1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static const Instruction *safeCxtI(const Value *V1, const Value *V2, const Instruction *CxtI) { 165 // If we've been provided with a context instruction, then use that (provided 166 // it has been inserted). 167 if (CxtI && CxtI->getParent()) 168 return CxtI; 169 170 // If the value is really an already-inserted instruction, then use that. 171 CxtI = dyn_cast<Instruction>(V1); 172 if (CxtI && CxtI->getParent()) 173 return CxtI; 174 175 CxtI = dyn_cast<Instruction>(V2); 176 if (CxtI && CxtI->getParent()) 177 return CxtI; 178 179 return nullptr; 180 } 181 182 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 183 const APInt &DemandedElts, 184 APInt &DemandedLHS, APInt &DemandedRHS) { 185 // The length of scalable vectors is unknown at compile time, thus we 186 // cannot check their values 187 if (isa<ScalableVectorType>(Shuf->getType())) 188 return false; 189 190 int NumElts = 191 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 192 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 193 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 194 if (DemandedElts.isNullValue()) 195 return true; 196 // Simple case of a shuffle with zeroinitializer. 197 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 198 DemandedLHS.setBit(0); 199 return true; 200 } 201 for (int i = 0; i != NumMaskElts; ++i) { 202 if (!DemandedElts[i]) 203 continue; 204 int M = Shuf->getMaskValue(i); 205 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 206 207 // For undef elements, we don't know anything about the common state of 208 // the shuffle result. 209 if (M == -1) 210 return false; 211 if (M < NumElts) 212 DemandedLHS.setBit(M % NumElts); 213 else 214 DemandedRHS.setBit(M % NumElts); 215 } 216 217 return true; 218 } 219 220 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 221 KnownBits &Known, unsigned Depth, const Query &Q); 222 223 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 224 const Query &Q) { 225 // FIXME: We currently have no way to represent the DemandedElts of a scalable 226 // vector 227 if (isa<ScalableVectorType>(V->getType())) { 228 Known.resetAll(); 229 return; 230 } 231 232 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 233 APInt DemandedElts = 234 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 235 computeKnownBits(V, DemandedElts, Known, Depth, Q); 236 } 237 238 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 239 const DataLayout &DL, unsigned Depth, 240 AssumptionCache *AC, const Instruction *CxtI, 241 const DominatorTree *DT, 242 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 243 ::computeKnownBits(V, Known, Depth, 244 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 245 } 246 247 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 248 KnownBits &Known, const DataLayout &DL, 249 unsigned Depth, AssumptionCache *AC, 250 const Instruction *CxtI, const DominatorTree *DT, 251 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 252 ::computeKnownBits(V, DemandedElts, Known, Depth, 253 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 254 } 255 256 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 257 unsigned Depth, const Query &Q); 258 259 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 260 const Query &Q); 261 262 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 263 unsigned Depth, AssumptionCache *AC, 264 const Instruction *CxtI, 265 const DominatorTree *DT, 266 OptimizationRemarkEmitter *ORE, 267 bool UseInstrInfo) { 268 return ::computeKnownBits( 269 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 270 } 271 272 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 273 const DataLayout &DL, unsigned Depth, 274 AssumptionCache *AC, const Instruction *CxtI, 275 const DominatorTree *DT, 276 OptimizationRemarkEmitter *ORE, 277 bool UseInstrInfo) { 278 return ::computeKnownBits( 279 V, DemandedElts, Depth, 280 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 281 } 282 283 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 284 const DataLayout &DL, AssumptionCache *AC, 285 const Instruction *CxtI, const DominatorTree *DT, 286 bool UseInstrInfo) { 287 assert(LHS->getType() == RHS->getType() && 288 "LHS and RHS should have the same type"); 289 assert(LHS->getType()->isIntOrIntVectorTy() && 290 "LHS and RHS should be integers"); 291 // Look for an inverted mask: (X & ~M) op (Y & M). 292 Value *M; 293 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 294 match(RHS, m_c_And(m_Specific(M), m_Value()))) 295 return true; 296 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 297 match(LHS, m_c_And(m_Specific(M), m_Value()))) 298 return true; 299 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 300 KnownBits LHSKnown(IT->getBitWidth()); 301 KnownBits RHSKnown(IT->getBitWidth()); 302 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 303 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 304 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 305 } 306 307 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 308 for (const User *U : CxtI->users()) { 309 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 310 if (IC->isEquality()) 311 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 312 if (C->isNullValue()) 313 continue; 314 return false; 315 } 316 return true; 317 } 318 319 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 320 const Query &Q); 321 322 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 323 bool OrZero, unsigned Depth, 324 AssumptionCache *AC, const Instruction *CxtI, 325 const DominatorTree *DT, bool UseInstrInfo) { 326 return ::isKnownToBeAPowerOfTwo( 327 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 328 } 329 330 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 331 unsigned Depth, const Query &Q); 332 333 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 334 335 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 336 AssumptionCache *AC, const Instruction *CxtI, 337 const DominatorTree *DT, bool UseInstrInfo) { 338 return ::isKnownNonZero(V, Depth, 339 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 340 } 341 342 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 343 unsigned Depth, AssumptionCache *AC, 344 const Instruction *CxtI, const DominatorTree *DT, 345 bool UseInstrInfo) { 346 KnownBits Known = 347 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 348 return Known.isNonNegative(); 349 } 350 351 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 352 AssumptionCache *AC, const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 if (auto *CI = dyn_cast<ConstantInt>(V)) 355 return CI->getValue().isStrictlyPositive(); 356 357 // TODO: We'd doing two recursive queries here. We should factor this such 358 // that only a single query is needed. 359 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 360 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 361 } 362 363 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 KnownBits Known = 367 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 368 return Known.isNegative(); 369 } 370 371 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 372 const Query &Q); 373 374 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 375 const DataLayout &DL, AssumptionCache *AC, 376 const Instruction *CxtI, const DominatorTree *DT, 377 bool UseInstrInfo) { 378 return ::isKnownNonEqual(V1, V2, 0, 379 Query(DL, AC, safeCxtI(V2, V1, CxtI), DT, 380 UseInstrInfo, /*ORE=*/nullptr)); 381 } 382 383 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 384 const Query &Q); 385 386 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 387 const DataLayout &DL, unsigned Depth, 388 AssumptionCache *AC, const Instruction *CxtI, 389 const DominatorTree *DT, bool UseInstrInfo) { 390 return ::MaskedValueIsZero( 391 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 392 } 393 394 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 395 unsigned Depth, const Query &Q); 396 397 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 398 const Query &Q) { 399 // FIXME: We currently have no way to represent the DemandedElts of a scalable 400 // vector 401 if (isa<ScalableVectorType>(V->getType())) 402 return 1; 403 404 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 405 APInt DemandedElts = 406 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 407 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 408 } 409 410 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 411 unsigned Depth, AssumptionCache *AC, 412 const Instruction *CxtI, 413 const DominatorTree *DT, bool UseInstrInfo) { 414 return ::ComputeNumSignBits( 415 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 416 } 417 418 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 419 bool NSW, const APInt &DemandedElts, 420 KnownBits &KnownOut, KnownBits &Known2, 421 unsigned Depth, const Query &Q) { 422 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 423 424 // If one operand is unknown and we have no nowrap information, 425 // the result will be unknown independently of the second operand. 426 if (KnownOut.isUnknown() && !NSW) 427 return; 428 429 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 430 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 431 } 432 433 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 434 const APInt &DemandedElts, KnownBits &Known, 435 KnownBits &Known2, unsigned Depth, 436 const Query &Q) { 437 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 438 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 439 440 bool isKnownNegative = false; 441 bool isKnownNonNegative = false; 442 // If the multiplication is known not to overflow, compute the sign bit. 443 if (NSW) { 444 if (Op0 == Op1) { 445 // The product of a number with itself is non-negative. 446 isKnownNonNegative = true; 447 } else { 448 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 449 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 450 bool isKnownNegativeOp1 = Known.isNegative(); 451 bool isKnownNegativeOp0 = Known2.isNegative(); 452 // The product of two numbers with the same sign is non-negative. 453 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 454 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 455 // The product of a negative number and a non-negative number is either 456 // negative or zero. 457 if (!isKnownNonNegative) 458 isKnownNegative = 459 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 460 Known2.isNonZero()) || 461 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 462 } 463 } 464 465 Known = KnownBits::computeForMul(Known, Known2); 466 467 // Only make use of no-wrap flags if we failed to compute the sign bit 468 // directly. This matters if the multiplication always overflows, in 469 // which case we prefer to follow the result of the direct computation, 470 // though as the program is invoking undefined behaviour we can choose 471 // whatever we like here. 472 if (isKnownNonNegative && !Known.isNegative()) 473 Known.makeNonNegative(); 474 else if (isKnownNegative && !Known.isNonNegative()) 475 Known.makeNegative(); 476 } 477 478 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 479 KnownBits &Known) { 480 unsigned BitWidth = Known.getBitWidth(); 481 unsigned NumRanges = Ranges.getNumOperands() / 2; 482 assert(NumRanges >= 1); 483 484 Known.Zero.setAllBits(); 485 Known.One.setAllBits(); 486 487 for (unsigned i = 0; i < NumRanges; ++i) { 488 ConstantInt *Lower = 489 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 490 ConstantInt *Upper = 491 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 492 ConstantRange Range(Lower->getValue(), Upper->getValue()); 493 494 // The first CommonPrefixBits of all values in Range are equal. 495 unsigned CommonPrefixBits = 496 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 497 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 498 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 499 Known.One &= UnsignedMax & Mask; 500 Known.Zero &= ~UnsignedMax & Mask; 501 } 502 } 503 504 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 505 SmallVector<const Value *, 16> WorkSet(1, I); 506 SmallPtrSet<const Value *, 32> Visited; 507 SmallPtrSet<const Value *, 16> EphValues; 508 509 // The instruction defining an assumption's condition itself is always 510 // considered ephemeral to that assumption (even if it has other 511 // non-ephemeral users). See r246696's test case for an example. 512 if (is_contained(I->operands(), E)) 513 return true; 514 515 while (!WorkSet.empty()) { 516 const Value *V = WorkSet.pop_back_val(); 517 if (!Visited.insert(V).second) 518 continue; 519 520 // If all uses of this value are ephemeral, then so is this value. 521 if (llvm::all_of(V->users(), [&](const User *U) { 522 return EphValues.count(U); 523 })) { 524 if (V == E) 525 return true; 526 527 if (V == I || isSafeToSpeculativelyExecute(V)) { 528 EphValues.insert(V); 529 if (const User *U = dyn_cast<User>(V)) 530 append_range(WorkSet, U->operands()); 531 } 532 } 533 } 534 535 return false; 536 } 537 538 // Is this an intrinsic that cannot be speculated but also cannot trap? 539 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 540 if (const IntrinsicInst *CI = dyn_cast<IntrinsicInst>(I)) 541 return CI->isAssumeLikeIntrinsic(); 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 // We limit the scan distance between the assume and its context instruction 573 // to avoid a compile-time explosion. This limit is chosen arbitrarily, so 574 // it can be adjusted if needed (could be turned into a cl::opt). 575 unsigned ScanLimit = 15; 576 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 577 if (!isGuaranteedToTransferExecutionToSuccessor(&*I) || --ScanLimit == 0) 578 return false; 579 580 return !isEphemeralValueOf(Inv, CxtI); 581 } 582 583 // Inv and CxtI are in different blocks. 584 if (DT) { 585 if (DT->dominates(Inv, CxtI)) 586 return true; 587 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 588 // We don't have a DT, but this trivially dominates. 589 return true; 590 } 591 592 return false; 593 } 594 595 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 596 // v u> y implies v != 0. 597 if (Pred == ICmpInst::ICMP_UGT) 598 return true; 599 600 // Special-case v != 0 to also handle v != null. 601 if (Pred == ICmpInst::ICMP_NE) 602 return match(RHS, m_Zero()); 603 604 // All other predicates - rely on generic ConstantRange handling. 605 const APInt *C; 606 if (!match(RHS, m_APInt(C))) 607 return false; 608 609 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 610 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 611 } 612 613 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 614 // Use of assumptions is context-sensitive. If we don't have a context, we 615 // cannot use them! 616 if (!Q.AC || !Q.CxtI) 617 return false; 618 619 if (Q.CxtI && V->getType()->isPointerTy()) { 620 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 621 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 622 V->getType()->getPointerAddressSpace())) 623 AttrKinds.push_back(Attribute::Dereferenceable); 624 625 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 626 return true; 627 } 628 629 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 630 if (!AssumeVH) 631 continue; 632 CallInst *I = cast<CallInst>(AssumeVH); 633 assert(I->getFunction() == Q.CxtI->getFunction() && 634 "Got assumption for the wrong function!"); 635 if (Q.isExcluded(I)) 636 continue; 637 638 // Warning: This loop can end up being somewhat performance sensitive. 639 // We're running this loop for once for each value queried resulting in a 640 // runtime of ~O(#assumes * #values). 641 642 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 643 "must be an assume intrinsic"); 644 645 Value *RHS; 646 CmpInst::Predicate Pred; 647 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 648 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 649 return false; 650 651 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 652 return true; 653 } 654 655 return false; 656 } 657 658 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 659 unsigned Depth, const Query &Q) { 660 // Use of assumptions is context-sensitive. If we don't have a context, we 661 // cannot use them! 662 if (!Q.AC || !Q.CxtI) 663 return; 664 665 unsigned BitWidth = Known.getBitWidth(); 666 667 // Refine Known set if the pointer alignment is set by assume bundles. 668 if (V->getType()->isPointerTy()) { 669 if (RetainedKnowledge RK = getKnowledgeValidInContext( 670 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 671 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 672 } 673 } 674 675 // Note that the patterns below need to be kept in sync with the code 676 // in AssumptionCache::updateAffectedValues. 677 678 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 679 if (!AssumeVH) 680 continue; 681 CallInst *I = cast<CallInst>(AssumeVH); 682 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 683 "Got assumption for the wrong function!"); 684 if (Q.isExcluded(I)) 685 continue; 686 687 // Warning: This loop can end up being somewhat performance sensitive. 688 // We're running this loop for once for each value queried resulting in a 689 // runtime of ~O(#assumes * #values). 690 691 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 692 "must be an assume intrinsic"); 693 694 Value *Arg = I->getArgOperand(0); 695 696 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 697 assert(BitWidth == 1 && "assume operand is not i1?"); 698 Known.setAllOnes(); 699 return; 700 } 701 if (match(Arg, m_Not(m_Specific(V))) && 702 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 703 assert(BitWidth == 1 && "assume operand is not i1?"); 704 Known.setAllZero(); 705 return; 706 } 707 708 // The remaining tests are all recursive, so bail out if we hit the limit. 709 if (Depth == MaxAnalysisRecursionDepth) 710 continue; 711 712 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 713 if (!Cmp) 714 continue; 715 716 // Note that ptrtoint may change the bitwidth. 717 Value *A, *B; 718 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 719 720 CmpInst::Predicate Pred; 721 uint64_t C; 722 switch (Cmp->getPredicate()) { 723 default: 724 break; 725 case ICmpInst::ICMP_EQ: 726 // assume(v = a) 727 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 728 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 729 KnownBits RHSKnown = 730 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 731 Known.Zero |= RHSKnown.Zero; 732 Known.One |= RHSKnown.One; 733 // assume(v & b = a) 734 } else if (match(Cmp, 735 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 736 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 737 KnownBits RHSKnown = 738 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 KnownBits MaskKnown = 740 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 741 742 // For those bits in the mask that are known to be one, we can propagate 743 // known bits from the RHS to V. 744 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 745 Known.One |= RHSKnown.One & MaskKnown.One; 746 // assume(~(v & b) = a) 747 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 748 m_Value(A))) && 749 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 750 KnownBits RHSKnown = 751 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 KnownBits MaskKnown = 753 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 754 755 // For those bits in the mask that are known to be one, we can propagate 756 // inverted known bits from the RHS to V. 757 Known.Zero |= RHSKnown.One & MaskKnown.One; 758 Known.One |= RHSKnown.Zero & MaskKnown.One; 759 // assume(v | b = a) 760 } else if (match(Cmp, 761 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 762 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 763 KnownBits RHSKnown = 764 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 KnownBits BKnown = 766 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 767 768 // For those bits in B that are known to be zero, we can propagate known 769 // bits from the RHS to V. 770 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 771 Known.One |= RHSKnown.One & BKnown.Zero; 772 // assume(~(v | b) = a) 773 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 774 m_Value(A))) && 775 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 776 KnownBits RHSKnown = 777 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 KnownBits BKnown = 779 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 780 781 // For those bits in B that are known to be zero, we can propagate 782 // inverted known bits from the RHS to V. 783 Known.Zero |= RHSKnown.One & BKnown.Zero; 784 Known.One |= RHSKnown.Zero & BKnown.Zero; 785 // assume(v ^ b = a) 786 } else if (match(Cmp, 787 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 788 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 789 KnownBits RHSKnown = 790 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 KnownBits BKnown = 792 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 793 794 // For those bits in B that are known to be zero, we can propagate known 795 // bits from the RHS to V. For those bits in B that are known to be one, 796 // we can propagate inverted known bits from the RHS to V. 797 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 798 Known.One |= RHSKnown.One & BKnown.Zero; 799 Known.Zero |= RHSKnown.One & BKnown.One; 800 Known.One |= RHSKnown.Zero & BKnown.One; 801 // assume(~(v ^ b) = a) 802 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 803 m_Value(A))) && 804 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 805 KnownBits RHSKnown = 806 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 KnownBits BKnown = 808 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 809 810 // For those bits in B that are known to be zero, we can propagate 811 // inverted known bits from the RHS to V. For those bits in B that are 812 // known to be one, we can propagate known bits from the RHS to V. 813 Known.Zero |= RHSKnown.One & BKnown.Zero; 814 Known.One |= RHSKnown.Zero & BKnown.Zero; 815 Known.Zero |= RHSKnown.Zero & BKnown.One; 816 Known.One |= RHSKnown.One & BKnown.One; 817 // assume(v << c = a) 818 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 819 m_Value(A))) && 820 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 821 KnownBits RHSKnown = 822 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 823 824 // For those bits in RHS that are known, we can propagate them to known 825 // bits in V shifted to the right by C. 826 RHSKnown.Zero.lshrInPlace(C); 827 Known.Zero |= RHSKnown.Zero; 828 RHSKnown.One.lshrInPlace(C); 829 Known.One |= RHSKnown.One; 830 // assume(~(v << c) = a) 831 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 832 m_Value(A))) && 833 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 834 KnownBits RHSKnown = 835 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 836 // For those bits in RHS that are known, we can propagate them inverted 837 // to known bits in V shifted to the right by C. 838 RHSKnown.One.lshrInPlace(C); 839 Known.Zero |= RHSKnown.One; 840 RHSKnown.Zero.lshrInPlace(C); 841 Known.One |= RHSKnown.Zero; 842 // assume(v >> c = a) 843 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 844 m_Value(A))) && 845 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 846 KnownBits RHSKnown = 847 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 848 // For those bits in RHS that are known, we can propagate them to known 849 // bits in V shifted to the right by C. 850 Known.Zero |= RHSKnown.Zero << C; 851 Known.One |= RHSKnown.One << C; 852 // assume(~(v >> c) = a) 853 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 854 m_Value(A))) && 855 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 856 KnownBits RHSKnown = 857 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 858 // For those bits in RHS that are known, we can propagate them inverted 859 // to known bits in V shifted to the right by C. 860 Known.Zero |= RHSKnown.One << C; 861 Known.One |= RHSKnown.Zero << C; 862 } 863 break; 864 case ICmpInst::ICMP_SGE: 865 // assume(v >=_s c) where c is non-negative 866 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 867 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 868 KnownBits RHSKnown = 869 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 870 871 if (RHSKnown.isNonNegative()) { 872 // We know that the sign bit is zero. 873 Known.makeNonNegative(); 874 } 875 } 876 break; 877 case ICmpInst::ICMP_SGT: 878 // assume(v >_s c) where c is at least -1. 879 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 880 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 881 KnownBits RHSKnown = 882 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 883 884 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 885 // We know that the sign bit is zero. 886 Known.makeNonNegative(); 887 } 888 } 889 break; 890 case ICmpInst::ICMP_SLE: 891 // assume(v <=_s c) where c is negative 892 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 893 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 894 KnownBits RHSKnown = 895 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 896 897 if (RHSKnown.isNegative()) { 898 // We know that the sign bit is one. 899 Known.makeNegative(); 900 } 901 } 902 break; 903 case ICmpInst::ICMP_SLT: 904 // assume(v <_s c) where c is non-positive 905 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 906 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 907 KnownBits RHSKnown = 908 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 909 910 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 911 // We know that the sign bit is one. 912 Known.makeNegative(); 913 } 914 } 915 break; 916 case ICmpInst::ICMP_ULE: 917 // assume(v <=_u c) 918 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 919 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 920 KnownBits RHSKnown = 921 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 922 923 // Whatever high bits in c are zero are known to be zero. 924 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 925 } 926 break; 927 case ICmpInst::ICMP_ULT: 928 // assume(v <_u c) 929 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 930 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 931 KnownBits RHSKnown = 932 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 933 934 // If the RHS is known zero, then this assumption must be wrong (nothing 935 // is unsigned less than zero). Signal a conflict and get out of here. 936 if (RHSKnown.isZero()) { 937 Known.Zero.setAllBits(); 938 Known.One.setAllBits(); 939 break; 940 } 941 942 // Whatever high bits in c are zero are known to be zero (if c is a power 943 // of 2, then one more). 944 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 946 else 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 } 951 } 952 953 // If assumptions conflict with each other or previous known bits, then we 954 // have a logical fallacy. It's possible that the assumption is not reachable, 955 // so this isn't a real bug. On the other hand, the program may have undefined 956 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 957 // clear out the known bits, try to warn the user, and hope for the best. 958 if (Known.Zero.intersects(Known.One)) { 959 Known.resetAll(); 960 961 if (Q.ORE) 962 Q.ORE->emit([&]() { 963 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 964 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 965 CxtI) 966 << "Detected conflicting code assumptions. Program may " 967 "have undefined behavior, or compiler may have " 968 "internal error."; 969 }); 970 } 971 } 972 973 /// Compute known bits from a shift operator, including those with a 974 /// non-constant shift amount. Known is the output of this function. Known2 is a 975 /// pre-allocated temporary with the same bit width as Known and on return 976 /// contains the known bit of the shift value source. KF is an 977 /// operator-specific function that, given the known-bits and a shift amount, 978 /// compute the implied known-bits of the shift operator's result respectively 979 /// for that shift amount. The results from calling KF are conservatively 980 /// combined for all permitted shift amounts. 981 static void computeKnownBitsFromShiftOperator( 982 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 983 KnownBits &Known2, unsigned Depth, const Query &Q, 984 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 985 unsigned BitWidth = Known.getBitWidth(); 986 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 987 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 988 989 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 990 // BitWidth > 64 and any upper bits are known, we'll end up returning the 991 // limit value (which implies all bits are known). 992 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 993 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 994 bool ShiftAmtIsConstant = Known.isConstant(); 995 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 996 997 if (ShiftAmtIsConstant) { 998 Known = KF(Known2, Known); 999 1000 // If the known bits conflict, this must be an overflowing left shift, so 1001 // the shift result is poison. We can return anything we want. Choose 0 for 1002 // the best folding opportunity. 1003 if (Known.hasConflict()) 1004 Known.setAllZero(); 1005 1006 return; 1007 } 1008 1009 // If the shift amount could be greater than or equal to the bit-width of the 1010 // LHS, the value could be poison, but bail out because the check below is 1011 // expensive. 