1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 354 const Query &Q); 355 356 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 357 const DataLayout &DL, AssumptionCache *AC, 358 const Instruction *CxtI, const DominatorTree *DT, 359 bool UseInstrInfo) { 360 return ::isKnownNonEqual(V1, V2, 0, 361 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 362 UseInstrInfo, /*ORE=*/nullptr)); 363 } 364 365 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 366 const Query &Q); 367 368 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 369 const DataLayout &DL, unsigned Depth, 370 AssumptionCache *AC, const Instruction *CxtI, 371 const DominatorTree *DT, bool UseInstrInfo) { 372 return ::MaskedValueIsZero( 373 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 374 } 375 376 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 377 unsigned Depth, const Query &Q); 378 379 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 380 const Query &Q) { 381 // FIXME: We currently have no way to represent the DemandedElts of a scalable 382 // vector 383 if (isa<ScalableVectorType>(V->getType())) 384 return 1; 385 386 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 387 APInt DemandedElts = 388 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 389 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 390 } 391 392 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 393 unsigned Depth, AssumptionCache *AC, 394 const Instruction *CxtI, 395 const DominatorTree *DT, bool UseInstrInfo) { 396 return ::ComputeNumSignBits( 397 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 398 } 399 400 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 401 bool NSW, const APInt &DemandedElts, 402 KnownBits &KnownOut, KnownBits &Known2, 403 unsigned Depth, const Query &Q) { 404 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 405 406 // If one operand is unknown and we have no nowrap information, 407 // the result will be unknown independently of the second operand. 408 if (KnownOut.isUnknown() && !NSW) 409 return; 410 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 413 } 414 415 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 416 const APInt &DemandedElts, KnownBits &Known, 417 KnownBits &Known2, unsigned Depth, 418 const Query &Q) { 419 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 420 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 421 422 bool isKnownNegative = false; 423 bool isKnownNonNegative = false; 424 // If the multiplication is known not to overflow, compute the sign bit. 425 if (NSW) { 426 if (Op0 == Op1) { 427 // The product of a number with itself is non-negative. 428 isKnownNonNegative = true; 429 } else { 430 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 431 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 432 bool isKnownNegativeOp1 = Known.isNegative(); 433 bool isKnownNegativeOp0 = Known2.isNegative(); 434 // The product of two numbers with the same sign is non-negative. 435 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 436 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 437 // The product of a negative number and a non-negative number is either 438 // negative or zero. 439 if (!isKnownNonNegative) 440 isKnownNegative = 441 (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 442 Known2.isNonZero()) || 443 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && Known.isNonZero()); 444 } 445 } 446 447 Known = KnownBits::computeForMul(Known, Known2); 448 449 // Only make use of no-wrap flags if we failed to compute the sign bit 450 // directly. This matters if the multiplication always overflows, in 451 // which case we prefer to follow the result of the direct computation, 452 // though as the program is invoking undefined behaviour we can choose 453 // whatever we like here. 454 if (isKnownNonNegative && !Known.isNegative()) 455 Known.makeNonNegative(); 456 else if (isKnownNegative && !Known.isNonNegative()) 457 Known.makeNegative(); 458 } 459 460 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 461 KnownBits &Known) { 462 unsigned BitWidth = Known.getBitWidth(); 463 unsigned NumRanges = Ranges.getNumOperands() / 2; 464 assert(NumRanges >= 1); 465 466 Known.Zero.setAllBits(); 467 Known.One.setAllBits(); 468 469 for (unsigned i = 0; i < NumRanges; ++i) { 470 ConstantInt *Lower = 471 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 472 ConstantInt *Upper = 473 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 474 ConstantRange Range(Lower->getValue(), Upper->getValue()); 475 476 // The first CommonPrefixBits of all values in Range are equal. 477 unsigned CommonPrefixBits = 478 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 479 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 480 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 481 Known.One &= UnsignedMax & Mask; 482 Known.Zero &= ~UnsignedMax & Mask; 483 } 484 } 485 486 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 487 SmallVector<const Value *, 16> WorkSet(1, I); 488 SmallPtrSet<const Value *, 32> Visited; 489 SmallPtrSet<const Value *, 16> EphValues; 490 491 // The instruction defining an assumption's condition itself is always 492 // considered ephemeral to that assumption (even if it has other 493 // non-ephemeral users). See r246696's test case for an example. 494 if (is_contained(I->operands(), E)) 495 return true; 496 497 while (!WorkSet.empty()) { 498 const Value *V = WorkSet.pop_back_val(); 499 if (!Visited.insert(V).second) 500 continue; 501 502 // If all uses of this value are ephemeral, then so is this value. 503 if (llvm::all_of(V->users(), [&](const User *U) { 504 return EphValues.count(U); 505 })) { 506 if (V == E) 507 return true; 508 509 if (V == I || isSafeToSpeculativelyExecute(V)) { 510 EphValues.insert(V); 511 if (const User *U = dyn_cast<User>(V)) 512 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 513 J != JE; ++J) 514 WorkSet.push_back(*J); 515 } 516 } 517 } 518 519 return false; 520 } 521 522 // Is this an intrinsic that cannot be speculated but also cannot trap? 523 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 524 if (const CallInst *CI = dyn_cast<CallInst>(I)) 525 if (Function *F = CI->getCalledFunction()) 526 switch (F->getIntrinsicID()) { 527 default: break; 528 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 529 case Intrinsic::assume: 530 case Intrinsic::sideeffect: 531 case Intrinsic::pseudoprobe: 532 case Intrinsic::dbg_declare: 533 case Intrinsic::dbg_value: 534 case Intrinsic::dbg_label: 535 case Intrinsic::invariant_start: 536 case Intrinsic::invariant_end: 537 case Intrinsic::lifetime_start: 538 case Intrinsic::lifetime_end: 539 case Intrinsic::experimental_noalias_scope_decl: 540 case Intrinsic::objectsize: 541 case Intrinsic::ptr_annotation: 542 case Intrinsic::var_annotation: 543 return true; 544 } 545 546 return false; 547 } 548 549 bool llvm::isValidAssumeForContext(const Instruction *Inv, 550 const Instruction *CxtI, 551 const DominatorTree *DT) { 552 // There are two restrictions on the use of an assume: 553 // 1. The assume must dominate the context (or the control flow must 554 // reach the assume whenever it reaches the context). 555 // 2. The context must not be in the assume's set of ephemeral values 556 // (otherwise we will use the assume to prove that the condition 557 // feeding the assume is trivially true, thus causing the removal of 558 // the assume). 559 560 if (Inv->getParent() == CxtI->getParent()) { 561 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 562 // in the BB. 563 if (Inv->comesBefore(CxtI)) 564 return true; 565 566 // Don't let an assume affect itself - this would cause the problems 567 // `isEphemeralValueOf` is trying to prevent, and it would also make 568 // the loop below go out of bounds. 569 if (Inv == CxtI) 570 return false; 571 572 // The context comes first, but they're both in the same block. 573 // Make sure there is nothing in between that might interrupt 574 // the control flow, not even CxtI itself. 575 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 576 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 577 return false; 578 579 return !isEphemeralValueOf(Inv, CxtI); 580 } 581 582 // Inv and CxtI are in different blocks. 583 if (DT) { 584 if (DT->dominates(Inv, CxtI)) 585 return true; 586 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 587 // We don't have a DT, but this trivially dominates. 588 return true; 589 } 590 591 return false; 592 } 593 594 static bool cmpExcludesZero(CmpInst::Predicate Pred, const Value *RHS) { 595 // v u> y implies v != 0. 596 if (Pred == ICmpInst::ICMP_UGT) 597 return true; 598 599 // Special-case v != 0 to also handle v != null. 600 if (Pred == ICmpInst::ICMP_NE) 601 return match(RHS, m_Zero()); 602 603 // All other predicates - rely on generic ConstantRange handling. 604 const APInt *C; 605 if (!match(RHS, m_APInt(C))) 606 return false; 607 608 ConstantRange TrueValues = ConstantRange::makeExactICmpRegion(Pred, *C); 609 return !TrueValues.contains(APInt::getNullValue(C->getBitWidth())); 610 } 611 612 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 613 // Use of assumptions is context-sensitive. If we don't have a context, we 614 // cannot use them! 615 if (!Q.AC || !Q.CxtI) 616 return false; 617 618 if (Q.CxtI && V->getType()->isPointerTy()) { 619 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 620 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 621 V->getType()->getPointerAddressSpace())) 622 AttrKinds.push_back(Attribute::Dereferenceable); 623 624 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 625 return true; 626 } 627 628 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 629 if (!AssumeVH) 630 continue; 631 CallInst *I = cast<CallInst>(AssumeVH); 632 assert(I->getFunction() == Q.CxtI->getFunction() && 633 "Got assumption for the wrong function!"); 634 if (Q.isExcluded(I)) 635 continue; 636 637 // Warning: This loop can end up being somewhat performance sensitive. 638 // We're running this loop for once for each value queried resulting in a 639 // runtime of ~O(#assumes * #values). 640 641 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 642 "must be an assume intrinsic"); 643 644 Value *RHS; 645 CmpInst::Predicate Pred; 646 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 647 if (!match(I->getArgOperand(0), m_c_ICmp(Pred, m_V, m_Value(RHS)))) 648 return false; 649 650 if (cmpExcludesZero(Pred, RHS) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 651 return true; 652 } 653 654 return false; 655 } 656 657 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 658 unsigned Depth, const Query &Q) { 659 // Use of assumptions is context-sensitive. If we don't have a context, we 660 // cannot use them! 661 if (!Q.AC || !Q.CxtI) 662 return; 663 664 unsigned BitWidth = Known.getBitWidth(); 665 666 // Refine Known set if the pointer alignment is set by assume bundles. 667 if (V->getType()->isPointerTy()) { 668 if (RetainedKnowledge RK = getKnowledgeValidInContext( 669 V, {Attribute::Alignment}, Q.CxtI, Q.DT, Q.AC)) { 670 Known.Zero.setLowBits(Log2_32(RK.ArgValue)); 671 } 672 } 673 674 // Note that the patterns below need to be kept in sync with the code 675 // in AssumptionCache::updateAffectedValues. 676 677 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 678 if (!AssumeVH) 679 continue; 680 CallInst *I = cast<CallInst>(AssumeVH); 681 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 682 "Got assumption for the wrong function!"); 683 if (Q.isExcluded(I)) 684 continue; 685 686 // Warning: This loop can end up being somewhat performance sensitive. 687 // We're running this loop for once for each value queried resulting in a 688 // runtime of ~O(#assumes * #values). 689 690 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 691 "must be an assume intrinsic"); 692 693 Value *Arg = I->getArgOperand(0); 694 695 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 696 assert(BitWidth == 1 && "assume operand is not i1?"); 697 Known.setAllOnes(); 698 return; 699 } 700 if (match(Arg, m_Not(m_Specific(V))) && 701 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 702 assert(BitWidth == 1 && "assume operand is not i1?"); 703 Known.setAllZero(); 704 return; 705 } 706 707 // The remaining tests are all recursive, so bail out if we hit the limit. 708 if (Depth == MaxAnalysisRecursionDepth) 709 continue; 710 711 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 712 if (!Cmp) 713 continue; 714 715 // Note that ptrtoint may change the bitwidth. 716 Value *A, *B; 717 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 718 719 CmpInst::Predicate Pred; 720 uint64_t C; 721 switch (Cmp->getPredicate()) { 722 default: 723 break; 724 case ICmpInst::ICMP_EQ: 725 // assume(v = a) 726 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 727 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 728 KnownBits RHSKnown = 729 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 730 Known.Zero |= RHSKnown.Zero; 731 Known.One |= RHSKnown.One; 732 // assume(v & b = a) 733 } else if (match(Cmp, 734 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 735 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 736 KnownBits RHSKnown = 737 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 738 KnownBits MaskKnown = 739 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 740 741 // For those bits in the mask that are known to be one, we can propagate 742 // known bits from the RHS to V. 743 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 744 Known.One |= RHSKnown.One & MaskKnown.One; 745 // assume(~(v & b) = a) 746 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 747 m_Value(A))) && 748 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 749 KnownBits RHSKnown = 750 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 751 KnownBits MaskKnown = 752 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 753 754 // For those bits in the mask that are known to be one, we can propagate 755 // inverted known bits from the RHS to V. 756 Known.Zero |= RHSKnown.One & MaskKnown.One; 757 Known.One |= RHSKnown.Zero & MaskKnown.One; 758 // assume(v | b = a) 759 } else if (match(Cmp, 760 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 761 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 762 KnownBits RHSKnown = 763 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 764 KnownBits BKnown = 765 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 766 767 // For those bits in B that are known to be zero, we can propagate known 768 // bits from the RHS to V. 769 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 770 Known.One |= RHSKnown.One & BKnown.Zero; 771 // assume(~(v | b) = a) 772 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 773 m_Value(A))) && 774 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 775 KnownBits RHSKnown = 776 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 777 KnownBits BKnown = 778 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 779 780 // For those bits in B that are known to be zero, we can propagate 781 // inverted known bits from the RHS to V. 782 Known.Zero |= RHSKnown.One & BKnown.Zero; 783 Known.One |= RHSKnown.Zero & BKnown.Zero; 784 // assume(v ^ b = a) 785 } else if (match(Cmp, 786 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 787 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 788 KnownBits RHSKnown = 789 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 790 KnownBits BKnown = 791 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 792 793 // For those bits in B that are known to be zero, we can propagate known 794 // bits from the RHS to V. For those bits in B that are known to be one, 795 // we can propagate inverted known bits from the RHS to V. 796 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 797 Known.One |= RHSKnown.One & BKnown.Zero; 798 Known.Zero |= RHSKnown.One & BKnown.One; 799 Known.One |= RHSKnown.Zero & BKnown.One; 800 // assume(~(v ^ b) = a) 801 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 802 m_Value(A))) && 803 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 804 KnownBits RHSKnown = 805 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 806 KnownBits BKnown = 807 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 808 809 // For those bits in B that are known to be zero, we can propagate 810 // inverted known bits from the RHS to V. For those bits in B that are 811 // known to be one, we can propagate known bits from the RHS to V. 812 Known.Zero |= RHSKnown.One & BKnown.Zero; 813 Known.One |= RHSKnown.Zero & BKnown.Zero; 814 Known.Zero |= RHSKnown.Zero & BKnown.One; 815 Known.One |= RHSKnown.One & BKnown.One; 816 // assume(v << c = a) 817 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 818 m_Value(A))) && 819 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 820 KnownBits RHSKnown = 821 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 822 823 // For those bits in RHS that are known, we can propagate them to known 824 // bits in V shifted to the right by C. 825 RHSKnown.Zero.lshrInPlace(C); 826 Known.Zero |= RHSKnown.Zero; 827 RHSKnown.One.lshrInPlace(C); 828 Known.One |= RHSKnown.One; 829 // assume(~(v << c) = a) 830 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 831 m_Value(A))) && 832 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 833 KnownBits RHSKnown = 834 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 835 // For those bits in RHS that are known, we can propagate them inverted 836 // to known bits in V shifted to the right by C. 837 RHSKnown.One.lshrInPlace(C); 838 Known.Zero |= RHSKnown.One; 839 RHSKnown.Zero.lshrInPlace(C); 840 Known.One |= RHSKnown.Zero; 841 // assume(v >> c = a) 842 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 843 m_Value(A))) && 844 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 845 KnownBits RHSKnown = 846 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 847 // For those bits in RHS that are known, we can propagate them to known 848 // bits in V shifted to the right by C. 849 Known.Zero |= RHSKnown.Zero << C; 850 Known.One |= RHSKnown.One << C; 851 // assume(~(v >> c) = a) 852 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 853 m_Value(A))) && 854 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 855 KnownBits RHSKnown = 856 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 857 // For those bits in RHS that are known, we can propagate them inverted 858 // to known bits in V shifted to the right by C. 859 Known.Zero |= RHSKnown.One << C; 860 Known.One |= RHSKnown.Zero << C; 861 } 862 break; 863 case ICmpInst::ICMP_SGE: 864 // assume(v >=_s c) where c is non-negative 865 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 866 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 867 KnownBits RHSKnown = 868 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 869 870 if (RHSKnown.isNonNegative()) { 871 // We know that the sign bit is zero. 872 Known.makeNonNegative(); 873 } 874 } 875 break; 876 case ICmpInst::ICMP_SGT: 877 // assume(v >_s c) where c is at least -1. 878 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 879 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 880 KnownBits RHSKnown = 881 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 882 883 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 884 // We know that the sign bit is zero. 885 Known.makeNonNegative(); 886 } 887 } 888 break; 889 case ICmpInst::ICMP_SLE: 890 // assume(v <=_s c) where c is negative 891 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 892 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 893 KnownBits RHSKnown = 894 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 895 896 if (RHSKnown.isNegative()) { 897 // We know that the sign bit is one. 898 Known.makeNegative(); 899 } 900 } 901 break; 902 case ICmpInst::ICMP_SLT: 903 // assume(v <_s c) where c is non-positive 904 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 905 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 906 KnownBits RHSKnown = 907 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 908 909 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 910 // We know that the sign bit is one. 911 Known.makeNegative(); 912 } 913 } 914 break; 915 case ICmpInst::ICMP_ULE: 916 // assume(v <=_u c) 917 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 918 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 919 KnownBits RHSKnown = 920 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 921 922 // Whatever high bits in c are zero are known to be zero. 923 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 924 } 925 break; 926 case ICmpInst::ICMP_ULT: 927 // assume(v <_u c) 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown = 931 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 932 933 // If the RHS is known zero, then this assumption must be wrong (nothing 934 // is unsigned less than zero). Signal a conflict and get out of here. 935 if (RHSKnown.isZero()) { 936 Known.Zero.setAllBits(); 937 Known.One.setAllBits(); 938 break; 939 } 940 941 // Whatever high bits in c are zero are known to be zero (if c is a power 942 // of 2, then one more). 