()); 1055 1056 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1057 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth); 1058 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth); 1059 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1060 KnownZero = KnownZero.zextOrTrunc(BitWidth); 1061 KnownOne = KnownOne.zextOrTrunc(BitWidth); 1062 // Any top bits are known to be zero. 1063 if (BitWidth > SrcBitWidth) 1064 KnownZero.setBitsFrom(SrcBitWidth); 1065 break; 1066 } 1067 case Instruction::BitCast: { 1068 Type *SrcTy = I->getOperand(0)->getType(); 1069 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1070 // TODO: For now, not handling conversions like: 1071 // (bitcast i64 %x to <2 x i32>) 1072 !I->getType()->isVectorTy()) { 1073 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1074 break; 1075 } 1076 break; 1077 } 1078 case Instruction::SExt: { 1079 // Compute the bits in the result that are not present in the input. 1080 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1081 1082 KnownZero = KnownZero.trunc(SrcBitWidth); 1083 KnownOne = KnownOne.trunc(SrcBitWidth); 1084 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1085 // If the sign bit of the input is known set or clear, then we know the 1086 // top bits of the result. 1087 KnownZero = KnownZero.sext(BitWidth); 1088 KnownOne = KnownOne.sext(BitWidth); 1089 break; 1090 } 1091 case Instruction::Shl: { 1092 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1093 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1094 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1095 APInt KZResult = KnownZero << ShiftAmt; 1096 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1097 // If this shift has "nsw" keyword, then the result is either a poison 1098 // value or has the same sign bit as the first operand. 1099 if (NSW && KnownZero.isSignBitSet()) 1100 KZResult.setSignBit(); 1101 return KZResult; 1102 }; 1103 1104 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1105 APInt KOResult = KnownOne << ShiftAmt; 1106 if (NSW && KnownOne.isSignBitSet()) 1107 KOResult.setSignBit(); 1108 return KOResult; 1109 }; 1110 1111 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1112 KnownZero2, KnownOne2, Depth, Q, KZF, 1113 KOF); 1114 break; 1115 } 1116 case Instruction::LShr: { 1117 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1118 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1119 APInt KZResult = KnownZero.lshr(ShiftAmt); 1120 // High bits known zero. 1121 KZResult.setHighBits(ShiftAmt); 1122 return KZResult; 1123 }; 1124 1125 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1126 return KnownOne.lshr(ShiftAmt); 1127 }; 1128 1129 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1130 KnownZero2, KnownOne2, Depth, Q, KZF, 1131 KOF); 1132 break; 1133 } 1134 case Instruction::AShr: { 1135 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1136 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1137 return KnownZero.ashr(ShiftAmt); 1138 }; 1139 1140 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1141 return KnownOne.ashr(ShiftAmt); 1142 }; 1143 1144 computeKnownBitsFromShiftOperator(I, KnownZero, KnownOne, 1145 KnownZero2, KnownOne2, Depth, Q, KZF, 1146 KOF); 1147 break; 1148 } 1149 case Instruction::Sub: { 1150 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1151 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1152 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1153 Q); 1154 break; 1155 } 1156 case Instruction::Add: { 1157 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1158 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1159 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1160 Q); 1161 break; 1162 } 1163 case Instruction::SRem: 1164 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1165 APInt RA = Rem->getValue().abs(); 1166 if (RA.isPowerOf2()) { 1167 APInt LowBits = RA - 1; 1168 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, 1169 Q); 1170 1171 // The low bits of the first operand are unchanged by the srem. 1172 KnownZero = KnownZero2 & LowBits; 1173 KnownOne = KnownOne2 & LowBits; 1174 1175 // If the first operand is non-negative or has all low bits zero, then 1176 // the upper bits are all zero. 1177 if (KnownZero2.isSignBitSet() || ((KnownZero2 & LowBits) == LowBits)) 1178 KnownZero |= ~LowBits; 1179 1180 // If the first operand is negative and not all low bits are zero, then 1181 // the upper bits are all one. 1182 if (KnownOne2.isSignBitSet() && ((KnownOne2 & LowBits) != 0)) 1183 KnownOne |= ~LowBits; 1184 1185 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1186 break; 1187 } 1188 } 1189 1190 // The sign bit is the LHS's sign bit, except when the result of the 1191 // remainder is zero. 1192 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1193 // If it's known zero, our sign bit is also zero. 1194 if (KnownZero2.isSignBitSet()) 1195 KnownZero.setSignBit(); 1196 1197 break; 1198 case Instruction::URem: { 1199 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1200 const APInt &RA = Rem->getValue(); 1201 if (RA.isPowerOf2()) { 1202 APInt LowBits = (RA - 1); 1203 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1204 KnownZero |= ~LowBits; 1205 KnownOne &= LowBits; 1206 break; 1207 } 1208 } 1209 1210 // Since the result is less than or equal to either operand, any leading 1211 // zero bits in either operand must also exist in the result. 1212 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1213 computeKnownBits(I->getOperand(1), KnownZero2, KnownOne2, Depth + 1, Q); 1214 1215 unsigned Leaders = std::max(KnownZero.countLeadingOnes(), 1216 KnownZero2.countLeadingOnes()); 1217 KnownOne.clearAllBits(); 1218 KnownZero.clearAllBits(); 1219 KnownZero.setHighBits(Leaders); 1220 break; 1221 } 1222 1223 case Instruction::Alloca: { 1224 const AllocaInst *AI = cast<AllocaInst>(I); 1225 unsigned Align = AI->getAlignment(); 1226 if (Align == 0) 1227 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1228 1229 if (Align > 0) 1230 KnownZero.setLowBits(countTrailingZeros(Align)); 1231 break; 1232 } 1233 case Instruction::GetElementPtr: { 1234 // Analyze all of the subscripts of this getelementptr instruction 1235 // to determine if we can prove known low zero bits. 1236 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0); 1237 computeKnownBits(I->getOperand(0), LocalKnownZero, LocalKnownOne, Depth + 1, 1238 Q); 1239 unsigned TrailZ = LocalKnownZero.countTrailingOnes(); 1240 1241 gep_type_iterator GTI = gep_type_begin(I); 1242 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1243 Value *Index = I->getOperand(i); 1244 if (StructType *STy = GTI.getStructTypeOrNull()) { 1245 // Handle struct member offset arithmetic. 1246 1247 // Handle case when index is vector zeroinitializer 1248 Constant *CIndex = cast<Constant>(Index); 1249 if (CIndex->isZeroValue()) 1250 continue; 1251 1252 if (CIndex->getType()->isVectorTy()) 1253 Index = CIndex->getSplatValue(); 1254 1255 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1256 const StructLayout *SL = Q.DL.getStructLayout(STy); 1257 uint64_t Offset = SL->getElementOffset(Idx); 1258 TrailZ = std::min<unsigned>(TrailZ, 1259 countTrailingZeros(Offset)); 1260 } else { 1261 // Handle array index arithmetic. 1262 Type *IndexedTy = GTI.getIndexedType(); 1263 if (!IndexedTy->isSized()) { 1264 TrailZ = 0; 1265 break; 1266 } 1267 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1268 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1269 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0); 1270 computeKnownBits(Index, LocalKnownZero, LocalKnownOne, Depth + 1, Q); 1271 TrailZ = std::min(TrailZ, 1272 unsigned(countTrailingZeros(TypeSize) + 1273 LocalKnownZero.countTrailingOnes())); 1274 } 1275 } 1276 1277 KnownZero.setLowBits(TrailZ); 1278 break; 1279 } 1280 case Instruction::PHI: { 1281 const PHINode *P = cast<PHINode>(I); 1282 // Handle the case of a simple two-predecessor recurrence PHI. 1283 // There's a lot more that could theoretically be done here, but 1284 // this is sufficient to catch some interesting cases. 1285 if (P->getNumIncomingValues() == 2) { 1286 for (unsigned i = 0; i != 2; ++i) { 1287 Value *L = P->getIncomingValue(i); 1288 Value *R = P->getIncomingValue(!i); 1289 Operator *LU = dyn_cast<Operator>(L); 1290 if (!LU) 1291 continue; 1292 unsigned Opcode = LU->getOpcode(); 1293 // Check for operations that have the property that if 1294 // both their operands have low zero bits, the result 1295 // will have low zero bits. 1296 if (Opcode == Instruction::Add || 1297 Opcode == Instruction::Sub || 1298 Opcode == Instruction::And || 1299 Opcode == Instruction::Or || 1300 Opcode == Instruction::Mul) { 1301 Value *LL = LU->getOperand(0); 1302 Value *LR = LU->getOperand(1); 1303 // Find a recurrence. 1304 if (LL == I) 1305 L = LR; 1306 else if (LR == I) 1307 L = LL; 1308 else 1309 break; 1310 // Ok, we have a PHI of the form L op= R. Check for low 1311 // zero bits. 1312 computeKnownBits(R, KnownZero2, KnownOne2, Depth + 1, Q); 1313 1314 // We need to take the minimum number of known bits 1315 APInt KnownZero3(KnownZero), KnownOne3(KnownOne); 1316 computeKnownBits(L, KnownZero3, KnownOne3, Depth + 1, Q); 1317 1318 KnownZero.setLowBits(std::min(KnownZero2.countTrailingOnes(), 1319 KnownZero3.countTrailingOnes())); 1320 1321 if (DontImproveNonNegativePhiBits) 1322 break; 1323 1324 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1325 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1326 // If initial value of recurrence is nonnegative, and we are adding 1327 // a nonnegative number with nsw, the result can only be nonnegative 1328 // or poison value regardless of the number of times we execute the 1329 // add in phi recurrence. If initial value is negative and we are 1330 // adding a negative number with nsw, the result can only be 1331 // negative or poison value. Similar arguments apply to sub and mul. 1332 // 1333 // (add non-negative, non-negative) --> non-negative 1334 // (add negative, negative) --> negative 1335 if (Opcode == Instruction::Add) { 1336 if (KnownZero2.isSignBitSet() && KnownZero3.isSignBitSet()) 1337 KnownZero.setSignBit(); 1338 else if (KnownOne2.isSignBitSet() && KnownOne3.isSignBitSet()) 1339 KnownOne.setSignBit(); 1340 } 1341 1342 // (sub nsw non-negative, negative) --> non-negative 1343 // (sub nsw negative, non-negative) --> negative 1344 else if (Opcode == Instruction::Sub && LL == I) { 1345 if (KnownZero2.isSignBitSet() && KnownOne3.isSignBitSet()) 1346 KnownZero.setSignBit(); 1347 else if (KnownOne2.isSignBitSet() && KnownZero3.isSignBitSet()) 1348 KnownOne.setSignBit(); 1349 } 1350 1351 // (mul nsw non-negative, non-negative) --> non-negative 1352 else if (Opcode == Instruction::Mul && KnownZero2.isSignBitSet() && 1353 KnownZero3.isSignBitSet()) 1354 KnownZero.setSignBit(); 1355 } 1356 1357 break; 1358 } 1359 } 1360 } 1361 1362 // Unreachable blocks may have zero-operand PHI nodes. 1363 if (P->getNumIncomingValues() == 0) 1364 break; 1365 1366 // Otherwise take the unions of the known bit sets of the operands, 1367 // taking conservative care to avoid excessive recursion. 1368 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) { 1369 // Skip if every incoming value references to ourself. 1370 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1371 break; 1372 1373 KnownZero.setAllBits(); 1374 KnownOne.setAllBits(); 1375 for (Value *IncValue : P->incoming_values()) { 1376 // Skip direct self references. 1377 if (IncValue == P) continue; 1378 1379 KnownZero2 = APInt(BitWidth, 0); 1380 KnownOne2 = APInt(BitWidth, 0); 1381 // Recurse, but cap the recursion to one level, because we don't 1382 // want to waste time spinning around in loops. 1383 computeKnownBits(IncValue, KnownZero2, KnownOne2, MaxDepth - 1, Q); 1384 KnownZero &= KnownZero2; 1385 KnownOne &= KnownOne2; 1386 // If all bits have been ruled out, there's no need to check 1387 // more operands. 1388 if (!KnownZero && !KnownOne) 1389 break; 1390 } 1391 } 1392 break; 1393 } 1394 case Instruction::Call: 1395 case Instruction::Invoke: 1396 // If range metadata is attached to this call, set known bits from that, 1397 // and then intersect with known bits based on other properties of the 1398 // function. 1399 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1400 computeKnownBitsFromRangeMetadata(*MD, KnownZero, KnownOne); 1401 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1402 computeKnownBits(RV, KnownZero2, KnownOne2, Depth + 1, Q); 1403 KnownZero |= KnownZero2; 1404 KnownOne |= KnownOne2; 1405 } 1406 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1407 switch (II->getIntrinsicID()) { 1408 default: break; 1409 case Intrinsic::bitreverse: 1410 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1411 KnownZero |= KnownZero2.reverseBits(); 1412 KnownOne |= KnownOne2.reverseBits(); 1413 break; 1414 case Intrinsic::bswap: 1415 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1416 KnownZero |= KnownZero2.byteSwap(); 1417 KnownOne |= KnownOne2.byteSwap(); 1418 break; 1419 case Intrinsic::ctlz: 1420 case Intrinsic::cttz: { 1421 unsigned LowBits = Log2_32(BitWidth)+1; 1422 // If this call is undefined for 0, the result will be less than 2^n. 1423 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1424 LowBits -= 1; 1425 KnownZero.setBitsFrom(LowBits); 1426 break; 1427 } 1428 case Intrinsic::ctpop: { 1429 computeKnownBits(I->getOperand(0), KnownZero2, KnownOne2, Depth + 1, Q); 1430 // We can bound the space the count needs. Also, bits known to be zero 1431 // can't contribute to the population. 1432 unsigned BitsPossiblySet = BitWidth - KnownZero2.countPopulation(); 1433 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1434 KnownZero.setBitsFrom(LowBits); 1435 // TODO: we could bound KnownOne using the lower bound on the number 1436 // of bits which might be set provided by popcnt KnownOne2. 1437 break; 1438 } 1439 case Intrinsic::x86_sse42_crc32_64_64: 1440 KnownZero.setBitsFrom(32); 1441 break; 1442 } 1443 } 1444 break; 1445 case Instruction::ExtractElement: 1446 // Look through extract element. At the moment we keep this simple and skip 1447 // tracking the specific element. But at least we might find information 1448 // valid for all elements of the vector (for example if vector is sign 1449 // extended, shifted, etc). 1450 computeKnownBits(I->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 1451 break; 1452 case Instruction::ExtractValue: 1453 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1454 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1455 if (EVI->getNumIndices() != 1) break; 1456 if (EVI->getIndices()[0] == 0) { 1457 switch (II->getIntrinsicID()) { 1458 default: break; 1459 case Intrinsic::uadd_with_overflow: 1460 case Intrinsic::sadd_with_overflow: 1461 computeKnownBitsAddSub(true, II->getArgOperand(0), 1462 II->getArgOperand(1), false, KnownZero, 1463 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1464 break; 1465 case Intrinsic::usub_with_overflow: 1466 case Intrinsic::ssub_with_overflow: 1467 computeKnownBitsAddSub(false, II->getArgOperand(0), 1468 II->getArgOperand(1), false, KnownZero, 1469 KnownOne, KnownZero2, KnownOne2, Depth, Q); 1470 break; 1471 case Intrinsic::umul_with_overflow: 1472 case Intrinsic::smul_with_overflow: 1473 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1474 KnownZero, KnownOne, KnownZero2, KnownOne2, Depth, 1475 Q); 1476 break; 1477 } 1478 } 1479 } 1480 } 1481 } 1482 1483 /// Determine which bits of V are known to be either zero or one and return 1484 /// them in the KnownZero/KnownOne bit sets. 1485 /// 1486 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1487 /// we cannot optimize based on the assumption that it is zero without changing 1488 /// it to be an explicit zero. If we don't change it to zero, other code could 1489 /// optimized based on the contradictory assumption that it is non-zero. 1490 /// Because instcombine aggressively folds operations with undef args anyway, 1491 /// this won't lose us code quality. 