1012 // TODO: Should we just carry on? 1013 if (MaxShiftAmtIsOutOfRange) { 1014 Known.resetAll(); 1015 return; 1016 } 1017 1018 // It would be more-clearly correct to use the two temporaries for this 1019 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1020 Known.resetAll(); 1021 1022 // If we know the shifter operand is nonzero, we can sometimes infer more 1023 // known bits. However this is expensive to compute, so be lazy about it and 1024 // only compute it when absolutely necessary. 1025 Optional<bool> ShifterOperandIsNonZero; 1026 1027 // Early exit if we can't constrain any well-defined shift amount. 1028 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1029 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1030 ShifterOperandIsNonZero = 1031 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1032 if (!*ShifterOperandIsNonZero) 1033 return; 1034 } 1035 1036 Known.Zero.setAllBits(); 1037 Known.One.setAllBits(); 1038 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1039 // Combine the shifted known input bits only for those shift amounts 1040 // compatible with its known constraints. 1041 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1042 continue; 1043 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1044 continue; 1045 // If we know the shifter is nonzero, we may be able to infer more known 1046 // bits. This check is sunk down as far as possible to avoid the expensive 1047 // call to isKnownNonZero if the cheaper checks above fail. 1048 if (ShiftAmt == 0) { 1049 if (!ShifterOperandIsNonZero.hasValue()) 1050 ShifterOperandIsNonZero = 1051 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1052 if (*ShifterOperandIsNonZero) 1053 continue; 1054 } 1055 1056 Known = KnownBits::commonBits( 1057 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1058 } 1059 1060 // If the known bits conflict, the result is poison. Return a 0 and hope the 1061 // caller can further optimize that. 1062 if (Known.hasConflict()) 1063 Known.setAllZero(); 1064 } 1065 1066 static void computeKnownBitsFromOperator(const Operator *I, 1067 const APInt &DemandedElts, 1068 KnownBits &Known, unsigned Depth, 1069 const Query &Q) { 1070 unsigned BitWidth = Known.getBitWidth(); 1071 1072 KnownBits Known2(BitWidth); 1073 switch (I->getOpcode()) { 1074 default: break; 1075 case Instruction::Load: 1076 if (MDNode *MD = 1077 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1078 computeKnownBitsFromRangeMetadata(*MD, Known); 1079 break; 1080 case Instruction::And: { 1081 // If either the LHS or the RHS are Zero, the result is zero. 1082 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1083 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1084 1085 Known &= Known2; 1086 1087 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1088 // here we handle the more general case of adding any odd number by 1089 // matching the form add(x, add(x, y)) where y is odd. 1090 // TODO: This could be generalized to clearing any bit set in y where the 1091 // following bit is known to be unset in y. 1092 Value *X = nullptr, *Y = nullptr; 1093 if (!Known.Zero[0] && !Known.One[0] && 1094 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1095 Known2.resetAll(); 1096 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1097 if (Known2.countMinTrailingOnes() > 0) 1098 Known.Zero.setBit(0); 1099 } 1100 break; 1101 } 1102 case Instruction::Or: 1103 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1104 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1105 1106 Known |= Known2; 1107 break; 1108 case Instruction::Xor: 1109 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1110 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1111 1112 Known ^= Known2; 1113 break; 1114 case Instruction::Mul: { 1115 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1116 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1117 Known, Known2, Depth, Q); 1118 break; 1119 } 1120 case Instruction::UDiv: { 1121 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1122 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1123 Known = KnownBits::udiv(Known, Known2); 1124 break; 1125 } 1126 case Instruction::Select: { 1127 const Value *LHS = nullptr, *RHS = nullptr; 1128 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1129 if (SelectPatternResult::isMinOrMax(SPF)) { 1130 computeKnownBits(RHS, Known, Depth + 1, Q); 1131 computeKnownBits(LHS, Known2, Depth + 1, Q); 1132 switch (SPF) { 1133 default: 1134 llvm_unreachable("Unhandled select pattern flavor!"); 1135 case SPF_SMAX: 1136 Known = KnownBits::smax(Known, Known2); 1137 break; 1138 case SPF_SMIN: 1139 Known = KnownBits::smin(Known, Known2); 1140 break; 1141 case SPF_UMAX: 1142 Known = KnownBits::umax(Known, Known2); 1143 break; 1144 case SPF_UMIN: 1145 Known = KnownBits::umin(Known, Known2); 1146 break; 1147 } 1148 break; 1149 } 1150 1151 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1152 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1153 1154 // Only known if known in both the LHS and RHS. 1155 Known = KnownBits::commonBits(Known, Known2); 1156 1157 if (SPF == SPF_ABS) { 1158 // RHS from matchSelectPattern returns the negation part of abs pattern. 1159 // If the negate has an NSW flag we can assume the sign bit of the result 1160 // will be 0 because that makes abs(INT_MIN) undefined. 1161 if (match(RHS, m_Neg(m_Specific(LHS))) && 1162 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1163 Known.Zero.setSignBit(); 1164 } 1165 1166 break; 1167 } 1168 case Instruction::FPTrunc: 1169 case Instruction::FPExt: 1170 case Instruction::FPToUI: 1171 case Instruction::FPToSI: 1172 case Instruction::SIToFP: 1173 case Instruction::UIToFP: 1174 break; // Can't work with floating point. 1175 case Instruction::PtrToInt: 1176 case Instruction::IntToPtr: 1177 // Fall through and handle them the same as zext/trunc. 1178 LLVM_FALLTHROUGH; 1179 case Instruction::ZExt: 1180 case Instruction::Trunc: { 1181 Type *SrcTy = I->getOperand(0)->getType(); 1182 1183 unsigned SrcBitWidth; 1184 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1185 // which fall through here. 1186 Type *ScalarTy = SrcTy->getScalarType(); 1187 SrcBitWidth = ScalarTy->isPointerTy() ? 1188 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1189 Q.DL.getTypeSizeInBits(ScalarTy); 1190 1191 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1192 Known = Known.anyextOrTrunc(SrcBitWidth); 1193 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1194 Known = Known.zextOrTrunc(BitWidth); 1195 break; 1196 } 1197 case Instruction::BitCast: { 1198 Type *SrcTy = I->getOperand(0)->getType(); 1199 if (SrcTy->isIntOrPtrTy() && 1200 // TODO: For now, not handling conversions like: 1201 // (bitcast i64 %x to <2 x i32>) 1202 !I->getType()->isVectorTy()) { 1203 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1204 break; 1205 } 1206 break; 1207 } 1208 case Instruction::SExt: { 1209 // Compute the bits in the result that are not present in the input. 1210 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1211 1212 Known = Known.trunc(SrcBitWidth); 1213 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1214 // If the sign bit of the input is known set or clear, then we know the 1215 // top bits of the result. 1216 Known = Known.sext(BitWidth); 1217 break; 1218 } 1219 case Instruction::Shl: { 1220 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1221 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1222 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1223 // If this shift has "nsw" keyword, then the result is either a poison 1224 // value or has the same sign bit as the first operand. 1225 if (NSW) { 1226 if (KnownVal.Zero.isSignBitSet()) 1227 Result.Zero.setSignBit(); 1228 if (KnownVal.One.isSignBitSet()) 1229 Result.One.setSignBit(); 1230 } 1231 return Result; 1232 }; 1233 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1234 KF); 1235 // Trailing zeros of a right-shifted constant never decrease. 1236 const APInt *C; 1237 if (match(I->getOperand(0), m_APInt(C))) 1238 Known.Zero.setLowBits(C->countTrailingZeros()); 1239 break; 1240 } 1241 case Instruction::LShr: { 1242 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1243 return KnownBits::lshr(KnownVal, KnownAmt); 1244 }; 1245 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1246 KF); 1247 // Leading zeros of a left-shifted constant never decrease. 1248 const APInt *C; 1249 if (match(I->getOperand(0), m_APInt(C))) 1250 Known.Zero.setHighBits(C->countLeadingZeros()); 1251 break; 1252 } 1253 case Instruction::AShr: { 1254 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1255 return KnownBits::ashr(KnownVal, KnownAmt); 1256 }; 1257 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1258 KF); 1259 break; 1260 } 1261 case Instruction::Sub: { 1262 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1263 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1264 DemandedElts, Known, Known2, Depth, Q); 1265 break; 1266 } 1267 case Instruction::Add: { 1268 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1269 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1270 DemandedElts, Known, Known2, Depth, Q); 1271 break; 1272 } 1273 case Instruction::SRem: 1274 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1275 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1276 Known = KnownBits::srem(Known, Known2); 1277 break; 1278 1279 case Instruction::URem: 1280 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1281 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1282 Known = KnownBits::urem(Known, Known2); 1283 break; 1284 case Instruction::Alloca: 1285 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1286 break; 1287 case Instruction::GetElementPtr: { 1288 // Analyze all of the subscripts of this getelementptr instruction 1289 // to determine if we can prove known low zero bits. 1290 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1291 // Accumulate the constant indices in a separate variable 1292 // to minimize the number of calls to computeForAddSub. 1293 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1294 1295 gep_type_iterator GTI = gep_type_begin(I); 1296 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1297 // TrailZ can only become smaller, short-circuit if we hit zero. 1298 if (Known.isUnknown()) 1299 break; 1300 1301 Value *Index = I->getOperand(i); 1302 1303 // Handle case when index is zero. 1304 Constant *CIndex = dyn_cast<Constant>(Index); 1305 if (CIndex && CIndex->isZeroValue()) 1306 continue; 1307 1308 if (StructType *STy = GTI.getStructTypeOrNull()) { 1309 // Handle struct member offset arithmetic. 1310 1311 assert(CIndex && 1312 "Access to structure field must be known at compile time"); 1313 1314 if (CIndex->getType()->isVectorTy()) 1315 Index = CIndex->getSplatValue(); 1316 1317 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1318 const StructLayout *SL = Q.DL.getStructLayout(STy); 1319 uint64_t Offset = SL->getElementOffset(Idx); 1320 AccConstIndices += Offset; 1321 continue; 1322 } 1323 1324 // Handle array index arithmetic. 1325 Type *IndexedTy = GTI.getIndexedType(); 1326 if (!IndexedTy->isSized()) { 1327 Known.resetAll(); 1328 break; 1329 } 1330 1331 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1332 KnownBits IndexBits(IndexBitWidth); 1333 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1334 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1335 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1336 KnownBits ScalingFactor(IndexBitWidth); 1337 // Multiply by current sizeof type. 1338 // &A[i] == A + i * sizeof(*A[i]). 1339 if (IndexTypeSize.isScalable()) { 1340 // For scalable types the only thing we know about sizeof is 1341 // that this is a multiple of the minimum size. 1342 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1343 } else if (IndexBits.isConstant()) { 1344 APInt IndexConst = IndexBits.getConstant(); 1345 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1346 IndexConst *= ScalingFactor; 1347 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1348 continue; 1349 } else { 1350 ScalingFactor = 1351 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1352 } 1353 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1354 1355 // If the offsets have a different width from the pointer, according 1356 // to the language reference we need to sign-extend or truncate them 1357 // to the width of the pointer. 1358 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1359 1360 // Note that inbounds does *not* guarantee nsw for the addition, as only 1361 // the offset is signed, while the base address is unsigned. 1362 Known = KnownBits::computeForAddSub( 1363 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1364 } 1365 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1366 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1367 Known = KnownBits::computeForAddSub( 1368 /*Add=*/true, /*NSW=*/false, Known, Index); 1369 } 1370 break; 1371 } 1372 case Instruction::PHI: { 1373 const PHINode *P = cast<PHINode>(I); 1374 // Handle the case of a simple two-predecessor recurrence PHI. 1375 // There's a lot more that could theoretically be done here, but 1376 // this is sufficient to catch some interesting cases. 1377 if (P->getNumIncomingValues() == 2) { 1378 for (unsigned i = 0; i != 2; ++i) { 1379 Value *L = P->getIncomingValue(i); 1380 Value *R = P->getIncomingValue(!i); 1381 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1382 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1383 Operator *LU = dyn_cast<Operator>(L); 1384 if (!LU) 1385 continue; 1386 unsigned Opcode = LU->getOpcode(); 1387 1388 1389 // If this is a shift recurrence, we know the bits being shifted in. 1390 // We can combine that with information about the start value of the 1391 // recurrence to conclude facts about the result. 1392 if (Opcode == Instruction::LShr || 1393 Opcode == Instruction::AShr || 1394 Opcode == Instruction::Shl) { 1395 Value *LL = LU->getOperand(0); 1396 Value *LR = LU->getOperand(1); 1397 // Find a recurrence. 1398 if (LL == I) 1399 L = LR; 1400 else 1401 continue; // Check for recurrence with L and R flipped. 1402 1403 // We have matched a recurrence of the form: 1404 // %iv = [R, %entry], [%iv.next, %backedge] 1405 // %iv.next = shift_op %iv, L 1406 1407 // Recurse with the phi context to avoid concern about whether facts 1408 // inferred hold at original context instruction. TODO: It may be 1409 // correct to use the original context. IF warranted, explore and 1410 // add sufficient tests to cover. 1411 Query RecQ = Q; 1412 RecQ.CxtI = P; 1413 computeKnownBits(R, DemandedElts, Known2, Depth + 1, RecQ); 1414 switch (Opcode) { 1415 case Instruction::Shl: 1416 // A shl recurrence will only increase the tailing zeros 1417 Known.Zero.setLowBits(Known2.countMinTrailingZeros()); 1418 break; 1419 case Instruction::LShr: 1420 // A lshr recurrence will preserve the leading zeros of the 1421 // start value 1422 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1423 break; 1424 case Instruction::AShr: 1425 // An ashr recurrence will extend the initial sign bit 1426 Known.Zero.setHighBits(Known2.countMinLeadingZeros()); 1427 Known.One.setHighBits(Known2.countMinLeadingOnes()); 1428 break; 1429 }; 1430 } 1431 1432 // Check for operations that have the property that if 1433 // both their operands have low zero bits, the result 1434 // will have low zero bits. 1435 if (Opcode == Instruction::Add || 1436 Opcode == Instruction::Sub || 1437 Opcode == Instruction::And || 1438 Opcode == Instruction::Or || 1439 Opcode == Instruction::Mul) { 1440 Value *LL = LU->getOperand(0); 1441 Value *LR = LU->getOperand(1); 1442 // Find a recurrence. 1443 if (LL == I) 1444 L = LR; 1445 else if (LR == I) 1446 L = LL; 1447 else 1448 continue; // Check for recurrence with L and R flipped. 1449 1450 // Change the context instruction to the "edge" that flows into the 1451 // phi. This is important because that is where the value is actually 1452 // "evaluated" even though it is used later somewhere else. (see also 1453 // D69571). 1454 Query RecQ = Q; 1455 1456 // Ok, we have a PHI of the form L op= R. Check for low 1457 // zero bits. 1458 RecQ.CxtI = RInst; 1459 computeKnownBits(R, Known2, Depth + 1, RecQ); 1460 1461 // We need to take the minimum number of known bits 1462 KnownBits Known3(BitWidth); 1463 RecQ.CxtI = LInst; 1464 computeKnownBits(L, Known3, Depth + 1, RecQ); 1465 1466 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1467 Known3.countMinTrailingZeros())); 1468 1469 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1470 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1471 // If initial value of recurrence is nonnegative, and we are adding 1472 // a nonnegative number with nsw, the result can only be nonnegative 1473 // or poison value regardless of the number of times we execute the 1474 // add in phi recurrence. If initial value is negative and we are 1475 // adding a negative number with nsw, the result can only be 1476 // negative or poison value. Similar arguments apply to sub and mul. 1477 // 1478 // (add non-negative, non-negative) --> non-negative 1479 // (add negative, negative) --> negative 1480 if (Opcode == Instruction::Add) { 1481 if (Known2.isNonNegative() && Known3.isNonNegative()) 1482 Known.makeNonNegative(); 1483 else if (Known2.isNegative() && Known3.isNegative()) 1484 Known.makeNegative(); 1485 } 1486 1487 // (sub nsw non-negative, negative) --> non-negative 1488 // (sub nsw negative, non-negative) --> negative 1489 else if (Opcode == Instruction::Sub && LL == I) { 1490 if (Known2.isNonNegative() && Known3.isNegative()) 1491 Known.makeNonNegative(); 1492 else if (Known2.isNegative() && Known3.isNonNegative()) 1493 Known.makeNegative(); 1494 } 1495 1496 // (mul nsw non-negative, non-negative) --> non-negative 1497 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1498 Known3.isNonNegative()) 1499 Known.makeNonNegative(); 1500 } 1501 1502 break; 1503 } 1504 } 1505 } 1506 1507 // Unreachable blocks may have zero-operand PHI nodes. 1508 if (P->getNumIncomingValues() == 0) 1509 break; 1510 1511 // Otherwise take the unions of the known bit sets of the operands, 1512 // taking conservative care to avoid excessive recursion. 1513 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1514 // Skip if every incoming value references to ourself. 1515 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1516 break; 1517 1518 Known.Zero.setAllBits(); 1519 Known.One.setAllBits(); 1520 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1521 Value *IncValue = P->getIncomingValue(u); 1522 // Skip direct self references. 1523 if (IncValue == P) continue; 1524 1525 // Change the context instruction to the "edge" that flows into the 1526 // phi. This is important because that is where the value is actually 1527 // "evaluated" even though it is used later somewhere else. (see also 1528 // D69571). 1529 Query RecQ = Q; 1530 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1531 1532 Known2 = KnownBits(BitWidth); 1533 // Recurse, but cap the recursion to one level, because we don't 1534 // want to waste time spinning around in loops. 1535 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1536 Known = KnownBits::commonBits(Known, Known2); 1537 // If all bits have been ruled out, there's no need to check 1538 // more operands. 1539 if (Known.isUnknown()) 1540 break; 1541 } 1542 } 1543 break; 1544 } 1545 case Instruction::Call: 1546 case Instruction::Invoke: 1547 // If range metadata is attached to this call, set known bits from that, 1548 // and then intersect with known bits based on other properties of the 1549 // function. 1550 if (MDNode *MD = 1551 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1552 computeKnownBitsFromRangeMetadata(*MD, Known); 1553 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1554 computeKnownBits(RV, Known2, Depth + 1, Q); 1555 Known.Zero |= Known2.Zero; 1556 Known.One |= Known2.One; 1557 } 1558 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1559 switch (II->getIntrinsicID()) { 1560 default: break; 1561 case Intrinsic::abs: { 1562 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1563 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1564 Known = Known2.abs(IntMinIsPoison); 1565 break; 1566 } 1567 case Intrinsic::bitreverse: 1568 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1569 Known.Zero |= Known2.Zero.reverseBits(); 1570 Known.One |= Known2.One.reverseBits(); 1571 break; 1572 case Intrinsic::bswap: 1573 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1574 Known.Zero |= Known2.Zero.byteSwap(); 1575 Known.One |= Known2.One.byteSwap(); 1576 break; 1577 case Intrinsic::ctlz: { 1578 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1579 // If we have a known 1, its position is our upper bound. 1580 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1581 // If this call is undefined for 0, the result will be less than 2^n. 1582 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1583 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1584 unsigned LowBits = Log2_32(PossibleLZ)+1; 1585 Known.Zero.setBitsFrom(LowBits); 1586 break; 1587 } 1588 case Intrinsic::cttz: { 1589 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1590 // If we have a known 1, its position is our upper bound. 1591 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1592 // If this call is undefined for 0, the result will be less than 2^n. 1593 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1594 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1595 unsigned LowBits = Log2_32(PossibleTZ)+1; 1596 Known.Zero.setBitsFrom(LowBits); 1597 break; 1598 } 1599 case Intrinsic::ctpop: { 1600 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1601 // We can bound the space the count needs. Also, bits known to be zero 1602 // can't contribute to the population. 1603 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1604 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1605 Known.Zero.setBitsFrom(LowBits); 1606 // TODO: we could bound KnownOne using the lower bound on the number 1607 // of bits which might be set provided by popcnt KnownOne2. 1608 break; 1609 } 1610 case Intrinsic::fshr: 1611 case Intrinsic::fshl: { 1612 const APInt *SA; 1613 if (!match(I->getOperand(2), m_APInt(SA))) 1614 break; 1615 1616 // Normalize to funnel shift left. 1617 uint64_t ShiftAmt = SA->urem(BitWidth); 1618 if (II->getIntrinsicID() == Intrinsic::fshr) 1619 ShiftAmt = BitWidth - ShiftAmt; 1620 1621 KnownBits Known3(BitWidth); 1622 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1623 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1624 1625 Known.Zero = 1626 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1627 Known.One = 1628 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1629 break; 1630 } 1631 case Intrinsic::uadd_sat: 1632 case Intrinsic::usub_sat: { 1633 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1634 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1635 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1636 1637 // Add: Leading ones of either operand are preserved. 1638 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1639 // as leading zeros in the result. 1640 unsigned LeadingKnown; 1641 if (IsAdd) 1642 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1643 Known2.countMinLeadingOnes()); 1644 else 1645 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1646 Known2.countMinLeadingOnes()); 1647 1648 Known = KnownBits::computeForAddSub( 1649 IsAdd, /* NSW */ false, Known, Known2); 1650 1651 // We select between the operation result and all-ones/zero 1652 // respectively, so we can preserve known ones/zeros. 1653 if (IsAdd) { 1654 Known.One.setHighBits(LeadingKnown); 1655 Known.Zero.clearAllBits(); 1656 } else { 1657 Known.Zero.setHighBits(LeadingKnown); 1658 Known.One.clearAllBits(); 1659 } 1660 break; 1661 } 1662 case Intrinsic::umin: 1663 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1664 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1665 Known = KnownBits::umin(Known, Known2); 1666 break; 1667 case Intrinsic::umax: 1668 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1669 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1670 Known = KnownBits::umax(Known, Known2); 1671 break; 1672 case Intrinsic::smin: 1673 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1674 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1675 Known = KnownBits::smin(Known, Known2); 1676 break; 1677 case Intrinsic::smax: 1678 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1679 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1680 Known = KnownBits::smax(Known, Known2); 1681 break; 1682 case Intrinsic::x86_sse42_crc32_64_64: 1683 Known.Zero.setBitsFrom(32); 1684 break; 1685 } 1686 } 1687 break; 1688 case Instruction::ShuffleVector: { 1689 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1690 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1691 if (!Shuf) { 1692 Known.resetAll(); 1693 return; 1694 } 1695 // For undef elements, we don't know anything about the common state of 1696 // the shuffle result. 1697 APInt DemandedLHS, DemandedRHS; 1698 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1699 Known.resetAll(); 1700 return; 1701 } 1702 Known.One.setAllBits(); 1703 Known.Zero.setAllBits(); 1704 if (!!DemandedLHS) { 1705 const Value *LHS = Shuf->getOperand(0); 1706 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1707 // If we don't know any bits, early out. 1708 if (Known.isUnknown()) 1709 break; 1710 } 1711 if (!!DemandedRHS) { 1712 const Value *RHS = Shuf->getOperand(1); 1713 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1714 Known = KnownBits::commonBits(Known, Known2); 1715 } 1716 break; 1717 } 1718 case Instruction::InsertElement: { 1719 const Value *Vec = I->getOperand(0); 1720 const Value *Elt = I->getOperand(1); 1721 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1722 // Early out if the index is non-constant or out-of-range. 1723 unsigned NumElts = DemandedElts.getBitWidth(); 1724 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1725 Known.resetAll(); 1726 return; 1727 } 1728 Known.One.setAllBits(); 1729 Known.Zero.setAllBits(); 1730 unsigned EltIdx = CIdx->getZExtValue(); 1731 // Do we demand the inserted element? 1732 if (DemandedElts[EltIdx]) { 1733 computeKnownBits(Elt, Known, Depth + 1, Q); 1734 // If we don't know any bits, early out. 1735 if (Known.isUnknown()) 1736 break; 1737 } 1738 // We don't need the base vector element that has been inserted. 1739 APInt DemandedVecElts = DemandedElts; 1740 DemandedVecElts.clearBit(EltIdx); 1741 if (!!DemandedVecElts) { 1742 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1743 Known = KnownBits::commonBits(Known, Known2); 1744 } 1745 break; 1746 } 1747 case Instruction::ExtractElement: { 1748 // Look through extract element. If the index is non-constant or 1749 // out-of-range demand all elements, otherwise just the extracted element. 1750 const Value *Vec = I->getOperand(0); 1751 const Value *Idx = I->getOperand(1); 1752 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1753 if (isa<ScalableVectorType>(Vec->getType())) { 1754 // FIXME: there's probably *something* we can do with scalable vectors 1755 Known.resetAll(); 1756 break; 1757 } 1758 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1759 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1760 if (CIdx && CIdx->getValue().ult(NumElts)) 1761 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1762 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1763 break; 1764 } 1765 case Instruction::ExtractValue: 1766 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1767 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1768 if (EVI->getNumIndices() != 1) break; 1769 if (EVI->getIndices()[0] == 0) { 1770 switch (II->getIntrinsicID()) { 1771 default: break; 1772 case Intrinsic::uadd_with_overflow: 1773 case Intrinsic::sadd_with_overflow: 1774 computeKnownBitsAddSub(true, II->getArgOperand(0), 1775 II->getArgOperand(1), false, DemandedElts, 1776 Known, Known2, Depth, Q); 1777 break; 1778 case Intrinsic::usub_with_overflow: 1779 case Intrinsic::ssub_with_overflow: 1780 computeKnownBitsAddSub(false, II->getArgOperand(0), 1781 II->getArgOperand(1), false, DemandedElts, 1782 Known, Known2, Depth, Q); 1783 break; 1784 case Intrinsic::umul_with_overflow: 1785 case Intrinsic::smul_with_overflow: 1786 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1787 DemandedElts, Known, Known2, Depth, Q); 1788 break; 1789 } 1790 } 1791 } 1792 break; 1793 case Instruction::Freeze: 1794 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1795 Depth + 1)) 1796 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1797 break; 1798 } 1799 } 1800 1801 /// Determine which bits of V are known to be either zero or one and return 1802 /// them. 1803 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1804 unsigned Depth, const Query &Q) { 1805 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1806 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1807 return Known; 1808 } 1809 1810 /// Determine which bits of V are known to be either zero or one and return 1811 /// them. 1812 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1813 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1814 computeKnownBits(V, Known, Depth, Q); 1815 return Known; 1816 } 1817 1818 /// Determine which bits of V are known to be either zero or one and return 1819 /// them in the Known bit set. 1820 /// 1821 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1822 /// we cannot optimize based on the assumption that it is zero without changing 1823 /// it to be an explicit zero. If we don't change it to zero, other code could 1824 /// optimized based on the contradictory assumption that it is non-zero. 1825 /// Because instcombine aggressively folds operations with undef args anyway, 1826 /// this won't lose us code quality. 