1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains routines that help analyze properties that chains of 11 // computations have. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Analysis/ValueTracking.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/Optional.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SmallPtrSet.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringRef.h" 26 #include "llvm/ADT/iterator_range.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/DiagnosticInfo.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalAlias.h" 48 #include "llvm/IR/GlobalValue.h" 49 #include "llvm/IR/GlobalVariable.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/PatternMatch.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/KnownBits.h" 68 #include "llvm/Support/MathExtras.h" 69 #include <algorithm> 70 #include <array> 71 #include <cassert> 72 #include <cstdint> 73 #include <iterator> 74 #include <utility> 75 76 using namespace llvm; 77 using namespace llvm::PatternMatch; 78 79 const unsigned MaxDepth = 6; 80 81 // Controls the number of uses of the value searched for possible 82 // dominating comparisons. 83 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 84 cl::Hidden, cl::init(20)); 85 86 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 87 /// returns the element type's bitwidth. 88 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 89 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 90 return BitWidth; 91 92 return DL.getIndexTypeSizeInBits(Ty); 93 } 94 95 namespace { 96 97 // Simplifying using an assume can only be done in a particular control-flow 98 // context (the context instruction provides that context). If an assume and 99 // the context instruction are not in the same block then the DT helps in 100 // figuring out if we can use it. 101 struct Query { 102 const DataLayout &DL; 103 AssumptionCache *AC; 104 const Instruction *CxtI; 105 const DominatorTree *DT; 106 107 // Unlike the other analyses, this may be a nullptr because not all clients 108 // provide it currently. 109 OptimizationRemarkEmitter *ORE; 110 111 /// Set of assumptions that should be excluded from further queries. 112 /// This is because of the potential for mutual recursion to cause 113 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 114 /// classic case of this is assume(x = y), which will attempt to determine 115 /// bits in x from bits in y, which will attempt to determine bits in y from 116 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 117 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 118 /// (all of which can call computeKnownBits), and so on. 119 std::array<const Value *, MaxDepth> Excluded; 120 121 unsigned NumExcluded = 0; 122 123 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 124 const DominatorTree *DT, OptimizationRemarkEmitter *ORE = nullptr) 125 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE) {} 126 127 Query(const Query &Q, const Value *NewExcl) 128 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), 129 NumExcluded(Q.NumExcluded) { 130 Excluded = Q.Excluded; 131 Excluded[NumExcluded++] = NewExcl; 132 assert(NumExcluded <= Excluded.size()); 133 } 134 135 bool isExcluded(const Value *Value) const { 136 if (NumExcluded == 0) 137 return false; 138 auto End = Excluded.begin() + NumExcluded; 139 return std::find(Excluded.begin(), End, Value) != End; 140 } 141 }; 142 143 } // end anonymous namespace 144 145 // Given the provided Value and, potentially, a context instruction, return 146 // the preferred context instruction (if any). 147 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 148 // If we've been provided with a context instruction, then use that (provided 149 // it has been inserted). 150 if (CxtI && CxtI->getParent()) 151 return CxtI; 152 153 // If the value is really an already-inserted instruction, then use that. 154 CxtI = dyn_cast<Instruction>(V); 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 return nullptr; 159 } 160 161 static void computeKnownBits(const Value *V, KnownBits &Known, 162 unsigned Depth, const Query &Q); 163 164 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 165 const DataLayout &DL, unsigned Depth, 166 AssumptionCache *AC, const Instruction *CxtI, 167 const DominatorTree *DT, 168 OptimizationRemarkEmitter *ORE) { 169 ::computeKnownBits(V, Known, Depth, 170 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 171 } 172 173 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 174 const Query &Q); 175 176 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 177 unsigned Depth, AssumptionCache *AC, 178 const Instruction *CxtI, 179 const DominatorTree *DT, 180 OptimizationRemarkEmitter *ORE) { 181 return ::computeKnownBits(V, Depth, 182 Query(DL, AC, safeCxtI(V, CxtI), DT, ORE)); 183 } 184 185 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 186 const DataLayout &DL, 187 AssumptionCache *AC, const Instruction *CxtI, 188 const DominatorTree *DT) { 189 assert(LHS->getType() == RHS->getType() && 190 "LHS and RHS should have the same type"); 191 assert(LHS->getType()->isIntOrIntVectorTy() && 192 "LHS and RHS should be integers"); 193 // Look for an inverted mask: (X & ~M) op (Y & M). 194 Value *M; 195 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 196 match(RHS, m_c_And(m_Specific(M), m_Value()))) 197 return true; 198 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 199 match(LHS, m_c_And(m_Specific(M), m_Value()))) 200 return true; 201 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 202 KnownBits LHSKnown(IT->getBitWidth()); 203 KnownBits RHSKnown(IT->getBitWidth()); 204 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT); 205 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT); 206 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 207 } 208 209 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 210 for (const User *U : CxtI->users()) { 211 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 212 if (IC->isEquality()) 213 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 214 if (C->isNullValue()) 215 continue; 216 return false; 217 } 218 return true; 219 } 220 221 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 222 const Query &Q); 223 224 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 225 bool OrZero, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, 228 const DominatorTree *DT) { 229 return ::isKnownToBeAPowerOfTwo(V, OrZero, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT)); 231 } 232 233 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 234 235 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 236 AssumptionCache *AC, const Instruction *CxtI, 237 const DominatorTree *DT) { 238 return ::isKnownNonZero(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 239 } 240 241 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 242 unsigned Depth, 243 AssumptionCache *AC, const Instruction *CxtI, 244 const DominatorTree *DT) { 245 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 246 return Known.isNonNegative(); 247 } 248 249 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 250 AssumptionCache *AC, const Instruction *CxtI, 251 const DominatorTree *DT) { 252 if (auto *CI = dyn_cast<ConstantInt>(V)) 253 return CI->getValue().isStrictlyPositive(); 254 255 // TODO: We'd doing two recursive queries here. We should factor this such 256 // that only a single query is needed. 257 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT) && 258 isKnownNonZero(V, DL, Depth, AC, CxtI, DT); 259 } 260 261 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 262 AssumptionCache *AC, const Instruction *CxtI, 263 const DominatorTree *DT) { 264 KnownBits Known = computeKnownBits(V, DL, Depth, AC, CxtI, DT); 265 return Known.isNegative(); 266 } 267 268 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 269 270 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 271 const DataLayout &DL, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT) { 274 return ::isKnownNonEqual(V1, V2, Query(DL, AC, 275 safeCxtI(V1, safeCxtI(V2, CxtI)), 276 DT)); 277 } 278 279 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 280 const Query &Q); 281 282 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 283 const DataLayout &DL, 284 unsigned Depth, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT) { 286 return ::MaskedValueIsZero(V, Mask, Depth, 287 Query(DL, AC, safeCxtI(V, CxtI), DT)); 288 } 289 290 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 291 const Query &Q); 292 293 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 294 unsigned Depth, AssumptionCache *AC, 295 const Instruction *CxtI, 296 const DominatorTree *DT) { 297 return ::ComputeNumSignBits(V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT)); 298 } 299 300 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 301 bool NSW, 302 KnownBits &KnownOut, KnownBits &Known2, 303 unsigned Depth, const Query &Q) { 304 unsigned BitWidth = KnownOut.getBitWidth(); 305 306 // If an initial sequence of bits in the result is not needed, the 307 // corresponding bits in the operands are not needed. 308 KnownBits LHSKnown(BitWidth); 309 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 310 computeKnownBits(Op1, Known2, Depth + 1, Q); 311 312 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 313 } 314 315 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 316 KnownBits &Known, KnownBits &Known2, 317 unsigned Depth, const Query &Q) { 318 unsigned BitWidth = Known.getBitWidth(); 319 computeKnownBits(Op1, Known, Depth + 1, Q); 320 computeKnownBits(Op0, Known2, Depth + 1, Q); 321 322 bool isKnownNegative = false; 323 bool isKnownNonNegative = false; 324 // If the multiplication is known not to overflow, compute the sign bit. 325 if (NSW) { 326 if (Op0 == Op1) { 327 // The product of a number with itself is non-negative. 328 isKnownNonNegative = true; 329 } else { 330 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 331 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 332 bool isKnownNegativeOp1 = Known.isNegative(); 333 bool isKnownNegativeOp0 = Known2.isNegative(); 334 // The product of two numbers with the same sign is non-negative. 335 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 336 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 337 // The product of a negative number and a non-negative number is either 338 // negative or zero. 339 if (!isKnownNonNegative) 340 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 341 isKnownNonZero(Op0, Depth, Q)) || 342 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 343 isKnownNonZero(Op1, Depth, Q)); 344 } 345 } 346 347 assert(!Known.hasConflict() && !Known2.hasConflict()); 348 // Compute a conservative estimate for high known-0 bits. 349 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 350 Known2.countMinLeadingZeros(), 351 BitWidth) - BitWidth; 352 LeadZ = std::min(LeadZ, BitWidth); 353 354 // The result of the bottom bits of an integer multiply can be 355 // inferred by looking at the bottom bits of both operands and 356 // multiplying them together. 357 // We can infer at least the minimum number of known trailing bits 358 // of both operands. Depending on number of trailing zeros, we can 359 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 360 // a and b are divisible by m and n respectively. 361 // We then calculate how many of those bits are inferrable and set 362 // the output. For example, the i8 mul: 363 // a = XXXX1100 (12) 364 // b = XXXX1110 (14) 365 // We know the bottom 3 bits are zero since the first can be divided by 366 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 367 // Applying the multiplication to the trimmed arguments gets: 368 // XX11 (3) 369 // X111 (7) 370 // ------- 371 // XX11 372 // XX11 373 // XX11 374 // XX11 375 // ------- 376 // XXXXX01 377 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 378 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 379 // The proof for this can be described as: 380 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 381 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 382 // umin(countTrailingZeros(C2), C6) + 383 // umin(C5 - umin(countTrailingZeros(C1), C5), 384 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 385 // %aa = shl i8 %a, C5 386 // %bb = shl i8 %b, C6 387 // %aaa = or i8 %aa, C1 388 // %bbb = or i8 %bb, C2 389 // %mul = mul i8 %aaa, %bbb 390 // %mask = and i8 %mul, C7 391 // => 392 // %mask = i8 ((C1*C2)&C7) 393 // Where C5, C6 describe the known bits of %a, %b 394 // C1, C2 describe the known bottom bits of %a, %b. 395 // C7 describes the mask of the known bits of the result. 396 APInt Bottom0 = Known.One; 397 APInt Bottom1 = Known2.One; 398 399 // How many times we'd be able to divide each argument by 2 (shr by 1). 400 // This gives us the number of trailing zeros on the multiplication result. 401 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 402 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 403 unsigned TrailZero0 = Known.countMinTrailingZeros(); 404 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 405 unsigned TrailZ = TrailZero0 + TrailZero1; 406 407 // Figure out the fewest known-bits operand. 408 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 409 TrailBitsKnown1 - TrailZero1); 410 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 411 412 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 413 Bottom1.getLoBits(TrailBitsKnown1); 414 415 Known.resetAll(); 416 Known.Zero.setHighBits(LeadZ); 417 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 418 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 419 420 // Only make use of no-wrap flags if we failed to compute the sign bit 421 // directly. This matters if the multiplication always overflows, in 422 // which case we prefer to follow the result of the direct computation, 423 // though as the program is invoking undefined behaviour we can choose 424 // whatever we like here. 425 if (isKnownNonNegative && !Known.isNegative()) 426 Known.makeNonNegative(); 427 else if (isKnownNegative && !Known.isNonNegative()) 428 Known.makeNegative(); 429 } 430 431 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 432 KnownBits &Known) { 433 unsigned BitWidth = Known.getBitWidth(); 434 unsigned NumRanges = Ranges.getNumOperands() / 2; 435 assert(NumRanges >= 1); 436 437 Known.Zero.setAllBits(); 438 Known.One.setAllBits(); 439 440 for (unsigned i = 0; i < NumRanges; ++i) { 441 ConstantInt *Lower = 442 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 443 ConstantInt *Upper = 444 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 445 ConstantRange Range(Lower->getValue(), Upper->getValue()); 446 447 // The first CommonPrefixBits of all values in Range are equal. 448 unsigned CommonPrefixBits = 449 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 450 451 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 452 Known.One &= Range.getUnsignedMax() & Mask; 453 Known.Zero &= ~Range.getUnsignedMax() & Mask; 454 } 455 } 456 457 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 458 SmallVector<const Value *, 16> WorkSet(1, I); 459 SmallPtrSet<const Value *, 32> Visited; 460 SmallPtrSet<const Value *, 16> EphValues; 461 462 // The instruction defining an assumption's condition itself is always 463 // considered ephemeral to that assumption (even if it has other 464 // non-ephemeral users). See r246696's test case for an example. 465 if (is_contained(I->operands(), E)) 466 return true; 467 468 while (!WorkSet.empty()) { 469 const Value *V = WorkSet.pop_back_val(); 470 if (!Visited.insert(V).second) 471 continue; 472 473 // If all uses of this value are ephemeral, then so is this value. 474 if (llvm::all_of(V->users(), [&](const User *U) { 475 return EphValues.count(U); 476 })) { 477 if (V == E) 478 return true; 479 480 if (V == I || isSafeToSpeculativelyExecute(V)) { 481 EphValues.insert(V); 482 if (const User *U = dyn_cast<User>(V)) 483 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 484 J != JE; ++J) 485 WorkSet.push_back(*J); 486 } 487 } 488 } 489 490 return false; 491 } 492 493 // Is this an intrinsic that cannot be speculated but also cannot trap? 494 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 495 if (const CallInst *CI = dyn_cast<CallInst>(I)) 496 if (Function *F = CI->getCalledFunction()) 497 switch (F->getIntrinsicID()) { 498 default: break; 499 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 500 case Intrinsic::assume: 501 case Intrinsic::sideeffect: 502 case Intrinsic::dbg_declare: 503 case Intrinsic::dbg_value: 504 case Intrinsic::dbg_label: 505 case Intrinsic::invariant_start: 506 case Intrinsic::invariant_end: 507 case Intrinsic::lifetime_start: 508 case Intrinsic::lifetime_end: 509 case Intrinsic::objectsize: 510 case Intrinsic::ptr_annotation: 511 case Intrinsic::var_annotation: 512 return true; 513 } 514 515 return false; 516 } 517 518 bool llvm::isValidAssumeForContext(const Instruction *Inv, 519 const Instruction *CxtI, 520 const DominatorTree *DT) { 521 // There are two restrictions on the use of an assume: 522 // 1. The assume must dominate the context (or the control flow must 523 // reach the assume whenever it reaches the context). 524 // 2. The context must not be in the assume's set of ephemeral values 525 // (otherwise we will use the assume to prove that the condition 526 // feeding the assume is trivially true, thus causing the removal of 527 // the assume). 528 529 if (DT) { 530 if (DT->dominates(Inv, CxtI)) 531 return true; 532 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 533 // We don't have a DT, but this trivially dominates. 534 return true; 535 } 536 537 // With or without a DT, the only remaining case we will check is if the 538 // instructions are in the same BB. Give up if that is not the case. 539 if (Inv->getParent() != CxtI->getParent()) 540 return false; 541 542 // If we have a dom tree, then we now know that the assume doesn't dominate 543 // the other instruction. If we don't have a dom tree then we can check if 544 // the assume is first in the BB. 545 if (!DT) { 546 // Search forward from the assume until we reach the context (or the end 547 // of the block); the common case is that the assume will come first. 548 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 549 IE = Inv->getParent()->end(); I != IE; ++I) 550 if (&*I == CxtI) 551 return true; 552 } 553 554 // The context comes first, but they're both in the same block. Make sure 555 // there is nothing in between that might interrupt the control flow. 556 for (BasicBlock::const_iterator I = 557 std::next(BasicBlock::const_iterator(CxtI)), IE(Inv); 558 I != IE; ++I) 559 if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I)) 560 return false; 561 562 return !isEphemeralValueOf(Inv, CxtI); 563 } 564 565 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 566 unsigned Depth, const Query &Q) { 567 // Use of assumptions is context-sensitive. If we don't have a context, we 568 // cannot use them! 569 if (!Q.AC || !Q.CxtI) 570 return; 571 572 unsigned BitWidth = Known.getBitWidth(); 573 574 // Note that the patterns below need to be kept in sync with the code 575 // in AssumptionCache::updateAffectedValues. 576 577 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 578 if (!AssumeVH) 579 continue; 580 CallInst *I = cast<CallInst>(AssumeVH); 581 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 582 "Got assumption for the wrong function!"); 583 if (Q.isExcluded(I)) 584 continue; 585 586 // Warning: This loop can end up being somewhat performance sensitive. 587 // We're running this loop for once for each value queried resulting in a 588 // runtime of ~O(#assumes * #values). 589 590 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 591 "must be an assume intrinsic"); 592 593 Value *Arg = I->getArgOperand(0); 594 595 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 596 assert(BitWidth == 1 && "assume operand is not i1?"); 597 Known.setAllOnes(); 598 return; 599 } 600 if (match(Arg, m_Not(m_Specific(V))) && 601 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 602 assert(BitWidth == 1 && "assume operand is not i1?"); 603 Known.setAllZero(); 604 return; 605 } 606 607 // The remaining tests are all recursive, so bail out if we hit the limit. 