1492 /// 1493 /// This function is defined on values with integer type, values with pointer 1494 /// type, and vectors of integers. In the case 1495 /// where V is a vector, known zero, and known one values are the 1496 /// same width as the vector element, and the bit is set only if it is true 1497 /// for all of the elements in the vector. 1498 void computeKnownBits(const Value *V, APInt &KnownZero, APInt &KnownOne, 1499 unsigned Depth, const Query &Q) { 1500 assert(V && "No Value?"); 1501 assert(Depth <= MaxDepth && "Limit Search Depth"); 1502 unsigned BitWidth = KnownZero.getBitWidth(); 1503 1504 assert((V->getType()->isIntOrIntVectorTy() || 1505 V->getType()->getScalarType()->isPointerTy()) && 1506 "Not integer or pointer type!"); 1507 assert((Q.DL.getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) && 1508 (!V->getType()->isIntOrIntVectorTy() || 1509 V->getType()->getScalarSizeInBits() == BitWidth) && 1510 KnownZero.getBitWidth() == BitWidth && 1511 KnownOne.getBitWidth() == BitWidth && 1512 "V, KnownOne and KnownZero should have same BitWidth"); 1513 (void)BitWidth; 1514 1515 const APInt *C; 1516 if (match(V, m_APInt(C))) { 1517 // We know all of the bits for a scalar constant or a splat vector constant! 1518 KnownOne = *C; 1519 KnownZero = ~KnownOne; 1520 return; 1521 } 1522 // Null and aggregate-zero are all-zeros. 1523 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1524 KnownOne.clearAllBits(); 1525 KnownZero.setAllBits(); 1526 return; 1527 } 1528 // Handle a constant vector by taking the intersection of the known bits of 1529 // each element. 1530 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1531 // We know that CDS must be a vector of integers. Take the intersection of 1532 // each element. 1533 KnownZero.setAllBits(); KnownOne.setAllBits(); 1534 APInt Elt(KnownZero.getBitWidth(), 0); 1535 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1536 Elt = CDS->getElementAsInteger(i); 1537 KnownZero &= ~Elt; 1538 KnownOne &= Elt; 1539 } 1540 return; 1541 } 1542 1543 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1544 // We know that CV must be a vector of integers. Take the intersection of 1545 // each element. 1546 KnownZero.setAllBits(); KnownOne.setAllBits(); 1547 APInt Elt(KnownZero.getBitWidth(), 0); 1548 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1549 Constant *Element = CV->getAggregateElement(i); 1550 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1551 if (!ElementCI) { 1552 KnownZero.clearAllBits(); 1553 KnownOne.clearAllBits(); 1554 return; 1555 } 1556 Elt = ElementCI->getValue(); 1557 KnownZero &= ~Elt; 1558 KnownOne &= Elt; 1559 } 1560 return; 1561 } 1562 1563 // Start out not knowing anything. 1564 KnownZero.clearAllBits(); KnownOne.clearAllBits(); 1565 1566 // We can't imply anything about undefs. 1567 if (isa<UndefValue>(V)) 1568 return; 1569 1570 // There's no point in looking through other users of ConstantData for 1571 // assumptions. Confirm that we've handled them all. 1572 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1573 1574 // Limit search depth. 1575 // All recursive calls that increase depth must come after this. 1576 if (Depth == MaxDepth) 1577 return; 1578 1579 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1580 // the bits of its aliasee. 1581 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1582 if (!GA->isInterposable()) 1583 computeKnownBits(GA->getAliasee(), KnownZero, KnownOne, Depth + 1, Q); 1584 return; 1585 } 1586 1587 if (const Operator *I = dyn_cast<Operator>(V)) 1588 computeKnownBitsFromOperator(I, KnownZero, KnownOne, Depth, Q); 1589 1590 // Aligned pointers have trailing zeros - refine KnownZero set 1591 if (V->getType()->isPointerTy()) { 1592 unsigned Align = V->getPointerAlignment(Q.DL); 1593 if (Align) 1594 KnownZero.setLowBits(countTrailingZeros(Align)); 1595 } 1596 1597 // computeKnownBitsFromAssume strictly refines KnownZero and 1598 // KnownOne. Therefore, we run them after computeKnownBitsFromOperator. 1599 1600 // Check whether a nearby assume intrinsic can determine some known bits. 1601 computeKnownBitsFromAssume(V, KnownZero, KnownOne, Depth, Q); 1602 1603 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?"); 1604 } 1605 1606 /// Determine whether the sign bit is known to be zero or one. 1607 /// Convenience wrapper around computeKnownBits. 1608 void ComputeSignBit(const Value *V, bool &KnownZero, bool &KnownOne, 1609 unsigned Depth, const Query &Q) { 1610 unsigned BitWidth = getBitWidth(V->getType(), Q.DL); 1611 if (!BitWidth) { 1612 KnownZero = false; 1613 KnownOne = false; 1614 return; 1615 } 1616 APInt ZeroBits(BitWidth, 0); 1617 APInt OneBits(BitWidth, 0); 1618 computeKnownBits(V, ZeroBits, OneBits, Depth, Q); 1619 KnownOne = OneBits.isSignBitSet(); 1620 KnownZero = ZeroBits.isSignBitSet(); 1621 } 1622 1623 /// Return true if the given value is known to have exactly one 1624 /// bit set when defined. For vectors return true if every element is known to 1625 /// be a power of two when defined. Supports values with integer or pointer 1626 /// types and vectors of integers. 1627 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1628 const Query &Q) { 1629 if (const Constant *C = dyn_cast<Constant>(V)) { 1630 if (C->isNullValue()) 1631 return OrZero; 1632 1633 const APInt *ConstIntOrConstSplatInt; 1634 if (match(C, m_APInt(ConstIntOrConstSplatInt))) 1635 return ConstIntOrConstSplatInt->isPowerOf2(); 1636 } 1637 1638 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1639 // it is shifted off the end then the result is undefined. 1640 if (match(V, m_Shl(m_One(), m_Value()))) 1641 return true; 1642 1643 // (signbit) >>l X is clearly a power of two if the one is not shifted off the 1644 // bottom. If it is shifted off the bottom then the result is undefined. 1645 if (match(V, m_LShr(m_SignBit(), m_Value()))) 1646 return true; 1647 1648 // The remaining tests are all recursive, so bail out if we hit the limit. 1649 if (Depth++ == MaxDepth) 1650 return false; 1651 1652 Value *X = nullptr, *Y = nullptr; 1653 // A shift left or a logical shift right of a power of two is a power of two 1654 // or zero. 1655 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1656 match(V, m_LShr(m_Value(X), m_Value())))) 1657 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1658 1659 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1660 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1661 1662 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1663 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1664 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1665 1666 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1667 // A power of two and'd with anything is a power of two or zero. 1668 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1669 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1670 return true; 1671 // X & (-X) is always a power of two or zero. 1672 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1673 return true; 1674 return false; 1675 } 1676 1677 // Adding a power-of-two or zero to the same power-of-two or zero yields 1678 // either the original power-of-two, a larger power-of-two or zero. 1679 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1680 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1681 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1682 if (match(X, m_And(m_Specific(Y), m_Value())) || 1683 match(X, m_And(m_Value(), m_Specific(Y)))) 1684 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1685 return true; 1686 if (match(Y, m_And(m_Specific(X), m_Value())) || 1687 match(Y, m_And(m_Value(), m_Specific(X)))) 1688 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1689 return true; 1690 1691 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1692 APInt LHSZeroBits(BitWidth, 0), LHSOneBits(BitWidth, 0); 1693 computeKnownBits(X, LHSZeroBits, LHSOneBits, Depth, Q); 1694 1695 APInt RHSZeroBits(BitWidth, 0), RHSOneBits(BitWidth, 0); 1696 computeKnownBits(Y, RHSZeroBits, RHSOneBits, Depth, Q); 1697 // If i8 V is a power of two or zero: 1698 // ZeroBits: 1 1 1 0 1 1 1 1 1699 // ~ZeroBits: 0 0 0 1 0 0 0 0 1700 if ((~(LHSZeroBits & RHSZeroBits)).isPowerOf2()) 1701 // If OrZero isn't set, we cannot give back a zero result. 1702 // Make sure either the LHS or RHS has a bit set. 1703 if (OrZero || RHSOneBits.getBoolValue() || LHSOneBits.getBoolValue()) 1704 return true; 1705 } 1706 } 1707 1708 // An exact divide or right shift can only shift off zero bits, so the result 1709 // is a power of two only if the first operand is a power of two and not 1710 // copying a sign bit (sdiv int_min, 2). 1711 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1712 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1713 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1714 Depth, Q); 1715 } 1716 1717 return false; 1718 } 1719 1720 /// \brief Test whether a GEP's result is known to be non-null. 1721 /// 1722 /// Uses properties inherent in a GEP to try to determine whether it is known 1723 /// to be non-null. 1724 /// 1725 /// Currently this routine does not support vector GEPs. 1726 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1727 const Query &Q) { 1728 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1729 return false; 1730 1731 // FIXME: Support vector-GEPs. 1732 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1733 1734 // If the base pointer is non-null, we cannot walk to a null address with an 1735 // inbounds GEP in address space zero. 1736 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1737 return true; 1738 1739 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1740 // If so, then the GEP cannot produce a null pointer, as doing so would 1741 // inherently violate the inbounds contract within address space zero. 1742 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1743 GTI != GTE; ++GTI) { 1744 // Struct types are easy -- they must always be indexed by a constant. 1745 if (StructType *STy = GTI.getStructTypeOrNull()) { 1746 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1747 unsigned ElementIdx = OpC->getZExtValue(); 1748 const StructLayout *SL = Q.DL.getStructLayout(STy); 1749 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1750 if (ElementOffset > 0) 1751 return true; 1752 continue; 1753 } 1754 1755 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1756 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1757 continue; 1758 1759 // Fast path the constant operand case both for efficiency and so we don't 1760 // increment Depth when just zipping down an all-constant GEP. 1761 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1762 if (!OpC->isZero()) 1763 return true; 1764 continue; 1765 } 1766 1767 // We post-increment Depth here because while isKnownNonZero increments it 1768 // as well, when we pop back up that increment won't persist. We don't want 1769 // to recurse 10k times just because we have 10k GEP operands. We don't 1770 // bail completely out because we want to handle constant GEPs regardless 1771 // of depth. 1772 if (Depth++ >= MaxDepth) 1773 continue; 1774 1775 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1776 return true; 1777 } 1778 1779 return false; 1780 } 1781 1782 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1783 /// ensure that the value it's attached to is never Value? 'RangeType' is 1784 /// is the type of the value described by the range. 1785 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1786 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1787 assert(NumRanges >= 1); 1788 for (unsigned i = 0; i < NumRanges; ++i) { 1789 ConstantInt *Lower = 1790 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1791 ConstantInt *Upper = 1792 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1793 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1794 if (Range.contains(Value)) 1795 return false; 1796 } 1797 return true; 1798 } 1799 1800 /// Return true if the given value is known to be non-zero when defined. For 1801 /// vectors, return true if every element is known to be non-zero when 1802 /// defined. For pointers, if the context instruction and dominator tree are 1803 /// specified, perform context-sensitive analysis and return true if the 1804 /// pointer couldn't possibly be null at the specified instruction. 1805 /// Supports values with integer or pointer type and vectors of integers. 1806 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1807 if (auto *C = dyn_cast<Constant>(V)) { 1808 if (C->isNullValue()) 1809 return false; 1810 if (isa<ConstantInt>(C)) 1811 // Must be non-zero due to null test above. 1812 return true; 1813 1814 // For constant vectors, check that all elements are undefined or known 1815 // non-zero to determine that the whole vector is known non-zero. 1816 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1817 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1818 Constant *Elt = C->getAggregateElement(i); 1819 if (!Elt || Elt->isNullValue()) 1820 return false; 1821 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1822 return false; 1823 } 1824 return true; 1825 } 1826 1827 return false; 1828 } 1829 1830 if (auto *I = dyn_cast<Instruction>(V)) { 1831 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1832 // If the possible ranges don't contain zero, then the value is 1833 // definitely non-zero. 1834 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1835 const APInt ZeroValue(Ty->getBitWidth(), 0); 1836 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1837 return true; 1838 } 1839 } 1840 } 1841 1842 // The remaining tests are all recursive, so bail out if we hit the limit. 1843 if (Depth++ >= MaxDepth) 1844 return false; 1845 1846 // Check for pointer simplifications. 1847 if (V->getType()->isPointerTy()) { 1848 if (isKnownNonNullAt(V, Q.CxtI, Q.DT)) 1849 return true; 1850 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1851 if (isGEPKnownNonNull(GEP, Depth, Q)) 1852 return true; 1853 } 1854 1855 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1856 1857 // X | Y != 0 if X != 0 or Y != 0. 1858 Value *X = nullptr, *Y = nullptr; 1859 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1860 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1861 1862 // ext X != 0 if X != 0. 