943 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 944 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 945 else 946 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 947 } 948 break; 949 } 950 } 951 952 // If assumptions conflict with each other or previous known bits, then we 953 // have a logical fallacy. It's possible that the assumption is not reachable, 954 // so this isn't a real bug. On the other hand, the program may have undefined 955 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 956 // clear out the known bits, try to warn the user, and hope for the best. 957 if (Known.Zero.intersects(Known.One)) { 958 Known.resetAll(); 959 960 if (Q.ORE) 961 Q.ORE->emit([&]() { 962 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 963 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 964 CxtI) 965 << "Detected conflicting code assumptions. Program may " 966 "have undefined behavior, or compiler may have " 967 "internal error."; 968 }); 969 } 970 } 971 972 /// Compute known bits from a shift operator, including those with a 973 /// non-constant shift amount. Known is the output of this function. Known2 is a 974 /// pre-allocated temporary with the same bit width as Known and on return 975 /// contains the known bit of the shift value source. KF is an 976 /// operator-specific function that, given the known-bits and a shift amount, 977 /// compute the implied known-bits of the shift operator's result respectively 978 /// for that shift amount. The results from calling KF are conservatively 979 /// combined for all permitted shift amounts. 980 static void computeKnownBitsFromShiftOperator( 981 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 982 KnownBits &Known2, unsigned Depth, const Query &Q, 983 function_ref<KnownBits(const KnownBits &, const KnownBits &)> KF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 988 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 989 // BitWidth > 64 and any upper bits are known, we'll end up returning the 990 // limit value (which implies all bits are known). 991 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 992 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 993 bool ShiftAmtIsConstant = Known.isConstant(); 994 bool MaxShiftAmtIsOutOfRange = Known.getMaxValue().uge(BitWidth); 995 996 if (ShiftAmtIsConstant) { 997 Known = KF(Known2, Known); 998 999 // If the known bits conflict, this must be an overflowing left shift, so 1000 // the shift result is poison. We can return anything we want. Choose 0 for 1001 // the best folding opportunity. 1002 if (Known.hasConflict()) 1003 Known.setAllZero(); 1004 1005 return; 1006 } 1007 1008 // If the shift amount could be greater than or equal to the bit-width of the 1009 // LHS, the value could be poison, but bail out because the check below is 1010 // expensive. 1011 // TODO: Should we just carry on? 1012 if (MaxShiftAmtIsOutOfRange) { 1013 Known.resetAll(); 1014 return; 1015 } 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 Known.Zero.setAllBits(); 1036 Known.One.setAllBits(); 1037 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1038 // Combine the shifted known input bits only for those shift amounts 1039 // compatible with its known constraints. 1040 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1041 continue; 1042 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1043 continue; 1044 // If we know the shifter is nonzero, we may be able to infer more known 1045 // bits. This check is sunk down as far as possible to avoid the expensive 1046 // call to isKnownNonZero if the cheaper checks above fail. 1047 if (ShiftAmt == 0) { 1048 if (!ShifterOperandIsNonZero.hasValue()) 1049 ShifterOperandIsNonZero = 1050 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1051 if (*ShifterOperandIsNonZero) 1052 continue; 1053 } 1054 1055 Known = KnownBits::commonBits( 1056 Known, KF(Known2, KnownBits::makeConstant(APInt(32, ShiftAmt)))); 1057 } 1058 1059 // If the known bits conflict, the result is poison. Return a 0 and hope the 1060 // caller can further optimize that. 1061 if (Known.hasConflict()) 1062 Known.setAllZero(); 1063 } 1064 1065 static void computeKnownBitsFromOperator(const Operator *I, 1066 const APInt &DemandedElts, 1067 KnownBits &Known, unsigned Depth, 1068 const Query &Q) { 1069 unsigned BitWidth = Known.getBitWidth(); 1070 1071 KnownBits Known2(BitWidth); 1072 switch (I->getOpcode()) { 1073 default: break; 1074 case Instruction::Load: 1075 if (MDNode *MD = 1076 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1077 computeKnownBitsFromRangeMetadata(*MD, Known); 1078 break; 1079 case Instruction::And: { 1080 // If either the LHS or the RHS are Zero, the result is zero. 1081 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1082 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1083 1084 Known &= Known2; 1085 1086 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1087 // here we handle the more general case of adding any odd number by 1088 // matching the form add(x, add(x, y)) where y is odd. 1089 // TODO: This could be generalized to clearing any bit set in y where the 1090 // following bit is known to be unset in y. 1091 Value *X = nullptr, *Y = nullptr; 1092 if (!Known.Zero[0] && !Known.One[0] && 1093 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1094 Known2.resetAll(); 1095 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1096 if (Known2.countMinTrailingOnes() > 0) 1097 Known.Zero.setBit(0); 1098 } 1099 break; 1100 } 1101 case Instruction::Or: 1102 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1103 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1104 1105 Known |= Known2; 1106 break; 1107 case Instruction::Xor: 1108 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1109 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1110 1111 Known ^= Known2; 1112 break; 1113 case Instruction::Mul: { 1114 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1115 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1116 Known, Known2, Depth, Q); 1117 break; 1118 } 1119 case Instruction::UDiv: { 1120 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1121 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1122 Known = KnownBits::udiv(Known, Known2); 1123 break; 1124 } 1125 case Instruction::Select: { 1126 const Value *LHS = nullptr, *RHS = nullptr; 1127 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1128 if (SelectPatternResult::isMinOrMax(SPF)) { 1129 computeKnownBits(RHS, Known, Depth + 1, Q); 1130 computeKnownBits(LHS, Known2, Depth + 1, Q); 1131 switch (SPF) { 1132 default: 1133 llvm_unreachable("Unhandled select pattern flavor!"); 1134 case SPF_SMAX: 1135 Known = KnownBits::smax(Known, Known2); 1136 break; 1137 case SPF_SMIN: 1138 Known = KnownBits::smin(Known, Known2); 1139 break; 1140 case SPF_UMAX: 1141 Known = KnownBits::umax(Known, Known2); 1142 break; 1143 case SPF_UMIN: 1144 Known = KnownBits::umin(Known, Known2); 1145 break; 1146 } 1147 break; 1148 } 1149 1150 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1151 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1152 1153 // Only known if known in both the LHS and RHS. 1154 Known = KnownBits::commonBits(Known, Known2); 1155 1156 if (SPF == SPF_ABS) { 1157 // RHS from matchSelectPattern returns the negation part of abs pattern. 1158 // If the negate has an NSW flag we can assume the sign bit of the result 1159 // will be 0 because that makes abs(INT_MIN) undefined. 1160 if (match(RHS, m_Neg(m_Specific(LHS))) && 1161 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1162 Known.Zero.setSignBit(); 1163 } 1164 1165 break; 1166 } 1167 case Instruction::FPTrunc: 1168 case Instruction::FPExt: 1169 case Instruction::FPToUI: 1170 case Instruction::FPToSI: 1171 case Instruction::SIToFP: 1172 case Instruction::UIToFP: 1173 break; // Can't work with floating point. 1174 case Instruction::PtrToInt: 1175 case Instruction::IntToPtr: 1176 // Fall through and handle them the same as zext/trunc. 1177 LLVM_FALLTHROUGH; 1178 case Instruction::ZExt: 1179 case Instruction::Trunc: { 1180 Type *SrcTy = I->getOperand(0)->getType(); 1181 1182 unsigned SrcBitWidth; 1183 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1184 // which fall through here. 1185 Type *ScalarTy = SrcTy->getScalarType(); 1186 SrcBitWidth = ScalarTy->isPointerTy() ? 1187 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1188 Q.DL.getTypeSizeInBits(ScalarTy); 1189 1190 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1191 Known = Known.anyextOrTrunc(SrcBitWidth); 1192 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1193 Known = Known.zextOrTrunc(BitWidth); 1194 break; 1195 } 1196 case Instruction::BitCast: { 1197 Type *SrcTy = I->getOperand(0)->getType(); 1198 if (SrcTy->isIntOrPtrTy() && 1199 // TODO: For now, not handling conversions like: 1200 // (bitcast i64 %x to <2 x i32>) 1201 !I->getType()->isVectorTy()) { 1202 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1203 break; 1204 } 1205 break; 1206 } 1207 case Instruction::SExt: { 1208 // Compute the bits in the result that are not present in the input. 1209 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1210 1211 Known = Known.trunc(SrcBitWidth); 1212 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1213 // If the sign bit of the input is known set or clear, then we know the 1214 // top bits of the result. 1215 Known = Known.sext(BitWidth); 1216 break; 1217 } 1218 case Instruction::Shl: { 1219 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1220 auto KF = [NSW](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1221 KnownBits Result = KnownBits::shl(KnownVal, KnownAmt); 1222 // If this shift has "nsw" keyword, then the result is either a poison 1223 // value or has the same sign bit as the first operand. 1224 if (NSW) { 1225 if (KnownVal.Zero.isSignBitSet()) 1226 Result.Zero.setSignBit(); 1227 if (KnownVal.One.isSignBitSet()) 1228 Result.One.setSignBit(); 1229 } 1230 return Result; 1231 }; 1232 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1233 KF); 1234 break; 1235 } 1236 case Instruction::LShr: { 1237 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1238 return KnownBits::lshr(KnownVal, KnownAmt); 1239 }; 1240 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1241 KF); 1242 break; 1243 } 1244 case Instruction::AShr: { 1245 auto KF = [](const KnownBits &KnownVal, const KnownBits &KnownAmt) { 1246 return KnownBits::ashr(KnownVal, KnownAmt); 1247 }; 1248 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1249 KF); 1250 break; 1251 } 1252 case Instruction::Sub: { 1253 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1254 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1255 DemandedElts, Known, Known2, Depth, Q); 1256 break; 1257 } 1258 case Instruction::Add: { 1259 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1260 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1261 DemandedElts, Known, Known2, Depth, Q); 1262 break; 1263 } 1264 case Instruction::SRem: 1265 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1266 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1267 Known = KnownBits::srem(Known, Known2); 1268 break; 1269 1270 case Instruction::URem: 1271 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1272 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1273 Known = KnownBits::urem(Known, Known2); 1274 break; 1275 case Instruction::Alloca: 1276 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1277 break; 1278 case Instruction::GetElementPtr: { 1279 // Analyze all of the subscripts of this getelementptr instruction 1280 // to determine if we can prove known low zero bits. 1281 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1282 // Accumulate the constant indices in a separate variable 1283 // to minimize the number of calls to computeForAddSub. 1284 APInt AccConstIndices(BitWidth, 0, /*IsSigned*/ true); 1285 1286 gep_type_iterator GTI = gep_type_begin(I); 1287 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1288 // TrailZ can only become smaller, short-circuit if we hit zero. 1289 if (Known.isUnknown()) 1290 break; 1291 1292 Value *Index = I->getOperand(i); 1293 1294 // Handle case when index is zero. 1295 Constant *CIndex = dyn_cast<Constant>(Index); 1296 if (CIndex && CIndex->isZeroValue()) 1297 continue; 1298 1299 if (StructType *STy = GTI.getStructTypeOrNull()) { 1300 // Handle struct member offset arithmetic. 1301 1302 assert(CIndex && 1303 "Access to structure field must be known at compile time"); 1304 1305 if (CIndex->getType()->isVectorTy()) 1306 Index = CIndex->getSplatValue(); 1307 1308 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1309 const StructLayout *SL = Q.DL.getStructLayout(STy); 1310 uint64_t Offset = SL->getElementOffset(Idx); 1311 AccConstIndices += Offset; 1312 continue; 1313 } 1314 1315 // Handle array index arithmetic. 1316 Type *IndexedTy = GTI.getIndexedType(); 1317 if (!IndexedTy->isSized()) { 1318 Known.resetAll(); 1319 break; 1320 } 1321 1322 unsigned IndexBitWidth = Index->getType()->getScalarSizeInBits(); 1323 KnownBits IndexBits(IndexBitWidth); 1324 computeKnownBits(Index, IndexBits, Depth + 1, Q); 1325 TypeSize IndexTypeSize = Q.DL.getTypeAllocSize(IndexedTy); 1326 uint64_t TypeSizeInBytes = IndexTypeSize.getKnownMinSize(); 1327 KnownBits ScalingFactor(IndexBitWidth); 1328 // Multiply by current sizeof type. 1329 // &A[i] == A + i * sizeof(*A[i]). 1330 if (IndexTypeSize.isScalable()) { 1331 // For scalable types the only thing we know about sizeof is 1332 // that this is a multiple of the minimum size. 1333 ScalingFactor.Zero.setLowBits(countTrailingZeros(TypeSizeInBytes)); 1334 } else if (IndexBits.isConstant()) { 1335 APInt IndexConst = IndexBits.getConstant(); 1336 APInt ScalingFactor(IndexBitWidth, TypeSizeInBytes); 1337 IndexConst *= ScalingFactor; 1338 AccConstIndices += IndexConst.sextOrTrunc(BitWidth); 1339 continue; 1340 } else { 1341 ScalingFactor = 1342 KnownBits::makeConstant(APInt(IndexBitWidth, TypeSizeInBytes)); 1343 } 1344 IndexBits = KnownBits::computeForMul(IndexBits, ScalingFactor); 1345 1346 // If the offsets have a different width from the pointer, according 1347 // to the language reference we need to sign-extend or truncate them 1348 // to the width of the pointer. 1349 IndexBits = IndexBits.sextOrTrunc(BitWidth); 1350 1351 // Note that inbounds does *not* guarantee nsw for the addition, as only 1352 // the offset is signed, while the base address is unsigned. 1353 Known = KnownBits::computeForAddSub( 1354 /*Add=*/true, /*NSW=*/false, Known, IndexBits); 1355 } 1356 if (!Known.isUnknown() && !AccConstIndices.isNullValue()) { 1357 KnownBits Index = KnownBits::makeConstant(AccConstIndices); 1358 Known = KnownBits::computeForAddSub( 1359 /*Add=*/true, /*NSW=*/false, Known, Index); 1360 } 1361 break; 1362 } 1363 case Instruction::PHI: { 1364 const PHINode *P = cast<PHINode>(I); 1365 // Handle the case of a simple two-predecessor recurrence PHI. 1366 // There's a lot more that could theoretically be done here, but 1367 // this is sufficient to catch some interesting cases. 1368 if (P->getNumIncomingValues() == 2) { 1369 for (unsigned i = 0; i != 2; ++i) { 1370 Value *L = P->getIncomingValue(i); 1371 Value *R = P->getIncomingValue(!i); 1372 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1373 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1374 Operator *LU = dyn_cast<Operator>(L); 1375 if (!LU) 1376 continue; 1377 unsigned Opcode = LU->getOpcode(); 1378 // Check for operations that have the property that if 1379 // both their operands have low zero bits, the result 1380 // will have low zero bits. 1381 if (Opcode == Instruction::Add || 1382 Opcode == Instruction::Sub || 1383 Opcode == Instruction::And || 1384 Opcode == Instruction::Or || 1385 Opcode == Instruction::Mul) { 1386 Value *LL = LU->getOperand(0); 1387 Value *LR = LU->getOperand(1); 1388 // Find a recurrence. 1389 if (LL == I) 1390 L = LR; 1391 else if (LR == I) 1392 L = LL; 1393 else 1394 continue; // Check for recurrence with L and R flipped. 1395 1396 // Change the context instruction to the "edge" that flows into the 1397 // phi. This is important because that is where the value is actually 1398 // "evaluated" even though it is used later somewhere else. (see also 1399 // D69571). 1400 Query RecQ = Q; 1401 1402 // Ok, we have a PHI of the form L op= R. Check for low 1403 // zero bits. 1404 RecQ.CxtI = RInst; 1405 computeKnownBits(R, Known2, Depth + 1, RecQ); 1406 1407 // We need to take the minimum number of known bits 1408 KnownBits Known3(BitWidth); 1409 RecQ.CxtI = LInst; 1410 computeKnownBits(L, Known3, Depth + 1, RecQ); 1411 1412 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1413 Known3.countMinTrailingZeros())); 1414 1415 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1416 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1417 // If initial value of recurrence is nonnegative, and we are adding 1418 // a nonnegative number with nsw, the result can only be nonnegative 1419 // or poison value regardless of the number of times we execute the 1420 // add in phi recurrence. If initial value is negative and we are 1421 // adding a negative number with nsw, the result can only be 1422 // negative or poison value. Similar arguments apply to sub and mul. 1423 // 1424 // (add non-negative, non-negative) --> non-negative 1425 // (add negative, negative) --> negative 1426 if (Opcode == Instruction::Add) { 1427 if (Known2.isNonNegative() && Known3.isNonNegative()) 1428 Known.makeNonNegative(); 1429 else if (Known2.isNegative() && Known3.isNegative()) 1430 Known.makeNegative(); 1431 } 1432 1433 // (sub nsw non-negative, negative) --> non-negative 1434 // (sub nsw negative, non-negative) --> negative 1435 else if (Opcode == Instruction::Sub && LL == I) { 1436 if (Known2.isNonNegative() && Known3.isNegative()) 1437 Known.makeNonNegative(); 1438 else if (Known2.isNegative() && Known3.isNonNegative()) 1439 Known.makeNegative(); 1440 } 1441 1442 // (mul nsw non-negative, non-negative) --> non-negative 1443 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1444 Known3.isNonNegative()) 1445 Known.makeNonNegative(); 1446 } 1447 1448 break; 1449 } 1450 } 1451 } 1452 1453 // Unreachable blocks may have zero-operand PHI nodes. 1454 if (P->getNumIncomingValues() == 0) 1455 break; 1456 1457 // Otherwise take the unions of the known bit sets of the operands, 1458 // taking conservative care to avoid excessive recursion. 1459 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1460 // Skip if every incoming value references to ourself. 1461 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1462 break; 1463 1464 Known.Zero.setAllBits(); 1465 Known.One.setAllBits(); 1466 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1467 Value *IncValue = P->getIncomingValue(u); 1468 // Skip direct self references. 1469 if (IncValue == P) continue; 1470 1471 // Change the context instruction to the "edge" that flows into the 1472 // phi. This is important because that is where the value is actually 1473 // "evaluated" even though it is used later somewhere else. (see also 1474 // D69571). 1475 Query RecQ = Q; 1476 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1477 1478 Known2 = KnownBits(BitWidth); 1479 // Recurse, but cap the recursion to one level, because we don't 1480 // want to waste time spinning around in loops. 1481 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1482 Known = KnownBits::commonBits(Known, Known2); 1483 // If all bits have been ruled out, there's no need to check 1484 // more operands. 1485 if (Known.isUnknown()) 1486 break; 1487 } 1488 } 1489 break; 1490 } 1491 case Instruction::Call: 1492 case Instruction::Invoke: 1493 // If range metadata is attached to this call, set known bits from that, 1494 // and then intersect with known bits based on other properties of the 1495 // function. 1496 if (MDNode *MD = 1497 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1498 computeKnownBitsFromRangeMetadata(*MD, Known); 1499 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1500 computeKnownBits(RV, Known2, Depth + 1, Q); 1501 Known.Zero |= Known2.Zero; 1502 Known.One |= Known2.One; 1503 } 1504 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1505 switch (II->getIntrinsicID()) { 1506 default: break; 1507 case Intrinsic::abs: { 1508 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1509 bool IntMinIsPoison = match(II->getArgOperand(1), m_One()); 1510 Known = Known2.abs(IntMinIsPoison); 1511 break; 1512 } 1513 case Intrinsic::bitreverse: 1514 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1515 Known.Zero |= Known2.Zero.reverseBits(); 1516 Known.One |= Known2.One.reverseBits(); 1517 break; 1518 case Intrinsic::bswap: 1519 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1520 Known.Zero |= Known2.Zero.byteSwap(); 1521 Known.One |= Known2.One.byteSwap(); 1522 break; 1523 case Intrinsic::ctlz: { 1524 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1525 // If we have a known 1, its position is our upper bound. 1526 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1527 // If this call is undefined for 0, the result will be less than 2^n. 1528 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1529 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1530 unsigned LowBits = Log2_32(PossibleLZ)+1; 1531 Known.Zero.setBitsFrom(LowBits); 1532 break; 1533 } 1534 case Intrinsic::cttz: { 1535 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1536 // If we have a known 1, its position is our upper bound. 1537 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1538 // If this call is undefined for 0, the result will be less than 2^n. 1539 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1540 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1541 unsigned LowBits = Log2_32(PossibleTZ)+1; 1542 Known.Zero.setBitsFrom(LowBits); 1543 break; 1544 } 1545 case Intrinsic::ctpop: { 1546 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1547 // We can bound the space the count needs. Also, bits known to be zero 1548 // can't contribute to the population. 1549 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1550 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1551 Known.Zero.setBitsFrom(LowBits); 1552 // TODO: we could bound KnownOne using the lower bound on the number 1553 // of bits which might be set provided by popcnt KnownOne2. 