1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getMask()->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 178 for (int i = 0; i != NumMaskElts; ++i) { 179 if (!DemandedElts[i]) 180 continue; 181 int M = Shuf->getMaskValue(i); 182 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 183 184 // For undef elements, we don't know anything about the common state of 185 // the shuffle result. 186 if (M == -1) 187 return false; 188 if (M < NumElts) 189 DemandedLHS.setBit(M % NumElts); 190 else 191 DemandedRHS.setBit(M % NumElts); 192 } 193 194 return true; 195 } 196 197 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 198 KnownBits &Known, unsigned Depth, const Query &Q); 199 200 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 201 const Query &Q) { 202 Type *Ty = V->getType(); 203 APInt DemandedElts = Ty->isVectorTy() 204 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 205 : APInt(1, 1); 206 computeKnownBits(V, DemandedElts, Known, Depth, Q); 207 } 208 209 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 210 const DataLayout &DL, unsigned Depth, 211 AssumptionCache *AC, const Instruction *CxtI, 212 const DominatorTree *DT, 213 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 214 ::computeKnownBits(V, Known, Depth, 215 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 216 } 217 218 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 219 const Query &Q); 220 221 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 222 unsigned Depth, AssumptionCache *AC, 223 const Instruction *CxtI, 224 const DominatorTree *DT, 225 OptimizationRemarkEmitter *ORE, 226 bool UseInstrInfo) { 227 return ::computeKnownBits( 228 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 229 } 230 231 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 232 const DataLayout &DL, AssumptionCache *AC, 233 const Instruction *CxtI, const DominatorTree *DT, 234 bool UseInstrInfo) { 235 assert(LHS->getType() == RHS->getType() && 236 "LHS and RHS should have the same type"); 237 assert(LHS->getType()->isIntOrIntVectorTy() && 238 "LHS and RHS should be integers"); 239 // Look for an inverted mask: (X & ~M) op (Y & M). 240 Value *M; 241 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 242 match(RHS, m_c_And(m_Specific(M), m_Value()))) 243 return true; 244 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 245 match(LHS, m_c_And(m_Specific(M), m_Value()))) 246 return true; 247 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 248 KnownBits LHSKnown(IT->getBitWidth()); 249 KnownBits RHSKnown(IT->getBitWidth()); 250 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 251 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 252 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 253 } 254 255 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 256 for (const User *U : CxtI->users()) { 257 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 258 if (IC->isEquality()) 259 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 260 if (C->isNullValue()) 261 continue; 262 return false; 263 } 264 return true; 265 } 266 267 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 268 const Query &Q); 269 270 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 271 bool OrZero, unsigned Depth, 272 AssumptionCache *AC, const Instruction *CxtI, 273 const DominatorTree *DT, bool UseInstrInfo) { 274 return ::isKnownToBeAPowerOfTwo( 275 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 276 } 277 278 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 279 280 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 281 AssumptionCache *AC, const Instruction *CxtI, 282 const DominatorTree *DT, bool UseInstrInfo) { 283 return ::isKnownNonZero(V, Depth, 284 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 285 } 286 287 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 288 unsigned Depth, AssumptionCache *AC, 289 const Instruction *CxtI, const DominatorTree *DT, 290 bool UseInstrInfo) { 291 KnownBits Known = 292 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 293 return Known.isNonNegative(); 294 } 295 296 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 297 AssumptionCache *AC, const Instruction *CxtI, 298 const DominatorTree *DT, bool UseInstrInfo) { 299 if (auto *CI = dyn_cast<ConstantInt>(V)) 300 return CI->getValue().isStrictlyPositive(); 301 302 // TODO: We'd doing two recursive queries here. We should factor this such 303 // that only a single query is needed. 304 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 305 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 306 } 307 308 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 309 AssumptionCache *AC, const Instruction *CxtI, 310 const DominatorTree *DT, bool UseInstrInfo) { 311 KnownBits Known = 312 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 313 return Known.isNegative(); 314 } 315 316 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 317 318 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 319 const DataLayout &DL, AssumptionCache *AC, 320 const Instruction *CxtI, const DominatorTree *DT, 321 bool UseInstrInfo) { 322 return ::isKnownNonEqual(V1, V2, 323 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 324 UseInstrInfo, /*ORE=*/nullptr)); 325 } 326 327 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 328 const Query &Q); 329 330 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 331 const DataLayout &DL, unsigned Depth, 332 AssumptionCache *AC, const Instruction *CxtI, 333 const DominatorTree *DT, bool UseInstrInfo) { 334 return ::MaskedValueIsZero( 335 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 336 } 337 338 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 339 unsigned Depth, const Query &Q); 340 341 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 342 const Query &Q) { 343 Type *Ty = V->getType(); 344 APInt DemandedElts = Ty->isVectorTy() 345 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 346 : APInt(1, 1); 347 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 348 } 349 350 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 351 unsigned Depth, AssumptionCache *AC, 352 const Instruction *CxtI, 353 const DominatorTree *DT, bool UseInstrInfo) { 354 return ::ComputeNumSignBits( 355 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 356 } 357 358 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 359 bool NSW, 360 KnownBits &KnownOut, KnownBits &Known2, 361 unsigned Depth, const Query &Q) { 362 unsigned BitWidth = KnownOut.getBitWidth(); 363 364 // If an initial sequence of bits in the result is not needed, the 365 // corresponding bits in the operands are not needed. 366 KnownBits LHSKnown(BitWidth); 367 computeKnownBits(Op0, LHSKnown, Depth + 1, Q); 368 computeKnownBits(Op1, Known2, Depth + 1, Q); 369 370 KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2); 371 } 372 373 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 374 KnownBits &Known, KnownBits &Known2, 375 unsigned Depth, const Query &Q) { 376 unsigned BitWidth = Known.getBitWidth(); 377 computeKnownBits(Op1, Known, Depth + 1, Q); 378 computeKnownBits(Op0, Known2, Depth + 1, Q); 379 380 bool isKnownNegative = false; 381 bool isKnownNonNegative = false; 382 // If the multiplication is known not to overflow, compute the sign bit. 383 if (NSW) { 384 if (Op0 == Op1) { 385 // The product of a number with itself is non-negative. 386 isKnownNonNegative = true; 387 } else { 388 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 389 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 390 bool isKnownNegativeOp1 = Known.isNegative(); 391 bool isKnownNegativeOp0 = Known2.isNegative(); 392 // The product of two numbers with the same sign is non-negative. 393 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 394 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 395 // The product of a negative number and a non-negative number is either 396 // negative or zero. 397 if (!isKnownNonNegative) 398 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 399 isKnownNonZero(Op0, Depth, Q)) || 400 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 401 isKnownNonZero(Op1, Depth, Q)); 402 } 403 } 404 405 assert(!Known.hasConflict() && !Known2.hasConflict()); 406 // Compute a conservative estimate for high known-0 bits. 407 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 408 Known2.countMinLeadingZeros(), 409 BitWidth) - BitWidth; 410 LeadZ = std::min(LeadZ, BitWidth); 411 412 // The result of the bottom bits of an integer multiply can be 413 // inferred by looking at the bottom bits of both operands and 414 // multiplying them together. 415 // We can infer at least the minimum number of known trailing bits 416 // of both operands. Depending on number of trailing zeros, we can 417 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 418 // a and b are divisible by m and n respectively. 419 // We then calculate how many of those bits are inferrable and set 420 // the output. For example, the i8 mul: 421 // a = XXXX1100 (12) 422 // b = XXXX1110 (14) 423 // We know the bottom 3 bits are zero since the first can be divided by 424 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 425 // Applying the multiplication to the trimmed arguments gets: 426 // XX11 (3) 427 // X111 (7) 428 // ------- 429 // XX11 430 // XX11 431 // XX11 432 // XX11 433 // ------- 434 // XXXXX01 435 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 436 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 437 // The proof for this can be described as: 438 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 439 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 440 // umin(countTrailingZeros(C2), C6) + 441 // umin(C5 - umin(countTrailingZeros(C1), C5), 442 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 443 // %aa = shl i8 %a, C5 444 // %bb = shl i8 %b, C6 445 // %aaa = or i8 %aa, C1 446 // %bbb = or i8 %bb, C2 447 // %mul = mul i8 %aaa, %bbb 448 // %mask = and i8 %mul, C7 449 // => 450 // %mask = i8 ((C1*C2)&C7) 451 // Where C5, C6 describe the known bits of %a, %b 452 // C1, C2 describe the known bottom bits of %a, %b. 453 // C7 describes the mask of the known bits of the result. 454 APInt Bottom0 = Known.One; 455 APInt Bottom1 = Known2.One; 456 457 // How many times we'd be able to divide each argument by 2 (shr by 1). 458 // This gives us the number of trailing zeros on the multiplication result. 459 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 460 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 461 unsigned TrailZero0 = Known.countMinTrailingZeros(); 462 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 463 unsigned TrailZ = TrailZero0 + TrailZero1; 464 465 // Figure out the fewest known-bits operand. 466 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 467 TrailBitsKnown1 - TrailZero1); 468 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 469 470 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 471 Bottom1.getLoBits(TrailBitsKnown1); 472 473 Known.resetAll(); 474 Known.Zero.setHighBits(LeadZ); 475 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 476 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 477 478 // Only make use of no-wrap flags if we failed to compute the sign bit 479 // directly. This matters if the multiplication always overflows, in 480 // which case we prefer to follow the result of the direct computation, 481 // though as the program is invoking undefined behaviour we can choose 482 // whatever we like here. 483 if (isKnownNonNegative && !Known.isNegative()) 484 Known.makeNonNegative(); 485 else if (isKnownNegative && !Known.isNonNegative()) 486 Known.makeNegative(); 487 } 488 489 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 490 KnownBits &Known) { 491 unsigned BitWidth = Known.getBitWidth(); 492 unsigned NumRanges = Ranges.getNumOperands() / 2; 493 assert(NumRanges >= 1); 494 495 Known.Zero.setAllBits(); 496 Known.One.setAllBits(); 497 498 for (unsigned i = 0; i < NumRanges; ++i) { 499 ConstantInt *Lower = 500 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 501 ConstantInt *Upper = 502 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 503 ConstantRange Range(Lower->getValue(), Upper->getValue()); 504 505 // The first CommonPrefixBits of all values in Range are equal. 506 unsigned CommonPrefixBits = 507 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 508 509 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 510 Known.One &= Range.getUnsignedMax() & Mask; 511 Known.Zero &= ~Range.getUnsignedMax() & Mask; 512 } 513 } 514 515 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 516 SmallVector<const Value *, 16> WorkSet(1, I); 517 SmallPtrSet<const Value *, 32> Visited; 518 SmallPtrSet<const Value *, 16> EphValues; 519 520 // The instruction defining an assumption's condition itself is always 521 // considered ephemeral to that assumption (even if it has other 522 // non-ephemeral users). See r246696's test case for an example. 523 if (is_contained(I->operands(), E)) 524 return true; 525 526 while (!WorkSet.empty()) { 527 const Value *V = WorkSet.pop_back_val(); 528 if (!Visited.insert(V).second) 529 continue; 530 531 // If all uses of this value are ephemeral, then so is this value. 532 if (llvm::all_of(V->users(), [&](const User *U) { 533 return EphValues.count(U); 534 })) { 535 if (V == E) 536 return true; 537 538 if (V == I || isSafeToSpeculativelyExecute(V)) { 539 EphValues.insert(V); 540 if (const User *U = dyn_cast<User>(V)) 541 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 542 J != JE; ++J) 543 WorkSet.push_back(*J); 544 } 545 } 546 } 547 548 return false; 549 } 550 551 // Is this an intrinsic that cannot be speculated but also cannot trap? 552 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 553 if (const CallInst *CI = dyn_cast<CallInst>(I)) 554 if (Function *F = CI->getCalledFunction()) 555 switch (F->getIntrinsicID()) { 556 default: break; 557 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 558 case Intrinsic::assume: 559 case Intrinsic::sideeffect: 560 case Intrinsic::dbg_declare: 561 case Intrinsic::dbg_value: 562 case Intrinsic::dbg_label: 563 case Intrinsic::invariant_start: 564 case Intrinsic::invariant_end: 565 case Intrinsic::lifetime_start: 566 case Intrinsic::lifetime_end: 567 case Intrinsic::objectsize: 568 case Intrinsic::ptr_annotation: 569 case Intrinsic::var_annotation: 570 return true; 571 } 572 573 return false; 574 } 575 576 bool llvm::isValidAssumeForContext(const Instruction *Inv, 577 const Instruction *CxtI, 578 const DominatorTree *DT) { 579 // There are two restrictions on the use of an assume: 580 // 1. The assume must dominate the context (or the control flow must 581 // reach the assume whenever it reaches the context). 582 // 2. The context must not be in the assume's set of ephemeral values 583 // (otherwise we will use the assume to prove that the condition 584 // feeding the assume is trivially true, thus causing the removal of 585 // the assume). 586 587 if (DT) { 588 if (DT->dominates(Inv, CxtI)) 589 return true; 590 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 591 // We don't have a DT, but this trivially dominates. 592 return true; 593 } 594 595 // With or without a DT, the only remaining case we will check is if the 596 // instructions are in the same BB. Give up if that is not the case. 597 if (Inv->getParent() != CxtI->getParent()) 598 return false; 599 600 // If we have a dom tree, then we now know that the assume doesn't dominate 601 // the other instruction. If we don't have a dom tree then we can check if 602 // the assume is first in the BB. 603 if (!DT) { 604 // Search forward from the assume until we reach the context (or the end 605 // of the block); the common case is that the assume will come first. 606 for (auto I = std::next(BasicBlock::const_iterator(Inv)), 607 IE = Inv->getParent()->end(); I != IE; ++I) 608 if (&*I == CxtI) 609 return true; 610 } 611 612 // Don't let an assume affect itself - this would cause the problems 613 // `isEphemeralValueOf` is trying to prevent, and it would also make 614 // the loop below go out of bounds. 615 if (Inv == CxtI) 616 return false; 617 618 // The context comes first, but they're both in the same block. 619 // Make sure there is nothing in between that might interrupt 620 // the control flow, not even CxtI itself. 621 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 622 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 623 return false; 624 625 return !isEphemeralValueOf(Inv, CxtI); 626 } 627 628 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 629 // Use of assumptions is context-sensitive. If we don't have a context, we 630 // cannot use them! 631 if (!Q.AC || !Q.CxtI) 632 return false; 633 634 // Note that the patterns below need to be kept in sync with the code 635 // in AssumptionCache::updateAffectedValues. 636 637 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 638 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 639 640 Value *RHS; 641 CmpInst::Predicate Pred; 642 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 643 return false; 644 // assume(v u> y) -> assume(v != 0) 645 if (Pred == ICmpInst::ICMP_UGT) 646 return true; 647 648 // assume(v != 0) 649 // We special-case this one to ensure that we handle `assume(v != null)`. 650 if (Pred == ICmpInst::ICMP_NE) 651 return match(RHS, m_Zero()); 652 653 // All other predicates - rely on generic ConstantRange handling. 654 ConstantInt *CI; 655 if (!match(RHS, m_ConstantInt(CI))) 656 return false; 657 ConstantRange RHSRange(CI->getValue()); 658 ConstantRange TrueValues = 659 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 660 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 661 }; 662 663 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 664 if (!AssumeVH) 665 continue; 666 CallInst *I = cast<CallInst>(AssumeVH); 667 assert(I->getFunction() == Q.CxtI->getFunction() && 668 "Got assumption for the wrong function!"); 669 if (Q.isExcluded(I)) 670 continue; 671 672 // Warning: This loop can end up being somewhat performance sensitive. 673 // We're running this loop for once for each value queried resulting in a 674 // runtime of ~O(#assumes * #values). 675 676 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 677 "must be an assume intrinsic"); 678 679 Value *Arg = I->getArgOperand(0); 680 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 681 if (!Cmp) 682 continue; 683 684 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 685 return true; 686 } 687 688 return false; 689 } 690 691 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 692 unsigned Depth, const Query &Q) { 693 // Use of assumptions is context-sensitive. If we don't have a context, we 694 // cannot use them! 695 if (!Q.AC || !Q.CxtI) 696 return; 697 698 unsigned BitWidth = Known.getBitWidth(); 699 700 // Note that the patterns below need to be kept in sync with the code 701 // in AssumptionCache::updateAffectedValues. 702 703 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 704 if (!AssumeVH) 705 continue; 706 CallInst *I = cast<CallInst>(AssumeVH); 707 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 708 "Got assumption for the wrong function!"); 709 if (Q.isExcluded(I)) 710 continue; 711 712 // Warning: This loop can end up being somewhat performance sensitive. 713 // We're running this loop for once for each value queried resulting in a 714 // runtime of ~O(#assumes * #values). 715 716 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 717 "must be an assume intrinsic"); 718 719 Value *Arg = I->getArgOperand(0); 720 721 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 722 assert(BitWidth == 1 && "assume operand is not i1?"); 723 Known.setAllOnes(); 724 return; 725 } 726 if (match(Arg, m_Not(m_Specific(V))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 assert(BitWidth == 1 && "assume operand is not i1?"); 729 Known.setAllZero(); 730 return; 731 } 732 733 // The remaining tests are all recursive, so bail out if we hit the limit. 734 if (Depth == MaxDepth) 735 continue; 736 737 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 738 if (!Cmp) 739 continue; 740 741 Value *A, *B; 742 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 743 744 CmpInst::Predicate Pred; 745 uint64_t C; 746 switch (Cmp->getPredicate()) { 747 default: 748 break; 749 case ICmpInst::ICMP_EQ: 750 // assume(v = a) 751 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 752 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 753 KnownBits RHSKnown(BitWidth); 754 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 755 Known.Zero |= RHSKnown.Zero; 756 Known.One |= RHSKnown.One; 757 // assume(v & b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown(BitWidth); 762 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 763 KnownBits MaskKnown(BitWidth); 764 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 765 766 // For those bits in the mask that are known to be one, we can propagate 767 // known bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 769 Known.One |= RHSKnown.One & MaskKnown.One; 770 // assume(~(v & b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown(BitWidth); 775 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 776 KnownBits MaskKnown(BitWidth); 777 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 778 779 // For those bits in the mask that are known to be one, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & MaskKnown.One; 782 Known.One |= RHSKnown.Zero & MaskKnown.One; 783 // assume(v | b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown(BitWidth); 788 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 789 KnownBits BKnown(BitWidth); 790 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 795 Known.One |= RHSKnown.One & BKnown.Zero; 796 // assume(~(v | b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits BKnown(BitWidth); 803 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in B that are known to be zero, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & BKnown.Zero; 808 Known.One |= RHSKnown.Zero & BKnown.Zero; 809 // assume(v ^ b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits BKnown(BitWidth); 816 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. For those bits in B that are known to be one, 820 // we can propagate inverted known bits from the RHS to V. 821 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 822 Known.One |= RHSKnown.One & BKnown.Zero; 823 Known.Zero |= RHSKnown.One & BKnown.One; 824 Known.One |= RHSKnown.Zero & BKnown.One; 825 // assume(~(v ^ b) = a) 826 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 827 m_Value(A))) && 828 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 829 KnownBits RHSKnown(BitWidth); 830 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 831 KnownBits BKnown(BitWidth); 832 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 833 834 // For those bits in B that are known to be zero, we can propagate 835 // inverted known bits from the RHS to V. For those bits in B that are 836 // known to be one, we can propagate known bits from the RHS to V. 837 Known.Zero |= RHSKnown.One & BKnown.Zero; 838 Known.One |= RHSKnown.Zero & BKnown.Zero; 839 Known.Zero |= RHSKnown.Zero & BKnown.One; 840 Known.One |= RHSKnown.One & BKnown.One; 841 // assume(v << c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown(BitWidth); 846 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 847 // For those bits in RHS that are known, we can propagate them to known 848 // bits in V shifted to the right by C. 849 RHSKnown.Zero.lshrInPlace(C); 850 Known.Zero |= RHSKnown.Zero; 851 RHSKnown.One.lshrInPlace(C); 852 Known.One |= RHSKnown.One; 853 // assume(~(v << c) = a) 854 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 855 m_Value(A))) && 856 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 857 KnownBits RHSKnown(BitWidth); 858 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 859 // For those bits in RHS that are known, we can propagate them inverted 860 // to known bits in V shifted to the right by C. 861 RHSKnown.One.lshrInPlace(C); 862 Known.Zero |= RHSKnown.One; 863 RHSKnown.Zero.lshrInPlace(C); 864 Known.One |= RHSKnown.Zero; 865 // assume(v >> c = a) 866 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 867 m_Value(A))) && 868 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 869 KnownBits RHSKnown(BitWidth); 870 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 871 // For those bits in RHS that are known, we can propagate them to known 872 // bits in V shifted to the right by C. 873 Known.Zero |= RHSKnown.Zero << C; 874 Known.One |= RHSKnown.One << C; 875 // assume(~(v >> c) = a) 876 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 877 m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 879 KnownBits RHSKnown(BitWidth); 880 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 881 // For those bits in RHS that are known, we can propagate them inverted 882 // to known bits in V shifted to the right by C. 883 Known.Zero |= RHSKnown.One << C; 884 Known.One |= RHSKnown.Zero << C; 885 } 886 break; 887 case ICmpInst::ICMP_SGE: 888 // assume(v >=_s c) where c is non-negative 889 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 890 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 891 KnownBits RHSKnown(BitWidth); 892 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 893 894 if (RHSKnown.isNonNegative()) { 895 // We know that the sign bit is zero. 896 Known.makeNonNegative(); 897 } 898 } 899 break; 900 case ICmpInst::ICMP_SGT: 901 // assume(v >_s c) where c is at least -1. 902 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 903 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 904 KnownBits RHSKnown(BitWidth); 905 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 906 907 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 908 // We know that the sign bit is zero. 909 Known.makeNonNegative(); 910 } 911 } 912 break; 913 case ICmpInst::ICMP_SLE: 914 // assume(v <=_s c) where c is negative 915 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 916 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 917 KnownBits RHSKnown(BitWidth); 918 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 919 920 if (RHSKnown.isNegative()) { 921 // We know that the sign bit is one. 922 Known.makeNegative(); 923 } 924 } 925 break; 926 case ICmpInst::ICMP_SLT: 927 // assume(v <_s c) where c is non-positive 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 932 933 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 934 // We know that the sign bit is one. 935 Known.makeNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_ULE: 940 // assume(v <=_u c) 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 945 946 // Whatever high bits in c are zero are known to be zero. 947 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 948 } 949 break; 950 case ICmpInst::ICMP_ULT: 951 // assume(v <_u c) 952 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 953 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 954 KnownBits RHSKnown(BitWidth); 955 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 956 957 // If the RHS is known zero, then this assumption must be wrong (nothing 958 // is unsigned less than zero). Signal a conflict and get out of here. 959 if (RHSKnown.isZero()) { 960 Known.Zero.setAllBits(); 961 Known.One.setAllBits(); 962 break; 963 } 964 965 // Whatever high bits in c are zero are known to be zero (if c is a power 966 // of 2, then one more). 