1863 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1864 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1865 1866 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1867 // if the lowest bit is shifted off the end. 1868 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1869 // shl nuw can't remove any non-zero bits. 1870 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1871 if (BO->hasNoUnsignedWrap()) 1872 return isKnownNonZero(X, Depth, Q); 1873 1874 APInt KnownZero(BitWidth, 0); 1875 APInt KnownOne(BitWidth, 0); 1876 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1877 if (KnownOne[0]) 1878 return true; 1879 } 1880 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 1881 // defined if the sign bit is shifted off the end. 1882 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 1883 // shr exact can only shift out zero bits. 1884 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 1885 if (BO->isExact()) 1886 return isKnownNonZero(X, Depth, Q); 1887 1888 bool XKnownNonNegative, XKnownNegative; 1889 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1890 if (XKnownNegative) 1891 return true; 1892 1893 // If the shifter operand is a constant, and all of the bits shifted 1894 // out are known to be zero, and X is known non-zero then at least one 1895 // non-zero bit must remain. 1896 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 1897 APInt KnownZero(BitWidth, 0); 1898 APInt KnownOne(BitWidth, 0); 1899 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1900 1901 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 1902 // Is there a known one in the portion not shifted out? 1903 if (KnownOne.countLeadingZeros() < BitWidth - ShiftVal) 1904 return true; 1905 // Are all the bits to be shifted out known zero? 1906 if (KnownZero.countTrailingOnes() >= ShiftVal) 1907 return isKnownNonZero(X, Depth, Q); 1908 } 1909 } 1910 // div exact can only produce a zero if the dividend is zero. 1911 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 1912 return isKnownNonZero(X, Depth, Q); 1913 } 1914 // X + Y. 1915 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1916 bool XKnownNonNegative, XKnownNegative; 1917 bool YKnownNonNegative, YKnownNegative; 1918 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, Depth, Q); 1919 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, Depth, Q); 1920 1921 // If X and Y are both non-negative (as signed values) then their sum is not 1922 // zero unless both X and Y are zero. 1923 if (XKnownNonNegative && YKnownNonNegative) 1924 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 1925 return true; 1926 1927 // If X and Y are both negative (as signed values) then their sum is not 1928 // zero unless both X and Y equal INT_MIN. 1929 if (BitWidth && XKnownNegative && YKnownNegative) { 1930 APInt KnownZero(BitWidth, 0); 1931 APInt KnownOne(BitWidth, 0); 1932 APInt Mask = APInt::getSignedMaxValue(BitWidth); 1933 // The sign bit of X is set. If some other bit is set then X is not equal 1934 // to INT_MIN. 1935 computeKnownBits(X, KnownZero, KnownOne, Depth, Q); 1936 if ((KnownOne & Mask) != 0) 1937 return true; 1938 // The sign bit of Y is set. If some other bit is set then Y is not equal 1939 // to INT_MIN. 1940 computeKnownBits(Y, KnownZero, KnownOne, Depth, Q); 1941 if ((KnownOne & Mask) != 0) 1942 return true; 1943 } 1944 1945 // The sum of a non-negative number and a power of two is not zero. 1946 if (XKnownNonNegative && 1947 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 1948 return true; 1949 if (YKnownNonNegative && 1950 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 1951 return true; 1952 } 1953 // X * Y. 1954 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 1955 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 1956 // If X and Y are non-zero then so is X * Y as long as the multiplication 1957 // does not overflow. 1958 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 1959 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 1960 return true; 1961 } 1962 // (C ? X : Y) != 0 if X != 0 and Y != 0. 1963 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 1964 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 1965 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 1966 return true; 1967 } 1968 // PHI 1969 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 1970 // Try and detect a recurrence that monotonically increases from a 1971 // starting value, as these are common as induction variables. 1972 if (PN->getNumIncomingValues() == 2) { 1973 Value *Start = PN->getIncomingValue(0); 1974 Value *Induction = PN->getIncomingValue(1); 1975 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 1976 std::swap(Start, Induction); 1977 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 1978 if (!C->isZero() && !C->isNegative()) { 1979 ConstantInt *X; 1980 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 1981 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 1982 !X->isNegative()) 1983 return true; 1984 } 1985 } 1986 } 1987 // Check if all incoming values are non-zero constant. 1988 bool AllNonZeroConstants = all_of(PN->operands(), [](Value *V) { 1989 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZeroValue(); 1990 }); 1991 if (AllNonZeroConstants) 1992 return true; 1993 } 1994 1995 if (!BitWidth) return false; 1996 APInt KnownZero(BitWidth, 0); 1997 APInt KnownOne(BitWidth, 0); 1998 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 1999 return KnownOne != 0; 2000 } 2001 2002 /// Return true if V2 == V1 + X, where X is known non-zero. 2003 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2004 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2005 if (!BO || BO->getOpcode() != Instruction::Add) 2006 return false; 2007 Value *Op = nullptr; 2008 if (V2 == BO->getOperand(0)) 2009 Op = BO->getOperand(1); 2010 else if (V2 == BO->getOperand(1)) 2011 Op = BO->getOperand(0); 2012 else 2013 return false; 2014 return isKnownNonZero(Op, 0, Q); 2015 } 2016 2017 /// Return true if it is known that V1 != V2. 2018 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2019 if (V1->getType()->isVectorTy() || V1 == V2) 2020 return false; 2021 if (V1->getType() != V2->getType()) 2022 // We can't look through casts yet. 2023 return false; 2024 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2025 return true; 2026 2027 if (IntegerType *Ty = dyn_cast<IntegerType>(V1->getType())) { 2028 // Are any known bits in V1 contradictory to known bits in V2? If V1 2029 // has a known zero where V2 has a known one, they must not be equal. 2030 auto BitWidth = Ty->getBitWidth(); 2031 APInt KnownZero1(BitWidth, 0); 2032 APInt KnownOne1(BitWidth, 0); 2033 computeKnownBits(V1, KnownZero1, KnownOne1, 0, Q); 2034 APInt KnownZero2(BitWidth, 0); 2035 APInt KnownOne2(BitWidth, 0); 2036 computeKnownBits(V2, KnownZero2, KnownOne2, 0, Q); 2037 2038 auto OppositeBits = (KnownZero1 & KnownOne2) | (KnownZero2 & KnownOne1); 2039 if (OppositeBits.getBoolValue()) 2040 return true; 2041 } 2042 return false; 2043 } 2044 2045 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2046 /// simplify operations downstream. Mask is known to be zero for bits that V 2047 /// cannot have. 2048 /// 2049 /// This function is defined on values with integer type, values with pointer 2050 /// type, and vectors of integers. In the case 2051 /// where V is a vector, the mask, known zero, and known one values are the 2052 /// same width as the vector element, and the bit is set only if it is true 2053 /// for all of the elements in the vector. 2054 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2055 const Query &Q) { 2056 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0); 2057 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2058 return (KnownZero & Mask) == Mask; 2059 } 2060 2061 /// For vector constants, loop over the elements and find the constant with the 2062 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2063 /// or if any element was not analyzed; otherwise, return the count for the 2064 /// element with the minimum number of sign bits. 2065 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2066 unsigned TyBits) { 2067 const auto *CV = dyn_cast<Constant>(V); 2068 if (!CV || !CV->getType()->isVectorTy()) 2069 return 0; 2070 2071 unsigned MinSignBits = TyBits; 2072 unsigned NumElts = CV->getType()->getVectorNumElements(); 2073 for (unsigned i = 0; i != NumElts; ++i) { 2074 // If we find a non-ConstantInt, bail out. 2075 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2076 if (!Elt) 2077 return 0; 2078 2079 // If the sign bit is 1, flip the bits, so we always count leading zeros. 2080 APInt EltVal = Elt->getValue(); 2081 if (EltVal.isNegative()) 2082 EltVal = ~EltVal; 2083 MinSignBits = std::min(MinSignBits, EltVal.countLeadingZeros()); 2084 } 2085 2086 return MinSignBits; 2087 } 2088 2089 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2090 const Query &Q); 2091 2092 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2093 const Query &Q) { 2094 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2095 assert(Result > 0 && "At least one sign bit needs to be present!"); 2096 return Result; 2097 } 2098 2099 /// Return the number of times the sign bit of the register is replicated into 2100 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2101 /// (itself), but other cases can give us information. For example, immediately 2102 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2103 /// other, so we return 3. For vectors, return the number of sign bits for the 2104 /// vector element with the mininum number of known sign bits. 2105 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2106 const Query &Q) { 2107 2108 // We return the minimum number of sign bits that are guaranteed to be present 2109 // in V, so for undef we have to conservatively return 1. We don't have the 2110 // same behavior for poison though -- that's a FIXME today. 2111 2112 unsigned TyBits = Q.DL.getTypeSizeInBits(V->getType()->getScalarType()); 2113 unsigned Tmp, Tmp2; 2114 unsigned FirstAnswer = 1; 2115 2116 // Note that ConstantInt is handled by the general computeKnownBits case 2117 // below. 2118 2119 if (Depth == MaxDepth) 2120 return 1; // Limit search depth. 2121 2122 const Operator *U = dyn_cast<Operator>(V); 2123 switch (Operator::getOpcode(V)) { 2124 default: break; 2125 case Instruction::SExt: 2126 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2127 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2128 2129 case Instruction::SDiv: { 2130 const APInt *Denominator; 2131 // sdiv X, C -> adds log(C) sign bits. 2132 if (match(U->getOperand(1), m_APInt(Denominator))) { 2133 2134 // Ignore non-positive denominator. 2135 if (!Denominator->isStrictlyPositive()) 2136 break; 2137 2138 // Calculate the incoming numerator bits. 2139 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2140 2141 // Add floor(log(C)) bits to the numerator bits. 2142 return std::min(TyBits, NumBits + Denominator->logBase2()); 2143 } 2144 break; 2145 } 2146 2147 case Instruction::SRem: { 2148 const APInt *Denominator; 2149 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2150 // positive constant. This let us put a lower bound on the number of sign 2151 // bits. 2152 if (match(U->getOperand(1), m_APInt(Denominator))) { 2153 2154 // Ignore non-positive denominator. 2155 if (!Denominator->isStrictlyPositive()) 2156 break; 2157 2158 // Calculate the incoming numerator bits. SRem by a positive constant 2159 // can't lower the number of sign bits. 2160 unsigned NumrBits = 2161 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2162 2163 // Calculate the leading sign bit constraints by examining the 2164 // denominator. Given that the denominator is positive, there are two 2165 // cases: 2166 // 2167 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2168 // (1 << ceilLogBase2(C)). 2169 // 2170 // 2. the numerator is negative. Then the result range is (-C,0] and 2171 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2172 // 2173 // Thus a lower bound on the number of sign bits is `TyBits - 2174 // ceilLogBase2(C)`. 2175 2176 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2177 return std::max(NumrBits, ResBits); 2178 } 2179 break; 2180 } 2181 2182 case Instruction::AShr: { 2183 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2184 // ashr X, C -> adds C sign bits. Vectors too. 2185 const APInt *ShAmt; 2186 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2187 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2188 if (ShAmtLimited >= TyBits) 2189 break; // Bad shift. 2190 Tmp += ShAmtLimited; 2191 if (Tmp > TyBits) Tmp = TyBits; 2192 } 2193 return Tmp; 2194 } 2195 case Instruction::Shl: { 2196 const APInt *ShAmt; 2197 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2198 // shl destroys sign bits. 2199 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2200 Tmp2 = ShAmt->getZExtValue(); 2201 if (Tmp2 >= TyBits || // Bad shift. 2202 Tmp2 >= Tmp) break; // Shifted all sign bits out. 2203 return Tmp - Tmp2; 2204 } 2205 break; 2206 } 2207 case Instruction::And: 2208 case Instruction::Or: 2209 case Instruction::Xor: // NOT is handled here. 2210 // Logical binary ops preserve the number of sign bits at the worst. 2211 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2212 if (Tmp != 1) { 2213 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2214 FirstAnswer = std::min(Tmp, Tmp2); 2215 // We computed what we know about the sign bits as our first 2216 // answer. Now proceed to the generic code that uses 2217 // computeKnownBits, and pick whichever answer is better. 2218 } 2219 break; 2220 2221 case Instruction::Select: 2222 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2223 if (Tmp == 1) return 1; // Early out. 2224 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2225 return std::min(Tmp, Tmp2); 2226 2227 case Instruction::Add: 2228 // Add can have at most one carry bit. Thus we know that the output 2229 // is, at worst, one more bit than the inputs. 2230 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2231 if (Tmp == 1) return 1; // Early out. 2232 2233 // Special case decrementing a value (ADD X, -1): 2234 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2235 if (CRHS->isAllOnesValue()) { 2236 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2237 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, Depth + 1, Q); 2238 2239 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2240 // sign bits set. 2241 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2242 return TyBits; 2243 2244 // If we are subtracting one from a positive number, there is no carry 2245 // out of the result. 2246 if (KnownZero.isSignBitSet()) 2247 return Tmp; 2248 } 2249 2250 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2251 if (Tmp2 == 1) return 1; 2252 return std::min(Tmp, Tmp2)-1; 2253 2254 case Instruction::Sub: 2255 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2256 if (Tmp2 == 1) return 1; 2257 2258 // Handle NEG. 2259 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2260 if (CLHS->isNullValue()) { 2261 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2262 computeKnownBits(U->getOperand(1), KnownZero, KnownOne, Depth + 1, Q); 2263 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2264 // sign bits set. 2265 if ((KnownZero | APInt(TyBits, 1)).isAllOnesValue()) 2266 return TyBits; 2267 2268 // If the input is known to be positive (the sign bit is known clear), 2269 // the output of the NEG has the same number of sign bits as the input. 2270 if (KnownZero.isSignBitSet()) 2271 return Tmp2; 2272 2273 // Otherwise, we treat this like a SUB. 2274 } 2275 2276 // Sub can have at most one carry bit. Thus we know that the output 2277 // is, at worst, one more bit than the inputs. 