1554 break; 1555 } 1556 case Intrinsic::fshr: 1557 case Intrinsic::fshl: { 1558 const APInt *SA; 1559 if (!match(I->getOperand(2), m_APInt(SA))) 1560 break; 1561 1562 // Normalize to funnel shift left. 1563 uint64_t ShiftAmt = SA->urem(BitWidth); 1564 if (II->getIntrinsicID() == Intrinsic::fshr) 1565 ShiftAmt = BitWidth - ShiftAmt; 1566 1567 KnownBits Known3(BitWidth); 1568 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1569 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1570 1571 Known.Zero = 1572 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1573 Known.One = 1574 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1575 break; 1576 } 1577 case Intrinsic::uadd_sat: 1578 case Intrinsic::usub_sat: { 1579 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1580 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1581 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1582 1583 // Add: Leading ones of either operand are preserved. 1584 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1585 // as leading zeros in the result. 1586 unsigned LeadingKnown; 1587 if (IsAdd) 1588 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1589 Known2.countMinLeadingOnes()); 1590 else 1591 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1592 Known2.countMinLeadingOnes()); 1593 1594 Known = KnownBits::computeForAddSub( 1595 IsAdd, /* NSW */ false, Known, Known2); 1596 1597 // We select between the operation result and all-ones/zero 1598 // respectively, so we can preserve known ones/zeros. 1599 if (IsAdd) { 1600 Known.One.setHighBits(LeadingKnown); 1601 Known.Zero.clearAllBits(); 1602 } else { 1603 Known.Zero.setHighBits(LeadingKnown); 1604 Known.One.clearAllBits(); 1605 } 1606 break; 1607 } 1608 case Intrinsic::umin: 1609 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1610 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1611 Known = KnownBits::umin(Known, Known2); 1612 break; 1613 case Intrinsic::umax: 1614 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1615 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1616 Known = KnownBits::umax(Known, Known2); 1617 break; 1618 case Intrinsic::smin: 1619 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1620 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1621 Known = KnownBits::smin(Known, Known2); 1622 break; 1623 case Intrinsic::smax: 1624 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1625 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1626 Known = KnownBits::smax(Known, Known2); 1627 break; 1628 case Intrinsic::x86_sse42_crc32_64_64: 1629 Known.Zero.setBitsFrom(32); 1630 break; 1631 } 1632 } 1633 break; 1634 case Instruction::ShuffleVector: { 1635 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1636 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1637 if (!Shuf) { 1638 Known.resetAll(); 1639 return; 1640 } 1641 // For undef elements, we don't know anything about the common state of 1642 // the shuffle result. 1643 APInt DemandedLHS, DemandedRHS; 1644 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1645 Known.resetAll(); 1646 return; 1647 } 1648 Known.One.setAllBits(); 1649 Known.Zero.setAllBits(); 1650 if (!!DemandedLHS) { 1651 const Value *LHS = Shuf->getOperand(0); 1652 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1653 // If we don't know any bits, early out. 1654 if (Known.isUnknown()) 1655 break; 1656 } 1657 if (!!DemandedRHS) { 1658 const Value *RHS = Shuf->getOperand(1); 1659 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1660 Known = KnownBits::commonBits(Known, Known2); 1661 } 1662 break; 1663 } 1664 case Instruction::InsertElement: { 1665 const Value *Vec = I->getOperand(0); 1666 const Value *Elt = I->getOperand(1); 1667 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1668 // Early out if the index is non-constant or out-of-range. 1669 unsigned NumElts = DemandedElts.getBitWidth(); 1670 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1671 Known.resetAll(); 1672 return; 1673 } 1674 Known.One.setAllBits(); 1675 Known.Zero.setAllBits(); 1676 unsigned EltIdx = CIdx->getZExtValue(); 1677 // Do we demand the inserted element? 1678 if (DemandedElts[EltIdx]) { 1679 computeKnownBits(Elt, Known, Depth + 1, Q); 1680 // If we don't know any bits, early out. 1681 if (Known.isUnknown()) 1682 break; 1683 } 1684 // We don't need the base vector element that has been inserted. 1685 APInt DemandedVecElts = DemandedElts; 1686 DemandedVecElts.clearBit(EltIdx); 1687 if (!!DemandedVecElts) { 1688 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1689 Known = KnownBits::commonBits(Known, Known2); 1690 } 1691 break; 1692 } 1693 case Instruction::ExtractElement: { 1694 // Look through extract element. If the index is non-constant or 1695 // out-of-range demand all elements, otherwise just the extracted element. 1696 const Value *Vec = I->getOperand(0); 1697 const Value *Idx = I->getOperand(1); 1698 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1699 if (isa<ScalableVectorType>(Vec->getType())) { 1700 // FIXME: there's probably *something* we can do with scalable vectors 1701 Known.resetAll(); 1702 break; 1703 } 1704 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1705 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1706 if (CIdx && CIdx->getValue().ult(NumElts)) 1707 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1708 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1709 break; 1710 } 1711 case Instruction::ExtractValue: 1712 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1713 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1714 if (EVI->getNumIndices() != 1) break; 1715 if (EVI->getIndices()[0] == 0) { 1716 switch (II->getIntrinsicID()) { 1717 default: break; 1718 case Intrinsic::uadd_with_overflow: 1719 case Intrinsic::sadd_with_overflow: 1720 computeKnownBitsAddSub(true, II->getArgOperand(0), 1721 II->getArgOperand(1), false, DemandedElts, 1722 Known, Known2, Depth, Q); 1723 break; 1724 case Intrinsic::usub_with_overflow: 1725 case Intrinsic::ssub_with_overflow: 1726 computeKnownBitsAddSub(false, II->getArgOperand(0), 1727 II->getArgOperand(1), false, DemandedElts, 1728 Known, Known2, Depth, Q); 1729 break; 1730 case Intrinsic::umul_with_overflow: 1731 case Intrinsic::smul_with_overflow: 1732 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1733 DemandedElts, Known, Known2, Depth, Q); 1734 break; 1735 } 1736 } 1737 } 1738 break; 1739 case Instruction::Freeze: 1740 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1741 Depth + 1)) 1742 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1743 break; 1744 } 1745 } 1746 1747 /// Determine which bits of V are known to be either zero or one and return 1748 /// them. 1749 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1750 unsigned Depth, const Query &Q) { 1751 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1752 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1753 return Known; 1754 } 1755 1756 /// Determine which bits of V are known to be either zero or one and return 1757 /// them. 1758 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1759 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1760 computeKnownBits(V, Known, Depth, Q); 1761 return Known; 1762 } 1763 1764 /// Determine which bits of V are known to be either zero or one and return 1765 /// them in the Known bit set. 1766 /// 1767 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1768 /// we cannot optimize based on the assumption that it is zero without changing 1769 /// it to be an explicit zero. If we don't change it to zero, other code could 1770 /// optimized based on the contradictory assumption that it is non-zero. 1771 /// Because instcombine aggressively folds operations with undef args anyway, 1772 /// this won't lose us code quality. 1773 /// 1774 /// This function is defined on values with integer type, values with pointer 1775 /// type, and vectors of integers. In the case 1776 /// where V is a vector, known zero, and known one values are the 1777 /// same width as the vector element, and the bit is set only if it is true 1778 /// for all of the demanded elements in the vector specified by DemandedElts. 1779 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1780 KnownBits &Known, unsigned Depth, const Query &Q) { 1781 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1782 // No demanded elts or V is a scalable vector, better to assume we don't 1783 // know anything. 1784 Known.resetAll(); 1785 return; 1786 } 1787 1788 assert(V && "No Value?"); 1789 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1790 1791 #ifndef NDEBUG 1792 Type *Ty = V->getType(); 1793 unsigned BitWidth = Known.getBitWidth(); 1794 1795 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1796 "Not integer or pointer type!"); 1797 1798 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1799 assert( 1800 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1801 "DemandedElt width should equal the fixed vector number of elements"); 1802 } else { 1803 assert(DemandedElts == APInt(1, 1) && 1804 "DemandedElt width should be 1 for scalars"); 1805 } 1806 1807 Type *ScalarTy = Ty->getScalarType(); 1808 if (ScalarTy->isPointerTy()) { 1809 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1810 "V and Known should have same BitWidth"); 1811 } else { 1812 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1813 "V and Known should have same BitWidth"); 1814 } 1815 #endif 1816 1817 const APInt *C; 1818 if (match(V, m_APInt(C))) { 1819 // We know all of the bits for a scalar constant or a splat vector constant! 1820 Known = KnownBits::makeConstant(*C); 1821 return; 1822 } 1823 // Null and aggregate-zero are all-zeros. 1824 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1825 Known.setAllZero(); 1826 return; 1827 } 1828 // Handle a constant vector by taking the intersection of the known bits of 1829 // each element. 1830 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1831 // We know that CDV must be a vector of integers. Take the intersection of 1832 // each element. 1833 Known.Zero.setAllBits(); Known.One.setAllBits(); 1834 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1835 if (!DemandedElts[i]) 1836 continue; 1837 APInt Elt = CDV->getElementAsAPInt(i); 1838 Known.Zero &= ~Elt; 1839 Known.One &= Elt; 1840 } 1841 return; 1842 } 1843 1844 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1845 // We know that CV must be a vector of integers. Take the intersection of 1846 // each element. 1847 Known.Zero.setAllBits(); Known.One.setAllBits(); 1848 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1849 if (!DemandedElts[i]) 1850 continue; 1851 Constant *Element = CV->getAggregateElement(i); 1852 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1853 if (!ElementCI) { 1854 Known.resetAll(); 1855 return; 1856 } 1857 const APInt &Elt = ElementCI->getValue(); 1858 Known.Zero &= ~Elt; 1859 Known.One &= Elt; 1860 } 1861 return; 1862 } 1863 1864 // Start out not knowing anything. 1865 Known.resetAll(); 1866 1867 // We can't imply anything about undefs. 1868 if (isa<UndefValue>(V)) 1869 return; 1870 1871 // There's no point in looking through other users of ConstantData for 1872 // assumptions. Confirm that we've handled them all. 1873 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1874 1875 // All recursive calls that increase depth must come after this. 1876 if (Depth == MaxAnalysisRecursionDepth) 1877 return; 1878 1879 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1880 // the bits of its aliasee. 1881 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1882 if (!GA->isInterposable()) 1883 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1884 return; 1885 } 1886 1887 if (const Operator *I = dyn_cast<Operator>(V)) 1888 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1889 1890 // Aligned pointers have trailing zeros - refine Known.Zero set 1891 if (isa<PointerType>(V->getType())) { 1892 Align Alignment = V->getPointerAlignment(Q.DL); 1893 Known.Zero.setLowBits(Log2(Alignment)); 1894 } 1895 1896 // computeKnownBitsFromAssume strictly refines Known. 1897 // Therefore, we run them after computeKnownBitsFromOperator. 1898 1899 // Check whether a nearby assume intrinsic can determine some known bits. 1900 computeKnownBitsFromAssume(V, Known, Depth, Q); 1901 1902 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1903 } 1904 1905 /// Return true if the given value is known to have exactly one 1906 /// bit set when defined. For vectors return true if every element is known to 1907 /// be a power of two when defined. Supports values with integer or pointer 1908 /// types and vectors of integers. 1909 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1910 const Query &Q) { 1911 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1912 1913 // Attempt to match against constants. 1914 if (OrZero && match(V, m_Power2OrZero())) 1915 return true; 1916 if (match(V, m_Power2())) 1917 return true; 1918 1919 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1920 // it is shifted off the end then the result is undefined. 1921 if (match(V, m_Shl(m_One(), m_Value()))) 1922 return true; 1923 1924 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1925 // the bottom. If it is shifted off the bottom then the result is undefined. 1926 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1927 return true; 1928 1929 // The remaining tests are all recursive, so bail out if we hit the limit. 1930 if (Depth++ == MaxAnalysisRecursionDepth) 1931 return false; 1932 1933 Value *X = nullptr, *Y = nullptr; 1934 // A shift left or a logical shift right of a power of two is a power of two 1935 // or zero. 1936 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 1937 match(V, m_LShr(m_Value(X), m_Value())))) 1938 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 1939 1940 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 1941 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 1942 1943 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 1944 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 1945 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 1946 1947 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 1948 // A power of two and'd with anything is a power of two or zero. 1949 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 1950 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 1951 return true; 1952 // X & (-X) is always a power of two or zero. 1953 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 1954 return true; 1955 return false; 1956 } 1957 1958 // Adding a power-of-two or zero to the same power-of-two or zero yields 1959 // either the original power-of-two, a larger power-of-two or zero. 1960 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 1961 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 1962 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 1963 Q.IIQ.hasNoSignedWrap(VOBO)) { 1964 if (match(X, m_And(m_Specific(Y), m_Value())) || 1965 match(X, m_And(m_Value(), m_Specific(Y)))) 1966 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 1967 return true; 1968 if (match(Y, m_And(m_Specific(X), m_Value())) || 1969 match(Y, m_And(m_Value(), m_Specific(X)))) 1970 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 1971 return true; 1972 1973 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 1974 KnownBits LHSBits(BitWidth); 1975 computeKnownBits(X, LHSBits, Depth, Q); 1976 1977 KnownBits RHSBits(BitWidth); 1978 computeKnownBits(Y, RHSBits, Depth, Q); 1979 // If i8 V is a power of two or zero: 1980 // ZeroBits: 1 1 1 0 1 1 1 1 1981 // ~ZeroBits: 0 0 0 1 0 0 0 0 1982 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 1983 // If OrZero isn't set, we cannot give back a zero result. 1984 // Make sure either the LHS or RHS has a bit set. 1985 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 1986 return true; 1987 } 1988 } 1989 1990 // An exact divide or right shift can only shift off zero bits, so the result 1991 // is a power of two only if the first operand is a power of two and not 1992 // copying a sign bit (sdiv int_min, 2). 1993 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 1994 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 1995 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 1996 Depth, Q); 1997 } 1998 1999 return false; 2000 } 2001 2002 /// Test whether a GEP's result is known to be non-null. 2003 /// 2004 /// Uses properties inherent in a GEP to try to determine whether it is known 2005 /// to be non-null. 2006 /// 2007 /// Currently this routine does not support vector GEPs. 2008 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2009 const Query &Q) { 2010 const Function *F = nullptr; 2011 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2012 F = I->getFunction(); 2013 2014 if (!GEP->isInBounds() || 2015 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2016 return false; 2017 2018 // FIXME: Support vector-GEPs. 2019 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2020 2021 // If the base pointer is non-null, we cannot walk to a null address with an 2022 // inbounds GEP in address space zero. 2023 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2024 return true; 2025 2026 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2027 // If so, then the GEP cannot produce a null pointer, as doing so would 2028 // inherently violate the inbounds contract within address space zero. 2029 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2030 GTI != GTE; ++GTI) { 2031 // Struct types are easy -- they must always be indexed by a constant. 2032 if (StructType *STy = GTI.getStructTypeOrNull()) { 2033 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2034 unsigned ElementIdx = OpC->getZExtValue(); 2035 const StructLayout *SL = Q.DL.getStructLayout(STy); 2036 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2037 if (ElementOffset > 0) 2038 return true; 2039 continue; 2040 } 2041 2042 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2043 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2044 continue; 2045 2046 // Fast path the constant operand case both for efficiency and so we don't 2047 // increment Depth when just zipping down an all-constant GEP. 2048 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2049 if (!OpC->isZero()) 2050 return true; 2051 continue; 2052 } 2053 2054 // We post-increment Depth here because while isKnownNonZero increments it 2055 // as well, when we pop back up that increment won't persist. We don't want 2056 // to recurse 10k times just because we have 10k GEP operands. We don't 2057 // bail completely out because we want to handle constant GEPs regardless 2058 // of depth. 2059 if (Depth++ >= MaxAnalysisRecursionDepth) 2060 continue; 2061 2062 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2063 return true; 2064 } 2065 2066 return false; 2067 } 2068 2069 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2070 const Instruction *CtxI, 2071 const DominatorTree *DT) { 2072 if (isa<Constant>(V)) 2073 return false; 2074 2075 if (!CtxI || !DT) 2076 return false; 2077 2078 unsigned NumUsesExplored = 0; 2079 for (auto *U : V->users()) { 2080 // Avoid massive lists 2081 if (NumUsesExplored >= DomConditionsMaxUses) 2082 break; 2083 NumUsesExplored++; 2084 2085 // If the value is used as an argument to a call or invoke, then argument 2086 // attributes may provide an answer about null-ness. 2087 if (const auto *CB = dyn_cast<CallBase>(U)) 2088 if (auto *CalledFunc = CB->getCalledFunction()) 2089 for (const Argument &Arg : CalledFunc->args()) 2090 if (CB->getArgOperand(Arg.getArgNo()) == V && 2091 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2092 return true; 2093 2094 // If the value is used as a load/store, then the pointer must be non null. 2095 if (V == getLoadStorePointerOperand(U)) { 2096 const Instruction *I = cast<Instruction>(U); 2097 if (!NullPointerIsDefined(I->getFunction(), 2098 V->getType()->getPointerAddressSpace()) && 2099 DT->dominates(I, CtxI)) 2100 return true; 2101 } 2102 2103 // Consider only compare instructions uniquely controlling a branch 2104 Value *RHS; 2105 CmpInst::Predicate Pred; 2106 if (!match(U, m_c_ICmp(Pred, m_Specific(V), m_Value(RHS)))) 2107 continue; 2108 2109 bool NonNullIfTrue; 2110 if (cmpExcludesZero(Pred, RHS)) 2111 NonNullIfTrue = true; 2112 else if (cmpExcludesZero(CmpInst::getInversePredicate(Pred), RHS)) 2113 NonNullIfTrue = false; 2114 else 2115 continue; 2116 2117 SmallVector<const User *, 4> WorkList; 2118 SmallPtrSet<const User *, 4> Visited; 2119 for (auto *CmpU : U->users()) { 2120 assert(WorkList.empty() && "Should be!"); 2121 if (Visited.insert(CmpU).second) 2122 WorkList.push_back(CmpU); 2123 2124 while (!WorkList.empty()) { 2125 auto *Curr = WorkList.pop_back_val(); 2126 2127 // If a user is an AND, add all its users to the work list. We only 2128 // propagate "pred != null" condition through AND because it is only 2129 // correct to assume that all conditions of AND are met in true branch. 2130 // TODO: Support similar logic of OR and EQ predicate? 2131 if (NonNullIfTrue) 2132 if (match(Curr, m_LogicalAnd(m_Value(), m_Value()))) { 2133 for (auto *CurrU : Curr->users()) 2134 if (Visited.insert(CurrU).second) 2135 WorkList.push_back(CurrU); 2136 continue; 2137 } 2138 2139 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2140 assert(BI->isConditional() && "uses a comparison!"); 2141 2142 BasicBlock *NonNullSuccessor = 2143 BI->getSuccessor(NonNullIfTrue ? 0 : 1); 2144 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2145 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2146 return true; 2147 } else if (NonNullIfTrue && isGuard(Curr) && 2148 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2149 return true; 2150 } 2151 } 2152 } 2153 } 2154 2155 return false; 2156 } 2157 2158 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2159 /// ensure that the value it's attached to is never Value? 'RangeType' is 2160 /// is the type of the value described by the range. 