967 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 968 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 969 else 970 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 971 } 972 break; 973 } 974 } 975 976 // If assumptions conflict with each other or previous known bits, then we 977 // have a logical fallacy. It's possible that the assumption is not reachable, 978 // so this isn't a real bug. On the other hand, the program may have undefined 979 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 980 // clear out the known bits, try to warn the user, and hope for the best. 981 if (Known.Zero.intersects(Known.One)) { 982 Known.resetAll(); 983 984 if (Q.ORE) 985 Q.ORE->emit([&]() { 986 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 987 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 988 CxtI) 989 << "Detected conflicting code assumptions. Program may " 990 "have undefined behavior, or compiler may have " 991 "internal error."; 992 }); 993 } 994 } 995 996 /// Compute known bits from a shift operator, including those with a 997 /// non-constant shift amount. Known is the output of this function. Known2 is a 998 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 999 /// operator-specific functions that, given the known-zero or known-one bits 1000 /// respectively, and a shift amount, compute the implied known-zero or 1001 /// known-one bits of the shift operator's result respectively for that shift 1002 /// amount. The results from calling KZF and KOF are conservatively combined for 1003 /// all permitted shift amounts. 1004 static void computeKnownBitsFromShiftOperator( 1005 const Operator *I, KnownBits &Known, KnownBits &Known2, 1006 unsigned Depth, const Query &Q, 1007 function_ref<APInt(const APInt &, unsigned)> KZF, 1008 function_ref<APInt(const APInt &, unsigned)> KOF) { 1009 unsigned BitWidth = Known.getBitWidth(); 1010 1011 if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) { 1012 unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1); 1013 1014 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1015 Known.Zero = KZF(Known.Zero, ShiftAmt); 1016 Known.One = KOF(Known.One, ShiftAmt); 1017 // If the known bits conflict, this must be an overflowing left shift, so 1018 // the shift result is poison. We can return anything we want. Choose 0 for 1019 // the best folding opportunity. 1020 if (Known.hasConflict()) 1021 Known.setAllZero(); 1022 1023 return; 1024 } 1025 1026 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1027 1028 // If the shift amount could be greater than or equal to the bit-width of the 1029 // LHS, the value could be poison, but bail out because the check below is 1030 // expensive. TODO: Should we just carry on? 1031 if (Known.getMaxValue().uge(BitWidth)) { 1032 Known.resetAll(); 1033 return; 1034 } 1035 1036 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1037 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1038 // limit value (which implies all bits are known). 1039 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1040 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1041 1042 // It would be more-clearly correct to use the two temporaries for this 1043 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1044 Known.resetAll(); 1045 1046 // If we know the shifter operand is nonzero, we can sometimes infer more 1047 // known bits. However this is expensive to compute, so be lazy about it and 1048 // only compute it when absolutely necessary. 1049 Optional<bool> ShifterOperandIsNonZero; 1050 1051 // Early exit if we can't constrain any well-defined shift amount. 1052 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1053 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1054 ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1055 if (!*ShifterOperandIsNonZero) 1056 return; 1057 } 1058 1059 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1060 1061 Known.Zero.setAllBits(); 1062 Known.One.setAllBits(); 1063 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1064 // Combine the shifted known input bits only for those shift amounts 1065 // compatible with its known constraints. 1066 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1067 continue; 1068 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1069 continue; 1070 // If we know the shifter is nonzero, we may be able to infer more known 1071 // bits. This check is sunk down as far as possible to avoid the expensive 1072 // call to isKnownNonZero if the cheaper checks above fail. 1073 if (ShiftAmt == 0) { 1074 if (!ShifterOperandIsNonZero.hasValue()) 1075 ShifterOperandIsNonZero = 1076 isKnownNonZero(I->getOperand(1), Depth + 1, Q); 1077 if (*ShifterOperandIsNonZero) 1078 continue; 1079 } 1080 1081 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1082 Known.One &= KOF(Known2.One, ShiftAmt); 1083 } 1084 1085 // If the known bits conflict, the result is poison. Return a 0 and hope the 1086 // caller can further optimize that. 1087 if (Known.hasConflict()) 1088 Known.setAllZero(); 1089 } 1090 1091 static void computeKnownBitsFromOperator(const Operator *I, 1092 const APInt &DemandedElts, 1093 KnownBits &Known, unsigned Depth, 1094 const Query &Q) { 1095 unsigned BitWidth = Known.getBitWidth(); 1096 1097 KnownBits Known2(Known); 1098 switch (I->getOpcode()) { 1099 default: break; 1100 case Instruction::Load: 1101 if (MDNode *MD = 1102 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1103 computeKnownBitsFromRangeMetadata(*MD, Known); 1104 break; 1105 case Instruction::And: { 1106 // If either the LHS or the RHS are Zero, the result is zero. 1107 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1108 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1109 1110 // Output known-1 bits are only known if set in both the LHS & RHS. 1111 Known.One &= Known2.One; 1112 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1113 Known.Zero |= Known2.Zero; 1114 1115 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1116 // here we handle the more general case of adding any odd number by 1117 // matching the form add(x, add(x, y)) where y is odd. 1118 // TODO: This could be generalized to clearing any bit set in y where the 1119 // following bit is known to be unset in y. 1120 Value *X = nullptr, *Y = nullptr; 1121 if (!Known.Zero[0] && !Known.One[0] && 1122 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1123 Known2.resetAll(); 1124 computeKnownBits(Y, Known2, Depth + 1, Q); 1125 if (Known2.countMinTrailingOnes() > 0) 1126 Known.Zero.setBit(0); 1127 } 1128 break; 1129 } 1130 case Instruction::Or: 1131 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1132 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1133 1134 // Output known-0 bits are only known if clear in both the LHS & RHS. 1135 Known.Zero &= Known2.Zero; 1136 // Output known-1 are known to be set if set in either the LHS | RHS. 1137 Known.One |= Known2.One; 1138 break; 1139 case Instruction::Xor: { 1140 computeKnownBits(I->getOperand(1), Known, Depth + 1, Q); 1141 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1142 1143 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1144 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1145 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1146 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1147 Known.Zero = std::move(KnownZeroOut); 1148 break; 1149 } 1150 case Instruction::Mul: { 1151 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1152 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known, 1153 Known2, Depth, Q); 1154 break; 1155 } 1156 case Instruction::UDiv: { 1157 // For the purposes of computing leading zeros we can conservatively 1158 // treat a udiv as a logical right shift by the power of 2 known to 1159 // be less than the denominator. 1160 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1161 unsigned LeadZ = Known2.countMinLeadingZeros(); 1162 1163 Known2.resetAll(); 1164 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1165 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1166 if (RHSMaxLeadingZeros != BitWidth) 1167 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1168 1169 Known.Zero.setHighBits(LeadZ); 1170 break; 1171 } 1172 case Instruction::Select: { 1173 const Value *LHS = nullptr, *RHS = nullptr; 1174 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1175 if (SelectPatternResult::isMinOrMax(SPF)) { 1176 computeKnownBits(RHS, Known, Depth + 1, Q); 1177 computeKnownBits(LHS, Known2, Depth + 1, Q); 1178 } else { 1179 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1180 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1181 } 1182 1183 unsigned MaxHighOnes = 0; 1184 unsigned MaxHighZeros = 0; 1185 if (SPF == SPF_SMAX) { 1186 // If both sides are negative, the result is negative. 1187 if (Known.isNegative() && Known2.isNegative()) 1188 // We can derive a lower bound on the result by taking the max of the 1189 // leading one bits. 1190 MaxHighOnes = 1191 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1192 // If either side is non-negative, the result is non-negative. 1193 else if (Known.isNonNegative() || Known2.isNonNegative()) 1194 MaxHighZeros = 1; 1195 } else if (SPF == SPF_SMIN) { 1196 // If both sides are non-negative, the result is non-negative. 1197 if (Known.isNonNegative() && Known2.isNonNegative()) 1198 // We can derive an upper bound on the result by taking the max of the 1199 // leading zero bits. 1200 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1201 Known2.countMinLeadingZeros()); 1202 // If either side is negative, the result is negative. 1203 else if (Known.isNegative() || Known2.isNegative()) 1204 MaxHighOnes = 1; 1205 } else if (SPF == SPF_UMAX) { 1206 // We can derive a lower bound on the result by taking the max of the 1207 // leading one bits. 1208 MaxHighOnes = 1209 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1210 } else if (SPF == SPF_UMIN) { 1211 // We can derive an upper bound on the result by taking the max of the 1212 // leading zero bits. 1213 MaxHighZeros = 1214 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1215 } else if (SPF == SPF_ABS) { 1216 // RHS from matchSelectPattern returns the negation part of abs pattern. 1217 // If the negate has an NSW flag we can assume the sign bit of the result 1218 // will be 0 because that makes abs(INT_MIN) undefined. 1219 if (match(RHS, m_Neg(m_Specific(LHS))) && 1220 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1221 MaxHighZeros = 1; 1222 } 1223 1224 // Only known if known in both the LHS and RHS. 1225 Known.One &= Known2.One; 1226 Known.Zero &= Known2.Zero; 1227 if (MaxHighOnes > 0) 1228 Known.One.setHighBits(MaxHighOnes); 1229 if (MaxHighZeros > 0) 1230 Known.Zero.setHighBits(MaxHighZeros); 1231 break; 1232 } 1233 case Instruction::FPTrunc: 1234 case Instruction::FPExt: 1235 case Instruction::FPToUI: 1236 case Instruction::FPToSI: 1237 case Instruction::SIToFP: 1238 case Instruction::UIToFP: 1239 break; // Can't work with floating point. 1240 case Instruction::PtrToInt: 1241 case Instruction::IntToPtr: 1242 // Fall through and handle them the same as zext/trunc. 1243 LLVM_FALLTHROUGH; 1244 case Instruction::ZExt: 1245 case Instruction::Trunc: { 1246 Type *SrcTy = I->getOperand(0)->getType(); 1247 1248 unsigned SrcBitWidth; 1249 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1250 // which fall through here. 1251 Type *ScalarTy = SrcTy->getScalarType(); 1252 SrcBitWidth = ScalarTy->isPointerTy() ? 1253 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1254 Q.DL.getTypeSizeInBits(ScalarTy); 1255 1256 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1257 Known = Known.anyextOrTrunc(SrcBitWidth); 1258 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1259 Known = Known.zextOrTrunc(BitWidth); 1260 break; 1261 } 1262 case Instruction::BitCast: { 1263 Type *SrcTy = I->getOperand(0)->getType(); 1264 if (SrcTy->isIntOrPtrTy() && 1265 // TODO: For now, not handling conversions like: 1266 // (bitcast i64 %x to <2 x i32>) 1267 !I->getType()->isVectorTy()) { 1268 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1269 break; 1270 } 1271 break; 1272 } 1273 case Instruction::SExt: { 1274 // Compute the bits in the result that are not present in the input. 1275 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1276 1277 Known = Known.trunc(SrcBitWidth); 1278 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1279 // If the sign bit of the input is known set or clear, then we know the 1280 // top bits of the result. 1281 Known = Known.sext(BitWidth); 1282 break; 1283 } 1284 case Instruction::Shl: { 1285 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1286 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1287 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1288 APInt KZResult = KnownZero << ShiftAmt; 1289 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1290 // If this shift has "nsw" keyword, then the result is either a poison 1291 // value or has the same sign bit as the first operand. 1292 if (NSW && KnownZero.isSignBitSet()) 1293 KZResult.setSignBit(); 1294 return KZResult; 1295 }; 1296 1297 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1298 APInt KOResult = KnownOne << ShiftAmt; 1299 if (NSW && KnownOne.isSignBitSet()) 1300 KOResult.setSignBit(); 1301 return KOResult; 1302 }; 1303 1304 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1305 break; 1306 } 1307 case Instruction::LShr: { 1308 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1309 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1310 APInt KZResult = KnownZero.lshr(ShiftAmt); 1311 // High bits known zero. 1312 KZResult.setHighBits(ShiftAmt); 1313 return KZResult; 1314 }; 1315 1316 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1317 return KnownOne.lshr(ShiftAmt); 1318 }; 1319 1320 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1321 break; 1322 } 1323 case Instruction::AShr: { 1324 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1325 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1326 return KnownZero.ashr(ShiftAmt); 1327 }; 1328 1329 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1330 return KnownOne.ashr(ShiftAmt); 1331 }; 1332 1333 computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF); 1334 break; 1335 } 1336 case Instruction::Sub: { 1337 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1338 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1339 Known, Known2, Depth, Q); 1340 break; 1341 } 1342 case Instruction::Add: { 1343 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1344 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1345 Known, Known2, Depth, Q); 1346 break; 1347 } 1348 case Instruction::SRem: 1349 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1350 APInt RA = Rem->getValue().abs(); 1351 if (RA.isPowerOf2()) { 1352 APInt LowBits = RA - 1; 1353 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1354 1355 // The low bits of the first operand are unchanged by the srem. 1356 Known.Zero = Known2.Zero & LowBits; 1357 Known.One = Known2.One & LowBits; 1358 1359 // If the first operand is non-negative or has all low bits zero, then 1360 // the upper bits are all zero. 1361 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1362 Known.Zero |= ~LowBits; 1363 1364 // If the first operand is negative and not all low bits are zero, then 1365 // the upper bits are all one. 1366 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1367 Known.One |= ~LowBits; 1368 1369 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1370 break; 1371 } 1372 } 1373 1374 // The sign bit is the LHS's sign bit, except when the result of the 1375 // remainder is zero. 1376 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1377 // If it's known zero, our sign bit is also zero. 1378 if (Known2.isNonNegative()) 1379 Known.makeNonNegative(); 1380 1381 break; 1382 case Instruction::URem: { 1383 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1384 const APInt &RA = Rem->getValue(); 1385 if (RA.isPowerOf2()) { 1386 APInt LowBits = (RA - 1); 1387 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1388 Known.Zero |= ~LowBits; 1389 Known.One &= LowBits; 1390 break; 1391 } 1392 } 1393 1394 // Since the result is less than or equal to either operand, any leading 1395 // zero bits in either operand must also exist in the result. 1396 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1397 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1398 1399 unsigned Leaders = 1400 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1401 Known.resetAll(); 1402 Known.Zero.setHighBits(Leaders); 1403 break; 1404 } 1405 1406 case Instruction::Alloca: { 1407 const AllocaInst *AI = cast<AllocaInst>(I); 1408 unsigned Align = AI->getAlignment(); 1409 if (Align == 0) 1410 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1411 1412 if (Align > 0) 1413 Known.Zero.setLowBits(countTrailingZeros(Align)); 1414 break; 1415 } 1416 case Instruction::GetElementPtr: { 1417 // Analyze all of the subscripts of this getelementptr instruction 1418 // to determine if we can prove known low zero bits. 1419 KnownBits LocalKnown(BitWidth); 1420 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1421 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1422 1423 gep_type_iterator GTI = gep_type_begin(I); 1424 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1425 Value *Index = I->getOperand(i); 1426 if (StructType *STy = GTI.getStructTypeOrNull()) { 1427 // Handle struct member offset arithmetic. 1428 1429 // Handle case when index is vector zeroinitializer 1430 Constant *CIndex = cast<Constant>(Index); 1431 if (CIndex->isZeroValue()) 1432 continue; 1433 1434 if (CIndex->getType()->isVectorTy()) 1435 Index = CIndex->getSplatValue(); 1436 1437 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1438 const StructLayout *SL = Q.DL.getStructLayout(STy); 1439 uint64_t Offset = SL->getElementOffset(Idx); 1440 TrailZ = std::min<unsigned>(TrailZ, 1441 countTrailingZeros(Offset)); 1442 } else { 1443 // Handle array index arithmetic. 1444 Type *IndexedTy = GTI.getIndexedType(); 1445 if (!IndexedTy->isSized()) { 1446 TrailZ = 0; 1447 break; 1448 } 1449 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1450 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1451 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1452 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1453 TrailZ = std::min(TrailZ, 1454 unsigned(countTrailingZeros(TypeSize) + 1455 LocalKnown.countMinTrailingZeros())); 1456 } 1457 } 1458 1459 Known.Zero.setLowBits(TrailZ); 1460 break; 1461 } 1462 case Instruction::PHI: { 1463 const PHINode *P = cast<PHINode>(I); 1464 // Handle the case of a simple two-predecessor recurrence PHI. 1465 // There's a lot more that could theoretically be done here, but 1466 // this is sufficient to catch some interesting cases. 1467 if (P->getNumIncomingValues() == 2) { 1468 for (unsigned i = 0; i != 2; ++i) { 1469 Value *L = P->getIncomingValue(i); 1470 Value *R = P->getIncomingValue(!i); 1471 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1472 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1473 Operator *LU = dyn_cast<Operator>(L); 1474 if (!LU) 1475 continue; 1476 unsigned Opcode = LU->getOpcode(); 1477 // Check for operations that have the property that if 1478 // both their operands have low zero bits, the result 1479 // will have low zero bits. 1480 if (Opcode == Instruction::Add || 1481 Opcode == Instruction::Sub || 1482 Opcode == Instruction::And || 1483 Opcode == Instruction::Or || 1484 Opcode == Instruction::Mul) { 1485 Value *LL = LU->getOperand(0); 1486 Value *LR = LU->getOperand(1); 1487 // Find a recurrence. 1488 if (LL == I) 1489 L = LR; 1490 else if (LR == I) 1491 L = LL; 1492 else 1493 continue; // Check for recurrence with L and R flipped. 1494 1495 // Change the context instruction to the "edge" that flows into the 1496 // phi. This is important because that is where the value is actually 1497 // "evaluated" even though it is used later somewhere else. (see also 1498 // D69571). 1499 Query RecQ = Q; 1500 1501 // Ok, we have a PHI of the form L op= R. Check for low 1502 // zero bits. 1503 RecQ.CxtI = RInst; 1504 computeKnownBits(R, Known2, Depth + 1, RecQ); 1505 1506 // We need to take the minimum number of known bits 1507 KnownBits Known3(Known); 1508 RecQ.CxtI = LInst; 1509 computeKnownBits(L, Known3, Depth + 1, RecQ); 1510 1511 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1512 Known3.countMinTrailingZeros())); 1513 1514 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1515 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1516 // If initial value of recurrence is nonnegative, and we are adding 1517 // a nonnegative number with nsw, the result can only be nonnegative 1518 // or poison value regardless of the number of times we execute the 1519 // add in phi recurrence. If initial value is negative and we are 1520 // adding a negative number with nsw, the result can only be 1521 // negative or poison value. Similar arguments apply to sub and mul. 1522 // 1523 // (add non-negative, non-negative) --> non-negative 1524 // (add negative, negative) --> negative 1525 if (Opcode == Instruction::Add) { 1526 if (Known2.isNonNegative() && Known3.isNonNegative()) 1527 Known.makeNonNegative(); 1528 else if (Known2.isNegative() && Known3.isNegative()) 1529 Known.makeNegative(); 1530 } 1531 1532 // (sub nsw non-negative, negative) --> non-negative 1533 // (sub nsw negative, non-negative) --> negative 1534 else if (Opcode == Instruction::Sub && LL == I) { 1535 if (Known2.isNonNegative() && Known3.isNegative()) 1536 Known.makeNonNegative(); 1537 else if (Known2.isNegative() && Known3.isNonNegative()) 1538 Known.makeNegative(); 1539 } 1540 1541 // (mul nsw non-negative, non-negative) --> non-negative 1542 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1543 Known3.isNonNegative()) 1544 Known.makeNonNegative(); 1545 } 1546 1547 break; 1548 } 1549 } 1550 } 1551 1552 // Unreachable blocks may have zero-operand PHI nodes. 1553 if (P->getNumIncomingValues() == 0) 1554 break; 1555 1556 // Otherwise take the unions of the known bit sets of the operands, 1557 // taking conservative care to avoid excessive recursion. 1558 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1559 // Skip if every incoming value references to ourself. 1560 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1561 break; 1562 1563 Known.Zero.setAllBits(); 1564 Known.One.setAllBits(); 1565 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1566 Value *IncValue = P->getIncomingValue(u); 1567 // Skip direct self references. 1568 if (IncValue == P) continue; 1569 1570 // Change the context instruction to the "edge" that flows into the 1571 // phi. This is important because that is where the value is actually 1572 // "evaluated" even though it is used later somewhere else. (see also 1573 // D69571). 1574 Query RecQ = Q; 1575 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1576 1577 Known2 = KnownBits(BitWidth); 1578 // Recurse, but cap the recursion to one level, because we don't 1579 // want to waste time spinning around in loops. 1580 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1581 Known.Zero &= Known2.Zero; 1582 Known.One &= Known2.One; 1583 // If all bits have been ruled out, there's no need to check 1584 // more operands. 1585 if (!Known.Zero && !Known.One) 1586 break; 1587 } 1588 } 1589 break; 1590 } 1591 case Instruction::Call: 1592 case Instruction::Invoke: 1593 // If range metadata is attached to this call, set known bits from that, 1594 // and then intersect with known bits based on other properties of the 1595 // function. 1596 if (MDNode *MD = 1597 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1598 computeKnownBitsFromRangeMetadata(*MD, Known); 1599 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1600 computeKnownBits(RV, Known2, Depth + 1, Q); 1601 Known.Zero |= Known2.Zero; 1602 Known.One |= Known2.One; 1603 } 1604 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1605 switch (II->getIntrinsicID()) { 1606 default: break; 1607 case Intrinsic::bitreverse: 1608 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1609 Known.Zero |= Known2.Zero.reverseBits(); 1610 Known.One |= Known2.One.reverseBits(); 1611 break; 1612 case Intrinsic::bswap: 1613 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1614 Known.Zero |= Known2.Zero.byteSwap(); 1615 Known.One |= Known2.One.byteSwap(); 1616 break; 1617 case Intrinsic::ctlz: { 1618 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1619 // If we have a known 1, its position is our upper bound. 1620 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1621 // If this call is undefined for 0, the result will be less than 2^n. 1622 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1623 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1624 unsigned LowBits = Log2_32(PossibleLZ)+1; 1625 Known.Zero.setBitsFrom(LowBits); 1626 break; 1627 } 1628 case Intrinsic::cttz: { 1629 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1630 // If we have a known 1, its position is our upper bound. 1631 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1632 // If this call is undefined for 0, the result will be less than 2^n. 1633 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1634 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1635 unsigned LowBits = Log2_32(PossibleTZ)+1; 1636 Known.Zero.setBitsFrom(LowBits); 1637 break; 1638 } 1639 case Intrinsic::ctpop: { 1640 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1641 // We can bound the space the count needs. Also, bits known to be zero 1642 // can't contribute to the population. 1643 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1644 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1645 Known.Zero.setBitsFrom(LowBits); 1646 // TODO: we could bound KnownOne using the lower bound on the number 1647 // of bits which might be set provided by popcnt KnownOne2. 1648 break; 1649 } 1650 case Intrinsic::fshr: 1651 case Intrinsic::fshl: { 1652 const APInt *SA; 1653 if (!match(I->getOperand(2), m_APInt(SA))) 1654 break; 1655 1656 // Normalize to funnel shift left. 1657 uint64_t ShiftAmt = SA->urem(BitWidth); 1658 if (II->getIntrinsicID() == Intrinsic::fshr) 1659 ShiftAmt = BitWidth - ShiftAmt; 1660 1661 KnownBits Known3(Known); 1662 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1663 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1664 1665 Known.Zero = 1666 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1667 Known.One = 1668 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1669 break; 1670 } 1671 case Intrinsic::uadd_sat: 1672 case Intrinsic::usub_sat: { 1673 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1674 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1675 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1676 1677 // Add: Leading ones of either operand are preserved. 