2278 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2279 if (Tmp == 1) return 1; // Early out. 2280 return std::min(Tmp, Tmp2)-1; 2281 2282 case Instruction::PHI: { 2283 const PHINode *PN = cast<PHINode>(U); 2284 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2285 // Don't analyze large in-degree PHIs. 2286 if (NumIncomingValues > 4) break; 2287 // Unreachable blocks may have zero-operand PHI nodes. 2288 if (NumIncomingValues == 0) break; 2289 2290 // Take the minimum of all incoming values. This can't infinitely loop 2291 // because of our depth threshold. 2292 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2293 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2294 if (Tmp == 1) return Tmp; 2295 Tmp = std::min( 2296 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2297 } 2298 return Tmp; 2299 } 2300 2301 case Instruction::Trunc: 2302 // FIXME: it's tricky to do anything useful for this, but it is an important 2303 // case for targets like X86. 2304 break; 2305 2306 case Instruction::ExtractElement: 2307 // Look through extract element. At the moment we keep this simple and skip 2308 // tracking the specific element. But at least we might find information 2309 // valid for all elements of the vector (for example if vector is sign 2310 // extended, shifted, etc). 2311 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2312 } 2313 2314 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2315 // use this information. 2316 2317 // If we can examine all elements of a vector constant successfully, we're 2318 // done (we can't do any better than that). If not, keep trying. 2319 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2320 return VecSignBits; 2321 2322 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0); 2323 computeKnownBits(V, KnownZero, KnownOne, Depth, Q); 2324 2325 // If we know that the sign bit is either zero or one, determine the number of 2326 // identical bits in the top of the input value. 2327 if (KnownZero.isSignBitSet()) 2328 return std::max(FirstAnswer, KnownZero.countLeadingOnes()); 2329 2330 if (KnownOne.isSignBitSet()) 2331 return std::max(FirstAnswer, KnownOne.countLeadingOnes()); 2332 2333 // computeKnownBits gave us no extra information about the top bits. 2334 return FirstAnswer; 2335 } 2336 2337 /// This function computes the integer multiple of Base that equals V. 2338 /// If successful, it returns true and returns the multiple in 2339 /// Multiple. If unsuccessful, it returns false. It looks 2340 /// through SExt instructions only if LookThroughSExt is true. 2341 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2342 bool LookThroughSExt, unsigned Depth) { 2343 const unsigned MaxDepth = 6; 2344 2345 assert(V && "No Value?"); 2346 assert(Depth <= MaxDepth && "Limit Search Depth"); 2347 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2348 2349 Type *T = V->getType(); 2350 2351 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2352 2353 if (Base == 0) 2354 return false; 2355 2356 if (Base == 1) { 2357 Multiple = V; 2358 return true; 2359 } 2360 2361 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2362 Constant *BaseVal = ConstantInt::get(T, Base); 2363 if (CO && CO == BaseVal) { 2364 // Multiple is 1. 2365 Multiple = ConstantInt::get(T, 1); 2366 return true; 2367 } 2368 2369 if (CI && CI->getZExtValue() % Base == 0) { 2370 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2371 return true; 2372 } 2373 2374 if (Depth == MaxDepth) return false; // Limit search depth. 2375 2376 Operator *I = dyn_cast<Operator>(V); 2377 if (!I) return false; 2378 2379 switch (I->getOpcode()) { 2380 default: break; 2381 case Instruction::SExt: 2382 if (!LookThroughSExt) return false; 2383 // otherwise fall through to ZExt 2384 case Instruction::ZExt: 2385 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2386 LookThroughSExt, Depth+1); 2387 case Instruction::Shl: 2388 case Instruction::Mul: { 2389 Value *Op0 = I->getOperand(0); 2390 Value *Op1 = I->getOperand(1); 2391 2392 if (I->getOpcode() == Instruction::Shl) { 2393 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2394 if (!Op1CI) return false; 2395 // Turn Op0 << Op1 into Op0 * 2^Op1 2396 APInt Op1Int = Op1CI->getValue(); 2397 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2398 APInt API(Op1Int.getBitWidth(), 0); 2399 API.setBit(BitToSet); 2400 Op1 = ConstantInt::get(V->getContext(), API); 2401 } 2402 2403 Value *Mul0 = nullptr; 2404 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2405 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2406 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2407 if (Op1C->getType()->getPrimitiveSizeInBits() < 2408 MulC->getType()->getPrimitiveSizeInBits()) 2409 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2410 if (Op1C->getType()->getPrimitiveSizeInBits() > 2411 MulC->getType()->getPrimitiveSizeInBits()) 2412 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2413 2414 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2415 Multiple = ConstantExpr::getMul(MulC, Op1C); 2416 return true; 2417 } 2418 2419 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2420 if (Mul0CI->getValue() == 1) { 2421 // V == Base * Op1, so return Op1 2422 Multiple = Op1; 2423 return true; 2424 } 2425 } 2426 2427 Value *Mul1 = nullptr; 2428 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2429 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2430 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2431 if (Op0C->getType()->getPrimitiveSizeInBits() < 2432 MulC->getType()->getPrimitiveSizeInBits()) 2433 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2434 if (Op0C->getType()->getPrimitiveSizeInBits() > 2435 MulC->getType()->getPrimitiveSizeInBits()) 2436 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2437 2438 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2439 Multiple = ConstantExpr::getMul(MulC, Op0C); 2440 return true; 2441 } 2442 2443 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2444 if (Mul1CI->getValue() == 1) { 2445 // V == Base * Op0, so return Op0 2446 Multiple = Op0; 2447 return true; 2448 } 2449 } 2450 } 2451 } 2452 2453 // We could not determine if V is a multiple of Base. 2454 return false; 2455 } 2456 2457 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2458 const TargetLibraryInfo *TLI) { 2459 const Function *F = ICS.getCalledFunction(); 2460 if (!F) 2461 return Intrinsic::not_intrinsic; 2462 2463 if (F->isIntrinsic()) 2464 return F->getIntrinsicID(); 2465 2466 if (!TLI) 2467 return Intrinsic::not_intrinsic; 2468 2469 LibFunc Func; 2470 // We're going to make assumptions on the semantics of the functions, check 2471 // that the target knows that it's available in this environment and it does 2472 // not have local linkage. 2473 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2474 return Intrinsic::not_intrinsic; 2475 2476 if (!ICS.onlyReadsMemory()) 2477 return Intrinsic::not_intrinsic; 2478 2479 // Otherwise check if we have a call to a function that can be turned into a 2480 // vector intrinsic. 2481 switch (Func) { 2482 default: 2483 break; 2484 case LibFunc_sin: 2485 case LibFunc_sinf: 2486 case LibFunc_sinl: 2487 return Intrinsic::sin; 2488 case LibFunc_cos: 2489 case LibFunc_cosf: 2490 case LibFunc_cosl: 2491 return Intrinsic::cos; 2492 case LibFunc_exp: 2493 case LibFunc_expf: 2494 case LibFunc_expl: 2495 return Intrinsic::exp; 2496 case LibFunc_exp2: 2497 case LibFunc_exp2f: 2498 case LibFunc_exp2l: 2499 return Intrinsic::exp2; 2500 case LibFunc_log: 2501 case LibFunc_logf: 2502 case LibFunc_logl: 2503 return Intrinsic::log; 2504 case LibFunc_log10: 2505 case LibFunc_log10f: 2506 case LibFunc_log10l: 2507 return Intrinsic::log10; 2508 case LibFunc_log2: 2509 case LibFunc_log2f: 2510 case LibFunc_log2l: 2511 return Intrinsic::log2; 2512 case LibFunc_fabs: 2513 case LibFunc_fabsf: 2514 case LibFunc_fabsl: 2515 return Intrinsic::fabs; 2516 case LibFunc_fmin: 2517 case LibFunc_fminf: 2518 case LibFunc_fminl: 2519 return Intrinsic::minnum; 2520 case LibFunc_fmax: 2521 case LibFunc_fmaxf: 2522 case LibFunc_fmaxl: 2523 return Intrinsic::maxnum; 2524 case LibFunc_copysign: 2525 case LibFunc_copysignf: 2526 case LibFunc_copysignl: 2527 return Intrinsic::copysign; 2528 case LibFunc_floor: 2529 case LibFunc_floorf: 2530 case LibFunc_floorl: 2531 return Intrinsic::floor; 2532 case LibFunc_ceil: 2533 case LibFunc_ceilf: 2534 case LibFunc_ceill: 2535 return Intrinsic::ceil; 2536 case LibFunc_trunc: 2537 case LibFunc_truncf: 2538 case LibFunc_truncl: 2539 return Intrinsic::trunc; 2540 case LibFunc_rint: 2541 case LibFunc_rintf: 2542 case LibFunc_rintl: 2543 return Intrinsic::rint; 2544 case LibFunc_nearbyint: 2545 case LibFunc_nearbyintf: 2546 case LibFunc_nearbyintl: 2547 return Intrinsic::nearbyint; 2548 case LibFunc_round: 2549 case LibFunc_roundf: 2550 case LibFunc_roundl: 2551 return Intrinsic::round; 2552 case LibFunc_pow: 2553 case LibFunc_powf: 2554 case LibFunc_powl: 2555 return Intrinsic::pow; 2556 case LibFunc_sqrt: 2557 case LibFunc_sqrtf: 2558 case LibFunc_sqrtl: 2559 if (ICS->hasNoNaNs()) 2560 return Intrinsic::sqrt; 2561 return Intrinsic::not_intrinsic; 2562 } 2563 2564 return Intrinsic::not_intrinsic; 2565 } 2566 2567 /// Return true if we can prove that the specified FP value is never equal to 2568 /// -0.0. 2569 /// 2570 /// NOTE: this function will need to be revisited when we support non-default 2571 /// rounding modes! 2572 /// 2573 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2574 unsigned Depth) { 2575 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) 2576 return !CFP->getValueAPF().isNegZero(); 2577 2578 if (Depth == MaxDepth) 2579 return false; // Limit search depth. 2580 2581 const Operator *I = dyn_cast<Operator>(V); 2582 if (!I) return false; 2583 2584 // Check if the nsz fast-math flag is set 2585 if (const FPMathOperator *FPO = dyn_cast<FPMathOperator>(I)) 2586 if (FPO->hasNoSignedZeros()) 2587 return true; 2588 2589 // (add x, 0.0) is guaranteed to return +0.0, not -0.0. 2590 if (I->getOpcode() == Instruction::FAdd) 2591 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(1))) 2592 if (CFP->isNullValue()) 2593 return true; 2594 2595 // sitofp and uitofp turn into +0.0 for zero. 2596 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I)) 2597 return true; 2598 2599 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 2600 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2601 switch (IID) { 2602 default: 2603 break; 2604 // sqrt(-0.0) = -0.0, no other negative results are possible. 2605 case Intrinsic::sqrt: 2606 return CannotBeNegativeZero(CI->getArgOperand(0), TLI, Depth + 1); 2607 // fabs(x) != -0.0 2608 case Intrinsic::fabs: 2609 return true; 2610 } 2611 } 2612 2613 return false; 2614 } 2615 2616 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2617 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2618 /// bit despite comparing equal. 2619 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2620 const TargetLibraryInfo *TLI, 2621 bool SignBitOnly, 2622 unsigned Depth) { 2623 // TODO: This function does not do the right thing when SignBitOnly is true 2624 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2625 // which flips the sign bits of NaNs. See 2626 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2627 2628 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2629 return !CFP->getValueAPF().isNegative() || 2630 (!SignBitOnly && CFP->getValueAPF().isZero()); 2631 } 2632 2633 if (Depth == MaxDepth) 2634 return false; // Limit search depth. 2635 2636 const Operator *I = dyn_cast<Operator>(V); 2637 if (!I) 2638 return false; 2639 2640 switch (I->getOpcode()) { 2641 default: 2642 break; 2643 // Unsigned integers are always nonnegative. 2644 case Instruction::UIToFP: 2645 return true; 2646 case Instruction::FMul: 2647 // x*x is always non-negative or a NaN. 2648 if (I->getOperand(0) == I->getOperand(1) && 2649 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2650 return true; 2651 2652 LLVM_FALLTHROUGH; 2653 case Instruction::FAdd: 2654 case Instruction::FDiv: 2655 case Instruction::FRem: 2656 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2657 Depth + 1) && 2658 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2659 Depth + 1); 2660 case Instruction::Select: 2661 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2662 Depth + 1) && 2663 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2664 Depth + 1); 2665 case Instruction::FPExt: 2666 case Instruction::FPTrunc: 2667 // Widening/narrowing never change sign. 2668 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2669 Depth + 1); 2670 case Instruction::Call: 2671 const auto *CI = cast<CallInst>(I); 2672 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2673 switch (IID) { 2674 default: 2675 break; 2676 case Intrinsic::maxnum: 2677 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2678 Depth + 1) || 2679 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2680 Depth + 1); 2681 case Intrinsic::minnum: 2682 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2683 Depth + 1) && 2684 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2685 Depth + 1); 2686 case Intrinsic::exp: 2687 case Intrinsic::exp2: 2688 case Intrinsic::fabs: 2689 return true; 2690 2691 case Intrinsic::sqrt: 2692 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2693 if (!SignBitOnly) 2694 return true; 2695 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2696 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2697 2698 case Intrinsic::powi: 2699 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2700 // powi(x,n) is non-negative if n is even. 2701 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2702 return true; 2703 } 2704 // TODO: This is not correct. Given that exp is an integer, here are the 2705 // ways that pow can return a negative value: 2706 // 2707 // pow(x, exp) --> negative if exp is odd and x is negative. 2708 // pow(-0, exp) --> -inf if exp is negative odd. 2709 // pow(-0, exp) --> -0 if exp is positive odd. 2710 // pow(-inf, exp) --> -0 if exp is negative odd. 2711 // pow(-inf, exp) --> -inf if exp is positive odd. 2712 // 2713 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2714 // but we must return false if x == -0. Unfortunately we do not currently 2715 // have a way of expressing this constraint. See details in 2716 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2717 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2718 Depth + 1); 2719 2720 case Intrinsic::fma: 2721 case Intrinsic::fmuladd: 2722 // x*x+y is non-negative if y is non-negative. 2723 return I->getOperand(0) == I->getOperand(1) && 2724 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2725 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2726 Depth + 1); 2727 } 2728 break; 2729 } 2730 return false; 2731 } 2732 2733 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2734 const TargetLibraryInfo *TLI) { 2735 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2736 } 2737 2738 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2739 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2740 } 2741 2742 /// If the specified value can be set by repeating the same byte in memory, 2743 /// return the i8 value that it is represented with. This is 2744 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2745 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2746 /// byte store (e.g. i16 0x1234), return null. 2747 Value *llvm::isBytewiseValue(Value *V) { 2748 // All byte-wide stores are splatable, even of arbitrary variables. 