608 if (Depth == MaxDepth) 609 continue; 610 611 Value *A, *B; 612 auto m_V = m_CombineOr(m_Specific(V), 613 m_CombineOr(m_PtrToInt(m_Specific(V)), 614 m_BitCast(m_Specific(V)))); 615 616 CmpInst::Predicate Pred; 617 uint64_t C; 618 // assume(v = a) 619 if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) && 620 Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 621 KnownBits RHSKnown(BitWidth); 622 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 623 Known.Zero |= RHSKnown.Zero; 624 Known.One |= RHSKnown.One; 625 // assume(v & b = a) 626 } else if (match(Arg, 627 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 628 Pred == ICmpInst::ICMP_EQ && 629 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 630 KnownBits RHSKnown(BitWidth); 631 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 632 KnownBits MaskKnown(BitWidth); 633 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 634 635 // For those bits in the mask that are known to be one, we can propagate 636 // known bits from the RHS to V. 637 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 638 Known.One |= RHSKnown.One & MaskKnown.One; 639 // assume(~(v & b) = a) 640 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 641 m_Value(A))) && 642 Pred == ICmpInst::ICMP_EQ && 643 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 644 KnownBits RHSKnown(BitWidth); 645 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 646 KnownBits MaskKnown(BitWidth); 647 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 648 649 // For those bits in the mask that are known to be one, we can propagate 650 // inverted known bits from the RHS to V. 651 Known.Zero |= RHSKnown.One & MaskKnown.One; 652 Known.One |= RHSKnown.Zero & MaskKnown.One; 653 // assume(v | b = a) 654 } else if (match(Arg, 655 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 656 Pred == ICmpInst::ICMP_EQ && 657 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 658 KnownBits RHSKnown(BitWidth); 659 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 660 KnownBits BKnown(BitWidth); 661 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 662 663 // For those bits in B that are known to be zero, we can propagate known 664 // bits from the RHS to V. 665 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 666 Known.One |= RHSKnown.One & BKnown.Zero; 667 // assume(~(v | b) = a) 668 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 669 m_Value(A))) && 670 Pred == ICmpInst::ICMP_EQ && 671 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 672 KnownBits RHSKnown(BitWidth); 673 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 674 KnownBits BKnown(BitWidth); 675 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 676 677 // For those bits in B that are known to be zero, we can propagate 678 // inverted known bits from the RHS to V. 679 Known.Zero |= RHSKnown.One & BKnown.Zero; 680 Known.One |= RHSKnown.Zero & BKnown.Zero; 681 // assume(v ^ b = a) 682 } else if (match(Arg, 683 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 684 Pred == ICmpInst::ICMP_EQ && 685 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 686 KnownBits RHSKnown(BitWidth); 687 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 688 KnownBits BKnown(BitWidth); 689 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 690 691 // For those bits in B that are known to be zero, we can propagate known 692 // bits from the RHS to V. For those bits in B that are known to be one, 693 // we can propagate inverted known bits from the RHS to V. 694 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 695 Known.One |= RHSKnown.One & BKnown.Zero; 696 Known.Zero |= RHSKnown.One & BKnown.One; 697 Known.One |= RHSKnown.Zero & BKnown.One; 698 // assume(~(v ^ b) = a) 699 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 700 m_Value(A))) && 701 Pred == ICmpInst::ICMP_EQ && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 KnownBits RHSKnown(BitWidth); 704 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 705 KnownBits BKnown(BitWidth); 706 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 707 708 // For those bits in B that are known to be zero, we can propagate 709 // inverted known bits from the RHS to V. For those bits in B that are 710 // known to be one, we can propagate known bits from the RHS to V. 711 Known.Zero |= RHSKnown.One & BKnown.Zero; 712 Known.One |= RHSKnown.Zero & BKnown.Zero; 713 Known.Zero |= RHSKnown.Zero & BKnown.One; 714 Known.One |= RHSKnown.One & BKnown.One; 715 // assume(v << c = a) 716 } else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 717 m_Value(A))) && 718 Pred == ICmpInst::ICMP_EQ && 719 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 720 C < BitWidth) { 721 KnownBits RHSKnown(BitWidth); 722 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 723 // For those bits in RHS that are known, we can propagate them to known 724 // bits in V shifted to the right by C. 725 RHSKnown.Zero.lshrInPlace(C); 726 Known.Zero |= RHSKnown.Zero; 727 RHSKnown.One.lshrInPlace(C); 728 Known.One |= RHSKnown.One; 729 // assume(~(v << c) = a) 730 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 731 m_Value(A))) && 732 Pred == ICmpInst::ICMP_EQ && 733 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 734 C < BitWidth) { 735 KnownBits RHSKnown(BitWidth); 736 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 737 // For those bits in RHS that are known, we can propagate them inverted 738 // to known bits in V shifted to the right by C. 739 RHSKnown.One.lshrInPlace(C); 740 Known.Zero |= RHSKnown.One; 741 RHSKnown.Zero.lshrInPlace(C); 742 Known.One |= RHSKnown.Zero; 743 // assume(v >> c = a) 744 } else if (match(Arg, 745 m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 746 m_Value(A))) && 747 Pred == ICmpInst::ICMP_EQ && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 749 C < BitWidth) { 750 KnownBits RHSKnown(BitWidth); 751 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 752 // For those bits in RHS that are known, we can propagate them to known 753 // bits in V shifted to the right by C. 754 Known.Zero |= RHSKnown.Zero << C; 755 Known.One |= RHSKnown.One << C; 756 // assume(~(v >> c) = a) 757 } else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 758 m_Value(A))) && 759 Pred == ICmpInst::ICMP_EQ && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT) && 761 C < BitWidth) { 762 KnownBits RHSKnown(BitWidth); 763 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 764 // For those bits in RHS that are known, we can propagate them inverted 765 // to known bits in V shifted to the right by C. 766 Known.Zero |= RHSKnown.One << C; 767 Known.One |= RHSKnown.Zero << C; 768 // assume(v >=_s c) where c is non-negative 769 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 770 Pred == ICmpInst::ICMP_SGE && 771 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 772 KnownBits RHSKnown(BitWidth); 773 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 774 775 if (RHSKnown.isNonNegative()) { 776 // We know that the sign bit is zero. 777 Known.makeNonNegative(); 778 } 779 // assume(v >_s c) where c is at least -1. 780 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 781 Pred == ICmpInst::ICMP_SGT && 782 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 783 KnownBits RHSKnown(BitWidth); 784 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 785 786 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 787 // We know that the sign bit is zero. 788 Known.makeNonNegative(); 789 } 790 // assume(v <=_s c) where c is negative 791 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 792 Pred == ICmpInst::ICMP_SLE && 793 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 794 KnownBits RHSKnown(BitWidth); 795 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 796 797 if (RHSKnown.isNegative()) { 798 // We know that the sign bit is one. 799 Known.makeNegative(); 800 } 801 // assume(v <_s c) where c is non-positive 802 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 803 Pred == ICmpInst::ICMP_SLT && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown(BitWidth); 806 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 807 808 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 809 // We know that the sign bit is one. 810 Known.makeNegative(); 811 } 812 // assume(v <=_u c) 813 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 814 Pred == ICmpInst::ICMP_ULE && 815 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 816 KnownBits RHSKnown(BitWidth); 817 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 818 819 // Whatever high bits in c are zero are known to be zero. 820 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 821 // assume(v <_u c) 822 } else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) && 823 Pred == ICmpInst::ICMP_ULT && 824 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 825 KnownBits RHSKnown(BitWidth); 826 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 827 828 // If the RHS is known zero, then this assumption must be wrong (nothing 829 // is unsigned less than zero). Signal a conflict and get out of here. 830 if (RHSKnown.isZero()) { 831 Known.Zero.setAllBits(); 832 Known.One.setAllBits(); 833 break; 834 } 835 836 // Whatever high bits in c are zero are known to be zero (if c is a power 837 // of 2, then one more). 838 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 839 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 840 else 841 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 842 } 843 } 844 845 // If assumptions conflict with each other or previous known bits, then we 846 // have a logical fallacy. It's possible that the assumption is not reachable, 847 // so this isn't a real bug. On the other hand, the program may have undefined 848 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 849 // clear out the known bits, try to warn the user, and hope for the best. 850 if (Known.Zero.intersects(Known.One)) { 851 Known.resetAll(); 852 853 if (Q.ORE) 854 Q.ORE->emit([&]() { 855 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 856 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 857 CxtI) 858 << "Detected conflicting code assumptions. Program may " 859 "have undefined behavior, or compiler may have " 860 "internal error."; 861 }); 862 } 863 } 864 865 /// Compute known bits from a shift operator, including those with a 866 /// non-constant shift amount. Known is the output of this function. Known2 is a 867 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 868 /// operator-specific functions that, given the known-zero or known-one bits 869 /// respectively, and a shift amount, compute the implied known-zero or 870 /// known-one bits of the shift operator's result respectively for that shift 871 /// amount. The results from calling KZF and KOF are conservatively combined for 872 /// all permitted shift amounts. 873 static void computeKnownBitsFromShiftOperator( 874 const Operator *I, KnownBits &Known, KnownBits &Known2, 875 unsigned Depth, const Query &Q, 876 function_ref<APInt(const APInt &, unsigned)> KZF, 877 function_ref<APInt(const APInt &, unsigned)> KOF) { 878 unsigned BitWidth = Known.getBitWidth(); 879 880 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 881 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 882 883 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 884 Known.Zero = KZF(Known.Zero, ShiftAmt); 885 Known.One = KOF(Known.One, ShiftAmt); 886 // If the known bits conflict, this must be an overflowing left shift, so 887 // the shift result is poison. We can return anything we want. Choose 0 for 888 // the best folding opportunity. 889 if (Known.hasConflict()) 890 Known.setAllZero(); 891 892 return; 893 } 894 895 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 896 897 // If the shift amount could be greater than or equal to the bit-width of the 898 // LHS, the value could be poison, but bail out because the check below is 899 // expensive. TODO: Should we just carry on? 900 if ((~Known.Zero).uge(BitWidth)) { 901 Known.resetAll(); 902 return; 903 } 904 905 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 906 // BitWidth > 64 and any upper bits are known, we'll end up returning the 907 // limit value (which implies all bits are known). 908 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 909 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 910 911 // It would be more-clearly correct to use the two temporaries for this 912 // calculation. Reusing the APInts here to prevent unnecessary allocations. 913 Known.resetAll(); 914 915 // If we know the shifter operand is nonzero, we can sometimes infer more 916 // known bits. However this is expensive to compute, so be lazy about it and 917 // only compute it when absolutely necessary. 918 Optional<bool> ShifterOperandIsNonZero; 919 920 // Early exit if we can't constrain any well-defined shift amount. 921 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 922 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 923 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 924 if (!*ShifterOperandIsNonZero) 925 return; 926 } 927 928 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 929 930 Known.Zero.setAllBits(); 931 Known.One.setAllBits(); 932 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 933 // Combine the shifted known input bits only for those shift amounts 934 // compatible with its known constraints. 935 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 936 continue; 937 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 938 continue; 939 // If we know the shifter is nonzero, we may be able to infer more known 940 // bits. This check is sunk down as far as possible to avoid the expensive 941 // call to isKnownNonZero if the cheaper checks above fail. 942 if (ShiftAmt == 0) { 943 if (!ShifterOperandIsNonZero.hasValue()) 944 ShifterOperandIsNonZero = 945 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 946 if (*ShifterOperandIsNonZero) 947 continue; 948 } 949 950 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 951 Known.One &= KOF(Known2.One, ShiftAmt); 952 } 953 954 // If the known bits conflict, the result is poison. Return a 0 and hope the 955 // caller can further optimize that. 956 if (Known.hasConflict()) 957 Known.setAllZero(); 958 } 959 960 static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known, 961 unsigned Depth, const Query &Q) { 962 unsigned BitWidth = Known.getBitWidth(); 963 964 KnownBits Known2(Known); 965 switch (I->getOpcode()) { 966 default: break; 967 case Instruction::Load: 968 if (MDNode *MD = cast<LoadInst>(I)->getMetadata(LLVMContext::MD_range)) 969 computeKnownBitsFromRangeMetadata(*MD, Known); 970 break; 971 case Instruction::And: { 972 // If either the LHS or the RHS are Zero, the result is zero. 973 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 974 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 975 976 // Output known-1 bits are only known if set in both the LHS & RHS. 977 Known.One &= Known2.One; 978 // Output known-0 are known to be clear if zero in either the LHS | RHS. 979 Known.Zero |= Known2.Zero; 980 981 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 982 // here we handle the more general case of adding any odd number by 983 // matching the form add(x, add(x, y)) where y is odd. 984 // TODO: This could be generalized to clearing any bit set in y where the 985 // following bit is known to be unset in y. 986 Value *X = nullptr, *Y = nullptr; 987 if (!Known.Zero[0] && !Known.One[0] && 988 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 989 Known2.resetAll(); 990 computeKnownBits(Y, Known2, Depth + 1, Q); 991 if (Known2.countMinTrailingOnes() > 0) 992 Known.Zero.setBit(0); 993 } 994 break; 995 } 996 case Instruction::Or: 997 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 998 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 999 1000 // Output known-0 bits are only known if clear in both the LHS & RHS. 1001 Known.Zero &= Known2.Zero; 1002 // Output known-1 are known to be set if set in either the LHS | RHS. 1003 Known.One |= Known2.One; 1004 break; 1005 case Instruction::Xor: { 1006 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1007 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1008 1009 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1010 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1011 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1012 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1013 Known.Zero = std::move(KnownZeroOut); 1014 break; 1015 } 1016 case Instruction::Mul: { 1017 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1018 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1019 Known2, Depth, Q); 1020 break; 1021 } 1022 case Instruction::UDiv: { 1023 // For the purposes of computing leading zeros we can conservatively 1024 // treat a udiv as a logical right shift by the power of 2 known to 1025 // be less than the denominator. 1026 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1027 unsigned LeadZ = Known2.countMinLeadingZeros(); 1028 1029 Known2.resetAll(); 1030 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1031 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1032 if (RHSMaxLeadingZeros != BitWidth) 1033 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1034 1035 Known.Zero.setHighBits(LeadZ); 1036 break; 1037 } 1038 case Instruction::Select: { 1039 const Value *LHS, *RHS; 1040 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1041 if (SelectPatternResult::isMinOrMax(SPF)) { 1042 computeKnownBits(RHS, Known, Depth + 1, Q); 1043 computeKnownBits(LHS, Known2, Depth + 1, Q); 1044 } else { 1045 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1046 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1047 } 1048 1049 unsigned MaxHighOnes = 0; 1050 unsigned MaxHighZeros = 0; 1051 if (SPF == SPF_SMAX) { 1052 // If both sides are negative, the result is negative. 1053 if (Known.isNegative() && Known2.isNegative()) 1054 // We can derive a lower bound on the result by taking the max of the 1055 // leading one bits. 1056 MaxHighOnes = 1057 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1058 // If either side is non-negative, the result is non-negative. 1059 else if (Known.isNonNegative() || Known2.isNonNegative()) 1060 MaxHighZeros = 1; 1061 } else if (SPF == SPF_SMIN) { 1062 // If both sides are non-negative, the result is non-negative. 1063 if (Known.isNonNegative() && Known2.isNonNegative()) 1064 // We can derive an upper bound on the result by taking the max of the 1065 // leading zero bits. 1066 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1067 Known2.countMinLeadingZeros()); 1068 // If either side is negative, the result is negative. 1069 else if (Known.isNegative() || Known2.isNegative()) 1070 MaxHighOnes = 1; 1071 } else if (SPF == SPF_UMAX) { 1072 // We can derive a lower bound on the result by taking the max of the 1073 // leading one bits. 1074 MaxHighOnes = 1075 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1076 } else if (SPF == SPF_UMIN) { 1077 // We can derive an upper bound on the result by taking the max of the 1078 // leading zero bits. 1079 MaxHighZeros = 1080 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1081 } else if (SPF == SPF_ABS) { 1082 // RHS from matchSelectPattern returns the negation part of abs pattern. 1083 // If the negate has an NSW flag we can assume the sign bit of the result 1084 // will be 0 because that makes abs(INT_MIN) undefined. 1085 if (cast<Instruction>(RHS)->hasNoSignedWrap()) 1086 MaxHighZeros = 1; 1087 } 1088 1089 // Only known if known in both the LHS and RHS. 1090 Known.One &= Known2.One; 1091 Known.Zero &= Known2.Zero; 1092 if (MaxHighOnes > 0) 1093 Known.One.setHighBits(MaxHighOnes); 1094 if (MaxHighZeros > 0) 1095 Known.Zero.setHighBits(MaxHighZeros); 1096 break; 1097 } 1098 case Instruction::FPTrunc: 1099 case Instruction::FPExt: 1100 case Instruction::FPToUI: 1101 case Instruction::FPToSI: 1102 case Instruction::SIToFP: 1103 case Instruction::UIToFP: 1104 break; // Can't work with floating point. 1105 case Instruction::PtrToInt: 1106 case Instruction::IntToPtr: 1107 // Fall through and handle them the same as zext/trunc. 1108 LLVM_FALLTHROUGH; 1109 case Instruction::ZExt: 1110 case Instruction::Trunc: { 1111 Type *SrcTy = I->getOperand(0)->getType(); 1112 1113 unsigned SrcBitWidth; 1114 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1115 // which fall through here. 1116 Type *ScalarTy = SrcTy->getScalarType(); 1117 SrcBitWidth = ScalarTy->isPointerTy() ? 1118 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 1119 Q.DL.getTypeSizeInBits(ScalarTy); 1120 1121 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1122 Known = Known.zextOrTrunc(SrcBitWidth); 1123 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1124 Known = Known.zextOrTrunc(BitWidth); 1125 // Any top bits are known to be zero. 1126 if (BitWidth > SrcBitWidth) 1127 Known.Zero.setBitsFrom(SrcBitWidth); 1128 break; 1129 } 1130 case Instruction::BitCast: { 1131 Type *SrcTy = I->getOperand(0)->getType(); 1132 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 1133 // TODO: For now, not handling conversions like: 1134 // (bitcast i64 %x to <2 x i32>) 1135 !I->getType()->isVectorTy()) { 1136 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1137 break; 1138 } 1139 break; 1140 } 1141 case Instruction::SExt: { 1142 // Compute the bits in the result that are not present in the input. 1143 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1144 1145 Known = Known.trunc(SrcBitWidth); 1146 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1147 // If the sign bit of the input is known set or clear, then we know the 1148 // top bits of the result. 1149 Known = Known.sext(BitWidth); 1150 break; 1151 } 1152 case Instruction::Shl: { 1153 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1154 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1155 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1156 APInt KZResult = KnownZero << ShiftAmt; 1157 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1158 // If this shift has "nsw" keyword, then the result is either a poison 1159 // value or has the same sign bit as the first operand. 1160 if (NSW && KnownZero.isSignBitSet()) 1161 KZResult.setSignBit(); 1162 return KZResult; 1163 }; 1164 1165 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1166 APInt KOResult = KnownOne << ShiftAmt; 1167 if (NSW && KnownOne.isSignBitSet()) 1168 KOResult.setSignBit(); 1169 return KOResult; 1170 }; 1171 1172 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1173 break; 1174 } 1175 case Instruction::LShr: { 1176 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1177 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1178 APInt KZResult = KnownZero.lshr(ShiftAmt); 1179 // High bits known zero. 1180 KZResult.setHighBits(ShiftAmt); 1181 return KZResult; 1182 }; 1183 1184 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1185 return KnownOne.lshr(ShiftAmt); 1186 }; 1187 1188 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1189 break; 1190 } 1191 case Instruction::AShr: { 1192 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1193 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1194 return KnownZero.ashr(ShiftAmt); 1195 }; 1196 1197 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1198 return KnownOne.ashr(ShiftAmt); 1199 }; 1200 1201 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1202 break; 1203 } 1204 case Instruction::Sub: { 1205 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1206 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1207 Known, Known2, Depth, Q); 1208 break; 1209 } 1210 case Instruction::Add: { 1211 bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap(); 1212 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1213 Known, Known2, Depth, Q); 1214 break; 1215 } 1216 case Instruction::SRem: 1217 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1218 APInt RA = Rem->getValue().abs(); 1219 if (RA.isPowerOf2()) { 1220 APInt LowBits = RA - 1; 1221 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1222 1223 // The low bits of the first operand are unchanged by the srem. 1224 Known.Zero = Known2.Zero & LowBits; 1225 Known.One = Known2.One & LowBits; 1226 1227 // If the first operand is non-negative or has all low bits zero, then 1228 // the upper bits are all zero. 1229 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1230 Known.Zero |= ~LowBits; 1231 1232 // If the first operand is negative and not all low bits are zero, then 1233 // the upper bits are all one. 1234 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1235 Known.One |= ~LowBits; 1236 1237 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1238 break; 1239 } 1240 } 1241 1242 // The sign bit is the LHS's sign bit, except when the result of the 1243 // remainder is zero. 1244 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1245 // If it's known zero, our sign bit is also zero. 1246 if (Known2.isNonNegative()) 1247 Known.makeNonNegative(); 1248 1249 break; 1250 case Instruction::URem: { 1251 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1252 const APInt &RA = Rem->getValue(); 1253 if (RA.isPowerOf2()) { 1254 APInt LowBits = (RA - 1); 1255 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1256 Known.Zero |= ~LowBits; 1257 Known.One &= LowBits; 1258 break; 1259 } 1260 } 1261 1262 // Since the result is less than or equal to either operand, any leading 1263 // zero bits in either operand must also exist in the result. 1264 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1265 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1266 1267 unsigned Leaders = 1268 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1269 Known.resetAll(); 1270 Known.Zero.setHighBits(Leaders); 1271 break; 1272 } 1273 1274 case Instruction::Alloca: { 1275 const AllocaInst *AI = cast<AllocaInst>(I); 1276 unsigned Align = AI->getAlignment(); 1277 if (Align == 0) 1278 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1279 1280 if (Align > 0) 1281 Known.Zero.setLowBits(countTrailingZeros(Align)); 1282 break; 1283 } 1284 case Instruction::GetElementPtr: { 1285 // Analyze all of the subscripts of this getelementptr instruction 1286 // to determine if we can prove known low zero bits. 1287 KnownBits LocalKnown(BitWidth); 1288 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1289 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1290 1291 gep_type_iterator GTI = gep_type_begin(I); 1292 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1293 Value *Index = I->getOperand(i); 1294 if (StructType *STy = GTI.getStructTypeOrNull()) { 1295 // Handle struct member offset arithmetic. 