1678 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1679 // as leading zeros in the result. 1680 unsigned LeadingKnown; 1681 if (IsAdd) 1682 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1683 Known2.countMinLeadingOnes()); 1684 else 1685 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1686 Known2.countMinLeadingOnes()); 1687 1688 Known = KnownBits::computeForAddSub( 1689 IsAdd, /* NSW */ false, Known, Known2); 1690 1691 // We select between the operation result and all-ones/zero 1692 // respectively, so we can preserve known ones/zeros. 1693 if (IsAdd) { 1694 Known.One.setHighBits(LeadingKnown); 1695 Known.Zero.clearAllBits(); 1696 } else { 1697 Known.Zero.setHighBits(LeadingKnown); 1698 Known.One.clearAllBits(); 1699 } 1700 break; 1701 } 1702 case Intrinsic::x86_sse42_crc32_64_64: 1703 Known.Zero.setBitsFrom(32); 1704 break; 1705 } 1706 } 1707 break; 1708 case Instruction::ShuffleVector: { 1709 auto *Shuf = cast<ShuffleVectorInst>(I); 1710 // For undef elements, we don't know anything about the common state of 1711 // the shuffle result. 1712 APInt DemandedLHS, DemandedRHS; 1713 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1714 Known.resetAll(); 1715 return; 1716 } 1717 Known.One.setAllBits(); 1718 Known.Zero.setAllBits(); 1719 if (!!DemandedLHS) { 1720 const Value *LHS = Shuf->getOperand(0); 1721 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1722 // If we don't know any bits, early out. 1723 if (Known.isUnknown()) 1724 break; 1725 } 1726 if (!!DemandedRHS) { 1727 const Value *RHS = Shuf->getOperand(1); 1728 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1729 Known.One &= Known2.One; 1730 Known.Zero &= Known2.Zero; 1731 } 1732 break; 1733 } 1734 case Instruction::InsertElement: { 1735 auto *IEI = cast<InsertElementInst>(I); 1736 Value *Vec = IEI->getOperand(0); 1737 Value *Elt = IEI->getOperand(1); 1738 auto *CIdx = dyn_cast<ConstantInt>(IEI->getOperand(2)); 1739 // Early out if the index is non-constant or out-of-range. 1740 unsigned NumElts = DemandedElts.getBitWidth(); 1741 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1742 Known.resetAll(); 1743 return; 1744 } 1745 Known.One.setAllBits(); 1746 Known.Zero.setAllBits(); 1747 unsigned EltIdx = CIdx->getZExtValue(); 1748 // Do we demand the inserted element? 1749 if (DemandedElts[EltIdx]) { 1750 computeKnownBits(Elt, Known, Depth + 1, Q); 1751 // If we don't know any bits, early out. 1752 if (Known.isUnknown()) 1753 break; 1754 } 1755 // We don't need the base vector element that has been inserted. 1756 APInt DemandedVecElts = DemandedElts; 1757 DemandedVecElts.clearBit(EltIdx); 1758 if (!!DemandedVecElts) { 1759 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1760 Known.One &= Known2.One; 1761 Known.Zero &= Known2.Zero; 1762 } 1763 break; 1764 } 1765 case Instruction::ExtractElement: 1766 // Look through extract element. At the moment we keep this simple and skip 1767 // tracking the specific element. But at least we might find information 1768 // valid for all elements of the vector (for example if vector is sign 1769 // extended, shifted, etc). 1770 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1771 break; 1772 case Instruction::ExtractValue: 1773 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1774 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1775 if (EVI->getNumIndices() != 1) break; 1776 if (EVI->getIndices()[0] == 0) { 1777 switch (II->getIntrinsicID()) { 1778 default: break; 1779 case Intrinsic::uadd_with_overflow: 1780 case Intrinsic::sadd_with_overflow: 1781 computeKnownBitsAddSub(true, II->getArgOperand(0), 1782 II->getArgOperand(1), false, Known, Known2, 1783 Depth, Q); 1784 break; 1785 case Intrinsic::usub_with_overflow: 1786 case Intrinsic::ssub_with_overflow: 1787 computeKnownBitsAddSub(false, II->getArgOperand(0), 1788 II->getArgOperand(1), false, Known, Known2, 1789 Depth, Q); 1790 break; 1791 case Intrinsic::umul_with_overflow: 1792 case Intrinsic::smul_with_overflow: 1793 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1794 Known, Known2, Depth, Q); 1795 break; 1796 } 1797 } 1798 } 1799 break; 1800 } 1801 } 1802 1803 /// Determine which bits of V are known to be either zero or one and return 1804 /// them. 1805 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1806 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1807 computeKnownBits(V, Known, Depth, Q); 1808 return Known; 1809 } 1810 1811 /// Determine which bits of V are known to be either zero or one and return 1812 /// them in the Known bit set. 1813 /// 1814 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1815 /// we cannot optimize based on the assumption that it is zero without changing 1816 /// it to be an explicit zero. If we don't change it to zero, other code could 1817 /// optimized based on the contradictory assumption that it is non-zero. 1818 /// Because instcombine aggressively folds operations with undef args anyway, 1819 /// this won't lose us code quality. 1820 /// 1821 /// This function is defined on values with integer type, values with pointer 1822 /// type, and vectors of integers. In the case 1823 /// where V is a vector, known zero, and known one values are the 1824 /// same width as the vector element, and the bit is set only if it is true 1825 /// for all of the demanded elements in the vector specified by DemandedElts. 1826 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1827 KnownBits &Known, unsigned Depth, const Query &Q) { 1828 assert(V && "No Value?"); 1829 assert(Depth <= MaxDepth && "Limit Search Depth"); 1830 unsigned BitWidth = Known.getBitWidth(); 1831 1832 Type *Ty = V->getType(); 1833 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1834 "Not integer or pointer type!"); 1835 assert(((Ty->isVectorTy() && 1836 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1837 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1838 "Unexpected vector size"); 1839 1840 Type *ScalarTy = Ty->getScalarType(); 1841 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1842 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1843 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1844 (void)BitWidth; 1845 (void)ExpectedWidth; 1846 1847 if (!DemandedElts) { 1848 // No demanded elts, better to assume we don't know anything. 1849 Known.resetAll(); 1850 return; 1851 } 1852 1853 const APInt *C; 1854 if (match(V, m_APInt(C))) { 1855 // We know all of the bits for a scalar constant or a splat vector constant! 1856 Known.One = *C; 1857 Known.Zero = ~Known.One; 1858 return; 1859 } 1860 // Null and aggregate-zero are all-zeros. 1861 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1862 Known.setAllZero(); 1863 return; 1864 } 1865 // Handle a constant vector by taking the intersection of the known bits of 1866 // each element. 1867 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1868 assert((!Ty->isVectorTy() || 1869 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1870 "Unexpected vector size"); 1871 // We know that CDS must be a vector of integers. Take the intersection of 1872 // each element. 1873 Known.Zero.setAllBits(); Known.One.setAllBits(); 1874 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1875 if (Ty->isVectorTy() && !DemandedElts[i]) 1876 continue; 1877 APInt Elt = CDS->getElementAsAPInt(i); 1878 Known.Zero &= ~Elt; 1879 Known.One &= Elt; 1880 } 1881 return; 1882 } 1883 1884 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1885 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1886 "Unexpected vector size"); 1887 // We know that CV must be a vector of integers. Take the intersection of 1888 // each element. 1889 Known.Zero.setAllBits(); Known.One.setAllBits(); 1890 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1891 if (!DemandedElts[i]) 1892 continue; 1893 Constant *Element = CV->getAggregateElement(i); 1894 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1895 if (!ElementCI) { 1896 Known.resetAll(); 1897 return; 1898 } 1899 const APInt &Elt = ElementCI->getValue(); 1900 Known.Zero &= ~Elt; 1901 Known.One &= Elt; 1902 } 1903 return; 1904 } 1905 1906 // Start out not knowing anything. 1907 Known.resetAll(); 1908 1909 // We can't imply anything about undefs. 1910 if (isa<UndefValue>(V)) 1911 return; 1912 1913 // There's no point in looking through other users of ConstantData for 1914 // assumptions. Confirm that we've handled them all. 1915 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1916 1917 // Limit search depth. 1918 // All recursive calls that increase depth must come after this. 1919 if (Depth == MaxDepth) 1920 return; 1921 1922 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1923 // the bits of its aliasee. 1924 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1925 if (!GA->isInterposable()) 1926 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1927 return; 1928 } 1929 1930 if (const Operator *I = dyn_cast<Operator>(V)) 1931 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1932 1933 // Aligned pointers have trailing zeros - refine Known.Zero set 1934 if (Ty->isPointerTy()) { 1935 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1936 if (Align) 1937 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1938 } 1939 1940 // computeKnownBitsFromAssume strictly refines Known. 1941 // Therefore, we run them after computeKnownBitsFromOperator. 1942 1943 // Check whether a nearby assume intrinsic can determine some known bits. 1944 computeKnownBitsFromAssume(V, Known, Depth, Q); 1945 1946 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1947 } 1948 1949 /// Return true if the given value is known to have exactly one 1950 /// bit set when defined. For vectors return true if every element is known to 1951 /// be a power of two when defined. Supports values with integer or pointer 1952 /// types and vectors of integers. 1953 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1954 const Query &Q) { 1955 assert(Depth <= MaxDepth && "Limit Search Depth"); 1956 1957 // Attempt to match against constants. 1958 if (OrZero && match(V, m_Power2OrZero())) 1959 return true; 1960 if (match(V, m_Power2())) 1961 return true; 1962 1963 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1964 // it is shifted off the end then the result is undefined. 1965 if (match(V, m_Shl(m_One(), m_Value()))) 1966 return true; 1967 1968 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1969 // the bottom. If it is shifted off the bottom then the result is undefined. 1970 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1971 return true; 1972 1973 // The remaining tests are all recursive, so bail out if we hit the limit. 1974 if (Depth++ == MaxDepth) 1975 return false; 1976 1977 Value *X = nullptr, *Y = nullptr; 1978 // A shift left or a logical shift right of a power of two is a power of two 1979 // or zero. 1980 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1981 match(V, m_LShr(m_Value(X), m_Value())))) 1982 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1983 1984 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1985 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1986 1987 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1988 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1989 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1990 1991 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1992 // A power of two and'd with anything is a power of two or zero. 1993 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1994 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1995 return true; 1996 // X & (-X) is always a power of two or zero. 1997 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1998 return true; 1999 return false; 2000 } 2001 2002 // Adding a power-of-two or zero to the same power-of-two or zero yields 2003 // either the original power-of-two, a larger power-of-two or zero. 2004 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2005 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2006 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2007 Q.IIQ.hasNoSignedWrap(VOBO)) { 2008 if (match(X, m_And(m_Specific(Y), m_Value())) || 2009 match(X, m_And(m_Value(), m_Specific(Y)))) 2010 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2011 return true; 2012 if (match(Y, m_And(m_Specific(X), m_Value())) || 2013 match(Y, m_And(m_Value(), m_Specific(X)))) 2014 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2015 return true; 2016 2017 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2018 KnownBits LHSBits(BitWidth); 2019 computeKnownBits(X, LHSBits, Depth, Q); 2020 2021 KnownBits RHSBits(BitWidth); 2022 computeKnownBits(Y, RHSBits, Depth, Q); 2023 // If i8 V is a power of two or zero: 2024 // ZeroBits: 1 1 1 0 1 1 1 1 2025 // ~ZeroBits: 0 0 0 1 0 0 0 0 2026 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2027 // If OrZero isn't set, we cannot give back a zero result. 2028 // Make sure either the LHS or RHS has a bit set. 2029 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2030 return true; 2031 } 2032 } 2033 2034 // An exact divide or right shift can only shift off zero bits, so the result 2035 // is a power of two only if the first operand is a power of two and not 2036 // copying a sign bit (sdiv int_min, 2). 2037 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2038 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2039 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2040 Depth, Q); 2041 } 2042 2043 return false; 2044 } 2045 2046 /// Test whether a GEP's result is known to be non-null. 2047 /// 2048 /// Uses properties inherent in a GEP to try to determine whether it is known 2049 /// to be non-null. 2050 /// 2051 /// Currently this routine does not support vector GEPs. 2052 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2053 const Query &Q) { 2054 const Function *F = nullptr; 2055 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2056 F = I->getFunction(); 2057 2058 if (!GEP->isInBounds() || 2059 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2060 return false; 2061 2062 // FIXME: Support vector-GEPs. 2063 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2064 2065 // If the base pointer is non-null, we cannot walk to a null address with an 2066 // inbounds GEP in address space zero. 2067 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2068 return true; 2069 2070 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2071 // If so, then the GEP cannot produce a null pointer, as doing so would 2072 // inherently violate the inbounds contract within address space zero. 2073 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2074 GTI != GTE; ++GTI) { 2075 // Struct types are easy -- they must always be indexed by a constant. 2076 if (StructType *STy = GTI.getStructTypeOrNull()) { 2077 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2078 unsigned ElementIdx = OpC->getZExtValue(); 2079 const StructLayout *SL = Q.DL.getStructLayout(STy); 2080 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2081 if (ElementOffset > 0) 2082 return true; 2083 continue; 2084 } 2085 2086 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2087 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0) 2088 continue; 2089 2090 // Fast path the constant operand case both for efficiency and so we don't 2091 // increment Depth when just zipping down an all-constant GEP. 2092 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2093 if (!OpC->isZero()) 2094 return true; 2095 continue; 2096 } 2097 2098 // We post-increment Depth here because while isKnownNonZero increments it 2099 // as well, when we pop back up that increment won't persist. We don't want 2100 // to recurse 10k times just because we have 10k GEP operands. We don't 2101 // bail completely out because we want to handle constant GEPs regardless 2102 // of depth. 2103 if (Depth++ >= MaxDepth) 2104 continue; 2105 2106 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2107 return true; 2108 } 2109 2110 return false; 2111 } 2112 2113 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2114 const Instruction *CtxI, 2115 const DominatorTree *DT) { 2116 if (isa<Constant>(V)) 2117 return false; 2118 2119 if (!CtxI || !DT) 2120 return false; 2121 2122 unsigned NumUsesExplored = 0; 2123 for (auto *U : V->users()) { 2124 // Avoid massive lists 2125 if (NumUsesExplored >= DomConditionsMaxUses) 2126 break; 2127 NumUsesExplored++; 2128 2129 // If the value is used as an argument to a call or invoke, then argument 2130 // attributes may provide an answer about null-ness. 2131 if (auto CS = ImmutableCallSite(U)) 2132 if (auto *CalledFunc = CS.getCalledFunction()) 2133 for (const Argument &Arg : CalledFunc->args()) 2134 if (CS.getArgOperand(Arg.getArgNo()) == V && 2135 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2136 return true; 2137 2138 // If the value is used as a load/store, then the pointer must be non null. 2139 if (V == getLoadStorePointerOperand(U)) { 2140 const Instruction *I = cast<Instruction>(U); 2141 if (!NullPointerIsDefined(I->getFunction(), 2142 V->getType()->getPointerAddressSpace()) && 2143 DT->dominates(I, CtxI)) 2144 return true; 2145 } 2146 2147 // Consider only compare instructions uniquely controlling a branch 2148 CmpInst::Predicate Pred; 2149 if (!match(const_cast<User *>(U), 2150 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2151 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2152 continue; 2153 2154 SmallVector<const User *, 4> WorkList; 2155 SmallPtrSet<const User *, 4> Visited; 2156 for (auto *CmpU : U->users()) { 2157 assert(WorkList.empty() && "Should be!"); 2158 if (Visited.insert(CmpU).second) 2159 WorkList.push_back(CmpU); 2160 2161 while (!WorkList.empty()) { 2162 auto *Curr = WorkList.pop_back_val(); 2163 2164 // If a user is an AND, add all its users to the work list. We only 2165 // propagate "pred != null" condition through AND because it is only 2166 // correct to assume that all conditions of AND are met in true branch. 2167 // TODO: Support similar logic of OR and EQ predicate? 2168 if (Pred == ICmpInst::ICMP_NE) 2169 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2170 if (BO->getOpcode() == Instruction::And) { 2171 for (auto *BOU : BO->users()) 2172 if (Visited.insert(BOU).second) 2173 WorkList.push_back(BOU); 2174 continue; 2175 } 2176 2177 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2178 assert(BI->isConditional() && "uses a comparison!"); 2179 2180 BasicBlock *NonNullSuccessor = 2181 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2182 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2183 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2184 return true; 2185 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2186 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2187 return true; 2188 } 2189 } 2190 } 2191 } 2192 2193 return false; 2194 } 2195 2196 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2197 /// ensure that the value it's attached to is never Value? 'RangeType' is 2198 /// is the type of the value described by the range. 2199 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2200 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2201 assert(NumRanges >= 1); 2202 for (unsigned i = 0; i < NumRanges; ++i) { 2203 ConstantInt *Lower = 2204 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2205 ConstantInt *Upper = 2206 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2207 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2208 if (Range.contains(Value)) 2209 return false; 2210 } 2211 return true; 2212 } 2213 2214 /// Return true if the given value is known to be non-zero when defined. For 2215 /// vectors, return true if every element is known to be non-zero when 2216 /// defined. For pointers, if the context instruction and dominator tree are 2217 /// specified, perform context-sensitive analysis and return true if the 2218 /// pointer couldn't possibly be null at the specified instruction. 2219 /// Supports values with integer or pointer type and vectors of integers. 2220 bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) { 2221 if (auto *C = dyn_cast<Constant>(V)) { 2222 if (C->isNullValue()) 2223 return false; 2224 if (isa<ConstantInt>(C)) 2225 // Must be non-zero due to null test above. 2226 return true; 2227 2228 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2229 // See the comment for IntToPtr/PtrToInt instructions below. 2230 if (CE->getOpcode() == Instruction::IntToPtr || 2231 CE->getOpcode() == Instruction::PtrToInt) 2232 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2233 Q.DL.getTypeSizeInBits(CE->getType())) 2234 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2235 } 2236 2237 // For constant vectors, check that all elements are undefined or known 2238 // non-zero to determine that the whole vector is known non-zero. 2239 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2240 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2241 Constant *Elt = C->getAggregateElement(i); 2242 if (!Elt || Elt->isNullValue()) 2243 return false; 2244 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2245 return false; 2246 } 2247 return true; 2248 } 2249 2250 // A global variable in address space 0 is non null unless extern weak 2251 // or an absolute symbol reference. Other address spaces may have null as a 2252 // valid address for a global, so we can't assume anything. 2253 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2254 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2255 GV->getType()->getAddressSpace() == 0) 2256 return true; 2257 } else 2258 return false; 2259 } 2260 2261 if (auto *I = dyn_cast<Instruction>(V)) { 2262 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2263 // If the possible ranges don't contain zero, then the value is 2264 // definitely non-zero. 2265 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2266 const APInt ZeroValue(Ty->getBitWidth(), 0); 2267 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2268 return true; 2269 } 2270 } 2271 } 2272 2273 if (isKnownNonZeroFromAssume(V, Q)) 2274 return true; 2275 2276 // Some of the tests below are recursive, so bail out if we hit the limit. 2277 if (Depth++ >= MaxDepth) 2278 return false; 2279 2280 // Check for pointer simplifications. 2281 if (V->getType()->isPointerTy()) { 2282 // Alloca never returns null, malloc might. 2283 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2284 return true; 2285 2286 // A byval, inalloca, or nonnull argument is never null. 2287 if (const Argument *A = dyn_cast<Argument>(V)) 2288 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2289 return true; 2290 2291 // A Load tagged with nonnull metadata is never null. 2292 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2293 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2294 return true; 2295 2296 if (const auto *Call = dyn_cast<CallBase>(V)) { 2297 if (Call->isReturnNonNull()) 2298 return true; 2299 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2300 return isKnownNonZero(RP, Depth, Q); 2301 } 2302 } 2303 2304 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2305 return true; 2306 2307 // Check for recursive pointer simplifications. 2308 if (V->getType()->isPointerTy()) { 2309 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2310 // do not alter the value, or at least not the nullness property of the 2311 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2312 // 2313 // Note that we have to take special care to avoid looking through 2314 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2315 // as casts that can alter the value, e.g., AddrSpaceCasts. 2316 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2317 if (isGEPKnownNonNull(GEP, Depth, Q)) 2318 return true; 2319 2320 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2321 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2322 2323 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2324 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2325 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2326 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2327 } 2328 2329 // Similar to int2ptr above, we can look through ptr2int here if the cast 2330 // is a no-op or an extend and not a truncate. 2331 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2332 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2333 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2334 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2335 2336 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2337 2338 // X | Y != 0 if X != 0 or Y != 0. 2339 Value *X = nullptr, *Y = nullptr; 2340 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2341 return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q); 2342 2343 // ext X != 0 if X != 0. 2344 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2345 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2346 2347 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2348 // if the lowest bit is shifted off the end. 2349 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2350 // shl nuw can't remove any non-zero bits. 2351 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2352 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2353 return isKnownNonZero(X, Depth, Q); 2354 2355 KnownBits Known(BitWidth); 2356 computeKnownBits(X, Known, Depth, Q); 2357 if (Known.One[0]) 2358 return true; 2359 } 2360 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2361 // defined if the sign bit is shifted off the end. 2362 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2363 // shr exact can only shift out zero bits. 2364 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2365 if (BO->isExact()) 2366 return isKnownNonZero(X, Depth, Q); 2367 2368 KnownBits Known = computeKnownBits(X, Depth, Q); 2369 if (Known.isNegative()) 2370 return true; 2371 2372 // If the shifter operand is a constant, and all of the bits shifted 2373 // out are known to be zero, and X is known non-zero then at least one 2374 // non-zero bit must remain. 