1827 /// 1828 /// This function is defined on values with integer type, values with pointer 1829 /// type, and vectors of integers. In the case 1830 /// where V is a vector, known zero, and known one values are the 1831 /// same width as the vector element, and the bit is set only if it is true 1832 /// for all of the demanded elements in the vector specified by DemandedElts. 1833 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1834 KnownBits &Known, unsigned Depth, const Query &Q) { 1835 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1836 // No demanded elts or V is a scalable vector, better to assume we don't 1837 // know anything. 1838 Known.resetAll(); 1839 return; 1840 } 1841 1842 assert(V && "No Value?"); 1843 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1844 1845 #ifndef NDEBUG 1846 Type *Ty = V->getType(); 1847 unsigned BitWidth = Known.getBitWidth(); 1848 1849 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1850 "Not integer or pointer type!"); 1851 1852 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1853 assert( 1854 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1855 "DemandedElt width should equal the fixed vector number of elements"); 1856 } else { 1857 assert(DemandedElts == APInt(1, 1) && 1858 "DemandedElt width should be 1 for scalars"); 1859 } 1860 1861 Type *ScalarTy = Ty->getScalarType(); 1862 if (ScalarTy->isPointerTy()) { 1863 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1864 "V and Known should have same BitWidth"); 1865 } else { 1866 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1867 "V and Known should have same BitWidth"); 1868 } 1869 #endif 1870 1871 const APInt *C; 1872 if (match(V, m_APInt(C))) { 1873 // We know all of the bits for a scalar constant or a splat vector constant! 1874 Known = KnownBits::makeConstant(*C); 1875 return; 1876 } 1877 // Null and aggregate-zero are all-zeros. 1878 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1879 Known.setAllZero(); 1880 return; 1881 } 1882 // Handle a constant vector by taking the intersection of the known bits of 1883 // each element. 1884 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1885 // We know that CDV must be a vector of integers. Take the intersection of 1886 // each element. 1887 Known.Zero.setAllBits(); Known.One.setAllBits(); 1888 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1889 if (!DemandedElts[i]) 1890 continue; 1891 APInt Elt = CDV->getElementAsAPInt(i); 1892 Known.Zero &= ~Elt; 1893 Known.One &= Elt; 1894 } 1895 return; 1896 } 1897 1898 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1899 // We know that CV must be a vector of integers. Take the intersection of 1900 // each element. 1901 Known.Zero.setAllBits(); Known.One.setAllBits(); 1902 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1903 if (!DemandedElts[i]) 1904 continue; 1905 Constant *Element = CV->getAggregateElement(i); 1906 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1907 if (!ElementCI) { 1908 Known.resetAll(); 1909 return; 1910 } 1911 const APInt &Elt = ElementCI->getValue(); 1912 Known.Zero &= ~Elt; 1913 Known.One &= Elt; 1914 } 1915 return; 1916 } 1917 1918 // Start out not knowing anything. 1919 Known.resetAll(); 1920 1921 // We can't imply anything about undefs. 1922 if (isa<UndefValue>(V)) 1923 return; 1924 1925 // There's no point in looking through other users of ConstantData for 1926 // assumptions. Confirm that we've handled them all. 1927 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1928 1929 // All recursive calls that increase depth must come after this. 1930 if (Depth == MaxAnalysisRecursionDepth) 1931 return; 1932 1933 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1934 // the bits of its aliasee. 1935 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1936 if (!GA->isInterposable()) 1937 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1938 return; 1939 } 1940 1941 if (const Operator *I = dyn_cast<Operator>(V)) 1942 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1943 1944 // Aligned pointers have trailing zeros - refine Known.Zero set 1945 if (isa<PointerType>(V->getType())) { 1946 Align Alignment = V->getPointerAlignment(Q.DL); 1947 Known.Zero.setLowBits(Log2(Alignment)); 1948 } 1949 1950 // computeKnownBitsFromAssume strictly refines Known. 1951 // Therefore, we run them after computeKnownBitsFromOperator. 1952 1953 // Check whether a nearby assume intrinsic can determine some known bits. 1954 computeKnownBitsFromAssume(V, Known, Depth, Q); 1955 1956 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1957 } 1958 1959 /// Return true if the given value is known to have exactly one 1960 /// bit set when defined. For vectors return true if every element is known to 1961 /// be a power of two when defined. Supports values with integer or pointer 1962 /// types and vectors of integers. 1963 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1964 const Query &Q) { 1965 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1966 1967 // Attempt to match against constants. 1968 if (OrZero && match(V, m_Power2OrZero())) 1969 return true; 1970 if (match(V, m_Power2())) 1971 return true; 1972 1973 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1974 // it is shifted off the end then the result is undefined. 1975 if (match(V, m_Shl(m_One(), m_Value()))) 1976 return true; 1977 1978 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1979 // the bottom. If it is shifted off the bottom then the result is undefined. 1980 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1981 return true; 1982 1983 // The remaining tests are all recursive, so bail out if we hit the limit. 1984 if (Depth++ == MaxAnalysisRecursionDepth) 1985 return false; 1986 1987 Value *X = nullptr, *Y = nullptr; 1988 // A shift left or a logical shift right of a power of two is a power of two 1989 // or zero. 1990 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1991 match(V, m_LShr(m_Value(X), m_Value())))) 1992 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1993 1994 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1995 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1996 1997 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1998 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1999 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2000 2001 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2002 // A power of two and'd with anything is a power of two or zero. 2003 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2004 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2005 return true; 2006 // X & (-X) is always a power of two or zero. 2007 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2008 return true; 2009 return false; 2010 } 2011 2012 // Adding a power-of-two or zero to the same power-of-two or zero yields 2013 // either the original power-of-two, a larger power-of-two or zero. 2014 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2015 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2016 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2017 Q.IIQ.hasNoSignedWrap(VOBO)) { 2018 if (match(X, m_And(m_Specific(Y), m_Value())) || 2019 match(X, m_And(m_Value(), m_Specific(Y)))) 2020 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2021 return true; 2022 if (match(Y, m_And(m_Specific(X), m_Value())) || 2023 match(Y, m_And(m_Value(), m_Specific(X)))) 2024 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2025 return true; 2026 2027 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2028 KnownBits LHSBits(BitWidth); 2029 computeKnownBits(X, LHSBits, Depth, Q); 2030 2031 KnownBits RHSBits(BitWidth); 2032 computeKnownBits(Y, RHSBits, Depth, Q); 2033 // If i8 V is a power of two or zero: 2034 // ZeroBits: 1 1 1 0 1 1 1 1 2035 // ~ZeroBits: 0 0 0 1 0 0 0 0 2036 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2037 // If OrZero isn't set, we cannot give back a zero result. 2038 // Make sure either the LHS or RHS has a bit set. 2039 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2040 return true; 2041 } 2042 } 2043 2044 // An exact divide or right shift can only shift off zero bits, so the result 2045 // is a power of two only if the first operand is a power of two and not 2046 // copying a sign bit (sdiv int_min, 2). 2047 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2048 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2049 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2050 Depth, Q); 2051 } 2052 2053 return false; 2054 } 2055 2056 /// Test whether a GEP's result is known to be non-null. 2057 /// 2058 /// Uses properties inherent in a GEP to try to determine whether it is known 2059 /// to be non-null. 2060 /// 2061 /// Currently this routine does not support vector GEPs. 2062 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2063 const Query &Q) { 2064 const Function *F = nullptr; 2065 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2066 F = I->getFunction(); 2067 2068 if (!GEP->isInBounds() || 2069 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2070 return false; 2071 2072 // FIXME: Support vector-GEPs. 2073 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2074 2075 // If the base pointer is non-null, we cannot walk to a null address with an 2076 // inbounds GEP in address space zero. 2077 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2078 return true; 2079 2080 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2081 // If so, then the GEP cannot produce a null pointer, as doing so would 2082 // inherently violate the inbounds contract within address space zero. 2083 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2084 GTI != GTE; ++GTI) { 2085 // Struct types are easy -- they must always be indexed by a constant. 2086 if (StructType *STy = GTI.getStructTypeOrNull()) { 2087 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2088 unsigned ElementIdx = OpC->getZExtValue(); 2089 const StructLayout *SL = Q.DL.getStructLayout(STy); 2090 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2091 if (ElementOffset > 0) 2092 return true; 2093 continue; 2094 } 2095 2096 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2097 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2098 continue; 2099 2100 // Fast path the constant operand case both for efficiency and so we don't 2101 // increment Depth when just zipping down an all-constant GEP. 2102 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2103 if (!OpC->isZero()) 2104 return true; 2105 continue; 2106 } 2107 2108 // We post-increment Depth here because while isKnownNonZero increments it 2109 // as well, when we pop back up that increment won't persist. We don't want 2110 // to recurse 10k times just because we have 10k GEP operands. We don't 2111 // bail completely out because we want to handle constant GEPs regardless 2112 // of depth. 2113 if (Depth++ >= MaxAnalysisRecursionDepth) 2114 continue; 2115 2116 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2117 return true; 2118 } 2119 2120 return false; 2121 } 2122 2123 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2124 const Instruction *CtxI, 2125 const DominatorTree *DT) { 2126 if (isa<Constant>(V)) 2127 return false; 2128 2129 if (!CtxI || !DT) 2130 return false; 2131 2132 unsigned NumUsesExplored = 0; 2133 for (auto *U : V->users()) { 2134 // Avoid massive lists 2135 if (NumUsesExplored >= DomConditionsMaxUses) 2136 break; 2137 NumUsesExplored++; 2138 2139 // If the value is used as an argument to a call or invoke, then argument 2140 // attributes may provide an answer about null-ness. 2141 if (const auto *CB = dyn_cast<CallBase>(U)) 2142 if (auto *CalledFunc = CB->getCalledFunction()) 2143 for (const Argument &Arg : CalledFunc->args()) 2144 if (CB->getArgOperand(Arg.getArgNo()) == V && 2145 Arg.hasNonNullAttr(/* AllowUndefOrPoison */ false) && 2146 DT->dominates(CB, CtxI)) 2147 return true; 2148 2149 // If the value is used as a load/store, then the pointer must be non null. 2150 if (V == getLoadStorePointerOperand(U)) { 2151 const Instruction *I = cast<Instruction>(U); 2152 if (!NullPointerIsDefined(I->getFunction(), 2153 V->getType()->getPointerAddressSpace()) && 2154 DT->dominates(I, CtxI)) 2155 return true; 2156 } 2157 2158 // Consider only compare instructions uniquely controlling a branch 2159 Value *RHS; 2160 CmpInst::Predicate Pred; 2161 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2162 continue; 2163 2164 bool NonNullIfTrue; 2165 if (cmpExcludesZero(Pred, RHS)) 2166 NonNullIfTrue = true; 2167 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2168 NonNullIfTrue = false; 2169 else 2170 continue; 2171 2172 SmallVector<const User *, 4> WorkList; 2173 SmallPtrSet<const User *, 4> Visited; 2174 for (auto *CmpU : U->users()) { 2175 assert(WorkList.empty() && "Should be!"); 2176 if (Visited.insert(CmpU).second) 2177 WorkList.push_back(CmpU); 2178 2179 while (!WorkList.empty()) { 2180 auto *Curr = WorkList.pop_back_val(); 2181 2182 // If a user is an AND, add all its users to the work list. We only 2183 // propagate "pred != null" condition through AND because it is only 2184 // correct to assume that all conditions of AND are met in true branch. 2185 // TODO: Support similar logic of OR and EQ predicate? 2186 if (NonNullIfTrue) 2187 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2188 for (auto *CurrU : Curr->users()) 2189 if (Visited.insert(CurrU).second) 2190 WorkList.push_back(CurrU); 2191 continue; 2192 } 2193 2194 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2195 assert(BI->isConditional() && "uses a comparison!"); 2196 2197 BasicBlock *NonNullSuccessor = 2198 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2199 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2200 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2201 return true; 2202 } else if (NonNullIfTrue && isGuard(Curr) && 2203 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2204 return true; 2205 } 2206 } 2207 } 2208 } 2209 2210 return false; 2211 } 2212 2213 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2214 /// ensure that the value it's attached to is never Value? 'RangeType' is 2215 /// is the type of the value described by the range. 2216 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2217 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2218 assert(NumRanges >= 1); 2219 for (unsigned i = 0; i < NumRanges; ++i) { 2220 ConstantInt *Lower = 2221 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2222 ConstantInt *Upper = 2223 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2224 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2225 if (Range.contains(Value)) 2226 return false; 2227 } 2228 return true; 2229 } 2230 2231 /// Return true if the given value is known to be non-zero when defined. For 2232 /// vectors, return true if every demanded element is known to be non-zero when 2233 /// defined. For pointers, if the context instruction and dominator tree are 2234 /// specified, perform context-sensitive analysis and return true if the 2235 /// pointer couldn't possibly be null at the specified instruction. 2236 /// Supports values with integer or pointer type and vectors of integers. 2237 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2238 const Query &Q) { 2239 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2240 // vector 2241 if (isa<ScalableVectorType>(V->getType())) 2242 return false; 2243 2244 if (auto *C = dyn_cast<Constant>(V)) { 2245 if (C->isNullValue()) 2246 return false; 2247 if (isa<ConstantInt>(C)) 2248 // Must be non-zero due to null test above. 2249 return true; 2250 2251 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2252 // See the comment for IntToPtr/PtrToInt instructions below. 2253 if (CE->getOpcode() == Instruction::IntToPtr || 2254 CE->getOpcode() == Instruction::PtrToInt) 2255 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2256 .getFixedSize() <= 2257 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2258 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2259 } 2260 2261 // For constant vectors, check that all elements are undefined or known 2262 // non-zero to determine that the whole vector is known non-zero. 2263 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2264 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2265 if (!DemandedElts[i]) 2266 continue; 2267 Constant *Elt = C->getAggregateElement(i); 2268 if (!Elt || Elt->isNullValue()) 2269 return false; 2270 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2271 return false; 2272 } 2273 return true; 2274 } 2275 2276 // A global variable in address space 0 is non null unless extern weak 2277 // or an absolute symbol reference. Other address spaces may have null as a 2278 // valid address for a global, so we can't assume anything. 2279 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2280 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2281 GV->getType()->getAddressSpace() == 0) 2282 return true; 2283 } else 2284 return false; 2285 } 2286 2287 if (auto *I = dyn_cast<Instruction>(V)) { 2288 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2289 // If the possible ranges don't contain zero, then the value is 2290 // definitely non-zero. 2291 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2292 const APInt ZeroValue(Ty->getBitWidth(), 0); 2293 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2294 return true; 2295 } 2296 } 2297 } 2298 2299 if (isKnownNonZeroFromAssume(V, Q)) 2300 return true; 2301 2302 // Some of the tests below are recursive, so bail out if we hit the limit. 2303 if (Depth++ >= MaxAnalysisRecursionDepth) 2304 return false; 2305 2306 // Check for pointer simplifications. 2307 2308 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2309 // Alloca never returns null, malloc might. 2310 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2311 return true; 2312 2313 // A byval, inalloca may not be null in a non-default addres space. A 2314 // nonnull argument is assumed never 0. 2315 if (const Argument *A = dyn_cast<Argument>(V)) { 2316 if (((A->hasPassPointeeByValueCopyAttr() && 2317 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2318 A->hasNonNullAttr())) 2319 return true; 2320 } 2321 2322 // A Load tagged with nonnull metadata is never null. 2323 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2324 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2325 return true; 2326 2327 if (const auto *Call = dyn_cast<CallBase>(V)) { 2328 if (Call->isReturnNonNull()) 2329 return true; 2330 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2331 return isKnownNonZero(RP, Depth, Q); 2332 } 2333 } 2334 2335 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2336 return true; 2337 2338 // Check for recursive pointer simplifications. 2339 if (V->getType()->isPointerTy()) { 2340 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2341 // do not alter the value, or at least not the nullness property of the 2342 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2343 // 2344 // Note that we have to take special care to avoid looking through 2345 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2346 // as casts that can alter the value, e.g., AddrSpaceCasts. 2347 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2348 return isGEPKnownNonNull(GEP, Depth, Q); 2349 2350 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2351 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2352 2353 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2354 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2355 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2356 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2357 } 2358 2359 // Similar to int2ptr above, we can look through ptr2int here if the cast 2360 // is a no-op or an extend and not a truncate. 2361 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2362 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2363 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2364 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2365 2366 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2367 2368 // X | Y != 0 if X != 0 or Y != 0. 2369 Value *X = nullptr, *Y = nullptr; 2370 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2371 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2372 isKnownNonZero(Y, DemandedElts, Depth, Q); 2373 2374 // ext X != 0 if X != 0. 2375 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2376 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2377 2378 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2379 // if the lowest bit is shifted off the end. 2380 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2381 // shl nuw can't remove any non-zero bits. 2382 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2383 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2384 return isKnownNonZero(X, Depth, Q); 2385 2386 KnownBits Known(BitWidth); 2387 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2388 if (Known.One[0]) 2389 return true; 2390 } 2391 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2392 // defined if the sign bit is shifted off the end. 2393 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2394 // shr exact can only shift out zero bits. 2395 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2396 if (BO->isExact()) 2397 return isKnownNonZero(X, Depth, Q); 2398 2399 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2400 if (Known.isNegative()) 2401 return true; 2402 2403 // If the shifter operand is a constant, and all of the bits shifted 2404 // out are known to be zero, and X is known non-zero then at least one 2405 // non-zero bit must remain. 2406 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2407 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2408 // Is there a known one in the portion not shifted out? 2409 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2410 return true; 2411 // Are all the bits to be shifted out known zero? 2412 if (Known.countMinTrailingZeros() >= ShiftVal) 2413 return isKnownNonZero(X, DemandedElts, Depth, Q); 2414 } 2415 } 2416 // div exact can only produce a zero if the dividend is zero. 2417 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2418 return isKnownNonZero(X, DemandedElts, Depth, Q); 2419 } 2420 // X + Y. 2421 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2422 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2423 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2424 2425 // If X and Y are both non-negative (as signed values) then their sum is not 2426 // zero unless both X and Y are zero. 2427 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2428 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2429 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2430 return true; 2431 2432 // If X and Y are both negative (as signed values) then their sum is not 2433 // zero unless both X and Y equal INT_MIN. 2434 if (XKnown.isNegative() && YKnown.isNegative()) { 2435 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2436 // The sign bit of X is set. If some other bit is set then X is not equal 2437 // to INT_MIN. 2438 if (XKnown.One.intersects(Mask)) 2439 return true; 2440 // The sign bit of Y is set. If some other bit is set then Y is not equal 2441 // to INT_MIN. 2442 if (YKnown.One.intersects(Mask)) 2443 return true; 2444 } 2445 2446 // The sum of a non-negative number and a power of two is not zero. 2447 if (XKnown.isNonNegative() && 2448 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2449 return true; 2450 if (YKnown.isNonNegative() && 2451 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2452 return true; 2453 } 2454 // X * Y. 2455 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2456 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2457 // If X and Y are non-zero then so is X * Y as long as the multiplication 2458 // does not overflow. 2459 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2460 isKnownNonZero(X, DemandedElts, Depth, Q) && 2461 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2462 return true; 2463 } 2464 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2465 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2466 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2467 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2468 return true; 2469 } 2470 // PHI 2471 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2472 // Try and detect a recurrence that monotonically increases from a 2473 // starting value, as these are common as induction variables. 2474 if (PN->getNumIncomingValues() == 2) { 2475 Value *Start = PN->getIncomingValue(0); 2476 Value *Induction = PN->getIncomingValue(1); 2477 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2478 std::swap(Start, Induction); 2479 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2480 if (!C->isZero() && !C->isNegative()) { 2481 ConstantInt *X; 2482 if (Q.IIQ.UseInstrInfo && 2483 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2484 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2485 !X->isNegative()) 2486 return true; 2487 } 2488 } 2489 } 2490 // Check if all incoming values are non-zero using recursion. 2491 Query RecQ = Q; 2492 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2493 return llvm::all_of(PN->operands(), [&](const Use &U) { 2494 if (U.get() == PN) 2495 return true; 2496 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2497 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2498 }); 2499 } 2500 // ExtractElement 2501 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2502 const Value *Vec = EEI->getVectorOperand(); 2503 const Value *Idx = EEI->getIndexOperand(); 2504 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2505 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2506 unsigned NumElts = VecTy->getNumElements(); 2507 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2508 if (CIdx && CIdx->getValue().ult(NumElts)) 2509 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2510 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2511 } 2512 } 2513 // Freeze 2514 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2515 auto *Op = FI->getOperand(0); 2516 if (isKnownNonZero(Op, Depth, Q) && 2517 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2518 return true; 2519 } 2520 2521 KnownBits Known(BitWidth); 2522 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2523 return Known.One != 0; 2524 } 2525 2526 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2527 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2528 // vector 2529 if (isa<ScalableVectorType>(V->getType())) 2530 return false; 2531 2532 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2533 APInt DemandedElts = 2534 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2535 return isKnownNonZero(V, DemandedElts, Depth, Q); 2536 } 2537 2538 /// Return true if V2 == V1 + X, where X is known non-zero. 2539 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2540 const Query &Q) { 2541 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2542 if (!BO || BO->getOpcode() != Instruction::Add) 2543 return false; 2544 Value *Op = nullptr; 2545 if (V2 == BO->getOperand(0)) 2546 Op = BO->getOperand(1); 2547 else if (V2 == BO->getOperand(1)) 2548 Op = BO->getOperand(0); 2549 else 2550 return false; 2551 return isKnownNonZero(Op, Depth + 1, Q); 2552 } 2553 2554 2555 /// Return true if it is known that V1 != V2. 2556 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2557 const Query &Q) { 2558 if (V1 == V2) 2559 return false; 2560 if (V1->getType() != V2->getType()) 2561 // We can't look through casts yet. 2562 return false; 2563 2564 if (Depth >= MaxAnalysisRecursionDepth) 2565 return false; 2566 2567 // See if we can recurse through (exactly one of) our operands. This 2568 // requires our operation be 1-to-1 and map every input value to exactly 2569 // one output value. Such an operation is invertible. 2570 auto *O1 = dyn_cast<Operator>(V1); 2571 auto *O2 = dyn_cast<Operator>(V2); 2572 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2573 switch (O1->getOpcode()) { 2574 default: break; 2575 case Instruction::Add: 2576 case Instruction::Sub: 2577 // Assume operand order has been canonicalized 2578 if (O1->getOperand(0) == O2->getOperand(0)) 2579 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2580 Depth + 1, Q); 2581 if (O1->getOperand(1) == O2->getOperand(1)) 2582 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2583 Depth + 1, Q); 2584 break; 2585 case Instruction::Mul: { 2586 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2587 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2588 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2589 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2590 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2591 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2592 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2593 break; 2594 2595 // Assume operand order has been canonicalized 2596 if (O1->getOperand(1) == O2->getOperand(1) && 2597 isa<ConstantInt>(O1->getOperand(1)) && 2598 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2599 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2600 Depth + 1, Q); 2601 break; 2602 } 2603 case Instruction::SExt: 2604 case Instruction::ZExt: 2605 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2606 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2607 Depth + 1, Q); 2608 break; 2609 }; 2610 } 2611 2612 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2613 return true; 2614 2615 if (V1->getType()->isIntOrIntVectorTy()) { 2616 // Are any known bits in V1 contradictory to known bits in V2? If V1 2617 // has a known zero where V2 has a known one, they must not be equal. 