1296 1297 // Handle case when index is vector zeroinitializer 1298 Constant *CIndex = cast<Constant>(Index); 1299 if (CIndex->isZeroValue()) 1300 continue; 1301 1302 if (CIndex->getType()->isVectorTy()) 1303 Index = CIndex->getSplatValue(); 1304 1305 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1306 const StructLayout *SL = Q.DL.getStructLayout(STy); 1307 uint64_t Offset = SL->getElementOffset(Idx); 1308 TrailZ = std::min<unsigned>(TrailZ, 1309 countTrailingZeros(Offset)); 1310 } else { 1311 // Handle array index arithmetic. 1312 Type *IndexedTy = GTI.getIndexedType(); 1313 if (!IndexedTy->isSized()) { 1314 TrailZ = 0; 1315 break; 1316 } 1317 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1318 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1319 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1320 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1321 TrailZ = std::min(TrailZ, 1322 unsigned(countTrailingZeros(TypeSize) + 1323 LocalKnown.countMinTrailingZeros())); 1324 } 1325 } 1326 1327 Known.Zero.setLowBits(TrailZ); 1328 break; 1329 } 1330 case Instruction::PHI: { 1331 const PHINode *P = cast<PHINode>(I); 1332 // Handle the case of a simple two-predecessor recurrence PHI. 1333 // There's a lot more that could theoretically be done here, but 1334 // this is sufficient to catch some interesting cases. 1335 if (P->getNumIncomingValues() == 2) { 1336 for (unsigned i = 0; i != 2; ++i) { 1337 Value *L = P->getIncomingValue(i); 1338 Value *R = P->getIncomingValue(!i); 1339 Operator *LU = dyn_cast<Operator>(L); 1340 if (!LU) 1341 continue; 1342 unsigned Opcode = LU->getOpcode(); 1343 // Check for operations that have the property that if 1344 // both their operands have low zero bits, the result 1345 // will have low zero bits. 1346 if (Opcode == Instruction::Add || 1347 Opcode == Instruction::Sub || 1348 Opcode == Instruction::And || 1349 Opcode == Instruction::Or || 1350 Opcode == Instruction::Mul) { 1351 Value *LL = LU->getOperand(0); 1352 Value *LR = LU->getOperand(1); 1353 // Find a recurrence. 1354 if (LL == I) 1355 L = LR; 1356 else if (LR == I) 1357 L = LL; 1358 else 1359 break; 1360 // Ok, we have a PHI of the form L op= R. Check for low 1361 // zero bits. 1362 computeKnownBits(R, Known2, Depth + 1, Q); 1363 1364 // We need to take the minimum number of known bits 1365 KnownBits Known3(Known); 1366 computeKnownBits(L, Known3, Depth + 1, Q); 1367 1368 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1369 Known3.countMinTrailingZeros())); 1370 1371 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1372 if (OverflowOp && OverflowOp->hasNoSignedWrap()) { 1373 // If initial value of recurrence is nonnegative, and we are adding 1374 // a nonnegative number with nsw, the result can only be nonnegative 1375 // or poison value regardless of the number of times we execute the 1376 // add in phi recurrence. If initial value is negative and we are 1377 // adding a negative number with nsw, the result can only be 1378 // negative or poison value. Similar arguments apply to sub and mul. 1379 // 1380 // (add non-negative, non-negative) --> non-negative 1381 // (add negative, negative) --> negative 1382 if (Opcode == Instruction::Add) { 1383 if (Known2.isNonNegative() && Known3.isNonNegative()) 1384 Known.makeNonNegative(); 1385 else if (Known2.isNegative() && Known3.isNegative()) 1386 Known.makeNegative(); 1387 } 1388 1389 // (sub nsw non-negative, negative) --> non-negative 1390 // (sub nsw negative, non-negative) --> negative 1391 else if (Opcode == Instruction::Sub && LL == I) { 1392 if (Known2.isNonNegative() && Known3.isNegative()) 1393 Known.makeNonNegative(); 1394 else if (Known2.isNegative() && Known3.isNonNegative()) 1395 Known.makeNegative(); 1396 } 1397 1398 // (mul nsw non-negative, non-negative) --> non-negative 1399 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1400 Known3.isNonNegative()) 1401 Known.makeNonNegative(); 1402 } 1403 1404 break; 1405 } 1406 } 1407 } 1408 1409 // Unreachable blocks may have zero-operand PHI nodes. 1410 if (P->getNumIncomingValues() == 0) 1411 break; 1412 1413 // Otherwise take the unions of the known bit sets of the operands, 1414 // taking conservative care to avoid excessive recursion. 1415 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1416 // Skip if every incoming value references to ourself. 1417 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1418 break; 1419 1420 Known.Zero.setAllBits(); 1421 Known.One.setAllBits(); 1422 for (Value *IncValue : P->incoming_values()) { 1423 // Skip direct self references. 1424 if (IncValue == P) continue; 1425 1426 Known2 = KnownBits(BitWidth); 1427 // Recurse, but cap the recursion to one level, because we don't 1428 // want to waste time spinning around in loops. 1429 computeKnownBits(IncValue, Known2, MaxDepth - 1, Q); 1430 Known.Zero &= Known2.Zero; 1431 Known.One &= Known2.One; 1432 // If all bits have been ruled out, there's no need to check 1433 // more operands. 1434 if (!Known.Zero && !Known.One) 1435 break; 1436 } 1437 } 1438 break; 1439 } 1440 case Instruction::Call: 1441 case Instruction::Invoke: 1442 // If range metadata is attached to this call, set known bits from that, 1443 // and then intersect with known bits based on other properties of the 1444 // function. 1445 if (MDNode *MD = cast<Instruction>(I)->getMetadata(LLVMContext::MD_range)) 1446 computeKnownBitsFromRangeMetadata(*MD, Known); 1447 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1448 computeKnownBits(RV, Known2, Depth + 1, Q); 1449 Known.Zero |= Known2.Zero; 1450 Known.One |= Known2.One; 1451 } 1452 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1453 switch (II->getIntrinsicID()) { 1454 default: break; 1455 case Intrinsic::bitreverse: 1456 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1457 Known.Zero |= Known2.Zero.reverseBits(); 1458 Known.One |= Known2.One.reverseBits(); 1459 break; 1460 case Intrinsic::bswap: 1461 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1462 Known.Zero |= Known2.Zero.byteSwap(); 1463 Known.One |= Known2.One.byteSwap(); 1464 break; 1465 case Intrinsic::ctlz: { 1466 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1467 // If we have a known 1, its position is our upper bound. 1468 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1469 // If this call is undefined for 0, the result will be less than 2^n. 1470 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1471 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1472 unsigned LowBits = Log2_32(PossibleLZ)+1; 1473 Known.Zero.setBitsFrom(LowBits); 1474 break; 1475 } 1476 case Intrinsic::cttz: { 1477 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1478 // If we have a known 1, its position is our upper bound. 1479 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1480 // If this call is undefined for 0, the result will be less than 2^n. 1481 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1482 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1483 unsigned LowBits = Log2_32(PossibleTZ)+1; 1484 Known.Zero.setBitsFrom(LowBits); 1485 break; 1486 } 1487 case Intrinsic::ctpop: { 1488 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1489 // We can bound the space the count needs. Also, bits known to be zero 1490 // can't contribute to the population. 1491 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1492 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1493 Known.Zero.setBitsFrom(LowBits); 1494 // TODO: we could bound KnownOne using the lower bound on the number 1495 // of bits which might be set provided by popcnt KnownOne2. 1496 break; 1497 } 1498 case Intrinsic::x86_sse42_crc32_64_64: 1499 Known.Zero.setBitsFrom(32); 1500 break; 1501 } 1502 } 1503 break; 1504 case Instruction::ExtractElement: 1505 // Look through extract element. At the moment we keep this simple and skip 1506 // tracking the specific element. But at least we might find information 1507 // valid for all elements of the vector (for example if vector is sign 1508 // extended, shifted, etc). 1509 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1510 break; 1511 case Instruction::ExtractValue: 1512 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1513 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1514 if (EVI->getNumIndices() != 1) break; 1515 if (EVI->getIndices()[0] == 0) { 1516 switch (II->getIntrinsicID()) { 1517 default: break; 1518 case Intrinsic::uadd_with_overflow: 1519 case Intrinsic::sadd_with_overflow: 1520 computeKnownBitsAddSub(true, II->getArgOperand(0), 1521 II->getArgOperand(1), false, Known, Known2, 1522 Depth, Q); 1523 break; 1524 case Intrinsic::usub_with_overflow: 1525 case Intrinsic::ssub_with_overflow: 1526 computeKnownBitsAddSub(false, II->getArgOperand(0), 1527 II->getArgOperand(1), false, Known, Known2, 1528 Depth, Q); 1529 break; 1530 case Intrinsic::umul_with_overflow: 1531 case Intrinsic::smul_with_overflow: 1532 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1533 Known, Known2, Depth, Q); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 } 1540 1541 /// Determine which bits of V are known to be either zero or one and return 1542 /// them. 1543 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1544 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1545 computeKnownBits(V, Known, Depth, Q); 1546 return Known; 1547 } 1548 1549 /// Determine which bits of V are known to be either zero or one and return 1550 /// them in the Known bit set. 1551 /// 1552 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1553 /// we cannot optimize based on the assumption that it is zero without changing 1554 /// it to be an explicit zero. If we don't change it to zero, other code could 1555 /// optimized based on the contradictory assumption that it is non-zero. 1556 /// Because instcombine aggressively folds operations with undef args anyway, 1557 /// this won't lose us code quality. 1558 /// 1559 /// This function is defined on values with integer type, values with pointer 1560 /// type, and vectors of integers. In the case 1561 /// where V is a vector, known zero, and known one values are the 1562 /// same width as the vector element, and the bit is set only if it is true 1563 /// for all of the elements in the vector. 1564 void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 1565 const Query &Q) { 1566 assert(V && "No Value?"); 1567 assert(Depth <= MaxDepth && "Limit Search Depth"); 1568 unsigned BitWidth = Known.getBitWidth(); 1569 1570 assert((V->getType()->isIntOrIntVectorTy(BitWidth) || 1571 V->getType()->isPtrOrPtrVectorTy()) && 1572 "Not integer or pointer type!"); 1573 1574 Type *ScalarTy = V->getType()->getScalarType(); 1575 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1576 Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1577 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1578 (void)BitWidth; 1579 (void)ExpectedWidth; 1580 1581 const APInt *C; 1582 if (match(V, m_APInt(C))) { 1583 // We know all of the bits for a scalar constant or a splat vector constant! 1584 Known.One = *C; 1585 Known.Zero = ~Known.One; 1586 return; 1587 } 1588 // Null and aggregate-zero are all-zeros. 1589 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1590 Known.setAllZero(); 1591 return; 1592 } 1593 // Handle a constant vector by taking the intersection of the known bits of 1594 // each element. 1595 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1596 // We know that CDS must be a vector of integers. Take the intersection of 1597 // each element. 1598 Known.Zero.setAllBits(); Known.One.setAllBits(); 1599 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1600 APInt Elt = CDS->getElementAsAPInt(i); 1601 Known.Zero &= ~Elt; 1602 Known.One &= Elt; 1603 } 1604 return; 1605 } 1606 1607 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1608 // We know that CV must be a vector of integers. Take the intersection of 1609 // each element. 1610 Known.Zero.setAllBits(); Known.One.setAllBits(); 1611 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1612 Constant *Element = CV->getAggregateElement(i); 1613 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1614 if (!ElementCI) { 1615 Known.resetAll(); 1616 return; 1617 } 1618 const APInt &Elt = ElementCI->getValue(); 1619 Known.Zero &= ~Elt; 1620 Known.One &= Elt; 1621 } 1622 return; 1623 } 1624 1625 // Start out not knowing anything. 1626 Known.resetAll(); 1627 1628 // We can't imply anything about undefs. 1629 if (isa<UndefValue>(V)) 1630 return; 1631 1632 // There's no point in looking through other users of ConstantData for 1633 // assumptions. Confirm that we've handled them all. 1634 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1635 1636 // Limit search depth. 1637 // All recursive calls that increase depth must come after this. 1638 if (Depth == MaxDepth) 1639 return; 1640 1641 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1642 // the bits of its aliasee. 1643 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1644 if (!GA->isInterposable()) 1645 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1646 return; 1647 } 1648 1649 if (const Operator *I = dyn_cast<Operator>(V)) 1650 computeKnownBitsFromOperator(I, Known, Depth, Q); 1651 1652 // Aligned pointers have trailing zeros - refine Known.Zero set 1653 if (V->getType()->isPointerTy()) { 1654 unsigned Align = V->getPointerAlignment(Q.DL); 1655 if (Align) 1656 Known.Zero.setLowBits(countTrailingZeros(Align)); 1657 } 1658 1659 // computeKnownBitsFromAssume strictly refines Known. 1660 // Therefore, we run them after computeKnownBitsFromOperator. 1661 1662 // Check whether a nearby assume intrinsic can determine some known bits. 1663 computeKnownBitsFromAssume(V, Known, Depth, Q); 1664 1665 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1666 } 1667 1668 /// Return true if the given value is known to have exactly one 1669 /// bit set when defined. For vectors return true if every element is known to 1670 /// be a power of two when defined. Supports values with integer or pointer 1671 /// types and vectors of integers. 1672 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1673 const Query &Q) { 1674 assert(Depth <= MaxDepth && "Limit Search Depth"); 1675 1676 // Attempt to match against constants. 1677 if (OrZero && match(V, m_Power2OrZero())) 1678 return true; 1679 if (match(V, m_Power2())) 1680 return true; 1681 1682 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1683 // it is shifted off the end then the result is undefined. 1684 if (match(V, m_Shl(m_One(), m_Value()))) 1685 return true; 1686 1687 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1688 // the bottom. If it is shifted off the bottom then the result is undefined. 1689 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1690 return true; 1691 1692 // The remaining tests are all recursive, so bail out if we hit the limit. 1693 if (Depth++ == MaxDepth) 1694 return false; 1695 1696 Value *X = nullptr, *Y = nullptr; 1697 // A shift left or a logical shift right of a power of two is a power of two 1698 // or zero. 1699 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1700 match(V, m_LShr(m_Value(X), m_Value())))) 1701 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1702 1703 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1704 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1705 1706 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1707 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1708 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1709 1710 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1711 // A power of two and'd with anything is a power of two or zero. 1712 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1713 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1714 return true; 1715 // X & (-X) is always a power of two or zero. 1716 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1717 return true; 1718 return false; 1719 } 1720 1721 // Adding a power-of-two or zero to the same power-of-two or zero yields 1722 // either the original power-of-two, a larger power-of-two or zero. 1723 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1724 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1725 if (OrZero || VOBO->hasNoUnsignedWrap() || VOBO->hasNoSignedWrap()) { 1726 if (match(X, m_And(m_Specific(Y), m_Value())) || 1727 match(X, m_And(m_Value(), m_Specific(Y)))) 1728 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1729 return true; 1730 if (match(Y, m_And(m_Specific(X), m_Value())) || 1731 match(Y, m_And(m_Value(), m_Specific(X)))) 1732 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1733 return true; 1734 1735 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1736 KnownBits LHSBits(BitWidth); 1737 computeKnownBits(X, LHSBits, Depth, Q); 1738 1739 KnownBits RHSBits(BitWidth); 1740 computeKnownBits(Y, RHSBits, Depth, Q); 1741 // If i8 V is a power of two or zero: 1742 // ZeroBits: 1 1 1 0 1 1 1 1 1743 // ~ZeroBits: 0 0 0 1 0 0 0 0 1744 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1745 // If OrZero isn't set, we cannot give back a zero result. 1746 // Make sure either the LHS or RHS has a bit set. 1747 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1748 return true; 1749 } 1750 } 1751 1752 // An exact divide or right shift can only shift off zero bits, so the result 1753 // is a power of two only if the first operand is a power of two and not 1754 // copying a sign bit (sdiv int_min, 2). 1755 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1756 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1757 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1758 Depth, Q); 1759 } 1760 1761 return false; 1762 } 1763 1764 /// Test whether a GEP's result is known to be non-null. 1765 /// 1766 /// Uses properties inherent in a GEP to try to determine whether it is known 1767 /// to be non-null. 1768 /// 1769 /// Currently this routine does not support vector GEPs. 1770 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 1771 const Query &Q) { 1772 if (!GEP->isInBounds() || GEP->getPointerAddressSpace() != 0) 1773 return false; 1774 1775 // FIXME: Support vector-GEPs. 1776 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 1777 1778 // If the base pointer is non-null, we cannot walk to a null address with an 1779 // inbounds GEP in address space zero. 1780 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 1781 return true; 1782 1783 // Walk the GEP operands and see if any operand introduces a non-zero offset. 1784 // If so, then the GEP cannot produce a null pointer, as doing so would 1785 // inherently violate the inbounds contract within address space zero. 1786 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 1787 GTI != GTE; ++GTI) { 1788 // Struct types are easy -- they must always be indexed by a constant. 1789 if (StructType *STy = GTI.getStructTypeOrNull()) { 1790 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 1791 unsigned ElementIdx = OpC->getZExtValue(); 1792 const StructLayout *SL = Q.DL.getStructLayout(STy); 1793 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 1794 if (ElementOffset > 0) 1795 return true; 1796 continue; 1797 } 1798 1799 // If we have a zero-sized type, the index doesn't matter. Keep looping. 1800 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 1801 continue; 1802 1803 // Fast path the constant operand case both for efficiency and so we don't 1804 // increment Depth when just zipping down an all-constant GEP. 1805 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 1806 if (!OpC->isZero()) 1807 return true; 1808 continue; 1809 } 1810 1811 // We post-increment Depth here because while isKnownNonZero increments it 1812 // as well, when we pop back up that increment won't persist. We don't want 1813 // to recurse 10k times just because we have 10k GEP operands. We don't 1814 // bail completely out because we want to handle constant GEPs regardless 1815 // of depth. 1816 if (Depth++ >= MaxDepth) 1817 continue; 1818 1819 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 1820 return true; 1821 } 1822 1823 return false; 1824 } 1825 1826 static bool isKnownNonNullFromDominatingCondition(const Value *V, 1827 const Instruction *CtxI, 1828 const DominatorTree *DT) { 1829 assert(V->getType()->isPointerTy() && "V must be pointer type"); 1830 assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull"); 1831 1832 if (!CtxI || !DT) 1833 return false; 1834 1835 unsigned NumUsesExplored = 0; 1836 for (auto *U : V->users()) { 1837 // Avoid massive lists 1838 if (NumUsesExplored >= DomConditionsMaxUses) 1839 break; 1840 NumUsesExplored++; 1841 1842 // If the value is used as an argument to a call or invoke, then argument 1843 // attributes may provide an answer about null-ness. 1844 if (auto CS = ImmutableCallSite(U)) 1845 if (auto *CalledFunc = CS.getCalledFunction()) 1846 for (const Argument &Arg : CalledFunc->args()) 1847 if (CS.getArgOperand(Arg.getArgNo()) == V && 1848 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 1849 return true; 1850 1851 // Consider only compare instructions uniquely controlling a branch 1852 CmpInst::Predicate Pred; 1853 if (!match(const_cast<User *>(U), 1854 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 1855 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 1856 continue; 1857 1858 for (auto *CmpU : U->users()) { 1859 if (const BranchInst *BI = dyn_cast<BranchInst>(CmpU)) { 1860 assert(BI->isConditional() && "uses a comparison!"); 1861 1862 BasicBlock *NonNullSuccessor = 1863 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 1864 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 1865 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 1866 return true; 1867 } else if (Pred == ICmpInst::ICMP_NE && 1868 match(CmpU, m_Intrinsic<Intrinsic::experimental_guard>()) && 1869 DT->dominates(cast<Instruction>(CmpU), CtxI)) { 1870 return true; 1871 } 1872 } 1873 } 1874 1875 return false; 1876 } 1877 1878 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 1879 /// ensure that the value it's attached to is never Value? 'RangeType' is 1880 /// is the type of the value described by the range. 1881 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 1882 const unsigned NumRanges = Ranges->getNumOperands() / 2; 1883 assert(NumRanges >= 1); 1884 for (unsigned i = 0; i < NumRanges; ++i) { 1885 ConstantInt *Lower = 1886 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 1887 ConstantInt *Upper = 1888 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 1889 ConstantRange Range(Lower->getValue(), Upper->getValue()); 1890 if (Range.contains(Value)) 1891 return false; 1892 } 1893 return true; 1894 } 1895 1896 /// Return true if the given value is known to be non-zero when defined. For 1897 /// vectors, return true if every element is known to be non-zero when 1898 /// defined. For pointers, if the context instruction and dominator tree are 1899 /// specified, perform context-sensitive analysis and return true if the 1900 /// pointer couldn't possibly be null at the specified instruction. 