2375 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2376 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2377 // Is there a known one in the portion not shifted out? 2378 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2379 return true; 2380 // Are all the bits to be shifted out known zero? 2381 if (Known.countMinTrailingZeros() >= ShiftVal) 2382 return isKnownNonZero(X, Depth, Q); 2383 } 2384 } 2385 // div exact can only produce a zero if the dividend is zero. 2386 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2387 return isKnownNonZero(X, Depth, Q); 2388 } 2389 // X + Y. 2390 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2391 KnownBits XKnown = computeKnownBits(X, Depth, Q); 2392 KnownBits YKnown = computeKnownBits(Y, Depth, Q); 2393 2394 // If X and Y are both non-negative (as signed values) then their sum is not 2395 // zero unless both X and Y are zero. 2396 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2397 if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q)) 2398 return true; 2399 2400 // If X and Y are both negative (as signed values) then their sum is not 2401 // zero unless both X and Y equal INT_MIN. 2402 if (XKnown.isNegative() && YKnown.isNegative()) { 2403 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2404 // The sign bit of X is set. If some other bit is set then X is not equal 2405 // to INT_MIN. 2406 if (XKnown.One.intersects(Mask)) 2407 return true; 2408 // The sign bit of Y is set. If some other bit is set then Y is not equal 2409 // to INT_MIN. 2410 if (YKnown.One.intersects(Mask)) 2411 return true; 2412 } 2413 2414 // The sum of a non-negative number and a power of two is not zero. 2415 if (XKnown.isNonNegative() && 2416 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2417 return true; 2418 if (YKnown.isNonNegative() && 2419 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2420 return true; 2421 } 2422 // X * Y. 2423 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2424 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2425 // If X and Y are non-zero then so is X * Y as long as the multiplication 2426 // does not overflow. 2427 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2428 isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q)) 2429 return true; 2430 } 2431 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2432 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2433 if (isKnownNonZero(SI->getTrueValue(), Depth, Q) && 2434 isKnownNonZero(SI->getFalseValue(), Depth, Q)) 2435 return true; 2436 } 2437 // PHI 2438 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2439 // Try and detect a recurrence that monotonically increases from a 2440 // starting value, as these are common as induction variables. 2441 if (PN->getNumIncomingValues() == 2) { 2442 Value *Start = PN->getIncomingValue(0); 2443 Value *Induction = PN->getIncomingValue(1); 2444 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2445 std::swap(Start, Induction); 2446 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2447 if (!C->isZero() && !C->isNegative()) { 2448 ConstantInt *X; 2449 if (Q.IIQ.UseInstrInfo && 2450 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2451 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2452 !X->isNegative()) 2453 return true; 2454 } 2455 } 2456 } 2457 // Check if all incoming values are non-zero constant. 2458 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2459 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2460 }); 2461 if (AllNonZeroConstants) 2462 return true; 2463 } 2464 2465 KnownBits Known(BitWidth); 2466 computeKnownBits(V, Known, Depth, Q); 2467 return Known.One != 0; 2468 } 2469 2470 /// Return true if V2 == V1 + X, where X is known non-zero. 2471 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2472 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2473 if (!BO || BO->getOpcode() != Instruction::Add) 2474 return false; 2475 Value *Op = nullptr; 2476 if (V2 == BO->getOperand(0)) 2477 Op = BO->getOperand(1); 2478 else if (V2 == BO->getOperand(1)) 2479 Op = BO->getOperand(0); 2480 else 2481 return false; 2482 return isKnownNonZero(Op, 0, Q); 2483 } 2484 2485 /// Return true if it is known that V1 != V2. 2486 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2487 if (V1 == V2) 2488 return false; 2489 if (V1->getType() != V2->getType()) 2490 // We can't look through casts yet. 2491 return false; 2492 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2493 return true; 2494 2495 if (V1->getType()->isIntOrIntVectorTy()) { 2496 // Are any known bits in V1 contradictory to known bits in V2? If V1 2497 // has a known zero where V2 has a known one, they must not be equal. 2498 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2499 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2500 2501 if (Known1.Zero.intersects(Known2.One) || 2502 Known2.Zero.intersects(Known1.One)) 2503 return true; 2504 } 2505 return false; 2506 } 2507 2508 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2509 /// simplify operations downstream. Mask is known to be zero for bits that V 2510 /// cannot have. 2511 /// 2512 /// This function is defined on values with integer type, values with pointer 2513 /// type, and vectors of integers. In the case 2514 /// where V is a vector, the mask, known zero, and known one values are the 2515 /// same width as the vector element, and the bit is set only if it is true 2516 /// for all of the elements in the vector. 2517 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2518 const Query &Q) { 2519 KnownBits Known(Mask.getBitWidth()); 2520 computeKnownBits(V, Known, Depth, Q); 2521 return Mask.isSubsetOf(Known.Zero); 2522 } 2523 2524 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2525 // Returns the input and lower/upper bounds. 2526 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2527 const APInt *&CLow, const APInt *&CHigh) { 2528 assert(isa<Operator>(Select) && 2529 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2530 "Input should be a Select!"); 2531 2532 const Value *LHS = nullptr, *RHS = nullptr; 2533 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2534 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2535 return false; 2536 2537 if (!match(RHS, m_APInt(CLow))) 2538 return false; 2539 2540 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2541 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2542 if (getInverseMinMaxFlavor(SPF) != SPF2) 2543 return false; 2544 2545 if (!match(RHS2, m_APInt(CHigh))) 2546 return false; 2547 2548 if (SPF == SPF_SMIN) 2549 std::swap(CLow, CHigh); 2550 2551 In = LHS2; 2552 return CLow->sle(*CHigh); 2553 } 2554 2555 /// For vector constants, loop over the elements and find the constant with the 2556 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2557 /// or if any element was not analyzed; otherwise, return the count for the 2558 /// element with the minimum number of sign bits. 2559 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2560 const APInt &DemandedElts, 2561 unsigned TyBits) { 2562 const auto *CV = dyn_cast<Constant>(V); 2563 if (!CV || !CV->getType()->isVectorTy()) 2564 return 0; 2565 2566 unsigned MinSignBits = TyBits; 2567 unsigned NumElts = CV->getType()->getVectorNumElements(); 2568 for (unsigned i = 0; i != NumElts; ++i) { 2569 if (!DemandedElts[i]) 2570 continue; 2571 // If we find a non-ConstantInt, bail out. 2572 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2573 if (!Elt) 2574 return 0; 2575 2576 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2577 } 2578 2579 return MinSignBits; 2580 } 2581 2582 static unsigned ComputeNumSignBitsImpl(const Value *V, 2583 const APInt &DemandedElts, 2584 unsigned Depth, const Query &Q); 2585 2586 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2587 unsigned Depth, const Query &Q) { 2588 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2589 assert(Result > 0 && "At least one sign bit needs to be present!"); 2590 return Result; 2591 } 2592 2593 /// Return the number of times the sign bit of the register is replicated into 2594 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2595 /// (itself), but other cases can give us information. For example, immediately 2596 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2597 /// other, so we return 3. For vectors, return the number of sign bits for the 2598 /// vector element with the minimum number of known sign bits of the demanded 2599 /// elements in the vector specified by DemandedElts. 2600 static unsigned ComputeNumSignBitsImpl(const Value *V, 2601 const APInt &DemandedElts, 2602 unsigned Depth, const Query &Q) { 2603 assert(Depth <= MaxDepth && "Limit Search Depth"); 2604 2605 // We return the minimum number of sign bits that are guaranteed to be present 2606 // in V, so for undef we have to conservatively return 1. We don't have the 2607 // same behavior for poison though -- that's a FIXME today. 2608 2609 Type *Ty = V->getType(); 2610 assert(((Ty->isVectorTy() && 2611 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2612 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2613 "Unexpected vector size"); 2614 2615 Type *ScalarTy = Ty->getScalarType(); 2616 unsigned TyBits = ScalarTy->isPointerTy() ? 2617 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2618 Q.DL.getTypeSizeInBits(ScalarTy); 2619 2620 unsigned Tmp, Tmp2; 2621 unsigned FirstAnswer = 1; 2622 2623 // Note that ConstantInt is handled by the general computeKnownBits case 2624 // below. 2625 2626 if (Depth == MaxDepth) 2627 return 1; // Limit search depth. 2628 2629 if (auto *U = dyn_cast<Operator>(V)) { 2630 switch (Operator::getOpcode(V)) { 2631 default: break; 2632 case Instruction::SExt: 2633 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2634 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2635 2636 case Instruction::SDiv: { 2637 const APInt *Denominator; 2638 // sdiv X, C -> adds log(C) sign bits. 2639 if (match(U->getOperand(1), m_APInt(Denominator))) { 2640 2641 // Ignore non-positive denominator. 2642 if (!Denominator->isStrictlyPositive()) 2643 break; 2644 2645 // Calculate the incoming numerator bits. 2646 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2647 2648 // Add floor(log(C)) bits to the numerator bits. 2649 return std::min(TyBits, NumBits + Denominator->logBase2()); 2650 } 2651 break; 2652 } 2653 2654 case Instruction::SRem: { 2655 const APInt *Denominator; 2656 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2657 // positive constant. This let us put a lower bound on the number of sign 2658 // bits. 2659 if (match(U->getOperand(1), m_APInt(Denominator))) { 2660 2661 // Ignore non-positive denominator. 2662 if (!Denominator->isStrictlyPositive()) 2663 break; 2664 2665 // Calculate the incoming numerator bits. SRem by a positive constant 2666 // can't lower the number of sign bits. 2667 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2668 2669 // Calculate the leading sign bit constraints by examining the 2670 // denominator. Given that the denominator is positive, there are two 2671 // cases: 2672 // 2673 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2674 // (1 << ceilLogBase2(C)). 2675 // 2676 // 2. the numerator is negative. Then the result range is (-C,0] and 2677 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2678 // 2679 // Thus a lower bound on the number of sign bits is `TyBits - 2680 // ceilLogBase2(C)`. 2681 2682 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2683 return std::max(NumrBits, ResBits); 2684 } 2685 break; 2686 } 2687 2688 case Instruction::AShr: { 2689 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2690 // ashr X, C -> adds C sign bits. Vectors too. 2691 const APInt *ShAmt; 2692 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2693 if (ShAmt->uge(TyBits)) 2694 break; // Bad shift. 2695 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2696 Tmp += ShAmtLimited; 2697 if (Tmp > TyBits) Tmp = TyBits; 2698 } 2699 return Tmp; 2700 } 2701 case Instruction::Shl: { 2702 const APInt *ShAmt; 2703 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2704 // shl destroys sign bits. 2705 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2706 if (ShAmt->uge(TyBits) || // Bad shift. 2707 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2708 Tmp2 = ShAmt->getZExtValue(); 2709 return Tmp - Tmp2; 2710 } 2711 break; 2712 } 2713 case Instruction::And: 2714 case Instruction::Or: 2715 case Instruction::Xor: // NOT is handled here. 2716 // Logical binary ops preserve the number of sign bits at the worst. 2717 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2718 if (Tmp != 1) { 2719 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2720 FirstAnswer = std::min(Tmp, Tmp2); 2721 // We computed what we know about the sign bits as our first 2722 // answer. Now proceed to the generic code that uses 2723 // computeKnownBits, and pick whichever answer is better. 2724 } 2725 break; 2726 2727 case Instruction::Select: { 2728 // If we have a clamp pattern, we know that the number of sign bits will 2729 // be the minimum of the clamp min/max range. 2730 const Value *X; 2731 const APInt *CLow, *CHigh; 2732 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2733 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2734 2735 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2736 if (Tmp == 1) break; 2737 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2738 return std::min(Tmp, Tmp2); 2739 } 2740 2741 case Instruction::Add: 2742 // Add can have at most one carry bit. Thus we know that the output 2743 // is, at worst, one more bit than the inputs. 2744 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2745 if (Tmp == 1) break; 2746 2747 // Special case decrementing a value (ADD X, -1): 2748 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2749 if (CRHS->isAllOnesValue()) { 2750 KnownBits Known(TyBits); 2751 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2752 2753 // If the input is known to be 0 or 1, the output is 0/-1, which is 2754 // all sign bits set. 2755 if ((Known.Zero | 1).isAllOnesValue()) 2756 return TyBits; 2757 2758 // If we are subtracting one from a positive number, there is no carry 2759 // out of the result. 2760 if (Known.isNonNegative()) 2761 return Tmp; 2762 } 2763 2764 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2765 if (Tmp2 == 1) break; 2766 return std::min(Tmp, Tmp2) - 1; 2767 2768 case Instruction::Sub: 2769 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2770 if (Tmp2 == 1) break; 2771 2772 // Handle NEG. 2773 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2774 if (CLHS->isNullValue()) { 2775 KnownBits Known(TyBits); 2776 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2777 // If the input is known to be 0 or 1, the output is 0/-1, which is 2778 // all sign bits set. 2779 if ((Known.Zero | 1).isAllOnesValue()) 2780 return TyBits; 2781 2782 // If the input is known to be positive (the sign bit is known clear), 2783 // the output of the NEG has the same number of sign bits as the 2784 // input. 2785 if (Known.isNonNegative()) 2786 return Tmp2; 2787 2788 // Otherwise, we treat this like a SUB. 2789 } 2790 2791 // Sub can have at most one carry bit. Thus we know that the output 2792 // is, at worst, one more bit than the inputs. 2793 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2794 if (Tmp == 1) break; 2795 return std::min(Tmp, Tmp2) - 1; 2796 2797 case Instruction::Mul: { 2798 // The output of the Mul can be at most twice the valid bits in the 2799 // inputs. 2800 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2801 if (SignBitsOp0 == 1) break; 2802 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2803 if (SignBitsOp1 == 1) break; 2804 unsigned OutValidBits = 2805 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2806 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2807 } 2808 2809 case Instruction::PHI: { 2810 const PHINode *PN = cast<PHINode>(U); 2811 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2812 // Don't analyze large in-degree PHIs. 2813 if (NumIncomingValues > 4) break; 2814 // Unreachable blocks may have zero-operand PHI nodes. 2815 if (NumIncomingValues == 0) break; 2816 2817 // Take the minimum of all incoming values. This can't infinitely loop 2818 // because of our depth threshold. 2819 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2820 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2821 if (Tmp == 1) return Tmp; 2822 Tmp = std::min( 2823 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2824 } 2825 return Tmp; 2826 } 2827 2828 case Instruction::Trunc: 2829 // FIXME: it's tricky to do anything useful for this, but it is an 2830 // important case for targets like X86. 2831 break; 2832 2833 case Instruction::ExtractElement: 2834 // Look through extract element. At the moment we keep this simple and 2835 // skip tracking the specific element. But at least we might find 2836 // information valid for all elements of the vector (for example if vector 2837 // is sign extended, shifted, etc). 2838 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2839 2840 case Instruction::ShuffleVector: { 2841 // Collect the minimum number of sign bits that are shared by every vector 2842 // element referenced by the shuffle. 2843 auto *Shuf = cast<ShuffleVectorInst>(U); 2844 APInt DemandedLHS, DemandedRHS; 2845 // For undef elements, we don't know anything about the common state of 2846 // the shuffle result. 2847 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2848 return 1; 2849 Tmp = std::numeric_limits<unsigned>::max(); 2850 if (!!DemandedLHS) { 2851 const Value *LHS = Shuf->getOperand(0); 2852 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2853 } 2854 // If we don't know anything, early out and try computeKnownBits 2855 // fall-back. 2856 if (Tmp == 1) 2857 break; 2858 if (!!DemandedRHS) { 2859 const Value *RHS = Shuf->getOperand(1); 2860 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2861 Tmp = std::min(Tmp, Tmp2); 2862 } 2863 // If we don't know anything, early out and try computeKnownBits 2864 // fall-back. 2865 if (Tmp == 1) 2866 break; 2867 assert(Tmp <= Ty->getScalarSizeInBits() && 2868 "Failed to determine minimum sign bits"); 2869 return Tmp; 2870 } 2871 } 2872 } 2873 2874 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2875 // use this information. 2876 2877 // If we can examine all elements of a vector constant successfully, we're 2878 // done (we can't do any better than that). If not, keep trying. 2879 if (unsigned VecSignBits = 2880 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2881 return VecSignBits; 2882 2883 KnownBits Known(TyBits); 2884 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2885 2886 // If we know that the sign bit is either zero or one, determine the number of 2887 // identical bits in the top of the input value. 2888 return std::max(FirstAnswer, Known.countMinSignBits()); 2889 } 2890 2891 /// This function computes the integer multiple of Base that equals V. 2892 /// If successful, it returns true and returns the multiple in 2893 /// Multiple. If unsuccessful, it returns false. It looks 2894 /// through SExt instructions only if LookThroughSExt is true. 2895 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2896 bool LookThroughSExt, unsigned Depth) { 2897 assert(V && "No Value?"); 2898 assert(Depth <= MaxDepth && "Limit Search Depth"); 2899 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2900 2901 Type *T = V->getType(); 2902 2903 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2904 2905 if (Base == 0) 2906 return false; 2907 2908 if (Base == 1) { 2909 Multiple = V; 2910 return true; 2911 } 2912 2913 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2914 Constant *BaseVal = ConstantInt::get(T, Base); 2915 if (CO && CO == BaseVal) { 2916 // Multiple is 1. 2917 Multiple = ConstantInt::get(T, 1); 2918 return true; 2919 } 2920 2921 if (CI && CI->getZExtValue() % Base == 0) { 2922 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2923 return true; 2924 } 2925 2926 if (Depth == MaxDepth) return false; // Limit search depth. 2927 2928 Operator *I = dyn_cast<Operator>(V); 2929 if (!I) return false; 2930 2931 switch (I->getOpcode()) { 2932 default: break; 2933 case Instruction::SExt: 2934 if (!LookThroughSExt) return false; 2935 // otherwise fall through to ZExt 2936 LLVM_FALLTHROUGH; 2937 case Instruction::ZExt: 2938 return ComputeMultiple(I->getOperand(0), Base, Multiple, 2939 LookThroughSExt, Depth+1); 2940 case Instruction::Shl: 2941 case Instruction::Mul: { 2942 Value *Op0 = I->getOperand(0); 2943 Value *Op1 = I->getOperand(1); 2944 2945 if (I->getOpcode() == Instruction::Shl) { 2946 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 2947 if (!Op1CI) return false; 2948 // Turn Op0 << Op1 into Op0 * 2^Op1 2949 APInt Op1Int = Op1CI->getValue(); 2950 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 2951 APInt API(Op1Int.getBitWidth(), 0); 2952 API.setBit(BitToSet); 2953 Op1 = ConstantInt::get(V->getContext(), API); 2954 } 2955 2956 Value *Mul0 = nullptr; 2957 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 2958 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 2959 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 2960 if (Op1C->getType()->getPrimitiveSizeInBits() < 2961 MulC->getType()->getPrimitiveSizeInBits()) 2962 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 2963 if (Op1C->getType()->getPrimitiveSizeInBits() > 2964 MulC->getType()->getPrimitiveSizeInBits()) 2965 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 2966 2967 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 2968 Multiple = ConstantExpr::getMul(MulC, Op1C); 2969 return true; 2970 } 2971 2972 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 2973 if (Mul0CI->getValue() == 1) { 2974 // V == Base * Op1, so return Op1 2975 Multiple = Op1; 2976 return true; 2977 } 2978 } 2979 2980 Value *Mul1 = nullptr; 2981 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 2982 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 2983 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 2984 if (Op0C->getType()->getPrimitiveSizeInBits() < 2985 MulC->getType()->getPrimitiveSizeInBits()) 2986 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 2987 if (Op0C->getType()->getPrimitiveSizeInBits() > 2988 MulC->getType()->getPrimitiveSizeInBits()) 2989 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 2990 2991 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 2992 Multiple = ConstantExpr::getMul(MulC, Op0C); 2993 return true; 2994 } 2995 2996 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 2997 if (Mul1CI->getValue() == 1) { 2998 // V == Base * Op0, so return Op0 2999 Multiple = Op0; 3000 return true; 3001 } 3002 } 3003 } 3004 } 3005 3006 // We could not determine if V is a multiple of Base. 3007 return false; 3008 } 3009 3010 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3011 const TargetLibraryInfo *TLI) { 3012 const Function *F = ICS.getCalledFunction(); 3013 if (!F) 3014 return Intrinsic::not_intrinsic; 3015 3016 if (F->isIntrinsic()) 3017 return F->getIntrinsicID(); 3018 3019 if (!TLI) 3020 return Intrinsic::not_intrinsic; 3021 3022 LibFunc Func; 3023 // We're going to make assumptions on the semantics of the functions, check 3024 // that the target knows that it's available in this environment and it does 3025 // not have local linkage. 3026 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3027 return Intrinsic::not_intrinsic; 3028 3029 if (!ICS.onlyReadsMemory()) 3030 return Intrinsic::not_intrinsic; 3031 3032 // Otherwise check if we have a call to a function that can be turned into a 3033 // vector intrinsic. 3034 switch (Func) { 3035 default: 3036 break; 3037 case LibFunc_sin: 3038 case LibFunc_sinf: 3039 case LibFunc_sinl: 3040 return Intrinsic::sin; 3041 case LibFunc_cos: 3042 case LibFunc_cosf: 3043 case LibFunc_cosl: 3044 return Intrinsic::cos; 3045 case LibFunc_exp: 3046 case LibFunc_expf: 3047 case LibFunc_expl: 3048 return Intrinsic::exp; 3049 case LibFunc_exp2: 3050 case LibFunc_exp2f: 3051 case LibFunc_exp2l: 3052 return Intrinsic::exp2; 3053 case LibFunc_log: 3054 case LibFunc_logf: 3055 case LibFunc_logl: 3056 return Intrinsic::log; 3057 case LibFunc_log10: 3058 case LibFunc_log10f: 3059 case LibFunc_log10l: 3060 return Intrinsic::log10; 3061 case LibFunc_log2: 3062 case LibFunc_log2f: 3063 case LibFunc_log2l: 3064 return Intrinsic::log2; 3065 case LibFunc_fabs: 3066 case LibFunc_fabsf: 3067 case LibFunc_fabsl: 3068 return Intrinsic::fabs; 3069 case LibFunc_fmin: 3070 case LibFunc_fminf: 3071 case LibFunc_fminl: 3072 return Intrinsic::minnum; 3073 case LibFunc_fmax: 3074 case LibFunc_fmaxf: 3075 case LibFunc_fmaxl: 3076 return Intrinsic::maxnum; 3077 case LibFunc_copysign: 3078 case LibFunc_copysignf: 3079 case LibFunc_copysignl: 3080 return Intrinsic::copysign; 3081 case LibFunc_floor: 3082 case LibFunc_floorf: 3083 case LibFunc_floorl: 3084 return Intrinsic::floor; 3085 case LibFunc_ceil: 3086 case LibFunc_ceilf: 3087 case LibFunc_ceill: 3088 return Intrinsic::ceil; 3089 case LibFunc_trunc: 3090 case LibFunc_truncf: 3091 case LibFunc_truncl: 3092 return Intrinsic::trunc; 3093 case LibFunc_rint: 3094 case LibFunc_rintf: 3095 case LibFunc_rintl: 3096 return Intrinsic::rint; 3097 case LibFunc_nearbyint: 3098 case LibFunc_nearbyintf: 3099 case LibFunc_nearbyintl: 3100 return Intrinsic::nearbyint; 3101 case LibFunc_round: 3102 case LibFunc_roundf: 3103 case LibFunc_roundl: 3104 return Intrinsic::round; 3105 case LibFunc_pow: 3106 case LibFunc_powf: 3107 case LibFunc_powl: 3108 return Intrinsic::pow; 3109 case LibFunc_sqrt: 3110 case LibFunc_sqrtf: 3111 case LibFunc_sqrtl: 3112 return Intrinsic::sqrt; 3113 } 3114 3115 return Intrinsic::not_intrinsic; 3116 } 3117 3118 /// Return true if we can prove that the specified FP value is never equal to 3119 /// -0.0. 3120 /// 3121 /// NOTE: this function will need to be revisited when we support non-default 3122 /// rounding modes! 3123 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3124 unsigned Depth) { 3125 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3126 return !CFP->getValueAPF().isNegZero(); 3127 3128 // Limit search depth. 3129 if (Depth == MaxDepth) 3130 return false; 3131 3132 auto *Op = dyn_cast<Operator>(V); 3133 if (!Op) 3134 return false; 3135 3136 // Check if the nsz fast-math flag is set. 3137 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3138 if (FPO->hasNoSignedZeros()) 3139 return true; 3140 3141 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3142 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3143 return true; 3144 3145 // sitofp and uitofp turn into +0.0 for zero. 3146 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3147 return true; 3148 3149 if (auto *Call = dyn_cast<CallInst>(Op)) { 3150 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3151 switch (IID) { 3152 default: 3153 break; 3154 // sqrt(-0.0) = -0.0, no other negative results are possible. 3155 case Intrinsic::sqrt: 3156 case Intrinsic::canonicalize: 3157 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3158 // fabs(x) != -0.0 3159 case Intrinsic::fabs: 3160 return true; 3161 } 3162 } 3163 3164 return false; 3165 } 3166 3167 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3168 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3169 /// bit despite comparing equal. 