2618 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2619 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2620 2621 if (Known1.Zero.intersects(Known2.One) || 2622 Known2.Zero.intersects(Known1.One)) 2623 return true; 2624 } 2625 return false; 2626 } 2627 2628 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2629 /// simplify operations downstream. Mask is known to be zero for bits that V 2630 /// cannot have. 2631 /// 2632 /// This function is defined on values with integer type, values with pointer 2633 /// type, and vectors of integers. In the case 2634 /// where V is a vector, the mask, known zero, and known one values are the 2635 /// same width as the vector element, and the bit is set only if it is true 2636 /// for all of the elements in the vector. 2637 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2638 const Query &Q) { 2639 KnownBits Known(Mask.getBitWidth()); 2640 computeKnownBits(V, Known, Depth, Q); 2641 return Mask.isSubsetOf(Known.Zero); 2642 } 2643 2644 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2645 // Returns the input and lower/upper bounds. 2646 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2647 const APInt *&CLow, const APInt *&CHigh) { 2648 assert(isa<Operator>(Select) && 2649 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2650 "Input should be a Select!"); 2651 2652 const Value *LHS = nullptr, *RHS = nullptr; 2653 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2654 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2655 return false; 2656 2657 if (!match(RHS, m_APInt(CLow))) 2658 return false; 2659 2660 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2661 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2662 if (getInverseMinMaxFlavor(SPF) != SPF2) 2663 return false; 2664 2665 if (!match(RHS2, m_APInt(CHigh))) 2666 return false; 2667 2668 if (SPF == SPF_SMIN) 2669 std::swap(CLow, CHigh); 2670 2671 In = LHS2; 2672 return CLow->sle(*CHigh); 2673 } 2674 2675 /// For vector constants, loop over the elements and find the constant with the 2676 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2677 /// or if any element was not analyzed; otherwise, return the count for the 2678 /// element with the minimum number of sign bits. 2679 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2680 const APInt &DemandedElts, 2681 unsigned TyBits) { 2682 const auto *CV = dyn_cast<Constant>(V); 2683 if (!CV || !isa<FixedVectorType>(CV->getType())) 2684 return 0; 2685 2686 unsigned MinSignBits = TyBits; 2687 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2688 for (unsigned i = 0; i != NumElts; ++i) { 2689 if (!DemandedElts[i]) 2690 continue; 2691 // If we find a non-ConstantInt, bail out. 2692 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2693 if (!Elt) 2694 return 0; 2695 2696 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2697 } 2698 2699 return MinSignBits; 2700 } 2701 2702 static unsigned ComputeNumSignBitsImpl(const Value *V, 2703 const APInt &DemandedElts, 2704 unsigned Depth, const Query &Q); 2705 2706 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2707 unsigned Depth, const Query &Q) { 2708 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2709 assert(Result > 0 && "At least one sign bit needs to be present!"); 2710 return Result; 2711 } 2712 2713 /// Return the number of times the sign bit of the register is replicated into 2714 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2715 /// (itself), but other cases can give us information. For example, immediately 2716 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2717 /// other, so we return 3. For vectors, return the number of sign bits for the 2718 /// vector element with the minimum number of known sign bits of the demanded 2719 /// elements in the vector specified by DemandedElts. 2720 static unsigned ComputeNumSignBitsImpl(const Value *V, 2721 const APInt &DemandedElts, 2722 unsigned Depth, const Query &Q) { 2723 Type *Ty = V->getType(); 2724 2725 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2726 // vector 2727 if (isa<ScalableVectorType>(Ty)) 2728 return 1; 2729 2730 #ifndef NDEBUG 2731 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2732 2733 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2734 assert( 2735 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2736 "DemandedElt width should equal the fixed vector number of elements"); 2737 } else { 2738 assert(DemandedElts == APInt(1, 1) && 2739 "DemandedElt width should be 1 for scalars"); 2740 } 2741 #endif 2742 2743 // We return the minimum number of sign bits that are guaranteed to be present 2744 // in V, so for undef we have to conservatively return 1. We don't have the 2745 // same behavior for poison though -- that's a FIXME today. 2746 2747 Type *ScalarTy = Ty->getScalarType(); 2748 unsigned TyBits = ScalarTy->isPointerTy() ? 2749 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2750 Q.DL.getTypeSizeInBits(ScalarTy); 2751 2752 unsigned Tmp, Tmp2; 2753 unsigned FirstAnswer = 1; 2754 2755 // Note that ConstantInt is handled by the general computeKnownBits case 2756 // below. 2757 2758 if (Depth == MaxAnalysisRecursionDepth) 2759 return 1; 2760 2761 if (auto *U = dyn_cast<Operator>(V)) { 2762 switch (Operator::getOpcode(V)) { 2763 default: break; 2764 case Instruction::SExt: 2765 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2766 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2767 2768 case Instruction::SDiv: { 2769 const APInt *Denominator; 2770 // sdiv X, C -> adds log(C) sign bits. 2771 if (match(U->getOperand(1), m_APInt(Denominator))) { 2772 2773 // Ignore non-positive denominator. 2774 if (!Denominator->isStrictlyPositive()) 2775 break; 2776 2777 // Calculate the incoming numerator bits. 2778 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2779 2780 // Add floor(log(C)) bits to the numerator bits. 2781 return std::min(TyBits, NumBits + Denominator->logBase2()); 2782 } 2783 break; 2784 } 2785 2786 case Instruction::SRem: { 2787 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2788 2789 const APInt *Denominator; 2790 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2791 // positive constant. This let us put a lower bound on the number of sign 2792 // bits. 2793 if (match(U->getOperand(1), m_APInt(Denominator))) { 2794 2795 // Ignore non-positive denominator. 2796 if (Denominator->isStrictlyPositive()) { 2797 // Calculate the leading sign bit constraints by examining the 2798 // denominator. Given that the denominator is positive, there are two 2799 // cases: 2800 // 2801 // 1. The numerator is positive. The result range is [0,C) and 2802 // [0,C) u< (1 << ceilLogBase2(C)). 2803 // 2804 // 2. The numerator is negative. Then the result range is (-C,0] and 2805 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2806 // 2807 // Thus a lower bound on the number of sign bits is `TyBits - 2808 // ceilLogBase2(C)`. 2809 2810 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2811 Tmp = std::max(Tmp, ResBits); 2812 } 2813 } 2814 return Tmp; 2815 } 2816 2817 case Instruction::AShr: { 2818 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2819 // ashr X, C -> adds C sign bits. Vectors too. 2820 const APInt *ShAmt; 2821 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2822 if (ShAmt->uge(TyBits)) 2823 break; // Bad shift. 2824 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2825 Tmp += ShAmtLimited; 2826 if (Tmp > TyBits) Tmp = TyBits; 2827 } 2828 return Tmp; 2829 } 2830 case Instruction::Shl: { 2831 const APInt *ShAmt; 2832 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2833 // shl destroys sign bits. 2834 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2835 if (ShAmt->uge(TyBits) || // Bad shift. 2836 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2837 Tmp2 = ShAmt->getZExtValue(); 2838 return Tmp - Tmp2; 2839 } 2840 break; 2841 } 2842 case Instruction::And: 2843 case Instruction::Or: 2844 case Instruction::Xor: // NOT is handled here. 2845 // Logical binary ops preserve the number of sign bits at the worst. 2846 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2847 if (Tmp != 1) { 2848 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2849 FirstAnswer = std::min(Tmp, Tmp2); 2850 // We computed what we know about the sign bits as our first 2851 // answer. Now proceed to the generic code that uses 2852 // computeKnownBits, and pick whichever answer is better. 2853 } 2854 break; 2855 2856 case Instruction::Select: { 2857 // If we have a clamp pattern, we know that the number of sign bits will 2858 // be the minimum of the clamp min/max range. 2859 const Value *X; 2860 const APInt *CLow, *CHigh; 2861 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2862 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2863 2864 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2865 if (Tmp == 1) break; 2866 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2867 return std::min(Tmp, Tmp2); 2868 } 2869 2870 case Instruction::Add: 2871 // Add can have at most one carry bit. Thus we know that the output 2872 // is, at worst, one more bit than the inputs. 2873 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2874 if (Tmp == 1) break; 2875 2876 // Special case decrementing a value (ADD X, -1): 2877 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2878 if (CRHS->isAllOnesValue()) { 2879 KnownBits Known(TyBits); 2880 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2881 2882 // If the input is known to be 0 or 1, the output is 0/-1, which is 2883 // all sign bits set. 2884 if ((Known.Zero | 1).isAllOnesValue()) 2885 return TyBits; 2886 2887 // If we are subtracting one from a positive number, there is no carry 2888 // out of the result. 2889 if (Known.isNonNegative()) 2890 return Tmp; 2891 } 2892 2893 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2894 if (Tmp2 == 1) break; 2895 return std::min(Tmp, Tmp2) - 1; 2896 2897 case Instruction::Sub: 2898 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2899 if (Tmp2 == 1) break; 2900 2901 // Handle NEG. 2902 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2903 if (CLHS->isNullValue()) { 2904 KnownBits Known(TyBits); 2905 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2906 // If the input is known to be 0 or 1, the output is 0/-1, which is 2907 // all sign bits set. 2908 if ((Known.Zero | 1).isAllOnesValue()) 2909 return TyBits; 2910 2911 // If the input is known to be positive (the sign bit is known clear), 2912 // the output of the NEG has the same number of sign bits as the 2913 // input. 2914 if (Known.isNonNegative()) 2915 return Tmp2; 2916 2917 // Otherwise, we treat this like a SUB. 2918 } 2919 2920 // Sub can have at most one carry bit. Thus we know that the output 2921 // is, at worst, one more bit than the inputs. 2922 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2923 if (Tmp == 1) break; 2924 return std::min(Tmp, Tmp2) - 1; 2925 2926 case Instruction::Mul: { 2927 // The output of the Mul can be at most twice the valid bits in the 2928 // inputs. 2929 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2930 if (SignBitsOp0 == 1) break; 2931 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2932 if (SignBitsOp1 == 1) break; 2933 unsigned OutValidBits = 2934 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2935 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2936 } 2937 2938 case Instruction::PHI: { 2939 const PHINode *PN = cast<PHINode>(U); 2940 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2941 // Don't analyze large in-degree PHIs. 2942 if (NumIncomingValues > 4) break; 2943 // Unreachable blocks may have zero-operand PHI nodes. 2944 if (NumIncomingValues == 0) break; 2945 2946 // Take the minimum of all incoming values. This can't infinitely loop 2947 // because of our depth threshold. 2948 Query RecQ = Q; 2949 Tmp = TyBits; 2950 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2951 if (Tmp == 1) return Tmp; 2952 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2953 Tmp = std::min( 2954 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2955 } 2956 return Tmp; 2957 } 2958 2959 case Instruction::Trunc: 2960 // FIXME: it's tricky to do anything useful for this, but it is an 2961 // important case for targets like X86. 2962 break; 2963 2964 case Instruction::ExtractElement: 2965 // Look through extract element. At the moment we keep this simple and 2966 // skip tracking the specific element. But at least we might find 2967 // information valid for all elements of the vector (for example if vector 2968 // is sign extended, shifted, etc). 2969 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2970 2971 case Instruction::ShuffleVector: { 2972 // Collect the minimum number of sign bits that are shared by every vector 2973 // element referenced by the shuffle. 2974 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2975 if (!Shuf) { 2976 // FIXME: Add support for shufflevector constant expressions. 2977 return 1; 2978 } 2979 APInt DemandedLHS, DemandedRHS; 2980 // For undef elements, we don't know anything about the common state of 2981 // the shuffle result. 2982 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2983 return 1; 2984 Tmp = std::numeric_limits<unsigned>::max(); 2985 if (!!DemandedLHS) { 2986 const Value *LHS = Shuf->getOperand(0); 2987 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2988 } 2989 // If we don't know anything, early out and try computeKnownBits 2990 // fall-back. 2991 if (Tmp == 1) 2992 break; 2993 if (!!DemandedRHS) { 2994 const Value *RHS = Shuf->getOperand(1); 2995 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2996 Tmp = std::min(Tmp, Tmp2); 2997 } 2998 // If we don't know anything, early out and try computeKnownBits 2999 // fall-back. 3000 if (Tmp == 1) 3001 break; 3002 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 3003 return Tmp; 3004 } 3005 case Instruction::Call: { 3006 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 3007 switch (II->getIntrinsicID()) { 3008 default: break; 3009 case Intrinsic::abs: 3010 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 3011 if (Tmp == 1) break; 3012 3013 // Absolute value reduces number of sign bits by at most 1. 3014 return Tmp - 1; 3015 } 3016 } 3017 } 3018 } 3019 } 3020 3021 // Finally, if we can prove that the top bits of the result are 0's or 1's, 3022 // use this information. 3023 3024 // If we can examine all elements of a vector constant successfully, we're 3025 // done (we can't do any better than that). If not, keep trying. 3026 if (unsigned VecSignBits = 3027 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 3028 return VecSignBits; 3029 3030 KnownBits Known(TyBits); 3031 computeKnownBits(V, DemandedElts, Known, Depth, Q); 3032 3033 // If we know that the sign bit is either zero or one, determine the number of 3034 // identical bits in the top of the input value. 3035 return std::max(FirstAnswer, Known.countMinSignBits()); 3036 } 3037 3038 /// This function computes the integer multiple of Base that equals V. 3039 /// If successful, it returns true and returns the multiple in 3040 /// Multiple. If unsuccessful, it returns false. It looks 3041 /// through SExt instructions only if LookThroughSExt is true. 3042 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 3043 bool LookThroughSExt, unsigned Depth) { 3044 assert(V && "No Value?"); 3045 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3046 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3047 3048 Type *T = V->getType(); 3049 3050 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3051 3052 if (Base == 0) 3053 return false; 3054 3055 if (Base == 1) { 3056 Multiple = V; 3057 return true; 3058 } 3059 3060 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3061 Constant *BaseVal = ConstantInt::get(T, Base); 3062 if (CO && CO == BaseVal) { 3063 // Multiple is 1. 3064 Multiple = ConstantInt::get(T, 1); 3065 return true; 3066 } 3067 3068 if (CI && CI->getZExtValue() % Base == 0) { 3069 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3070 return true; 3071 } 3072 3073 if (Depth == MaxAnalysisRecursionDepth) return false; 3074 3075 Operator *I = dyn_cast<Operator>(V); 3076 if (!I) return false; 3077 3078 switch (I->getOpcode()) { 3079 default: break; 3080 case Instruction::SExt: 3081 if (!LookThroughSExt) return false; 3082 // otherwise fall through to ZExt 3083 LLVM_FALLTHROUGH; 3084 case Instruction::ZExt: 3085 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3086 LookThroughSExt, Depth+1); 3087 case Instruction::Shl: 3088 case Instruction::Mul: { 3089 Value *Op0 = I->getOperand(0); 3090 Value *Op1 = I->getOperand(1); 3091 3092 if (I->getOpcode() == Instruction::Shl) { 3093 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3094 if (!Op1CI) return false; 3095 // Turn Op0 << Op1 into Op0 * 2^Op1 3096 APInt Op1Int = Op1CI->getValue(); 3097 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3098 APInt API(Op1Int.getBitWidth(), 0); 3099 API.setBit(BitToSet); 3100 Op1 = ConstantInt::get(V->getContext(), API); 3101 } 3102 3103 Value *Mul0 = nullptr; 3104 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3105 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3106 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3107 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3108 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3109 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3110 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3111 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3112 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3113 3114 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3115 Multiple = ConstantExpr::getMul(MulC, Op1C); 3116 return true; 3117 } 3118 3119 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3120 if (Mul0CI->getValue() == 1) { 3121 // V == Base * Op1, so return Op1 3122 Multiple = Op1; 3123 return true; 3124 } 3125 } 3126 3127 Value *Mul1 = nullptr; 3128 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3129 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3130 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3131 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3132 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3133 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3134 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3135 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3136 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3137 3138 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3139 Multiple = ConstantExpr::getMul(MulC, Op0C); 3140 return true; 3141 } 3142 3143 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3144 if (Mul1CI->getValue() == 1) { 3145 // V == Base * Op0, so return Op0 3146 Multiple = Op0; 3147 return true; 3148 } 3149 } 3150 } 3151 } 3152 3153 // We could not determine if V is a multiple of Base. 3154 return false; 3155 } 3156 3157 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3158 const TargetLibraryInfo *TLI) { 3159 const Function *F = CB.getCalledFunction(); 3160 if (!F) 3161 return Intrinsic::not_intrinsic; 3162 3163 if (F->isIntrinsic()) 3164 return F->getIntrinsicID(); 3165 3166 // We are going to infer semantics of a library function based on mapping it 3167 // to an LLVM intrinsic. Check that the library function is available from 3168 // this callbase and in this environment. 3169 LibFunc Func; 3170 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3171 !CB.onlyReadsMemory()) 3172 return Intrinsic::not_intrinsic; 3173 3174 switch (Func) { 3175 default: 3176 break; 3177 case LibFunc_sin: 3178 case LibFunc_sinf: 3179 case LibFunc_sinl: 3180 return Intrinsic::sin; 3181 case LibFunc_cos: 3182 case LibFunc_cosf: 3183 case LibFunc_cosl: 3184 return Intrinsic::cos; 3185 case LibFunc_exp: 3186 case LibFunc_expf: 3187 case LibFunc_expl: 3188 return Intrinsic::exp; 3189 case LibFunc_exp2: 3190 case LibFunc_exp2f: 3191 case LibFunc_exp2l: 3192 return Intrinsic::exp2; 3193 case LibFunc_log: 3194 case LibFunc_logf: 3195 case LibFunc_logl: 3196 return Intrinsic::log; 3197 case LibFunc_log10: 3198 case LibFunc_log10f: 3199 case LibFunc_log10l: 3200 return Intrinsic::log10; 3201 case LibFunc_log2: 3202 case LibFunc_log2f: 3203 case LibFunc_log2l: 3204 return Intrinsic::log2; 3205 case LibFunc_fabs: 3206 case LibFunc_fabsf: 3207 case LibFunc_fabsl: 3208 return Intrinsic::fabs; 3209 case LibFunc_fmin: 3210 case LibFunc_fminf: 3211 case LibFunc_fminl: 3212 return Intrinsic::minnum; 3213 case LibFunc_fmax: 3214 case LibFunc_fmaxf: 3215 case LibFunc_fmaxl: 3216 return Intrinsic::maxnum; 3217 case LibFunc_copysign: 3218 case LibFunc_copysignf: 3219 case LibFunc_copysignl: 3220 return Intrinsic::copysign; 3221 case LibFunc_floor: 3222 case LibFunc_floorf: 3223 case LibFunc_floorl: 3224 return Intrinsic::floor; 3225 case LibFunc_ceil: 3226 case LibFunc_ceilf: 3227 case LibFunc_ceill: 3228 return Intrinsic::ceil; 3229 case LibFunc_trunc: 3230 case LibFunc_truncf: 3231 case LibFunc_truncl: 3232 return Intrinsic::trunc; 3233 case LibFunc_rint: 3234 case LibFunc_rintf: 3235 case LibFunc_rintl: 3236 return Intrinsic::rint; 3237 case LibFunc_nearbyint: 3238 case LibFunc_nearbyintf: 3239 case LibFunc_nearbyintl: 3240 return Intrinsic::nearbyint; 3241 case LibFunc_round: 3242 case LibFunc_roundf: 3243 case LibFunc_roundl: 3244 return Intrinsic::round; 3245 case LibFunc_roundeven: 3246 case LibFunc_roundevenf: 3247 case LibFunc_roundevenl: 3248 return Intrinsic::roundeven; 3249 case LibFunc_pow: 3250 case LibFunc_powf: 3251 case LibFunc_powl: 3252 return Intrinsic::pow; 3253 case LibFunc_sqrt: 3254 case LibFunc_sqrtf: 3255 case LibFunc_sqrtl: 3256 return Intrinsic::sqrt; 3257 } 3258 3259 return Intrinsic::not_intrinsic; 3260 } 3261 3262 /// Return true if we can prove that the specified FP value is never equal to 3263 /// -0.0. 3264 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3265 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3266 /// the same as +0.0 in floating-point ops. 3267 /// 3268 /// NOTE: this function will need to be revisited when we support non-default 3269 /// rounding modes! 3270 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3271 unsigned Depth) { 3272 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3273 return !CFP->getValueAPF().isNegZero(); 3274 3275 if (Depth == MaxAnalysisRecursionDepth) 3276 return false; 3277 3278 auto *Op = dyn_cast<Operator>(V); 3279 if (!Op) 3280 return false; 3281 3282 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3283 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3284 return true; 3285 3286 // sitofp and uitofp turn into +0.0 for zero. 3287 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3288 return true; 3289 3290 if (auto *Call = dyn_cast<CallInst>(Op)) { 3291 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3292 switch (IID) { 3293 default: 3294 break; 3295 // sqrt(-0.0) = -0.0, no other negative results are possible. 3296 case Intrinsic::sqrt: 3297 case Intrinsic::canonicalize: 3298 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3299 // fabs(x) != -0.0 3300 case Intrinsic::fabs: 3301 return true; 3302 } 3303 } 3304 3305 return false; 3306 } 3307 3308 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3309 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3310 /// bit despite comparing equal. 3311 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3312 const TargetLibraryInfo *TLI, 3313 bool SignBitOnly, 3314 unsigned Depth) { 3315 // TODO: This function does not do the right thing when SignBitOnly is true 3316 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3317 // which flips the sign bits of NaNs. See 3318 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3319 3320 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3321 return !CFP->getValueAPF().isNegative() || 3322 (!SignBitOnly && CFP->getValueAPF().isZero()); 3323 } 3324 3325 // Handle vector of constants. 3326 if (auto *CV = dyn_cast<Constant>(V)) { 3327 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3328 unsigned NumElts = CVFVTy->getNumElements(); 3329 for (unsigned i = 0; i != NumElts; ++i) { 3330 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3331 if (!CFP) 3332 return false; 3333 if (CFP->getValueAPF().isNegative() && 3334 (SignBitOnly || !CFP->getValueAPF().isZero())) 3335 return false; 3336 } 3337 3338 // All non-negative ConstantFPs. 3339 return true; 3340 } 3341 } 3342 3343 if (Depth == MaxAnalysisRecursionDepth) 3344 return false; 3345 3346 const Operator *I = dyn_cast<Operator>(V); 3347 if (!I) 3348 return false; 3349 3350 switch (I->getOpcode()) { 3351 default: 3352 break; 3353 // Unsigned integers are always nonnegative. 3354 case Instruction::UIToFP: 3355 return true; 3356 case Instruction::FMul: 3357 case Instruction::FDiv: 3358 // X * X is always non-negative or a NaN. 3359 // X / X is always exactly 1.0 or a NaN. 3360 if (I->getOperand(0) == I->getOperand(1) && 3361 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3362 return true; 3363 3364 LLVM_FALLTHROUGH; 3365 case Instruction::FAdd: 3366 case Instruction::FRem: 3367 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3368 Depth + 1) && 3369 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3370 Depth + 1); 3371 case Instruction::Select: 3372 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3373 Depth + 1) && 3374 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3375 Depth + 1); 3376 case Instruction::FPExt: 3377 case Instruction::FPTrunc: 3378 // Widening/narrowing never change sign. 3379 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3380 Depth + 1); 3381 case Instruction::ExtractElement: 3382 // Look through extract element. At the moment we keep this simple and skip 3383 // tracking the specific element. But at least we might find information 3384 // valid for all elements of the vector. 3385 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3386 Depth + 1); 3387 case Instruction::Call: 3388 const auto *CI = cast<CallInst>(I); 3389 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3390 switch (IID) { 3391 default: 3392 break; 3393 case Intrinsic::maxnum: { 3394 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3395 auto isPositiveNum = [&](Value *V) { 3396 if (SignBitOnly) { 3397 // With SignBitOnly, this is tricky because the result of 3398 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3399 // a constant strictly greater than 0.0. 3400 const APFloat *C; 3401 return match(V, m_APFloat(C)) && 3402 *C > APFloat::getZero(C->getSemantics()); 3403 } 3404 3405 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3406 // maxnum can't be ordered-less-than-zero. 3407 return isKnownNeverNaN(V, TLI) && 3408 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3409 }; 3410 3411 // TODO: This could be improved. We could also check that neither operand 3412 // has its sign bit set (and at least 1 is not-NAN?). 3413 return isPositiveNum(V0) || isPositiveNum(V1); 3414 } 3415 3416 case Intrinsic::maximum: 3417 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3418 Depth + 1) || 3419 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3420 Depth + 1); 3421 case Intrinsic::minnum: 3422 case Intrinsic::minimum: 3423 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3424 Depth + 1) && 3425 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3426 Depth + 1); 3427 case Intrinsic::exp: 3428 case Intrinsic::exp2: 3429 case Intrinsic::fabs: 3430 return true; 3431 3432 case Intrinsic::sqrt: 3433 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3434 if (!SignBitOnly) 3435 return true; 3436 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3437 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3438 3439 case Intrinsic::powi: 3440 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3441 // powi(x,n) is non-negative if n is even. 3442 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3443 return true; 3444 } 3445 // TODO: This is not correct. Given that exp is an integer, here are the 3446 // ways that pow can return a negative value: 3447 // 3448 // pow(x, exp) --> negative if exp is odd and x is negative. 3449 // pow(-0, exp) --> -inf if exp is negative odd. 3450 // pow(-0, exp) --> -0 if exp is positive odd. 3451 // pow(-inf, exp) --> -0 if exp is negative odd. 3452 // pow(-inf, exp) --> -inf if exp is positive odd. 3453 // 3454 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3455 // but we must return false if x == -0. Unfortunately we do not currently 3456 // have a way of expressing this constraint. See details in 3457 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3458 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3459 Depth + 1); 3460 3461 case Intrinsic::fma: 3462 case Intrinsic::fmuladd: 3463 // x*x+y is non-negative if y is non-negative. 