1901 /// Supports values with integer or pointer type and vectors of integers. 1902 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 1903 if (auto *C = dyn_cast<Constant>(V)) { 1904 if (C->isNullValue()) 1905 return false; 1906 if (isa<ConstantInt>(C)) 1907 // Must be non-zero due to null test above. 1908 return true; 1909 1910 // For constant vectors, check that all elements are undefined or known 1911 // non-zero to determine that the whole vector is known non-zero. 1912 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 1913 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 1914 Constant *Elt = C->getAggregateElement(i); 1915 if (!Elt || Elt->isNullValue()) 1916 return false; 1917 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 1918 return false; 1919 } 1920 return true; 1921 } 1922 1923 // A global variable in address space 0 is non null unless extern weak 1924 // or an absolute symbol reference. Other address spaces may have null as a 1925 // valid address for a global, so we can't assume anything. 1926 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 1927 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 1928 GV->getType()->getAddressSpace() == 0) 1929 return true; 1930 } else 1931 return false; 1932 } 1933 1934 if (auto *I = dyn_cast<Instruction>(V)) { 1935 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range)) { 1936 // If the possible ranges don't contain zero, then the value is 1937 // definitely non-zero. 1938 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 1939 const APInt ZeroValue(Ty->getBitWidth(), 0); 1940 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 1941 return true; 1942 } 1943 } 1944 } 1945 1946 // Some of the tests below are recursive, so bail out if we hit the limit. 1947 if (Depth++ >= MaxDepth) 1948 return false; 1949 1950 // Check for pointer simplifications. 1951 if (V->getType()->isPointerTy()) { 1952 // Alloca never returns null, malloc might. 1953 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 1954 return true; 1955 1956 // A byval, inalloca, or nonnull argument is never null. 1957 if (const Argument *A = dyn_cast<Argument>(V)) 1958 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 1959 return true; 1960 1961 // A Load tagged with nonnull metadata is never null. 1962 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 1963 if (LI->getMetadata(LLVMContext::MD_nonnull)) 1964 return true; 1965 1966 if (auto CS = ImmutableCallSite(V)) { 1967 if (CS.isReturnNonNull()) 1968 return true; 1969 if (const auto *RP = getArgumentAliasingToReturnedPointer(CS)) 1970 return isKnownNonZero(RP, Depth, Q); 1971 } 1972 } 1973 1974 1975 // Check for recursive pointer simplifications. 1976 if (V->getType()->isPointerTy()) { 1977 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 1978 return true; 1979 1980 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 1981 if (isGEPKnownNonNull(GEP, Depth, Q)) 1982 return true; 1983 } 1984 1985 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 1986 1987 // X | Y != 0 if X != 0 or Y != 0. 1988 Value *X = nullptr, *Y = nullptr; 1989 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 1990 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 1991 1992 // ext X != 0 if X != 0. 1993 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 1994 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 1995 1996 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 1997 // if the lowest bit is shifted off the end. 1998 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 1999 // shl nuw can't remove any non-zero bits. 2000 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2001 if (BO->hasNoUnsignedWrap()) 2002 return isKnownNonZero(X, Depth, Q); 2003 2004 KnownBits Known(BitWidth); 2005 computeKnownBits(X, Known, Depth, Q); 2006 if (Known.One[0]) 2007 return true; 2008 } 2009 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2010 // defined if the sign bit is shifted off the end. 2011 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2012 // shr exact can only shift out zero bits. 2013 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2014 if (BO->isExact()) 2015 return isKnownNonZero(X, Depth, Q); 2016 2017 KnownBits Known = computeKnownBits(X, Depth, Q); 2018 if (Known.isNegative()) 2019 return true; 2020 2021 // If the shifter operand is a constant, and all of the bits shifted 2022 // out are known to be zero, and X is known non-zero then at least one 2023 // non-zero bit must remain. 2024 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2025 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2026 // Is there a known one in the portion not shifted out? 2027 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2028 return true; 2029 // Are all the bits to be shifted out known zero? 2030 if (Known.countMinTrailingZeros() >= ShiftVal) 2031 return isKnownNonZero(X, Depth, Q); 2032 } 2033 } 2034 // div exact can only produce a zero if the dividend is zero. 2035 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2036 return isKnownNonZero(X, Depth, Q); 2037 } 2038 // X + Y. 2039 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2040 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2041 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2042 2043 // If X and Y are both non-negative (as signed values) then their sum is not 2044 // zero unless both X and Y are zero. 2045 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2046 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2047 return true; 2048 2049 // If X and Y are both negative (as signed values) then their sum is not 2050 // zero unless both X and Y equal INT_MIN. 2051 if (XKnown.isNegative() && YKnown.isNegative()) { 2052 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2053 // The sign bit of X is set. If some other bit is set then X is not equal 2054 // to INT_MIN. 2055 if (XKnown.One.intersects(Mask)) 2056 return true; 2057 // The sign bit of Y is set. If some other bit is set then Y is not equal 2058 // to INT_MIN. 2059 if (YKnown.One.intersects(Mask)) 2060 return true; 2061 } 2062 2063 // The sum of a non-negative number and a power of two is not zero. 2064 if (XKnown.isNonNegative() && 2065 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2066 return true; 2067 if (YKnown.isNonNegative() && 2068 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2069 return true; 2070 } 2071 // X * Y. 2072 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2073 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2074 // If X and Y are non-zero then so is X * Y as long as the multiplication 2075 // does not overflow. 2076 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) && 2077 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2078 return true; 2079 } 2080 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2081 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2082 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2083 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2084 return true; 2085 } 2086 // PHI 2087 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2088 // Try and detect a recurrence that monotonically increases from a 2089 // starting value, as these are common as induction variables. 2090 if (PN->getNumIncomingValues() == 2) { 2091 Value *Start = PN->getIncomingValue(0); 2092 Value *Induction = PN->getIncomingValue(1); 2093 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2094 std::swap(Start, Induction); 2095 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2096 if (!C->isZero() && !C->isNegative()) { 2097 ConstantInt *X; 2098 if ((match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2099 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2100 !X->isNegative()) 2101 return true; 2102 } 2103 } 2104 } 2105 // Check if all incoming values are non-zero constant. 2106 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2107 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2108 }); 2109 if (AllNonZeroConstants) 2110 return true; 2111 } 2112 2113 KnownBits Known(BitWidth); 2114 computeKnownBits(V, Known, Depth, Q); 2115 return Known.One != 0; 2116 } 2117 2118 /// Return true if V2 == V1 + X, where X is known non-zero. 2119 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2120 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2121 if (!BO || BO->getOpcode() != Instruction::Add) 2122 return false; 2123 Value *Op = nullptr; 2124 if (V2 == BO->getOperand(0)) 2125 Op = BO->getOperand(1); 2126 else if (V2 == BO->getOperand(1)) 2127 Op = BO->getOperand(0); 2128 else 2129 return false; 2130 return isKnownNonZero(Op, 0, Q); 2131 } 2132 2133 /// Return true if it is known that V1 != V2. 2134 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2135 if (V1 == V2) 2136 return false; 2137 if (V1->getType() != V2->getType()) 2138 // We can't look through casts yet. 2139 return false; 2140 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2141 return true; 2142 2143 if (V1->getType()->isIntOrIntVectorTy()) { 2144 // Are any known bits in V1 contradictory to known bits in V2? If V1 2145 // has a known zero where V2 has a known one, they must not be equal. 2146 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2147 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2148 2149 if (Known1.Zero.intersects(Known2.One) || 2150 Known2.Zero.intersects(Known1.One)) 2151 return true; 2152 } 2153 return false; 2154 } 2155 2156 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2157 /// simplify operations downstream. Mask is known to be zero for bits that V 2158 /// cannot have. 2159 /// 2160 /// This function is defined on values with integer type, values with pointer 2161 /// type, and vectors of integers. In the case 2162 /// where V is a vector, the mask, known zero, and known one values are the 2163 /// same width as the vector element, and the bit is set only if it is true 2164 /// for all of the elements in the vector. 2165 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2166 const Query &Q) { 2167 KnownBits Known(Mask.getBitWidth()); 2168 computeKnownBits(V, Known, Depth, Q); 2169 return Mask.isSubsetOf(Known.Zero); 2170 } 2171 2172 /// For vector constants, loop over the elements and find the constant with the 2173 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2174 /// or if any element was not analyzed; otherwise, return the count for the 2175 /// element with the minimum number of sign bits. 2176 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2177 unsigned TyBits) { 2178 const auto *CV = dyn_cast<Constant>(V); 2179 if (!CV || !CV->getType()->isVectorTy()) 2180 return 0; 2181 2182 unsigned MinSignBits = TyBits; 2183 unsigned NumElts = CV->getType()->getVectorNumElements(); 2184 for (unsigned i = 0; i != NumElts; ++i) { 2185 // If we find a non-ConstantInt, bail out. 2186 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2187 if (!Elt) 2188 return 0; 2189 2190 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2191 } 2192 2193 return MinSignBits; 2194 } 2195 2196 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2197 const Query &Q); 2198 2199 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 2200 const Query &Q) { 2201 unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q); 2202 assert(Result > 0 && "At least one sign bit needs to be present!"); 2203 return Result; 2204 } 2205 2206 /// Return the number of times the sign bit of the register is replicated into 2207 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2208 /// (itself), but other cases can give us information. For example, immediately 2209 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2210 /// other, so we return 3. For vectors, return the number of sign bits for the 2211 /// vector element with the minimum number of known sign bits. 2212 static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth, 2213 const Query &Q) { 2214 assert(Depth <= MaxDepth && "Limit Search Depth"); 2215 2216 // We return the minimum number of sign bits that are guaranteed to be present 2217 // in V, so for undef we have to conservatively return 1. We don't have the 2218 // same behavior for poison though -- that's a FIXME today. 2219 2220 Type *ScalarTy = V->getType()->getScalarType(); 2221 unsigned TyBits = ScalarTy->isPointerTy() ? 2222 Q.DL.getIndexTypeSizeInBits(ScalarTy) : 2223 Q.DL.getTypeSizeInBits(ScalarTy); 2224 2225 unsigned Tmp, Tmp2; 2226 unsigned FirstAnswer = 1; 2227 2228 // Note that ConstantInt is handled by the general computeKnownBits case 2229 // below. 2230 2231 if (Depth == MaxDepth) 2232 return 1; // Limit search depth. 2233 2234 const Operator *U = dyn_cast<Operator>(V); 2235 switch (Operator::getOpcode(V)) { 2236 default: break; 2237 case Instruction::SExt: 2238 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2239 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2240 2241 case Instruction::SDiv: { 2242 const APInt *Denominator; 2243 // sdiv X, C -> adds log(C) sign bits. 2244 if (match(U->getOperand(1), m_APInt(Denominator))) { 2245 2246 // Ignore non-positive denominator. 2247 if (!Denominator->isStrictlyPositive()) 2248 break; 2249 2250 // Calculate the incoming numerator bits. 2251 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2252 2253 // Add floor(log(C)) bits to the numerator bits. 2254 return std::min(TyBits, NumBits + Denominator->logBase2()); 2255 } 2256 break; 2257 } 2258 2259 case Instruction::SRem: { 2260 const APInt *Denominator; 2261 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2262 // positive constant. This let us put a lower bound on the number of sign 2263 // bits. 2264 if (match(U->getOperand(1), m_APInt(Denominator))) { 2265 2266 // Ignore non-positive denominator. 2267 if (!Denominator->isStrictlyPositive()) 2268 break; 2269 2270 // Calculate the incoming numerator bits. SRem by a positive constant 2271 // can't lower the number of sign bits. 2272 unsigned NumrBits = 2273 ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2274 2275 // Calculate the leading sign bit constraints by examining the 2276 // denominator. Given that the denominator is positive, there are two 2277 // cases: 2278 // 2279 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2280 // (1 << ceilLogBase2(C)). 2281 // 2282 // 2. the numerator is negative. Then the result range is (-C,0] and 2283 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2284 // 2285 // Thus a lower bound on the number of sign bits is `TyBits - 2286 // ceilLogBase2(C)`. 2287 2288 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2289 return std::max(NumrBits, ResBits); 2290 } 2291 break; 2292 } 2293 2294 case Instruction::AShr: { 2295 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2296 // ashr X, C -> adds C sign bits. Vectors too. 2297 const APInt *ShAmt; 2298 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2299 if (ShAmt->uge(TyBits)) 2300 break; // Bad shift. 2301 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2302 Tmp += ShAmtLimited; 2303 if (Tmp > TyBits) Tmp = TyBits; 2304 } 2305 return Tmp; 2306 } 2307 case Instruction::Shl: { 2308 const APInt *ShAmt; 2309 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2310 // shl destroys sign bits. 2311 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2312 if (ShAmt->uge(TyBits) || // Bad shift. 2313 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2314 Tmp2 = ShAmt->getZExtValue(); 2315 return Tmp - Tmp2; 2316 } 2317 break; 2318 } 2319 case Instruction::And: 2320 case Instruction::Or: 2321 case Instruction::Xor: // NOT is handled here. 2322 // Logical binary ops preserve the number of sign bits at the worst. 2323 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2324 if (Tmp != 1) { 2325 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2326 FirstAnswer = std::min(Tmp, Tmp2); 2327 // We computed what we know about the sign bits as our first 2328 // answer. Now proceed to the generic code that uses 2329 // computeKnownBits, and pick whichever answer is better. 2330 } 2331 break; 2332 2333 case Instruction::Select: 2334 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2335 if (Tmp == 1) return 1; // Early out. 2336 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2337 return std::min(Tmp, Tmp2); 2338 2339 case Instruction::Add: 2340 // Add can have at most one carry bit. Thus we know that the output 2341 // is, at worst, one more bit than the inputs. 2342 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2343 if (Tmp == 1) return 1; // Early out. 2344 2345 // Special case decrementing a value (ADD X, -1): 2346 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2347 if (CRHS->isAllOnesValue()) { 2348 KnownBits Known(TyBits); 2349 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2350 2351 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2352 // sign bits set. 2353 if ((Known.Zero | 1).isAllOnesValue()) 2354 return TyBits; 2355 2356 // If we are subtracting one from a positive number, there is no carry 2357 // out of the result. 2358 if (Known.isNonNegative()) 2359 return Tmp; 2360 } 2361 2362 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2363 if (Tmp2 == 1) return 1; 2364 return std::min(Tmp, Tmp2)-1; 2365 2366 case Instruction::Sub: 2367 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2368 if (Tmp2 == 1) return 1; 2369 2370 // Handle NEG. 2371 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2372 if (CLHS->isNullValue()) { 2373 KnownBits Known(TyBits); 2374 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2375 // If the input is known to be 0 or 1, the output is 0/-1, which is all 2376 // sign bits set. 2377 if ((Known.Zero | 1).isAllOnesValue()) 2378 return TyBits; 2379 2380 // If the input is known to be positive (the sign bit is known clear), 2381 // the output of the NEG has the same number of sign bits as the input. 2382 if (Known.isNonNegative()) 2383 return Tmp2; 2384 2385 // Otherwise, we treat this like a SUB. 2386 } 2387 2388 // Sub can have at most one carry bit. Thus we know that the output 2389 // is, at worst, one more bit than the inputs. 2390 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2391 if (Tmp == 1) return 1; // Early out. 2392 return std::min(Tmp, Tmp2)-1; 2393 2394 case Instruction::Mul: { 2395 // The output of the Mul can be at most twice the valid bits in the inputs. 2396 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2397 if (SignBitsOp0 == 1) return 1; // Early out. 2398 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2399 if (SignBitsOp1 == 1) return 1; 2400 unsigned OutValidBits = 2401 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2402 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2403 } 2404 2405 case Instruction::PHI: { 2406 const PHINode *PN = cast<PHINode>(U); 2407 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2408 // Don't analyze large in-degree PHIs. 2409 if (NumIncomingValues > 4) break; 2410 // Unreachable blocks may have zero-operand PHI nodes. 2411 if (NumIncomingValues == 0) break; 2412 2413 // Take the minimum of all incoming values. This can't infinitely loop 2414 // because of our depth threshold. 2415 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2416 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2417 if (Tmp == 1) return Tmp; 2418 Tmp = std::min( 2419 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2420 } 2421 return Tmp; 2422 } 2423 2424 case Instruction::Trunc: 2425 // FIXME: it's tricky to do anything useful for this, but it is an important 2426 // case for targets like X86. 2427 break; 2428 2429 case Instruction::ExtractElement: 2430 // Look through extract element. At the moment we keep this simple and skip 2431 // tracking the specific element. But at least we might find information 2432 // valid for all elements of the vector (for example if vector is sign 2433 // extended, shifted, etc). 2434 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2435 } 2436 2437 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2438 // use this information. 2439 2440 // If we can examine all elements of a vector constant successfully, we're 2441 // done (we can't do any better than that). If not, keep trying. 2442 if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits)) 2443 return VecSignBits; 2444 2445 KnownBits Known(TyBits); 2446 computeKnownBits(V, Known, Depth, Q); 2447 2448 // If we know that the sign bit is either zero or one, determine the number of 2449 // identical bits in the top of the input value. 2450 return std::max(FirstAnswer, Known.countMinSignBits()); 2451 } 2452 2453 /// This function computes the integer multiple of Base that equals V. 2454 /// If successful, it returns true and returns the multiple in 2455 /// Multiple. If unsuccessful, it returns false. It looks 2456 /// through SExt instructions only if LookThroughSExt is true. 2457 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2458 bool LookThroughSExt, unsigned Depth) { 2459 const unsigned MaxDepth = 6; 2460 2461 assert(V && "No Value?"); 2462 assert(Depth <= MaxDepth && "Limit Search Depth"); 2463 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2464 2465 Type *T = V->getType(); 2466 2467 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2468 2469 if (Base == 0) 2470 return false; 2471 2472 if (Base == 1) { 2473 Multiple = V; 2474 return true; 2475 } 2476 2477 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2478 Constant *BaseVal = ConstantInt::get(T, Base); 2479 if (CO && CO == BaseVal) { 2480 // Multiple is 1. 2481 Multiple = ConstantInt::get(T, 1); 2482 return true; 2483 } 2484 2485 if (CI && CI->getZExtValue() % Base == 0) { 2486 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2487 return true; 2488 } 2489 2490 if (Depth == MaxDepth) return false; // Limit search depth. 