2161 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2162 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2163 assert(NumRanges >= 1); 2164 for (unsigned i = 0; i < NumRanges; ++i) { 2165 ConstantInt *Lower = 2166 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2167 ConstantInt *Upper = 2168 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2169 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2170 if (Range.contains(Value)) 2171 return false; 2172 } 2173 return true; 2174 } 2175 2176 /// Return true if the given value is known to be non-zero when defined. For 2177 /// vectors, return true if every demanded element is known to be non-zero when 2178 /// defined. For pointers, if the context instruction and dominator tree are 2179 /// specified, perform context-sensitive analysis and return true if the 2180 /// pointer couldn't possibly be null at the specified instruction. 2181 /// Supports values with integer or pointer type and vectors of integers. 2182 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2183 const Query &Q) { 2184 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2185 // vector 2186 if (isa<ScalableVectorType>(V->getType())) 2187 return false; 2188 2189 if (auto *C = dyn_cast<Constant>(V)) { 2190 if (C->isNullValue()) 2191 return false; 2192 if (isa<ConstantInt>(C)) 2193 // Must be non-zero due to null test above. 2194 return true; 2195 2196 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2197 // See the comment for IntToPtr/PtrToInt instructions below. 2198 if (CE->getOpcode() == Instruction::IntToPtr || 2199 CE->getOpcode() == Instruction::PtrToInt) 2200 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) 2201 .getFixedSize() <= 2202 Q.DL.getTypeSizeInBits(CE->getType()).getFixedSize()) 2203 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2204 } 2205 2206 // For constant vectors, check that all elements are undefined or known 2207 // non-zero to determine that the whole vector is known non-zero. 2208 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2209 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2210 if (!DemandedElts[i]) 2211 continue; 2212 Constant *Elt = C->getAggregateElement(i); 2213 if (!Elt || Elt->isNullValue()) 2214 return false; 2215 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2216 return false; 2217 } 2218 return true; 2219 } 2220 2221 // A global variable in address space 0 is non null unless extern weak 2222 // or an absolute symbol reference. Other address spaces may have null as a 2223 // valid address for a global, so we can't assume anything. 2224 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2225 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2226 GV->getType()->getAddressSpace() == 0) 2227 return true; 2228 } else 2229 return false; 2230 } 2231 2232 if (auto *I = dyn_cast<Instruction>(V)) { 2233 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2234 // If the possible ranges don't contain zero, then the value is 2235 // definitely non-zero. 2236 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2237 const APInt ZeroValue(Ty->getBitWidth(), 0); 2238 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2239 return true; 2240 } 2241 } 2242 } 2243 2244 if (isKnownNonZeroFromAssume(V, Q)) 2245 return true; 2246 2247 // Some of the tests below are recursive, so bail out if we hit the limit. 2248 if (Depth++ >= MaxAnalysisRecursionDepth) 2249 return false; 2250 2251 // Check for pointer simplifications. 2252 2253 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2254 // Alloca never returns null, malloc might. 2255 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2256 return true; 2257 2258 // A byval, inalloca may not be null in a non-default addres space. A 2259 // nonnull argument is assumed never 0. 2260 if (const Argument *A = dyn_cast<Argument>(V)) { 2261 if (((A->hasPassPointeeByValueCopyAttr() && 2262 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2263 A->hasNonNullAttr())) 2264 return true; 2265 } 2266 2267 // A Load tagged with nonnull metadata is never null. 2268 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2269 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2270 return true; 2271 2272 if (const auto *Call = dyn_cast<CallBase>(V)) { 2273 if (Call->isReturnNonNull()) 2274 return true; 2275 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2276 return isKnownNonZero(RP, Depth, Q); 2277 } 2278 } 2279 2280 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2281 return true; 2282 2283 // Check for recursive pointer simplifications. 2284 if (V->getType()->isPointerTy()) { 2285 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2286 // do not alter the value, or at least not the nullness property of the 2287 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2288 // 2289 // Note that we have to take special care to avoid looking through 2290 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2291 // as casts that can alter the value, e.g., AddrSpaceCasts. 2292 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2293 return isGEPKnownNonNull(GEP, Depth, Q); 2294 2295 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2296 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2297 2298 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2299 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()).getFixedSize() <= 2300 Q.DL.getTypeSizeInBits(I2P->getDestTy()).getFixedSize()) 2301 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2302 } 2303 2304 // Similar to int2ptr above, we can look through ptr2int here if the cast 2305 // is a no-op or an extend and not a truncate. 2306 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2307 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()).getFixedSize() <= 2308 Q.DL.getTypeSizeInBits(P2I->getDestTy()).getFixedSize()) 2309 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2310 2311 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2312 2313 // X | Y != 0 if X != 0 or Y != 0. 2314 Value *X = nullptr, *Y = nullptr; 2315 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2316 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2317 isKnownNonZero(Y, DemandedElts, Depth, Q); 2318 2319 // ext X != 0 if X != 0. 2320 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2321 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2322 2323 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2324 // if the lowest bit is shifted off the end. 2325 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2326 // shl nuw can't remove any non-zero bits. 2327 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2328 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2329 return isKnownNonZero(X, Depth, Q); 2330 2331 KnownBits Known(BitWidth); 2332 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2333 if (Known.One[0]) 2334 return true; 2335 } 2336 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2337 // defined if the sign bit is shifted off the end. 2338 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2339 // shr exact can only shift out zero bits. 2340 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2341 if (BO->isExact()) 2342 return isKnownNonZero(X, Depth, Q); 2343 2344 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2345 if (Known.isNegative()) 2346 return true; 2347 2348 // If the shifter operand is a constant, and all of the bits shifted 2349 // out are known to be zero, and X is known non-zero then at least one 2350 // non-zero bit must remain. 2351 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2352 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2353 // Is there a known one in the portion not shifted out? 2354 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2355 return true; 2356 // Are all the bits to be shifted out known zero? 2357 if (Known.countMinTrailingZeros() >= ShiftVal) 2358 return isKnownNonZero(X, DemandedElts, Depth, Q); 2359 } 2360 } 2361 // div exact can only produce a zero if the dividend is zero. 2362 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2363 return isKnownNonZero(X, DemandedElts, Depth, Q); 2364 } 2365 // X + Y. 2366 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2367 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2368 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2369 2370 // If X and Y are both non-negative (as signed values) then their sum is not 2371 // zero unless both X and Y are zero. 2372 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2373 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2374 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2375 return true; 2376 2377 // If X and Y are both negative (as signed values) then their sum is not 2378 // zero unless both X and Y equal INT_MIN. 2379 if (XKnown.isNegative() && YKnown.isNegative()) { 2380 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2381 // The sign bit of X is set. If some other bit is set then X is not equal 2382 // to INT_MIN. 2383 if (XKnown.One.intersects(Mask)) 2384 return true; 2385 // The sign bit of Y is set. If some other bit is set then Y is not equal 2386 // to INT_MIN. 2387 if (YKnown.One.intersects(Mask)) 2388 return true; 2389 } 2390 2391 // The sum of a non-negative number and a power of two is not zero. 2392 if (XKnown.isNonNegative() && 2393 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2394 return true; 2395 if (YKnown.isNonNegative() && 2396 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2397 return true; 2398 } 2399 // X * Y. 2400 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2401 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2402 // If X and Y are non-zero then so is X * Y as long as the multiplication 2403 // does not overflow. 2404 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2405 isKnownNonZero(X, DemandedElts, Depth, Q) && 2406 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2407 return true; 2408 } 2409 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2410 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2411 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2412 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2413 return true; 2414 } 2415 // PHI 2416 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2417 // Try and detect a recurrence that monotonically increases from a 2418 // starting value, as these are common as induction variables. 2419 if (PN->getNumIncomingValues() == 2) { 2420 Value *Start = PN->getIncomingValue(0); 2421 Value *Induction = PN->getIncomingValue(1); 2422 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2423 std::swap(Start, Induction); 2424 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2425 if (!C->isZero() && !C->isNegative()) { 2426 ConstantInt *X; 2427 if (Q.IIQ.UseInstrInfo && 2428 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2429 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2430 !X->isNegative()) 2431 return true; 2432 } 2433 } 2434 } 2435 // Check if all incoming values are non-zero using recursion. 2436 Query RecQ = Q; 2437 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2438 return llvm::all_of(PN->operands(), [&](const Use &U) { 2439 if (U.get() == PN) 2440 return true; 2441 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2442 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2443 }); 2444 } 2445 // ExtractElement 2446 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2447 const Value *Vec = EEI->getVectorOperand(); 2448 const Value *Idx = EEI->getIndexOperand(); 2449 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2450 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2451 unsigned NumElts = VecTy->getNumElements(); 2452 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2453 if (CIdx && CIdx->getValue().ult(NumElts)) 2454 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2455 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2456 } 2457 } 2458 // Freeze 2459 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2460 auto *Op = FI->getOperand(0); 2461 if (isKnownNonZero(Op, Depth, Q) && 2462 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2463 return true; 2464 } 2465 2466 KnownBits Known(BitWidth); 2467 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2468 return Known.One != 0; 2469 } 2470 2471 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2472 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2473 // vector 2474 if (isa<ScalableVectorType>(V->getType())) 2475 return false; 2476 2477 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2478 APInt DemandedElts = 2479 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2480 return isKnownNonZero(V, DemandedElts, Depth, Q); 2481 } 2482 2483 /// Return true if V2 == V1 + X, where X is known non-zero. 2484 static bool isAddOfNonZero(const Value *V1, const Value *V2, unsigned Depth, 2485 const Query &Q) { 2486 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2487 if (!BO || BO->getOpcode() != Instruction::Add) 2488 return false; 2489 Value *Op = nullptr; 2490 if (V2 == BO->getOperand(0)) 2491 Op = BO->getOperand(1); 2492 else if (V2 == BO->getOperand(1)) 2493 Op = BO->getOperand(0); 2494 else 2495 return false; 2496 return isKnownNonZero(Op, Depth + 1, Q); 2497 } 2498 2499 2500 /// Return true if it is known that V1 != V2. 2501 static bool isKnownNonEqual(const Value *V1, const Value *V2, unsigned Depth, 2502 const Query &Q) { 2503 if (V1 == V2) 2504 return false; 2505 if (V1->getType() != V2->getType()) 2506 // We can't look through casts yet. 2507 return false; 2508 2509 if (Depth >= MaxAnalysisRecursionDepth) 2510 return false; 2511 2512 // See if we can recurse through (exactly one of) our operands. This 2513 // requires our operation be 1-to-1 and map every input value to exactly 2514 // one output value. Such an operation is invertible. 2515 auto *O1 = dyn_cast<Operator>(V1); 2516 auto *O2 = dyn_cast<Operator>(V2); 2517 if (O1 && O2 && O1->getOpcode() == O2->getOpcode()) { 2518 switch (O1->getOpcode()) { 2519 default: break; 2520 case Instruction::Add: 2521 case Instruction::Sub: 2522 // Assume operand order has been canonicalized 2523 if (O1->getOperand(0) == O2->getOperand(0)) 2524 return isKnownNonEqual(O1->getOperand(1), O2->getOperand(1), 2525 Depth + 1, Q); 2526 if (O1->getOperand(1) == O2->getOperand(1)) 2527 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2528 Depth + 1, Q); 2529 break; 2530 case Instruction::Mul: { 2531 // invertible if A * B == (A * B) mod 2^N where A, and B are integers 2532 // and N is the bitwdith. The nsw case is non-obvious, but proven by 2533 // alive2: https://alive2.llvm.org/ce/z/Z6D5qK 2534 auto *OBO1 = cast<OverflowingBinaryOperator>(O1); 2535 auto *OBO2 = cast<OverflowingBinaryOperator>(O2); 2536 if ((!OBO1->hasNoUnsignedWrap() || !OBO2->hasNoUnsignedWrap()) && 2537 (!OBO1->hasNoSignedWrap() || !OBO2->hasNoSignedWrap())) 2538 break; 2539 2540 // Assume operand order has been canonicalized 2541 if (O1->getOperand(1) == O2->getOperand(1) && 2542 isa<ConstantInt>(O1->getOperand(1)) && 2543 !cast<ConstantInt>(O1->getOperand(1))->isZero()) 2544 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2545 Depth + 1, Q); 2546 break; 2547 } 2548 case Instruction::SExt: 2549 case Instruction::ZExt: 2550 if (O1->getOperand(0)->getType() == O2->getOperand(0)->getType()) 2551 return isKnownNonEqual(O1->getOperand(0), O2->getOperand(0), 2552 Depth + 1, Q); 2553 break; 2554 }; 2555 } 2556 2557 if (isAddOfNonZero(V1, V2, Depth, Q) || isAddOfNonZero(V2, V1, Depth, Q)) 2558 return true; 2559 2560 if (V1->getType()->isIntOrIntVectorTy()) { 2561 // Are any known bits in V1 contradictory to known bits in V2? If V1 2562 // has a known zero where V2 has a known one, they must not be equal. 2563 KnownBits Known1 = computeKnownBits(V1, Depth, Q); 2564 KnownBits Known2 = computeKnownBits(V2, Depth, Q); 2565 2566 if (Known1.Zero.intersects(Known2.One) || 2567 Known2.Zero.intersects(Known1.One)) 2568 return true; 2569 } 2570 return false; 2571 } 2572 2573 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2574 /// simplify operations downstream. Mask is known to be zero for bits that V 2575 /// cannot have. 2576 /// 2577 /// This function is defined on values with integer type, values with pointer 2578 /// type, and vectors of integers. In the case 2579 /// where V is a vector, the mask, known zero, and known one values are the 2580 /// same width as the vector element, and the bit is set only if it is true 2581 /// for all of the elements in the vector. 2582 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2583 const Query &Q) { 2584 KnownBits Known(Mask.getBitWidth()); 2585 computeKnownBits(V, Known, Depth, Q); 2586 return Mask.isSubsetOf(Known.Zero); 2587 } 2588 2589 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2590 // Returns the input and lower/upper bounds. 2591 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2592 const APInt *&CLow, const APInt *&CHigh) { 2593 assert(isa<Operator>(Select) && 2594 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2595 "Input should be a Select!"); 2596 2597 const Value *LHS = nullptr, *RHS = nullptr; 2598 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2599 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2600 return false; 2601 2602 if (!match(RHS, m_APInt(CLow))) 2603 return false; 2604 2605 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2606 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2607 if (getInverseMinMaxFlavor(SPF) != SPF2) 2608 return false; 2609 2610 if (!match(RHS2, m_APInt(CHigh))) 2611 return false; 2612 2613 if (SPF == SPF_SMIN) 2614 std::swap(CLow, CHigh); 2615 2616 In = LHS2; 2617 return CLow->sle(*CHigh); 2618 } 2619 2620 /// For vector constants, loop over the elements and find the constant with the 2621 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2622 /// or if any element was not analyzed; otherwise, return the count for the 2623 /// element with the minimum number of sign bits. 2624 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2625 const APInt &DemandedElts, 2626 unsigned TyBits) { 2627 const auto *CV = dyn_cast<Constant>(V); 2628 if (!CV || !isa<FixedVectorType>(CV->getType())) 2629 return 0; 2630 2631 unsigned MinSignBits = TyBits; 2632 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2633 for (unsigned i = 0; i != NumElts; ++i) { 2634 if (!DemandedElts[i]) 2635 continue; 2636 // If we find a non-ConstantInt, bail out. 2637 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2638 if (!Elt) 2639 return 0; 2640 2641 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2642 } 2643 2644 return MinSignBits; 2645 } 2646 2647 static unsigned ComputeNumSignBitsImpl(const Value *V, 2648 const APInt &DemandedElts, 2649 unsigned Depth, const Query &Q); 2650 2651 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2652 unsigned Depth, const Query &Q) { 2653 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2654 assert(Result > 0 && "At least one sign bit needs to be present!"); 2655 return Result; 2656 } 2657 2658 /// Return the number of times the sign bit of the register is replicated into 2659 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2660 /// (itself), but other cases can give us information. For example, immediately 2661 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2662 /// other, so we return 3. For vectors, return the number of sign bits for the 2663 /// vector element with the minimum number of known sign bits of the demanded 2664 /// elements in the vector specified by DemandedElts. 2665 static unsigned ComputeNumSignBitsImpl(const Value *V, 2666 const APInt &DemandedElts, 2667 unsigned Depth, const Query &Q) { 2668 Type *Ty = V->getType(); 2669 2670 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2671 // vector 2672 if (isa<ScalableVectorType>(Ty)) 2673 return 1; 2674 2675 #ifndef NDEBUG 2676 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2677 2678 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2679 assert( 2680 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2681 "DemandedElt width should equal the fixed vector number of elements"); 2682 } else { 2683 assert(DemandedElts == APInt(1, 1) && 2684 "DemandedElt width should be 1 for scalars"); 2685 } 2686 #endif 2687 2688 // We return the minimum number of sign bits that are guaranteed to be present 2689 // in V, so for undef we have to conservatively return 1. We don't have the 2690 // same behavior for poison though -- that's a FIXME today. 2691 2692 Type *ScalarTy = Ty->getScalarType(); 2693 unsigned TyBits = ScalarTy->isPointerTy() ? 2694 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2695 Q.DL.getTypeSizeInBits(ScalarTy); 2696 2697 unsigned Tmp, Tmp2; 2698 unsigned FirstAnswer = 1; 2699 2700 // Note that ConstantInt is handled by the general computeKnownBits case 2701 // below. 2702 2703 if (Depth == MaxAnalysisRecursionDepth) 2704 return 1; 2705 2706 if (auto *U = dyn_cast<Operator>(V)) { 2707 switch (Operator::getOpcode(V)) { 2708 default: break; 2709 case Instruction::SExt: 2710 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2711 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2712 2713 case Instruction::SDiv: { 2714 const APInt *Denominator; 2715 // sdiv X, C -> adds log(C) sign bits. 2716 if (match(U->getOperand(1), m_APInt(Denominator))) { 2717 2718 // Ignore non-positive denominator. 2719 if (!Denominator->isStrictlyPositive()) 2720 break; 2721 2722 // Calculate the incoming numerator bits. 2723 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2724 2725 // Add floor(log(C)) bits to the numerator bits. 2726 return std::min(TyBits, NumBits + Denominator->logBase2()); 2727 } 2728 break; 2729 } 2730 2731 case Instruction::SRem: { 2732 const APInt *Denominator; 2733 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2734 // positive constant. This let us put a lower bound on the number of sign 2735 // bits. 2736 if (match(U->getOperand(1), m_APInt(Denominator))) { 2737 2738 // Ignore non-positive denominator. 