2749 if (V->getType()->isIntegerTy(8)) return V; 2750 2751 // Handle 'null' ConstantArrayZero etc. 2752 if (Constant *C = dyn_cast<Constant>(V)) 2753 if (C->isNullValue()) 2754 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2755 2756 // Constant float and double values can be handled as integer values if the 2757 // corresponding integer value is "byteable". An important case is 0.0. 2758 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2759 if (CFP->getType()->isFloatTy()) 2760 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2761 if (CFP->getType()->isDoubleTy()) 2762 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2763 // Don't handle long double formats, which have strange constraints. 2764 } 2765 2766 // We can handle constant integers that are multiple of 8 bits. 2767 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2768 if (CI->getBitWidth() % 8 == 0) { 2769 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2770 2771 if (!CI->getValue().isSplat(8)) 2772 return nullptr; 2773 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2774 } 2775 } 2776 2777 // A ConstantDataArray/Vector is splatable if all its members are equal and 2778 // also splatable. 2779 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2780 Value *Elt = CA->getElementAsConstant(0); 2781 Value *Val = isBytewiseValue(Elt); 2782 if (!Val) 2783 return nullptr; 2784 2785 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2786 if (CA->getElementAsConstant(I) != Elt) 2787 return nullptr; 2788 2789 return Val; 2790 } 2791 2792 // Conceptually, we could handle things like: 2793 // %a = zext i8 %X to i16 2794 // %b = shl i16 %a, 8 2795 // %c = or i16 %a, %b 2796 // but until there is an example that actually needs this, it doesn't seem 2797 // worth worrying about. 2798 return nullptr; 2799 } 2800 2801 2802 // This is the recursive version of BuildSubAggregate. It takes a few different 2803 // arguments. Idxs is the index within the nested struct From that we are 2804 // looking at now (which is of type IndexedType). IdxSkip is the number of 2805 // indices from Idxs that should be left out when inserting into the resulting 2806 // struct. To is the result struct built so far, new insertvalue instructions 2807 // build on that. 2808 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2809 SmallVectorImpl<unsigned> &Idxs, 2810 unsigned IdxSkip, 2811 Instruction *InsertBefore) { 2812 llvm::StructType *STy = dyn_cast<llvm::StructType>(IndexedType); 2813 if (STy) { 2814 // Save the original To argument so we can modify it 2815 Value *OrigTo = To; 2816 // General case, the type indexed by Idxs is a struct 2817 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2818 // Process each struct element recursively 2819 Idxs.push_back(i); 2820 Value *PrevTo = To; 2821 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2822 InsertBefore); 2823 Idxs.pop_back(); 2824 if (!To) { 2825 // Couldn't find any inserted value for this index? Cleanup 2826 while (PrevTo != OrigTo) { 2827 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 2828 PrevTo = Del->getAggregateOperand(); 2829 Del->eraseFromParent(); 2830 } 2831 // Stop processing elements 2832 break; 2833 } 2834 } 2835 // If we successfully found a value for each of our subaggregates 2836 if (To) 2837 return To; 2838 } 2839 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 2840 // the struct's elements had a value that was inserted directly. In the latter 2841 // case, perhaps we can't determine each of the subelements individually, but 2842 // we might be able to find the complete struct somewhere. 2843 2844 // Find the value that is at that particular spot 2845 Value *V = FindInsertedValue(From, Idxs); 2846 2847 if (!V) 2848 return nullptr; 2849 2850 // Insert the value in the new (sub) aggregrate 2851 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 2852 "tmp", InsertBefore); 2853 } 2854 2855 // This helper takes a nested struct and extracts a part of it (which is again a 2856 // struct) into a new value. For example, given the struct: 2857 // { a, { b, { c, d }, e } } 2858 // and the indices "1, 1" this returns 2859 // { c, d }. 2860 // 2861 // It does this by inserting an insertvalue for each element in the resulting 2862 // struct, as opposed to just inserting a single struct. This will only work if 2863 // each of the elements of the substruct are known (ie, inserted into From by an 2864 // insertvalue instruction somewhere). 2865 // 2866 // All inserted insertvalue instructions are inserted before InsertBefore 2867 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 2868 Instruction *InsertBefore) { 2869 assert(InsertBefore && "Must have someplace to insert!"); 2870 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 2871 idx_range); 2872 Value *To = UndefValue::get(IndexedType); 2873 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 2874 unsigned IdxSkip = Idxs.size(); 2875 2876 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 2877 } 2878 2879 /// Given an aggregrate and an sequence of indices, see if 2880 /// the scalar value indexed is already around as a register, for example if it 2881 /// were inserted directly into the aggregrate. 2882 /// 2883 /// If InsertBefore is not null, this function will duplicate (modified) 2884 /// insertvalues when a part of a nested struct is extracted. 2885 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 2886 Instruction *InsertBefore) { 2887 // Nothing to index? Just return V then (this is useful at the end of our 2888 // recursion). 2889 if (idx_range.empty()) 2890 return V; 2891 // We have indices, so V should have an indexable type. 2892 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 2893 "Not looking at a struct or array?"); 2894 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 2895 "Invalid indices for type?"); 2896 2897 if (Constant *C = dyn_cast<Constant>(V)) { 2898 C = C->getAggregateElement(idx_range[0]); 2899 if (!C) return nullptr; 2900 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 2901 } 2902 2903 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 2904 // Loop the indices for the insertvalue instruction in parallel with the 2905 // requested indices 2906 const unsigned *req_idx = idx_range.begin(); 2907 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 2908 i != e; ++i, ++req_idx) { 2909 if (req_idx == idx_range.end()) { 2910 // We can't handle this without inserting insertvalues 2911 if (!InsertBefore) 2912 return nullptr; 2913 2914 // The requested index identifies a part of a nested aggregate. Handle 2915 // this specially. For example, 2916 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 2917 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 2918 // %C = extractvalue {i32, { i32, i32 } } %B, 1 2919 // This can be changed into 2920 // %A = insertvalue {i32, i32 } undef, i32 10, 0 2921 // %C = insertvalue {i32, i32 } %A, i32 11, 1 2922 // which allows the unused 0,0 element from the nested struct to be 2923 // removed. 2924 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 2925 InsertBefore); 2926 } 2927 2928 // This insert value inserts something else than what we are looking for. 2929 // See if the (aggregate) value inserted into has the value we are 2930 // looking for, then. 2931 if (*req_idx != *i) 2932 return FindInsertedValue(I->getAggregateOperand(), idx_range, 2933 InsertBefore); 2934 } 2935 // If we end up here, the indices of the insertvalue match with those 2936 // requested (though possibly only partially). Now we recursively look at 2937 // the inserted value, passing any remaining indices. 2938 return FindInsertedValue(I->getInsertedValueOperand(), 2939 makeArrayRef(req_idx, idx_range.end()), 2940 InsertBefore); 2941 } 2942 2943 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 2944 // If we're extracting a value from an aggregate that was extracted from 2945 // something else, we can extract from that something else directly instead. 2946 // However, we will need to chain I's indices with the requested indices. 2947 2948 // Calculate the number of indices required 2949 unsigned size = I->getNumIndices() + idx_range.size(); 2950 // Allocate some space to put the new indices in 2951 SmallVector<unsigned, 5> Idxs; 2952 Idxs.reserve(size); 2953 // Add indices from the extract value instruction 2954 Idxs.append(I->idx_begin(), I->idx_end()); 2955 2956 // Add requested indices 2957 Idxs.append(idx_range.begin(), idx_range.end()); 2958 2959 assert(Idxs.size() == size 2960 && "Number of indices added not correct?"); 2961 2962 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 2963 } 2964 // Otherwise, we don't know (such as, extracting from a function return value 2965 // or load instruction) 2966 return nullptr; 2967 } 2968 2969 /// Analyze the specified pointer to see if it can be expressed as a base 2970 /// pointer plus a constant offset. Return the base and offset to the caller. 2971 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 2972 const DataLayout &DL) { 2973 unsigned BitWidth = DL.getPointerTypeSizeInBits(Ptr->getType()); 2974 APInt ByteOffset(BitWidth, 0); 2975 2976 // We walk up the defs but use a visited set to handle unreachable code. In 2977 // that case, we stop after accumulating the cycle once (not that it 2978 // matters). 2979 SmallPtrSet<Value *, 16> Visited; 2980 while (Visited.insert(Ptr).second) { 2981 if (Ptr->getType()->isVectorTy()) 2982 break; 2983 2984 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 2985 // If one of the values we have visited is an addrspacecast, then 2986 // the pointer type of this GEP may be different from the type 2987 // of the Ptr parameter which was passed to this function. This 2988 // means when we construct GEPOffset, we need to use the size 2989 // of GEP's pointer type rather than the size of the original 2990 // pointer type. 2991 APInt GEPOffset(DL.getPointerTypeSizeInBits(Ptr->getType()), 0); 2992 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 2993 break; 2994 2995 ByteOffset += GEPOffset.getSExtValue(); 2996 2997 Ptr = GEP->getPointerOperand(); 2998 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 2999 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3000 Ptr = cast<Operator>(Ptr)->getOperand(0); 3001 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3002 if (GA->isInterposable()) 3003 break; 3004 Ptr = GA->getAliasee(); 3005 } else { 3006 break; 3007 } 3008 } 3009 Offset = ByteOffset.getSExtValue(); 3010 return Ptr; 3011 } 3012 3013 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP) { 3014 // Make sure the GEP has exactly three arguments. 3015 if (GEP->getNumOperands() != 3) 3016 return false; 3017 3018 // Make sure the index-ee is a pointer to array of i8. 3019 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3020 if (!AT || !AT->getElementType()->isIntegerTy(8)) 3021 return false; 3022 3023 // Check to make sure that the first operand of the GEP is an integer and 3024 // has value 0 so that we are sure we're indexing into the initializer. 3025 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3026 if (!FirstIdx || !FirstIdx->isZero()) 3027 return false; 3028 3029 return true; 3030 } 3031 3032 /// This function computes the length of a null-terminated C string pointed to 3033 /// by V. If successful, it returns true and returns the string in Str. 3034 /// If unsuccessful, it returns false. 3035 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3036 uint64_t Offset, bool TrimAtNul) { 3037 assert(V); 3038 3039 // Look through bitcast instructions and geps. 3040 V = V->stripPointerCasts(); 3041 3042 // If the value is a GEP instruction or constant expression, treat it as an 3043 // offset. 3044 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3045 // The GEP operator should be based on a pointer to string constant, and is 3046 // indexing into the string constant. 3047 if (!isGEPBasedOnPointerToString(GEP)) 3048 return false; 3049 3050 // If the second index isn't a ConstantInt, then this is a variable index 3051 // into the array. If this occurs, we can't say anything meaningful about 3052 // the string. 3053 uint64_t StartIdx = 0; 3054 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3055 StartIdx = CI->getZExtValue(); 3056 else 3057 return false; 3058 return getConstantStringInfo(GEP->getOperand(0), Str, StartIdx + Offset, 3059 TrimAtNul); 3060 } 3061 3062 // The GEP instruction, constant or instruction, must reference a global 3063 // variable that is a constant and is initialized. The referenced constant 3064 // initializer is the array that we'll use for optimization. 3065 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3066 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3067 return false; 3068 3069 // Handle the all-zeros case. 3070 if (GV->getInitializer()->isNullValue()) { 3071 // This is a degenerate case. The initializer is constant zero so the 3072 // length of the string must be zero. 3073 Str = ""; 3074 return true; 3075 } 3076 3077 // This must be a ConstantDataArray. 3078 const auto *Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3079 if (!Array || !Array->isString()) 3080 return false; 3081 3082 // Get the number of elements in the array. 3083 uint64_t NumElts = Array->getType()->getArrayNumElements(); 3084 3085 // Start out with the entire array in the StringRef. 3086 Str = Array->getAsString(); 3087 3088 if (Offset > NumElts) 3089 return false; 3090 3091 // Skip over 'offset' bytes. 3092 Str = Str.substr(Offset); 3093 3094 if (TrimAtNul) { 3095 // Trim off the \0 and anything after it. If the array is not nul 3096 // terminated, we just return the whole end of string. The client may know 3097 // some other way that the string is length-bound. 3098 Str = Str.substr(0, Str.find('\0')); 3099 } 3100 return true; 3101 } 3102 3103 // These next two are very similar to the above, but also look through PHI 3104 // nodes. 3105 // TODO: See if we can integrate these two together. 3106 3107 /// If we can compute the length of the string pointed to by 3108 /// the specified pointer, return 'len+1'. If we can't, return 0. 3109 static uint64_t GetStringLengthH(const Value *V, 3110 SmallPtrSetImpl<const PHINode*> &PHIs) { 3111 // Look through noop bitcast instructions. 3112 V = V->stripPointerCasts(); 3113 3114 // If this is a PHI node, there are two cases: either we have already seen it 3115 // or we haven't. 3116 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3117 if (!PHIs.insert(PN).second) 3118 return ~0ULL; // already in the set. 3119 3120 // If it was new, see if all the input strings are the same length. 3121 uint64_t LenSoFar = ~0ULL; 3122 for (Value *IncValue : PN->incoming_values()) { 3123 uint64_t Len = GetStringLengthH(IncValue, PHIs); 3124 if (Len == 0) return 0; // Unknown length -> unknown. 3125 3126 if (Len == ~0ULL) continue; 3127 3128 if (Len != LenSoFar && LenSoFar != ~0ULL) 3129 return 0; // Disagree -> unknown. 3130 LenSoFar = Len; 3131 } 3132 3133 // Success, all agree. 3134 return LenSoFar; 3135 } 3136 3137 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3138 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3139 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs); 3140 if (Len1 == 0) return 0; 3141 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs); 3142 if (Len2 == 0) return 0; 3143 if (Len1 == ~0ULL) return Len2; 3144 if (Len2 == ~0ULL) return Len1; 3145 if (Len1 != Len2) return 0; 3146 return Len1; 3147 } 3148 3149 // Otherwise, see if we can read the string. 