2491 2492 Operator *I = dyn_cast<Operator>(V); 2493 if (!I) return false; 2494 2495 switch (I->getOpcode()) { 2496 default: break; 2497 case Instruction::SExt: 2498 if (!LookThroughSExt) return false; 2499 // otherwise fall through to ZExt 2500 LLVM_FALLTHROUGH; 2501 case Instruction::ZExt: 2502 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2503 LookThroughSExt, Depth+1); 2504 case Instruction::Shl: 2505 case Instruction::Mul: { 2506 Value *Op0 = I->getOperand(0); 2507 Value *Op1 = I->getOperand(1); 2508 2509 if (I->getOpcode() == Instruction::Shl) { 2510 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2511 if (!Op1CI) return false; 2512 // Turn Op0 << Op1 into Op0 * 2^Op1 2513 APInt Op1Int = Op1CI->getValue(); 2514 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2515 APInt API(Op1Int.getBitWidth(), 0); 2516 API.setBit(BitToSet); 2517 Op1 = ConstantInt::get(V->getContext(), API); 2518 } 2519 2520 Value *Mul0 = nullptr; 2521 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2522 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2523 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2524 if (Op1C->getType()->getPrimitiveSizeInBits() < 2525 MulC->getType()->getPrimitiveSizeInBits()) 2526 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2527 if (Op1C->getType()->getPrimitiveSizeInBits() > 2528 MulC->getType()->getPrimitiveSizeInBits()) 2529 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2530 2531 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2532 Multiple = ConstantExpr::getMul(MulC, Op1C); 2533 return true; 2534 } 2535 2536 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2537 if (Mul0CI->getValue() == 1) { 2538 // V == Base * Op1, so return Op1 2539 Multiple = Op1; 2540 return true; 2541 } 2542 } 2543 2544 Value *Mul1 = nullptr; 2545 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2546 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2547 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2548 if (Op0C->getType()->getPrimitiveSizeInBits() < 2549 MulC->getType()->getPrimitiveSizeInBits()) 2550 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2551 if (Op0C->getType()->getPrimitiveSizeInBits() > 2552 MulC->getType()->getPrimitiveSizeInBits()) 2553 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2554 2555 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2556 Multiple = ConstantExpr::getMul(MulC, Op0C); 2557 return true; 2558 } 2559 2560 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2561 if (Mul1CI->getValue() == 1) { 2562 // V == Base * Op0, so return Op0 2563 Multiple = Op0; 2564 return true; 2565 } 2566 } 2567 } 2568 } 2569 2570 // We could not determine if V is a multiple of Base. 2571 return false; 2572 } 2573 2574 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 2575 const TargetLibraryInfo *TLI) { 2576 const Function *F = ICS.getCalledFunction(); 2577 if (!F) 2578 return Intrinsic::not_intrinsic; 2579 2580 if (F->isIntrinsic()) 2581 return F->getIntrinsicID(); 2582 2583 if (!TLI) 2584 return Intrinsic::not_intrinsic; 2585 2586 LibFunc Func; 2587 // We're going to make assumptions on the semantics of the functions, check 2588 // that the target knows that it's available in this environment and it does 2589 // not have local linkage. 2590 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 2591 return Intrinsic::not_intrinsic; 2592 2593 if (!ICS.onlyReadsMemory()) 2594 return Intrinsic::not_intrinsic; 2595 2596 // Otherwise check if we have a call to a function that can be turned into a 2597 // vector intrinsic. 2598 switch (Func) { 2599 default: 2600 break; 2601 case LibFunc_sin: 2602 case LibFunc_sinf: 2603 case LibFunc_sinl: 2604 return Intrinsic::sin; 2605 case LibFunc_cos: 2606 case LibFunc_cosf: 2607 case LibFunc_cosl: 2608 return Intrinsic::cos; 2609 case LibFunc_exp: 2610 case LibFunc_expf: 2611 case LibFunc_expl: 2612 return Intrinsic::exp; 2613 case LibFunc_exp2: 2614 case LibFunc_exp2f: 2615 case LibFunc_exp2l: 2616 return Intrinsic::exp2; 2617 case LibFunc_log: 2618 case LibFunc_logf: 2619 case LibFunc_logl: 2620 return Intrinsic::log; 2621 case LibFunc_log10: 2622 case LibFunc_log10f: 2623 case LibFunc_log10l: 2624 return Intrinsic::log10; 2625 case LibFunc_log2: 2626 case LibFunc_log2f: 2627 case LibFunc_log2l: 2628 return Intrinsic::log2; 2629 case LibFunc_fabs: 2630 case LibFunc_fabsf: 2631 case LibFunc_fabsl: 2632 return Intrinsic::fabs; 2633 case LibFunc_fmin: 2634 case LibFunc_fminf: 2635 case LibFunc_fminl: 2636 return Intrinsic::minnum; 2637 case LibFunc_fmax: 2638 case LibFunc_fmaxf: 2639 case LibFunc_fmaxl: 2640 return Intrinsic::maxnum; 2641 case LibFunc_copysign: 2642 case LibFunc_copysignf: 2643 case LibFunc_copysignl: 2644 return Intrinsic::copysign; 2645 case LibFunc_floor: 2646 case LibFunc_floorf: 2647 case LibFunc_floorl: 2648 return Intrinsic::floor; 2649 case LibFunc_ceil: 2650 case LibFunc_ceilf: 2651 case LibFunc_ceill: 2652 return Intrinsic::ceil; 2653 case LibFunc_trunc: 2654 case LibFunc_truncf: 2655 case LibFunc_truncl: 2656 return Intrinsic::trunc; 2657 case LibFunc_rint: 2658 case LibFunc_rintf: 2659 case LibFunc_rintl: 2660 return Intrinsic::rint; 2661 case LibFunc_nearbyint: 2662 case LibFunc_nearbyintf: 2663 case LibFunc_nearbyintl: 2664 return Intrinsic::nearbyint; 2665 case LibFunc_round: 2666 case LibFunc_roundf: 2667 case LibFunc_roundl: 2668 return Intrinsic::round; 2669 case LibFunc_pow: 2670 case LibFunc_powf: 2671 case LibFunc_powl: 2672 return Intrinsic::pow; 2673 case LibFunc_sqrt: 2674 case LibFunc_sqrtf: 2675 case LibFunc_sqrtl: 2676 return Intrinsic::sqrt; 2677 } 2678 2679 return Intrinsic::not_intrinsic; 2680 } 2681 2682 /// Return true if we can prove that the specified FP value is never equal to 2683 /// -0.0. 2684 /// 2685 /// NOTE: this function will need to be revisited when we support non-default 2686 /// rounding modes! 2687 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 2688 unsigned Depth) { 2689 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2690 return !CFP->getValueAPF().isNegZero(); 2691 2692 // Limit search depth. 2693 if (Depth == MaxDepth) 2694 return false; 2695 2696 auto *Op = dyn_cast<Operator>(V); 2697 if (!Op) 2698 return false; 2699 2700 // Check if the nsz fast-math flag is set. 2701 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 2702 if (FPO->hasNoSignedZeros()) 2703 return true; 2704 2705 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 2706 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 2707 return true; 2708 2709 // sitofp and uitofp turn into +0.0 for zero. 2710 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 2711 return true; 2712 2713 if (auto *Call = dyn_cast<CallInst>(Op)) { 2714 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 2715 switch (IID) { 2716 default: 2717 break; 2718 // sqrt(-0.0) = -0.0, no other negative results are possible. 2719 case Intrinsic::sqrt: 2720 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 2721 // fabs(x) != -0.0 2722 case Intrinsic::fabs: 2723 return true; 2724 } 2725 } 2726 2727 return false; 2728 } 2729 2730 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 2731 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 2732 /// bit despite comparing equal. 2733 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 2734 const TargetLibraryInfo *TLI, 2735 bool SignBitOnly, 2736 unsigned Depth) { 2737 // TODO: This function does not do the right thing when SignBitOnly is true 2738 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 2739 // which flips the sign bits of NaNs. See 2740 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2741 2742 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2743 return !CFP->getValueAPF().isNegative() || 2744 (!SignBitOnly && CFP->getValueAPF().isZero()); 2745 } 2746 2747 // Handle vector of constants. 2748 if (auto *CV = dyn_cast<Constant>(V)) { 2749 if (CV->getType()->isVectorTy()) { 2750 unsigned NumElts = CV->getType()->getVectorNumElements(); 2751 for (unsigned i = 0; i != NumElts; ++i) { 2752 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 2753 if (!CFP) 2754 return false; 2755 if (CFP->getValueAPF().isNegative() && 2756 (SignBitOnly || !CFP->getValueAPF().isZero())) 2757 return false; 2758 } 2759 2760 // All non-negative ConstantFPs. 2761 return true; 2762 } 2763 } 2764 2765 if (Depth == MaxDepth) 2766 return false; // Limit search depth. 2767 2768 const Operator *I = dyn_cast<Operator>(V); 2769 if (!I) 2770 return false; 2771 2772 switch (I->getOpcode()) { 2773 default: 2774 break; 2775 // Unsigned integers are always nonnegative. 2776 case Instruction::UIToFP: 2777 return true; 2778 case Instruction::FMul: 2779 // x*x is always non-negative or a NaN. 2780 if (I->getOperand(0) == I->getOperand(1) && 2781 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 2782 return true; 2783 2784 LLVM_FALLTHROUGH; 2785 case Instruction::FAdd: 2786 case Instruction::FDiv: 2787 case Instruction::FRem: 2788 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2789 Depth + 1) && 2790 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2791 Depth + 1); 2792 case Instruction::Select: 2793 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2794 Depth + 1) && 2795 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2796 Depth + 1); 2797 case Instruction::FPExt: 2798 case Instruction::FPTrunc: 2799 // Widening/narrowing never change sign. 2800 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2801 Depth + 1); 2802 case Instruction::ExtractElement: 2803 // Look through extract element. At the moment we keep this simple and skip 2804 // tracking the specific element. But at least we might find information 2805 // valid for all elements of the vector. 2806 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2807 Depth + 1); 2808 case Instruction::Call: 2809 const auto *CI = cast<CallInst>(I); 2810 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 2811 switch (IID) { 2812 default: 2813 break; 2814 case Intrinsic::maxnum: 2815 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2816 Depth + 1) || 2817 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2818 Depth + 1); 2819 case Intrinsic::minnum: 2820 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2821 Depth + 1) && 2822 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 2823 Depth + 1); 2824 case Intrinsic::exp: 2825 case Intrinsic::exp2: 2826 case Intrinsic::fabs: 2827 return true; 2828 2829 case Intrinsic::sqrt: 2830 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 2831 if (!SignBitOnly) 2832 return true; 2833 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 2834 CannotBeNegativeZero(CI->getOperand(0), TLI)); 2835 2836 case Intrinsic::powi: 2837 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 2838 // powi(x,n) is non-negative if n is even. 2839 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 2840 return true; 2841 } 2842 // TODO: This is not correct. Given that exp is an integer, here are the 2843 // ways that pow can return a negative value: 2844 // 2845 // pow(x, exp) --> negative if exp is odd and x is negative. 2846 // pow(-0, exp) --> -inf if exp is negative odd. 2847 // pow(-0, exp) --> -0 if exp is positive odd. 2848 // pow(-inf, exp) --> -0 if exp is negative odd. 2849 // pow(-inf, exp) --> -inf if exp is positive odd. 2850 // 2851 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 2852 // but we must return false if x == -0. Unfortunately we do not currently 2853 // have a way of expressing this constraint. See details in 2854 // https://llvm.org/bugs/show_bug.cgi?id=31702. 2855 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 2856 Depth + 1); 2857 2858 case Intrinsic::fma: 2859 case Intrinsic::fmuladd: 2860 // x*x+y is non-negative if y is non-negative. 2861 return I->getOperand(0) == I->getOperand(1) && 2862 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 2863 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 2864 Depth + 1); 2865 } 2866 break; 2867 } 2868 return false; 2869 } 2870 2871 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 2872 const TargetLibraryInfo *TLI) { 2873 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 2874 } 2875 2876 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 2877 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 2878 } 2879 2880 bool llvm::isKnownNeverNaN(const Value *V) { 2881 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 2882 2883 // If we're told that NaNs won't happen, assume they won't. 2884 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 2885 if (FPMathOp->hasNoNaNs()) 2886 return true; 2887 2888 // TODO: Handle instructions and potentially recurse like other 'isKnown' 2889 // functions. For example, the result of sitofp is never NaN. 2890 2891 // Handle scalar constants. 2892 if (auto *CFP = dyn_cast<ConstantFP>(V)) 2893 return !CFP->isNaN(); 2894 2895 // Bail out for constant expressions, but try to handle vector constants. 2896 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 2897 return false; 2898 2899 // For vectors, verify that each element is not NaN. 2900 unsigned NumElts = V->getType()->getVectorNumElements(); 2901 for (unsigned i = 0; i != NumElts; ++i) { 2902 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 2903 if (!Elt) 2904 return false; 2905 if (isa<UndefValue>(Elt)) 2906 continue; 2907 auto *CElt = dyn_cast<ConstantFP>(Elt); 2908 if (!CElt || CElt->isNaN()) 2909 return false; 2910 } 2911 // All elements were confirmed not-NaN or undefined. 2912 return true; 2913 } 2914 2915 /// If the specified value can be set by repeating the same byte in memory, 2916 /// return the i8 value that it is represented with. This is 2917 /// true for all i8 values obviously, but is also true for i32 0, i32 -1, 2918 /// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated 2919 /// byte store (e.g. i16 0x1234), return null. 2920 Value *llvm::isBytewiseValue(Value *V) { 2921 // All byte-wide stores are splatable, even of arbitrary variables. 2922 if (V->getType()->isIntegerTy(8)) return V; 2923 2924 // Handle 'null' ConstantArrayZero etc. 2925 if (Constant *C = dyn_cast<Constant>(V)) 2926 if (C->isNullValue()) 2927 return Constant::getNullValue(Type::getInt8Ty(V->getContext())); 2928 2929 // Constant float and double values can be handled as integer values if the 2930 // corresponding integer value is "byteable". An important case is 0.0. 2931 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 2932 if (CFP->getType()->isFloatTy()) 2933 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext())); 2934 if (CFP->getType()->isDoubleTy()) 2935 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext())); 2936 // Don't handle long double formats, which have strange constraints. 2937 } 2938 2939 // We can handle constant integers that are multiple of 8 bits. 2940 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 2941 if (CI->getBitWidth() % 8 == 0) { 2942 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 2943 2944 if (!CI->getValue().isSplat(8)) 2945 return nullptr; 2946 return ConstantInt::get(V->getContext(), CI->getValue().trunc(8)); 2947 } 2948 } 2949 2950 // A ConstantDataArray/Vector is splatable if all its members are equal and 2951 // also splatable. 2952 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(V)) { 2953 Value *Elt = CA->getElementAsConstant(0); 2954 Value *Val = isBytewiseValue(Elt); 2955 if (!Val) 2956 return nullptr; 2957 2958 for (unsigned I = 1, E = CA->getNumElements(); I != E; ++I) 2959 if (CA->getElementAsConstant(I) != Elt) 2960 return nullptr; 2961 2962 return Val; 2963 } 2964 2965 // Conceptually, we could handle things like: 2966 // %a = zext i8 %X to i16 2967 // %b = shl i16 %a, 8 2968 // %c = or i16 %a, %b 2969 // but until there is an example that actually needs this, it doesn't seem 2970 // worth worrying about. 2971 return nullptr; 2972 } 2973 2974 // This is the recursive version of BuildSubAggregate. It takes a few different 2975 // arguments. Idxs is the index within the nested struct From that we are 2976 // looking at now (which is of type IndexedType). IdxSkip is the number of 2977 // indices from Idxs that should be left out when inserting into the resulting 2978 // struct. To is the result struct built so far, new insertvalue instructions 2979 // build on that. 2980 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 2981 SmallVectorImpl<unsigned> &Idxs, 2982 unsigned IdxSkip, 2983 Instruction *InsertBefore) { 2984 StructType *STy = dyn_cast<StructType>(IndexedType); 2985 if (STy) { 2986 // Save the original To argument so we can modify it 2987 Value *OrigTo = To; 2988 // General case, the type indexed by Idxs is a struct 2989 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2990 // Process each struct element recursively 2991 Idxs.push_back(i); 2992 Value *PrevTo = To; 2993 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 2994 InsertBefore); 2995 Idxs.pop_back(); 2996 if (!To) { 2997 // Couldn't find any inserted value for this index? Cleanup 2998 while (PrevTo != OrigTo) { 2999 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3000 PrevTo = Del->getAggregateOperand(); 3001 Del->eraseFromParent(); 3002 } 3003 // Stop processing elements 3004 break; 3005 } 3006 } 3007 // If we successfully found a value for each of our subaggregates 3008 if (To) 3009 return To; 3010 } 3011 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3012 // the struct's elements had a value that was inserted directly. In the latter 3013 // case, perhaps we can't determine each of the subelements individually, but 3014 // we might be able to find the complete struct somewhere. 3015 3016 // Find the value that is at that particular spot 3017 Value *V = FindInsertedValue(From, Idxs); 3018 3019 if (!V) 3020 return nullptr; 3021 3022 // Insert the value in the new (sub) aggregate 3023 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3024 "tmp", InsertBefore); 3025 } 3026 3027 // This helper takes a nested struct and extracts a part of it (which is again a 3028 // struct) into a new value. For example, given the struct: 3029 // { a, { b, { c, d }, e } } 3030 // and the indices "1, 1" this returns 3031 // { c, d }. 3032 // 3033 // It does this by inserting an insertvalue for each element in the resulting 3034 // struct, as opposed to just inserting a single struct. This will only work if 3035 // each of the elements of the substruct are known (ie, inserted into From by an 3036 // insertvalue instruction somewhere). 3037 // 3038 // All inserted insertvalue instructions are inserted before InsertBefore 3039 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3040 Instruction *InsertBefore) { 3041 assert(InsertBefore && "Must have someplace to insert!"); 3042 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3043 idx_range); 3044 Value *To = UndefValue::get(IndexedType); 3045 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3046 unsigned IdxSkip = Idxs.size(); 3047 3048 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3049 } 3050 3051 /// Given an aggregate and a sequence of indices, see if the scalar value 3052 /// indexed is already around as a register, for example if it was inserted 3053 /// directly into the aggregate. 3054 /// 3055 /// If InsertBefore is not null, this function will duplicate (modified) 3056 /// insertvalues when a part of a nested struct is extracted. 3057 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3058 Instruction *InsertBefore) { 3059 // Nothing to index? Just return V then (this is useful at the end of our 3060 // recursion). 3061 if (idx_range.empty()) 3062 return V; 3063 // We have indices, so V should have an indexable type. 3064 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3065 "Not looking at a struct or array?"); 3066 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3067 "Invalid indices for type?"); 3068 3069 if (Constant *C = dyn_cast<Constant>(V)) { 3070 C = C->getAggregateElement(idx_range[0]); 3071 if (!C) return nullptr; 3072 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3073 } 3074 3075 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3076 // Loop the indices for the insertvalue instruction in parallel with the 3077 // requested indices 3078 const unsigned *req_idx = idx_range.begin(); 3079 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3080 i != e; ++i, ++req_idx) { 3081 if (req_idx == idx_range.end()) { 3082 // We can't handle this without inserting insertvalues 3083 if (!InsertBefore) 3084 return nullptr; 3085 3086 // The requested index identifies a part of a nested aggregate. Handle 3087 // this specially. For example, 3088 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3089 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3090 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3091 // This can be changed into 3092 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3093 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3094 // which allows the unused 0,0 element from the nested struct to be 3095 // removed. 3096 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3097 InsertBefore); 3098 } 3099 3100 // This insert value inserts something else than what we are looking for. 3101 // See if the (aggregate) value inserted into has the value we are 3102 // looking for, then. 3103 if (*req_idx != *i) 3104 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3105 InsertBefore); 3106 } 3107 // If we end up here, the indices of the insertvalue match with those 3108 // requested (though possibly only partially). Now we recursively look at 3109 // the inserted value, passing any remaining indices. 3110 return FindInsertedValue(I->getInsertedValueOperand(), 3111 makeArrayRef(req_idx, idx_range.end()), 3112 InsertBefore); 3113 } 3114 3115 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3116 // If we're extracting a value from an aggregate that was extracted from 3117 // something else, we can extract from that something else directly instead. 3118 // However, we will need to chain I's indices with the requested indices. 3119 3120 // Calculate the number of indices required 3121 unsigned size = I->getNumIndices() + idx_range.size(); 3122 // Allocate some space to put the new indices in 3123 SmallVector<unsigned, 5> Idxs; 3124 Idxs.reserve(size); 3125 // Add indices from the extract value instruction 3126 Idxs.append(I->idx_begin(), I->idx_end()); 3127 3128 // Add requested indices 3129 Idxs.append(idx_range.begin(), idx_range.end()); 3130 3131 assert(Idxs.size() == size 3132 && "Number of indices added not correct?"); 3133 3134 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3135 } 3136 // Otherwise, we don't know (such as, extracting from a function return value 3137 // or load instruction) 3138 return nullptr; 3139 } 3140 3141 /// Analyze the specified pointer to see if it can be expressed as a base 3142 /// pointer plus a constant offset. Return the base and offset to the caller. 3143 Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset, 3144 const DataLayout &DL) { 3145 unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType()); 3146 APInt ByteOffset(BitWidth, 0); 3147 3148 // We walk up the defs but use a visited set to handle unreachable code. In 3149 // that case, we stop after accumulating the cycle once (not that it 3150 // matters). 3151 SmallPtrSet<Value *, 16> Visited; 3152 while (Visited.insert(Ptr).second) { 3153 if (Ptr->getType()->isVectorTy()) 3154 break; 3155 3156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { 3157 // If one of the values we have visited is an addrspacecast, then 3158 // the pointer type of this GEP may be different from the type 3159 // of the Ptr parameter which was passed to this function. This 3160 // means when we construct GEPOffset, we need to use the size 3161 // of GEP's pointer type rather than the size of the original 3162 // pointer type. 3163 APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0); 3164 if (!GEP->accumulateConstantOffset(DL, GEPOffset)) 3165 break; 3166 3167 ByteOffset += GEPOffset.getSExtValue(); 3168 3169 Ptr = GEP->getPointerOperand(); 3170 } else if (Operator::getOpcode(Ptr) == Instruction::BitCast || 3171 Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) { 3172 Ptr = cast<Operator>(Ptr)->getOperand(0); 3173 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { 3174 if (GA->isInterposable()) 3175 break; 3176 Ptr = GA->getAliasee(); 3177 } else { 3178 break; 3179 } 3180 } 3181 Offset = ByteOffset.getSExtValue(); 3182 return Ptr; 3183 } 3184 3185 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3186 unsigned CharSize) { 3187 // Make sure the GEP has exactly three arguments. 