2739 if (!Denominator->isStrictlyPositive()) 2740 break; 2741 2742 // Calculate the incoming numerator bits. SRem by a positive constant 2743 // can't lower the number of sign bits. 2744 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2745 2746 // Calculate the leading sign bit constraints by examining the 2747 // denominator. Given that the denominator is positive, there are two 2748 // cases: 2749 // 2750 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2751 // (1 << ceilLogBase2(C)). 2752 // 2753 // 2. the numerator is negative. Then the result range is (-C,0] and 2754 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2755 // 2756 // Thus a lower bound on the number of sign bits is `TyBits - 2757 // ceilLogBase2(C)`. 2758 2759 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2760 return std::max(NumrBits, ResBits); 2761 } 2762 break; 2763 } 2764 2765 case Instruction::AShr: { 2766 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2767 // ashr X, C -> adds C sign bits. Vectors too. 2768 const APInt *ShAmt; 2769 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2770 if (ShAmt->uge(TyBits)) 2771 break; // Bad shift. 2772 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2773 Tmp += ShAmtLimited; 2774 if (Tmp > TyBits) Tmp = TyBits; 2775 } 2776 return Tmp; 2777 } 2778 case Instruction::Shl: { 2779 const APInt *ShAmt; 2780 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2781 // shl destroys sign bits. 2782 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2783 if (ShAmt->uge(TyBits) || // Bad shift. 2784 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2785 Tmp2 = ShAmt->getZExtValue(); 2786 return Tmp - Tmp2; 2787 } 2788 break; 2789 } 2790 case Instruction::And: 2791 case Instruction::Or: 2792 case Instruction::Xor: // NOT is handled here. 2793 // Logical binary ops preserve the number of sign bits at the worst. 2794 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2795 if (Tmp != 1) { 2796 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2797 FirstAnswer = std::min(Tmp, Tmp2); 2798 // We computed what we know about the sign bits as our first 2799 // answer. Now proceed to the generic code that uses 2800 // computeKnownBits, and pick whichever answer is better. 2801 } 2802 break; 2803 2804 case Instruction::Select: { 2805 // If we have a clamp pattern, we know that the number of sign bits will 2806 // be the minimum of the clamp min/max range. 2807 const Value *X; 2808 const APInt *CLow, *CHigh; 2809 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2810 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2811 2812 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2813 if (Tmp == 1) break; 2814 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2815 return std::min(Tmp, Tmp2); 2816 } 2817 2818 case Instruction::Add: 2819 // Add can have at most one carry bit. Thus we know that the output 2820 // is, at worst, one more bit than the inputs. 2821 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2822 if (Tmp == 1) break; 2823 2824 // Special case decrementing a value (ADD X, -1): 2825 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2826 if (CRHS->isAllOnesValue()) { 2827 KnownBits Known(TyBits); 2828 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2829 2830 // If the input is known to be 0 or 1, the output is 0/-1, which is 2831 // all sign bits set. 2832 if ((Known.Zero | 1).isAllOnesValue()) 2833 return TyBits; 2834 2835 // If we are subtracting one from a positive number, there is no carry 2836 // out of the result. 2837 if (Known.isNonNegative()) 2838 return Tmp; 2839 } 2840 2841 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2842 if (Tmp2 == 1) break; 2843 return std::min(Tmp, Tmp2) - 1; 2844 2845 case Instruction::Sub: 2846 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2847 if (Tmp2 == 1) break; 2848 2849 // Handle NEG. 2850 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2851 if (CLHS->isNullValue()) { 2852 KnownBits Known(TyBits); 2853 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2854 // If the input is known to be 0 or 1, the output is 0/-1, which is 2855 // all sign bits set. 2856 if ((Known.Zero | 1).isAllOnesValue()) 2857 return TyBits; 2858 2859 // If the input is known to be positive (the sign bit is known clear), 2860 // the output of the NEG has the same number of sign bits as the 2861 // input. 2862 if (Known.isNonNegative()) 2863 return Tmp2; 2864 2865 // Otherwise, we treat this like a SUB. 2866 } 2867 2868 // Sub can have at most one carry bit. Thus we know that the output 2869 // is, at worst, one more bit than the inputs. 2870 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2871 if (Tmp == 1) break; 2872 return std::min(Tmp, Tmp2) - 1; 2873 2874 case Instruction::Mul: { 2875 // The output of the Mul can be at most twice the valid bits in the 2876 // inputs. 2877 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2878 if (SignBitsOp0 == 1) break; 2879 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2880 if (SignBitsOp1 == 1) break; 2881 unsigned OutValidBits = 2882 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2883 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2884 } 2885 2886 case Instruction::PHI: { 2887 const PHINode *PN = cast<PHINode>(U); 2888 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2889 // Don't analyze large in-degree PHIs. 2890 if (NumIncomingValues > 4) break; 2891 // Unreachable blocks may have zero-operand PHI nodes. 2892 if (NumIncomingValues == 0) break; 2893 2894 // Take the minimum of all incoming values. This can't infinitely loop 2895 // because of our depth threshold. 2896 Query RecQ = Q; 2897 Tmp = TyBits; 2898 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2899 if (Tmp == 1) return Tmp; 2900 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2901 Tmp = std::min( 2902 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2903 } 2904 return Tmp; 2905 } 2906 2907 case Instruction::Trunc: 2908 // FIXME: it's tricky to do anything useful for this, but it is an 2909 // important case for targets like X86. 2910 break; 2911 2912 case Instruction::ExtractElement: 2913 // Look through extract element. At the moment we keep this simple and 2914 // skip tracking the specific element. But at least we might find 2915 // information valid for all elements of the vector (for example if vector 2916 // is sign extended, shifted, etc). 2917 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2918 2919 case Instruction::ShuffleVector: { 2920 // Collect the minimum number of sign bits that are shared by every vector 2921 // element referenced by the shuffle. 2922 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2923 if (!Shuf) { 2924 // FIXME: Add support for shufflevector constant expressions. 2925 return 1; 2926 } 2927 APInt DemandedLHS, DemandedRHS; 2928 // For undef elements, we don't know anything about the common state of 2929 // the shuffle result. 2930 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2931 return 1; 2932 Tmp = std::numeric_limits<unsigned>::max(); 2933 if (!!DemandedLHS) { 2934 const Value *LHS = Shuf->getOperand(0); 2935 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2936 } 2937 // If we don't know anything, early out and try computeKnownBits 2938 // fall-back. 2939 if (Tmp == 1) 2940 break; 2941 if (!!DemandedRHS) { 2942 const Value *RHS = Shuf->getOperand(1); 2943 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2944 Tmp = std::min(Tmp, Tmp2); 2945 } 2946 // If we don't know anything, early out and try computeKnownBits 2947 // fall-back. 2948 if (Tmp == 1) 2949 break; 2950 assert(Tmp <= TyBits && "Failed to determine minimum sign bits"); 2951 return Tmp; 2952 } 2953 case Instruction::Call: { 2954 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2955 switch (II->getIntrinsicID()) { 2956 default: break; 2957 case Intrinsic::abs: 2958 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2959 if (Tmp == 1) break; 2960 2961 // Absolute value reduces number of sign bits by at most 1. 2962 return Tmp - 1; 2963 } 2964 } 2965 } 2966 } 2967 } 2968 2969 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2970 // use this information. 2971 2972 // If we can examine all elements of a vector constant successfully, we're 2973 // done (we can't do any better than that). If not, keep trying. 2974 if (unsigned VecSignBits = 2975 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2976 return VecSignBits; 2977 2978 KnownBits Known(TyBits); 2979 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2980 2981 // If we know that the sign bit is either zero or one, determine the number of 2982 // identical bits in the top of the input value. 2983 return std::max(FirstAnswer, Known.countMinSignBits()); 2984 } 2985 2986 /// This function computes the integer multiple of Base that equals V. 2987 /// If successful, it returns true and returns the multiple in 2988 /// Multiple. If unsuccessful, it returns false. It looks 2989 /// through SExt instructions only if LookThroughSExt is true. 2990 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2991 bool LookThroughSExt, unsigned Depth) { 2992 assert(V && "No Value?"); 2993 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2994 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2995 2996 Type *T = V->getType(); 2997 2998 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2999 3000 if (Base == 0) 3001 return false; 3002 3003 if (Base == 1) { 3004 Multiple = V; 3005 return true; 3006 } 3007 3008 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3009 Constant *BaseVal = ConstantInt::get(T, Base); 3010 if (CO && CO == BaseVal) { 3011 // Multiple is 1. 3012 Multiple = ConstantInt::get(T, 1); 3013 return true; 3014 } 3015 3016 if (CI && CI->getZExtValue() % Base == 0) { 3017 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3018 return true; 3019 } 3020 3021 if (Depth == MaxAnalysisRecursionDepth) return false; 3022 3023 Operator *I = dyn_cast<Operator>(V); 3024 if (!I) return false; 3025 3026 switch (I->getOpcode()) { 3027 default: break; 3028 case Instruction::SExt: 3029 if (!LookThroughSExt) return false; 3030 // otherwise fall through to ZExt 3031 LLVM_FALLTHROUGH; 3032 case Instruction::ZExt: 3033 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3034 LookThroughSExt, Depth+1); 3035 case Instruction::Shl: 3036 case Instruction::Mul: { 3037 Value *Op0 = I->getOperand(0); 3038 Value *Op1 = I->getOperand(1); 3039 3040 if (I->getOpcode() == Instruction::Shl) { 3041 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3042 if (!Op1CI) return false; 3043 // Turn Op0 << Op1 into Op0 * 2^Op1 3044 APInt Op1Int = Op1CI->getValue(); 3045 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3046 APInt API(Op1Int.getBitWidth(), 0); 3047 API.setBit(BitToSet); 3048 Op1 = ConstantInt::get(V->getContext(), API); 3049 } 3050 3051 Value *Mul0 = nullptr; 3052 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3053 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3054 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3055 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3056 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3057 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3058 if (Op1C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3059 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3060 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3061 3062 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3063 Multiple = ConstantExpr::getMul(MulC, Op1C); 3064 return true; 3065 } 3066 3067 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3068 if (Mul0CI->getValue() == 1) { 3069 // V == Base * Op1, so return Op1 3070 Multiple = Op1; 3071 return true; 3072 } 3073 } 3074 3075 Value *Mul1 = nullptr; 3076 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3077 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3078 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3079 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() < 3080 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3081 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3082 if (Op0C->getType()->getPrimitiveSizeInBits().getFixedSize() > 3083 MulC->getType()->getPrimitiveSizeInBits().getFixedSize()) 3084 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3085 3086 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3087 Multiple = ConstantExpr::getMul(MulC, Op0C); 3088 return true; 3089 } 3090 3091 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3092 if (Mul1CI->getValue() == 1) { 3093 // V == Base * Op0, so return Op0 3094 Multiple = Op0; 3095 return true; 3096 } 3097 } 3098 } 3099 } 3100 3101 // We could not determine if V is a multiple of Base. 3102 return false; 3103 } 3104 3105 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3106 const TargetLibraryInfo *TLI) { 3107 const Function *F = CB.getCalledFunction(); 3108 if (!F) 3109 return Intrinsic::not_intrinsic; 3110 3111 if (F->isIntrinsic()) 3112 return F->getIntrinsicID(); 3113 3114 // We are going to infer semantics of a library function based on mapping it 3115 // to an LLVM intrinsic. Check that the library function is available from 3116 // this callbase and in this environment. 3117 LibFunc Func; 3118 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3119 !CB.onlyReadsMemory()) 3120 return Intrinsic::not_intrinsic; 3121 3122 switch (Func) { 3123 default: 3124 break; 3125 case LibFunc_sin: 3126 case LibFunc_sinf: 3127 case LibFunc_sinl: 3128 return Intrinsic::sin; 3129 case LibFunc_cos: 3130 case LibFunc_cosf: 3131 case LibFunc_cosl: 3132 return Intrinsic::cos; 3133 case LibFunc_exp: 3134 case LibFunc_expf: 3135 case LibFunc_expl: 3136 return Intrinsic::exp; 3137 case LibFunc_exp2: 3138 case LibFunc_exp2f: 3139 case LibFunc_exp2l: 3140 return Intrinsic::exp2; 3141 case LibFunc_log: 3142 case LibFunc_logf: 3143 case LibFunc_logl: 3144 return Intrinsic::log; 3145 case LibFunc_log10: 3146 case LibFunc_log10f: 3147 case LibFunc_log10l: 3148 return Intrinsic::log10; 3149 case LibFunc_log2: 3150 case LibFunc_log2f: 3151 case LibFunc_log2l: 3152 return Intrinsic::log2; 3153 case LibFunc_fabs: 3154 case LibFunc_fabsf: 3155 case LibFunc_fabsl: 3156 return Intrinsic::fabs; 3157 case LibFunc_fmin: 3158 case LibFunc_fminf: 3159 case LibFunc_fminl: 3160 return Intrinsic::minnum; 3161 case LibFunc_fmax: 3162 case LibFunc_fmaxf: 3163 case LibFunc_fmaxl: 3164 return Intrinsic::maxnum; 3165 case LibFunc_copysign: 3166 case LibFunc_copysignf: 3167 case LibFunc_copysignl: 3168 return Intrinsic::copysign; 3169 case LibFunc_floor: 3170 case LibFunc_floorf: 3171 case LibFunc_floorl: 3172 return Intrinsic::floor; 3173 case LibFunc_ceil: 3174 case LibFunc_ceilf: 3175 case LibFunc_ceill: 3176 return Intrinsic::ceil; 3177 case LibFunc_trunc: 3178 case LibFunc_truncf: 3179 case LibFunc_truncl: 3180 return Intrinsic::trunc; 3181 case LibFunc_rint: 3182 case LibFunc_rintf: 3183 case LibFunc_rintl: 3184 return Intrinsic::rint; 3185 case LibFunc_nearbyint: 3186 case LibFunc_nearbyintf: 3187 case LibFunc_nearbyintl: 3188 return Intrinsic::nearbyint; 3189 case LibFunc_round: 3190 case LibFunc_roundf: 3191 case LibFunc_roundl: 3192 return Intrinsic::round; 3193 case LibFunc_roundeven: 3194 case LibFunc_roundevenf: 3195 case LibFunc_roundevenl: 3196 return Intrinsic::roundeven; 3197 case LibFunc_pow: 3198 case LibFunc_powf: 3199 case LibFunc_powl: 3200 return Intrinsic::pow; 3201 case LibFunc_sqrt: 3202 case LibFunc_sqrtf: 3203 case LibFunc_sqrtl: 3204 return Intrinsic::sqrt; 3205 } 3206 3207 return Intrinsic::not_intrinsic; 3208 } 3209 3210 /// Return true if we can prove that the specified FP value is never equal to 3211 /// -0.0. 3212 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3213 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3214 /// the same as +0.0 in floating-point ops. 3215 /// 3216 /// NOTE: this function will need to be revisited when we support non-default 3217 /// rounding modes! 3218 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3219 unsigned Depth) { 3220 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3221 return !CFP->getValueAPF().isNegZero(); 3222 3223 if (Depth == MaxAnalysisRecursionDepth) 3224 return false; 3225 3226 auto *Op = dyn_cast<Operator>(V); 3227 if (!Op) 3228 return false; 3229 3230 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3231 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3232 return true; 3233 3234 // sitofp and uitofp turn into +0.0 for zero. 3235 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3236 return true; 3237 3238 if (auto *Call = dyn_cast<CallInst>(Op)) { 3239 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3240 switch (IID) { 3241 default: 3242 break; 3243 // sqrt(-0.0) = -0.0, no other negative results are possible. 3244 case Intrinsic::sqrt: 3245 case Intrinsic::canonicalize: 3246 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3247 // fabs(x) != -0.0 3248 case Intrinsic::fabs: 3249 return true; 3250 } 3251 } 3252 3253 return false; 3254 } 3255 3256 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3257 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3258 /// bit despite comparing equal. 3259 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3260 const TargetLibraryInfo *TLI, 3261 bool SignBitOnly, 3262 unsigned Depth) { 3263 // TODO: This function does not do the right thing when SignBitOnly is true 3264 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3265 // which flips the sign bits of NaNs. See 3266 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3267 3268 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3269 return !CFP->getValueAPF().isNegative() || 3270 (!SignBitOnly && CFP->getValueAPF().isZero()); 3271 } 3272 3273 // Handle vector of constants. 3274 if (auto *CV = dyn_cast<Constant>(V)) { 3275 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3276 unsigned NumElts = CVFVTy->getNumElements(); 3277 for (unsigned i = 0; i != NumElts; ++i) { 3278 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3279 if (!CFP) 3280 return false; 3281 if (CFP->getValueAPF().isNegative() && 3282 (SignBitOnly || !CFP->getValueAPF().isZero())) 3283 return false; 3284 } 3285 3286 // All non-negative ConstantFPs. 3287 return true; 3288 } 3289 } 3290 3291 if (Depth == MaxAnalysisRecursionDepth) 3292 return false; 3293 3294 const Operator *I = dyn_cast<Operator>(V); 3295 if (!I) 3296 return false; 3297 3298 switch (I->getOpcode()) { 3299 default: 3300 break; 3301 // Unsigned integers are always nonnegative. 3302 case Instruction::UIToFP: 3303 return true; 3304 case Instruction::FMul: 3305 case Instruction::FDiv: 3306 // X * X is always non-negative or a NaN. 3307 // X / X is always exactly 1.0 or a NaN. 3308 if (I->getOperand(0) == I->getOperand(1) && 3309 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3310 return true; 3311 3312 LLVM_FALLTHROUGH; 3313 case Instruction::FAdd: 3314 case Instruction::FRem: 3315 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3316 Depth + 1) && 3317 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3318 Depth + 1); 3319 case Instruction::Select: 3320 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3321 Depth + 1) && 3322 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3323 Depth + 1); 3324 case Instruction::FPExt: 3325 case Instruction::FPTrunc: 3326 // Widening/narrowing never change sign. 3327 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3328 Depth + 1); 3329 case Instruction::ExtractElement: 3330 // Look through extract element. At the moment we keep this simple and skip 3331 // tracking the specific element. But at least we might find information 3332 // valid for all elements of the vector. 3333 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3334 Depth + 1); 3335 case Instruction::Call: 3336 const auto *CI = cast<CallInst>(I); 3337 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3338 switch (IID) { 3339 default: 3340 break; 3341 case Intrinsic::maxnum: { 3342 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3343 auto isPositiveNum = [&](Value *V) { 3344 if (SignBitOnly) { 3345 // With SignBitOnly, this is tricky because the result of 3346 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3347 // a constant strictly greater than 0.0. 3348 const APFloat *C; 3349 return match(V, m_APFloat(C)) && 3350 *C > APFloat::getZero(C->getSemantics()); 3351 } 3352 3353 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3354 // maxnum can't be ordered-less-than-zero. 3355 return isKnownNeverNaN(V, TLI) && 3356 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3357 }; 3358 3359 // TODO: This could be improved. We could also check that neither operand 3360 // has its sign bit set (and at least 1 is not-NAN?). 3361 return isPositiveNum(V0) || isPositiveNum(V1); 3362 } 3363 3364 case Intrinsic::maximum: 3365 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3366 Depth + 1) || 3367 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3368 Depth + 1); 3369 case Intrinsic::minnum: 3370 case Intrinsic::minimum: 3371 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3372 Depth + 1) && 3373 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3374 Depth + 1); 3375 case Intrinsic::exp: 3376 case Intrinsic::exp2: 3377 case Intrinsic::fabs: 3378 return true; 3379 3380 case Intrinsic::sqrt: 3381 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3382 if (!SignBitOnly) 3383 return true; 3384 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3385 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3386 3387 case Intrinsic::powi: 3388 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3389 // powi(x,n) is non-negative if n is even. 3390 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3391 return true; 3392 } 3393 // TODO: This is not correct. Given that exp is an integer, here are the 3394 // ways that pow can return a negative value: 3395 // 3396 // pow(x, exp) --> negative if exp is odd and x is negative. 