3170 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3171 const TargetLibraryInfo *TLI, 3172 bool SignBitOnly, 3173 unsigned Depth) { 3174 // TODO: This function does not do the right thing when SignBitOnly is true 3175 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3176 // which flips the sign bits of NaNs. See 3177 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3178 3179 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3180 return !CFP->getValueAPF().isNegative() || 3181 (!SignBitOnly && CFP->getValueAPF().isZero()); 3182 } 3183 3184 // Handle vector of constants. 3185 if (auto *CV = dyn_cast<Constant>(V)) { 3186 if (CV->getType()->isVectorTy()) { 3187 unsigned NumElts = CV->getType()->getVectorNumElements(); 3188 for (unsigned i = 0; i != NumElts; ++i) { 3189 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3190 if (!CFP) 3191 return false; 3192 if (CFP->getValueAPF().isNegative() && 3193 (SignBitOnly || !CFP->getValueAPF().isZero())) 3194 return false; 3195 } 3196 3197 // All non-negative ConstantFPs. 3198 return true; 3199 } 3200 } 3201 3202 if (Depth == MaxDepth) 3203 return false; // Limit search depth. 3204 3205 const Operator *I = dyn_cast<Operator>(V); 3206 if (!I) 3207 return false; 3208 3209 switch (I->getOpcode()) { 3210 default: 3211 break; 3212 // Unsigned integers are always nonnegative. 3213 case Instruction::UIToFP: 3214 return true; 3215 case Instruction::FMul: 3216 // x*x is always non-negative or a NaN. 3217 if (I->getOperand(0) == I->getOperand(1) && 3218 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3219 return true; 3220 3221 LLVM_FALLTHROUGH; 3222 case Instruction::FAdd: 3223 case Instruction::FDiv: 3224 case Instruction::FRem: 3225 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3226 Depth + 1) && 3227 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3228 Depth + 1); 3229 case Instruction::Select: 3230 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3231 Depth + 1) && 3232 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3233 Depth + 1); 3234 case Instruction::FPExt: 3235 case Instruction::FPTrunc: 3236 // Widening/narrowing never change sign. 3237 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3238 Depth + 1); 3239 case Instruction::ExtractElement: 3240 // Look through extract element. At the moment we keep this simple and skip 3241 // tracking the specific element. But at least we might find information 3242 // valid for all elements of the vector. 3243 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3244 Depth + 1); 3245 case Instruction::Call: 3246 const auto *CI = cast<CallInst>(I); 3247 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3248 switch (IID) { 3249 default: 3250 break; 3251 case Intrinsic::maxnum: 3252 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3253 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3254 SignBitOnly, Depth + 1)) || 3255 (isKnownNeverNaN(I->getOperand(1), TLI) && 3256 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3257 SignBitOnly, Depth + 1)); 3258 3259 case Intrinsic::maximum: 3260 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3261 Depth + 1) || 3262 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3263 Depth + 1); 3264 case Intrinsic::minnum: 3265 case Intrinsic::minimum: 3266 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3267 Depth + 1) && 3268 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3269 Depth + 1); 3270 case Intrinsic::exp: 3271 case Intrinsic::exp2: 3272 case Intrinsic::fabs: 3273 return true; 3274 3275 case Intrinsic::sqrt: 3276 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3277 if (!SignBitOnly) 3278 return true; 3279 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3280 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3281 3282 case Intrinsic::powi: 3283 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3284 // powi(x,n) is non-negative if n is even. 3285 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3286 return true; 3287 } 3288 // TODO: This is not correct. Given that exp is an integer, here are the 3289 // ways that pow can return a negative value: 3290 // 3291 // pow(x, exp) --> negative if exp is odd and x is negative. 3292 // pow(-0, exp) --> -inf if exp is negative odd. 3293 // pow(-0, exp) --> -0 if exp is positive odd. 3294 // pow(-inf, exp) --> -0 if exp is negative odd. 3295 // pow(-inf, exp) --> -inf if exp is positive odd. 3296 // 3297 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3298 // but we must return false if x == -0. Unfortunately we do not currently 3299 // have a way of expressing this constraint. See details in 3300 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3301 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3302 Depth + 1); 3303 3304 case Intrinsic::fma: 3305 case Intrinsic::fmuladd: 3306 // x*x+y is non-negative if y is non-negative. 3307 return I->getOperand(0) == I->getOperand(1) && 3308 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3309 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3310 Depth + 1); 3311 } 3312 break; 3313 } 3314 return false; 3315 } 3316 3317 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3318 const TargetLibraryInfo *TLI) { 3319 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3320 } 3321 3322 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3323 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3324 } 3325 3326 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3327 unsigned Depth) { 3328 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3329 3330 // If we're told that infinities won't happen, assume they won't. 3331 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3332 if (FPMathOp->hasNoInfs()) 3333 return true; 3334 3335 // Handle scalar constants. 3336 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3337 return !CFP->isInfinity(); 3338 3339 if (Depth == MaxDepth) 3340 return false; 3341 3342 if (auto *Inst = dyn_cast<Instruction>(V)) { 3343 switch (Inst->getOpcode()) { 3344 case Instruction::Select: { 3345 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3346 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3347 } 3348 case Instruction::UIToFP: 3349 // If the input type fits into the floating type the result is finite. 3350 return ilogb(APFloat::getLargest( 3351 Inst->getType()->getScalarType()->getFltSemantics())) >= 3352 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3353 default: 3354 break; 3355 } 3356 } 3357 3358 // Bail out for constant expressions, but try to handle vector constants. 3359 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3360 return false; 3361 3362 // For vectors, verify that each element is not infinity. 3363 unsigned NumElts = V->getType()->getVectorNumElements(); 3364 for (unsigned i = 0; i != NumElts; ++i) { 3365 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3366 if (!Elt) 3367 return false; 3368 if (isa<UndefValue>(Elt)) 3369 continue; 3370 auto *CElt = dyn_cast<ConstantFP>(Elt); 3371 if (!CElt || CElt->isInfinity()) 3372 return false; 3373 } 3374 // All elements were confirmed non-infinity or undefined. 3375 return true; 3376 } 3377 3378 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3379 unsigned Depth) { 3380 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3381 3382 // If we're told that NaNs won't happen, assume they won't. 3383 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3384 if (FPMathOp->hasNoNaNs()) 3385 return true; 3386 3387 // Handle scalar constants. 3388 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3389 return !CFP->isNaN(); 3390 3391 if (Depth == MaxDepth) 3392 return false; 3393 3394 if (auto *Inst = dyn_cast<Instruction>(V)) { 3395 switch (Inst->getOpcode()) { 3396 case Instruction::FAdd: 3397 case Instruction::FSub: 3398 // Adding positive and negative infinity produces NaN. 3399 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3400 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3401 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3402 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3403 3404 case Instruction::FMul: 3405 // Zero multiplied with infinity produces NaN. 3406 // FIXME: If neither side can be zero fmul never produces NaN. 3407 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3408 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3409 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3410 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3411 3412 case Instruction::FDiv: 3413 case Instruction::FRem: 3414 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3415 return false; 3416 3417 case Instruction::Select: { 3418 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3419 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3420 } 3421 case Instruction::SIToFP: 3422 case Instruction::UIToFP: 3423 return true; 3424 case Instruction::FPTrunc: 3425 case Instruction::FPExt: 3426 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3427 default: 3428 break; 3429 } 3430 } 3431 3432 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3433 switch (II->getIntrinsicID()) { 3434 case Intrinsic::canonicalize: 3435 case Intrinsic::fabs: 3436 case Intrinsic::copysign: 3437 case Intrinsic::exp: 3438 case Intrinsic::exp2: 3439 case Intrinsic::floor: 3440 case Intrinsic::ceil: 3441 case Intrinsic::trunc: 3442 case Intrinsic::rint: 3443 case Intrinsic::nearbyint: 3444 case Intrinsic::round: 3445 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3446 case Intrinsic::sqrt: 3447 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3448 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3449 case Intrinsic::minnum: 3450 case Intrinsic::maxnum: 3451 // If either operand is not NaN, the result is not NaN. 3452 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3453 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3454 default: 3455 return false; 3456 } 3457 } 3458 3459 // Bail out for constant expressions, but try to handle vector constants. 3460 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3461 return false; 3462 3463 // For vectors, verify that each element is not NaN. 3464 unsigned NumElts = V->getType()->getVectorNumElements(); 3465 for (unsigned i = 0; i != NumElts; ++i) { 3466 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3467 if (!Elt) 3468 return false; 3469 if (isa<UndefValue>(Elt)) 3470 continue; 3471 auto *CElt = dyn_cast<ConstantFP>(Elt); 3472 if (!CElt || CElt->isNaN()) 3473 return false; 3474 } 3475 // All elements were confirmed not-NaN or undefined. 3476 return true; 3477 } 3478 3479 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3480 3481 // All byte-wide stores are splatable, even of arbitrary variables. 3482 if (V->getType()->isIntegerTy(8)) 3483 return V; 3484 3485 LLVMContext &Ctx = V->getContext(); 3486 3487 // Undef don't care. 3488 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3489 if (isa<UndefValue>(V)) 3490 return UndefInt8; 3491 3492 const uint64_t Size = DL.getTypeStoreSize(V->getType()); 3493 if (!Size) 3494 return UndefInt8; 3495 3496 Constant *C = dyn_cast<Constant>(V); 3497 if (!C) { 3498 // Conceptually, we could handle things like: 3499 // %a = zext i8 %X to i16 3500 // %b = shl i16 %a, 8 3501 // %c = or i16 %a, %b 3502 // but until there is an example that actually needs this, it doesn't seem 3503 // worth worrying about. 3504 return nullptr; 3505 } 3506 3507 // Handle 'null' ConstantArrayZero etc. 3508 if (C->isNullValue()) 3509 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3510 3511 // Constant floating-point values can be handled as integer values if the 3512 // corresponding integer value is "byteable". An important case is 0.0. 3513 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3514 Type *Ty = nullptr; 3515 if (CFP->getType()->isHalfTy()) 3516 Ty = Type::getInt16Ty(Ctx); 3517 else if (CFP->getType()->isFloatTy()) 3518 Ty = Type::getInt32Ty(Ctx); 3519 else if (CFP->getType()->isDoubleTy()) 3520 Ty = Type::getInt64Ty(Ctx); 3521 // Don't handle long double formats, which have strange constraints. 3522 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3523 : nullptr; 3524 } 3525 3526 // We can handle constant integers that are multiple of 8 bits. 3527 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3528 if (CI->getBitWidth() % 8 == 0) { 3529 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3530 if (!CI->getValue().isSplat(8)) 3531 return nullptr; 3532 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3533 } 3534 } 3535 3536 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3537 if (CE->getOpcode() == Instruction::IntToPtr) { 3538 auto PS = DL.getPointerSizeInBits( 3539 cast<PointerType>(CE->getType())->getAddressSpace()); 3540 return isBytewiseValue( 3541 ConstantExpr::getIntegerCast(CE->getOperand(0), 3542 Type::getIntNTy(Ctx, PS), false), 3543 DL); 3544 } 3545 } 3546 3547 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3548 if (LHS == RHS) 3549 return LHS; 3550 if (!LHS || !RHS) 3551 return nullptr; 3552 if (LHS == UndefInt8) 3553 return RHS; 3554 if (RHS == UndefInt8) 3555 return LHS; 3556 return nullptr; 3557 }; 3558 3559 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3560 Value *Val = UndefInt8; 3561 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3562 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3563 return nullptr; 3564 return Val; 3565 } 3566 3567 if (isa<ConstantAggregate>(C)) { 3568 Value *Val = UndefInt8; 3569 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3570 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3571 return nullptr; 3572 return Val; 3573 } 3574 3575 // Don't try to handle the handful of other constants. 3576 return nullptr; 3577 } 3578 3579 // This is the recursive version of BuildSubAggregate. It takes a few different 3580 // arguments. Idxs is the index within the nested struct From that we are 3581 // looking at now (which is of type IndexedType). IdxSkip is the number of 3582 // indices from Idxs that should be left out when inserting into the resulting 3583 // struct. To is the result struct built so far, new insertvalue instructions 3584 // build on that. 3585 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3586 SmallVectorImpl<unsigned> &Idxs, 3587 unsigned IdxSkip, 3588 Instruction *InsertBefore) { 3589 StructType *STy = dyn_cast<StructType>(IndexedType); 3590 if (STy) { 3591 // Save the original To argument so we can modify it 3592 Value *OrigTo = To; 3593 // General case, the type indexed by Idxs is a struct 3594 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3595 // Process each struct element recursively 3596 Idxs.push_back(i); 3597 Value *PrevTo = To; 3598 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3599 InsertBefore); 3600 Idxs.pop_back(); 3601 if (!To) { 3602 // Couldn't find any inserted value for this index? Cleanup 3603 while (PrevTo != OrigTo) { 3604 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3605 PrevTo = Del->getAggregateOperand(); 3606 Del->eraseFromParent(); 3607 } 3608 // Stop processing elements 3609 break; 3610 } 3611 } 3612 // If we successfully found a value for each of our subaggregates 3613 if (To) 3614 return To; 3615 } 3616 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3617 // the struct's elements had a value that was inserted directly. In the latter 3618 // case, perhaps we can't determine each of the subelements individually, but 3619 // we might be able to find the complete struct somewhere. 3620 3621 // Find the value that is at that particular spot 3622 Value *V = FindInsertedValue(From, Idxs); 3623 3624 if (!V) 3625 return nullptr; 3626 3627 // Insert the value in the new (sub) aggregate 3628 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3629 "tmp", InsertBefore); 3630 } 3631 3632 // This helper takes a nested struct and extracts a part of it (which is again a 3633 // struct) into a new value. For example, given the struct: 3634 // { a, { b, { c, d }, e } } 3635 // and the indices "1, 1" this returns 3636 // { c, d }. 3637 // 3638 // It does this by inserting an insertvalue for each element in the resulting 3639 // struct, as opposed to just inserting a single struct. This will only work if 3640 // each of the elements of the substruct are known (ie, inserted into From by an 3641 // insertvalue instruction somewhere). 3642 // 3643 // All inserted insertvalue instructions are inserted before InsertBefore 3644 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3645 Instruction *InsertBefore) { 3646 assert(InsertBefore && "Must have someplace to insert!"); 3647 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3648 idx_range); 3649 Value *To = UndefValue::get(IndexedType); 3650 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3651 unsigned IdxSkip = Idxs.size(); 3652 3653 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3654 } 3655 3656 /// Given an aggregate and a sequence of indices, see if the scalar value 3657 /// indexed is already around as a register, for example if it was inserted 3658 /// directly into the aggregate. 3659 /// 3660 /// If InsertBefore is not null, this function will duplicate (modified) 3661 /// insertvalues when a part of a nested struct is extracted. 3662 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3663 Instruction *InsertBefore) { 3664 // Nothing to index? Just return V then (this is useful at the end of our 3665 // recursion). 3666 if (idx_range.empty()) 3667 return V; 3668 // We have indices, so V should have an indexable type. 3669 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3670 "Not looking at a struct or array?"); 3671 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3672 "Invalid indices for type?"); 3673 3674 if (Constant *C = dyn_cast<Constant>(V)) { 3675 C = C->getAggregateElement(idx_range[0]); 3676 if (!C) return nullptr; 3677 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3678 } 3679 3680 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3681 // Loop the indices for the insertvalue instruction in parallel with the 3682 // requested indices 3683 const unsigned *req_idx = idx_range.begin(); 3684 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3685 i != e; ++i, ++req_idx) { 3686 if (req_idx == idx_range.end()) { 3687 // We can't handle this without inserting insertvalues 3688 if (!InsertBefore) 3689 return nullptr; 3690 3691 // The requested index identifies a part of a nested aggregate. Handle 3692 // this specially. For example, 3693 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3694 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3695 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3696 // This can be changed into 3697 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3698 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3699 // which allows the unused 0,0 element from the nested struct to be 3700 // removed. 3701 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3702 InsertBefore); 3703 } 3704 3705 // This insert value inserts something else than what we are looking for. 3706 // See if the (aggregate) value inserted into has the value we are 3707 // looking for, then. 3708 if (*req_idx != *i) 3709 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3710 InsertBefore); 3711 } 3712 // If we end up here, the indices of the insertvalue match with those 3713 // requested (though possibly only partially). Now we recursively look at 3714 // the inserted value, passing any remaining indices. 3715 return FindInsertedValue(I->getInsertedValueOperand(), 3716 makeArrayRef(req_idx, idx_range.end()), 3717 InsertBefore); 3718 } 3719 3720 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3721 // If we're extracting a value from an aggregate that was extracted from 3722 // something else, we can extract from that something else directly instead. 3723 // However, we will need to chain I's indices with the requested indices. 3724 3725 // Calculate the number of indices required 3726 unsigned size = I->getNumIndices() + idx_range.size(); 3727 // Allocate some space to put the new indices in 3728 SmallVector<unsigned, 5> Idxs; 3729 Idxs.reserve(size); 3730 // Add indices from the extract value instruction 3731 Idxs.append(I->idx_begin(), I->idx_end()); 3732 3733 // Add requested indices 3734 Idxs.append(idx_range.begin(), idx_range.end()); 3735 3736 assert(Idxs.size() == size 3737 && "Number of indices added not correct?"); 3738 3739 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3740 } 3741 // Otherwise, we don't know (such as, extracting from a function return value 3742 // or load instruction) 3743 return nullptr; 3744 } 3745 3746 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3747 unsigned CharSize) { 3748 // Make sure the GEP has exactly three arguments. 3749 if (GEP->getNumOperands() != 3) 3750 return false; 3751 3752 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3753 // CharSize. 3754 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3755 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3756 return false; 3757 3758 // Check to make sure that the first operand of the GEP is an integer and 3759 // has value 0 so that we are sure we're indexing into the initializer. 3760 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3761 if (!FirstIdx || !FirstIdx->isZero()) 3762 return false; 3763 3764 return true; 3765 } 3766 3767 bool llvm::getConstantDataArrayInfo(const Value *V, 3768 ConstantDataArraySlice &Slice, 3769 unsigned ElementSize, uint64_t Offset) { 3770 assert(V); 3771 3772 // Look through bitcast instructions and geps. 3773 V = V->stripPointerCasts(); 3774 3775 // If the value is a GEP instruction or constant expression, treat it as an 3776 // offset. 3777 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3778 // The GEP operator should be based on a pointer to string constant, and is 3779 // indexing into the string constant. 3780 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3781 return false; 3782 3783 // If the second index isn't a ConstantInt, then this is a variable index 3784 // into the array. If this occurs, we can't say anything meaningful about 3785 // the string. 3786 uint64_t StartIdx = 0; 3787 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3788 StartIdx = CI->getZExtValue(); 3789 else 3790 return false; 3791 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3792 StartIdx + Offset); 3793 } 3794 3795 // The GEP instruction, constant or instruction, must reference a global 3796 // variable that is a constant and is initialized. The referenced constant 3797 // initializer is the array that we'll use for optimization. 3798 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3799 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3800 return false; 3801 3802 const ConstantDataArray *Array; 3803 ArrayType *ArrayTy; 3804 if (GV->getInitializer()->isNullValue()) { 3805 Type *GVTy = GV->getValueType(); 3806 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3807 // A zeroinitializer for the array; there is no ConstantDataArray. 3808 Array = nullptr; 3809 } else { 3810 const DataLayout &DL = GV->getParent()->getDataLayout(); 3811 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy); 3812 uint64_t Length = SizeInBytes / (ElementSize / 8); 3813 if (Length <= Offset) 3814 return false; 3815 3816 Slice.Array = nullptr; 3817 Slice.Offset = 0; 3818 Slice.Length = Length - Offset; 3819 return true; 3820 } 3821 } else { 3822 // This must be a ConstantDataArray. 3823 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3824 if (!Array) 3825 return false; 3826 ArrayTy = Array->getType(); 3827 } 3828 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3829 return false; 3830 3831 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3832 if (Offset > NumElts) 3833 return false; 3834 3835 Slice.Array = Array; 3836 Slice.Offset = Offset; 3837 Slice.Length = NumElts - Offset; 3838 return true; 3839 } 3840 3841 /// This function computes the length of a null-terminated C string pointed to 3842 /// by V. If successful, it returns true and returns the string in Str. 3843 /// If unsuccessful, it returns false. 3844 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3845 uint64_t Offset, bool TrimAtNul) { 3846 ConstantDataArraySlice Slice; 3847 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3848 return false; 3849 3850 if (Slice.Array == nullptr) { 3851 if (TrimAtNul) { 3852 Str = StringRef(); 3853 return true; 3854 } 3855 if (Slice.Length == 1) { 3856 Str = StringRef("", 1); 3857 return true; 3858 } 3859 // We cannot instantiate a StringRef as we do not have an appropriate string 3860 // of 0s at hand. 3861 return false; 3862 } 3863 3864 // Start out with the entire array in the StringRef. 3865 Str = Slice.Array->getAsString(); 3866 // Skip over 'offset' bytes. 3867 Str = Str.substr(Slice.Offset); 3868 3869 if (TrimAtNul) { 3870 // Trim off the \0 and anything after it. If the array is not nul 3871 // terminated, we just return the whole end of string. The client may know 3872 // some other way that the string is length-bound. 3873 Str = Str.substr(0, Str.find('\0')); 3874 } 3875 return true; 3876 } 3877 3878 // These next two are very similar to the above, but also look through PHI 3879 // nodes. 3880 // TODO: See if we can integrate these two together. 3881 3882 /// If we can compute the length of the string pointed to by 3883 /// the specified pointer, return 'len+1'. If we can't, return 0. 3884 static uint64_t GetStringLengthH(const Value *V, 3885 SmallPtrSetImpl<const PHINode*> &PHIs, 3886 unsigned CharSize) { 3887 // Look through noop bitcast instructions. 3888 V = V->stripPointerCasts(); 3889 3890 // If this is a PHI node, there are two cases: either we have already seen it 3891 // or we haven't. 3892 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3893 if (!PHIs.insert(PN).second) 3894 return ~0ULL; // already in the set. 3895 3896 // If it was new, see if all the input strings are the same length. 3897 uint64_t LenSoFar = ~0ULL; 3898 for (Value *IncValue : PN->incoming_values()) { 3899 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3900 if (Len == 0) return 0; // Unknown length -> unknown. 3901 3902 if (Len == ~0ULL) continue; 3903 3904 if (Len != LenSoFar && LenSoFar != ~0ULL) 3905 return 0; // Disagree -> unknown. 3906 LenSoFar = Len; 3907 } 3908 3909 // Success, all agree. 3910 return LenSoFar; 3911 } 3912 3913 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3914 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3915 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3916 if (Len1 == 0) return 0; 3917 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3918 if (Len2 == 0) return 0; 3919 if (Len1 == ~0ULL) return Len2; 3920 if (Len2 == ~0ULL) return Len1; 3921 if (Len1 != Len2) return 0; 3922 return Len1; 3923 } 3924 3925 // Otherwise, see if we can read the string. 3926 ConstantDataArraySlice Slice; 3927 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 3928 return 0; 3929 3930 if (Slice.Array == nullptr) 3931 return 1; 3932 3933 // Search for nul characters 3934 unsigned NullIndex = 0; 3935 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 3936 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 3937 break; 3938 } 3939 3940 return NullIndex + 1; 3941 } 3942 3943 /// If we can compute the length of the string pointed to by 3944 /// the specified pointer, return 'len+1'. If we can't, return 0. 