3464 return I->getOperand(0) == I->getOperand(1) && 3465 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3466 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3467 Depth + 1); 3468 } 3469 break; 3470 } 3471 return false; 3472 } 3473 3474 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3475 const TargetLibraryInfo *TLI) { 3476 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3477 } 3478 3479 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3480 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3481 } 3482 3483 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3484 unsigned Depth) { 3485 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3486 3487 // If we're told that infinities won't happen, assume they won't. 3488 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3489 if (FPMathOp->hasNoInfs()) 3490 return true; 3491 3492 // Handle scalar constants. 3493 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3494 return !CFP->isInfinity(); 3495 3496 if (Depth == MaxAnalysisRecursionDepth) 3497 return false; 3498 3499 if (auto *Inst = dyn_cast<Instruction>(V)) { 3500 switch (Inst->getOpcode()) { 3501 case Instruction::Select: { 3502 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3503 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3504 } 3505 case Instruction::SIToFP: 3506 case Instruction::UIToFP: { 3507 // Get width of largest magnitude integer (remove a bit if signed). 3508 // This still works for a signed minimum value because the largest FP 3509 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3510 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3511 if (Inst->getOpcode() == Instruction::SIToFP) 3512 --IntSize; 3513 3514 // If the exponent of the largest finite FP value can hold the largest 3515 // integer, the result of the cast must be finite. 3516 Type *FPTy = Inst->getType()->getScalarType(); 3517 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3518 } 3519 default: 3520 break; 3521 } 3522 } 3523 3524 // try to handle fixed width vector constants 3525 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3526 if (VFVTy && isa<Constant>(V)) { 3527 // For vectors, verify that each element is not infinity. 3528 unsigned NumElts = VFVTy->getNumElements(); 3529 for (unsigned i = 0; i != NumElts; ++i) { 3530 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3531 if (!Elt) 3532 return false; 3533 if (isa<UndefValue>(Elt)) 3534 continue; 3535 auto *CElt = dyn_cast<ConstantFP>(Elt); 3536 if (!CElt || CElt->isInfinity()) 3537 return false; 3538 } 3539 // All elements were confirmed non-infinity or undefined. 3540 return true; 3541 } 3542 3543 // was not able to prove that V never contains infinity 3544 return false; 3545 } 3546 3547 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3548 unsigned Depth) { 3549 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3550 3551 // If we're told that NaNs won't happen, assume they won't. 3552 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3553 if (FPMathOp->hasNoNaNs()) 3554 return true; 3555 3556 // Handle scalar constants. 3557 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3558 return !CFP->isNaN(); 3559 3560 if (Depth == MaxAnalysisRecursionDepth) 3561 return false; 3562 3563 if (auto *Inst = dyn_cast<Instruction>(V)) { 3564 switch (Inst->getOpcode()) { 3565 case Instruction::FAdd: 3566 case Instruction::FSub: 3567 // Adding positive and negative infinity produces NaN. 3568 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3569 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3570 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3571 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3572 3573 case Instruction::FMul: 3574 // Zero multiplied with infinity produces NaN. 3575 // FIXME: If neither side can be zero fmul never produces NaN. 3576 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3577 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3578 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3579 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3580 3581 case Instruction::FDiv: 3582 case Instruction::FRem: 3583 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3584 return false; 3585 3586 case Instruction::Select: { 3587 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3588 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3589 } 3590 case Instruction::SIToFP: 3591 case Instruction::UIToFP: 3592 return true; 3593 case Instruction::FPTrunc: 3594 case Instruction::FPExt: 3595 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3596 default: 3597 break; 3598 } 3599 } 3600 3601 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3602 switch (II->getIntrinsicID()) { 3603 case Intrinsic::canonicalize: 3604 case Intrinsic::fabs: 3605 case Intrinsic::copysign: 3606 case Intrinsic::exp: 3607 case Intrinsic::exp2: 3608 case Intrinsic::floor: 3609 case Intrinsic::ceil: 3610 case Intrinsic::trunc: 3611 case Intrinsic::rint: 3612 case Intrinsic::nearbyint: 3613 case Intrinsic::round: 3614 case Intrinsic::roundeven: 3615 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3616 case Intrinsic::sqrt: 3617 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3618 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3619 case Intrinsic::minnum: 3620 case Intrinsic::maxnum: 3621 // If either operand is not NaN, the result is not NaN. 3622 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3623 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3624 default: 3625 return false; 3626 } 3627 } 3628 3629 // Try to handle fixed width vector constants 3630 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3631 if (VFVTy && isa<Constant>(V)) { 3632 // For vectors, verify that each element is not NaN. 3633 unsigned NumElts = VFVTy->getNumElements(); 3634 for (unsigned i = 0; i != NumElts; ++i) { 3635 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3636 if (!Elt) 3637 return false; 3638 if (isa<UndefValue>(Elt)) 3639 continue; 3640 auto *CElt = dyn_cast<ConstantFP>(Elt); 3641 if (!CElt || CElt->isNaN()) 3642 return false; 3643 } 3644 // All elements were confirmed not-NaN or undefined. 3645 return true; 3646 } 3647 3648 // Was not able to prove that V never contains NaN 3649 return false; 3650 } 3651 3652 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3653 3654 // All byte-wide stores are splatable, even of arbitrary variables. 3655 if (V->getType()->isIntegerTy(8)) 3656 return V; 3657 3658 LLVMContext &Ctx = V->getContext(); 3659 3660 // Undef don't care. 3661 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3662 if (isa<UndefValue>(V)) 3663 return UndefInt8; 3664 3665 // Return Undef for zero-sized type. 3666 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3667 return UndefInt8; 3668 3669 Constant *C = dyn_cast<Constant>(V); 3670 if (!C) { 3671 // Conceptually, we could handle things like: 3672 // %a = zext i8 %X to i16 3673 // %b = shl i16 %a, 8 3674 // %c = or i16 %a, %b 3675 // but until there is an example that actually needs this, it doesn't seem 3676 // worth worrying about. 3677 return nullptr; 3678 } 3679 3680 // Handle 'null' ConstantArrayZero etc. 3681 if (C->isNullValue()) 3682 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3683 3684 // Constant floating-point values can be handled as integer values if the 3685 // corresponding integer value is "byteable". An important case is 0.0. 3686 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3687 Type *Ty = nullptr; 3688 if (CFP->getType()->isHalfTy()) 3689 Ty = Type::getInt16Ty(Ctx); 3690 else if (CFP->getType()->isFloatTy()) 3691 Ty = Type::getInt32Ty(Ctx); 3692 else if (CFP->getType()->isDoubleTy()) 3693 Ty = Type::getInt64Ty(Ctx); 3694 // Don't handle long double formats, which have strange constraints. 3695 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3696 : nullptr; 3697 } 3698 3699 // We can handle constant integers that are multiple of 8 bits. 3700 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3701 if (CI->getBitWidth() % 8 == 0) { 3702 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3703 if (!CI->getValue().isSplat(8)) 3704 return nullptr; 3705 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3706 } 3707 } 3708 3709 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3710 if (CE->getOpcode() == Instruction::IntToPtr) { 3711 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3712 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3713 return isBytewiseValue( 3714 ConstantExpr::getIntegerCast(CE->getOperand(0), 3715 Type::getIntNTy(Ctx, BitWidth), false), 3716 DL); 3717 } 3718 } 3719 } 3720 3721 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3722 if (LHS == RHS) 3723 return LHS; 3724 if (!LHS || !RHS) 3725 return nullptr; 3726 if (LHS == UndefInt8) 3727 return RHS; 3728 if (RHS == UndefInt8) 3729 return LHS; 3730 return nullptr; 3731 }; 3732 3733 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3734 Value *Val = UndefInt8; 3735 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3736 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3737 return nullptr; 3738 return Val; 3739 } 3740 3741 if (isa<ConstantAggregate>(C)) { 3742 Value *Val = UndefInt8; 3743 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3744 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3745 return nullptr; 3746 return Val; 3747 } 3748 3749 // Don't try to handle the handful of other constants. 3750 return nullptr; 3751 } 3752 3753 // This is the recursive version of BuildSubAggregate. It takes a few different 3754 // arguments. Idxs is the index within the nested struct From that we are 3755 // looking at now (which is of type IndexedType). IdxSkip is the number of 3756 // indices from Idxs that should be left out when inserting into the resulting 3757 // struct. To is the result struct built so far, new insertvalue instructions 3758 // build on that. 3759 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3760 SmallVectorImpl<unsigned> &Idxs, 3761 unsigned IdxSkip, 3762 Instruction *InsertBefore) { 3763 StructType *STy = dyn_cast<StructType>(IndexedType); 3764 if (STy) { 3765 // Save the original To argument so we can modify it 3766 Value *OrigTo = To; 3767 // General case, the type indexed by Idxs is a struct 3768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3769 // Process each struct element recursively 3770 Idxs.push_back(i); 3771 Value *PrevTo = To; 3772 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3773 InsertBefore); 3774 Idxs.pop_back(); 3775 if (!To) { 3776 // Couldn't find any inserted value for this index? Cleanup 3777 while (PrevTo != OrigTo) { 3778 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3779 PrevTo = Del->getAggregateOperand(); 3780 Del->eraseFromParent(); 3781 } 3782 // Stop processing elements 3783 break; 3784 } 3785 } 3786 // If we successfully found a value for each of our subaggregates 3787 if (To) 3788 return To; 3789 } 3790 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3791 // the struct's elements had a value that was inserted directly. In the latter 3792 // case, perhaps we can't determine each of the subelements individually, but 3793 // we might be able to find the complete struct somewhere. 3794 3795 // Find the value that is at that particular spot 3796 Value *V = FindInsertedValue(From, Idxs); 3797 3798 if (!V) 3799 return nullptr; 3800 3801 // Insert the value in the new (sub) aggregate 3802 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3803 "tmp", InsertBefore); 3804 } 3805 3806 // This helper takes a nested struct and extracts a part of it (which is again a 3807 // struct) into a new value. For example, given the struct: 3808 // { a, { b, { c, d }, e } } 3809 // and the indices "1, 1" this returns 3810 // { c, d }. 3811 // 3812 // It does this by inserting an insertvalue for each element in the resulting 3813 // struct, as opposed to just inserting a single struct. This will only work if 3814 // each of the elements of the substruct are known (ie, inserted into From by an 3815 // insertvalue instruction somewhere). 3816 // 3817 // All inserted insertvalue instructions are inserted before InsertBefore 3818 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3819 Instruction *InsertBefore) { 3820 assert(InsertBefore && "Must have someplace to insert!"); 3821 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3822 idx_range); 3823 Value *To = UndefValue::get(IndexedType); 3824 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3825 unsigned IdxSkip = Idxs.size(); 3826 3827 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3828 } 3829 3830 /// Given an aggregate and a sequence of indices, see if the scalar value 3831 /// indexed is already around as a register, for example if it was inserted 3832 /// directly into the aggregate. 3833 /// 3834 /// If InsertBefore is not null, this function will duplicate (modified) 3835 /// insertvalues when a part of a nested struct is extracted. 3836 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3837 Instruction *InsertBefore) { 3838 // Nothing to index? Just return V then (this is useful at the end of our 3839 // recursion). 3840 if (idx_range.empty()) 3841 return V; 3842 // We have indices, so V should have an indexable type. 3843 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3844 "Not looking at a struct or array?"); 3845 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3846 "Invalid indices for type?"); 3847 3848 if (Constant *C = dyn_cast<Constant>(V)) { 3849 C = C->getAggregateElement(idx_range[0]); 3850 if (!C) return nullptr; 3851 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3852 } 3853 3854 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3855 // Loop the indices for the insertvalue instruction in parallel with the 3856 // requested indices 3857 const unsigned *req_idx = idx_range.begin(); 3858 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3859 i != e; ++i, ++req_idx) { 3860 if (req_idx == idx_range.end()) { 3861 // We can't handle this without inserting insertvalues 3862 if (!InsertBefore) 3863 return nullptr; 3864 3865 // The requested index identifies a part of a nested aggregate. Handle 3866 // this specially. For example, 3867 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3868 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3869 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3870 // This can be changed into 3871 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3872 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3873 // which allows the unused 0,0 element from the nested struct to be 3874 // removed. 3875 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3876 InsertBefore); 3877 } 3878 3879 // This insert value inserts something else than what we are looking for. 3880 // See if the (aggregate) value inserted into has the value we are 3881 // looking for, then. 3882 if (*req_idx != *i) 3883 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3884 InsertBefore); 3885 } 3886 // If we end up here, the indices of the insertvalue match with those 3887 // requested (though possibly only partially). Now we recursively look at 3888 // the inserted value, passing any remaining indices. 3889 return FindInsertedValue(I->getInsertedValueOperand(), 3890 makeArrayRef(req_idx, idx_range.end()), 3891 InsertBefore); 3892 } 3893 3894 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3895 // If we're extracting a value from an aggregate that was extracted from 3896 // something else, we can extract from that something else directly instead. 3897 // However, we will need to chain I's indices with the requested indices. 3898 3899 // Calculate the number of indices required 3900 unsigned size = I->getNumIndices() + idx_range.size(); 3901 // Allocate some space to put the new indices in 3902 SmallVector<unsigned, 5> Idxs; 3903 Idxs.reserve(size); 3904 // Add indices from the extract value instruction 3905 Idxs.append(I->idx_begin(), I->idx_end()); 3906 3907 // Add requested indices 3908 Idxs.append(idx_range.begin(), idx_range.end()); 3909 3910 assert(Idxs.size() == size 3911 && "Number of indices added not correct?"); 3912 3913 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3914 } 3915 // Otherwise, we don't know (such as, extracting from a function return value 3916 // or load instruction) 3917 return nullptr; 3918 } 3919 3920 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3921 unsigned CharSize) { 3922 // Make sure the GEP has exactly three arguments. 3923 if (GEP->getNumOperands() != 3) 3924 return false; 3925 3926 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3927 // CharSize. 3928 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3929 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3930 return false; 3931 3932 // Check to make sure that the first operand of the GEP is an integer and 3933 // has value 0 so that we are sure we're indexing into the initializer. 3934 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3935 if (!FirstIdx || !FirstIdx->isZero()) 3936 return false; 3937 3938 return true; 3939 } 3940 3941 bool llvm::getConstantDataArrayInfo(const Value *V, 3942 ConstantDataArraySlice &Slice, 3943 unsigned ElementSize, uint64_t Offset) { 3944 assert(V); 3945 3946 // Look through bitcast instructions and geps. 3947 V = V->stripPointerCasts(); 3948 3949 // If the value is a GEP instruction or constant expression, treat it as an 3950 // offset. 3951 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3952 // The GEP operator should be based on a pointer to string constant, and is 3953 // indexing into the string constant. 3954 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3955 return false; 3956 3957 // If the second index isn't a ConstantInt, then this is a variable index 3958 // into the array. If this occurs, we can't say anything meaningful about 3959 // the string. 3960 uint64_t StartIdx = 0; 3961 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3962 StartIdx = CI->getZExtValue(); 3963 else 3964 return false; 3965 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3966 StartIdx + Offset); 3967 } 3968 3969 // The GEP instruction, constant or instruction, must reference a global 3970 // variable that is a constant and is initialized. The referenced constant 3971 // initializer is the array that we'll use for optimization. 3972 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3973 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3974 return false; 3975 3976 const ConstantDataArray *Array; 3977 ArrayType *ArrayTy; 3978 if (GV->getInitializer()->isNullValue()) { 3979 Type *GVTy = GV->getValueType(); 3980 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3981 // A zeroinitializer for the array; there is no ConstantDataArray. 3982 Array = nullptr; 3983 } else { 3984 const DataLayout &DL = GV->getParent()->getDataLayout(); 3985 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3986 uint64_t Length = SizeInBytes / (ElementSize / 8); 3987 if (Length <= Offset) 3988 return false; 3989 3990 Slice.Array = nullptr; 3991 Slice.Offset = 0; 3992 Slice.Length = Length - Offset; 3993 return true; 3994 } 3995 } else { 3996 // This must be a ConstantDataArray. 3997 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3998 if (!Array) 3999 return false; 4000 ArrayTy = Array->getType(); 4001 } 4002 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 4003 return false; 4004 4005 uint64_t NumElts = ArrayTy->getArrayNumElements(); 4006 if (Offset > NumElts) 4007 return false; 4008 4009 Slice.Array = Array; 4010 Slice.Offset = Offset; 4011 Slice.Length = NumElts - Offset; 4012 return true; 4013 } 4014 4015 /// This function computes the length of a null-terminated C string pointed to 4016 /// by V. If successful, it returns true and returns the string in Str. 4017 /// If unsuccessful, it returns false. 4018 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 4019 uint64_t Offset, bool TrimAtNul) { 4020 ConstantDataArraySlice Slice; 4021 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 4022 return false; 4023 4024 if (Slice.Array == nullptr) { 4025 if (TrimAtNul) { 4026 Str = StringRef(); 4027 return true; 4028 } 4029 if (Slice.Length == 1) { 4030 Str = StringRef("", 1); 4031 return true; 4032 } 4033 // We cannot instantiate a StringRef as we do not have an appropriate string 4034 // of 0s at hand. 4035 return false; 4036 } 4037 4038 // Start out with the entire array in the StringRef. 4039 Str = Slice.Array->getAsString(); 4040 // Skip over 'offset' bytes. 4041 Str = Str.substr(Slice.Offset); 4042 4043 if (TrimAtNul) { 4044 // Trim off the \0 and anything after it. If the array is not nul 4045 // terminated, we just return the whole end of string. The client may know 4046 // some other way that the string is length-bound. 4047 Str = Str.substr(0, Str.find('\0')); 4048 } 4049 return true; 4050 } 4051 4052 // These next two are very similar to the above, but also look through PHI 4053 // nodes. 4054 // TODO: See if we can integrate these two together. 4055 4056 /// If we can compute the length of the string pointed to by 4057 /// the specified pointer, return 'len+1'. If we can't, return 0. 4058 static uint64_t GetStringLengthH(const Value *V, 4059 SmallPtrSetImpl<const PHINode*> &PHIs, 4060 unsigned CharSize) { 4061 // Look through noop bitcast instructions. 4062 V = V->stripPointerCasts(); 4063 4064 // If this is a PHI node, there are two cases: either we have already seen it 4065 // or we haven't. 4066 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4067 if (!PHIs.insert(PN).second) 4068 return ~0ULL; // already in the set. 4069 4070 // If it was new, see if all the input strings are the same length. 4071 uint64_t LenSoFar = ~0ULL; 4072 for (Value *IncValue : PN->incoming_values()) { 4073 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4074 if (Len == 0) return 0; // Unknown length -> unknown. 4075 4076 if (Len == ~0ULL) continue; 4077 4078 if (Len != LenSoFar && LenSoFar != ~0ULL) 4079 return 0; // Disagree -> unknown. 4080 LenSoFar = Len; 4081 } 4082 4083 // Success, all agree. 4084 return LenSoFar; 4085 } 4086 4087 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4088 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4089 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4090 if (Len1 == 0) return 0; 4091 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4092 if (Len2 == 0) return 0; 4093 if (Len1 == ~0ULL) return Len2; 4094 if (Len2 == ~0ULL) return Len1; 4095 if (Len1 != Len2) return 0; 4096 return Len1; 4097 } 4098 4099 // Otherwise, see if we can read the string. 4100 ConstantDataArraySlice Slice; 4101 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4102 return 0; 4103 4104 if (Slice.Array == nullptr) 4105 return 1; 4106 4107 // Search for nul characters 4108 unsigned NullIndex = 0; 4109 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4110 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4111 break; 4112 } 4113 4114 return NullIndex + 1; 4115 } 4116 4117 /// If we can compute the length of the string pointed to by 4118 /// the specified pointer, return 'len+1'. If we can't, return 0. 4119 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4120 if (!V->getType()->isPointerTy()) 4121 return 0; 4122 4123 SmallPtrSet<const PHINode*, 32> PHIs; 4124 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4125 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4126 // an empty string as a length. 4127 return Len == ~0ULL ? 1 : Len; 4128 } 4129 4130 const Value * 4131 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4132 bool MustPreserveNullness) { 4133 assert(Call && 4134 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4135 if (const Value *RV = Call->getReturnedArgOperand()) 4136 return RV; 4137 // This can be used only as a aliasing property. 4138 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4139 Call, MustPreserveNullness)) 4140 return Call->getArgOperand(0); 4141 return nullptr; 4142 } 4143 4144 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4145 const CallBase *Call, bool MustPreserveNullness) { 4146 switch (Call->getIntrinsicID()) { 4147 case Intrinsic::launder_invariant_group: 4148 case Intrinsic::strip_invariant_group: 4149 case Intrinsic::aarch64_irg: 4150 case Intrinsic::aarch64_tagp: 4151 return true; 4152 case Intrinsic::ptrmask: 4153 return !MustPreserveNullness; 4154 default: 4155 return false; 4156 } 4157 } 4158 4159 /// \p PN defines a loop-variant pointer to an object. Check if the 4160 /// previous iteration of the loop was referring to the same object as \p PN. 4161 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4162 const LoopInfo *LI) { 4163 // Find the loop-defined value. 4164 Loop *L = LI->getLoopFor(PN->getParent()); 4165 if (PN->getNumIncomingValues() != 2) 4166 return true; 4167 4168 // Find the value from previous iteration. 4169 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4170 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4171 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4172 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4173 return true; 4174 4175 // If a new pointer is loaded in the loop, the pointer references a different 4176 // object in every iteration. E.g.: 4177 // for (i) 4178 // int *p = a[i]; 4179 // ... 4180 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4181 if (!L->isLoopInvariant(Load->getPointerOperand())) 4182 return false; 4183 return true; 4184 } 4185 4186 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4187 if (!V->getType()->isPointerTy()) 4188 return V; 4189 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4190 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4191 V = GEP->getPointerOperand(); 4192 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4193 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4194 V = cast<Operator>(V)->getOperand(0); 4195 if (!V->getType()->isPointerTy()) 4196 return V; 4197 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4198 if (GA->isInterposable()) 4199 return V; 4200 V = GA->getAliasee(); 4201 } else { 4202 if (auto *PHI = dyn_cast<PHINode>(V)) { 4203 // Look through single-arg phi nodes created by LCSSA. 4204 if (PHI->getNumIncomingValues() == 1) { 4205 V = PHI->getIncomingValue(0); 4206 continue; 4207 } 4208 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4209 // CaptureTracking can know about special capturing properties of some 4210 // intrinsics like launder.invariant.group, that can't be expressed with 4211 // the attributes, but have properties like returning aliasing pointer. 4212 // Because some analysis may assume that nocaptured pointer is not 4213 // returned from some special intrinsic (because function would have to 4214 // be marked with returns attribute), it is crucial to use this function 4215 // because it should be in sync with CaptureTracking. Not using it may 4216 // cause weird miscompilations where 2 aliasing pointers are assumed to 4217 // noalias. 4218 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4219 V = RP; 4220 continue; 4221 } 4222 } 4223 4224 return V; 4225 } 4226 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4227 } 4228 return V; 4229 } 4230 4231 void llvm::getUnderlyingObjects(const Value *V, 4232 SmallVectorImpl<const Value *> &Objects, 4233 LoopInfo *LI, unsigned MaxLookup) { 4234 SmallPtrSet<const Value *, 4> Visited; 4235 SmallVector<const Value *, 4> Worklist; 4236 Worklist.push_back(V); 4237 do { 4238 const Value *P = Worklist.pop_back_val(); 4239 P = getUnderlyingObject(P, MaxLookup); 4240 4241 if (!Visited.insert(P).second) 4242 continue; 4243 4244 if (auto *SI = dyn_cast<SelectInst>(P)) { 4245 Worklist.push_back(SI->getTrueValue()); 4246 Worklist.push_back(SI->getFalseValue()); 4247 continue; 4248 } 4249 4250 if (auto *PN = dyn_cast<PHINode>(P)) { 4251 // If this PHI changes the underlying object in every iteration of the 4252 // loop, don't look through it. Consider: 4253 // int **A; 4254 // for (i) { 4255 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4256 // Curr = A[i]; 4257 // *Prev, *Curr; 4258 // 4259 // Prev is tracking Curr one iteration behind so they refer to different 4260 // underlying objects. 4261 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4262 isSameUnderlyingObjectInLoop(PN, LI)) 4263 append_range(Worklist, PN->incoming_values()); 4264 continue; 4265 } 4266 4267 Objects.push_back(P); 4268 } while (!Worklist.empty()); 4269 } 4270 4271 /// This is the function that does the work of looking through basic 4272 /// ptrtoint+arithmetic+inttoptr sequences. 4273 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4274 do { 4275 if (const Operator *U = dyn_cast<Operator>(V)) { 4276 // If we find a ptrtoint, we can transfer control back to the 4277 // regular getUnderlyingObjectFromInt. 4278 if (U->getOpcode() == Instruction::PtrToInt) 4279 return U->getOperand(0); 4280 // If we find an add of a constant, a multiplied value, or a phi, it's 4281 // likely that the other operand will lead us to the base 4282 // object. We don't have to worry about the case where the 4283 // object address is somehow being computed by the multiply, 4284 // because our callers only care when the result is an 4285 // identifiable object. 4286 if (U->getOpcode() != Instruction::Add || 4287 (!isa<ConstantInt>(U->getOperand(1)) && 4288 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4289 !isa<PHINode>(U->getOperand(1)))) 4290 return V; 4291 V = U->getOperand(0); 4292 } else { 4293 return V; 4294 } 4295 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4296 } while (true); 4297 } 4298 4299 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4300 /// ptrtoint+arithmetic+inttoptr sequences. 