3397 // pow(-0, exp) --> -inf if exp is negative odd. 3398 // pow(-0, exp) --> -0 if exp is positive odd. 3399 // pow(-inf, exp) --> -0 if exp is negative odd. 3400 // pow(-inf, exp) --> -inf if exp is positive odd. 3401 // 3402 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3403 // but we must return false if x == -0. Unfortunately we do not currently 3404 // have a way of expressing this constraint. See details in 3405 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3406 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3407 Depth + 1); 3408 3409 case Intrinsic::fma: 3410 case Intrinsic::fmuladd: 3411 // x*x+y is non-negative if y is non-negative. 3412 return I->getOperand(0) == I->getOperand(1) && 3413 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3414 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3415 Depth + 1); 3416 } 3417 break; 3418 } 3419 return false; 3420 } 3421 3422 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3423 const TargetLibraryInfo *TLI) { 3424 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3425 } 3426 3427 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3428 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3429 } 3430 3431 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3432 unsigned Depth) { 3433 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3434 3435 // If we're told that infinities won't happen, assume they won't. 3436 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3437 if (FPMathOp->hasNoInfs()) 3438 return true; 3439 3440 // Handle scalar constants. 3441 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3442 return !CFP->isInfinity(); 3443 3444 if (Depth == MaxAnalysisRecursionDepth) 3445 return false; 3446 3447 if (auto *Inst = dyn_cast<Instruction>(V)) { 3448 switch (Inst->getOpcode()) { 3449 case Instruction::Select: { 3450 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3451 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3452 } 3453 case Instruction::SIToFP: 3454 case Instruction::UIToFP: { 3455 // Get width of largest magnitude integer (remove a bit if signed). 3456 // This still works for a signed minimum value because the largest FP 3457 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3458 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3459 if (Inst->getOpcode() == Instruction::SIToFP) 3460 --IntSize; 3461 3462 // If the exponent of the largest finite FP value can hold the largest 3463 // integer, the result of the cast must be finite. 3464 Type *FPTy = Inst->getType()->getScalarType(); 3465 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3466 } 3467 default: 3468 break; 3469 } 3470 } 3471 3472 // try to handle fixed width vector constants 3473 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3474 if (VFVTy && isa<Constant>(V)) { 3475 // For vectors, verify that each element is not infinity. 3476 unsigned NumElts = VFVTy->getNumElements(); 3477 for (unsigned i = 0; i != NumElts; ++i) { 3478 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3479 if (!Elt) 3480 return false; 3481 if (isa<UndefValue>(Elt)) 3482 continue; 3483 auto *CElt = dyn_cast<ConstantFP>(Elt); 3484 if (!CElt || CElt->isInfinity()) 3485 return false; 3486 } 3487 // All elements were confirmed non-infinity or undefined. 3488 return true; 3489 } 3490 3491 // was not able to prove that V never contains infinity 3492 return false; 3493 } 3494 3495 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3496 unsigned Depth) { 3497 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3498 3499 // If we're told that NaNs won't happen, assume they won't. 3500 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3501 if (FPMathOp->hasNoNaNs()) 3502 return true; 3503 3504 // Handle scalar constants. 3505 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3506 return !CFP->isNaN(); 3507 3508 if (Depth == MaxAnalysisRecursionDepth) 3509 return false; 3510 3511 if (auto *Inst = dyn_cast<Instruction>(V)) { 3512 switch (Inst->getOpcode()) { 3513 case Instruction::FAdd: 3514 case Instruction::FSub: 3515 // Adding positive and negative infinity produces NaN. 3516 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3517 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3518 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3519 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3520 3521 case Instruction::FMul: 3522 // Zero multiplied with infinity produces NaN. 3523 // FIXME: If neither side can be zero fmul never produces NaN. 3524 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3525 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3526 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3527 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3528 3529 case Instruction::FDiv: 3530 case Instruction::FRem: 3531 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3532 return false; 3533 3534 case Instruction::Select: { 3535 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3536 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3537 } 3538 case Instruction::SIToFP: 3539 case Instruction::UIToFP: 3540 return true; 3541 case Instruction::FPTrunc: 3542 case Instruction::FPExt: 3543 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3544 default: 3545 break; 3546 } 3547 } 3548 3549 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3550 switch (II->getIntrinsicID()) { 3551 case Intrinsic::canonicalize: 3552 case Intrinsic::fabs: 3553 case Intrinsic::copysign: 3554 case Intrinsic::exp: 3555 case Intrinsic::exp2: 3556 case Intrinsic::floor: 3557 case Intrinsic::ceil: 3558 case Intrinsic::trunc: 3559 case Intrinsic::rint: 3560 case Intrinsic::nearbyint: 3561 case Intrinsic::round: 3562 case Intrinsic::roundeven: 3563 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3564 case Intrinsic::sqrt: 3565 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3566 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3567 case Intrinsic::minnum: 3568 case Intrinsic::maxnum: 3569 // If either operand is not NaN, the result is not NaN. 3570 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3571 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3572 default: 3573 return false; 3574 } 3575 } 3576 3577 // Try to handle fixed width vector constants 3578 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3579 if (VFVTy && isa<Constant>(V)) { 3580 // For vectors, verify that each element is not NaN. 3581 unsigned NumElts = VFVTy->getNumElements(); 3582 for (unsigned i = 0; i != NumElts; ++i) { 3583 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3584 if (!Elt) 3585 return false; 3586 if (isa<UndefValue>(Elt)) 3587 continue; 3588 auto *CElt = dyn_cast<ConstantFP>(Elt); 3589 if (!CElt || CElt->isNaN()) 3590 return false; 3591 } 3592 // All elements were confirmed not-NaN or undefined. 3593 return true; 3594 } 3595 3596 // Was not able to prove that V never contains NaN 3597 return false; 3598 } 3599 3600 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3601 3602 // All byte-wide stores are splatable, even of arbitrary variables. 3603 if (V->getType()->isIntegerTy(8)) 3604 return V; 3605 3606 LLVMContext &Ctx = V->getContext(); 3607 3608 // Undef don't care. 3609 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3610 if (isa<UndefValue>(V)) 3611 return UndefInt8; 3612 3613 // Return Undef for zero-sized type. 3614 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3615 return UndefInt8; 3616 3617 Constant *C = dyn_cast<Constant>(V); 3618 if (!C) { 3619 // Conceptually, we could handle things like: 3620 // %a = zext i8 %X to i16 3621 // %b = shl i16 %a, 8 3622 // %c = or i16 %a, %b 3623 // but until there is an example that actually needs this, it doesn't seem 3624 // worth worrying about. 3625 return nullptr; 3626 } 3627 3628 // Handle 'null' ConstantArrayZero etc. 3629 if (C->isNullValue()) 3630 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3631 3632 // Constant floating-point values can be handled as integer values if the 3633 // corresponding integer value is "byteable". An important case is 0.0. 3634 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3635 Type *Ty = nullptr; 3636 if (CFP->getType()->isHalfTy()) 3637 Ty = Type::getInt16Ty(Ctx); 3638 else if (CFP->getType()->isFloatTy()) 3639 Ty = Type::getInt32Ty(Ctx); 3640 else if (CFP->getType()->isDoubleTy()) 3641 Ty = Type::getInt64Ty(Ctx); 3642 // Don't handle long double formats, which have strange constraints. 3643 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3644 : nullptr; 3645 } 3646 3647 // We can handle constant integers that are multiple of 8 bits. 3648 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3649 if (CI->getBitWidth() % 8 == 0) { 3650 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3651 if (!CI->getValue().isSplat(8)) 3652 return nullptr; 3653 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3654 } 3655 } 3656 3657 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3658 if (CE->getOpcode() == Instruction::IntToPtr) { 3659 if (auto *PtrTy = dyn_cast<PointerType>(CE->getType())) { 3660 unsigned BitWidth = DL.getPointerSizeInBits(PtrTy->getAddressSpace()); 3661 return isBytewiseValue( 3662 ConstantExpr::getIntegerCast(CE->getOperand(0), 3663 Type::getIntNTy(Ctx, BitWidth), false), 3664 DL); 3665 } 3666 } 3667 } 3668 3669 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3670 if (LHS == RHS) 3671 return LHS; 3672 if (!LHS || !RHS) 3673 return nullptr; 3674 if (LHS == UndefInt8) 3675 return RHS; 3676 if (RHS == UndefInt8) 3677 return LHS; 3678 return nullptr; 3679 }; 3680 3681 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3682 Value *Val = UndefInt8; 3683 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3684 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3685 return nullptr; 3686 return Val; 3687 } 3688 3689 if (isa<ConstantAggregate>(C)) { 3690 Value *Val = UndefInt8; 3691 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3692 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3693 return nullptr; 3694 return Val; 3695 } 3696 3697 // Don't try to handle the handful of other constants. 3698 return nullptr; 3699 } 3700 3701 // This is the recursive version of BuildSubAggregate. It takes a few different 3702 // arguments. Idxs is the index within the nested struct From that we are 3703 // looking at now (which is of type IndexedType). IdxSkip is the number of 3704 // indices from Idxs that should be left out when inserting into the resulting 3705 // struct. To is the result struct built so far, new insertvalue instructions 3706 // build on that. 3707 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3708 SmallVectorImpl<unsigned> &Idxs, 3709 unsigned IdxSkip, 3710 Instruction *InsertBefore) { 3711 StructType *STy = dyn_cast<StructType>(IndexedType); 3712 if (STy) { 3713 // Save the original To argument so we can modify it 3714 Value *OrigTo = To; 3715 // General case, the type indexed by Idxs is a struct 3716 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3717 // Process each struct element recursively 3718 Idxs.push_back(i); 3719 Value *PrevTo = To; 3720 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3721 InsertBefore); 3722 Idxs.pop_back(); 3723 if (!To) { 3724 // Couldn't find any inserted value for this index? Cleanup 3725 while (PrevTo != OrigTo) { 3726 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3727 PrevTo = Del->getAggregateOperand(); 3728 Del->eraseFromParent(); 3729 } 3730 // Stop processing elements 3731 break; 3732 } 3733 } 3734 // If we successfully found a value for each of our subaggregates 3735 if (To) 3736 return To; 3737 } 3738 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3739 // the struct's elements had a value that was inserted directly. In the latter 3740 // case, perhaps we can't determine each of the subelements individually, but 3741 // we might be able to find the complete struct somewhere. 3742 3743 // Find the value that is at that particular spot 3744 Value *V = FindInsertedValue(From, Idxs); 3745 3746 if (!V) 3747 return nullptr; 3748 3749 // Insert the value in the new (sub) aggregate 3750 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3751 "tmp", InsertBefore); 3752 } 3753 3754 // This helper takes a nested struct and extracts a part of it (which is again a 3755 // struct) into a new value. For example, given the struct: 3756 // { a, { b, { c, d }, e } } 3757 // and the indices "1, 1" this returns 3758 // { c, d }. 3759 // 3760 // It does this by inserting an insertvalue for each element in the resulting 3761 // struct, as opposed to just inserting a single struct. This will only work if 3762 // each of the elements of the substruct are known (ie, inserted into From by an 3763 // insertvalue instruction somewhere). 3764 // 3765 // All inserted insertvalue instructions are inserted before InsertBefore 3766 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3767 Instruction *InsertBefore) { 3768 assert(InsertBefore && "Must have someplace to insert!"); 3769 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3770 idx_range); 3771 Value *To = UndefValue::get(IndexedType); 3772 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3773 unsigned IdxSkip = Idxs.size(); 3774 3775 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3776 } 3777 3778 /// Given an aggregate and a sequence of indices, see if the scalar value 3779 /// indexed is already around as a register, for example if it was inserted 3780 /// directly into the aggregate. 3781 /// 3782 /// If InsertBefore is not null, this function will duplicate (modified) 3783 /// insertvalues when a part of a nested struct is extracted. 3784 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3785 Instruction *InsertBefore) { 3786 // Nothing to index? Just return V then (this is useful at the end of our 3787 // recursion). 3788 if (idx_range.empty()) 3789 return V; 3790 // We have indices, so V should have an indexable type. 3791 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3792 "Not looking at a struct or array?"); 3793 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3794 "Invalid indices for type?"); 3795 3796 if (Constant *C = dyn_cast<Constant>(V)) { 3797 C = C->getAggregateElement(idx_range[0]); 3798 if (!C) return nullptr; 3799 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3800 } 3801 3802 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3803 // Loop the indices for the insertvalue instruction in parallel with the 3804 // requested indices 3805 const unsigned *req_idx = idx_range.begin(); 3806 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3807 i != e; ++i, ++req_idx) { 3808 if (req_idx == idx_range.end()) { 3809 // We can't handle this without inserting insertvalues 3810 if (!InsertBefore) 3811 return nullptr; 3812 3813 // The requested index identifies a part of a nested aggregate. Handle 3814 // this specially. For example, 3815 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3816 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3817 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3818 // This can be changed into 3819 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3820 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3821 // which allows the unused 0,0 element from the nested struct to be 3822 // removed. 3823 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3824 InsertBefore); 3825 } 3826 3827 // This insert value inserts something else than what we are looking for. 3828 // See if the (aggregate) value inserted into has the value we are 3829 // looking for, then. 3830 if (*req_idx != *i) 3831 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3832 InsertBefore); 3833 } 3834 // If we end up here, the indices of the insertvalue match with those 3835 // requested (though possibly only partially). Now we recursively look at 3836 // the inserted value, passing any remaining indices. 3837 return FindInsertedValue(I->getInsertedValueOperand(), 3838 makeArrayRef(req_idx, idx_range.end()), 3839 InsertBefore); 3840 } 3841 3842 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3843 // If we're extracting a value from an aggregate that was extracted from 3844 // something else, we can extract from that something else directly instead. 3845 // However, we will need to chain I's indices with the requested indices. 3846 3847 // Calculate the number of indices required 3848 unsigned size = I->getNumIndices() + idx_range.size(); 3849 // Allocate some space to put the new indices in 3850 SmallVector<unsigned, 5> Idxs; 3851 Idxs.reserve(size); 3852 // Add indices from the extract value instruction 3853 Idxs.append(I->idx_begin(), I->idx_end()); 3854 3855 // Add requested indices 3856 Idxs.append(idx_range.begin(), idx_range.end()); 3857 3858 assert(Idxs.size() == size 3859 && "Number of indices added not correct?"); 3860 3861 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3862 } 3863 // Otherwise, we don't know (such as, extracting from a function return value 3864 // or load instruction) 3865 return nullptr; 3866 } 3867 3868 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3869 unsigned CharSize) { 3870 // Make sure the GEP has exactly three arguments. 3871 if (GEP->getNumOperands() != 3) 3872 return false; 3873 3874 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3875 // CharSize. 3876 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3877 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3878 return false; 3879 3880 // Check to make sure that the first operand of the GEP is an integer and 3881 // has value 0 so that we are sure we're indexing into the initializer. 3882 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3883 if (!FirstIdx || !FirstIdx->isZero()) 3884 return false; 3885 3886 return true; 3887 } 3888 3889 bool llvm::getConstantDataArrayInfo(const Value *V, 3890 ConstantDataArraySlice &Slice, 3891 unsigned ElementSize, uint64_t Offset) { 3892 assert(V); 3893 3894 // Look through bitcast instructions and geps. 3895 V = V->stripPointerCasts(); 3896 3897 // If the value is a GEP instruction or constant expression, treat it as an 3898 // offset. 3899 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3900 // The GEP operator should be based on a pointer to string constant, and is 3901 // indexing into the string constant. 3902 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3903 return false; 3904 3905 // If the second index isn't a ConstantInt, then this is a variable index 3906 // into the array. If this occurs, we can't say anything meaningful about 3907 // the string. 3908 uint64_t StartIdx = 0; 3909 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3910 StartIdx = CI->getZExtValue(); 3911 else 3912 return false; 3913 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3914 StartIdx + Offset); 3915 } 3916 3917 // The GEP instruction, constant or instruction, must reference a global 3918 // variable that is a constant and is initialized. The referenced constant 3919 // initializer is the array that we'll use for optimization. 3920 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3921 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3922 return false; 3923 3924 const ConstantDataArray *Array; 3925 ArrayType *ArrayTy; 3926 if (GV->getInitializer()->isNullValue()) { 3927 Type *GVTy = GV->getValueType(); 3928 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3929 // A zeroinitializer for the array; there is no ConstantDataArray. 3930 Array = nullptr; 3931 } else { 3932 const DataLayout &DL = GV->getParent()->getDataLayout(); 3933 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3934 uint64_t Length = SizeInBytes / (ElementSize / 8); 3935 if (Length <= Offset) 3936 return false; 3937 3938 Slice.Array = nullptr; 3939 Slice.Offset = 0; 3940 Slice.Length = Length - Offset; 3941 return true; 3942 } 3943 } else { 3944 // This must be a ConstantDataArray. 3945 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3946 if (!Array) 3947 return false; 3948 ArrayTy = Array->getType(); 3949 } 3950 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3951 return false; 3952 3953 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3954 if (Offset > NumElts) 3955 return false; 3956 3957 Slice.Array = Array; 3958 Slice.Offset = Offset; 3959 Slice.Length = NumElts - Offset; 3960 return true; 3961 } 3962 3963 /// This function computes the length of a null-terminated C string pointed to 3964 /// by V. If successful, it returns true and returns the string in Str. 3965 /// If unsuccessful, it returns false. 3966 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3967 uint64_t Offset, bool TrimAtNul) { 3968 ConstantDataArraySlice Slice; 3969 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3970 return false; 3971 3972 if (Slice.Array == nullptr) { 3973 if (TrimAtNul) { 3974 Str = StringRef(); 3975 return true; 3976 } 3977 if (Slice.Length == 1) { 3978 Str = StringRef("", 1); 3979 return true; 3980 } 3981 // We cannot instantiate a StringRef as we do not have an appropriate string 3982 // of 0s at hand. 3983 return false; 3984 } 3985 3986 // Start out with the entire array in the StringRef. 3987 Str = Slice.Array->getAsString(); 3988 // Skip over 'offset' bytes. 3989 Str = Str.substr(Slice.Offset); 3990 3991 if (TrimAtNul) { 3992 // Trim off the \0 and anything after it. If the array is not nul 3993 // terminated, we just return the whole end of string. The client may know 3994 // some other way that the string is length-bound. 3995 Str = Str.substr(0, Str.find('\0')); 3996 } 3997 return true; 3998 } 3999 4000 // These next two are very similar to the above, but also look through PHI 4001 // nodes. 