3945 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 3946 if (!V->getType()->isPointerTy()) 3947 return 0; 3948 3949 SmallPtrSet<const PHINode*, 32> PHIs; 3950 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 3951 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 3952 // an empty string as a length. 3953 return Len == ~0ULL ? 1 : Len; 3954 } 3955 3956 const Value * 3957 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 3958 bool MustPreserveNullness) { 3959 assert(Call && 3960 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 3961 if (const Value *RV = Call->getReturnedArgOperand()) 3962 return RV; 3963 // This can be used only as a aliasing property. 3964 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3965 Call, MustPreserveNullness)) 3966 return Call->getArgOperand(0); 3967 return nullptr; 3968 } 3969 3970 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 3971 const CallBase *Call, bool MustPreserveNullness) { 3972 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 3973 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 3974 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 3975 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 3976 (!MustPreserveNullness && 3977 Call->getIntrinsicID() == Intrinsic::ptrmask); 3978 } 3979 3980 /// \p PN defines a loop-variant pointer to an object. Check if the 3981 /// previous iteration of the loop was referring to the same object as \p PN. 3982 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 3983 const LoopInfo *LI) { 3984 // Find the loop-defined value. 3985 Loop *L = LI->getLoopFor(PN->getParent()); 3986 if (PN->getNumIncomingValues() != 2) 3987 return true; 3988 3989 // Find the value from previous iteration. 3990 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 3991 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3992 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 3993 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 3994 return true; 3995 3996 // If a new pointer is loaded in the loop, the pointer references a different 3997 // object in every iteration. E.g.: 3998 // for (i) 3999 // int *p = a[i]; 4000 // ... 4001 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4002 if (!L->isLoopInvariant(Load->getPointerOperand())) 4003 return false; 4004 return true; 4005 } 4006 4007 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4008 unsigned MaxLookup) { 4009 if (!V->getType()->isPointerTy()) 4010 return V; 4011 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4012 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4013 V = GEP->getPointerOperand(); 4014 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4015 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4016 V = cast<Operator>(V)->getOperand(0); 4017 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4018 if (GA->isInterposable()) 4019 return V; 4020 V = GA->getAliasee(); 4021 } else if (isa<AllocaInst>(V)) { 4022 // An alloca can't be further simplified. 4023 return V; 4024 } else { 4025 if (auto *Call = dyn_cast<CallBase>(V)) { 4026 // CaptureTracking can know about special capturing properties of some 4027 // intrinsics like launder.invariant.group, that can't be expressed with 4028 // the attributes, but have properties like returning aliasing pointer. 4029 // Because some analysis may assume that nocaptured pointer is not 4030 // returned from some special intrinsic (because function would have to 4031 // be marked with returns attribute), it is crucial to use this function 4032 // because it should be in sync with CaptureTracking. Not using it may 4033 // cause weird miscompilations where 2 aliasing pointers are assumed to 4034 // noalias. 4035 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4036 V = RP; 4037 continue; 4038 } 4039 } 4040 4041 // See if InstructionSimplify knows any relevant tricks. 4042 if (Instruction *I = dyn_cast<Instruction>(V)) 4043 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4044 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4045 V = Simplified; 4046 continue; 4047 } 4048 4049 return V; 4050 } 4051 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4052 } 4053 return V; 4054 } 4055 4056 void llvm::GetUnderlyingObjects(const Value *V, 4057 SmallVectorImpl<const Value *> &Objects, 4058 const DataLayout &DL, LoopInfo *LI, 4059 unsigned MaxLookup) { 4060 SmallPtrSet<const Value *, 4> Visited; 4061 SmallVector<const Value *, 4> Worklist; 4062 Worklist.push_back(V); 4063 do { 4064 const Value *P = Worklist.pop_back_val(); 4065 P = GetUnderlyingObject(P, DL, MaxLookup); 4066 4067 if (!Visited.insert(P).second) 4068 continue; 4069 4070 if (auto *SI = dyn_cast<SelectInst>(P)) { 4071 Worklist.push_back(SI->getTrueValue()); 4072 Worklist.push_back(SI->getFalseValue()); 4073 continue; 4074 } 4075 4076 if (auto *PN = dyn_cast<PHINode>(P)) { 4077 // If this PHI changes the underlying object in every iteration of the 4078 // loop, don't look through it. Consider: 4079 // int **A; 4080 // for (i) { 4081 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4082 // Curr = A[i]; 4083 // *Prev, *Curr; 4084 // 4085 // Prev is tracking Curr one iteration behind so they refer to different 4086 // underlying objects. 4087 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4088 isSameUnderlyingObjectInLoop(PN, LI)) 4089 for (Value *IncValue : PN->incoming_values()) 4090 Worklist.push_back(IncValue); 4091 continue; 4092 } 4093 4094 Objects.push_back(P); 4095 } while (!Worklist.empty()); 4096 } 4097 4098 /// This is the function that does the work of looking through basic 4099 /// ptrtoint+arithmetic+inttoptr sequences. 4100 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4101 do { 4102 if (const Operator *U = dyn_cast<Operator>(V)) { 4103 // If we find a ptrtoint, we can transfer control back to the 4104 // regular getUnderlyingObjectFromInt. 4105 if (U->getOpcode() == Instruction::PtrToInt) 4106 return U->getOperand(0); 4107 // If we find an add of a constant, a multiplied value, or a phi, it's 4108 // likely that the other operand will lead us to the base 4109 // object. We don't have to worry about the case where the 4110 // object address is somehow being computed by the multiply, 4111 // because our callers only care when the result is an 4112 // identifiable object. 4113 if (U->getOpcode() != Instruction::Add || 4114 (!isa<ConstantInt>(U->getOperand(1)) && 4115 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4116 !isa<PHINode>(U->getOperand(1)))) 4117 return V; 4118 V = U->getOperand(0); 4119 } else { 4120 return V; 4121 } 4122 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4123 } while (true); 4124 } 4125 4126 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4127 /// ptrtoint+arithmetic+inttoptr sequences. 4128 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4129 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4130 SmallVectorImpl<Value *> &Objects, 4131 const DataLayout &DL) { 4132 SmallPtrSet<const Value *, 16> Visited; 4133 SmallVector<const Value *, 4> Working(1, V); 4134 do { 4135 V = Working.pop_back_val(); 4136 4137 SmallVector<const Value *, 4> Objs; 4138 GetUnderlyingObjects(V, Objs, DL); 4139 4140 for (const Value *V : Objs) { 4141 if (!Visited.insert(V).second) 4142 continue; 4143 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4144 const Value *O = 4145 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4146 if (O->getType()->isPointerTy()) { 4147 Working.push_back(O); 4148 continue; 4149 } 4150 } 4151 // If GetUnderlyingObjects fails to find an identifiable object, 4152 // getUnderlyingObjectsForCodeGen also fails for safety. 4153 if (!isIdentifiedObject(V)) { 4154 Objects.clear(); 4155 return false; 4156 } 4157 Objects.push_back(const_cast<Value *>(V)); 4158 } 4159 } while (!Working.empty()); 4160 return true; 4161 } 4162 4163 /// Return true if the only users of this pointer are lifetime markers. 4164 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4165 for (const User *U : V->users()) { 4166 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4167 if (!II) return false; 4168 4169 if (!II->isLifetimeStartOrEnd()) 4170 return false; 4171 } 4172 return true; 4173 } 4174 4175 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4176 if (!LI.isUnordered()) 4177 return true; 4178 const Function &F = *LI.getFunction(); 4179 // Speculative load may create a race that did not exist in the source. 4180 return F.hasFnAttribute(Attribute::SanitizeThread) || 4181 // Speculative load may load data from dirty regions. 4182 F.hasFnAttribute(Attribute::SanitizeAddress) || 4183 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4184 } 4185 4186 4187 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4188 const Instruction *CtxI, 4189 const DominatorTree *DT) { 4190 const Operator *Inst = dyn_cast<Operator>(V); 4191 if (!Inst) 4192 return false; 4193 4194 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4195 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4196 if (C->canTrap()) 4197 return false; 4198 4199 switch (Inst->getOpcode()) { 4200 default: 4201 return true; 4202 case Instruction::UDiv: 4203 case Instruction::URem: { 4204 // x / y is undefined if y == 0. 4205 const APInt *V; 4206 if (match(Inst->getOperand(1), m_APInt(V))) 4207 return *V != 0; 4208 return false; 4209 } 4210 case Instruction::SDiv: 4211 case Instruction::SRem: { 4212 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4213 const APInt *Numerator, *Denominator; 4214 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4215 return false; 4216 // We cannot hoist this division if the denominator is 0. 4217 if (*Denominator == 0) 4218 return false; 4219 // It's safe to hoist if the denominator is not 0 or -1. 4220 if (*Denominator != -1) 4221 return true; 4222 // At this point we know that the denominator is -1. It is safe to hoist as 4223 // long we know that the numerator is not INT_MIN. 4224 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4225 return !Numerator->isMinSignedValue(); 4226 // The numerator *might* be MinSignedValue. 4227 return false; 4228 } 4229 case Instruction::Load: { 4230 const LoadInst *LI = cast<LoadInst>(Inst); 4231 if (mustSuppressSpeculation(*LI)) 4232 return false; 4233 const DataLayout &DL = LI->getModule()->getDataLayout(); 4234 return isDereferenceableAndAlignedPointer( 4235 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4236 DL, CtxI, DT); 4237 } 4238 case Instruction::Call: { 4239 auto *CI = cast<const CallInst>(Inst); 4240 const Function *Callee = CI->getCalledFunction(); 4241 4242 // The called function could have undefined behavior or side-effects, even 4243 // if marked readnone nounwind. 4244 return Callee && Callee->isSpeculatable(); 4245 } 4246 case Instruction::VAArg: 4247 case Instruction::Alloca: 4248 case Instruction::Invoke: 4249 case Instruction::CallBr: 4250 case Instruction::PHI: 4251 case Instruction::Store: 4252 case Instruction::Ret: 4253 case Instruction::Br: 4254 case Instruction::IndirectBr: 4255 case Instruction::Switch: 4256 case Instruction::Unreachable: 4257 case Instruction::Fence: 4258 case Instruction::AtomicRMW: 4259 case Instruction::AtomicCmpXchg: 4260 case Instruction::LandingPad: 4261 case Instruction::Resume: 4262 case Instruction::CatchSwitch: 4263 case Instruction::CatchPad: 4264 case Instruction::CatchRet: 4265 case Instruction::CleanupPad: 4266 case Instruction::CleanupRet: 4267 return false; // Misc instructions which have effects 4268 } 4269 } 4270 4271 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4272 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4273 } 4274 4275 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4276 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4277 switch (OR) { 4278 case ConstantRange::OverflowResult::MayOverflow: 4279 return OverflowResult::MayOverflow; 4280 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4281 return OverflowResult::AlwaysOverflowsLow; 4282 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4283 return OverflowResult::AlwaysOverflowsHigh; 4284 case ConstantRange::OverflowResult::NeverOverflows: 4285 return OverflowResult::NeverOverflows; 4286 } 4287 llvm_unreachable("Unknown OverflowResult"); 4288 } 4289 4290 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4291 static ConstantRange computeConstantRangeIncludingKnownBits( 4292 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4293 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4294 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4295 KnownBits Known = computeKnownBits( 4296 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4297 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4298 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4299 ConstantRange::PreferredRangeType RangeType = 4300 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4301 return CR1.intersectWith(CR2, RangeType); 4302 } 4303 4304 OverflowResult llvm::computeOverflowForUnsignedMul( 4305 const Value *LHS, const Value *RHS, const DataLayout &DL, 4306 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4307 bool UseInstrInfo) { 4308 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4309 nullptr, UseInstrInfo); 4310 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4311 nullptr, UseInstrInfo); 4312 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4313 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4314 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4315 } 4316 4317 OverflowResult 4318 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4319 const DataLayout &DL, AssumptionCache *AC, 4320 const Instruction *CxtI, 4321 const DominatorTree *DT, bool UseInstrInfo) { 4322 // Multiplying n * m significant bits yields a result of n + m significant 4323 // bits. If the total number of significant bits does not exceed the 4324 // result bit width (minus 1), there is no overflow. 4325 // This means if we have enough leading sign bits in the operands 4326 // we can guarantee that the result does not overflow. 4327 // Ref: "Hacker's Delight" by Henry Warren 4328 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4329 4330 // Note that underestimating the number of sign bits gives a more 4331 // conservative answer. 4332 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4333 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4334 4335 // First handle the easy case: if we have enough sign bits there's 4336 // definitely no overflow. 4337 if (SignBits > BitWidth + 1) 4338 return OverflowResult::NeverOverflows; 4339 4340 // There are two ambiguous cases where there can be no overflow: 4341 // SignBits == BitWidth + 1 and 4342 // SignBits == BitWidth 4343 // The second case is difficult to check, therefore we only handle the 4344 // first case. 4345 if (SignBits == BitWidth + 1) { 4346 // It overflows only when both arguments are negative and the true 4347 // product is exactly the minimum negative number. 4348 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4349 // For simplicity we just check if at least one side is not negative. 4350 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4351 nullptr, UseInstrInfo); 4352 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4353 nullptr, UseInstrInfo); 4354 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4355 return OverflowResult::NeverOverflows; 4356 } 4357 return OverflowResult::MayOverflow; 4358 } 4359 4360 OverflowResult llvm::computeOverflowForUnsignedAdd( 4361 const Value *LHS, const Value *RHS, const DataLayout &DL, 4362 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4363 bool UseInstrInfo) { 4364 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4365 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4366 nullptr, UseInstrInfo); 4367 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4368 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4369 nullptr, UseInstrInfo); 4370 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4371 } 4372 4373 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4374 const Value *RHS, 4375 const AddOperator *Add, 4376 const DataLayout &DL, 4377 AssumptionCache *AC, 4378 const Instruction *CxtI, 4379 const DominatorTree *DT) { 4380 if (Add && Add->hasNoSignedWrap()) { 4381 return OverflowResult::NeverOverflows; 4382 } 4383 4384 // If LHS and RHS each have at least two sign bits, the addition will look 4385 // like 4386 // 4387 // XX..... + 4388 // YY..... 4389 // 4390 // If the carry into the most significant position is 0, X and Y can't both 4391 // be 1 and therefore the carry out of the addition is also 0. 4392 // 4393 // If the carry into the most significant position is 1, X and Y can't both 4394 // be 0 and therefore the carry out of the addition is also 1. 4395 // 4396 // Since the carry into the most significant position is always equal to 4397 // the carry out of the addition, there is no signed overflow. 4398 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4399 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4400 return OverflowResult::NeverOverflows; 4401 4402 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4403 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4404 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4405 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4406 OverflowResult OR = 4407 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4408 if (OR != OverflowResult::MayOverflow) 4409 return OR; 4410 4411 // The remaining code needs Add to be available. Early returns if not so. 4412 if (!Add) 4413 return OverflowResult::MayOverflow; 4414 4415 // If the sign of Add is the same as at least one of the operands, this add 4416 // CANNOT overflow. If this can be determined from the known bits of the 4417 // operands the above signedAddMayOverflow() check will have already done so. 4418 // The only other way to improve on the known bits is from an assumption, so 4419 // call computeKnownBitsFromAssume() directly. 4420 bool LHSOrRHSKnownNonNegative = 4421 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4422 bool LHSOrRHSKnownNegative = 4423 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4424 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4425 KnownBits AddKnown(LHSRange.getBitWidth()); 4426 computeKnownBitsFromAssume( 4427 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4428 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4429 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4430 return OverflowResult::NeverOverflows; 4431 } 4432 4433 return OverflowResult::MayOverflow; 4434 } 4435 4436 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4437 const Value *RHS, 4438 const DataLayout &DL, 4439 AssumptionCache *AC, 4440 const Instruction *CxtI, 4441 const DominatorTree *DT) { 4442 // Checking for conditions implied by dominating conditions may be expensive. 4443 // Limit it to usub_with_overflow calls for now. 4444 if (match(CxtI, 4445 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4446 if (auto C = 4447 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4448 if (*C) 4449 return OverflowResult::NeverOverflows; 4450 return OverflowResult::AlwaysOverflowsLow; 4451 } 4452 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4453 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4454 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4455 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4456 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4457 } 4458 4459 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4460 const Value *RHS, 4461 const DataLayout &DL, 4462 AssumptionCache *AC, 4463 const Instruction *CxtI, 4464 const DominatorTree *DT) { 4465 // If LHS and RHS each have at least two sign bits, the subtraction 4466 // cannot overflow. 4467 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4468 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4469 return OverflowResult::NeverOverflows; 4470 4471 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4472 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4473 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4474 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4475 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4476 } 4477 4478 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4479 const DominatorTree &DT) { 4480 SmallVector<const BranchInst *, 2> GuardingBranches; 4481 SmallVector<const ExtractValueInst *, 2> Results; 4482 4483 for (const User *U : WO->users()) { 4484 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4485 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4486 4487 if (EVI->getIndices()[0] == 0) 4488 Results.push_back(EVI); 4489 else { 4490 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4491 4492 for (const auto *U : EVI->users()) 4493 if (const auto *B = dyn_cast<BranchInst>(U)) { 4494 assert(B->isConditional() && "How else is it using an i1?"); 4495 GuardingBranches.push_back(B); 4496 } 4497 } 4498 } else { 4499 // We are using the aggregate directly in a way we don't want to analyze 4500 // here (storing it to a global, say). 4501 return false; 4502 } 4503 } 4504 4505 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4506 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4507 if (!NoWrapEdge.isSingleEdge()) 4508 return false; 4509 4510 // Check if all users of the add are provably no-wrap. 4511 for (const auto *Result : Results) { 4512 // If the extractvalue itself is not executed on overflow, the we don't 4513 // need to check each use separately, since domination is transitive. 4514 if (DT.dominates(NoWrapEdge, Result->getParent())) 4515 continue; 4516 4517 for (auto &RU : Result->uses()) 4518 if (!DT.dominates(NoWrapEdge, RU)) 4519 return false; 4520 } 4521 4522 return true; 4523 }; 4524 4525 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4526 } 4527 4528 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4529 const Instruction *CtxI, 4530 const DominatorTree *DT) { 4531 // If the value is a freeze instruction, then it can never 4532 // be undef or poison. 4533 if (isa<FreezeInst>(V)) 4534 return true; 4535 // TODO: Some instructions are guaranteed to return neither undef 4536 // nor poison if their arguments are not poison/undef. 4537 4538 // TODO: Deal with other Constant subclasses. 4539 if (isa<ConstantInt>(V) || isa<GlobalVariable>(V)) 4540 return true; 4541 4542 if (auto PN = dyn_cast<PHINode>(V)) { 4543 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4544 return isa<ConstantInt>(U.get()); 4545 })) 4546 return true; 4547 } 4548 4549 if (auto II = dyn_cast<ICmpInst>(V)) { 4550 if (llvm::all_of(II->operands(), [](const Value *V) { 4551 return isGuaranteedNotToBeUndefOrPoison(V); 4552 })) 4553 return true; 4554 } 4555 4556 if (auto I = dyn_cast<Instruction>(V)) { 4557 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4558 // Note: once we have an agreement that poison is a value-wise concept, 4559 // we can remove the isIntegerTy(1) constraint. 4560 return true; 4561 } 4562 4563 // CxtI may be null or a cloned instruction. 4564 if (!CtxI || !CtxI->getParent() || !DT) 4565 return false; 4566 4567 // If V is used as a branch condition before reaching CtxI, V cannot be 4568 // undef or poison. 4569 // br V, BB1, BB2 4570 // BB1: 4571 // CtxI ; V cannot be undef or poison here 4572 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4573 while (Dominator) { 4574 auto *TI = Dominator->getBlock()->getTerminator(); 4575 4576 if (auto BI = dyn_cast<BranchInst>(TI)) { 4577 if (BI->isConditional() && BI->getCondition() == V) 4578 return true; 4579 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4580 if (SI->getCondition() == V) 4581 return true; 4582 } 4583 4584 Dominator = Dominator->getIDom(); 4585 } 4586 4587 return false; 4588 } 4589 4590 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4591 const DataLayout &DL, 4592 AssumptionCache *AC, 4593 const Instruction *CxtI, 4594 const DominatorTree *DT) { 4595 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4596 Add, DL, AC, CxtI, DT); 4597 } 4598 4599 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4600 const Value *RHS, 4601 const DataLayout &DL, 4602 AssumptionCache *AC, 4603 const Instruction *CxtI, 4604 const DominatorTree *DT) { 4605 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4606 } 4607 4608 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4609 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4610 // of time because it's possible for another thread to interfere with it for an 4611 // arbitrary length of time, but programs aren't allowed to rely on that. 4612 4613 // If there is no successor, then execution can't transfer to it. 4614 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4615 return !CRI->unwindsToCaller(); 4616 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4617 return !CatchSwitch->unwindsToCaller(); 4618 if (isa<ResumeInst>(I)) 4619 return false; 4620 if (isa<ReturnInst>(I)) 4621 return false; 4622 if (isa<UnreachableInst>(I)) 4623 return false; 4624 4625 // Calls can throw, or contain an infinite loop, or kill the process. 4626 if (auto CS = ImmutableCallSite(I)) { 4627 // Call sites that throw have implicit non-local control flow. 4628 if (!CS.doesNotThrow()) 4629 return false; 4630 4631 // A function which doens't throw and has "willreturn" attribute will 4632 // always return. 4633 if (CS.hasFnAttr(Attribute::WillReturn)) 4634 return true; 4635 4636 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4637 // etc. and thus not return. However, LLVM already assumes that 4638 // 4639 // - Thread exiting actions are modeled as writes to memory invisible to 4640 // the program. 4641 // 4642 // - Loops that don't have side effects (side effects are volatile/atomic 4643 // stores and IO) always terminate (see http://llvm.org/PR965). 4644 // Furthermore IO itself is also modeled as writes to memory invisible to 4645 // the program. 4646 // 4647 // We rely on those assumptions here, and use the memory effects of the call 4648 // target as a proxy for checking that it always returns. 4649 4650 // FIXME: This isn't aggressive enough; a call which only writes to a global 4651 // is guaranteed to return. 4652 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4653 } 4654 4655 // Other instructions return normally. 4656 return true; 4657 } 4658 4659 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4660 // TODO: This is slightly conservative for invoke instruction since exiting 4661 // via an exception *is* normal control for them. 4662 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4663 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4664 return false; 4665 return true; 4666 } 4667 4668 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4669 const Loop *L) { 4670 // The loop header is guaranteed to be executed for every iteration. 4671 // 4672 // FIXME: Relax this constraint to cover all basic blocks that are 4673 // guaranteed to be executed at every iteration. 