3150 StringRef StrData; 3151 if (!getConstantStringInfo(V, StrData)) 3152 return 0; 3153 3154 return StrData.size()+1; 3155 } 3156 3157 /// If we can compute the length of the string pointed to by 3158 /// the specified pointer, return 'len+1'. If we can't, return 0. 3159 uint64_t llvm::GetStringLength(const Value *V) { 3160 if (!V->getType()->isPointerTy()) return 0; 3161 3162 SmallPtrSet<const PHINode*, 32> PHIs; 3163 uint64_t Len = GetStringLengthH(V, PHIs); 3164 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3165 // an empty string as a length. 3166 return Len == ~0ULL ? 1 : Len; 3167 } 3168 3169 /// \brief \p PN defines a loop-variant pointer to an object. Check if the 3170 /// previous iteration of the loop was referring to the same object as \p PN. 3171 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3172 const LoopInfo *LI) { 3173 // Find the loop-defined value. 3174 Loop *L = LI->getLoopFor(PN->getParent()); 3175 if (PN->getNumIncomingValues() != 2) 3176 return true; 3177 3178 // Find the value from previous iteration. 3179 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3180 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3181 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3182 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3183 return true; 3184 3185 // If a new pointer is loaded in the loop, the pointer references a different 3186 // object in every iteration. E.g.: 3187 // for (i) 3188 // int *p = a[i]; 3189 // ... 3190 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3191 if (!L->isLoopInvariant(Load->getPointerOperand())) 3192 return false; 3193 return true; 3194 } 3195 3196 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3197 unsigned MaxLookup) { 3198 if (!V->getType()->isPointerTy()) 3199 return V; 3200 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3201 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3202 V = GEP->getPointerOperand(); 3203 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3204 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3205 V = cast<Operator>(V)->getOperand(0); 3206 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3207 if (GA->isInterposable()) 3208 return V; 3209 V = GA->getAliasee(); 3210 } else if (isa<AllocaInst>(V)) { 3211 // An alloca can't be further simplified. 3212 return V; 3213 } else { 3214 if (auto CS = CallSite(V)) 3215 if (Value *RV = CS.getReturnedArgOperand()) { 3216 V = RV; 3217 continue; 3218 } 3219 3220 // See if InstructionSimplify knows any relevant tricks. 3221 if (Instruction *I = dyn_cast<Instruction>(V)) 3222 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3223 if (Value *Simplified = SimplifyInstruction(I, DL, nullptr)) { 3224 V = Simplified; 3225 continue; 3226 } 3227 3228 return V; 3229 } 3230 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3231 } 3232 return V; 3233 } 3234 3235 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3236 const DataLayout &DL, LoopInfo *LI, 3237 unsigned MaxLookup) { 3238 SmallPtrSet<Value *, 4> Visited; 3239 SmallVector<Value *, 4> Worklist; 3240 Worklist.push_back(V); 3241 do { 3242 Value *P = Worklist.pop_back_val(); 3243 P = GetUnderlyingObject(P, DL, MaxLookup); 3244 3245 if (!Visited.insert(P).second) 3246 continue; 3247 3248 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3249 Worklist.push_back(SI->getTrueValue()); 3250 Worklist.push_back(SI->getFalseValue()); 3251 continue; 3252 } 3253 3254 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3255 // If this PHI changes the underlying object in every iteration of the 3256 // loop, don't look through it. Consider: 3257 // int **A; 3258 // for (i) { 3259 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3260 // Curr = A[i]; 3261 // *Prev, *Curr; 3262 // 3263 // Prev is tracking Curr one iteration behind so they refer to different 3264 // underlying objects. 3265 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3266 isSameUnderlyingObjectInLoop(PN, LI)) 3267 for (Value *IncValue : PN->incoming_values()) 3268 Worklist.push_back(IncValue); 3269 continue; 3270 } 3271 3272 Objects.push_back(P); 3273 } while (!Worklist.empty()); 3274 } 3275 3276 /// Return true if the only users of this pointer are lifetime markers. 3277 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3278 for (const User *U : V->users()) { 3279 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3280 if (!II) return false; 3281 3282 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3283 II->getIntrinsicID() != Intrinsic::lifetime_end) 3284 return false; 3285 } 3286 return true; 3287 } 3288 3289 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3290 const Instruction *CtxI, 3291 const DominatorTree *DT) { 3292 const Operator *Inst = dyn_cast<Operator>(V); 3293 if (!Inst) 3294 return false; 3295 3296 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3297 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3298 if (C->canTrap()) 3299 return false; 3300 3301 switch (Inst->getOpcode()) { 3302 default: 3303 return true; 3304 case Instruction::UDiv: 3305 case Instruction::URem: { 3306 // x / y is undefined if y == 0. 3307 const APInt *V; 3308 if (match(Inst->getOperand(1), m_APInt(V))) 3309 return *V != 0; 3310 return false; 3311 } 3312 case Instruction::SDiv: 3313 case Instruction::SRem: { 3314 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3315 const APInt *Numerator, *Denominator; 3316 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3317 return false; 3318 // We cannot hoist this division if the denominator is 0. 3319 if (*Denominator == 0) 3320 return false; 3321 // It's safe to hoist if the denominator is not 0 or -1. 3322 if (*Denominator != -1) 3323 return true; 3324 // At this point we know that the denominator is -1. It is safe to hoist as 3325 // long we know that the numerator is not INT_MIN. 3326 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3327 return !Numerator->isMinSignedValue(); 3328 // The numerator *might* be MinSignedValue. 3329 return false; 3330 } 3331 case Instruction::Load: { 3332 const LoadInst *LI = cast<LoadInst>(Inst); 3333 if (!LI->isUnordered() || 3334 // Speculative load may create a race that did not exist in the source. 3335 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3336 // Speculative load may load data from dirty regions. 3337 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress)) 3338 return false; 3339 const DataLayout &DL = LI->getModule()->getDataLayout(); 3340 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3341 LI->getAlignment(), DL, CtxI, DT); 3342 } 3343 case Instruction::Call: { 3344 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 3345 switch (II->getIntrinsicID()) { 3346 // These synthetic intrinsics have no side-effects and just mark 3347 // information about their operands. 3348 // FIXME: There are other no-op synthetic instructions that potentially 3349 // should be considered at least *safe* to speculate... 3350 case Intrinsic::dbg_declare: 3351 case Intrinsic::dbg_value: 3352 return true; 3353 3354 case Intrinsic::bitreverse: 3355 case Intrinsic::bswap: 3356 case Intrinsic::ctlz: 3357 case Intrinsic::ctpop: 3358 case Intrinsic::cttz: 3359 case Intrinsic::objectsize: 3360 case Intrinsic::sadd_with_overflow: 3361 case Intrinsic::smul_with_overflow: 3362 case Intrinsic::ssub_with_overflow: 3363 case Intrinsic::uadd_with_overflow: 3364 case Intrinsic::umul_with_overflow: 3365 case Intrinsic::usub_with_overflow: 3366 return true; 3367 // These intrinsics are defined to have the same behavior as libm 3368 // functions except for setting errno. 3369 case Intrinsic::sqrt: 3370 case Intrinsic::fma: 3371 case Intrinsic::fmuladd: 3372 return true; 3373 // These intrinsics are defined to have the same behavior as libm 3374 // functions, and the corresponding libm functions never set errno. 3375 case Intrinsic::trunc: 3376 case Intrinsic::copysign: 3377 case Intrinsic::fabs: 3378 case Intrinsic::minnum: 3379 case Intrinsic::maxnum: 3380 return true; 3381 // These intrinsics are defined to have the same behavior as libm 3382 // functions, which never overflow when operating on the IEEE754 types 3383 // that we support, and never set errno otherwise. 3384 case Intrinsic::ceil: 3385 case Intrinsic::floor: 3386 case Intrinsic::nearbyint: 3387 case Intrinsic::rint: 3388 case Intrinsic::round: 3389 return true; 3390 // These intrinsics do not correspond to any libm function, and 3391 // do not set errno. 3392 case Intrinsic::powi: 3393 return true; 3394 // TODO: are convert_{from,to}_fp16 safe? 3395 // TODO: can we list target-specific intrinsics here? 3396 default: break; 3397 } 3398 } 3399 return false; // The called function could have undefined behavior or 3400 // side-effects, even if marked readnone nounwind. 3401 } 3402 case Instruction::VAArg: 3403 case Instruction::Alloca: 3404 case Instruction::Invoke: 3405 case Instruction::PHI: 3406 case Instruction::Store: 3407 case Instruction::Ret: 3408 case Instruction::Br: 3409 case Instruction::IndirectBr: 3410 case Instruction::Switch: 3411 case Instruction::Unreachable: 3412 case Instruction::Fence: 3413 case Instruction::AtomicRMW: 3414 case Instruction::AtomicCmpXchg: 3415 case Instruction::LandingPad: 3416 case Instruction::Resume: 3417 case Instruction::CatchSwitch: 3418 case Instruction::CatchPad: 3419 case Instruction::CatchRet: 3420 case Instruction::CleanupPad: 3421 case Instruction::CleanupRet: 3422 return false; // Misc instructions which have effects 3423 } 3424 } 3425 3426 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3427 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3428 } 3429 3430 /// Return true if we know that the specified value is never null. 3431 bool llvm::isKnownNonNull(const Value *V) { 3432 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3433 3434 // Alloca never returns null, malloc might. 3435 if (isa<AllocaInst>(V)) return true; 3436 3437 // A byval, inalloca, or nonnull argument is never null. 3438 if (const Argument *A = dyn_cast<Argument>(V)) 3439 return A->hasByValOrInAllocaAttr() || A->hasNonNullAttr(); 3440 3441 // A global variable in address space 0 is non null unless extern weak 3442 // or an absolute symbol reference. Other address spaces may have null as a 3443 // valid address for a global, so we can't assume anything. 3444 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 3445 return !GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 3446 GV->getType()->getAddressSpace() == 0; 3447 3448 // A Load tagged with nonnull metadata is never null. 3449 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 3450 return LI->getMetadata(LLVMContext::MD_nonnull); 3451 3452 if (auto CS = ImmutableCallSite(V)) 3453 if (CS.isReturnNonNull()) 3454 return true; 3455 3456 return false; 3457 } 3458 3459 static bool isKnownNonNullFromDominatingCondition(const Value *V, 3460 const Instruction *CtxI, 3461 const DominatorTree *DT) { 3462 assert(V->getType()->isPointerTy() && "V must be pointer type"); 3463 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 3464 assert(CtxI && "Context instruction required for analysis"); 3465 assert(DT && "Dominator tree required for analysis"); 3466 3467 unsigned NumUsesExplored = 0; 3468 for (auto *U : V->users()) { 3469 // Avoid massive lists 3470 if (NumUsesExplored >= DomConditionsMaxUses) 3471 break; 3472 NumUsesExplored++; 3473 3474 // If the value is used as an argument to a call or invoke, then argument 3475 // attributes may provide an answer about null-ness. 3476 if (auto CS = ImmutableCallSite(U)) 3477 if (auto *CalledFunc = CS.getCalledFunction()) 3478 for (const Argument &Arg : CalledFunc->args()) 3479 if (CS.getArgOperand(Arg.getArgNo()) == V && 3480 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 3481 return true; 3482 3483 // Consider only compare instructions uniquely controlling a branch 3484 CmpInst::Predicate Pred; 3485 if (!match(const_cast<User *>(U), 3486 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 3487 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 3488 continue; 3489 3490 for (auto *CmpU : U->users()) { 3491 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 3492 assert(BI->isConditional() && "uses a comparison!"); 3493 3494 BasicBlock *NonNullSuccessor = 3495 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 3496 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 3497 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 3498 return true; 3499 } else if (Pred == ICmpInst::ICMP_NE && 3500 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 3501 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 3502 return true; 3503 } 3504 } 3505 } 3506 3507 return false; 3508 } 3509 3510 bool llvm::isKnownNonNullAt(const Value *V, const Instruction *CtxI, 3511 const DominatorTree *DT) { 3512 if (isa<ConstantPointerNull>(V) || isa<UndefValue>(V)) 3513 return false; 3514 3515 if (isKnownNonNull(V)) 3516 return true; 3517 3518 if (!CtxI || !DT) 3519 return false; 3520 3521 return ::isKnownNonNullFromDominatingCondition(V, CtxI, DT); 3522 } 3523 3524 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3525 const Value *RHS, 3526 const DataLayout &DL, 3527 AssumptionCache *AC, 3528 const Instruction *CxtI, 3529 const DominatorTree *DT) { 3530 // Multiplying n * m significant bits yields a result of n + m significant 3531 // bits. If the total number of significant bits does not exceed the 3532 // result bit width (minus 1), there is no overflow. 3533 // This means if we have enough leading zero bits in the operands 3534 // we can guarantee that the result does not overflow. 3535 // Ref: "Hacker's Delight" by Henry Warren 3536 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3537 APInt LHSKnownZero(BitWidth, 0); 3538 APInt LHSKnownOne(BitWidth, 0); 3539 APInt RHSKnownZero(BitWidth, 0); 3540 APInt RHSKnownOne(BitWidth, 0); 3541 computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3542 DT); 3543 computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, /*Depth=*/0, AC, CxtI, 3544 DT); 3545 // Note that underestimating the number of zero bits gives a more 3546 // conservative answer. 3547 unsigned ZeroBits = LHSKnownZero.countLeadingOnes() + 3548 RHSKnownZero.countLeadingOnes(); 3549 // First handle the easy case: if we have enough zero bits there's 3550 // definitely no overflow. 3551 if (ZeroBits >= BitWidth) 3552 return OverflowResult::NeverOverflows; 3553 3554 // Get the largest possible values for each operand. 3555 APInt LHSMax = ~LHSKnownZero; 3556 APInt RHSMax = ~RHSKnownZero; 3557 3558 // We know the multiply operation doesn't overflow if the maximum values for 3559 // each operand will not overflow after we multiply them together. 3560 bool MaxOverflow; 3561 LHSMax.umul_ov(RHSMax, MaxOverflow); 3562 if (!MaxOverflow) 3563 return OverflowResult::NeverOverflows; 3564 3565 // We know it always overflows if multiplying the smallest possible values for 3566 // the operands also results in overflow. 