4002 // TODO: See if we can integrate these two together. 4003 4004 /// If we can compute the length of the string pointed to by 4005 /// the specified pointer, return 'len+1'. If we can't, return 0. 4006 static uint64_t GetStringLengthH(const Value *V, 4007 SmallPtrSetImpl<const PHINode*> &PHIs, 4008 unsigned CharSize) { 4009 // Look through noop bitcast instructions. 4010 V = V->stripPointerCasts(); 4011 4012 // If this is a PHI node, there are two cases: either we have already seen it 4013 // or we haven't. 4014 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4015 if (!PHIs.insert(PN).second) 4016 return ~0ULL; // already in the set. 4017 4018 // If it was new, see if all the input strings are the same length. 4019 uint64_t LenSoFar = ~0ULL; 4020 for (Value *IncValue : PN->incoming_values()) { 4021 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4022 if (Len == 0) return 0; // Unknown length -> unknown. 4023 4024 if (Len == ~0ULL) continue; 4025 4026 if (Len != LenSoFar && LenSoFar != ~0ULL) 4027 return 0; // Disagree -> unknown. 4028 LenSoFar = Len; 4029 } 4030 4031 // Success, all agree. 4032 return LenSoFar; 4033 } 4034 4035 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4036 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4037 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4038 if (Len1 == 0) return 0; 4039 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4040 if (Len2 == 0) return 0; 4041 if (Len1 == ~0ULL) return Len2; 4042 if (Len2 == ~0ULL) return Len1; 4043 if (Len1 != Len2) return 0; 4044 return Len1; 4045 } 4046 4047 // Otherwise, see if we can read the string. 4048 ConstantDataArraySlice Slice; 4049 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4050 return 0; 4051 4052 if (Slice.Array == nullptr) 4053 return 1; 4054 4055 // Search for nul characters 4056 unsigned NullIndex = 0; 4057 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4058 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4059 break; 4060 } 4061 4062 return NullIndex + 1; 4063 } 4064 4065 /// If we can compute the length of the string pointed to by 4066 /// the specified pointer, return 'len+1'. If we can't, return 0. 4067 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4068 if (!V->getType()->isPointerTy()) 4069 return 0; 4070 4071 SmallPtrSet<const PHINode*, 32> PHIs; 4072 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4073 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4074 // an empty string as a length. 4075 return Len == ~0ULL ? 1 : Len; 4076 } 4077 4078 const Value * 4079 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4080 bool MustPreserveNullness) { 4081 assert(Call && 4082 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4083 if (const Value *RV = Call->getReturnedArgOperand()) 4084 return RV; 4085 // This can be used only as a aliasing property. 4086 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4087 Call, MustPreserveNullness)) 4088 return Call->getArgOperand(0); 4089 return nullptr; 4090 } 4091 4092 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4093 const CallBase *Call, bool MustPreserveNullness) { 4094 switch (Call->getIntrinsicID()) { 4095 case Intrinsic::launder_invariant_group: 4096 case Intrinsic::strip_invariant_group: 4097 case Intrinsic::aarch64_irg: 4098 case Intrinsic::aarch64_tagp: 4099 return true; 4100 case Intrinsic::ptrmask: 4101 return !MustPreserveNullness; 4102 default: 4103 return false; 4104 } 4105 } 4106 4107 /// \p PN defines a loop-variant pointer to an object. Check if the 4108 /// previous iteration of the loop was referring to the same object as \p PN. 4109 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4110 const LoopInfo *LI) { 4111 // Find the loop-defined value. 4112 Loop *L = LI->getLoopFor(PN->getParent()); 4113 if (PN->getNumIncomingValues() != 2) 4114 return true; 4115 4116 // Find the value from previous iteration. 4117 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4118 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4119 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4120 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4121 return true; 4122 4123 // If a new pointer is loaded in the loop, the pointer references a different 4124 // object in every iteration. E.g.: 4125 // for (i) 4126 // int *p = a[i]; 4127 // ... 4128 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4129 if (!L->isLoopInvariant(Load->getPointerOperand())) 4130 return false; 4131 return true; 4132 } 4133 4134 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4135 if (!V->getType()->isPointerTy()) 4136 return V; 4137 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4138 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4139 V = GEP->getPointerOperand(); 4140 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4141 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4142 V = cast<Operator>(V)->getOperand(0); 4143 if (!V->getType()->isPointerTy()) 4144 return V; 4145 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4146 if (GA->isInterposable()) 4147 return V; 4148 V = GA->getAliasee(); 4149 } else { 4150 if (auto *PHI = dyn_cast<PHINode>(V)) { 4151 // Look through single-arg phi nodes created by LCSSA. 4152 if (PHI->getNumIncomingValues() == 1) { 4153 V = PHI->getIncomingValue(0); 4154 continue; 4155 } 4156 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4157 // CaptureTracking can know about special capturing properties of some 4158 // intrinsics like launder.invariant.group, that can't be expressed with 4159 // the attributes, but have properties like returning aliasing pointer. 4160 // Because some analysis may assume that nocaptured pointer is not 4161 // returned from some special intrinsic (because function would have to 4162 // be marked with returns attribute), it is crucial to use this function 4163 // because it should be in sync with CaptureTracking. Not using it may 4164 // cause weird miscompilations where 2 aliasing pointers are assumed to 4165 // noalias. 4166 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4167 V = RP; 4168 continue; 4169 } 4170 } 4171 4172 return V; 4173 } 4174 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4175 } 4176 return V; 4177 } 4178 4179 void llvm::getUnderlyingObjects(const Value *V, 4180 SmallVectorImpl<const Value *> &Objects, 4181 LoopInfo *LI, unsigned MaxLookup) { 4182 SmallPtrSet<const Value *, 4> Visited; 4183 SmallVector<const Value *, 4> Worklist; 4184 Worklist.push_back(V); 4185 do { 4186 const Value *P = Worklist.pop_back_val(); 4187 P = getUnderlyingObject(P, MaxLookup); 4188 4189 if (!Visited.insert(P).second) 4190 continue; 4191 4192 if (auto *SI = dyn_cast<SelectInst>(P)) { 4193 Worklist.push_back(SI->getTrueValue()); 4194 Worklist.push_back(SI->getFalseValue()); 4195 continue; 4196 } 4197 4198 if (auto *PN = dyn_cast<PHINode>(P)) { 4199 // If this PHI changes the underlying object in every iteration of the 4200 // loop, don't look through it. Consider: 4201 // int **A; 4202 // for (i) { 4203 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4204 // Curr = A[i]; 4205 // *Prev, *Curr; 4206 // 4207 // Prev is tracking Curr one iteration behind so they refer to different 4208 // underlying objects. 4209 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4210 isSameUnderlyingObjectInLoop(PN, LI)) 4211 for (Value *IncValue : PN->incoming_values()) 4212 Worklist.push_back(IncValue); 4213 continue; 4214 } 4215 4216 Objects.push_back(P); 4217 } while (!Worklist.empty()); 4218 } 4219 4220 /// This is the function that does the work of looking through basic 4221 /// ptrtoint+arithmetic+inttoptr sequences. 4222 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4223 do { 4224 if (const Operator *U = dyn_cast<Operator>(V)) { 4225 // If we find a ptrtoint, we can transfer control back to the 4226 // regular getUnderlyingObjectFromInt. 4227 if (U->getOpcode() == Instruction::PtrToInt) 4228 return U->getOperand(0); 4229 // If we find an add of a constant, a multiplied value, or a phi, it's 4230 // likely that the other operand will lead us to the base 4231 // object. We don't have to worry about the case where the 4232 // object address is somehow being computed by the multiply, 4233 // because our callers only care when the result is an 4234 // identifiable object. 4235 if (U->getOpcode() != Instruction::Add || 4236 (!isa<ConstantInt>(U->getOperand(1)) && 4237 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4238 !isa<PHINode>(U->getOperand(1)))) 4239 return V; 4240 V = U->getOperand(0); 4241 } else { 4242 return V; 4243 } 4244 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4245 } while (true); 4246 } 4247 4248 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4249 /// ptrtoint+arithmetic+inttoptr sequences. 4250 /// It returns false if unidentified object is found in getUnderlyingObjects. 4251 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4252 SmallVectorImpl<Value *> &Objects) { 4253 SmallPtrSet<const Value *, 16> Visited; 4254 SmallVector<const Value *, 4> Working(1, V); 4255 do { 4256 V = Working.pop_back_val(); 4257 4258 SmallVector<const Value *, 4> Objs; 4259 getUnderlyingObjects(V, Objs); 4260 4261 for (const Value *V : Objs) { 4262 if (!Visited.insert(V).second) 4263 continue; 4264 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4265 const Value *O = 4266 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4267 if (O->getType()->isPointerTy()) { 4268 Working.push_back(O); 4269 continue; 4270 } 4271 } 4272 // If getUnderlyingObjects fails to find an identifiable object, 4273 // getUnderlyingObjectsForCodeGen also fails for safety. 4274 if (!isIdentifiedObject(V)) { 4275 Objects.clear(); 4276 return false; 4277 } 4278 Objects.push_back(const_cast<Value *>(V)); 4279 } 4280 } while (!Working.empty()); 4281 return true; 4282 } 4283 4284 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4285 AllocaInst *Result = nullptr; 4286 SmallPtrSet<Value *, 4> Visited; 4287 SmallVector<Value *, 4> Worklist; 4288 4289 auto AddWork = [&](Value *V) { 4290 if (Visited.insert(V).second) 4291 Worklist.push_back(V); 4292 }; 4293 4294 AddWork(V); 4295 do { 4296 V = Worklist.pop_back_val(); 4297 assert(Visited.count(V)); 4298 4299 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4300 if (Result && Result != AI) 4301 return nullptr; 4302 Result = AI; 4303 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4304 AddWork(CI->getOperand(0)); 4305 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4306 for (Value *IncValue : PN->incoming_values()) 4307 AddWork(IncValue); 4308 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4309 AddWork(SI->getTrueValue()); 4310 AddWork(SI->getFalseValue()); 4311 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4312 if (OffsetZero && !GEP->hasAllZeroIndices()) 4313 return nullptr; 4314 AddWork(GEP->getPointerOperand()); 4315 } else { 4316 return nullptr; 4317 } 4318 } while (!Worklist.empty()); 4319 4320 return Result; 4321 } 4322 4323 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4324 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4325 for (const User *U : V->users()) { 4326 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4327 if (!II) 4328 return false; 4329 4330 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4331 continue; 4332 4333 if (AllowDroppable && II->isDroppable()) 4334 continue; 4335 4336 return false; 4337 } 4338 return true; 4339 } 4340 4341 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4342 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4343 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4344 } 4345 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4346 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4347 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4348 } 4349 4350 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4351 if (!LI.isUnordered()) 4352 return true; 4353 const Function &F = *LI.getFunction(); 4354 // Speculative load may create a race that did not exist in the source. 4355 return F.hasFnAttribute(Attribute::SanitizeThread) || 4356 // Speculative load may load data from dirty regions. 4357 F.hasFnAttribute(Attribute::SanitizeAddress) || 4358 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4359 } 4360 4361 4362 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4363 const Instruction *CtxI, 4364 const DominatorTree *DT) { 4365 const Operator *Inst = dyn_cast<Operator>(V); 4366 if (!Inst) 4367 return false; 4368 4369 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4370 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4371 if (C->canTrap()) 4372 return false; 4373 4374 switch (Inst->getOpcode()) { 4375 default: 4376 return true; 4377 case Instruction::UDiv: 4378 case Instruction::URem: { 4379 // x / y is undefined if y == 0. 4380 const APInt *V; 4381 if (match(Inst->getOperand(1), m_APInt(V))) 4382 return *V != 0; 4383 return false; 4384 } 4385 case Instruction::SDiv: 4386 case Instruction::SRem: { 4387 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4388 const APInt *Numerator, *Denominator; 4389 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4390 return false; 4391 // We cannot hoist this division if the denominator is 0. 4392 if (*Denominator == 0) 4393 return false; 4394 // It's safe to hoist if the denominator is not 0 or -1. 4395 if (!Denominator->isAllOnesValue()) 4396 return true; 4397 // At this point we know that the denominator is -1. It is safe to hoist as 4398 // long we know that the numerator is not INT_MIN. 4399 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4400 return !Numerator->isMinSignedValue(); 4401 // The numerator *might* be MinSignedValue. 4402 return false; 4403 } 4404 case Instruction::Load: { 4405 const LoadInst *LI = cast<LoadInst>(Inst); 4406 if (mustSuppressSpeculation(*LI)) 4407 return false; 4408 const DataLayout &DL = LI->getModule()->getDataLayout(); 4409 return isDereferenceableAndAlignedPointer( 4410 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4411 DL, CtxI, DT); 4412 } 4413 case Instruction::Call: { 4414 auto *CI = cast<const CallInst>(Inst); 4415 const Function *Callee = CI->getCalledFunction(); 4416 4417 // The called function could have undefined behavior or side-effects, even 4418 // if marked readnone nounwind. 4419 return Callee && Callee->isSpeculatable(); 4420 } 4421 case Instruction::VAArg: 4422 case Instruction::Alloca: 4423 case Instruction::Invoke: 4424 case Instruction::CallBr: 4425 case Instruction::PHI: 4426 case Instruction::Store: 4427 case Instruction::Ret: 4428 case Instruction::Br: 4429 case Instruction::IndirectBr: 4430 case Instruction::Switch: 4431 case Instruction::Unreachable: 4432 case Instruction::Fence: 4433 case Instruction::AtomicRMW: 4434 case Instruction::AtomicCmpXchg: 4435 case Instruction::LandingPad: 4436 case Instruction::Resume: 4437 case Instruction::CatchSwitch: 4438 case Instruction::CatchPad: 4439 case Instruction::CatchRet: 4440 case Instruction::CleanupPad: 4441 case Instruction::CleanupRet: 4442 return false; // Misc instructions which have effects 4443 } 4444 } 4445 4446 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4447 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4448 } 4449 4450 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4451 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4452 switch (OR) { 4453 case ConstantRange::OverflowResult::MayOverflow: 4454 return OverflowResult::MayOverflow; 4455 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4456 return OverflowResult::AlwaysOverflowsLow; 4457 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4458 return OverflowResult::AlwaysOverflowsHigh; 4459 case ConstantRange::OverflowResult::NeverOverflows: 4460 return OverflowResult::NeverOverflows; 4461 } 4462 llvm_unreachable("Unknown OverflowResult"); 4463 } 4464 4465 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4466 static ConstantRange computeConstantRangeIncludingKnownBits( 4467 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4468 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4469 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4470 KnownBits Known = computeKnownBits( 4471 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4472 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4473 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4474 ConstantRange::PreferredRangeType RangeType = 4475 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4476 return CR1.intersectWith(CR2, RangeType); 4477 } 4478 4479 OverflowResult llvm::computeOverflowForUnsignedMul( 4480 const Value *LHS, const Value *RHS, const DataLayout &DL, 4481 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4482 bool UseInstrInfo) { 4483 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4484 nullptr, UseInstrInfo); 4485 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4486 nullptr, UseInstrInfo); 4487 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4488 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4489 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4490 } 4491 4492 OverflowResult 4493 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4494 const DataLayout &DL, AssumptionCache *AC, 4495 const Instruction *CxtI, 4496 const DominatorTree *DT, bool UseInstrInfo) { 4497 // Multiplying n * m significant bits yields a result of n + m significant 4498 // bits. If the total number of significant bits does not exceed the 4499 // result bit width (minus 1), there is no overflow. 4500 // This means if we have enough leading sign bits in the operands 4501 // we can guarantee that the result does not overflow. 4502 // Ref: "Hacker's Delight" by Henry Warren 4503 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4504 4505 // Note that underestimating the number of sign bits gives a more 4506 // conservative answer. 4507 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4508 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4509 4510 // First handle the easy case: if we have enough sign bits there's 4511 // definitely no overflow. 4512 if (SignBits > BitWidth + 1) 4513 return OverflowResult::NeverOverflows; 4514 4515 // There are two ambiguous cases where there can be no overflow: 4516 // SignBits == BitWidth + 1 and 4517 // SignBits == BitWidth 4518 // The second case is difficult to check, therefore we only handle the 4519 // first case. 4520 if (SignBits == BitWidth + 1) { 4521 // It overflows only when both arguments are negative and the true 4522 // product is exactly the minimum negative number. 4523 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4524 // For simplicity we just check if at least one side is not negative. 4525 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4526 nullptr, UseInstrInfo); 4527 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4528 nullptr, UseInstrInfo); 4529 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4530 return OverflowResult::NeverOverflows; 4531 } 4532 return OverflowResult::MayOverflow; 4533 } 4534 4535 OverflowResult llvm::computeOverflowForUnsignedAdd( 4536 const Value *LHS, const Value *RHS, const DataLayout &DL, 4537 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4538 bool UseInstrInfo) { 4539 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4540 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4541 nullptr, UseInstrInfo); 4542 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4543 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4544 nullptr, UseInstrInfo); 4545 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4546 } 4547 4548 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4549 const Value *RHS, 4550 const AddOperator *Add, 4551 const DataLayout &DL, 4552 AssumptionCache *AC, 4553 const Instruction *CxtI, 4554 const DominatorTree *DT) { 4555 if (Add && Add->hasNoSignedWrap()) { 4556 return OverflowResult::NeverOverflows; 4557 } 4558 4559 // If LHS and RHS each have at least two sign bits, the addition will look 4560 // like 4561 // 4562 // XX..... + 4563 // YY..... 4564 // 4565 // If the carry into the most significant position is 0, X and Y can't both 4566 // be 1 and therefore the carry out of the addition is also 0. 4567 // 4568 // If the carry into the most significant position is 1, X and Y can't both 4569 // be 0 and therefore the carry out of the addition is also 1. 4570 // 4571 // Since the carry into the most significant position is always equal to 4572 // the carry out of the addition, there is no signed overflow. 4573 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4574 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4575 return OverflowResult::NeverOverflows; 4576 4577 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4578 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4579 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4580 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4581 OverflowResult OR = 4582 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4583 if (OR != OverflowResult::MayOverflow) 4584 return OR; 4585 4586 // The remaining code needs Add to be available. Early returns if not so. 4587 if (!Add) 4588 return OverflowResult::MayOverflow; 4589 4590 // If the sign of Add is the same as at least one of the operands, this add 4591 // CANNOT overflow. If this can be determined from the known bits of the 4592 // operands the above signedAddMayOverflow() check will have already done so. 4593 // The only other way to improve on the known bits is from an assumption, so 4594 // call computeKnownBitsFromAssume() directly. 