4674 if (I->getParent() != L->getHeader()) return false; 4675 4676 for (const Instruction &LI : *L->getHeader()) { 4677 if (&LI == I) return true; 4678 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4679 } 4680 llvm_unreachable("Instruction not contained in its own parent basic block."); 4681 } 4682 4683 bool llvm::propagatesFullPoison(const Instruction *I) { 4684 // TODO: This should include all instructions apart from phis, selects and 4685 // call-like instructions. 4686 switch (I->getOpcode()) { 4687 case Instruction::Add: 4688 case Instruction::Sub: 4689 case Instruction::Xor: 4690 case Instruction::Trunc: 4691 case Instruction::BitCast: 4692 case Instruction::AddrSpaceCast: 4693 case Instruction::Mul: 4694 case Instruction::Shl: 4695 case Instruction::GetElementPtr: 4696 // These operations all propagate poison unconditionally. Note that poison 4697 // is not any particular value, so xor or subtraction of poison with 4698 // itself still yields poison, not zero. 4699 return true; 4700 4701 case Instruction::AShr: 4702 case Instruction::SExt: 4703 // For these operations, one bit of the input is replicated across 4704 // multiple output bits. A replicated poison bit is still poison. 4705 return true; 4706 4707 case Instruction::ICmp: 4708 // Comparing poison with any value yields poison. This is why, for 4709 // instance, x s< (x +nsw 1) can be folded to true. 4710 return true; 4711 4712 default: 4713 return false; 4714 } 4715 } 4716 4717 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4718 switch (I->getOpcode()) { 4719 case Instruction::Store: 4720 return cast<StoreInst>(I)->getPointerOperand(); 4721 4722 case Instruction::Load: 4723 return cast<LoadInst>(I)->getPointerOperand(); 4724 4725 case Instruction::AtomicCmpXchg: 4726 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4727 4728 case Instruction::AtomicRMW: 4729 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4730 4731 case Instruction::UDiv: 4732 case Instruction::SDiv: 4733 case Instruction::URem: 4734 case Instruction::SRem: 4735 return I->getOperand(1); 4736 4737 case Instruction::Call: 4738 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4739 switch (II->getIntrinsicID()) { 4740 case Intrinsic::assume: 4741 return II->getArgOperand(0); 4742 default: 4743 return nullptr; 4744 } 4745 } 4746 return nullptr; 4747 4748 default: 4749 return nullptr; 4750 } 4751 } 4752 4753 bool llvm::mustTriggerUB(const Instruction *I, 4754 const SmallSet<const Value *, 16>& KnownPoison) { 4755 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4756 return (NotPoison && KnownPoison.count(NotPoison)); 4757 } 4758 4759 4760 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4761 // We currently only look for uses of poison values within the same basic 4762 // block, as that makes it easier to guarantee that the uses will be 4763 // executed given that PoisonI is executed. 4764 // 4765 // FIXME: Expand this to consider uses beyond the same basic block. To do 4766 // this, look out for the distinction between post-dominance and strong 4767 // post-dominance. 4768 const BasicBlock *BB = PoisonI->getParent(); 4769 4770 // Set of instructions that we have proved will yield poison if PoisonI 4771 // does. 4772 SmallSet<const Value *, 16> YieldsPoison; 4773 SmallSet<const BasicBlock *, 4> Visited; 4774 YieldsPoison.insert(PoisonI); 4775 Visited.insert(PoisonI->getParent()); 4776 4777 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4778 4779 unsigned Iter = 0; 4780 while (Iter++ < MaxDepth) { 4781 for (auto &I : make_range(Begin, End)) { 4782 if (&I != PoisonI) { 4783 if (mustTriggerUB(&I, YieldsPoison)) 4784 return true; 4785 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4786 return false; 4787 } 4788 4789 // Mark poison that propagates from I through uses of I. 4790 if (YieldsPoison.count(&I)) { 4791 for (const User *User : I.users()) { 4792 const Instruction *UserI = cast<Instruction>(User); 4793 if (propagatesFullPoison(UserI)) 4794 YieldsPoison.insert(User); 4795 } 4796 } 4797 } 4798 4799 if (auto *NextBB = BB->getSingleSuccessor()) { 4800 if (Visited.insert(NextBB).second) { 4801 BB = NextBB; 4802 Begin = BB->getFirstNonPHI()->getIterator(); 4803 End = BB->end(); 4804 continue; 4805 } 4806 } 4807 4808 break; 4809 } 4810 return false; 4811 } 4812 4813 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4814 if (FMF.noNaNs()) 4815 return true; 4816 4817 if (auto *C = dyn_cast<ConstantFP>(V)) 4818 return !C->isNaN(); 4819 4820 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4821 if (!C->getElementType()->isFloatingPointTy()) 4822 return false; 4823 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4824 if (C->getElementAsAPFloat(I).isNaN()) 4825 return false; 4826 } 4827 return true; 4828 } 4829 4830 if (isa<ConstantAggregateZero>(V)) 4831 return true; 4832 4833 return false; 4834 } 4835 4836 static bool isKnownNonZero(const Value *V) { 4837 if (auto *C = dyn_cast<ConstantFP>(V)) 4838 return !C->isZero(); 4839 4840 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4841 if (!C->getElementType()->isFloatingPointTy()) 4842 return false; 4843 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4844 if (C->getElementAsAPFloat(I).isZero()) 4845 return false; 4846 } 4847 return true; 4848 } 4849 4850 return false; 4851 } 4852 4853 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4854 /// Given non-min/max outer cmp/select from the clamp pattern this 4855 /// function recognizes if it can be substitued by a "canonical" min/max 4856 /// pattern. 4857 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4858 Value *CmpLHS, Value *CmpRHS, 4859 Value *TrueVal, Value *FalseVal, 4860 Value *&LHS, Value *&RHS) { 4861 // Try to match 4862 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4863 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4864 // and return description of the outer Max/Min. 4865 4866 // First, check if select has inverse order: 4867 if (CmpRHS == FalseVal) { 4868 std::swap(TrueVal, FalseVal); 4869 Pred = CmpInst::getInversePredicate(Pred); 4870 } 4871 4872 // Assume success now. If there's no match, callers should not use these anyway. 4873 LHS = TrueVal; 4874 RHS = FalseVal; 4875 4876 const APFloat *FC1; 4877 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4878 return {SPF_UNKNOWN, SPNB_NA, false}; 4879 4880 const APFloat *FC2; 4881 switch (Pred) { 4882 case CmpInst::FCMP_OLT: 4883 case CmpInst::FCMP_OLE: 4884 case CmpInst::FCMP_ULT: 4885 case CmpInst::FCMP_ULE: 4886 if (match(FalseVal, 4887 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4888 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4889 *FC1 < *FC2) 4890 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4891 break; 4892 case CmpInst::FCMP_OGT: 4893 case CmpInst::FCMP_OGE: 4894 case CmpInst::FCMP_UGT: 4895 case CmpInst::FCMP_UGE: 4896 if (match(FalseVal, 4897 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4898 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4899 *FC1 > *FC2) 4900 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4901 break; 4902 default: 4903 break; 4904 } 4905 4906 return {SPF_UNKNOWN, SPNB_NA, false}; 4907 } 4908 4909 /// Recognize variations of: 4910 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4911 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4912 Value *CmpLHS, Value *CmpRHS, 4913 Value *TrueVal, Value *FalseVal) { 4914 // Swap the select operands and predicate to match the patterns below. 4915 if (CmpRHS != TrueVal) { 4916 Pred = ICmpInst::getSwappedPredicate(Pred); 4917 std::swap(TrueVal, FalseVal); 4918 } 4919 const APInt *C1; 4920 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 4921 const APInt *C2; 4922 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 4923 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 4924 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 4925 return {SPF_SMAX, SPNB_NA, false}; 4926 4927 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 4928 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 4929 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 4930 return {SPF_SMIN, SPNB_NA, false}; 4931 4932 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 4933 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 4934 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 4935 return {SPF_UMAX, SPNB_NA, false}; 4936 4937 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 4938 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 4939 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 4940 return {SPF_UMIN, SPNB_NA, false}; 4941 } 4942 return {SPF_UNKNOWN, SPNB_NA, false}; 4943 } 4944 4945 /// Recognize variations of: 4946 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 4947 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 4948 Value *CmpLHS, Value *CmpRHS, 4949 Value *TVal, Value *FVal, 4950 unsigned Depth) { 4951 // TODO: Allow FP min/max with nnan/nsz. 4952 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 4953 4954 Value *A = nullptr, *B = nullptr; 4955 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 4956 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 4957 return {SPF_UNKNOWN, SPNB_NA, false}; 4958 4959 Value *C = nullptr, *D = nullptr; 4960 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 4961 if (L.Flavor != R.Flavor) 4962 return {SPF_UNKNOWN, SPNB_NA, false}; 4963 4964 // We have something like: x Pred y ? min(a, b) : min(c, d). 4965 // Try to match the compare to the min/max operations of the select operands. 4966 // First, make sure we have the right compare predicate. 4967 switch (L.Flavor) { 4968 case SPF_SMIN: 4969 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 4970 Pred = ICmpInst::getSwappedPredicate(Pred); 4971 std::swap(CmpLHS, CmpRHS); 4972 } 4973 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 4974 break; 4975 return {SPF_UNKNOWN, SPNB_NA, false}; 4976 case SPF_SMAX: 4977 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 4978 Pred = ICmpInst::getSwappedPredicate(Pred); 4979 std::swap(CmpLHS, CmpRHS); 4980 } 4981 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 4982 break; 4983 return {SPF_UNKNOWN, SPNB_NA, false}; 4984 case SPF_UMIN: 4985 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 4986 Pred = ICmpInst::getSwappedPredicate(Pred); 4987 std::swap(CmpLHS, CmpRHS); 4988 } 4989 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 4990 break; 4991 return {SPF_UNKNOWN, SPNB_NA, false}; 4992 case SPF_UMAX: 4993 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 4994 Pred = ICmpInst::getSwappedPredicate(Pred); 4995 std::swap(CmpLHS, CmpRHS); 4996 } 4997 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 4998 break; 4999 return {SPF_UNKNOWN, SPNB_NA, false}; 5000 default: 5001 return {SPF_UNKNOWN, SPNB_NA, false}; 5002 } 5003 5004 // If there is a common operand in the already matched min/max and the other 5005 // min/max operands match the compare operands (either directly or inverted), 5006 // then this is min/max of the same flavor. 5007 5008 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5009 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5010 if (D == B) { 5011 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5012 match(A, m_Not(m_Specific(CmpRHS))))) 5013 return {L.Flavor, SPNB_NA, false}; 5014 } 5015 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5016 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5017 if (C == B) { 5018 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5019 match(A, m_Not(m_Specific(CmpRHS))))) 5020 return {L.Flavor, SPNB_NA, false}; 5021 } 5022 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5023 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5024 if (D == A) { 5025 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5026 match(B, m_Not(m_Specific(CmpRHS))))) 5027 return {L.Flavor, SPNB_NA, false}; 5028 } 5029 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5030 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5031 if (C == A) { 5032 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5033 match(B, m_Not(m_Specific(CmpRHS))))) 5034 return {L.Flavor, SPNB_NA, false}; 5035 } 5036 5037 return {SPF_UNKNOWN, SPNB_NA, false}; 5038 } 5039 5040 /// Match non-obvious integer minimum and maximum sequences. 5041 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5042 Value *CmpLHS, Value *CmpRHS, 5043 Value *TrueVal, Value *FalseVal, 5044 Value *&LHS, Value *&RHS, 5045 unsigned Depth) { 5046 // Assume success. If there's no match, callers should not use these anyway. 5047 LHS = TrueVal; 5048 RHS = FalseVal; 5049 5050 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5051 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5052 return SPR; 5053 5054 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5055 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5056 return SPR; 5057 5058 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5059 return {SPF_UNKNOWN, SPNB_NA, false}; 5060 5061 // Z = X -nsw Y 5062 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5063 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5064 if (match(TrueVal, m_Zero()) && 5065 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5066 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5067 5068 // Z = X -nsw Y 5069 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5070 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5071 if (match(FalseVal, m_Zero()) && 5072 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5073 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5074 5075 const APInt *C1; 5076 if (!match(CmpRHS, m_APInt(C1))) 5077 return {SPF_UNKNOWN, SPNB_NA, false}; 5078 5079 // An unsigned min/max can be written with a signed compare. 5080 const APInt *C2; 5081 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5082 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5083 // Is the sign bit set? 5084 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5085 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5086 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5087 C2->isMaxSignedValue()) 5088 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5089 5090 // Is the sign bit clear? 5091 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5092 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5093 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5094 C2->isMinSignedValue()) 5095 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5096 } 5097 5098 // Look through 'not' ops to find disguised signed min/max. 5099 // (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C) 5100 // (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C) 5101 if (match(TrueVal, m_Not(m_Specific(CmpLHS))) && 5102 match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2) 5103 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5104 5105 // (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X) 5106 // (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X) 5107 if (match(FalseVal, m_Not(m_Specific(CmpLHS))) && 5108 match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2) 5109 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5110 5111 return {SPF_UNKNOWN, SPNB_NA, false}; 5112 } 5113 5114 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5115 assert(X && Y && "Invalid operand"); 5116 5117 // X = sub (0, Y) || X = sub nsw (0, Y) 5118 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5119 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5120 return true; 5121 5122 // Y = sub (0, X) || Y = sub nsw (0, X) 5123 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5124 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5125 return true; 5126 5127 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5128 Value *A, *B; 5129 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5130 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5131 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5132 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5133 } 5134 5135 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5136 FastMathFlags FMF, 5137 Value *CmpLHS, Value *CmpRHS, 5138 Value *TrueVal, Value *FalseVal, 5139 Value *&LHS, Value *&RHS, 5140 unsigned Depth) { 5141 if (CmpInst::isFPPredicate(Pred)) { 5142 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5143 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5144 // purpose of identifying min/max. Disregard vector constants with undefined 5145 // elements because those can not be back-propagated for analysis. 5146 Value *OutputZeroVal = nullptr; 5147 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5148 !cast<Constant>(TrueVal)->containsUndefElement()) 5149 OutputZeroVal = TrueVal; 5150 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5151 !cast<Constant>(FalseVal)->containsUndefElement()) 5152 OutputZeroVal = FalseVal; 5153 5154 if (OutputZeroVal) { 5155 if (match(CmpLHS, m_AnyZeroFP())) 5156 CmpLHS = OutputZeroVal; 5157 if (match(CmpRHS, m_AnyZeroFP())) 5158 CmpRHS = OutputZeroVal; 5159 } 5160 } 5161 5162 LHS = CmpLHS; 5163 RHS = CmpRHS; 5164 5165 // Signed zero may return inconsistent results between implementations. 5166 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5167 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5168 // Therefore, we behave conservatively and only proceed if at least one of the 5169 // operands is known to not be zero or if we don't care about signed zero. 5170 switch (Pred) { 5171 default: break; 5172 // FIXME: Include OGT/OLT/UGT/ULT. 5173 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5174 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5175 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5176 !isKnownNonZero(CmpRHS)) 5177 return {SPF_UNKNOWN, SPNB_NA, false}; 5178 } 5179 5180 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5181 bool Ordered = false; 5182 5183 // When given one NaN and one non-NaN input: 5184 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5185 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5186 // ordered comparison fails), which could be NaN or non-NaN. 5187 // so here we discover exactly what NaN behavior is required/accepted. 5188 if (CmpInst::isFPPredicate(Pred)) { 5189 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5190 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5191 5192 if (LHSSafe && RHSSafe) { 5193 // Both operands are known non-NaN. 5194 NaNBehavior = SPNB_RETURNS_ANY; 5195 } else if (CmpInst::isOrdered(Pred)) { 5196 // An ordered comparison will return false when given a NaN, so it 5197 // returns the RHS. 5198 Ordered = true; 5199 if (LHSSafe) 5200 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5201 NaNBehavior = SPNB_RETURNS_NAN; 5202 else if (RHSSafe) 5203 NaNBehavior = SPNB_RETURNS_OTHER; 5204 else 5205 // Completely unsafe. 5206 return {SPF_UNKNOWN, SPNB_NA, false}; 5207 } else { 5208 Ordered = false; 5209 // An unordered comparison will return true when given a NaN, so it 5210 // returns the LHS. 5211 if (LHSSafe) 5212 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5213 NaNBehavior = SPNB_RETURNS_OTHER; 5214 else if (RHSSafe) 5215 NaNBehavior = SPNB_RETURNS_NAN; 5216 else 5217 // Completely unsafe. 5218 return {SPF_UNKNOWN, SPNB_NA, false}; 5219 } 5220 } 5221 5222 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5223 std::swap(CmpLHS, CmpRHS); 5224 Pred = CmpInst::getSwappedPredicate(Pred); 5225 if (NaNBehavior == SPNB_RETURNS_NAN) 5226 NaNBehavior = SPNB_RETURNS_OTHER; 5227 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5228 NaNBehavior = SPNB_RETURNS_NAN; 5229 Ordered = !Ordered; 5230 } 5231 5232 // ([if]cmp X, Y) ? X : Y 5233 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5234 switch (Pred) { 5235 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5236 case ICmpInst::ICMP_UGT: 5237 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5238 case ICmpInst::ICMP_SGT: 5239 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5240 case ICmpInst::ICMP_ULT: 5241 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5242 case ICmpInst::ICMP_SLT: 5243 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5244 case FCmpInst::FCMP_UGT: 5245 case FCmpInst::FCMP_UGE: 5246 case FCmpInst::FCMP_OGT: 5247 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5248 case FCmpInst::FCMP_ULT: 5249 case FCmpInst::FCMP_ULE: 5250 case FCmpInst::FCMP_OLT: 5251 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5252 } 5253 } 5254 5255 if (isKnownNegation(TrueVal, FalseVal)) { 5256 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5257 // match against either LHS or sext(LHS). 5258 auto MaybeSExtCmpLHS = 5259 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5260 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5261 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5262 if (match(TrueVal, MaybeSExtCmpLHS)) { 5263 // Set the return values. If the compare uses the negated value (-X >s 0), 5264 // swap the return values because the negated value is always 'RHS'. 5265 LHS = TrueVal; 5266 RHS = FalseVal; 5267 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5268 std::swap(LHS, RHS); 5269 5270 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5271 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5272 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5273 return {SPF_ABS, SPNB_NA, false}; 5274 5275 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5276 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5277 return {SPF_ABS, SPNB_NA, false}; 5278 5279 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5280 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5281 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5282 return {SPF_NABS, SPNB_NA, false}; 5283 } 5284 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5285 // Set the return values. If the compare uses the negated value (-X >s 0), 5286 // swap the return values because the negated value is always 'RHS'. 5287 LHS = FalseVal; 5288 RHS = TrueVal; 5289 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5290 std::swap(LHS, RHS); 5291 5292 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5293 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5294 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5295 return {SPF_NABS, SPNB_NA, false}; 5296 5297 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5298 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5299 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5300 return {SPF_ABS, SPNB_NA, false}; 5301 } 5302 } 5303 5304 if (CmpInst::isIntPredicate(Pred)) 5305 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5306 5307 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5308 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5309 // semantics than minNum. Be conservative in such case. 5310 if (NaNBehavior != SPNB_RETURNS_ANY || 5311 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5312 !isKnownNonZero(CmpRHS))) 5313 return {SPF_UNKNOWN, SPNB_NA, false}; 5314 5315 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5316 } 5317 5318 /// Helps to match a select pattern in case of a type mismatch. 5319 /// 5320 /// The function processes the case when type of true and false values of a 5321 /// select instruction differs from type of the cmp instruction operands because 5322 /// of a cast instruction. The function checks if it is legal to move the cast 5323 /// operation after "select". If yes, it returns the new second value of 5324 /// "select" (with the assumption that cast is moved): 5325 /// 1. As operand of cast instruction when both values of "select" are same cast 5326 /// instructions. 5327 /// 2. As restored constant (by applying reverse cast operation) when the first 5328 /// value of the "select" is a cast operation and the second value is a 5329 /// constant. 5330 /// NOTE: We return only the new second value because the first value could be 5331 /// accessed as operand of cast instruction. 5332 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5333 Instruction::CastOps *CastOp) { 5334 auto *Cast1 = dyn_cast<CastInst>(V1); 5335 if (!Cast1) 5336 return nullptr; 5337 5338 *CastOp = Cast1->getOpcode(); 5339 Type *SrcTy = Cast1->getSrcTy(); 5340 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5341 // If V1 and V2 are both the same cast from the same type, look through V1. 5342 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5343 return Cast2->getOperand(0); 5344 return nullptr; 5345 } 5346 5347 auto *C = dyn_cast<Constant>(V2); 5348 if (!C) 5349 return nullptr; 5350 5351 Constant *CastedTo = nullptr; 5352 switch (*CastOp) { 5353 case Instruction::ZExt: 5354 if (CmpI->isUnsigned()) 5355 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5356 break; 5357 case Instruction::SExt: 5358 if (CmpI->isSigned()) 5359 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5360 break; 5361 case Instruction::Trunc: 5362 Constant *CmpConst; 5363 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5364 CmpConst->getType() == SrcTy) { 5365 // Here we have the following case: 5366 // 5367 // %cond = cmp iN %x, CmpConst 5368 // %tr = trunc iN %x to iK 5369 // %narrowsel = select i1 %cond, iK %t, iK C 5370 // 5371 // We can always move trunc after select operation: 5372 // 5373 // %cond = cmp iN %x, CmpConst 5374 // %widesel = select i1 %cond, iN %x, iN CmpConst 5375 // %tr = trunc iN %widesel to iK 5376 // 5377 // Note that C could be extended in any way because we don't care about 5378 // upper bits after truncation. It can't be abs pattern, because it would 5379 // look like: 5380 // 5381 // select i1 %cond, x, -x. 5382 // 5383 // So only min/max pattern could be matched. Such match requires widened C 5384 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5385 // CmpConst == C is checked below. 5386 CastedTo = CmpConst; 5387 } else { 5388 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5389 } 5390 break; 5391 case Instruction::FPTrunc: 5392 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5393 break; 5394 case Instruction::FPExt: 5395 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5396 break; 5397 case Instruction::FPToUI: 5398 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5399 break; 5400 case Instruction::FPToSI: 5401 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5402 break; 5403 case Instruction::UIToFP: 5404 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5405 break; 5406 case Instruction::SIToFP: 5407 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5408 break; 5409 default: 5410 break; 5411 } 5412 5413 if (!CastedTo) 5414 return nullptr; 5415 5416 // Make sure the cast doesn't lose any information. 