4301 /// It returns false if unidentified object is found in getUnderlyingObjects. 4302 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4303 SmallVectorImpl<Value *> &Objects) { 4304 SmallPtrSet<const Value *, 16> Visited; 4305 SmallVector<const Value *, 4> Working(1, V); 4306 do { 4307 V = Working.pop_back_val(); 4308 4309 SmallVector<const Value *, 4> Objs; 4310 getUnderlyingObjects(V, Objs); 4311 4312 for (const Value *V : Objs) { 4313 if (!Visited.insert(V).second) 4314 continue; 4315 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4316 const Value *O = 4317 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4318 if (O->getType()->isPointerTy()) { 4319 Working.push_back(O); 4320 continue; 4321 } 4322 } 4323 // If getUnderlyingObjects fails to find an identifiable object, 4324 // getUnderlyingObjectsForCodeGen also fails for safety. 4325 if (!isIdentifiedObject(V)) { 4326 Objects.clear(); 4327 return false; 4328 } 4329 Objects.push_back(const_cast<Value *>(V)); 4330 } 4331 } while (!Working.empty()); 4332 return true; 4333 } 4334 4335 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4336 AllocaInst *Result = nullptr; 4337 SmallPtrSet<Value *, 4> Visited; 4338 SmallVector<Value *, 4> Worklist; 4339 4340 auto AddWork = [&](Value *V) { 4341 if (Visited.insert(V).second) 4342 Worklist.push_back(V); 4343 }; 4344 4345 AddWork(V); 4346 do { 4347 V = Worklist.pop_back_val(); 4348 assert(Visited.count(V)); 4349 4350 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4351 if (Result && Result != AI) 4352 return nullptr; 4353 Result = AI; 4354 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4355 AddWork(CI->getOperand(0)); 4356 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4357 for (Value *IncValue : PN->incoming_values()) 4358 AddWork(IncValue); 4359 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4360 AddWork(SI->getTrueValue()); 4361 AddWork(SI->getFalseValue()); 4362 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4363 if (OffsetZero && !GEP->hasAllZeroIndices()) 4364 return nullptr; 4365 AddWork(GEP->getPointerOperand()); 4366 } else { 4367 return nullptr; 4368 } 4369 } while (!Worklist.empty()); 4370 4371 return Result; 4372 } 4373 4374 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4375 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4376 for (const User *U : V->users()) { 4377 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4378 if (!II) 4379 return false; 4380 4381 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4382 continue; 4383 4384 if (AllowDroppable && II->isDroppable()) 4385 continue; 4386 4387 return false; 4388 } 4389 return true; 4390 } 4391 4392 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4393 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4394 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4395 } 4396 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4397 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4398 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4399 } 4400 4401 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4402 if (!LI.isUnordered()) 4403 return true; 4404 const Function &F = *LI.getFunction(); 4405 // Speculative load may create a race that did not exist in the source. 4406 return F.hasFnAttribute(Attribute::SanitizeThread) || 4407 // Speculative load may load data from dirty regions. 4408 F.hasFnAttribute(Attribute::SanitizeAddress) || 4409 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4410 } 4411 4412 4413 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4414 const Instruction *CtxI, 4415 const DominatorTree *DT) { 4416 const Operator *Inst = dyn_cast<Operator>(V); 4417 if (!Inst) 4418 return false; 4419 4420 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4421 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4422 if (C->canTrap()) 4423 return false; 4424 4425 switch (Inst->getOpcode()) { 4426 default: 4427 return true; 4428 case Instruction::UDiv: 4429 case Instruction::URem: { 4430 // x / y is undefined if y == 0. 4431 const APInt *V; 4432 if (match(Inst->getOperand(1), m_APInt(V))) 4433 return *V != 0; 4434 return false; 4435 } 4436 case Instruction::SDiv: 4437 case Instruction::SRem: { 4438 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4439 const APInt *Numerator, *Denominator; 4440 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4441 return false; 4442 // We cannot hoist this division if the denominator is 0. 4443 if (*Denominator == 0) 4444 return false; 4445 // It's safe to hoist if the denominator is not 0 or -1. 4446 if (!Denominator->isAllOnesValue()) 4447 return true; 4448 // At this point we know that the denominator is -1. It is safe to hoist as 4449 // long we know that the numerator is not INT_MIN. 4450 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4451 return !Numerator->isMinSignedValue(); 4452 // The numerator *might* be MinSignedValue. 4453 return false; 4454 } 4455 case Instruction::Load: { 4456 const LoadInst *LI = cast<LoadInst>(Inst); 4457 if (mustSuppressSpeculation(*LI)) 4458 return false; 4459 const DataLayout &DL = LI->getModule()->getDataLayout(); 4460 return isDereferenceableAndAlignedPointer( 4461 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4462 DL, CtxI, DT); 4463 } 4464 case Instruction::Call: { 4465 auto *CI = cast<const CallInst>(Inst); 4466 const Function *Callee = CI->getCalledFunction(); 4467 4468 // The called function could have undefined behavior or side-effects, even 4469 // if marked readnone nounwind. 4470 return Callee && Callee->isSpeculatable(); 4471 } 4472 case Instruction::VAArg: 4473 case Instruction::Alloca: 4474 case Instruction::Invoke: 4475 case Instruction::CallBr: 4476 case Instruction::PHI: 4477 case Instruction::Store: 4478 case Instruction::Ret: 4479 case Instruction::Br: 4480 case Instruction::IndirectBr: 4481 case Instruction::Switch: 4482 case Instruction::Unreachable: 4483 case Instruction::Fence: 4484 case Instruction::AtomicRMW: 4485 case Instruction::AtomicCmpXchg: 4486 case Instruction::LandingPad: 4487 case Instruction::Resume: 4488 case Instruction::CatchSwitch: 4489 case Instruction::CatchPad: 4490 case Instruction::CatchRet: 4491 case Instruction::CleanupPad: 4492 case Instruction::CleanupRet: 4493 return false; // Misc instructions which have effects 4494 } 4495 } 4496 4497 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4498 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4499 } 4500 4501 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4502 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4503 switch (OR) { 4504 case ConstantRange::OverflowResult::MayOverflow: 4505 return OverflowResult::MayOverflow; 4506 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4507 return OverflowResult::AlwaysOverflowsLow; 4508 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4509 return OverflowResult::AlwaysOverflowsHigh; 4510 case ConstantRange::OverflowResult::NeverOverflows: 4511 return OverflowResult::NeverOverflows; 4512 } 4513 llvm_unreachable("Unknown OverflowResult"); 4514 } 4515 4516 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4517 static ConstantRange computeConstantRangeIncludingKnownBits( 4518 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4519 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4520 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4521 KnownBits Known = computeKnownBits( 4522 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4523 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4524 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4525 ConstantRange::PreferredRangeType RangeType = 4526 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4527 return CR1.intersectWith(CR2, RangeType); 4528 } 4529 4530 OverflowResult llvm::computeOverflowForUnsignedMul( 4531 const Value *LHS, const Value *RHS, const DataLayout &DL, 4532 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4533 bool UseInstrInfo) { 4534 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4535 nullptr, UseInstrInfo); 4536 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4537 nullptr, UseInstrInfo); 4538 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4539 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4540 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4541 } 4542 4543 OverflowResult 4544 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4545 const DataLayout &DL, AssumptionCache *AC, 4546 const Instruction *CxtI, 4547 const DominatorTree *DT, bool UseInstrInfo) { 4548 // Multiplying n * m significant bits yields a result of n + m significant 4549 // bits. If the total number of significant bits does not exceed the 4550 // result bit width (minus 1), there is no overflow. 4551 // This means if we have enough leading sign bits in the operands 4552 // we can guarantee that the result does not overflow. 4553 // Ref: "Hacker's Delight" by Henry Warren 4554 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4555 4556 // Note that underestimating the number of sign bits gives a more 4557 // conservative answer. 4558 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4559 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4560 4561 // First handle the easy case: if we have enough sign bits there's 4562 // definitely no overflow. 4563 if (SignBits > BitWidth + 1) 4564 return OverflowResult::NeverOverflows; 4565 4566 // There are two ambiguous cases where there can be no overflow: 4567 // SignBits == BitWidth + 1 and 4568 // SignBits == BitWidth 4569 // The second case is difficult to check, therefore we only handle the 4570 // first case. 4571 if (SignBits == BitWidth + 1) { 4572 // It overflows only when both arguments are negative and the true 4573 // product is exactly the minimum negative number. 4574 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4575 // For simplicity we just check if at least one side is not negative. 4576 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4577 nullptr, UseInstrInfo); 4578 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4579 nullptr, UseInstrInfo); 4580 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4581 return OverflowResult::NeverOverflows; 4582 } 4583 return OverflowResult::MayOverflow; 4584 } 4585 4586 OverflowResult llvm::computeOverflowForUnsignedAdd( 4587 const Value *LHS, const Value *RHS, const DataLayout &DL, 4588 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4589 bool UseInstrInfo) { 4590 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4591 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4592 nullptr, UseInstrInfo); 4593 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4594 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4595 nullptr, UseInstrInfo); 4596 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4597 } 4598 4599 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4600 const Value *RHS, 4601 const AddOperator *Add, 4602 const DataLayout &DL, 4603 AssumptionCache *AC, 4604 const Instruction *CxtI, 4605 const DominatorTree *DT) { 4606 if (Add && Add->hasNoSignedWrap()) { 4607 return OverflowResult::NeverOverflows; 4608 } 4609 4610 // If LHS and RHS each have at least two sign bits, the addition will look 4611 // like 4612 // 4613 // XX..... + 4614 // YY..... 4615 // 4616 // If the carry into the most significant position is 0, X and Y can't both 4617 // be 1 and therefore the carry out of the addition is also 0. 4618 // 4619 // If the carry into the most significant position is 1, X and Y can't both 4620 // be 0 and therefore the carry out of the addition is also 1. 4621 // 4622 // Since the carry into the most significant position is always equal to 4623 // the carry out of the addition, there is no signed overflow. 4624 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4625 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4626 return OverflowResult::NeverOverflows; 4627 4628 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4629 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4630 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4631 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4632 OverflowResult OR = 4633 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4634 if (OR != OverflowResult::MayOverflow) 4635 return OR; 4636 4637 // The remaining code needs Add to be available. Early returns if not so. 4638 if (!Add) 4639 return OverflowResult::MayOverflow; 4640 4641 // If the sign of Add is the same as at least one of the operands, this add 4642 // CANNOT overflow. If this can be determined from the known bits of the 4643 // operands the above signedAddMayOverflow() check will have already done so. 4644 // The only other way to improve on the known bits is from an assumption, so 4645 // call computeKnownBitsFromAssume() directly. 4646 bool LHSOrRHSKnownNonNegative = 4647 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4648 bool LHSOrRHSKnownNegative = 4649 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4650 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4651 KnownBits AddKnown(LHSRange.getBitWidth()); 4652 computeKnownBitsFromAssume( 4653 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4654 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4655 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4656 return OverflowResult::NeverOverflows; 4657 } 4658 4659 return OverflowResult::MayOverflow; 4660 } 4661 4662 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4663 const Value *RHS, 4664 const DataLayout &DL, 4665 AssumptionCache *AC, 4666 const Instruction *CxtI, 4667 const DominatorTree *DT) { 4668 // Checking for conditions implied by dominating conditions may be expensive. 4669 // Limit it to usub_with_overflow calls for now. 4670 if (match(CxtI, 4671 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4672 if (auto C = 4673 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4674 if (*C) 4675 return OverflowResult::NeverOverflows; 4676 return OverflowResult::AlwaysOverflowsLow; 4677 } 4678 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4679 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4680 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4681 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4682 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4683 } 4684 4685 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4686 const Value *RHS, 4687 const DataLayout &DL, 4688 AssumptionCache *AC, 4689 const Instruction *CxtI, 4690 const DominatorTree *DT) { 4691 // If LHS and RHS each have at least two sign bits, the subtraction 4692 // cannot overflow. 4693 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4694 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4695 return OverflowResult::NeverOverflows; 4696 4697 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4698 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4699 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4700 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4701 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4702 } 4703 4704 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4705 const DominatorTree &DT) { 4706 SmallVector<const BranchInst *, 2> GuardingBranches; 4707 SmallVector<const ExtractValueInst *, 2> Results; 4708 4709 for (const User *U : WO->users()) { 4710 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4711 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4712 4713 if (EVI->getIndices()[0] == 0) 4714 Results.push_back(EVI); 4715 else { 4716 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4717 4718 for (const auto *U : EVI->users()) 4719 if (const auto *B = dyn_cast<BranchInst>(U)) { 4720 assert(B->isConditional() && "How else is it using an i1?"); 4721 GuardingBranches.push_back(B); 4722 } 4723 } 4724 } else { 4725 // We are using the aggregate directly in a way we don't want to analyze 4726 // here (storing it to a global, say). 4727 return false; 4728 } 4729 } 4730 4731 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4732 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4733 if (!NoWrapEdge.isSingleEdge()) 4734 return false; 4735 4736 // Check if all users of the add are provably no-wrap. 4737 for (const auto *Result : Results) { 4738 // If the extractvalue itself is not executed on overflow, the we don't 4739 // need to check each use separately, since domination is transitive. 4740 if (DT.dominates(NoWrapEdge, Result->getParent())) 4741 continue; 4742 4743 for (auto &RU : Result->uses()) 4744 if (!DT.dominates(NoWrapEdge, RU)) 4745 return false; 4746 } 4747 4748 return true; 4749 }; 4750 4751 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4752 } 4753 4754 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4755 // See whether I has flags that may create poison 4756 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4757 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4758 return true; 4759 } 4760 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4761 if (ExactOp->isExact()) 4762 return true; 4763 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4764 auto FMF = FP->getFastMathFlags(); 4765 if (FMF.noNaNs() || FMF.noInfs()) 4766 return true; 4767 } 4768 4769 unsigned Opcode = Op->getOpcode(); 4770 4771 // Check whether opcode is a poison/undef-generating operation 4772 switch (Opcode) { 4773 case Instruction::Shl: 4774 case Instruction::AShr: 4775 case Instruction::LShr: { 4776 // Shifts return poison if shiftwidth is larger than the bitwidth. 4777 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4778 SmallVector<Constant *, 4> ShiftAmounts; 4779 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4780 unsigned NumElts = FVTy->getNumElements(); 4781 for (unsigned i = 0; i < NumElts; ++i) 4782 ShiftAmounts.push_back(C->getAggregateElement(i)); 4783 } else if (isa<ScalableVectorType>(C->getType())) 4784 return true; // Can't tell, just return true to be safe 4785 else 4786 ShiftAmounts.push_back(C); 4787 4788 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4789 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4790 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4791 }); 4792 return !Safe; 4793 } 4794 return true; 4795 } 4796 case Instruction::FPToSI: 4797 case Instruction::FPToUI: 4798 // fptosi/ui yields poison if the resulting value does not fit in the 4799 // destination type. 4800 return true; 4801 case Instruction::Call: 4802 case Instruction::CallBr: 4803 case Instruction::Invoke: { 4804 const auto *CB = cast<CallBase>(Op); 4805 return !CB->hasRetAttr(Attribute::NoUndef); 4806 } 4807 case Instruction::InsertElement: 4808 case Instruction::ExtractElement: { 4809 // If index exceeds the length of the vector, it returns poison 4810 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4811 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4812 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4813 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4814 return true; 4815 return false; 4816 } 4817 case Instruction::ShuffleVector: { 4818 // shufflevector may return undef. 4819 if (PoisonOnly) 4820 return false; 4821 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4822 ? cast<ConstantExpr>(Op)->getShuffleMask() 4823 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4824 return is_contained(Mask, UndefMaskElem); 4825 } 4826 case Instruction::FNeg: 4827 case Instruction::PHI: 4828 case Instruction::Select: 4829 case Instruction::URem: 4830 case Instruction::SRem: 4831 case Instruction::ExtractValue: 4832 case Instruction::InsertValue: 4833 case Instruction::Freeze: 4834 case Instruction::ICmp: 4835 case Instruction::FCmp: 4836 return false; 4837 case Instruction::GetElementPtr: { 4838 const auto *GEP = cast<GEPOperator>(Op); 4839 return GEP->isInBounds(); 4840 } 4841 default: { 4842 const auto *CE = dyn_cast<ConstantExpr>(Op); 4843 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4844 return false; 4845 else if (Instruction::isBinaryOp(Opcode)) 4846 return false; 4847 // Be conservative and return true. 4848 return true; 4849 } 4850 } 4851 } 4852 4853 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4854 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4855 } 4856 4857 bool llvm::canCreatePoison(const Operator *Op) { 4858 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4859 } 4860 4861 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4862 const Value *V, unsigned Depth) { 4863 if (ValAssumedPoison == V) 4864 return true; 4865 4866 const unsigned MaxDepth = 2; 4867 if (Depth >= MaxDepth) 4868 return false; 4869 4870 if (const auto *I = dyn_cast<Instruction>(V)) { 4871 if (propagatesPoison(cast<Operator>(I))) 4872 return any_of(I->operands(), [=](const Value *Op) { 4873 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4874 }); 4875 4876 // V = extractvalue V0, idx 4877 // V2 = extractvalue V0, idx2 4878 // V0's elements are all poison or not. (e.g., add_with_overflow) 4879 const WithOverflowInst *II; 4880 if (match(I, m_ExtractValue(m_WithOverflowInst(II))) && 4881 match(ValAssumedPoison, m_ExtractValue(m_Specific(II)))) 4882 return true; 4883 } 4884 return false; 4885 } 4886 4887 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4888 unsigned Depth) { 4889 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4890 return true; 4891 4892 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4893 return true; 4894 4895 const unsigned MaxDepth = 2; 4896 if (Depth >= MaxDepth) 4897 return false; 4898 4899 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4900 if (I && !canCreatePoison(cast<Operator>(I))) { 4901 return all_of(I->operands(), [=](const Value *Op) { 4902 return impliesPoison(Op, V, Depth + 1); 4903 }); 4904 } 4905 return false; 4906 } 4907 4908 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4909 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4910 } 4911 4912 static bool programUndefinedIfUndefOrPoison(const Value *V, 4913 bool PoisonOnly); 4914 4915 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4916 AssumptionCache *AC, 4917 const Instruction *CtxI, 4918 const DominatorTree *DT, 4919 unsigned Depth, bool PoisonOnly) { 4920 if (Depth >= MaxAnalysisRecursionDepth) 4921 return false; 4922 4923 if (isa<MetadataAsValue>(V)) 4924 return false; 4925 4926 if (const auto *A = dyn_cast<Argument>(V)) { 4927 if (A->hasAttribute(Attribute::NoUndef)) 4928 return true; 4929 } 4930 4931 if (auto *C = dyn_cast<Constant>(V)) { 4932 if (isa<UndefValue>(C)) 4933 return PoisonOnly && !isa<PoisonValue>(C); 4934 4935 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4936 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4937 return true; 4938 4939 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4940 return (PoisonOnly ? !C->containsPoisonElement() 4941 : !C->containsUndefOrPoisonElement()) && 4942 !C->containsConstantExpression(); 4943 } 4944 4945 // Strip cast operations from a pointer value. 4946 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4947 // inbounds with zero offset. To guarantee that the result isn't poison, the 4948 // stripped pointer is checked as it has to be pointing into an allocated 4949 // object or be null `null` to ensure `inbounds` getelement pointers with a 4950 // zero offset could not produce poison. 4951 // It can strip off addrspacecast that do not change bit representation as 4952 // well. We believe that such addrspacecast is equivalent to no-op. 4953 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4954 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4955 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4956 return true; 4957 4958 auto OpCheck = [&](const Value *V) { 4959 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4960 PoisonOnly); 4961 }; 4962 4963 if (auto *Opr = dyn_cast<Operator>(V)) { 4964 // If the value is a freeze instruction, then it can never 4965 // be undef or poison. 4966 if (isa<FreezeInst>(V)) 4967 return true; 4968 4969 if (const auto *CB = dyn_cast<CallBase>(V)) { 4970 if (CB->hasRetAttr(Attribute::NoUndef)) 4971 return true; 4972 } 4973 4974 if (const auto *PN = dyn_cast<PHINode>(V)) { 4975 unsigned Num = PN->getNumIncomingValues(); 4976 bool IsWellDefined = true; 4977 for (unsigned i = 0; i < Num; ++i) { 4978 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4979 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4980 DT, Depth + 1, PoisonOnly)) { 4981 IsWellDefined = false; 4982 break; 4983 } 4984 } 4985 if (IsWellDefined) 4986 return true; 4987 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4988 return true; 4989 } 4990 4991 if (auto *I = dyn_cast<LoadInst>(V)) 4992 if (I->getMetadata(LLVMContext::MD_noundef)) 4993 return true; 4994 4995 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4996 return true; 4997 4998 // CxtI may be null or a cloned instruction. 4999 if (!CtxI || !CtxI->getParent() || !DT) 5000 return false; 5001 5002 auto *DNode = DT->getNode(CtxI->getParent()); 5003 if (!DNode) 5004 // Unreachable block 5005 return false; 5006 5007 // If V is used as a branch condition before reaching CtxI, V cannot be 5008 // undef or poison. 5009 // br V, BB1, BB2 5010 // BB1: 5011 // CtxI ; V cannot be undef or poison here 5012 auto *Dominator = DNode->getIDom(); 5013 while (Dominator) { 5014 auto *TI = Dominator->getBlock()->getTerminator(); 5015 5016 Value *Cond = nullptr; 5017 if (auto BI = dyn_cast<BranchInst>(TI)) { 5018 if (BI->isConditional()) 5019 Cond = BI->getCondition(); 5020 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 5021 Cond = SI->getCondition(); 5022 } 5023 5024 if (Cond) { 5025 if (Cond == V) 5026 return true; 5027 else if (PoisonOnly && isa<Operator>(Cond)) { 5028 // For poison, we can analyze further 5029 auto *Opr = cast<Operator>(Cond); 5030 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 5031 return true; 5032 } 5033 } 5034 5035 Dominator = Dominator->getIDom(); 5036 } 5037 5038 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 5039 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 5040 return true; 5041 5042 return false; 5043 } 5044 5045 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 5046 const Instruction *CtxI, 5047 const DominatorTree *DT, 5048 unsigned Depth) { 5049 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 5050 } 5051 5052 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 5053 const Instruction *CtxI, 5054 const DominatorTree *DT, unsigned Depth) { 5055 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 5056 } 5057 5058 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5059 const DataLayout &DL, 5060 AssumptionCache *AC, 5061 const Instruction *CxtI, 5062 const DominatorTree *DT) { 5063 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5064 Add, DL, AC, CxtI, DT); 5065 } 5066 5067 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5068 const Value *RHS, 5069 const DataLayout &DL, 5070 AssumptionCache *AC, 5071 const Instruction *CxtI, 5072 const DominatorTree *DT) { 5073 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5074 } 5075 5076 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5077 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5078 // of time because it's possible for another thread to interfere with it for an 5079 // arbitrary length of time, but programs aren't allowed to rely on that. 5080 5081 // If there is no successor, then execution can't transfer to it. 5082 if (isa<ReturnInst>(I)) 5083 return false; 5084 if (isa<UnreachableInst>(I)) 5085 return false; 5086 5087 // An instruction that returns without throwing must transfer control flow 5088 // to a successor. 5089 return !I->mayThrow() && I->willReturn(); 5090 } 5091 5092 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5093 // TODO: This is slightly conservative for invoke instruction since exiting 5094 // via an exception *is* normal control for them. 5095 for (const Instruction &I : *BB) 5096 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5097 return false; 5098 return true; 5099 } 5100 5101 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5102 const Loop *L) { 5103 // The loop header is guaranteed to be executed for every iteration. 5104 // 5105 // FIXME: Relax this constraint to cover all basic blocks that are 5106 // guaranteed to be executed at every iteration. 5107 if (I->getParent() != L->getHeader()) return false; 5108 5109 for (const Instruction &LI : *L->getHeader()) { 5110 if (&LI == I) return true; 5111 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5112 } 5113 llvm_unreachable("Instruction not contained in its own parent basic block."); 5114 } 5115 5116 bool llvm::propagatesPoison(const Operator *I) { 5117 switch (I->getOpcode()) { 5118 case Instruction::Freeze: 5119 case Instruction::Select: 5120 case Instruction::PHI: 5121 case Instruction::Call: 5122 case Instruction::Invoke: 5123 return false; 5124 case Instruction::ICmp: 5125 case Instruction::FCmp: 5126 case Instruction::GetElementPtr: 5127 return true; 5128 default: 5129 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5130 return true; 5131 5132 // Be conservative and return false. 