3567 bool MinOverflow; 3568 LHSKnownOne.umul_ov(RHSKnownOne, MinOverflow); 3569 if (MinOverflow) 3570 return OverflowResult::AlwaysOverflows; 3571 3572 return OverflowResult::MayOverflow; 3573 } 3574 3575 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3576 const Value *RHS, 3577 const DataLayout &DL, 3578 AssumptionCache *AC, 3579 const Instruction *CxtI, 3580 const DominatorTree *DT) { 3581 bool LHSKnownNonNegative, LHSKnownNegative; 3582 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3583 AC, CxtI, DT); 3584 if (LHSKnownNonNegative || LHSKnownNegative) { 3585 bool RHSKnownNonNegative, RHSKnownNegative; 3586 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3587 AC, CxtI, DT); 3588 3589 if (LHSKnownNegative && RHSKnownNegative) { 3590 // The sign bit is set in both cases: this MUST overflow. 3591 // Create a simple add instruction, and insert it into the struct. 3592 return OverflowResult::AlwaysOverflows; 3593 } 3594 3595 if (LHSKnownNonNegative && RHSKnownNonNegative) { 3596 // The sign bit is clear in both cases: this CANNOT overflow. 3597 // Create a simple add instruction, and insert it into the struct. 3598 return OverflowResult::NeverOverflows; 3599 } 3600 } 3601 3602 return OverflowResult::MayOverflow; 3603 } 3604 3605 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3606 const Value *RHS, 3607 const AddOperator *Add, 3608 const DataLayout &DL, 3609 AssumptionCache *AC, 3610 const Instruction *CxtI, 3611 const DominatorTree *DT) { 3612 if (Add && Add->hasNoSignedWrap()) { 3613 return OverflowResult::NeverOverflows; 3614 } 3615 3616 bool LHSKnownNonNegative, LHSKnownNegative; 3617 bool RHSKnownNonNegative, RHSKnownNegative; 3618 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, DL, /*Depth=*/0, 3619 AC, CxtI, DT); 3620 ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, DL, /*Depth=*/0, 3621 AC, CxtI, DT); 3622 3623 if ((LHSKnownNonNegative && RHSKnownNegative) || 3624 (LHSKnownNegative && RHSKnownNonNegative)) { 3625 // The sign bits are opposite: this CANNOT overflow. 3626 return OverflowResult::NeverOverflows; 3627 } 3628 3629 // The remaining code needs Add to be available. Early returns if not so. 3630 if (!Add) 3631 return OverflowResult::MayOverflow; 3632 3633 // If the sign of Add is the same as at least one of the operands, this add 3634 // CANNOT overflow. This is particularly useful when the sum is 3635 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3636 // operands. 3637 bool LHSOrRHSKnownNonNegative = 3638 (LHSKnownNonNegative || RHSKnownNonNegative); 3639 bool LHSOrRHSKnownNegative = (LHSKnownNegative || RHSKnownNegative); 3640 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3641 bool AddKnownNonNegative, AddKnownNegative; 3642 ComputeSignBit(Add, AddKnownNonNegative, AddKnownNegative, DL, 3643 /*Depth=*/0, AC, CxtI, DT); 3644 if ((AddKnownNonNegative && LHSOrRHSKnownNonNegative) || 3645 (AddKnownNegative && LHSOrRHSKnownNegative)) { 3646 return OverflowResult::NeverOverflows; 3647 } 3648 } 3649 3650 return OverflowResult::MayOverflow; 3651 } 3652 3653 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3654 const DominatorTree &DT) { 3655 #ifndef NDEBUG 3656 auto IID = II->getIntrinsicID(); 3657 assert((IID == Intrinsic::sadd_with_overflow || 3658 IID == Intrinsic::uadd_with_overflow || 3659 IID == Intrinsic::ssub_with_overflow || 3660 IID == Intrinsic::usub_with_overflow || 3661 IID == Intrinsic::smul_with_overflow || 3662 IID == Intrinsic::umul_with_overflow) && 3663 "Not an overflow intrinsic!"); 3664 #endif 3665 3666 SmallVector<const BranchInst *, 2> GuardingBranches; 3667 SmallVector<const ExtractValueInst *, 2> Results; 3668 3669 for (const User *U : II->users()) { 3670 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3671 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3672 3673 if (EVI->getIndices()[0] == 0) 3674 Results.push_back(EVI); 3675 else { 3676 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3677 3678 for (const auto *U : EVI->users()) 3679 if (const auto *B = dyn_cast<BranchInst>(U)) { 3680 assert(B->isConditional() && "How else is it using an i1?"); 3681 GuardingBranches.push_back(B); 3682 } 3683 } 3684 } else { 3685 // We are using the aggregate directly in a way we don't want to analyze 3686 // here (storing it to a global, say). 3687 return false; 3688 } 3689 } 3690 3691 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3692 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3693 if (!NoWrapEdge.isSingleEdge()) 3694 return false; 3695 3696 // Check if all users of the add are provably no-wrap. 3697 for (const auto *Result : Results) { 3698 // If the extractvalue itself is not executed on overflow, the we don't 3699 // need to check each use separately, since domination is transitive. 3700 if (DT.dominates(NoWrapEdge, Result->getParent())) 3701 continue; 3702 3703 for (auto &RU : Result->uses()) 3704 if (!DT.dominates(NoWrapEdge, RU)) 3705 return false; 3706 } 3707 3708 return true; 3709 }; 3710 3711 return any_of(GuardingBranches, AllUsesGuardedByBranch); 3712 } 3713 3714 3715 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 3716 const DataLayout &DL, 3717 AssumptionCache *AC, 3718 const Instruction *CxtI, 3719 const DominatorTree *DT) { 3720 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 3721 Add, DL, AC, CxtI, DT); 3722 } 3723 3724 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 3725 const Value *RHS, 3726 const DataLayout &DL, 3727 AssumptionCache *AC, 3728 const Instruction *CxtI, 3729 const DominatorTree *DT) { 3730 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 3731 } 3732 3733 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 3734 // A memory operation returns normally if it isn't volatile. A volatile 3735 // operation is allowed to trap. 3736 // 3737 // An atomic operation isn't guaranteed to return in a reasonable amount of 3738 // time because it's possible for another thread to interfere with it for an 3739 // arbitrary length of time, but programs aren't allowed to rely on that. 3740 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 3741 return !LI->isVolatile(); 3742 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 3743 return !SI->isVolatile(); 3744 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 3745 return !CXI->isVolatile(); 3746 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 3747 return !RMWI->isVolatile(); 3748 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 3749 return !MII->isVolatile(); 3750 3751 // If there is no successor, then execution can't transfer to it. 3752 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 3753 return !CRI->unwindsToCaller(); 3754 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 3755 return !CatchSwitch->unwindsToCaller(); 3756 if (isa<ResumeInst>(I)) 3757 return false; 3758 if (isa<ReturnInst>(I)) 3759 return false; 3760 if (isa<UnreachableInst>(I)) 3761 return false; 3762 3763 // Calls can throw, or contain an infinite loop, or kill the process. 3764 if (auto CS = ImmutableCallSite(I)) { 3765 // Call sites that throw have implicit non-local control flow. 3766 if (!CS.doesNotThrow()) 3767 return false; 3768 3769 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 3770 // etc. and thus not return. However, LLVM already assumes that 3771 // 3772 // - Thread exiting actions are modeled as writes to memory invisible to 3773 // the program. 3774 // 3775 // - Loops that don't have side effects (side effects are volatile/atomic 3776 // stores and IO) always terminate (see http://llvm.org/PR965). 3777 // Furthermore IO itself is also modeled as writes to memory invisible to 3778 // the program. 3779 // 3780 // We rely on those assumptions here, and use the memory effects of the call 3781 // target as a proxy for checking that it always returns. 3782 3783 // FIXME: This isn't aggressive enough; a call which only writes to a global 3784 // is guaranteed to return. 3785 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 3786 match(I, m_Intrinsic<Intrinsic::assume>()); 3787 } 3788 3789 // Other instructions return normally. 3790 return true; 3791 } 3792 3793 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 3794 const Loop *L) { 3795 // The loop header is guaranteed to be executed for every iteration. 3796 // 3797 // FIXME: Relax this constraint to cover all basic blocks that are 3798 // guaranteed to be executed at every iteration. 3799 if (I->getParent() != L->getHeader()) return false; 3800 3801 for (const Instruction &LI : *L->getHeader()) { 3802 if (&LI == I) return true; 3803 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 3804 } 3805 llvm_unreachable("Instruction not contained in its own parent basic block."); 3806 } 3807 3808 bool llvm::propagatesFullPoison(const Instruction *I) { 3809 switch (I->getOpcode()) { 3810 case Instruction::Add: 3811 case Instruction::Sub: 3812 case Instruction::Xor: 3813 case Instruction::Trunc: 3814 case Instruction::BitCast: 3815 case Instruction::AddrSpaceCast: 3816 case Instruction::Mul: 3817 case Instruction::Shl: 3818 case Instruction::GetElementPtr: 3819 // These operations all propagate poison unconditionally. Note that poison 3820 // is not any particular value, so xor or subtraction of poison with 3821 // itself still yields poison, not zero. 3822 return true; 3823 3824 case Instruction::AShr: 3825 case Instruction::SExt: 3826 // For these operations, one bit of the input is replicated across 3827 // multiple output bits. A replicated poison bit is still poison. 3828 return true; 3829 3830 case Instruction::ICmp: 3831 // Comparing poison with any value yields poison. This is why, for 3832 // instance, x s< (x +nsw 1) can be folded to true. 3833 return true; 3834 3835 default: 3836 return false; 3837 } 3838 } 3839 3840 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 3841 switch (I->getOpcode()) { 3842 case Instruction::Store: 3843 return cast<StoreInst>(I)->getPointerOperand(); 3844 3845 case Instruction::Load: 3846 return cast<LoadInst>(I)->getPointerOperand(); 3847 3848 case Instruction::AtomicCmpXchg: 3849 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 3850 3851 case Instruction::AtomicRMW: 3852 return cast<AtomicRMWInst>(I)->getPointerOperand(); 3853 3854 case Instruction::UDiv: 3855 case Instruction::SDiv: 3856 case Instruction::URem: 3857 case Instruction::SRem: 3858 return I->getOperand(1); 3859 3860 default: 3861 return nullptr; 3862 } 3863 } 3864 3865 bool llvm::isKnownNotFullPoison(const Instruction *PoisonI) { 3866 // We currently only look for uses of poison values within the same basic 3867 // block, as that makes it easier to guarantee that the uses will be 3868 // executed given that PoisonI is executed. 3869 // 3870 // FIXME: Expand this to consider uses beyond the same basic block. To do 3871 // this, look out for the distinction between post-dominance and strong 3872 // post-dominance. 3873 const BasicBlock *BB = PoisonI->getParent(); 3874 3875 // Set of instructions that we have proved will yield poison if PoisonI 3876 // does. 3877 SmallSet<const Value *, 16> YieldsPoison; 3878 SmallSet<const BasicBlock *, 4> Visited; 3879 YieldsPoison.insert(PoisonI); 3880 Visited.insert(PoisonI->getParent()); 3881 3882 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 3883 3884 unsigned Iter = 0; 3885 while (Iter++ < MaxDepth) { 3886 for (auto &I : make_range(Begin, End)) { 3887 if (&I != PoisonI) { 3888 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 3889 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 3890 return true; 3891 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 3892 return false; 3893 } 3894 3895 // Mark poison that propagates from I through uses of I. 3896 if (YieldsPoison.count(&I)) { 3897 for (const User *User : I.users()) { 3898 const Instruction *UserI = cast<Instruction>(User); 3899 if (propagatesFullPoison(UserI)) 3900 YieldsPoison.insert(User); 3901 } 3902 } 3903 } 3904 3905 if (auto *NextBB = BB->getSingleSuccessor()) { 3906 if (Visited.insert(NextBB).second) { 3907 BB = NextBB; 3908 Begin = BB->getFirstNonPHI()->getIterator(); 3909 End = BB->end(); 3910 continue; 3911 } 3912 } 3913 3914 break; 3915 }; 3916 return false; 3917 } 3918 3919 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 3920 if (FMF.noNaNs()) 3921 return true; 3922 3923 if (auto *C = dyn_cast<ConstantFP>(V)) 3924 return !C->isNaN(); 3925 return false; 3926 } 3927 3928 static bool isKnownNonZero(const Value *V) { 3929 if (auto *C = dyn_cast<ConstantFP>(V)) 3930 return !C->isZero(); 3931 return false; 3932 } 3933 3934 /// Match non-obvious integer minimum and maximum sequences. 3935 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 3936 Value *CmpLHS, Value *CmpRHS, 3937 Value *TrueVal, Value *FalseVal, 3938 Value *&LHS, Value *&RHS) { 3939 // Assume success. If there's no match, callers should not use these anyway. 3940 LHS = TrueVal; 3941 RHS = FalseVal; 3942 3943 // Recognize variations of: 3944 // CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 3945 const APInt *C1; 3946 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 3947 const APInt *C2; 3948 3949 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 3950 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 3951 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 3952 return {SPF_SMAX, SPNB_NA, false}; 3953 3954 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 3955 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 3956 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 3957 return {SPF_SMIN, SPNB_NA, false}; 3958 3959 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 3960 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 3961 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 3962 return {SPF_UMAX, SPNB_NA, false}; 3963 3964 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 3965 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 3966 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 3967 return {SPF_UMIN, SPNB_NA, false}; 3968 } 3969 3970 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 3971 return {SPF_UNKNOWN, SPNB_NA, false}; 3972 3973 // Z = X -nsw Y 3974 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 3975 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 3976 if (match(TrueVal, m_Zero()) && 3977 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3978 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 3979 3980 // Z = X -nsw Y 3981 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 3982 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 3983 if (match(FalseVal, m_Zero()) && 3984 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 3985 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 3986 3987 if (!match(CmpRHS, m_APInt(C1))) 3988 return {SPF_UNKNOWN, SPNB_NA, false}; 3989 3990 // An unsigned min/max can be written with a signed compare. 3991 const APInt *C2; 3992 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 3993 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 3994 // Is the sign bit set? 3995 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 3996 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 3997 if (Pred == CmpInst::ICMP_SLT && *C1 == 0 && C2->isMaxSignedValue()) 3998 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 3999 4000 // Is the sign bit clear? 