5417 Constant *CastedBack = 5418 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5419 if (CastedBack != C) 5420 return nullptr; 5421 5422 return CastedTo; 5423 } 5424 5425 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5426 Instruction::CastOps *CastOp, 5427 unsigned Depth) { 5428 if (Depth >= MaxDepth) 5429 return {SPF_UNKNOWN, SPNB_NA, false}; 5430 5431 SelectInst *SI = dyn_cast<SelectInst>(V); 5432 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5433 5434 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5435 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5436 5437 Value *TrueVal = SI->getTrueValue(); 5438 Value *FalseVal = SI->getFalseValue(); 5439 5440 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5441 CastOp, Depth); 5442 } 5443 5444 SelectPatternResult llvm::matchDecomposedSelectPattern( 5445 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5446 Instruction::CastOps *CastOp, unsigned Depth) { 5447 CmpInst::Predicate Pred = CmpI->getPredicate(); 5448 Value *CmpLHS = CmpI->getOperand(0); 5449 Value *CmpRHS = CmpI->getOperand(1); 5450 FastMathFlags FMF; 5451 if (isa<FPMathOperator>(CmpI)) 5452 FMF = CmpI->getFastMathFlags(); 5453 5454 // Bail out early. 5455 if (CmpI->isEquality()) 5456 return {SPF_UNKNOWN, SPNB_NA, false}; 5457 5458 // Deal with type mismatches. 5459 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5460 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5461 // If this is a potential fmin/fmax with a cast to integer, then ignore 5462 // -0.0 because there is no corresponding integer value. 5463 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5464 FMF.setNoSignedZeros(); 5465 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5466 cast<CastInst>(TrueVal)->getOperand(0), C, 5467 LHS, RHS, Depth); 5468 } 5469 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5470 // If this is a potential fmin/fmax with a cast to integer, then ignore 5471 // -0.0 because there is no corresponding integer value. 5472 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5473 FMF.setNoSignedZeros(); 5474 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5475 C, cast<CastInst>(FalseVal)->getOperand(0), 5476 LHS, RHS, Depth); 5477 } 5478 } 5479 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5480 LHS, RHS, Depth); 5481 } 5482 5483 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5484 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5485 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5486 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5487 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5488 if (SPF == SPF_FMINNUM) 5489 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5490 if (SPF == SPF_FMAXNUM) 5491 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5492 llvm_unreachable("unhandled!"); 5493 } 5494 5495 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5496 if (SPF == SPF_SMIN) return SPF_SMAX; 5497 if (SPF == SPF_UMIN) return SPF_UMAX; 5498 if (SPF == SPF_SMAX) return SPF_SMIN; 5499 if (SPF == SPF_UMAX) return SPF_UMIN; 5500 llvm_unreachable("unhandled!"); 5501 } 5502 5503 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5504 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5505 } 5506 5507 /// Return true if "icmp Pred LHS RHS" is always true. 5508 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5509 const Value *RHS, const DataLayout &DL, 5510 unsigned Depth) { 5511 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5512 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5513 return true; 5514 5515 switch (Pred) { 5516 default: 5517 return false; 5518 5519 case CmpInst::ICMP_SLE: { 5520 const APInt *C; 5521 5522 // LHS s<= LHS +_{nsw} C if C >= 0 5523 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5524 return !C->isNegative(); 5525 return false; 5526 } 5527 5528 case CmpInst::ICMP_ULE: { 5529 const APInt *C; 5530 5531 // LHS u<= LHS +_{nuw} C for any C 5532 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5533 return true; 5534 5535 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5536 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5537 const Value *&X, 5538 const APInt *&CA, const APInt *&CB) { 5539 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5540 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5541 return true; 5542 5543 // If X & C == 0 then (X | C) == X +_{nuw} C 5544 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5545 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5546 KnownBits Known(CA->getBitWidth()); 5547 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5548 /*CxtI*/ nullptr, /*DT*/ nullptr); 5549 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5550 return true; 5551 } 5552 5553 return false; 5554 }; 5555 5556 const Value *X; 5557 const APInt *CLHS, *CRHS; 5558 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5559 return CLHS->ule(*CRHS); 5560 5561 return false; 5562 } 5563 } 5564 } 5565 5566 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5567 /// ALHS ARHS" is true. Otherwise, return None. 5568 static Optional<bool> 5569 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5570 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5571 const DataLayout &DL, unsigned Depth) { 5572 switch (Pred) { 5573 default: 5574 return None; 5575 5576 case CmpInst::ICMP_SLT: 5577 case CmpInst::ICMP_SLE: 5578 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5579 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5580 return true; 5581 return None; 5582 5583 case CmpInst::ICMP_ULT: 5584 case CmpInst::ICMP_ULE: 5585 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5586 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5587 return true; 5588 return None; 5589 } 5590 } 5591 5592 /// Return true if the operands of the two compares match. IsSwappedOps is true 5593 /// when the operands match, but are swapped. 5594 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5595 const Value *BLHS, const Value *BRHS, 5596 bool &IsSwappedOps) { 5597 5598 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5599 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5600 return IsMatchingOps || IsSwappedOps; 5601 } 5602 5603 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5604 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5605 /// Otherwise, return None if we can't infer anything. 5606 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5607 CmpInst::Predicate BPred, 5608 bool AreSwappedOps) { 5609 // Canonicalize the predicate as if the operands were not commuted. 5610 if (AreSwappedOps) 5611 BPred = ICmpInst::getSwappedPredicate(BPred); 5612 5613 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5614 return true; 5615 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5616 return false; 5617 5618 return None; 5619 } 5620 5621 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5622 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5623 /// Otherwise, return None if we can't infer anything. 5624 static Optional<bool> 5625 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5626 const ConstantInt *C1, 5627 CmpInst::Predicate BPred, 5628 const ConstantInt *C2) { 5629 ConstantRange DomCR = 5630 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5631 ConstantRange CR = 5632 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5633 ConstantRange Intersection = DomCR.intersectWith(CR); 5634 ConstantRange Difference = DomCR.difference(CR); 5635 if (Intersection.isEmptySet()) 5636 return false; 5637 if (Difference.isEmptySet()) 5638 return true; 5639 return None; 5640 } 5641 5642 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5643 /// false. Otherwise, return None if we can't infer anything. 5644 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5645 CmpInst::Predicate BPred, 5646 const Value *BLHS, const Value *BRHS, 5647 const DataLayout &DL, bool LHSIsTrue, 5648 unsigned Depth) { 5649 Value *ALHS = LHS->getOperand(0); 5650 Value *ARHS = LHS->getOperand(1); 5651 5652 // The rest of the logic assumes the LHS condition is true. If that's not the 5653 // case, invert the predicate to make it so. 5654 CmpInst::Predicate APred = 5655 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5656 5657 // Can we infer anything when the two compares have matching operands? 5658 bool AreSwappedOps; 5659 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5660 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5661 APred, BPred, AreSwappedOps)) 5662 return Implication; 5663 // No amount of additional analysis will infer the second condition, so 5664 // early exit. 5665 return None; 5666 } 5667 5668 // Can we infer anything when the LHS operands match and the RHS operands are 5669 // constants (not necessarily matching)? 5670 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5671 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5672 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5673 return Implication; 5674 // No amount of additional analysis will infer the second condition, so 5675 // early exit. 5676 return None; 5677 } 5678 5679 if (APred == BPred) 5680 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5681 return None; 5682 } 5683 5684 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5685 /// false. Otherwise, return None if we can't infer anything. We expect the 5686 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5687 static Optional<bool> 5688 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5689 const Value *RHSOp0, const Value *RHSOp1, 5690 5691 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5692 // The LHS must be an 'or' or an 'and' instruction. 5693 assert((LHS->getOpcode() == Instruction::And || 5694 LHS->getOpcode() == Instruction::Or) && 5695 "Expected LHS to be 'and' or 'or'."); 5696 5697 assert(Depth <= MaxDepth && "Hit recursion limit"); 5698 5699 // If the result of an 'or' is false, then we know both legs of the 'or' are 5700 // false. Similarly, if the result of an 'and' is true, then we know both 5701 // legs of the 'and' are true. 5702 Value *ALHS, *ARHS; 5703 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5704 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5705 // FIXME: Make this non-recursion. 5706 if (Optional<bool> Implication = isImpliedCondition( 5707 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5708 return Implication; 5709 if (Optional<bool> Implication = isImpliedCondition( 5710 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5711 return Implication; 5712 return None; 5713 } 5714 return None; 5715 } 5716 5717 Optional<bool> 5718 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5719 const Value *RHSOp0, const Value *RHSOp1, 5720 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5721 // Bail out when we hit the limit. 5722 if (Depth == MaxDepth) 5723 return None; 5724 5725 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5726 // example. 5727 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5728 return None; 5729 5730 Type *OpTy = LHS->getType(); 5731 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5732 5733 // FIXME: Extending the code below to handle vectors. 5734 if (OpTy->isVectorTy()) 5735 return None; 5736 5737 assert(OpTy->isIntegerTy(1) && "implied by above"); 5738 5739 // Both LHS and RHS are icmps. 5740 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5741 if (LHSCmp) 5742 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5743 Depth); 5744 5745 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5746 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5747 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5748 if (LHSBO) { 5749 if ((LHSBO->getOpcode() == Instruction::And || 5750 LHSBO->getOpcode() == Instruction::Or)) 5751 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5752 Depth); 5753 } 5754 return None; 5755 } 5756 5757 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5758 const DataLayout &DL, bool LHSIsTrue, 5759 unsigned Depth) { 5760 // LHS ==> RHS by definition 5761 if (LHS == RHS) 5762 return LHSIsTrue; 5763 5764 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5765 if (RHSCmp) 5766 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5767 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5768 LHSIsTrue, Depth); 5769 return None; 5770 } 5771 5772 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5773 // condition dominating ContextI or nullptr, if no condition is found. 5774 static std::pair<Value *, bool> 5775 getDomPredecessorCondition(const Instruction *ContextI) { 5776 if (!ContextI || !ContextI->getParent()) 5777 return {nullptr, false}; 5778 5779 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5780 // dominator tree (eg, from a SimplifyQuery) instead? 5781 const BasicBlock *ContextBB = ContextI->getParent(); 5782 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5783 if (!PredBB) 5784 return {nullptr, false}; 5785 5786 // We need a conditional branch in the predecessor. 5787 Value *PredCond; 5788 BasicBlock *TrueBB, *FalseBB; 5789 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5790 return {nullptr, false}; 5791 5792 // The branch should get simplified. Don't bother simplifying this condition. 5793 if (TrueBB == FalseBB) 5794 return {nullptr, false}; 5795 5796 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5797 "Predecessor block does not point to successor?"); 5798 5799 // Is this condition implied by the predecessor condition? 5800 return {PredCond, TrueBB == ContextBB}; 5801 } 5802 5803 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5804 const Instruction *ContextI, 5805 const DataLayout &DL) { 5806 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5807 auto PredCond = getDomPredecessorCondition(ContextI); 5808 if (PredCond.first) 5809 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5810 return None; 5811 } 5812 5813 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5814 const Value *LHS, const Value *RHS, 5815 const Instruction *ContextI, 5816 const DataLayout &DL) { 5817 auto PredCond = getDomPredecessorCondition(ContextI); 5818 if (PredCond.first) 5819 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5820 PredCond.second); 5821 return None; 5822 } 5823 5824 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5825 APInt &Upper, const InstrInfoQuery &IIQ) { 5826 unsigned Width = Lower.getBitWidth(); 5827 const APInt *C; 5828 switch (BO.getOpcode()) { 5829 case Instruction::Add: 5830 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5831 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5832 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5833 // 'add nuw x, C' produces [C, UINT_MAX]. 5834 Lower = *C; 5835 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5836 if (C->isNegative()) { 5837 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5838 Lower = APInt::getSignedMinValue(Width); 5839 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5840 } else { 5841 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5842 Lower = APInt::getSignedMinValue(Width) + *C; 5843 Upper = APInt::getSignedMaxValue(Width) + 1; 5844 } 5845 } 5846 } 5847 break; 5848 5849 case Instruction::And: 5850 if (match(BO.getOperand(1), m_APInt(C))) 5851 // 'and x, C' produces [0, C]. 5852 Upper = *C + 1; 5853 break; 5854 5855 case Instruction::Or: 5856 if (match(BO.getOperand(1), m_APInt(C))) 5857 // 'or x, C' produces [C, UINT_MAX]. 5858 Lower = *C; 5859 break; 5860 5861 case Instruction::AShr: 5862 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5863 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5864 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5865 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5866 } else if (match(BO.getOperand(0), m_APInt(C))) { 5867 unsigned ShiftAmount = Width - 1; 5868 if (!C->isNullValue() && IIQ.isExact(&BO)) 5869 ShiftAmount = C->countTrailingZeros(); 5870 if (C->isNegative()) { 5871 // 'ashr C, x' produces [C, C >> (Width-1)] 5872 Lower = *C; 5873 Upper = C->ashr(ShiftAmount) + 1; 5874 } else { 5875 // 'ashr C, x' produces [C >> (Width-1), C] 5876 Lower = C->ashr(ShiftAmount); 5877 Upper = *C + 1; 5878 } 5879 } 5880 break; 5881 5882 case Instruction::LShr: 5883 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5884 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5885 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 5886 } else if (match(BO.getOperand(0), m_APInt(C))) { 5887 // 'lshr C, x' produces [C >> (Width-1), C]. 5888 unsigned ShiftAmount = Width - 1; 5889 if (!C->isNullValue() && IIQ.isExact(&BO)) 5890 ShiftAmount = C->countTrailingZeros(); 5891 Lower = C->lshr(ShiftAmount); 5892 Upper = *C + 1; 5893 } 5894 break; 5895 5896 case Instruction::Shl: 5897 if (match(BO.getOperand(0), m_APInt(C))) { 5898 if (IIQ.hasNoUnsignedWrap(&BO)) { 5899 // 'shl nuw C, x' produces [C, C << CLZ(C)] 5900 Lower = *C; 5901 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 5902 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 5903 if (C->isNegative()) { 5904 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 5905 unsigned ShiftAmount = C->countLeadingOnes() - 1; 5906 Lower = C->shl(ShiftAmount); 5907 Upper = *C + 1; 5908 } else { 5909 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 5910 unsigned ShiftAmount = C->countLeadingZeros() - 1; 5911 Lower = *C; 5912 Upper = C->shl(ShiftAmount) + 1; 5913 } 5914 } 5915 } 5916 break; 5917 5918 case Instruction::SDiv: 5919 if (match(BO.getOperand(1), m_APInt(C))) { 5920 APInt IntMin = APInt::getSignedMinValue(Width); 5921 APInt IntMax = APInt::getSignedMaxValue(Width); 5922 if (C->isAllOnesValue()) { 5923 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 5924 // where C != -1 and C != 0 and C != 1 5925 Lower = IntMin + 1; 5926 Upper = IntMax + 1; 5927 } else if (C->countLeadingZeros() < Width - 1) { 5928 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 5929 // where C != -1 and C != 0 and C != 1 5930 Lower = IntMin.sdiv(*C); 5931 Upper = IntMax.sdiv(*C); 5932 if (Lower.sgt(Upper)) 5933 std::swap(Lower, Upper); 5934 Upper = Upper + 1; 5935 assert(Upper != Lower && "Upper part of range has wrapped!"); 5936 } 5937 } else if (match(BO.getOperand(0), m_APInt(C))) { 5938 if (C->isMinSignedValue()) { 5939 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 5940 Lower = *C; 5941 Upper = Lower.lshr(1) + 1; 5942 } else { 5943 // 'sdiv C, x' produces [-|C|, |C|]. 5944 Upper = C->abs() + 1; 5945 Lower = (-Upper) + 1; 5946 } 5947 } 5948 break; 5949 5950 case Instruction::UDiv: 5951 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5952 // 'udiv x, C' produces [0, UINT_MAX / C]. 5953 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 5954 } else if (match(BO.getOperand(0), m_APInt(C))) { 5955 // 'udiv C, x' produces [0, C]. 5956 Upper = *C + 1; 5957 } 5958 break; 5959 5960 case Instruction::SRem: 5961 if (match(BO.getOperand(1), m_APInt(C))) { 5962 // 'srem x, C' produces (-|C|, |C|). 5963 Upper = C->abs(); 5964 Lower = (-Upper) + 1; 5965 } 5966 break; 5967 5968 case Instruction::URem: 5969 if (match(BO.getOperand(1), m_APInt(C))) 5970 // 'urem x, C' produces [0, C). 5971 Upper = *C; 5972 break; 5973 5974 default: 5975 break; 5976 } 5977 } 5978 5979 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 5980 APInt &Upper) { 5981 unsigned Width = Lower.getBitWidth(); 5982 const APInt *C; 5983 switch (II.getIntrinsicID()) { 5984 case Intrinsic::uadd_sat: 5985 // uadd.sat(x, C) produces [C, UINT_MAX]. 5986 if (match(II.getOperand(0), m_APInt(C)) || 5987 match(II.getOperand(1), m_APInt(C))) 5988 Lower = *C; 5989 break; 5990 case Intrinsic::sadd_sat: 5991 if (match(II.getOperand(0), m_APInt(C)) || 5992 match(II.getOperand(1), m_APInt(C))) { 5993 if (C->isNegative()) { 5994 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 5995 Lower = APInt::getSignedMinValue(Width); 5996 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5997 } else { 5998 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 5999 Lower = APInt::getSignedMinValue(Width) + *C; 6000 Upper = APInt::getSignedMaxValue(Width) + 1; 6001 } 6002 } 6003 break; 6004 case Intrinsic::usub_sat: 6005 // usub.sat(C, x) produces [0, C]. 6006 if (match(II.getOperand(0), m_APInt(C))) 6007 Upper = *C + 1; 6008 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6009 else if (match(II.getOperand(1), m_APInt(C))) 6010 Upper = APInt::getMaxValue(Width) - *C + 1; 6011 break; 6012 case Intrinsic::ssub_sat: 6013 if (match(II.getOperand(0), m_APInt(C))) { 6014 if (C->isNegative()) { 6015 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6016 Lower = APInt::getSignedMinValue(Width); 6017 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6018 } else { 6019 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6020 Lower = *C - APInt::getSignedMaxValue(Width); 6021 Upper = APInt::getSignedMaxValue(Width) + 1; 6022 } 6023 } else if (match(II.getOperand(1), m_APInt(C))) { 6024 if (C->isNegative()) { 6025 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6026 Lower = APInt::getSignedMinValue(Width) - *C; 6027 Upper = APInt::getSignedMaxValue(Width) + 1; 6028 } else { 6029 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6030 Lower = APInt::getSignedMinValue(Width); 6031 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6032 } 6033 } 6034 break; 6035 default: 6036 break; 6037 } 6038 } 6039 6040 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6041 APInt &Upper, const InstrInfoQuery &IIQ) { 6042 const Value *LHS = nullptr, *RHS = nullptr; 6043 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6044 if (R.Flavor == SPF_UNKNOWN) 6045 return; 6046 6047 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6048 6049 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6050 // If the negation part of the abs (in RHS) has the NSW flag, 6051 // then the result of abs(X) is [0..SIGNED_MAX], 6052 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6053 Lower = APInt::getNullValue(BitWidth); 6054 if (match(RHS, m_Neg(m_Specific(LHS))) && 6055 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6056 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6057 else 6058 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6059 return; 6060 } 6061 6062 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6063 // The result of -abs(X) is <= 0. 6064 Lower = APInt::getSignedMinValue(BitWidth); 6065 Upper = APInt(BitWidth, 1); 6066 return; 6067 } 6068 6069 const APInt *C; 6070 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6071 return; 6072 6073 switch (R.Flavor) { 6074 case SPF_UMIN: 6075 Upper = *C + 1; 6076 break; 6077 case SPF_UMAX: 6078 Lower = *C; 6079 break; 6080 case SPF_SMIN: 6081 Lower = APInt::getSignedMinValue(BitWidth); 6082 Upper = *C + 1; 6083 break; 6084 case SPF_SMAX: 6085 Lower = *C; 6086 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6087 break; 6088 default: 6089 break; 6090 } 6091 } 6092 6093 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6094 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6095 6096 const APInt *C; 6097 if (match(V, m_APInt(C))) 6098 return ConstantRange(*C); 6099 6100 InstrInfoQuery IIQ(UseInstrInfo); 6101 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6102 APInt Lower = APInt(BitWidth, 0); 6103 APInt Upper = APInt(BitWidth, 0); 6104 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6105 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6106 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6107 setLimitsForIntrinsic(*II, Lower, Upper); 6108 else if (auto *SI = dyn_cast<SelectInst>(V)) 6109 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6110 6111 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6112 6113 if (auto *I = dyn_cast<Instruction>(V)) 6114 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6115 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6116 6117 return CR; 6118 } 6119 6120 static Optional<int64_t> 6121 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6122 // Skip over the first indices. 6123 gep_type_iterator GTI = gep_type_begin(GEP); 6124 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6125 /*skip along*/; 6126 6127 // Compute the offset implied by the rest of the indices. 6128 int64_t Offset = 0; 6129 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6130 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6131 if (!OpC) 6132 return None; 6133 if (OpC->isZero()) 6134 continue; // No offset. 6135 6136 // Handle struct indices, which add their field offset to the pointer. 6137 if (StructType *STy = GTI.getStructTypeOrNull()) { 6138 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6139 continue; 6140 } 6141 6142 // Otherwise, we have a sequential type like an array or vector. Multiply 6143 // the index by the ElementSize. 6144 uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6145 Offset += Size * OpC->getSExtValue(); 6146 } 6147 6148 return Offset; 6149 } 6150 6151 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6152 const DataLayout &DL) { 6153 Ptr1 = Ptr1->stripPointerCasts(); 6154 Ptr2 = Ptr2->stripPointerCasts(); 6155 6156 // Handle the trivial case first. 6157 if (Ptr1 == Ptr2) { 6158 return 0; 6159 } 6160 6161 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6162 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6163 6164 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6165 // as in "P" and "gep P, 1". 6166 // Also do this iteratively to handle the the following case: 6167 // Ptr_t1 = GEP Ptr1, c1 6168 // Ptr_t2 = GEP Ptr_t1, c2 6169 // Ptr2 = GEP Ptr_t2, c3 6170 // where we will return c1+c2+c3. 6171 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6172 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6173 // are the same, and return the difference between offsets. 6174 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6175 const Value *Ptr) -> Optional<int64_t> { 6176 const GEPOperator *GEP_T = GEP; 6177 int64_t OffsetVal = 0; 6178 bool HasSameBase = false; 6179 while (GEP_T) { 6180 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6181 if (!Offset) 6182 return None; 6183 OffsetVal += *Offset; 6184 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6185 if (Op0 == Ptr) { 6186 HasSameBase = true; 6187 break; 6188 } 6189 GEP_T = dyn_cast<GEPOperator>(Op0); 6190 } 6191 if (!HasSameBase) 6192 return None; 6193 return OffsetVal; 6194 }; 6195 6196 if (GEP1) { 6197 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6198 if (Offset) 6199 return -*Offset; 6200 } 6201 if (GEP2) { 6202 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6203 if (Offset) 6204 return Offset; 6205 } 6206 6207 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6208 // base. After that base, they may have some number of common (and 6209 // potentially variable) indices. After that they handle some constant 6210 // offset, which determines their offset from each other. At this point, we 6211 // handle no other case. 6212 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6213 return None; 6214 6215 // Skip any common indices and track the GEP types. 6216 unsigned Idx = 1; 6217 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6218 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6219 break; 6220 6221 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6222 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6223 if (!Offset1 || !Offset2) 6224 return None; 6225 return *Offset2 - *Offset1; 6226 } 6227