5133 return false; 5134 } 5135 } 5136 5137 void llvm::getGuaranteedWellDefinedOps( 5138 const Instruction *I, SmallPtrSetImpl<const Value *> &Operands) { 5139 switch (I->getOpcode()) { 5140 case Instruction::Store: 5141 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5142 break; 5143 5144 case Instruction::Load: 5145 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5146 break; 5147 5148 // Since dereferenceable attribute imply noundef, atomic operations 5149 // also implicitly have noundef pointers too 5150 case Instruction::AtomicCmpXchg: 5151 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5152 break; 5153 5154 case Instruction::AtomicRMW: 5155 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5156 break; 5157 5158 case Instruction::Call: 5159 case Instruction::Invoke: { 5160 const CallBase *CB = cast<CallBase>(I); 5161 if (CB->isIndirectCall()) 5162 Operands.insert(CB->getCalledOperand()); 5163 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5164 if (CB->paramHasAttr(i, Attribute::NoUndef) || 5165 CB->paramHasAttr(i, Attribute::Dereferenceable)) 5166 Operands.insert(CB->getArgOperand(i)); 5167 } 5168 break; 5169 } 5170 5171 default: 5172 break; 5173 } 5174 } 5175 5176 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5177 SmallPtrSetImpl<const Value *> &Operands) { 5178 getGuaranteedWellDefinedOps(I, Operands); 5179 switch (I->getOpcode()) { 5180 // Divisors of these operations are allowed to be partially undef. 5181 case Instruction::UDiv: 5182 case Instruction::SDiv: 5183 case Instruction::URem: 5184 case Instruction::SRem: 5185 Operands.insert(I->getOperand(1)); 5186 break; 5187 5188 default: 5189 break; 5190 } 5191 } 5192 5193 bool llvm::mustTriggerUB(const Instruction *I, 5194 const SmallSet<const Value *, 16>& KnownPoison) { 5195 SmallPtrSet<const Value *, 4> NonPoisonOps; 5196 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5197 5198 for (const auto *V : NonPoisonOps) 5199 if (KnownPoison.count(V)) 5200 return true; 5201 5202 return false; 5203 } 5204 5205 static bool programUndefinedIfUndefOrPoison(const Value *V, 5206 bool PoisonOnly) { 5207 // We currently only look for uses of values within the same basic 5208 // block, as that makes it easier to guarantee that the uses will be 5209 // executed given that Inst is executed. 5210 // 5211 // FIXME: Expand this to consider uses beyond the same basic block. To do 5212 // this, look out for the distinction between post-dominance and strong 5213 // post-dominance. 5214 const BasicBlock *BB = nullptr; 5215 BasicBlock::const_iterator Begin; 5216 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5217 BB = Inst->getParent(); 5218 Begin = Inst->getIterator(); 5219 Begin++; 5220 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5221 BB = &Arg->getParent()->getEntryBlock(); 5222 Begin = BB->begin(); 5223 } else { 5224 return false; 5225 } 5226 5227 BasicBlock::const_iterator End = BB->end(); 5228 5229 if (!PoisonOnly) { 5230 // Since undef does not propagate eagerly, be conservative & just check 5231 // whether a value is directly passed to an instruction that must take 5232 // well-defined operands. 5233 5234 for (auto &I : make_range(Begin, End)) { 5235 SmallPtrSet<const Value *, 4> WellDefinedOps; 5236 getGuaranteedWellDefinedOps(&I, WellDefinedOps); 5237 for (auto *Op : WellDefinedOps) { 5238 if (Op == V) 5239 return true; 5240 } 5241 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5242 break; 5243 } 5244 return false; 5245 } 5246 5247 // Set of instructions that we have proved will yield poison if Inst 5248 // does. 5249 SmallSet<const Value *, 16> YieldsPoison; 5250 SmallSet<const BasicBlock *, 4> Visited; 5251 5252 YieldsPoison.insert(V); 5253 auto Propagate = [&](const User *User) { 5254 if (propagatesPoison(cast<Operator>(User))) 5255 YieldsPoison.insert(User); 5256 }; 5257 for_each(V->users(), Propagate); 5258 Visited.insert(BB); 5259 5260 unsigned Iter = 0; 5261 while (Iter++ < MaxAnalysisRecursionDepth) { 5262 for (auto &I : make_range(Begin, End)) { 5263 if (mustTriggerUB(&I, YieldsPoison)) 5264 return true; 5265 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5266 return false; 5267 5268 // Mark poison that propagates from I through uses of I. 5269 if (YieldsPoison.count(&I)) 5270 for_each(I.users(), Propagate); 5271 } 5272 5273 if (auto *NextBB = BB->getSingleSuccessor()) { 5274 if (Visited.insert(NextBB).second) { 5275 BB = NextBB; 5276 Begin = BB->getFirstNonPHI()->getIterator(); 5277 End = BB->end(); 5278 continue; 5279 } 5280 } 5281 5282 break; 5283 } 5284 return false; 5285 } 5286 5287 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5288 return ::programUndefinedIfUndefOrPoison(Inst, false); 5289 } 5290 5291 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5292 return ::programUndefinedIfUndefOrPoison(Inst, true); 5293 } 5294 5295 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5296 if (FMF.noNaNs()) 5297 return true; 5298 5299 if (auto *C = dyn_cast<ConstantFP>(V)) 5300 return !C->isNaN(); 5301 5302 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5303 if (!C->getElementType()->isFloatingPointTy()) 5304 return false; 5305 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5306 if (C->getElementAsAPFloat(I).isNaN()) 5307 return false; 5308 } 5309 return true; 5310 } 5311 5312 if (isa<ConstantAggregateZero>(V)) 5313 return true; 5314 5315 return false; 5316 } 5317 5318 static bool isKnownNonZero(const Value *V) { 5319 if (auto *C = dyn_cast<ConstantFP>(V)) 5320 return !C->isZero(); 5321 5322 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5323 if (!C->getElementType()->isFloatingPointTy()) 5324 return false; 5325 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5326 if (C->getElementAsAPFloat(I).isZero()) 5327 return false; 5328 } 5329 return true; 5330 } 5331 5332 return false; 5333 } 5334 5335 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5336 /// Given non-min/max outer cmp/select from the clamp pattern this 5337 /// function recognizes if it can be substitued by a "canonical" min/max 5338 /// pattern. 5339 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5340 Value *CmpLHS, Value *CmpRHS, 5341 Value *TrueVal, Value *FalseVal, 5342 Value *&LHS, Value *&RHS) { 5343 // Try to match 5344 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5345 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5346 // and return description of the outer Max/Min. 5347 5348 // First, check if select has inverse order: 5349 if (CmpRHS == FalseVal) { 5350 std::swap(TrueVal, FalseVal); 5351 Pred = CmpInst::getInversePredicate(Pred); 5352 } 5353 5354 // Assume success now. If there's no match, callers should not use these anyway. 5355 LHS = TrueVal; 5356 RHS = FalseVal; 5357 5358 const APFloat *FC1; 5359 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5360 return {SPF_UNKNOWN, SPNB_NA, false}; 5361 5362 const APFloat *FC2; 5363 switch (Pred) { 5364 case CmpInst::FCMP_OLT: 5365 case CmpInst::FCMP_OLE: 5366 case CmpInst::FCMP_ULT: 5367 case CmpInst::FCMP_ULE: 5368 if (match(FalseVal, 5369 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5370 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5371 *FC1 < *FC2) 5372 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5373 break; 5374 case CmpInst::FCMP_OGT: 5375 case CmpInst::FCMP_OGE: 5376 case CmpInst::FCMP_UGT: 5377 case CmpInst::FCMP_UGE: 5378 if (match(FalseVal, 5379 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5380 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5381 *FC1 > *FC2) 5382 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5383 break; 5384 default: 5385 break; 5386 } 5387 5388 return {SPF_UNKNOWN, SPNB_NA, false}; 5389 } 5390 5391 /// Recognize variations of: 5392 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5393 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5394 Value *CmpLHS, Value *CmpRHS, 5395 Value *TrueVal, Value *FalseVal) { 5396 // Swap the select operands and predicate to match the patterns below. 5397 if (CmpRHS != TrueVal) { 5398 Pred = ICmpInst::getSwappedPredicate(Pred); 5399 std::swap(TrueVal, FalseVal); 5400 } 5401 const APInt *C1; 5402 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5403 const APInt *C2; 5404 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5405 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5406 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5407 return {SPF_SMAX, SPNB_NA, false}; 5408 5409 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5410 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5411 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5412 return {SPF_SMIN, SPNB_NA, false}; 5413 5414 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5415 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5416 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5417 return {SPF_UMAX, SPNB_NA, false}; 5418 5419 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5420 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5421 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5422 return {SPF_UMIN, SPNB_NA, false}; 5423 } 5424 return {SPF_UNKNOWN, SPNB_NA, false}; 5425 } 5426 5427 /// Recognize variations of: 5428 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5429 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5430 Value *CmpLHS, Value *CmpRHS, 5431 Value *TVal, Value *FVal, 5432 unsigned Depth) { 5433 // TODO: Allow FP min/max with nnan/nsz. 5434 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5435 5436 Value *A = nullptr, *B = nullptr; 5437 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5438 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5439 return {SPF_UNKNOWN, SPNB_NA, false}; 5440 5441 Value *C = nullptr, *D = nullptr; 5442 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5443 if (L.Flavor != R.Flavor) 5444 return {SPF_UNKNOWN, SPNB_NA, false}; 5445 5446 // We have something like: x Pred y ? min(a, b) : min(c, d). 5447 // Try to match the compare to the min/max operations of the select operands. 5448 // First, make sure we have the right compare predicate. 5449 switch (L.Flavor) { 5450 case SPF_SMIN: 5451 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5452 Pred = ICmpInst::getSwappedPredicate(Pred); 5453 std::swap(CmpLHS, CmpRHS); 5454 } 5455 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5456 break; 5457 return {SPF_UNKNOWN, SPNB_NA, false}; 5458 case SPF_SMAX: 5459 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5460 Pred = ICmpInst::getSwappedPredicate(Pred); 5461 std::swap(CmpLHS, CmpRHS); 5462 } 5463 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5464 break; 5465 return {SPF_UNKNOWN, SPNB_NA, false}; 5466 case SPF_UMIN: 5467 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5468 Pred = ICmpInst::getSwappedPredicate(Pred); 5469 std::swap(CmpLHS, CmpRHS); 5470 } 5471 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5472 break; 5473 return {SPF_UNKNOWN, SPNB_NA, false}; 5474 case SPF_UMAX: 5475 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5476 Pred = ICmpInst::getSwappedPredicate(Pred); 5477 std::swap(CmpLHS, CmpRHS); 5478 } 5479 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5480 break; 5481 return {SPF_UNKNOWN, SPNB_NA, false}; 5482 default: 5483 return {SPF_UNKNOWN, SPNB_NA, false}; 5484 } 5485 5486 // If there is a common operand in the already matched min/max and the other 5487 // min/max operands match the compare operands (either directly or inverted), 5488 // then this is min/max of the same flavor. 5489 5490 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5491 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5492 if (D == B) { 5493 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5494 match(A, m_Not(m_Specific(CmpRHS))))) 5495 return {L.Flavor, SPNB_NA, false}; 5496 } 5497 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5498 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5499 if (C == B) { 5500 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5501 match(A, m_Not(m_Specific(CmpRHS))))) 5502 return {L.Flavor, SPNB_NA, false}; 5503 } 5504 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5505 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5506 if (D == A) { 5507 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5508 match(B, m_Not(m_Specific(CmpRHS))))) 5509 return {L.Flavor, SPNB_NA, false}; 5510 } 5511 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5512 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5513 if (C == A) { 5514 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5515 match(B, m_Not(m_Specific(CmpRHS))))) 5516 return {L.Flavor, SPNB_NA, false}; 5517 } 5518 5519 return {SPF_UNKNOWN, SPNB_NA, false}; 5520 } 5521 5522 /// If the input value is the result of a 'not' op, constant integer, or vector 5523 /// splat of a constant integer, return the bitwise-not source value. 5524 /// TODO: This could be extended to handle non-splat vector integer constants. 5525 static Value *getNotValue(Value *V) { 5526 Value *NotV; 5527 if (match(V, m_Not(m_Value(NotV)))) 5528 return NotV; 5529 5530 const APInt *C; 5531 if (match(V, m_APInt(C))) 5532 return ConstantInt::get(V->getType(), ~(*C)); 5533 5534 return nullptr; 5535 } 5536 5537 /// Match non-obvious integer minimum and maximum sequences. 5538 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5539 Value *CmpLHS, Value *CmpRHS, 5540 Value *TrueVal, Value *FalseVal, 5541 Value *&LHS, Value *&RHS, 5542 unsigned Depth) { 5543 // Assume success. If there's no match, callers should not use these anyway. 5544 LHS = TrueVal; 5545 RHS = FalseVal; 5546 5547 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5548 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5549 return SPR; 5550 5551 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5552 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5553 return SPR; 5554 5555 // Look through 'not' ops to find disguised min/max. 5556 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5557 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5558 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5559 switch (Pred) { 5560 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5561 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5562 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5563 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5564 default: break; 5565 } 5566 } 5567 5568 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5569 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5570 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5571 switch (Pred) { 5572 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5573 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5574 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5575 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5576 default: break; 5577 } 5578 } 5579 5580 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5581 return {SPF_UNKNOWN, SPNB_NA, false}; 5582 5583 // Z = X -nsw Y 5584 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5585 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5586 if (match(TrueVal, m_Zero()) && 5587 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5588 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5589 5590 // Z = X -nsw Y 5591 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5592 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5593 if (match(FalseVal, m_Zero()) && 5594 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5595 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5596 5597 const APInt *C1; 5598 if (!match(CmpRHS, m_APInt(C1))) 5599 return {SPF_UNKNOWN, SPNB_NA, false}; 5600 5601 // An unsigned min/max can be written with a signed compare. 5602 const APInt *C2; 5603 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5604 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5605 // Is the sign bit set? 5606 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5607 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5608 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5609 C2->isMaxSignedValue()) 5610 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5611 5612 // Is the sign bit clear? 5613 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5614 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5615 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5616 C2->isMinSignedValue()) 5617 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5618 } 5619 5620 return {SPF_UNKNOWN, SPNB_NA, false}; 5621 } 5622 5623 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5624 assert(X && Y && "Invalid operand"); 5625 5626 // X = sub (0, Y) || X = sub nsw (0, Y) 5627 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5628 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5629 return true; 5630 5631 // Y = sub (0, X) || Y = sub nsw (0, X) 5632 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5633 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5634 return true; 5635 5636 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5637 Value *A, *B; 5638 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5639 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5640 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5641 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5642 } 5643 5644 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5645 FastMathFlags FMF, 5646 Value *CmpLHS, Value *CmpRHS, 5647 Value *TrueVal, Value *FalseVal, 5648 Value *&LHS, Value *&RHS, 5649 unsigned Depth) { 5650 if (CmpInst::isFPPredicate(Pred)) { 5651 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5652 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5653 // purpose of identifying min/max. Disregard vector constants with undefined 5654 // elements because those can not be back-propagated for analysis. 5655 Value *OutputZeroVal = nullptr; 5656 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5657 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5658 OutputZeroVal = TrueVal; 5659 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5660 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5661 OutputZeroVal = FalseVal; 5662 5663 if (OutputZeroVal) { 5664 if (match(CmpLHS, m_AnyZeroFP())) 5665 CmpLHS = OutputZeroVal; 5666 if (match(CmpRHS, m_AnyZeroFP())) 5667 CmpRHS = OutputZeroVal; 5668 } 5669 } 5670 5671 LHS = CmpLHS; 5672 RHS = CmpRHS; 5673 5674 // Signed zero may return inconsistent results between implementations. 5675 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5676 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5677 // Therefore, we behave conservatively and only proceed if at least one of the 5678 // operands is known to not be zero or if we don't care about signed zero. 5679 switch (Pred) { 5680 default: break; 5681 // FIXME: Include OGT/OLT/UGT/ULT. 5682 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5683 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5684 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5685 !isKnownNonZero(CmpRHS)) 5686 return {SPF_UNKNOWN, SPNB_NA, false}; 5687 } 5688 5689 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5690 bool Ordered = false; 5691 5692 // When given one NaN and one non-NaN input: 5693 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5694 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5695 // ordered comparison fails), which could be NaN or non-NaN. 5696 // so here we discover exactly what NaN behavior is required/accepted. 5697 if (CmpInst::isFPPredicate(Pred)) { 5698 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5699 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5700 5701 if (LHSSafe && RHSSafe) { 5702 // Both operands are known non-NaN. 5703 NaNBehavior = SPNB_RETURNS_ANY; 5704 } else if (CmpInst::isOrdered(Pred)) { 5705 // An ordered comparison will return false when given a NaN, so it 5706 // returns the RHS. 5707 Ordered = true; 5708 if (LHSSafe) 5709 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5710 NaNBehavior = SPNB_RETURNS_NAN; 5711 else if (RHSSafe) 5712 NaNBehavior = SPNB_RETURNS_OTHER; 5713 else 5714 // Completely unsafe. 5715 return {SPF_UNKNOWN, SPNB_NA, false}; 5716 } else { 5717 Ordered = false; 5718 // An unordered comparison will return true when given a NaN, so it 5719 // returns the LHS. 5720 if (LHSSafe) 5721 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5722 NaNBehavior = SPNB_RETURNS_OTHER; 5723 else if (RHSSafe) 5724 NaNBehavior = SPNB_RETURNS_NAN; 5725 else 5726 // Completely unsafe. 5727 return {SPF_UNKNOWN, SPNB_NA, false}; 5728 } 5729 } 5730 5731 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5732 std::swap(CmpLHS, CmpRHS); 5733 Pred = CmpInst::getSwappedPredicate(Pred); 5734 if (NaNBehavior == SPNB_RETURNS_NAN) 5735 NaNBehavior = SPNB_RETURNS_OTHER; 5736 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5737 NaNBehavior = SPNB_RETURNS_NAN; 5738 Ordered = !Ordered; 5739 } 5740 5741 // ([if]cmp X, Y) ? X : Y 5742 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5743 switch (Pred) { 5744 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5745 case ICmpInst::ICMP_UGT: 5746 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5747 case ICmpInst::ICMP_SGT: 5748 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5749 case ICmpInst::ICMP_ULT: 5750 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5751 case ICmpInst::ICMP_SLT: 5752 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5753 case FCmpInst::FCMP_UGT: 5754 case FCmpInst::FCMP_UGE: 5755 case FCmpInst::FCMP_OGT: 5756 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5757 case FCmpInst::FCMP_ULT: 5758 case FCmpInst::FCMP_ULE: 5759 case FCmpInst::FCMP_OLT: 5760 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5761 } 5762 } 5763 5764 if (isKnownNegation(TrueVal, FalseVal)) { 5765 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5766 // match against either LHS or sext(LHS). 5767 auto MaybeSExtCmpLHS = 5768 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5769 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5770 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5771 if (match(TrueVal, MaybeSExtCmpLHS)) { 5772 // Set the return values. If the compare uses the negated value (-X >s 0), 5773 // swap the return values because the negated value is always 'RHS'. 5774 LHS = TrueVal; 5775 RHS = FalseVal; 5776 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5777 std::swap(LHS, RHS); 5778 5779 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5780 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5781 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5782 return {SPF_ABS, SPNB_NA, false}; 5783 5784 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5785 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5786 return {SPF_ABS, SPNB_NA, false}; 5787 5788 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5789 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5790 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5791 return {SPF_NABS, SPNB_NA, false}; 5792 } 5793 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5794 // Set the return values. If the compare uses the negated value (-X >s 0), 5795 // swap the return values because the negated value is always 'RHS'. 5796 LHS = FalseVal; 5797 RHS = TrueVal; 5798 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5799 std::swap(LHS, RHS); 5800 5801 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5802 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5803 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5804 return {SPF_NABS, SPNB_NA, false}; 5805 5806 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5807 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5808 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5809 return {SPF_ABS, SPNB_NA, false}; 5810 } 5811 } 5812 5813 if (CmpInst::isIntPredicate(Pred)) 5814 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5815 5816 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5817 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5818 // semantics than minNum. Be conservative in such case. 5819 if (NaNBehavior != SPNB_RETURNS_ANY || 5820 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5821 !isKnownNonZero(CmpRHS))) 5822 return {SPF_UNKNOWN, SPNB_NA, false}; 5823 5824 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5825 } 5826 5827 /// Helps to match a select pattern in case of a type mismatch. 5828 /// 5829 /// The function processes the case when type of true and false values of a 5830 /// select instruction differs from type of the cmp instruction operands because 5831 /// of a cast instruction. The function checks if it is legal to move the cast 5832 /// operation after "select". If yes, it returns the new second value of 5833 /// "select" (with the assumption that cast is moved): 5834 /// 1. As operand of cast instruction when both values of "select" are same cast 5835 /// instructions. 5836 /// 2. As restored constant (by applying reverse cast operation) when the first 5837 /// value of the "select" is a cast operation and the second value is a 5838 /// constant. 5839 /// NOTE: We return only the new second value because the first value could be 5840 /// accessed as operand of cast instruction. 5841 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5842 Instruction::CastOps *CastOp) { 5843 auto *Cast1 = dyn_cast<CastInst>(V1); 5844 if (!Cast1) 5845 return nullptr; 5846 5847 *CastOp = Cast1->getOpcode(); 5848 Type *SrcTy = Cast1->getSrcTy(); 5849 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5850 // If V1 and V2 are both the same cast from the same type, look through V1. 5851 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5852 return Cast2->getOperand(0); 5853 return nullptr; 5854 } 5855 5856 auto *C = dyn_cast<Constant>(V2); 5857 if (!C) 5858 return nullptr; 5859 5860 Constant *CastedTo = nullptr; 5861 switch (*CastOp) { 5862 case Instruction::ZExt: 5863 if (CmpI->isUnsigned()) 5864 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5865 break; 5866 case Instruction::SExt: 5867 if (CmpI->isSigned()) 5868 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5869 break; 5870 case Instruction::Trunc: 5871 Constant *CmpConst; 5872 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5873 CmpConst->getType() == SrcTy) { 5874 // Here we have the following case: 5875 // 5876 // %cond = cmp iN %x, CmpConst 5877 // %tr = trunc iN %x to iK 5878 // %narrowsel = select i1 %cond, iK %t, iK C 5879 // 5880 // We can always move trunc after select operation: 5881 // 5882 // %cond = cmp iN %x, CmpConst 5883 // %widesel = select i1 %cond, iN %x, iN CmpConst 5884 // %tr = trunc iN %widesel to iK 5885 // 5886 // Note that C could be extended in any way because we don't care about 5887 // upper bits after truncation. It can't be abs pattern, because it would 5888 // look like: 5889 // 5890 // select i1 %cond, x, -x. 5891 // 5892 // So only min/max pattern could be matched. Such match requires widened C 5893 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5894 // CmpConst == C is checked below. 5895 CastedTo = CmpConst; 5896 } else { 5897 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5898 } 5899 break; 5900 case Instruction::FPTrunc: 5901 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5902 break; 5903 case Instruction::FPExt: 5904 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5905 break; 5906 case Instruction::FPToUI: 5907 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5908 break; 5909 case Instruction::FPToSI: 5910 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5911 break; 5912 case Instruction::UIToFP: 5913 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5914 break; 5915 case Instruction::SIToFP: 5916 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5917 break; 5918 default: 5919 break; 5920 } 5921 5922 if (!CastedTo) 5923 return nullptr; 5924 5925 // Make sure the cast doesn't lose any information. 5926 Constant *CastedBack = 5927 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5928 if (CastedBack != C) 5929 return nullptr; 5930 5931 return CastedTo; 5932 } 5933 5934 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5935 Instruction::CastOps *CastOp, 5936 unsigned Depth) { 5937 if (Depth >= MaxAnalysisRecursionDepth) 5938 return {SPF_UNKNOWN, SPNB_NA, false}; 5939 5940 SelectInst *SI = dyn_cast<SelectInst>(V); 5941 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5942 5943 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5944 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5945 5946 Value *TrueVal = SI->getTrueValue(); 5947 Value *FalseVal = SI->getFalseValue(); 5948 5949 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5950 CastOp, Depth); 5951 } 5952 5953 SelectPatternResult llvm::matchDecomposedSelectPattern( 5954 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5955 Instruction::CastOps *CastOp, unsigned Depth) { 5956 CmpInst::Predicate Pred = CmpI->getPredicate(); 5957 Value *CmpLHS = CmpI->getOperand(0); 5958 Value *CmpRHS = CmpI->getOperand(1); 5959 FastMathFlags FMF; 5960 if (isa<FPMathOperator>(CmpI)) 5961 FMF = CmpI->getFastMathFlags(); 5962 5963 // Bail out early. 5964 if (CmpI->isEquality()) 5965 return {SPF_UNKNOWN, SPNB_NA, false}; 5966 5967 // Deal with type mismatches. 5968 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5969 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5970 // If this is a potential fmin/fmax with a cast to integer, then ignore 5971 // -0.0 because there is no corresponding integer value. 5972 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5973 FMF.setNoSignedZeros(); 5974 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5975 cast<CastInst>(TrueVal)->getOperand(0), C, 5976 LHS, RHS, Depth); 5977 } 5978 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5979 // If this is a potential fmin/fmax with a cast to integer, then ignore 5980 // -0.0 because there is no corresponding integer value. 