3188 if (GEP->getNumOperands() != 3) 3189 return false; 3190 3191 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3192 // CharSize. 3193 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3194 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3195 return false; 3196 3197 // Check to make sure that the first operand of the GEP is an integer and 3198 // has value 0 so that we are sure we're indexing into the initializer. 3199 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3200 if (!FirstIdx || !FirstIdx->isZero()) 3201 return false; 3202 3203 return true; 3204 } 3205 3206 bool llvm::getConstantDataArrayInfo(const Value *V, 3207 ConstantDataArraySlice &Slice, 3208 unsigned ElementSize, uint64_t Offset) { 3209 assert(V); 3210 3211 // Look through bitcast instructions and geps. 3212 V = V->stripPointerCasts(); 3213 3214 // If the value is a GEP instruction or constant expression, treat it as an 3215 // offset. 3216 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3217 // The GEP operator should be based on a pointer to string constant, and is 3218 // indexing into the string constant. 3219 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3220 return false; 3221 3222 // If the second index isn't a ConstantInt, then this is a variable index 3223 // into the array. If this occurs, we can't say anything meaningful about 3224 // the string. 3225 uint64_t StartIdx = 0; 3226 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3227 StartIdx = CI->getZExtValue(); 3228 else 3229 return false; 3230 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3231 StartIdx + Offset); 3232 } 3233 3234 // The GEP instruction, constant or instruction, must reference a global 3235 // variable that is a constant and is initialized. The referenced constant 3236 // initializer is the array that we'll use for optimization. 3237 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3238 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3239 return false; 3240 3241 const ConstantDataArray *Array; 3242 ArrayType *ArrayTy; 3243 if (GV->getInitializer()->isNullValue()) { 3244 Type *GVTy = GV->getValueType(); 3245 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3246 // A zeroinitializer for the array; there is no ConstantDataArray. 3247 Array = nullptr; 3248 } else { 3249 const DataLayout &DL = GV->getParent()->getDataLayout(); 3250 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3251 uint64_t Length = SizeInBytes / (ElementSize / 8); 3252 if (Length <= Offset) 3253 return false; 3254 3255 Slice.Array = nullptr; 3256 Slice.Offset = 0; 3257 Slice.Length = Length - Offset; 3258 return true; 3259 } 3260 } else { 3261 // This must be a ConstantDataArray. 3262 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3263 if (!Array) 3264 return false; 3265 ArrayTy = Array->getType(); 3266 } 3267 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3268 return false; 3269 3270 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3271 if (Offset > NumElts) 3272 return false; 3273 3274 Slice.Array = Array; 3275 Slice.Offset = Offset; 3276 Slice.Length = NumElts - Offset; 3277 return true; 3278 } 3279 3280 /// This function computes the length of a null-terminated C string pointed to 3281 /// by V. If successful, it returns true and returns the string in Str. 3282 /// If unsuccessful, it returns false. 3283 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3284 uint64_t Offset, bool TrimAtNul) { 3285 ConstantDataArraySlice Slice; 3286 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3287 return false; 3288 3289 if (Slice.Array == nullptr) { 3290 if (TrimAtNul) { 3291 Str = StringRef(); 3292 return true; 3293 } 3294 if (Slice.Length == 1) { 3295 Str = StringRef("", 1); 3296 return true; 3297 } 3298 // We cannot instantiate a StringRef as we do not have an appropriate string 3299 // of 0s at hand. 3300 return false; 3301 } 3302 3303 // Start out with the entire array in the StringRef. 3304 Str = Slice.Array->getAsString(); 3305 // Skip over 'offset' bytes. 3306 Str = Str.substr(Slice.Offset); 3307 3308 if (TrimAtNul) { 3309 // Trim off the \0 and anything after it. If the array is not nul 3310 // terminated, we just return the whole end of string. The client may know 3311 // some other way that the string is length-bound. 3312 Str = Str.substr(0, Str.find('\0')); 3313 } 3314 return true; 3315 } 3316 3317 // These next two are very similar to the above, but also look through PHI 3318 // nodes. 3319 // TODO: See if we can integrate these two together. 3320 3321 /// If we can compute the length of the string pointed to by 3322 /// the specified pointer, return 'len+1'. If we can't, return 0. 3323 static uint64_t GetStringLengthH(const Value *V, 3324 SmallPtrSetImpl<const PHINode*> &PHIs, 3325 unsigned CharSize) { 3326 // Look through noop bitcast instructions. 3327 V = V->stripPointerCasts(); 3328 3329 // If this is a PHI node, there are two cases: either we have already seen it 3330 // or we haven't. 3331 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3332 if (!PHIs.insert(PN).second) 3333 return ~0ULL; // already in the set. 3334 3335 // If it was new, see if all the input strings are the same length. 3336 uint64_t LenSoFar = ~0ULL; 3337 for (Value *IncValue : PN->incoming_values()) { 3338 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3339 if (Len == 0) return 0; // Unknown length -> unknown. 3340 3341 if (Len == ~0ULL) continue; 3342 3343 if (Len != LenSoFar && LenSoFar != ~0ULL) 3344 return 0; // Disagree -> unknown. 3345 LenSoFar = Len; 3346 } 3347 3348 // Success, all agree. 3349 return LenSoFar; 3350 } 3351 3352 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3353 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3354 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3355 if (Len1 == 0) return 0; 3356 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3357 if (Len2 == 0) return 0; 3358 if (Len1 == ~0ULL) return Len2; 3359 if (Len2 == ~0ULL) return Len1; 3360 if (Len1 != Len2) return 0; 3361 return Len1; 3362 } 3363 3364 // Otherwise, see if we can read the string. 3365 ConstantDataArraySlice Slice; 3366 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3367 return 0; 3368 3369 if (Slice.Array == nullptr) 3370 return 1; 3371 3372 // Search for nul characters 3373 unsigned NullIndex = 0; 3374 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3375 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3376 break; 3377 } 3378 3379 return NullIndex + 1; 3380 } 3381 3382 /// If we can compute the length of the string pointed to by 3383 /// the specified pointer, return 'len+1'. If we can't, return 0. 3384 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3385 if (!V->getType()->isPointerTy()) 3386 return 0; 3387 3388 SmallPtrSet<const PHINode*, 32> PHIs; 3389 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3390 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3391 // an empty string as a length. 3392 return Len == ~0ULL ? 1 : Len; 3393 } 3394 3395 const Value *llvm::getArgumentAliasingToReturnedPointer(ImmutableCallSite CS) { 3396 assert(CS && 3397 "getArgumentAliasingToReturnedPointer only works on nonnull CallSite"); 3398 if (const Value *RV = CS.getReturnedArgOperand()) 3399 return RV; 3400 // This can be used only as a aliasing property. 3401 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(CS)) 3402 return CS.getArgOperand(0); 3403 return nullptr; 3404 } 3405 3406 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3407 ImmutableCallSite CS) { 3408 return CS.getIntrinsicID() == Intrinsic::launder_invariant_group; 3409 } 3410 3411 /// \p PN defines a loop-variant pointer to an object. Check if the 3412 /// previous iteration of the loop was referring to the same object as \p PN. 3413 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3414 const LoopInfo *LI) { 3415 // Find the loop-defined value. 3416 Loop *L = LI->getLoopFor(PN->getParent()); 3417 if (PN->getNumIncomingValues() != 2) 3418 return true; 3419 3420 // Find the value from previous iteration. 3421 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3422 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3423 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3424 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3425 return true; 3426 3427 // If a new pointer is loaded in the loop, the pointer references a different 3428 // object in every iteration. E.g.: 3429 // for (i) 3430 // int *p = a[i]; 3431 // ... 3432 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 3433 if (!L->isLoopInvariant(Load->getPointerOperand())) 3434 return false; 3435 return true; 3436 } 3437 3438 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 3439 unsigned MaxLookup) { 3440 if (!V->getType()->isPointerTy()) 3441 return V; 3442 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 3443 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3444 V = GEP->getPointerOperand(); 3445 } else if (Operator::getOpcode(V) == Instruction::BitCast || 3446 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 3447 V = cast<Operator>(V)->getOperand(0); 3448 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 3449 if (GA->isInterposable()) 3450 return V; 3451 V = GA->getAliasee(); 3452 } else if (isa<AllocaInst>(V)) { 3453 // An alloca can't be further simplified. 3454 return V; 3455 } else { 3456 if (auto CS = CallSite(V)) { 3457 // Note: getArgumentAliasingToReturnedPointer keeps it in sync with 3458 // CaptureTracking, which is needed for correctness. This is because 3459 // some intrinsics like launder.invariant.group returns pointers that 3460 // are aliasing it's argument, which is known to CaptureTracking. 3461 // If AliasAnalysis does not use the same information, it could assume 3462 // that pointer returned from launder does not alias it's argument 3463 // because launder could not return it if the pointer was not captured. 3464 if (auto *RP = getArgumentAliasingToReturnedPointer(CS)) { 3465 V = RP; 3466 continue; 3467 } 3468 } 3469 3470 // See if InstructionSimplify knows any relevant tricks. 3471 if (Instruction *I = dyn_cast<Instruction>(V)) 3472 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 3473 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 3474 V = Simplified; 3475 continue; 3476 } 3477 3478 return V; 3479 } 3480 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 3481 } 3482 return V; 3483 } 3484 3485 void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects, 3486 const DataLayout &DL, LoopInfo *LI, 3487 unsigned MaxLookup) { 3488 SmallPtrSet<Value *, 4> Visited; 3489 SmallVector<Value *, 4> Worklist; 3490 Worklist.push_back(V); 3491 do { 3492 Value *P = Worklist.pop_back_val(); 3493 P = GetUnderlyingObject(P, DL, MaxLookup); 3494 3495 if (!Visited.insert(P).second) 3496 continue; 3497 3498 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 3499 Worklist.push_back(SI->getTrueValue()); 3500 Worklist.push_back(SI->getFalseValue()); 3501 continue; 3502 } 3503 3504 if (PHINode *PN = dyn_cast<PHINode>(P)) { 3505 // If this PHI changes the underlying object in every iteration of the 3506 // loop, don't look through it. Consider: 3507 // int **A; 3508 // for (i) { 3509 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 3510 // Curr = A[i]; 3511 // *Prev, *Curr; 3512 // 3513 // Prev is tracking Curr one iteration behind so they refer to different 3514 // underlying objects. 3515 if (!LI || !LI->isLoopHeader(PN->getParent()) || 3516 isSameUnderlyingObjectInLoop(PN, LI)) 3517 for (Value *IncValue : PN->incoming_values()) 3518 Worklist.push_back(IncValue); 3519 continue; 3520 } 3521 3522 Objects.push_back(P); 3523 } while (!Worklist.empty()); 3524 } 3525 3526 /// This is the function that does the work of looking through basic 3527 /// ptrtoint+arithmetic+inttoptr sequences. 3528 static const Value *getUnderlyingObjectFromInt(const Value *V) { 3529 do { 3530 if (const Operator *U = dyn_cast<Operator>(V)) { 3531 // If we find a ptrtoint, we can transfer control back to the 3532 // regular getUnderlyingObjectFromInt. 3533 if (U->getOpcode() == Instruction::PtrToInt) 3534 return U->getOperand(0); 3535 // If we find an add of a constant, a multiplied value, or a phi, it's 3536 // likely that the other operand will lead us to the base 3537 // object. We don't have to worry about the case where the 3538 // object address is somehow being computed by the multiply, 3539 // because our callers only care when the result is an 3540 // identifiable object. 3541 if (U->getOpcode() != Instruction::Add || 3542 (!isa<ConstantInt>(U->getOperand(1)) && 3543 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 3544 !isa<PHINode>(U->getOperand(1)))) 3545 return V; 3546 V = U->getOperand(0); 3547 } else { 3548 return V; 3549 } 3550 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 3551 } while (true); 3552 } 3553 3554 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 3555 /// ptrtoint+arithmetic+inttoptr sequences. 3556 /// It returns false if unidentified object is found in GetUnderlyingObjects. 3557 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 3558 SmallVectorImpl<Value *> &Objects, 3559 const DataLayout &DL) { 3560 SmallPtrSet<const Value *, 16> Visited; 3561 SmallVector<const Value *, 4> Working(1, V); 3562 do { 3563 V = Working.pop_back_val(); 3564 3565 SmallVector<Value *, 4> Objs; 3566 GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL); 3567 3568 for (Value *V : Objs) { 3569 if (!Visited.insert(V).second) 3570 continue; 3571 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 3572 const Value *O = 3573 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 3574 if (O->getType()->isPointerTy()) { 3575 Working.push_back(O); 3576 continue; 3577 } 3578 } 3579 // If GetUnderlyingObjects fails to find an identifiable object, 3580 // getUnderlyingObjectsForCodeGen also fails for safety. 3581 if (!isIdentifiedObject(V)) { 3582 Objects.clear(); 3583 return false; 3584 } 3585 Objects.push_back(const_cast<Value *>(V)); 3586 } 3587 } while (!Working.empty()); 3588 return true; 3589 } 3590 3591 /// Return true if the only users of this pointer are lifetime markers. 3592 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 3593 for (const User *U : V->users()) { 3594 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 3595 if (!II) return false; 3596 3597 if (II->getIntrinsicID() != Intrinsic::lifetime_start && 3598 II->getIntrinsicID() != Intrinsic::lifetime_end) 3599 return false; 3600 } 3601 return true; 3602 } 3603 3604 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 3605 const Instruction *CtxI, 3606 const DominatorTree *DT) { 3607 const Operator *Inst = dyn_cast<Operator>(V); 3608 if (!Inst) 3609 return false; 3610 3611 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 3612 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 3613 if (C->canTrap()) 3614 return false; 3615 3616 switch (Inst->getOpcode()) { 3617 default: 3618 return true; 3619 case Instruction::UDiv: 3620 case Instruction::URem: { 3621 // x / y is undefined if y == 0. 3622 const APInt *V; 3623 if (match(Inst->getOperand(1), m_APInt(V))) 3624 return *V != 0; 3625 return false; 3626 } 3627 case Instruction::SDiv: 3628 case Instruction::SRem: { 3629 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 3630 const APInt *Numerator, *Denominator; 3631 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 3632 return false; 3633 // We cannot hoist this division if the denominator is 0. 3634 if (*Denominator == 0) 3635 return false; 3636 // It's safe to hoist if the denominator is not 0 or -1. 3637 if (*Denominator != -1) 3638 return true; 3639 // At this point we know that the denominator is -1. It is safe to hoist as 3640 // long we know that the numerator is not INT_MIN. 3641 if (match(Inst->getOperand(0), m_APInt(Numerator))) 3642 return !Numerator->isMinSignedValue(); 3643 // The numerator *might* be MinSignedValue. 3644 return false; 3645 } 3646 case Instruction::Load: { 3647 const LoadInst *LI = cast<LoadInst>(Inst); 3648 if (!LI->isUnordered() || 3649 // Speculative load may create a race that did not exist in the source. 3650 LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) || 3651 // Speculative load may load data from dirty regions. 3652 LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) || 3653 LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress)) 3654 return false; 3655 const DataLayout &DL = LI->getModule()->getDataLayout(); 3656 return isDereferenceableAndAlignedPointer(LI->getPointerOperand(), 3657 LI->getAlignment(), DL, CtxI, DT); 3658 } 3659 case Instruction::Call: { 3660 auto *CI = cast<const CallInst>(Inst); 3661 const Function *Callee = CI->getCalledFunction(); 3662 3663 // The called function could have undefined behavior or side-effects, even 3664 // if marked readnone nounwind. 3665 return Callee && Callee->isSpeculatable(); 3666 } 3667 case Instruction::VAArg: 3668 case Instruction::Alloca: 3669 case Instruction::Invoke: 3670 case Instruction::PHI: 3671 case Instruction::Store: 3672 case Instruction::Ret: 3673 case Instruction::Br: 3674 case Instruction::IndirectBr: 3675 case Instruction::Switch: 3676 case Instruction::Unreachable: 3677 case Instruction::Fence: 3678 case Instruction::AtomicRMW: 3679 case Instruction::AtomicCmpXchg: 3680 case Instruction::LandingPad: 3681 case Instruction::Resume: 3682 case Instruction::CatchSwitch: 3683 case Instruction::CatchPad: 3684 case Instruction::CatchRet: 3685 case Instruction::CleanupPad: 3686 case Instruction::CleanupRet: 3687 return false; // Misc instructions which have effects 3688 } 3689 } 3690 3691 bool llvm::mayBeMemoryDependent(const Instruction &I) { 3692 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 3693 } 3694 3695 OverflowResult llvm::computeOverflowForUnsignedMul(const Value *LHS, 3696 const Value *RHS, 3697 const DataLayout &DL, 3698 AssumptionCache *AC, 3699 const Instruction *CxtI, 3700 const DominatorTree *DT) { 3701 // Multiplying n * m significant bits yields a result of n + m significant 3702 // bits. If the total number of significant bits does not exceed the 3703 // result bit width (minus 1), there is no overflow. 3704 // This means if we have enough leading zero bits in the operands 3705 // we can guarantee that the result does not overflow. 3706 // Ref: "Hacker's Delight" by Henry Warren 3707 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3708 KnownBits LHSKnown(BitWidth); 3709 KnownBits RHSKnown(BitWidth); 3710 computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3711 computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT); 3712 // Note that underestimating the number of zero bits gives a more 3713 // conservative answer. 3714 unsigned ZeroBits = LHSKnown.countMinLeadingZeros() + 3715 RHSKnown.countMinLeadingZeros(); 3716 // First handle the easy case: if we have enough zero bits there's 3717 // definitely no overflow. 3718 if (ZeroBits >= BitWidth) 3719 return OverflowResult::NeverOverflows; 3720 3721 // Get the largest possible values for each operand. 3722 APInt LHSMax = ~LHSKnown.Zero; 3723 APInt RHSMax = ~RHSKnown.Zero; 3724 3725 // We know the multiply operation doesn't overflow if the maximum values for 3726 // each operand will not overflow after we multiply them together. 3727 bool MaxOverflow; 3728 (void)LHSMax.umul_ov(RHSMax, MaxOverflow); 3729 if (!MaxOverflow) 3730 return OverflowResult::NeverOverflows; 3731 3732 // We know it always overflows if multiplying the smallest possible values for 3733 // the operands also results in overflow. 3734 bool MinOverflow; 3735 (void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow); 3736 if (MinOverflow) 3737 return OverflowResult::AlwaysOverflows; 3738 3739 return OverflowResult::MayOverflow; 3740 } 3741 3742 OverflowResult llvm::computeOverflowForSignedMul(const Value *LHS, 3743 const Value *RHS, 3744 const DataLayout &DL, 3745 AssumptionCache *AC, 3746 const Instruction *CxtI, 3747 const DominatorTree *DT) { 3748 // Multiplying n * m significant bits yields a result of n + m significant 3749 // bits. If the total number of significant bits does not exceed the 3750 // result bit width (minus 1), there is no overflow. 3751 // This means if we have enough leading sign bits in the operands 3752 // we can guarantee that the result does not overflow. 3753 // Ref: "Hacker's Delight" by Henry Warren 3754 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 3755 3756 // Note that underestimating the number of sign bits gives a more 3757 // conservative answer. 3758 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 3759 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 3760 3761 // First handle the easy case: if we have enough sign bits there's 3762 // definitely no overflow. 3763 if (SignBits > BitWidth + 1) 3764 return OverflowResult::NeverOverflows; 3765 3766 // There are two ambiguous cases where there can be no overflow: 3767 // SignBits == BitWidth + 1 and 3768 // SignBits == BitWidth 3769 // The second case is difficult to check, therefore we only handle the 3770 // first case. 3771 if (SignBits == BitWidth + 1) { 3772 // It overflows only when both arguments are negative and the true 3773 // product is exactly the minimum negative number. 3774 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 3775 // For simplicity we just check if at least one side is not negative. 3776 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3777 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3778 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 3779 return OverflowResult::NeverOverflows; 3780 } 3781 return OverflowResult::MayOverflow; 3782 } 3783 3784 OverflowResult llvm::computeOverflowForUnsignedAdd(const Value *LHS, 3785 const Value *RHS, 3786 const DataLayout &DL, 3787 AssumptionCache *AC, 3788 const Instruction *CxtI, 3789 const DominatorTree *DT) { 3790 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3791 if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) { 3792 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3793 3794 if (LHSKnown.isNegative() && RHSKnown.isNegative()) { 3795 // The sign bit is set in both cases: this MUST overflow. 3796 // Create a simple add instruction, and insert it into the struct. 3797 return OverflowResult::AlwaysOverflows; 3798 } 3799 3800 if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) { 3801 // The sign bit is clear in both cases: this CANNOT overflow. 3802 // Create a simple add instruction, and insert it into the struct. 3803 return OverflowResult::NeverOverflows; 3804 } 3805 } 3806 3807 return OverflowResult::MayOverflow; 3808 } 3809 3810 /// Return true if we can prove that adding the two values of the 3811 /// knownbits will not overflow. 3812 /// Otherwise return false. 3813 static bool checkRippleForSignedAdd(const KnownBits &LHSKnown, 3814 const KnownBits &RHSKnown) { 3815 // Addition of two 2's complement numbers having opposite signs will never 3816 // overflow. 