4001 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4002 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4003 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4004 C2->isMinSignedValue()) 4005 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4006 } 4007 4008 // Look through 'not' ops to find disguised signed min/max. 4009 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4010 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4011 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4012 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4013 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4014 4015 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4016 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4017 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4018 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4019 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4020 4021 return {SPF_UNKNOWN, SPNB_NA, false}; 4022 } 4023 4024 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4025 FastMathFlags FMF, 4026 Value *CmpLHS, Value *CmpRHS, 4027 Value *TrueVal, Value *FalseVal, 4028 Value *&LHS, Value *&RHS) { 4029 LHS = CmpLHS; 4030 RHS = CmpRHS; 4031 4032 // If the predicate is an "or-equal" (FP) predicate, then signed zeroes may 4033 // return inconsistent results between implementations. 4034 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4035 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4036 // Therefore we behave conservatively and only proceed if at least one of the 4037 // operands is known to not be zero, or if we don't care about signed zeroes. 4038 switch (Pred) { 4039 default: break; 4040 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4041 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4042 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4043 !isKnownNonZero(CmpRHS)) 4044 return {SPF_UNKNOWN, SPNB_NA, false}; 4045 } 4046 4047 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4048 bool Ordered = false; 4049 4050 // When given one NaN and one non-NaN input: 4051 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4052 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4053 // ordered comparison fails), which could be NaN or non-NaN. 4054 // so here we discover exactly what NaN behavior is required/accepted. 4055 if (CmpInst::isFPPredicate(Pred)) { 4056 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4057 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4058 4059 if (LHSSafe && RHSSafe) { 4060 // Both operands are known non-NaN. 4061 NaNBehavior = SPNB_RETURNS_ANY; 4062 } else if (CmpInst::isOrdered(Pred)) { 4063 // An ordered comparison will return false when given a NaN, so it 4064 // returns the RHS. 4065 Ordered = true; 4066 if (LHSSafe) 4067 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4068 NaNBehavior = SPNB_RETURNS_NAN; 4069 else if (RHSSafe) 4070 NaNBehavior = SPNB_RETURNS_OTHER; 4071 else 4072 // Completely unsafe. 4073 return {SPF_UNKNOWN, SPNB_NA, false}; 4074 } else { 4075 Ordered = false; 4076 // An unordered comparison will return true when given a NaN, so it 4077 // returns the LHS. 4078 if (LHSSafe) 4079 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4080 NaNBehavior = SPNB_RETURNS_OTHER; 4081 else if (RHSSafe) 4082 NaNBehavior = SPNB_RETURNS_NAN; 4083 else 4084 // Completely unsafe. 4085 return {SPF_UNKNOWN, SPNB_NA, false}; 4086 } 4087 } 4088 4089 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4090 std::swap(CmpLHS, CmpRHS); 4091 Pred = CmpInst::getSwappedPredicate(Pred); 4092 if (NaNBehavior == SPNB_RETURNS_NAN) 4093 NaNBehavior = SPNB_RETURNS_OTHER; 4094 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4095 NaNBehavior = SPNB_RETURNS_NAN; 4096 Ordered = !Ordered; 4097 } 4098 4099 // ([if]cmp X, Y) ? X : Y 4100 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4101 switch (Pred) { 4102 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4103 case ICmpInst::ICMP_UGT: 4104 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4105 case ICmpInst::ICMP_SGT: 4106 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4107 case ICmpInst::ICMP_ULT: 4108 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4109 case ICmpInst::ICMP_SLT: 4110 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4111 case FCmpInst::FCMP_UGT: 4112 case FCmpInst::FCMP_UGE: 4113 case FCmpInst::FCMP_OGT: 4114 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4115 case FCmpInst::FCMP_ULT: 4116 case FCmpInst::FCMP_ULE: 4117 case FCmpInst::FCMP_OLT: 4118 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4119 } 4120 } 4121 4122 const APInt *C1; 4123 if (match(CmpRHS, m_APInt(C1))) { 4124 if ((CmpLHS == TrueVal && match(FalseVal, m_Neg(m_Specific(CmpLHS)))) || 4125 (CmpLHS == FalseVal && match(TrueVal, m_Neg(m_Specific(CmpLHS))))) { 4126 4127 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4128 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4129 if (Pred == ICmpInst::ICMP_SGT && (*C1 == 0 || C1->isAllOnesValue())) { 4130 return {(CmpLHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4131 } 4132 4133 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4134 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4135 if (Pred == ICmpInst::ICMP_SLT && (*C1 == 0 || *C1 == 1)) { 4136 return {(CmpLHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4137 } 4138 } 4139 } 4140 4141 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4142 } 4143 4144 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4145 Instruction::CastOps *CastOp) { 4146 auto *Cast1 = dyn_cast<CastInst>(V1); 4147 if (!Cast1) 4148 return nullptr; 4149 4150 *CastOp = Cast1->getOpcode(); 4151 Type *SrcTy = Cast1->getSrcTy(); 4152 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4153 // If V1 and V2 are both the same cast from the same type, look through V1. 4154 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4155 return Cast2->getOperand(0); 4156 return nullptr; 4157 } 4158 4159 auto *C = dyn_cast<Constant>(V2); 4160 if (!C) 4161 return nullptr; 4162 4163 Constant *CastedTo = nullptr; 4164 switch (*CastOp) { 4165 case Instruction::ZExt: 4166 if (CmpI->isUnsigned()) 4167 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4168 break; 4169 case Instruction::SExt: 4170 if (CmpI->isSigned()) 4171 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4172 break; 4173 case Instruction::Trunc: 4174 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4175 break; 4176 case Instruction::FPTrunc: 4177 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4178 break; 4179 case Instruction::FPExt: 4180 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4181 break; 4182 case Instruction::FPToUI: 4183 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4184 break; 4185 case Instruction::FPToSI: 4186 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4187 break; 4188 case Instruction::UIToFP: 4189 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4190 break; 4191 case Instruction::SIToFP: 4192 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4193 break; 4194 default: 4195 break; 4196 } 4197 4198 if (!CastedTo) 4199 return nullptr; 4200 4201 // Make sure the cast doesn't lose any information. 4202 Constant *CastedBack = 4203 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4204 if (CastedBack != C) 4205 return nullptr; 4206 4207 return CastedTo; 4208 } 4209 4210 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4211 Instruction::CastOps *CastOp) { 4212 SelectInst *SI = dyn_cast<SelectInst>(V); 4213 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4214 4215 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4216 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4217 4218 CmpInst::Predicate Pred = CmpI->getPredicate(); 4219 Value *CmpLHS = CmpI->getOperand(0); 4220 Value *CmpRHS = CmpI->getOperand(1); 4221 Value *TrueVal = SI->getTrueValue(); 4222 Value *FalseVal = SI->getFalseValue(); 4223 FastMathFlags FMF; 4224 if (isa<FPMathOperator>(CmpI)) 4225 FMF = CmpI->getFastMathFlags(); 4226 4227 // Bail out early. 4228 if (CmpI->isEquality()) 4229 return {SPF_UNKNOWN, SPNB_NA, false}; 4230 4231 // Deal with type mismatches. 4232 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4233 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) 4234 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4235 cast<CastInst>(TrueVal)->getOperand(0), C, 4236 LHS, RHS); 4237 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) 4238 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4239 C, cast<CastInst>(FalseVal)->getOperand(0), 4240 LHS, RHS); 4241 } 4242 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4243 LHS, RHS); 4244 } 4245 4246 /// Return true if "icmp Pred LHS RHS" is always true. 4247 static bool isTruePredicate(CmpInst::Predicate Pred, 4248 const Value *LHS, const Value *RHS, 4249 const DataLayout &DL, unsigned Depth, 4250 AssumptionCache *AC, const Instruction *CxtI, 4251 const DominatorTree *DT) { 4252 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4253 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4254 return true; 4255 4256 switch (Pred) { 4257 default: 4258 return false; 4259 4260 case CmpInst::ICMP_SLE: { 4261 const APInt *C; 4262 4263 // LHS s<= LHS +_{nsw} C if C >= 0 4264 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4265 return !C->isNegative(); 4266 return false; 4267 } 4268 4269 case CmpInst::ICMP_ULE: { 4270 const APInt *C; 4271 4272 // LHS u<= LHS +_{nuw} C for any C 4273 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4274 return true; 4275 4276 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4277 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4278 const Value *&X, 4279 const APInt *&CA, const APInt *&CB) { 4280 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4281 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4282 return true; 4283 4284 // If X & C == 0 then (X | C) == X +_{nuw} C 4285 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4286 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4287 unsigned BitWidth = CA->getBitWidth(); 4288 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4289 computeKnownBits(X, KnownZero, KnownOne, DL, Depth + 1, AC, CxtI, DT); 4290 4291 if ((KnownZero & *CA) == *CA && (KnownZero & *CB) == *CB) 4292 return true; 4293 } 4294 4295 return false; 4296 }; 4297 4298 const Value *X; 4299 const APInt *CLHS, *CRHS; 4300 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4301 return CLHS->ule(*CRHS); 4302 4303 return false; 4304 } 4305 } 4306 } 4307 4308 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4309 /// ALHS ARHS" is true. Otherwise, return None. 4310 static Optional<bool> 4311 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4312 const Value *ARHS, const Value *BLHS, 4313 const Value *BRHS, const DataLayout &DL, 4314 unsigned Depth, AssumptionCache *AC, 4315 const Instruction *CxtI, const DominatorTree *DT) { 4316 switch (Pred) { 4317 default: 4318 return None; 4319 4320 case CmpInst::ICMP_SLT: 4321 case CmpInst::ICMP_SLE: 4322 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth, AC, CxtI, 4323 DT) && 4324 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4325 return true; 4326 return None; 4327 4328 case CmpInst::ICMP_ULT: 4329 case CmpInst::ICMP_ULE: 4330 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth, AC, CxtI, 4331 DT) && 4332 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth, AC, CxtI, DT)) 4333 return true; 4334 return None; 4335 } 4336 } 4337 4338 /// Return true if the operands of the two compares match. IsSwappedOps is true 4339 /// when the operands match, but are swapped. 4340 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4341 const Value *BLHS, const Value *BRHS, 4342 bool &IsSwappedOps) { 4343 4344 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4345 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4346 return IsMatchingOps || IsSwappedOps; 4347 } 4348 4349 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4350 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4351 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4352 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4353 const Value *ALHS, 4354 const Value *ARHS, 4355 CmpInst::Predicate BPred, 4356 const Value *BLHS, 4357 const Value *BRHS, 4358 bool IsSwappedOps) { 4359 // Canonicalize the operands so they're matching. 4360 if (IsSwappedOps) { 4361 std::swap(BLHS, BRHS); 4362 BPred = ICmpInst::getSwappedPredicate(BPred); 4363 } 4364 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4365 return true; 4366 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4367 return false; 4368 4369 return None; 4370 } 4371 4372 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4373 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4374 /// C2" is false. Otherwise, return None if we can't infer anything. 4375 static Optional<bool> 4376 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4377 const ConstantInt *C1, 4378 CmpInst::Predicate BPred, 4379 const Value *BLHS, const ConstantInt *C2) { 4380 assert(ALHS == BLHS && "LHS operands must match."); 4381 ConstantRange DomCR = 4382 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4383 ConstantRange CR = 4384 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4385 ConstantRange Intersection = DomCR.intersectWith(CR); 4386 ConstantRange Difference = DomCR.difference(CR); 4387 if (Intersection.isEmptySet()) 4388 return false; 4389 if (Difference.isEmptySet()) 4390 return true; 4391 return None; 4392 } 4393 4394 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 4395 const DataLayout &DL, bool InvertAPred, 4396 unsigned Depth, AssumptionCache *AC, 4397 const Instruction *CxtI, 4398 const DominatorTree *DT) { 4399 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for example. 4400 if (LHS->getType() != RHS->getType()) 4401 return None; 4402 4403 Type *OpTy = LHS->getType(); 4404 assert(OpTy->getScalarType()->isIntegerTy(1)); 4405 4406 // LHS ==> RHS by definition 4407 if (!InvertAPred && LHS == RHS) 4408 return true; 4409 4410 if (OpTy->isVectorTy()) 4411 // TODO: extending the code below to handle vectors 4412 return None; 4413 assert(OpTy->isIntegerTy(1) && "implied by above"); 4414 4415 ICmpInst::Predicate APred, BPred; 4416 Value *ALHS, *ARHS; 4417 Value *BLHS, *BRHS; 4418 4419 if (!match(LHS, m_ICmp(APred, m_Value(ALHS), m_Value(ARHS))) || 4420 !match(RHS, m_ICmp(BPred, m_Value(BLHS), m_Value(BRHS)))) 4421 return None; 4422 4423 if (InvertAPred) 4424 APred = CmpInst::getInversePredicate(APred); 4425 4426 // Can we infer anything when the two compares have matching operands? 4427 bool IsSwappedOps; 4428 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4429 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4430 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4431 return Implication; 4432 // No amount of additional analysis will infer the second condition, so 4433 // early exit. 4434 return None; 4435 } 4436 4437 // Can we infer anything when the LHS operands match and the RHS operands are 4438 // constants (not necessarily matching)? 4439 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 4440 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 4441 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 4442 cast<ConstantInt>(BRHS))) 4443 return Implication; 4444 // No amount of additional analysis will infer the second condition, so 4445 // early exit. 4446 return None; 4447 } 4448 4449 if (APred == BPred) 4450 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth, AC, 4451 CxtI, DT); 4452 4453 return None; 4454 } 4455