5981 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5982 FMF.setNoSignedZeros(); 5983 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5984 C, cast<CastInst>(FalseVal)->getOperand(0), 5985 LHS, RHS, Depth); 5986 } 5987 } 5988 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5989 LHS, RHS, Depth); 5990 } 5991 5992 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5993 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5994 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5995 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5996 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5997 if (SPF == SPF_FMINNUM) 5998 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5999 if (SPF == SPF_FMAXNUM) 6000 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 6001 llvm_unreachable("unhandled!"); 6002 } 6003 6004 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 6005 if (SPF == SPF_SMIN) return SPF_SMAX; 6006 if (SPF == SPF_UMIN) return SPF_UMAX; 6007 if (SPF == SPF_SMAX) return SPF_SMIN; 6008 if (SPF == SPF_UMAX) return SPF_UMIN; 6009 llvm_unreachable("unhandled!"); 6010 } 6011 6012 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 6013 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 6014 } 6015 6016 std::pair<Intrinsic::ID, bool> 6017 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 6018 // Check if VL contains select instructions that can be folded into a min/max 6019 // vector intrinsic and return the intrinsic if it is possible. 6020 // TODO: Support floating point min/max. 6021 bool AllCmpSingleUse = true; 6022 SelectPatternResult SelectPattern; 6023 SelectPattern.Flavor = SPF_UNKNOWN; 6024 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 6025 Value *LHS, *RHS; 6026 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 6027 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 6028 CurrentPattern.Flavor == SPF_FMINNUM || 6029 CurrentPattern.Flavor == SPF_FMAXNUM || 6030 !I->getType()->isIntOrIntVectorTy()) 6031 return false; 6032 if (SelectPattern.Flavor != SPF_UNKNOWN && 6033 SelectPattern.Flavor != CurrentPattern.Flavor) 6034 return false; 6035 SelectPattern = CurrentPattern; 6036 AllCmpSingleUse &= 6037 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6038 return true; 6039 })) { 6040 switch (SelectPattern.Flavor) { 6041 case SPF_SMIN: 6042 return {Intrinsic::smin, AllCmpSingleUse}; 6043 case SPF_UMIN: 6044 return {Intrinsic::umin, AllCmpSingleUse}; 6045 case SPF_SMAX: 6046 return {Intrinsic::smax, AllCmpSingleUse}; 6047 case SPF_UMAX: 6048 return {Intrinsic::umax, AllCmpSingleUse}; 6049 default: 6050 llvm_unreachable("unexpected select pattern flavor"); 6051 } 6052 } 6053 return {Intrinsic::not_intrinsic, false}; 6054 } 6055 6056 /// Return true if "icmp Pred LHS RHS" is always true. 6057 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6058 const Value *RHS, const DataLayout &DL, 6059 unsigned Depth) { 6060 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6061 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6062 return true; 6063 6064 switch (Pred) { 6065 default: 6066 return false; 6067 6068 case CmpInst::ICMP_SLE: { 6069 const APInt *C; 6070 6071 // LHS s<= LHS +_{nsw} C if C >= 0 6072 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6073 return !C->isNegative(); 6074 return false; 6075 } 6076 6077 case CmpInst::ICMP_ULE: { 6078 const APInt *C; 6079 6080 // LHS u<= LHS +_{nuw} C for any C 6081 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6082 return true; 6083 6084 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6085 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6086 const Value *&X, 6087 const APInt *&CA, const APInt *&CB) { 6088 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6089 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6090 return true; 6091 6092 // If X & C == 0 then (X | C) == X +_{nuw} C 6093 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6094 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6095 KnownBits Known(CA->getBitWidth()); 6096 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6097 /*CxtI*/ nullptr, /*DT*/ nullptr); 6098 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6099 return true; 6100 } 6101 6102 return false; 6103 }; 6104 6105 const Value *X; 6106 const APInt *CLHS, *CRHS; 6107 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6108 return CLHS->ule(*CRHS); 6109 6110 return false; 6111 } 6112 } 6113 } 6114 6115 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6116 /// ALHS ARHS" is true. Otherwise, return None. 6117 static Optional<bool> 6118 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6119 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6120 const DataLayout &DL, unsigned Depth) { 6121 switch (Pred) { 6122 default: 6123 return None; 6124 6125 case CmpInst::ICMP_SLT: 6126 case CmpInst::ICMP_SLE: 6127 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6128 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6129 return true; 6130 return None; 6131 6132 case CmpInst::ICMP_ULT: 6133 case CmpInst::ICMP_ULE: 6134 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6135 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6136 return true; 6137 return None; 6138 } 6139 } 6140 6141 /// Return true if the operands of the two compares match. IsSwappedOps is true 6142 /// when the operands match, but are swapped. 6143 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6144 const Value *BLHS, const Value *BRHS, 6145 bool &IsSwappedOps) { 6146 6147 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6148 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6149 return IsMatchingOps || IsSwappedOps; 6150 } 6151 6152 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6153 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6154 /// Otherwise, return None if we can't infer anything. 6155 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6156 CmpInst::Predicate BPred, 6157 bool AreSwappedOps) { 6158 // Canonicalize the predicate as if the operands were not commuted. 6159 if (AreSwappedOps) 6160 BPred = ICmpInst::getSwappedPredicate(BPred); 6161 6162 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6163 return true; 6164 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6165 return false; 6166 6167 return None; 6168 } 6169 6170 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6171 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6172 /// Otherwise, return None if we can't infer anything. 6173 static Optional<bool> 6174 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6175 const ConstantInt *C1, 6176 CmpInst::Predicate BPred, 6177 const ConstantInt *C2) { 6178 ConstantRange DomCR = 6179 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6180 ConstantRange CR = 6181 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6182 ConstantRange Intersection = DomCR.intersectWith(CR); 6183 ConstantRange Difference = DomCR.difference(CR); 6184 if (Intersection.isEmptySet()) 6185 return false; 6186 if (Difference.isEmptySet()) 6187 return true; 6188 return None; 6189 } 6190 6191 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6192 /// false. Otherwise, return None if we can't infer anything. 6193 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6194 CmpInst::Predicate BPred, 6195 const Value *BLHS, const Value *BRHS, 6196 const DataLayout &DL, bool LHSIsTrue, 6197 unsigned Depth) { 6198 Value *ALHS = LHS->getOperand(0); 6199 Value *ARHS = LHS->getOperand(1); 6200 6201 // The rest of the logic assumes the LHS condition is true. If that's not the 6202 // case, invert the predicate to make it so. 6203 CmpInst::Predicate APred = 6204 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6205 6206 // Can we infer anything when the two compares have matching operands? 6207 bool AreSwappedOps; 6208 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6209 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6210 APred, BPred, AreSwappedOps)) 6211 return Implication; 6212 // No amount of additional analysis will infer the second condition, so 6213 // early exit. 6214 return None; 6215 } 6216 6217 // Can we infer anything when the LHS operands match and the RHS operands are 6218 // constants (not necessarily matching)? 6219 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6220 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6221 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6222 return Implication; 6223 // No amount of additional analysis will infer the second condition, so 6224 // early exit. 6225 return None; 6226 } 6227 6228 if (APred == BPred) 6229 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6230 return None; 6231 } 6232 6233 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6234 /// false. Otherwise, return None if we can't infer anything. We expect the 6235 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6236 static Optional<bool> 6237 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6238 const Value *RHSOp0, const Value *RHSOp1, 6239 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6240 // The LHS must be an 'or', 'and', or a 'select' instruction. 6241 assert((LHS->getOpcode() == Instruction::And || 6242 LHS->getOpcode() == Instruction::Or || 6243 LHS->getOpcode() == Instruction::Select) && 6244 "Expected LHS to be 'and', 'or', or 'select'."); 6245 6246 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6247 6248 // If the result of an 'or' is false, then we know both legs of the 'or' are 6249 // false. Similarly, if the result of an 'and' is true, then we know both 6250 // legs of the 'and' are true. 6251 const Value *ALHS, *ARHS; 6252 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6253 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6254 // FIXME: Make this non-recursion. 6255 if (Optional<bool> Implication = isImpliedCondition( 6256 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6257 return Implication; 6258 if (Optional<bool> Implication = isImpliedCondition( 6259 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6260 return Implication; 6261 return None; 6262 } 6263 return None; 6264 } 6265 6266 Optional<bool> 6267 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6268 const Value *RHSOp0, const Value *RHSOp1, 6269 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6270 // Bail out when we hit the limit. 6271 if (Depth == MaxAnalysisRecursionDepth) 6272 return None; 6273 6274 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6275 // example. 6276 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6277 return None; 6278 6279 Type *OpTy = LHS->getType(); 6280 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6281 6282 // FIXME: Extending the code below to handle vectors. 6283 if (OpTy->isVectorTy()) 6284 return None; 6285 6286 assert(OpTy->isIntegerTy(1) && "implied by above"); 6287 6288 // Both LHS and RHS are icmps. 6289 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6290 if (LHSCmp) 6291 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6292 Depth); 6293 6294 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6295 /// the RHS to be an icmp. 6296 /// FIXME: Add support for and/or/select on the RHS. 6297 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6298 if ((LHSI->getOpcode() == Instruction::And || 6299 LHSI->getOpcode() == Instruction::Or || 6300 LHSI->getOpcode() == Instruction::Select)) 6301 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6302 Depth); 6303 } 6304 return None; 6305 } 6306 6307 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6308 const DataLayout &DL, bool LHSIsTrue, 6309 unsigned Depth) { 6310 // LHS ==> RHS by definition 6311 if (LHS == RHS) 6312 return LHSIsTrue; 6313 6314 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6315 if (RHSCmp) 6316 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6317 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6318 LHSIsTrue, Depth); 6319 return None; 6320 } 6321 6322 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6323 // condition dominating ContextI or nullptr, if no condition is found. 6324 static std::pair<Value *, bool> 6325 getDomPredecessorCondition(const Instruction *ContextI) { 6326 if (!ContextI || !ContextI->getParent()) 6327 return {nullptr, false}; 6328 6329 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6330 // dominator tree (eg, from a SimplifyQuery) instead? 6331 const BasicBlock *ContextBB = ContextI->getParent(); 6332 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6333 if (!PredBB) 6334 return {nullptr, false}; 6335 6336 // We need a conditional branch in the predecessor. 6337 Value *PredCond; 6338 BasicBlock *TrueBB, *FalseBB; 6339 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6340 return {nullptr, false}; 6341 6342 // The branch should get simplified. Don't bother simplifying this condition. 6343 if (TrueBB == FalseBB) 6344 return {nullptr, false}; 6345 6346 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6347 "Predecessor block does not point to successor?"); 6348 6349 // Is this condition implied by the predecessor condition? 6350 return {PredCond, TrueBB == ContextBB}; 6351 } 6352 6353 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6354 const Instruction *ContextI, 6355 const DataLayout &DL) { 6356 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6357 auto PredCond = getDomPredecessorCondition(ContextI); 6358 if (PredCond.first) 6359 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6360 return None; 6361 } 6362 6363 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6364 const Value *LHS, const Value *RHS, 6365 const Instruction *ContextI, 6366 const DataLayout &DL) { 6367 auto PredCond = getDomPredecessorCondition(ContextI); 6368 if (PredCond.first) 6369 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6370 PredCond.second); 6371 return None; 6372 } 6373 6374 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6375 APInt &Upper, const InstrInfoQuery &IIQ) { 6376 unsigned Width = Lower.getBitWidth(); 6377 const APInt *C; 6378 switch (BO.getOpcode()) { 6379 case Instruction::Add: 6380 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6381 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6382 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6383 // 'add nuw x, C' produces [C, UINT_MAX]. 6384 Lower = *C; 6385 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6386 if (C->isNegative()) { 6387 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6388 Lower = APInt::getSignedMinValue(Width); 6389 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6390 } else { 6391 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6392 Lower = APInt::getSignedMinValue(Width) + *C; 6393 Upper = APInt::getSignedMaxValue(Width) + 1; 6394 } 6395 } 6396 } 6397 break; 6398 6399 case Instruction::And: 6400 if (match(BO.getOperand(1), m_APInt(C))) 6401 // 'and x, C' produces [0, C]. 6402 Upper = *C + 1; 6403 break; 6404 6405 case Instruction::Or: 6406 if (match(BO.getOperand(1), m_APInt(C))) 6407 // 'or x, C' produces [C, UINT_MAX]. 6408 Lower = *C; 6409 break; 6410 6411 case Instruction::AShr: 6412 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6413 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6414 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6415 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6416 } else if (match(BO.getOperand(0), m_APInt(C))) { 6417 unsigned ShiftAmount = Width - 1; 6418 if (!C->isNullValue() && IIQ.isExact(&BO)) 6419 ShiftAmount = C->countTrailingZeros(); 6420 if (C->isNegative()) { 6421 // 'ashr C, x' produces [C, C >> (Width-1)] 6422 Lower = *C; 6423 Upper = C->ashr(ShiftAmount) + 1; 6424 } else { 6425 // 'ashr C, x' produces [C >> (Width-1), C] 6426 Lower = C->ashr(ShiftAmount); 6427 Upper = *C + 1; 6428 } 6429 } 6430 break; 6431 6432 case Instruction::LShr: 6433 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6434 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6435 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6436 } else if (match(BO.getOperand(0), m_APInt(C))) { 6437 // 'lshr C, x' produces [C >> (Width-1), C]. 6438 unsigned ShiftAmount = Width - 1; 6439 if (!C->isNullValue() && IIQ.isExact(&BO)) 6440 ShiftAmount = C->countTrailingZeros(); 6441 Lower = C->lshr(ShiftAmount); 6442 Upper = *C + 1; 6443 } 6444 break; 6445 6446 case Instruction::Shl: 6447 if (match(BO.getOperand(0), m_APInt(C))) { 6448 if (IIQ.hasNoUnsignedWrap(&BO)) { 6449 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6450 Lower = *C; 6451 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6452 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6453 if (C->isNegative()) { 6454 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6455 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6456 Lower = C->shl(ShiftAmount); 6457 Upper = *C + 1; 6458 } else { 6459 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6460 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6461 Lower = *C; 6462 Upper = C->shl(ShiftAmount) + 1; 6463 } 6464 } 6465 } 6466 break; 6467 6468 case Instruction::SDiv: 6469 if (match(BO.getOperand(1), m_APInt(C))) { 6470 APInt IntMin = APInt::getSignedMinValue(Width); 6471 APInt IntMax = APInt::getSignedMaxValue(Width); 6472 if (C->isAllOnesValue()) { 6473 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6474 // where C != -1 and C != 0 and C != 1 6475 Lower = IntMin + 1; 6476 Upper = IntMax + 1; 6477 } else if (C->countLeadingZeros() < Width - 1) { 6478 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6479 // where C != -1 and C != 0 and C != 1 6480 Lower = IntMin.sdiv(*C); 6481 Upper = IntMax.sdiv(*C); 6482 if (Lower.sgt(Upper)) 6483 std::swap(Lower, Upper); 6484 Upper = Upper + 1; 6485 assert(Upper != Lower && "Upper part of range has wrapped!"); 6486 } 6487 } else if (match(BO.getOperand(0), m_APInt(C))) { 6488 if (C->isMinSignedValue()) { 6489 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6490 Lower = *C; 6491 Upper = Lower.lshr(1) + 1; 6492 } else { 6493 // 'sdiv C, x' produces [-|C|, |C|]. 6494 Upper = C->abs() + 1; 6495 Lower = (-Upper) + 1; 6496 } 6497 } 6498 break; 6499 6500 case Instruction::UDiv: 6501 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6502 // 'udiv x, C' produces [0, UINT_MAX / C]. 6503 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6504 } else if (match(BO.getOperand(0), m_APInt(C))) { 6505 // 'udiv C, x' produces [0, C]. 6506 Upper = *C + 1; 6507 } 6508 break; 6509 6510 case Instruction::SRem: 6511 if (match(BO.getOperand(1), m_APInt(C))) { 6512 // 'srem x, C' produces (-|C|, |C|). 6513 Upper = C->abs(); 6514 Lower = (-Upper) + 1; 6515 } 6516 break; 6517 6518 case Instruction::URem: 6519 if (match(BO.getOperand(1), m_APInt(C))) 6520 // 'urem x, C' produces [0, C). 6521 Upper = *C; 6522 break; 6523 6524 default: 6525 break; 6526 } 6527 } 6528 6529 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6530 APInt &Upper) { 6531 unsigned Width = Lower.getBitWidth(); 6532 const APInt *C; 6533 switch (II.getIntrinsicID()) { 6534 case Intrinsic::ctpop: 6535 case Intrinsic::ctlz: 6536 case Intrinsic::cttz: 6537 // Maximum of set/clear bits is the bit width. 6538 assert(Lower == 0 && "Expected lower bound to be zero"); 6539 Upper = Width + 1; 6540 break; 6541 case Intrinsic::uadd_sat: 6542 // uadd.sat(x, C) produces [C, UINT_MAX]. 6543 if (match(II.getOperand(0), m_APInt(C)) || 6544 match(II.getOperand(1), m_APInt(C))) 6545 Lower = *C; 6546 break; 6547 case Intrinsic::sadd_sat: 6548 if (match(II.getOperand(0), m_APInt(C)) || 6549 match(II.getOperand(1), m_APInt(C))) { 6550 if (C->isNegative()) { 6551 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6552 Lower = APInt::getSignedMinValue(Width); 6553 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6554 } else { 6555 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6556 Lower = APInt::getSignedMinValue(Width) + *C; 6557 Upper = APInt::getSignedMaxValue(Width) + 1; 6558 } 6559 } 6560 break; 6561 case Intrinsic::usub_sat: 6562 // usub.sat(C, x) produces [0, C]. 6563 if (match(II.getOperand(0), m_APInt(C))) 6564 Upper = *C + 1; 6565 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6566 else if (match(II.getOperand(1), m_APInt(C))) 6567 Upper = APInt::getMaxValue(Width) - *C + 1; 6568 break; 6569 case Intrinsic::ssub_sat: 6570 if (match(II.getOperand(0), m_APInt(C))) { 6571 if (C->isNegative()) { 6572 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6573 Lower = APInt::getSignedMinValue(Width); 6574 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6575 } else { 6576 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6577 Lower = *C - APInt::getSignedMaxValue(Width); 6578 Upper = APInt::getSignedMaxValue(Width) + 1; 6579 } 6580 } else if (match(II.getOperand(1), m_APInt(C))) { 6581 if (C->isNegative()) { 6582 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6583 Lower = APInt::getSignedMinValue(Width) - *C; 6584 Upper = APInt::getSignedMaxValue(Width) + 1; 6585 } else { 6586 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6587 Lower = APInt::getSignedMinValue(Width); 6588 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6589 } 6590 } 6591 break; 6592 case Intrinsic::umin: 6593 case Intrinsic::umax: 6594 case Intrinsic::smin: 6595 case Intrinsic::smax: 6596 if (!match(II.getOperand(0), m_APInt(C)) && 6597 !match(II.getOperand(1), m_APInt(C))) 6598 break; 6599 6600 switch (II.getIntrinsicID()) { 6601 case Intrinsic::umin: 6602 Upper = *C + 1; 6603 break; 6604 case Intrinsic::umax: 6605 Lower = *C; 6606 break; 6607 case Intrinsic::smin: 6608 Lower = APInt::getSignedMinValue(Width); 6609 Upper = *C + 1; 6610 break; 6611 case Intrinsic::smax: 6612 Lower = *C; 6613 Upper = APInt::getSignedMaxValue(Width) + 1; 6614 break; 6615 default: 6616 llvm_unreachable("Must be min/max intrinsic"); 6617 } 6618 break; 6619 case Intrinsic::abs: 6620 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6621 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6622 if (match(II.getOperand(1), m_One())) 6623 Upper = APInt::getSignedMaxValue(Width) + 1; 6624 else 6625 Upper = APInt::getSignedMinValue(Width) + 1; 6626 break; 6627 default: 6628 break; 6629 } 6630 } 6631 6632 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6633 APInt &Upper, const InstrInfoQuery &IIQ) { 6634 const Value *LHS = nullptr, *RHS = nullptr; 6635 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6636 if (R.Flavor == SPF_UNKNOWN) 6637 return; 6638 6639 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6640 6641 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6642 // If the negation part of the abs (in RHS) has the NSW flag, 6643 // then the result of abs(X) is [0..SIGNED_MAX], 6644 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6645 Lower = APInt::getNullValue(BitWidth); 6646 if (match(RHS, m_Neg(m_Specific(LHS))) && 6647 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6648 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6649 else 6650 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6651 return; 6652 } 6653 6654 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6655 // The result of -abs(X) is <= 0. 6656 Lower = APInt::getSignedMinValue(BitWidth); 6657 Upper = APInt(BitWidth, 1); 6658 return; 6659 } 6660 6661 const APInt *C; 6662 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6663 return; 6664 6665 switch (R.Flavor) { 6666 case SPF_UMIN: 6667 Upper = *C + 1; 6668 break; 6669 case SPF_UMAX: 6670 Lower = *C; 6671 break; 6672 case SPF_SMIN: 6673 Lower = APInt::getSignedMinValue(BitWidth); 6674 Upper = *C + 1; 6675 break; 6676 case SPF_SMAX: 6677 Lower = *C; 6678 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6679 break; 6680 default: 6681 break; 6682 } 6683 } 6684 6685 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6686 AssumptionCache *AC, 6687 const Instruction *CtxI, 6688 unsigned Depth) { 6689 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6690 6691 if (Depth == MaxAnalysisRecursionDepth) 6692 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6693 6694 const APInt *C; 6695 if (match(V, m_APInt(C))) 6696 return ConstantRange(*C); 6697 6698 InstrInfoQuery IIQ(UseInstrInfo); 6699 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6700 APInt Lower = APInt(BitWidth, 0); 6701 APInt Upper = APInt(BitWidth, 0); 6702 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6703 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6704 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6705 setLimitsForIntrinsic(*II, Lower, Upper); 6706 else if (auto *SI = dyn_cast<SelectInst>(V)) 6707 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6708 6709 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6710 6711 if (auto *I = dyn_cast<Instruction>(V)) 6712 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6713 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6714 6715 if (CtxI && AC) { 6716 // Try to restrict the range based on information from assumptions. 6717 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6718 if (!AssumeVH) 6719 continue; 6720 CallInst *I = cast<CallInst>(AssumeVH); 6721 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6722 "Got assumption for the wrong function!"); 6723 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6724 "must be an assume intrinsic"); 6725 6726 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6727 continue; 6728 Value *Arg = I->getArgOperand(0); 6729 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6730 // Currently we just use information from comparisons. 6731 if (!Cmp || Cmp->getOperand(0) != V) 6732 continue; 6733 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6734 AC, I, Depth + 1); 6735 CR = CR.intersectWith( 6736 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6737 } 6738 } 6739 6740 return CR; 6741 } 6742 6743 static Optional<int64_t> 6744 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6745 // Skip over the first indices. 6746 gep_type_iterator GTI = gep_type_begin(GEP); 6747 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6748 /*skip along*/; 6749 6750 // Compute the offset implied by the rest of the indices. 6751 int64_t Offset = 0; 6752 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6753 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6754 if (!OpC) 6755 return None; 6756 if (OpC->isZero()) 6757 continue; // No offset. 6758 6759 // Handle struct indices, which add their field offset to the pointer. 6760 if (StructType *STy = GTI.getStructTypeOrNull()) { 6761 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6762 continue; 6763 } 6764 6765 // Otherwise, we have a sequential type like an array or fixed-length 6766 // vector. Multiply the index by the ElementSize. 6767 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6768 if (Size.isScalable()) 6769 return None; 6770 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6771 } 6772 6773 return Offset; 6774 } 6775 6776 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6777 const DataLayout &DL) { 6778 Ptr1 = Ptr1->stripPointerCasts(); 6779 Ptr2 = Ptr2->stripPointerCasts(); 6780 6781 // Handle the trivial case first. 6782 if (Ptr1 == Ptr2) { 6783 return 0; 6784 } 6785 6786 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6787 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6788 6789 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6790 // as in "P" and "gep P, 1". 6791 // Also do this iteratively to handle the the following case: 6792 // Ptr_t1 = GEP Ptr1, c1 6793 // Ptr_t2 = GEP Ptr_t1, c2 6794 // Ptr2 = GEP Ptr_t2, c3 6795 // where we will return c1+c2+c3. 6796 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6797 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6798 // are the same, and return the difference between offsets. 6799 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6800 const Value *Ptr) -> Optional<int64_t> { 6801 const GEPOperator *GEP_T = GEP; 6802 int64_t OffsetVal = 0; 6803 bool HasSameBase = false; 6804 while (GEP_T) { 6805 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6806 if (!Offset) 6807 return None; 6808 OffsetVal += *Offset; 6809 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6810 if (Op0 == Ptr) { 6811 HasSameBase = true; 6812 break; 6813 } 6814 GEP_T = dyn_cast<GEPOperator>(Op0); 6815 } 6816 if (!HasSameBase) 6817 return None; 6818 return OffsetVal; 6819 }; 6820 6821 if (GEP1) { 6822 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6823 if (Offset) 6824 return -*Offset; 6825 } 6826 if (GEP2) { 6827 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6828 if (Offset) 6829 return Offset; 6830 } 6831 6832 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6833 // base. After that base, they may have some number of common (and 6834 // potentially variable) indices. After that they handle some constant 6835 // offset, which determines their offset from each other. At this point, we 6836 // handle no other case. 6837 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6838 return None; 6839 6840 // Skip any common indices and track the GEP types. 6841 unsigned Idx = 1; 6842 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6843 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6844 break; 6845 6846 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6847 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6848 if (!Offset1 || !Offset2) 6849 return None; 6850 return *Offset2 - *Offset1; 6851 } 6852