3817 if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) || 3818 (LHSKnown.isNonNegative() && RHSKnown.isNegative())) 3819 return true; 3820 3821 // If either of the values is known to be non-negative, adding them can only 3822 // overflow if the second is also non-negative, so we can assume that. 3823 // Two non-negative numbers will only overflow if there is a carry to the 3824 // sign bit, so we can check if even when the values are as big as possible 3825 // there is no overflow to the sign bit. 3826 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) { 3827 APInt MaxLHS = ~LHSKnown.Zero; 3828 MaxLHS.clearSignBit(); 3829 APInt MaxRHS = ~RHSKnown.Zero; 3830 MaxRHS.clearSignBit(); 3831 APInt Result = std::move(MaxLHS) + std::move(MaxRHS); 3832 return Result.isSignBitClear(); 3833 } 3834 3835 // If either of the values is known to be negative, adding them can only 3836 // overflow if the second is also negative, so we can assume that. 3837 // Two negative number will only overflow if there is no carry to the sign 3838 // bit, so we can check if even when the values are as small as possible 3839 // there is overflow to the sign bit. 3840 if (LHSKnown.isNegative() || RHSKnown.isNegative()) { 3841 APInt MinLHS = LHSKnown.One; 3842 MinLHS.clearSignBit(); 3843 APInt MinRHS = RHSKnown.One; 3844 MinRHS.clearSignBit(); 3845 APInt Result = std::move(MinLHS) + std::move(MinRHS); 3846 return Result.isSignBitSet(); 3847 } 3848 3849 // If we reached here it means that we know nothing about the sign bits. 3850 // In this case we can't know if there will be an overflow, since by 3851 // changing the sign bits any two values can be made to overflow. 3852 return false; 3853 } 3854 3855 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 3856 const Value *RHS, 3857 const AddOperator *Add, 3858 const DataLayout &DL, 3859 AssumptionCache *AC, 3860 const Instruction *CxtI, 3861 const DominatorTree *DT) { 3862 if (Add && Add->hasNoSignedWrap()) { 3863 return OverflowResult::NeverOverflows; 3864 } 3865 3866 // If LHS and RHS each have at least two sign bits, the addition will look 3867 // like 3868 // 3869 // XX..... + 3870 // YY..... 3871 // 3872 // If the carry into the most significant position is 0, X and Y can't both 3873 // be 1 and therefore the carry out of the addition is also 0. 3874 // 3875 // If the carry into the most significant position is 1, X and Y can't both 3876 // be 0 and therefore the carry out of the addition is also 1. 3877 // 3878 // Since the carry into the most significant position is always equal to 3879 // the carry out of the addition, there is no signed overflow. 3880 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3881 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3882 return OverflowResult::NeverOverflows; 3883 3884 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3885 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3886 3887 if (checkRippleForSignedAdd(LHSKnown, RHSKnown)) 3888 return OverflowResult::NeverOverflows; 3889 3890 // The remaining code needs Add to be available. Early returns if not so. 3891 if (!Add) 3892 return OverflowResult::MayOverflow; 3893 3894 // If the sign of Add is the same as at least one of the operands, this add 3895 // CANNOT overflow. This is particularly useful when the sum is 3896 // @llvm.assume'ed non-negative rather than proved so from analyzing its 3897 // operands. 3898 bool LHSOrRHSKnownNonNegative = 3899 (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()); 3900 bool LHSOrRHSKnownNegative = 3901 (LHSKnown.isNegative() || RHSKnown.isNegative()); 3902 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 3903 KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT); 3904 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 3905 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) { 3906 return OverflowResult::NeverOverflows; 3907 } 3908 } 3909 3910 return OverflowResult::MayOverflow; 3911 } 3912 3913 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 3914 const Value *RHS, 3915 const DataLayout &DL, 3916 AssumptionCache *AC, 3917 const Instruction *CxtI, 3918 const DominatorTree *DT) { 3919 // If the LHS is negative and the RHS is non-negative, no unsigned wrap. 3920 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT); 3921 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT); 3922 if (LHSKnown.isNegative() && RHSKnown.isNonNegative()) 3923 return OverflowResult::NeverOverflows; 3924 3925 return OverflowResult::MayOverflow; 3926 } 3927 3928 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 3929 const Value *RHS, 3930 const DataLayout &DL, 3931 AssumptionCache *AC, 3932 const Instruction *CxtI, 3933 const DominatorTree *DT) { 3934 // If LHS and RHS each have at least two sign bits, the subtraction 3935 // cannot overflow. 3936 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 3937 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 3938 return OverflowResult::NeverOverflows; 3939 3940 KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT); 3941 3942 KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT); 3943 3944 // Subtraction of two 2's complement numbers having identical signs will 3945 // never overflow. 3946 if ((LHSKnown.isNegative() && RHSKnown.isNegative()) || 3947 (LHSKnown.isNonNegative() && RHSKnown.isNonNegative())) 3948 return OverflowResult::NeverOverflows; 3949 3950 // TODO: implement logic similar to checkRippleForAdd 3951 return OverflowResult::MayOverflow; 3952 } 3953 3954 bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II, 3955 const DominatorTree &DT) { 3956 #ifndef NDEBUG 3957 auto IID = II->getIntrinsicID(); 3958 assert((IID == Intrinsic::sadd_with_overflow || 3959 IID == Intrinsic::uadd_with_overflow || 3960 IID == Intrinsic::ssub_with_overflow || 3961 IID == Intrinsic::usub_with_overflow || 3962 IID == Intrinsic::smul_with_overflow || 3963 IID == Intrinsic::umul_with_overflow) && 3964 "Not an overflow intrinsic!"); 3965 #endif 3966 3967 SmallVector<const BranchInst *, 2> GuardingBranches; 3968 SmallVector<const ExtractValueInst *, 2> Results; 3969 3970 for (const User *U : II->users()) { 3971 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 3972 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 3973 3974 if (EVI->getIndices()[0] == 0) 3975 Results.push_back(EVI); 3976 else { 3977 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 3978 3979 for (const auto *U : EVI->users()) 3980 if (const auto *B = dyn_cast<BranchInst>(U)) { 3981 assert(B->isConditional() && "How else is it using an i1?"); 3982 GuardingBranches.push_back(B); 3983 } 3984 } 3985 } else { 3986 // We are using the aggregate directly in a way we don't want to analyze 3987 // here (storing it to a global, say). 3988 return false; 3989 } 3990 } 3991 3992 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 3993 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 3994 if (!NoWrapEdge.isSingleEdge()) 3995 return false; 3996 3997 // Check if all users of the add are provably no-wrap. 3998 for (const auto *Result : Results) { 3999 // If the extractvalue itself is not executed on overflow, the we don't 4000 // need to check each use separately, since domination is transitive. 4001 if (DT.dominates(NoWrapEdge, Result->getParent())) 4002 continue; 4003 4004 for (auto &RU : Result->uses()) 4005 if (!DT.dominates(NoWrapEdge, RU)) 4006 return false; 4007 } 4008 4009 return true; 4010 }; 4011 4012 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4013 } 4014 4015 4016 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4017 const DataLayout &DL, 4018 AssumptionCache *AC, 4019 const Instruction *CxtI, 4020 const DominatorTree *DT) { 4021 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4022 Add, DL, AC, CxtI, DT); 4023 } 4024 4025 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4026 const Value *RHS, 4027 const DataLayout &DL, 4028 AssumptionCache *AC, 4029 const Instruction *CxtI, 4030 const DominatorTree *DT) { 4031 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4032 } 4033 4034 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4035 // A memory operation returns normally if it isn't volatile. A volatile 4036 // operation is allowed to trap. 4037 // 4038 // An atomic operation isn't guaranteed to return in a reasonable amount of 4039 // time because it's possible for another thread to interfere with it for an 4040 // arbitrary length of time, but programs aren't allowed to rely on that. 4041 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 4042 return !LI->isVolatile(); 4043 if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 4044 return !SI->isVolatile(); 4045 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 4046 return !CXI->isVolatile(); 4047 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 4048 return !RMWI->isVolatile(); 4049 if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I)) 4050 return !MII->isVolatile(); 4051 4052 // If there is no successor, then execution can't transfer to it. 4053 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4054 return !CRI->unwindsToCaller(); 4055 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4056 return !CatchSwitch->unwindsToCaller(); 4057 if (isa<ResumeInst>(I)) 4058 return false; 4059 if (isa<ReturnInst>(I)) 4060 return false; 4061 if (isa<UnreachableInst>(I)) 4062 return false; 4063 4064 // Calls can throw, or contain an infinite loop, or kill the process. 4065 if (auto CS = ImmutableCallSite(I)) { 4066 // Call sites that throw have implicit non-local control flow. 4067 if (!CS.doesNotThrow()) 4068 return false; 4069 4070 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4071 // etc. and thus not return. However, LLVM already assumes that 4072 // 4073 // - Thread exiting actions are modeled as writes to memory invisible to 4074 // the program. 4075 // 4076 // - Loops that don't have side effects (side effects are volatile/atomic 4077 // stores and IO) always terminate (see http://llvm.org/PR965). 4078 // Furthermore IO itself is also modeled as writes to memory invisible to 4079 // the program. 4080 // 4081 // We rely on those assumptions here, and use the memory effects of the call 4082 // target as a proxy for checking that it always returns. 4083 4084 // FIXME: This isn't aggressive enough; a call which only writes to a global 4085 // is guaranteed to return. 4086 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() || 4087 match(I, m_Intrinsic<Intrinsic::assume>()) || 4088 match(I, m_Intrinsic<Intrinsic::sideeffect>()); 4089 } 4090 4091 // Other instructions return normally. 4092 return true; 4093 } 4094 4095 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4096 // TODO: This is slightly consdervative for invoke instruction since exiting 4097 // via an exception *is* normal control for them. 4098 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4099 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4100 return false; 4101 return true; 4102 } 4103 4104 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4105 const Loop *L) { 4106 // The loop header is guaranteed to be executed for every iteration. 4107 // 4108 // FIXME: Relax this constraint to cover all basic blocks that are 4109 // guaranteed to be executed at every iteration. 4110 if (I->getParent() != L->getHeader()) return false; 4111 4112 for (const Instruction &LI : *L->getHeader()) { 4113 if (&LI == I) return true; 4114 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4115 } 4116 llvm_unreachable("Instruction not contained in its own parent basic block."); 4117 } 4118 4119 bool llvm::propagatesFullPoison(const Instruction *I) { 4120 switch (I->getOpcode()) { 4121 case Instruction::Add: 4122 case Instruction::Sub: 4123 case Instruction::Xor: 4124 case Instruction::Trunc: 4125 case Instruction::BitCast: 4126 case Instruction::AddrSpaceCast: 4127 case Instruction::Mul: 4128 case Instruction::Shl: 4129 case Instruction::GetElementPtr: 4130 // These operations all propagate poison unconditionally. Note that poison 4131 // is not any particular value, so xor or subtraction of poison with 4132 // itself still yields poison, not zero. 4133 return true; 4134 4135 case Instruction::AShr: 4136 case Instruction::SExt: 4137 // For these operations, one bit of the input is replicated across 4138 // multiple output bits. A replicated poison bit is still poison. 4139 return true; 4140 4141 case Instruction::ICmp: 4142 // Comparing poison with any value yields poison. This is why, for 4143 // instance, x s< (x +nsw 1) can be folded to true. 4144 return true; 4145 4146 default: 4147 return false; 4148 } 4149 } 4150 4151 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4152 switch (I->getOpcode()) { 4153 case Instruction::Store: 4154 return cast<StoreInst>(I)->getPointerOperand(); 4155 4156 case Instruction::Load: 4157 return cast<LoadInst>(I)->getPointerOperand(); 4158 4159 case Instruction::AtomicCmpXchg: 4160 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4161 4162 case Instruction::AtomicRMW: 4163 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4164 4165 case Instruction::UDiv: 4166 case Instruction::SDiv: 4167 case Instruction::URem: 4168 case Instruction::SRem: 4169 return I->getOperand(1); 4170 4171 default: 4172 return nullptr; 4173 } 4174 } 4175 4176 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4177 // We currently only look for uses of poison values within the same basic 4178 // block, as that makes it easier to guarantee that the uses will be 4179 // executed given that PoisonI is executed. 4180 // 4181 // FIXME: Expand this to consider uses beyond the same basic block. To do 4182 // this, look out for the distinction between post-dominance and strong 4183 // post-dominance. 4184 const BasicBlock *BB = PoisonI->getParent(); 4185 4186 // Set of instructions that we have proved will yield poison if PoisonI 4187 // does. 4188 SmallSet<const Value *, 16> YieldsPoison; 4189 SmallSet<const BasicBlock *, 4> Visited; 4190 YieldsPoison.insert(PoisonI); 4191 Visited.insert(PoisonI->getParent()); 4192 4193 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4194 4195 unsigned Iter = 0; 4196 while (Iter++ < MaxDepth) { 4197 for (auto &I : make_range(Begin, End)) { 4198 if (&I != PoisonI) { 4199 const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I); 4200 if (NotPoison != nullptr && YieldsPoison.count(NotPoison)) 4201 return true; 4202 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4203 return false; 4204 } 4205 4206 // Mark poison that propagates from I through uses of I. 4207 if (YieldsPoison.count(&I)) { 4208 for (const User *User : I.users()) { 4209 const Instruction *UserI = cast<Instruction>(User); 4210 if (propagatesFullPoison(UserI)) 4211 YieldsPoison.insert(User); 4212 } 4213 } 4214 } 4215 4216 if (auto *NextBB = BB->getSingleSuccessor()) { 4217 if (Visited.insert(NextBB).second) { 4218 BB = NextBB; 4219 Begin = BB->getFirstNonPHI()->getIterator(); 4220 End = BB->end(); 4221 continue; 4222 } 4223 } 4224 4225 break; 4226 } 4227 return false; 4228 } 4229 4230 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4231 if (FMF.noNaNs()) 4232 return true; 4233 4234 if (auto *C = dyn_cast<ConstantFP>(V)) 4235 return !C->isNaN(); 4236 return false; 4237 } 4238 4239 static bool isKnownNonZero(const Value *V) { 4240 if (auto *C = dyn_cast<ConstantFP>(V)) 4241 return !C->isZero(); 4242 return false; 4243 } 4244 4245 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4246 /// Given non-min/max outer cmp/select from the clamp pattern this 4247 /// function recognizes if it can be substitued by a "canonical" min/max 4248 /// pattern. 4249 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4250 Value *CmpLHS, Value *CmpRHS, 4251 Value *TrueVal, Value *FalseVal, 4252 Value *&LHS, Value *&RHS) { 4253 // Try to match 4254 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4255 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4256 // and return description of the outer Max/Min. 4257 4258 // First, check if select has inverse order: 4259 if (CmpRHS == FalseVal) { 4260 std::swap(TrueVal, FalseVal); 4261 Pred = CmpInst::getInversePredicate(Pred); 4262 } 4263 4264 // Assume success now. If there's no match, callers should not use these anyway. 4265 LHS = TrueVal; 4266 RHS = FalseVal; 4267 4268 const APFloat *FC1; 4269 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4270 return {SPF_UNKNOWN, SPNB_NA, false}; 4271 4272 const APFloat *FC2; 4273 switch (Pred) { 4274 case CmpInst::FCMP_OLT: 4275 case CmpInst::FCMP_OLE: 4276 case CmpInst::FCMP_ULT: 4277 case CmpInst::FCMP_ULE: 4278 if (match(FalseVal, 4279 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4280 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4281 FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan) 4282 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4283 break; 4284 case CmpInst::FCMP_OGT: 4285 case CmpInst::FCMP_OGE: 4286 case CmpInst::FCMP_UGT: 4287 case CmpInst::FCMP_UGE: 4288 if (match(FalseVal, 4289 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4290 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4291 FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan) 4292 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4293 break; 4294 default: 4295 break; 4296 } 4297 4298 return {SPF_UNKNOWN, SPNB_NA, false}; 4299 } 4300 4301 /// Recognize variations of: 4302 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4303 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4304 Value *CmpLHS, Value *CmpRHS, 4305 Value *TrueVal, Value *FalseVal) { 4306 // Swap the select operands and predicate to match the patterns below. 4307 if (CmpRHS != TrueVal) { 4308 Pred = ICmpInst::getSwappedPredicate(Pred); 4309 std::swap(TrueVal, FalseVal); 4310 } 4311 const APInt *C1; 4312 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4313 const APInt *C2; 4314 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4315 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4316 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4317 return {SPF_SMAX, SPNB_NA, false}; 4318 4319 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4320 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4321 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4322 return {SPF_SMIN, SPNB_NA, false}; 4323 4324 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4325 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4326 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4327 return {SPF_UMAX, SPNB_NA, false}; 4328 4329 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4330 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4331 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4332 return {SPF_UMIN, SPNB_NA, false}; 4333 } 4334 return {SPF_UNKNOWN, SPNB_NA, false}; 4335 } 4336 4337 /// Recognize variations of: 4338 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4339 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4340 Value *CmpLHS, Value *CmpRHS, 4341 Value *TVal, Value *FVal, 4342 unsigned Depth) { 4343 // TODO: Allow FP min/max with nnan/nsz. 4344 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4345 4346 Value *A, *B; 4347 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4348 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4349 return {SPF_UNKNOWN, SPNB_NA, false}; 4350 4351 Value *C, *D; 4352 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4353 if (L.Flavor != R.Flavor) 4354 return {SPF_UNKNOWN, SPNB_NA, false}; 4355 4356 // We have something like: x Pred y ? min(a, b) : min(c, d). 4357 // Try to match the compare to the min/max operations of the select operands. 4358 // First, make sure we have the right compare predicate. 4359 switch (L.Flavor) { 4360 case SPF_SMIN: 4361 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4362 Pred = ICmpInst::getSwappedPredicate(Pred); 4363 std::swap(CmpLHS, CmpRHS); 4364 } 4365 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4366 break; 4367 return {SPF_UNKNOWN, SPNB_NA, false}; 4368 case SPF_SMAX: 4369 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4370 Pred = ICmpInst::getSwappedPredicate(Pred); 4371 std::swap(CmpLHS, CmpRHS); 4372 } 4373 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4374 break; 4375 return {SPF_UNKNOWN, SPNB_NA, false}; 4376 case SPF_UMIN: 4377 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4378 Pred = ICmpInst::getSwappedPredicate(Pred); 4379 std::swap(CmpLHS, CmpRHS); 4380 } 4381 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4382 break; 4383 return {SPF_UNKNOWN, SPNB_NA, false}; 4384 case SPF_UMAX: 4385 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4386 Pred = ICmpInst::getSwappedPredicate(Pred); 4387 std::swap(CmpLHS, CmpRHS); 4388 } 4389 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4390 break; 4391 return {SPF_UNKNOWN, SPNB_NA, false}; 4392 default: 4393 return {SPF_UNKNOWN, SPNB_NA, false}; 4394 } 4395 4396 // If there is a common operand in the already matched min/max and the other 4397 // min/max operands match the compare operands (either directly or inverted), 4398 // then this is min/max of the same flavor. 4399 4400 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4401 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 4402 if (D == B) { 4403 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4404 match(A, m_Not(m_Specific(CmpRHS))))) 4405 return {L.Flavor, SPNB_NA, false}; 4406 } 4407 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4408 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 4409 if (C == B) { 4410 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4411 match(A, m_Not(m_Specific(CmpRHS))))) 4412 return {L.Flavor, SPNB_NA, false}; 4413 } 4414 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4415 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 4416 if (D == A) { 4417 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 4418 match(B, m_Not(m_Specific(CmpRHS))))) 4419 return {L.Flavor, SPNB_NA, false}; 4420 } 4421 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4422 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 4423 if (C == A) { 4424 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 4425 match(B, m_Not(m_Specific(CmpRHS))))) 4426 return {L.Flavor, SPNB_NA, false}; 4427 } 4428 4429 return {SPF_UNKNOWN, SPNB_NA, false}; 4430 } 4431 4432 /// Match non-obvious integer minimum and maximum sequences. 4433 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 4434 Value *CmpLHS, Value *CmpRHS, 4435 Value *TrueVal, Value *FalseVal, 4436 Value *&LHS, Value *&RHS, 4437 unsigned Depth) { 4438 // Assume success. If there's no match, callers should not use these anyway. 4439 LHS = TrueVal; 4440 RHS = FalseVal; 4441 4442 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 4443 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4444 return SPR; 4445 4446 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 4447 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 4448 return SPR; 4449 4450 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 4451 return {SPF_UNKNOWN, SPNB_NA, false}; 4452 4453 // Z = X -nsw Y 4454 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 4455 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 4456 if (match(TrueVal, m_Zero()) && 4457 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4458 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4459 4460 // Z = X -nsw Y 4461 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 4462 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 4463 if (match(FalseVal, m_Zero()) && 4464 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 4465 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4466 4467 const APInt *C1; 4468 if (!match(CmpRHS, m_APInt(C1))) 4469 return {SPF_UNKNOWN, SPNB_NA, false}; 4470 4471 // An unsigned min/max can be written with a signed compare. 4472 const APInt *C2; 4473 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 4474 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 4475 // Is the sign bit set? 4476 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 4477 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 4478 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 4479 C2->isMaxSignedValue()) 4480 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4481 4482 // Is the sign bit clear? 4483 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 4484 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 4485 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 4486 C2->isMinSignedValue()) 4487 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 4488 } 4489 4490 // Look through 'not' ops to find disguised signed min/max. 4491 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 4492 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 4493 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 4494 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 4495 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 4496 4497 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 4498 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 4499 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 4500 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 4501 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 4502 4503 return {SPF_UNKNOWN, SPNB_NA, false}; 4504 } 4505 4506 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 4507 FastMathFlags FMF, 4508 Value *CmpLHS, Value *CmpRHS, 4509 Value *TrueVal, Value *FalseVal, 4510 Value *&LHS, Value *&RHS, 4511 unsigned Depth) { 4512 LHS = CmpLHS; 4513 RHS = CmpRHS; 4514 4515 // Signed zero may return inconsistent results between implementations. 4516 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 4517 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 4518 // Therefore, we behave conservatively and only proceed if at least one of the 4519 // operands is known to not be zero or if we don't care about signed zero. 4520 switch (Pred) { 4521 default: break; 4522 // FIXME: Include OGT/OLT/UGT/ULT. 4523 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 4524 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 4525 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4526 !isKnownNonZero(CmpRHS)) 4527 return {SPF_UNKNOWN, SPNB_NA, false}; 4528 } 4529 4530 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 4531 bool Ordered = false; 4532 4533 // When given one NaN and one non-NaN input: 4534 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 4535 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 4536 // ordered comparison fails), which could be NaN or non-NaN. 4537 // so here we discover exactly what NaN behavior is required/accepted. 4538 if (CmpInst::isFPPredicate(Pred)) { 4539 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 4540 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 4541 4542 if (LHSSafe && RHSSafe) { 4543 // Both operands are known non-NaN. 4544 NaNBehavior = SPNB_RETURNS_ANY; 4545 } else if (CmpInst::isOrdered(Pred)) { 4546 // An ordered comparison will return false when given a NaN, so it 4547 // returns the RHS. 4548 Ordered = true; 4549 if (LHSSafe) 4550 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 4551 NaNBehavior = SPNB_RETURNS_NAN; 4552 else if (RHSSafe) 4553 NaNBehavior = SPNB_RETURNS_OTHER; 4554 else 4555 // Completely unsafe. 4556 return {SPF_UNKNOWN, SPNB_NA, false}; 4557 } else { 4558 Ordered = false; 4559 // An unordered comparison will return true when given a NaN, so it 4560 // returns the LHS. 4561 if (LHSSafe) 4562 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 4563 NaNBehavior = SPNB_RETURNS_OTHER; 4564 else if (RHSSafe) 4565 NaNBehavior = SPNB_RETURNS_NAN; 4566 else 4567 // Completely unsafe. 4568 return {SPF_UNKNOWN, SPNB_NA, false}; 4569 } 4570 } 4571 4572 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 4573 std::swap(CmpLHS, CmpRHS); 4574 Pred = CmpInst::getSwappedPredicate(Pred); 4575 if (NaNBehavior == SPNB_RETURNS_NAN) 4576 NaNBehavior = SPNB_RETURNS_OTHER; 4577 else if (NaNBehavior == SPNB_RETURNS_OTHER) 4578 NaNBehavior = SPNB_RETURNS_NAN; 4579 Ordered = !Ordered; 4580 } 4581 4582 // ([if]cmp X, Y) ? X : Y 4583 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 4584 switch (Pred) { 4585 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 4586 case ICmpInst::ICMP_UGT: 4587 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 4588 case ICmpInst::ICMP_SGT: 4589 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 4590 case ICmpInst::ICMP_ULT: 4591 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 4592 case ICmpInst::ICMP_SLT: 4593 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 4594 case FCmpInst::FCMP_UGT: 4595 case FCmpInst::FCMP_UGE: 4596 case FCmpInst::FCMP_OGT: 4597 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 4598 case FCmpInst::FCMP_ULT: 4599 case FCmpInst::FCMP_ULE: 4600 case FCmpInst::FCMP_OLT: 4601 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 4602 } 4603 } 4604 4605 const APInt *C1; 4606 if (match(CmpRHS, m_APInt(C1))) { 4607 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 4608 // match against either LHS or sext(LHS). 4609 auto MaybeSExtLHS = m_CombineOr(m_Specific(CmpLHS), 4610 m_SExt(m_Specific(CmpLHS))); 4611 if ((match(TrueVal, MaybeSExtLHS) && 4612 match(FalseVal, m_Neg(m_Specific(TrueVal)))) || 4613 (match(FalseVal, MaybeSExtLHS) && 4614 match(TrueVal, m_Neg(m_Specific(FalseVal))))) { 4615 // Set LHS and RHS so that RHS is the negated operand of the select 4616 if (match(TrueVal, MaybeSExtLHS)) { 4617 LHS = TrueVal; 4618 RHS = FalseVal; 4619 } else { 4620 LHS = FalseVal; 4621 RHS = TrueVal; 4622 } 4623 4624 // ABS(X) ==> (X >s 0) ? X : -X and (X >s -1) ? X : -X 4625 // NABS(X) ==> (X >s 0) ? -X : X and (X >s -1) ? -X : X 4626 if (Pred == ICmpInst::ICMP_SGT && 4627 (C1->isNullValue() || C1->isAllOnesValue())) { 4628 return {(LHS == TrueVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4629 } 4630 4631 // ABS(X) ==> (X <s 0) ? -X : X and (X <s 1) ? -X : X 4632 // NABS(X) ==> (X <s 0) ? X : -X and (X <s 1) ? X : -X 4633 if (Pred == ICmpInst::ICMP_SLT && 4634 (C1->isNullValue() || C1->isOneValue())) { 4635 return {(LHS == FalseVal) ? SPF_ABS : SPF_NABS, SPNB_NA, false}; 4636 } 4637 } 4638 } 4639 4640 if (CmpInst::isIntPredicate(Pred)) 4641 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 4642 4643 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 4644 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 4645 // semantics than minNum. Be conservative in such case. 4646 if (NaNBehavior != SPNB_RETURNS_ANY || 4647 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 4648 !isKnownNonZero(CmpRHS))) 4649 return {SPF_UNKNOWN, SPNB_NA, false}; 4650 4651 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 4652 } 4653 4654 /// Helps to match a select pattern in case of a type mismatch. 4655 /// 4656 /// The function processes the case when type of true and false values of a 4657 /// select instruction differs from type of the cmp instruction operands because 4658 /// of a cast instruction. The function checks if it is legal to move the cast 4659 /// operation after "select". If yes, it returns the new second value of 4660 /// "select" (with the assumption that cast is moved): 4661 /// 1. As operand of cast instruction when both values of "select" are same cast 4662 /// instructions. 4663 /// 2. As restored constant (by applying reverse cast operation) when the first 4664 /// value of the "select" is a cast operation and the second value is a 4665 /// constant. 4666 /// NOTE: We return only the new second value because the first value could be 4667 /// accessed as operand of cast instruction. 4668 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 4669 Instruction::CastOps *CastOp) { 4670 auto *Cast1 = dyn_cast<CastInst>(V1); 4671 if (!Cast1) 4672 return nullptr; 4673 4674 *CastOp = Cast1->getOpcode(); 4675 Type *SrcTy = Cast1->getSrcTy(); 4676 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 4677 // If V1 and V2 are both the same cast from the same type, look through V1. 4678 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 4679 return Cast2->getOperand(0); 4680 return nullptr; 4681 } 4682 4683 auto *C = dyn_cast<Constant>(V2); 4684 if (!C) 4685 return nullptr; 4686 4687 Constant *CastedTo = nullptr; 4688 switch (*CastOp) { 4689 case Instruction::ZExt: 4690 if (CmpI->isUnsigned()) 4691 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 4692 break; 4693 case Instruction::SExt: 4694 if (CmpI->isSigned()) 4695 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 4696 break; 4697 case Instruction::Trunc: 4698 Constant *CmpConst; 4699 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 4700 CmpConst->getType() == SrcTy) { 4701 // Here we have the following case: 4702 // 4703 // %cond = cmp iN %x, CmpConst 4704 // %tr = trunc iN %x to iK 4705 // %narrowsel = select i1 %cond, iK %t, iK C 4706 // 4707 // We can always move trunc after select operation: 4708 // 4709 // %cond = cmp iN %x, CmpConst 4710 // %widesel = select i1 %cond, iN %x, iN CmpConst 4711 // %tr = trunc iN %widesel to iK 4712 // 4713 // Note that C could be extended in any way because we don't care about 4714 // upper bits after truncation. It can't be abs pattern, because it would 4715 // look like: 4716 // 4717 // select i1 %cond, x, -x. 4718 // 4719 // So only min/max pattern could be matched. Such match requires widened C 4720 // == CmpConst. That is why set widened C = CmpConst, condition trunc 4721 // CmpConst == C is checked below. 4722 CastedTo = CmpConst; 4723 } else { 4724 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 4725 } 4726 break; 4727 case Instruction::FPTrunc: 4728 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 4729 break; 4730 case Instruction::FPExt: 4731 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 4732 break; 4733 case Instruction::FPToUI: 4734 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 4735 break; 4736 case Instruction::FPToSI: 4737 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 4738 break; 4739 case Instruction::UIToFP: 4740 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 4741 break; 4742 case Instruction::SIToFP: 4743 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 4744 break; 4745 default: 4746 break; 4747 } 4748 4749 if (!CastedTo) 4750 return nullptr; 4751 4752 // Make sure the cast doesn't lose any information. 4753 Constant *CastedBack = 4754 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 4755 if (CastedBack != C) 4756 return nullptr; 4757 4758 return CastedTo; 4759 } 4760 4761 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 4762 Instruction::CastOps *CastOp, 4763 unsigned Depth) { 4764 if (Depth >= MaxDepth) 4765 return {SPF_UNKNOWN, SPNB_NA, false}; 4766 4767 SelectInst *SI = dyn_cast<SelectInst>(V); 4768 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 4769 4770 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 4771 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 4772 4773 CmpInst::Predicate Pred = CmpI->getPredicate(); 4774 Value *CmpLHS = CmpI->getOperand(0); 4775 Value *CmpRHS = CmpI->getOperand(1); 4776 Value *TrueVal = SI->getTrueValue(); 4777 Value *FalseVal = SI->getFalseValue(); 4778 FastMathFlags FMF; 4779 if (isa<FPMathOperator>(CmpI)) 4780 FMF = CmpI->getFastMathFlags(); 4781 4782 // Bail out early. 4783 if (CmpI->isEquality()) 4784 return {SPF_UNKNOWN, SPNB_NA, false}; 4785 4786 // Deal with type mismatches. 4787 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 4788 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 4789 // If this is a potential fmin/fmax with a cast to integer, then ignore 4790 // -0.0 because there is no corresponding integer value. 4791 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4792 FMF.setNoSignedZeros(); 4793 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4794 cast<CastInst>(TrueVal)->getOperand(0), C, 4795 LHS, RHS, Depth); 4796 } 4797 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 4798 // If this is a potential fmin/fmax with a cast to integer, then ignore 4799 // -0.0 because there is no corresponding integer value. 4800 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 4801 FMF.setNoSignedZeros(); 4802 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 4803 C, cast<CastInst>(FalseVal)->getOperand(0), 4804 LHS, RHS, Depth); 4805 } 4806 } 4807 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 4808 LHS, RHS, Depth); 4809 } 4810 4811 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 4812 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 4813 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 4814 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 4815 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 4816 if (SPF == SPF_FMINNUM) 4817 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 4818 if (SPF == SPF_FMAXNUM) 4819 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 4820 llvm_unreachable("unhandled!"); 4821 } 4822 4823 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 4824 if (SPF == SPF_SMIN) return SPF_SMAX; 4825 if (SPF == SPF_UMIN) return SPF_UMAX; 4826 if (SPF == SPF_SMAX) return SPF_SMIN; 4827 if (SPF == SPF_UMAX) return SPF_UMIN; 4828 llvm_unreachable("unhandled!"); 4829 } 4830 4831 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 4832 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 4833 } 4834 4835 /// Return true if "icmp Pred LHS RHS" is always true. 4836 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 4837 const Value *RHS, const DataLayout &DL, 4838 unsigned Depth) { 4839 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 4840 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 4841 return true; 4842 4843 switch (Pred) { 4844 default: 4845 return false; 4846 4847 case CmpInst::ICMP_SLE: { 4848 const APInt *C; 4849 4850 // LHS s<= LHS +_{nsw} C if C >= 0 4851 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 4852 return !C->isNegative(); 4853 return false; 4854 } 4855 4856 case CmpInst::ICMP_ULE: { 4857 const APInt *C; 4858 4859 // LHS u<= LHS +_{nuw} C for any C 4860 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 4861 return true; 4862 4863 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 4864 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 4865 const Value *&X, 4866 const APInt *&CA, const APInt *&CB) { 4867 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 4868 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 4869 return true; 4870 4871 // If X & C == 0 then (X | C) == X +_{nuw} C 4872 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 4873 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 4874 KnownBits Known(CA->getBitWidth()); 4875 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 4876 /*CxtI*/ nullptr, /*DT*/ nullptr); 4877 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 4878 return true; 4879 } 4880 4881 return false; 4882 }; 4883 4884 const Value *X; 4885 const APInt *CLHS, *CRHS; 4886 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 4887 return CLHS->ule(*CRHS); 4888 4889 return false; 4890 } 4891 } 4892 } 4893 4894 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 4895 /// ALHS ARHS" is true. Otherwise, return None. 4896 static Optional<bool> 4897 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 4898 const Value *ARHS, const Value *BLHS, const Value *BRHS, 4899 const DataLayout &DL, unsigned Depth) { 4900 switch (Pred) { 4901 default: 4902 return None; 4903 4904 case CmpInst::ICMP_SLT: 4905 case CmpInst::ICMP_SLE: 4906 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 4907 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 4908 return true; 4909 return None; 4910 4911 case CmpInst::ICMP_ULT: 4912 case CmpInst::ICMP_ULE: 4913 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 4914 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 4915 return true; 4916 return None; 4917 } 4918 } 4919 4920 /// Return true if the operands of the two compares match. IsSwappedOps is true 4921 /// when the operands match, but are swapped. 4922 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 4923 const Value *BLHS, const Value *BRHS, 4924 bool &IsSwappedOps) { 4925 4926 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 4927 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 4928 return IsMatchingOps || IsSwappedOps; 4929 } 4930 4931 /// Return true if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS BRHS" is 4932 /// true. Return false if "icmp1 APred ALHS ARHS" implies "icmp2 BPred BLHS 4933 /// BRHS" is false. Otherwise, return None if we can't infer anything. 4934 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 4935 const Value *ALHS, 4936 const Value *ARHS, 4937 CmpInst::Predicate BPred, 4938 const Value *BLHS, 4939 const Value *BRHS, 4940 bool IsSwappedOps) { 4941 // Canonicalize the operands so they're matching. 4942 if (IsSwappedOps) { 4943 std::swap(BLHS, BRHS); 4944 BPred = ICmpInst::getSwappedPredicate(BPred); 4945 } 4946 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 4947 return true; 4948 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 4949 return false; 4950 4951 return None; 4952 } 4953 4954 /// Return true if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS C2" is 4955 /// true. Return false if "icmp1 APred ALHS C1" implies "icmp2 BPred BLHS 4956 /// C2" is false. Otherwise, return None if we can't infer anything. 4957 static Optional<bool> 4958 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, const Value *ALHS, 4959 const ConstantInt *C1, 4960 CmpInst::Predicate BPred, 4961 const Value *BLHS, const ConstantInt *C2) { 4962 assert(ALHS == BLHS && "LHS operands must match."); 4963 ConstantRange DomCR = 4964 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 4965 ConstantRange CR = 4966 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 4967 ConstantRange Intersection = DomCR.intersectWith(CR); 4968 ConstantRange Difference = DomCR.difference(CR); 4969 if (Intersection.isEmptySet()) 4970 return false; 4971 if (Difference.isEmptySet()) 4972 return true; 4973 return None; 4974 } 4975 4976 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 4977 /// false. Otherwise, return None if we can't infer anything. 4978 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 4979 const ICmpInst *RHS, 4980 const DataLayout &DL, bool LHSIsTrue, 4981 unsigned Depth) { 4982 Value *ALHS = LHS->getOperand(0); 4983 Value *ARHS = LHS->getOperand(1); 4984 // The rest of the logic assumes the LHS condition is true. If that's not the 4985 // case, invert the predicate to make it so. 4986 ICmpInst::Predicate APred = 4987 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 4988 4989 Value *BLHS = RHS->getOperand(0); 4990 Value *BRHS = RHS->getOperand(1); 4991 ICmpInst::Predicate BPred = RHS->getPredicate(); 4992 4993 // Can we infer anything when the two compares have matching operands? 4994 bool IsSwappedOps; 4995 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, IsSwappedOps)) { 4996 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 4997 APred, ALHS, ARHS, BPred, BLHS, BRHS, IsSwappedOps)) 4998 return Implication; 4999 // No amount of additional analysis will infer the second condition, so 5000 // early exit. 5001 return None; 5002 } 5003 5004 // Can we infer anything when the LHS operands match and the RHS operands are 5005 // constants (not necessarily matching)? 5006 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5007 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5008 APred, ALHS, cast<ConstantInt>(ARHS), BPred, BLHS, 5009 cast<ConstantInt>(BRHS))) 5010 return Implication; 5011 // No amount of additional analysis will infer the second condition, so 5012 // early exit. 5013 return None; 5014 } 5015 5016 if (APred == BPred) 5017 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5018 return None; 5019 } 5020 5021 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5022 /// false. Otherwise, return None if we can't infer anything. We expect the 5023 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5024 static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS, 5025 const ICmpInst *RHS, 5026 const DataLayout &DL, bool LHSIsTrue, 5027 unsigned Depth) { 5028 // The LHS must be an 'or' or an 'and' instruction. 5029 assert((LHS->getOpcode() == Instruction::And || 5030 LHS->getOpcode() == Instruction::Or) && 5031 "Expected LHS to be 'and' or 'or'."); 5032 5033 assert(Depth <= MaxDepth && "Hit recursion limit"); 5034 5035 // If the result of an 'or' is false, then we know both legs of the 'or' are 5036 // false. Similarly, if the result of an 'and' is true, then we know both 5037 // legs of the 'and' are true. 5038 Value *ALHS, *ARHS; 5039 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5040 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5041 // FIXME: Make this non-recursion. 5042 if (Optional<bool> Implication = 5043 isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1)) 5044 return Implication; 5045 if (Optional<bool> Implication = 5046 isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1)) 5047 return Implication; 5048 return None; 5049 } 5050 return None; 5051 } 5052 5053 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5054 const DataLayout &DL, bool LHSIsTrue, 5055 unsigned Depth) { 5056 // Bail out when we hit the limit. 5057 if (Depth == MaxDepth) 5058 return None; 5059 5060 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5061 // example. 5062 if (LHS->getType() != RHS->getType()) 5063 return None; 5064 5065 Type *OpTy = LHS->getType(); 5066 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5067 5068 // LHS ==> RHS by definition 5069 if (LHS == RHS) 5070 return LHSIsTrue; 5071 5072 // FIXME: Extending the code below to handle vectors. 5073 if (OpTy->isVectorTy()) 5074 return None; 5075 5076 assert(OpTy->isIntegerTy(1) && "implied by above"); 5077 5078 // Both LHS and RHS are icmps. 5079 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5080 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5081 if (LHSCmp && RHSCmp) 5082 return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth); 5083 5084 // The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be 5085 // an icmp. FIXME: Add support for and/or on the RHS. 5086 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5087 if (LHSBO && RHSCmp) { 5088 if ((LHSBO->getOpcode() == Instruction::And || 5089 LHSBO->getOpcode() == Instruction::Or)) 5090 return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth); 5091 } 5092 return None; 5093 } 5094