4595 bool LHSOrRHSKnownNonNegative = 4596 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4597 bool LHSOrRHSKnownNegative = 4598 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4599 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4600 KnownBits AddKnown(LHSRange.getBitWidth()); 4601 computeKnownBitsFromAssume( 4602 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4603 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4604 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4605 return OverflowResult::NeverOverflows; 4606 } 4607 4608 return OverflowResult::MayOverflow; 4609 } 4610 4611 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4612 const Value *RHS, 4613 const DataLayout &DL, 4614 AssumptionCache *AC, 4615 const Instruction *CxtI, 4616 const DominatorTree *DT) { 4617 // Checking for conditions implied by dominating conditions may be expensive. 4618 // Limit it to usub_with_overflow calls for now. 4619 if (match(CxtI, 4620 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4621 if (auto C = 4622 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4623 if (*C) 4624 return OverflowResult::NeverOverflows; 4625 return OverflowResult::AlwaysOverflowsLow; 4626 } 4627 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4628 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4629 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4630 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4631 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4632 } 4633 4634 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4635 const Value *RHS, 4636 const DataLayout &DL, 4637 AssumptionCache *AC, 4638 const Instruction *CxtI, 4639 const DominatorTree *DT) { 4640 // If LHS and RHS each have at least two sign bits, the subtraction 4641 // cannot overflow. 4642 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4643 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4644 return OverflowResult::NeverOverflows; 4645 4646 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4647 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4648 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4649 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4650 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4651 } 4652 4653 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4654 const DominatorTree &DT) { 4655 SmallVector<const BranchInst *, 2> GuardingBranches; 4656 SmallVector<const ExtractValueInst *, 2> Results; 4657 4658 for (const User *U : WO->users()) { 4659 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4660 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4661 4662 if (EVI->getIndices()[0] == 0) 4663 Results.push_back(EVI); 4664 else { 4665 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4666 4667 for (const auto *U : EVI->users()) 4668 if (const auto *B = dyn_cast<BranchInst>(U)) { 4669 assert(B->isConditional() && "How else is it using an i1?"); 4670 GuardingBranches.push_back(B); 4671 } 4672 } 4673 } else { 4674 // We are using the aggregate directly in a way we don't want to analyze 4675 // here (storing it to a global, say). 4676 return false; 4677 } 4678 } 4679 4680 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4681 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4682 if (!NoWrapEdge.isSingleEdge()) 4683 return false; 4684 4685 // Check if all users of the add are provably no-wrap. 4686 for (const auto *Result : Results) { 4687 // If the extractvalue itself is not executed on overflow, the we don't 4688 // need to check each use separately, since domination is transitive. 4689 if (DT.dominates(NoWrapEdge, Result->getParent())) 4690 continue; 4691 4692 for (auto &RU : Result->uses()) 4693 if (!DT.dominates(NoWrapEdge, RU)) 4694 return false; 4695 } 4696 4697 return true; 4698 }; 4699 4700 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4701 } 4702 4703 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4704 // See whether I has flags that may create poison 4705 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4706 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4707 return true; 4708 } 4709 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4710 if (ExactOp->isExact()) 4711 return true; 4712 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4713 auto FMF = FP->getFastMathFlags(); 4714 if (FMF.noNaNs() || FMF.noInfs()) 4715 return true; 4716 } 4717 4718 unsigned Opcode = Op->getOpcode(); 4719 4720 // Check whether opcode is a poison/undef-generating operation 4721 switch (Opcode) { 4722 case Instruction::Shl: 4723 case Instruction::AShr: 4724 case Instruction::LShr: { 4725 // Shifts return poison if shiftwidth is larger than the bitwidth. 4726 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4727 SmallVector<Constant *, 4> ShiftAmounts; 4728 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4729 unsigned NumElts = FVTy->getNumElements(); 4730 for (unsigned i = 0; i < NumElts; ++i) 4731 ShiftAmounts.push_back(C->getAggregateElement(i)); 4732 } else if (isa<ScalableVectorType>(C->getType())) 4733 return true; // Can't tell, just return true to be safe 4734 else 4735 ShiftAmounts.push_back(C); 4736 4737 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4738 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4739 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4740 }); 4741 return !Safe; 4742 } 4743 return true; 4744 } 4745 case Instruction::FPToSI: 4746 case Instruction::FPToUI: 4747 // fptosi/ui yields poison if the resulting value does not fit in the 4748 // destination type. 4749 return true; 4750 case Instruction::Call: 4751 case Instruction::CallBr: 4752 case Instruction::Invoke: { 4753 const auto *CB = cast<CallBase>(Op); 4754 return !CB->hasRetAttr(Attribute::NoUndef); 4755 } 4756 case Instruction::InsertElement: 4757 case Instruction::ExtractElement: { 4758 // If index exceeds the length of the vector, it returns poison 4759 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4760 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4761 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4762 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4763 return true; 4764 return false; 4765 } 4766 case Instruction::ShuffleVector: { 4767 // shufflevector may return undef. 4768 if (PoisonOnly) 4769 return false; 4770 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4771 ? cast<ConstantExpr>(Op)->getShuffleMask() 4772 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4773 return is_contained(Mask, UndefMaskElem); 4774 } 4775 case Instruction::FNeg: 4776 case Instruction::PHI: 4777 case Instruction::Select: 4778 case Instruction::URem: 4779 case Instruction::SRem: 4780 case Instruction::ExtractValue: 4781 case Instruction::InsertValue: 4782 case Instruction::Freeze: 4783 case Instruction::ICmp: 4784 case Instruction::FCmp: 4785 return false; 4786 case Instruction::GetElementPtr: { 4787 const auto *GEP = cast<GEPOperator>(Op); 4788 return GEP->isInBounds(); 4789 } 4790 default: { 4791 const auto *CE = dyn_cast<ConstantExpr>(Op); 4792 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4793 return false; 4794 else if (Instruction::isBinaryOp(Opcode)) 4795 return false; 4796 // Be conservative and return true. 4797 return true; 4798 } 4799 } 4800 } 4801 4802 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4803 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4804 } 4805 4806 bool llvm::canCreatePoison(const Operator *Op) { 4807 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4808 } 4809 4810 static bool directlyImpliesPoison(const Value *ValAssumedPoison, 4811 const Value *V, unsigned Depth) { 4812 if (ValAssumedPoison == V) 4813 return true; 4814 4815 const unsigned MaxDepth = 2; 4816 if (Depth >= MaxDepth) 4817 return false; 4818 4819 const auto *I = dyn_cast<Instruction>(V); 4820 if (I && propagatesPoison(cast<Operator>(I))) { 4821 return any_of(I->operands(), [=](const Value *Op) { 4822 return directlyImpliesPoison(ValAssumedPoison, Op, Depth + 1); 4823 }); 4824 } 4825 return false; 4826 } 4827 4828 static bool impliesPoison(const Value *ValAssumedPoison, const Value *V, 4829 unsigned Depth) { 4830 if (isGuaranteedNotToBeUndefOrPoison(ValAssumedPoison)) 4831 return true; 4832 4833 if (directlyImpliesPoison(ValAssumedPoison, V, /* Depth */ 0)) 4834 return true; 4835 4836 const unsigned MaxDepth = 2; 4837 if (Depth >= MaxDepth) 4838 return false; 4839 4840 const auto *I = dyn_cast<Instruction>(ValAssumedPoison); 4841 if (I && !canCreatePoison(cast<Operator>(I))) { 4842 return all_of(I->operands(), [=](const Value *Op) { 4843 return impliesPoison(Op, V, Depth + 1); 4844 }); 4845 } 4846 return false; 4847 } 4848 4849 bool llvm::impliesPoison(const Value *ValAssumedPoison, const Value *V) { 4850 return ::impliesPoison(ValAssumedPoison, V, /* Depth */ 0); 4851 } 4852 4853 static bool programUndefinedIfUndefOrPoison(const Value *V, 4854 bool PoisonOnly); 4855 4856 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4857 AssumptionCache *AC, 4858 const Instruction *CtxI, 4859 const DominatorTree *DT, 4860 unsigned Depth, bool PoisonOnly) { 4861 if (Depth >= MaxAnalysisRecursionDepth) 4862 return false; 4863 4864 if (isa<MetadataAsValue>(V)) 4865 return false; 4866 4867 if (const auto *A = dyn_cast<Argument>(V)) { 4868 if (A->hasAttribute(Attribute::NoUndef)) 4869 return true; 4870 } 4871 4872 if (auto *C = dyn_cast<Constant>(V)) { 4873 if (isa<UndefValue>(C)) 4874 return PoisonOnly && !isa<PoisonValue>(C); 4875 4876 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4877 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4878 return true; 4879 4880 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4881 return (PoisonOnly ? !C->containsPoisonElement() 4882 : !C->containsUndefOrPoisonElement()) && 4883 !C->containsConstantExpression(); 4884 } 4885 4886 // Strip cast operations from a pointer value. 4887 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4888 // inbounds with zero offset. To guarantee that the result isn't poison, the 4889 // stripped pointer is checked as it has to be pointing into an allocated 4890 // object or be null `null` to ensure `inbounds` getelement pointers with a 4891 // zero offset could not produce poison. 4892 // It can strip off addrspacecast that do not change bit representation as 4893 // well. We believe that such addrspacecast is equivalent to no-op. 4894 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4895 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4896 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4897 return true; 4898 4899 auto OpCheck = [&](const Value *V) { 4900 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4901 PoisonOnly); 4902 }; 4903 4904 if (auto *Opr = dyn_cast<Operator>(V)) { 4905 // If the value is a freeze instruction, then it can never 4906 // be undef or poison. 4907 if (isa<FreezeInst>(V)) 4908 return true; 4909 4910 if (const auto *CB = dyn_cast<CallBase>(V)) { 4911 if (CB->hasRetAttr(Attribute::NoUndef)) 4912 return true; 4913 } 4914 4915 if (const auto *PN = dyn_cast<PHINode>(V)) { 4916 unsigned Num = PN->getNumIncomingValues(); 4917 bool IsWellDefined = true; 4918 for (unsigned i = 0; i < Num; ++i) { 4919 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4920 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4921 DT, Depth + 1, PoisonOnly)) { 4922 IsWellDefined = false; 4923 break; 4924 } 4925 } 4926 if (IsWellDefined) 4927 return true; 4928 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4929 return true; 4930 } 4931 4932 if (auto *I = dyn_cast<LoadInst>(V)) 4933 if (I->getMetadata(LLVMContext::MD_noundef)) 4934 return true; 4935 4936 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4937 return true; 4938 4939 // CxtI may be null or a cloned instruction. 4940 if (!CtxI || !CtxI->getParent() || !DT) 4941 return false; 4942 4943 auto *DNode = DT->getNode(CtxI->getParent()); 4944 if (!DNode) 4945 // Unreachable block 4946 return false; 4947 4948 // If V is used as a branch condition before reaching CtxI, V cannot be 4949 // undef or poison. 4950 // br V, BB1, BB2 4951 // BB1: 4952 // CtxI ; V cannot be undef or poison here 4953 auto *Dominator = DNode->getIDom(); 4954 while (Dominator) { 4955 auto *TI = Dominator->getBlock()->getTerminator(); 4956 4957 Value *Cond = nullptr; 4958 if (auto BI = dyn_cast<BranchInst>(TI)) { 4959 if (BI->isConditional()) 4960 Cond = BI->getCondition(); 4961 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4962 Cond = SI->getCondition(); 4963 } 4964 4965 if (Cond) { 4966 if (Cond == V) 4967 return true; 4968 else if (PoisonOnly && isa<Operator>(Cond)) { 4969 // For poison, we can analyze further 4970 auto *Opr = cast<Operator>(Cond); 4971 if (propagatesPoison(Opr) && is_contained(Opr->operand_values(), V)) 4972 return true; 4973 } 4974 } 4975 4976 Dominator = Dominator->getIDom(); 4977 } 4978 4979 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4980 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4981 return true; 4982 4983 return false; 4984 } 4985 4986 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4987 const Instruction *CtxI, 4988 const DominatorTree *DT, 4989 unsigned Depth) { 4990 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4991 } 4992 4993 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4994 const Instruction *CtxI, 4995 const DominatorTree *DT, unsigned Depth) { 4996 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4997 } 4998 4999 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 5000 const DataLayout &DL, 5001 AssumptionCache *AC, 5002 const Instruction *CxtI, 5003 const DominatorTree *DT) { 5004 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 5005 Add, DL, AC, CxtI, DT); 5006 } 5007 5008 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 5009 const Value *RHS, 5010 const DataLayout &DL, 5011 AssumptionCache *AC, 5012 const Instruction *CxtI, 5013 const DominatorTree *DT) { 5014 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 5015 } 5016 5017 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 5018 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 5019 // of time because it's possible for another thread to interfere with it for an 5020 // arbitrary length of time, but programs aren't allowed to rely on that. 5021 5022 // If there is no successor, then execution can't transfer to it. 5023 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 5024 return !CRI->unwindsToCaller(); 5025 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 5026 return !CatchSwitch->unwindsToCaller(); 5027 if (isa<ResumeInst>(I)) 5028 return false; 5029 if (isa<ReturnInst>(I)) 5030 return false; 5031 if (isa<UnreachableInst>(I)) 5032 return false; 5033 5034 // Calls can throw, or contain an infinite loop, or kill the process. 5035 if (const auto *CB = dyn_cast<CallBase>(I)) { 5036 // Call sites that throw have implicit non-local control flow. 5037 if (!CB->doesNotThrow()) 5038 return false; 5039 5040 // A function which doens't throw and has "willreturn" attribute will 5041 // always return. 5042 if (CB->hasFnAttr(Attribute::WillReturn)) 5043 return true; 5044 5045 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5046 // etc. and thus not return. However, LLVM already assumes that 5047 // 5048 // - Thread exiting actions are modeled as writes to memory invisible to 5049 // the program. 5050 // 5051 // - Loops that don't have side effects (side effects are volatile/atomic 5052 // stores and IO) always terminate (see http://llvm.org/PR965). 5053 // Furthermore IO itself is also modeled as writes to memory invisible to 5054 // the program. 5055 // 5056 // We rely on those assumptions here, and use the memory effects of the call 5057 // target as a proxy for checking that it always returns. 5058 5059 // FIXME: This isn't aggressive enough; a call which only writes to a global 5060 // is guaranteed to return. 5061 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5062 } 5063 5064 // Other instructions return normally. 5065 return true; 5066 } 5067 5068 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5069 // TODO: This is slightly conservative for invoke instruction since exiting 5070 // via an exception *is* normal control for them. 5071 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5072 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5073 return false; 5074 return true; 5075 } 5076 5077 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5078 const Loop *L) { 5079 // The loop header is guaranteed to be executed for every iteration. 5080 // 5081 // FIXME: Relax this constraint to cover all basic blocks that are 5082 // guaranteed to be executed at every iteration. 5083 if (I->getParent() != L->getHeader()) return false; 5084 5085 for (const Instruction &LI : *L->getHeader()) { 5086 if (&LI == I) return true; 5087 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5088 } 5089 llvm_unreachable("Instruction not contained in its own parent basic block."); 5090 } 5091 5092 bool llvm::propagatesPoison(const Operator *I) { 5093 switch (I->getOpcode()) { 5094 case Instruction::Freeze: 5095 case Instruction::Select: 5096 case Instruction::PHI: 5097 case Instruction::Call: 5098 case Instruction::Invoke: 5099 return false; 5100 case Instruction::ICmp: 5101 case Instruction::FCmp: 5102 case Instruction::GetElementPtr: 5103 return true; 5104 default: 5105 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5106 return true; 5107 5108 // Be conservative and return false. 5109 return false; 5110 } 5111 } 5112 5113 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5114 SmallPtrSetImpl<const Value *> &Operands) { 5115 switch (I->getOpcode()) { 5116 case Instruction::Store: 5117 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5118 break; 5119 5120 case Instruction::Load: 5121 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5122 break; 5123 5124 case Instruction::AtomicCmpXchg: 5125 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5126 break; 5127 5128 case Instruction::AtomicRMW: 5129 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5130 break; 5131 5132 case Instruction::UDiv: 5133 case Instruction::SDiv: 5134 case Instruction::URem: 5135 case Instruction::SRem: 5136 Operands.insert(I->getOperand(1)); 5137 break; 5138 5139 case Instruction::Call: 5140 case Instruction::Invoke: { 5141 const CallBase *CB = cast<CallBase>(I); 5142 if (CB->isIndirectCall()) 5143 Operands.insert(CB->getCalledOperand()); 5144 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5145 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5146 Operands.insert(CB->getArgOperand(i)); 5147 } 5148 break; 5149 } 5150 5151 default: 5152 break; 5153 } 5154 } 5155 5156 bool llvm::mustTriggerUB(const Instruction *I, 5157 const SmallSet<const Value *, 16>& KnownPoison) { 5158 SmallPtrSet<const Value *, 4> NonPoisonOps; 5159 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5160 5161 for (const auto *V : NonPoisonOps) 5162 if (KnownPoison.count(V)) 5163 return true; 5164 5165 return false; 5166 } 5167 5168 static bool programUndefinedIfUndefOrPoison(const Value *V, 5169 bool PoisonOnly) { 5170 // We currently only look for uses of values within the same basic 5171 // block, as that makes it easier to guarantee that the uses will be 5172 // executed given that Inst is executed. 5173 // 5174 // FIXME: Expand this to consider uses beyond the same basic block. To do 5175 // this, look out for the distinction between post-dominance and strong 5176 // post-dominance. 5177 const BasicBlock *BB = nullptr; 5178 BasicBlock::const_iterator Begin; 5179 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5180 BB = Inst->getParent(); 5181 Begin = Inst->getIterator(); 5182 Begin++; 5183 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5184 BB = &Arg->getParent()->getEntryBlock(); 5185 Begin = BB->begin(); 5186 } else { 5187 return false; 5188 } 5189 5190 BasicBlock::const_iterator End = BB->end(); 5191 5192 if (!PoisonOnly) { 5193 // Be conservative & just check whether a value is passed to a noundef 5194 // argument. 5195 // Instructions that raise UB with a poison operand are well-defined 5196 // or have unclear semantics when the input is partially undef. 5197 // For example, 'udiv x, (undef | 1)' isn't UB. 5198 5199 for (auto &I : make_range(Begin, End)) { 5200 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5201 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5202 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5203 CB->getArgOperand(i) == V) 5204 return true; 5205 } 5206 } 5207 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5208 break; 5209 } 5210 return false; 5211 } 5212 5213 // Set of instructions that we have proved will yield poison if Inst 5214 // does. 5215 SmallSet<const Value *, 16> YieldsPoison; 5216 SmallSet<const BasicBlock *, 4> Visited; 5217 5218 YieldsPoison.insert(V); 5219 auto Propagate = [&](const User *User) { 5220 if (propagatesPoison(cast<Operator>(User))) 5221 YieldsPoison.insert(User); 5222 }; 5223 for_each(V->users(), Propagate); 5224 Visited.insert(BB); 5225 5226 unsigned Iter = 0; 5227 while (Iter++ < MaxAnalysisRecursionDepth) { 5228 for (auto &I : make_range(Begin, End)) { 5229 if (mustTriggerUB(&I, YieldsPoison)) 5230 return true; 5231 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5232 return false; 5233 5234 // Mark poison that propagates from I through uses of I. 5235 if (YieldsPoison.count(&I)) 5236 for_each(I.users(), Propagate); 5237 } 5238 5239 if (auto *NextBB = BB->getSingleSuccessor()) { 5240 if (Visited.insert(NextBB).second) { 5241 BB = NextBB; 5242 Begin = BB->getFirstNonPHI()->getIterator(); 5243 End = BB->end(); 5244 continue; 5245 } 5246 } 5247 5248 break; 5249 } 5250 return false; 5251 } 5252 5253 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5254 return ::programUndefinedIfUndefOrPoison(Inst, false); 5255 } 5256 5257 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5258 return ::programUndefinedIfUndefOrPoison(Inst, true); 5259 } 5260 5261 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5262 if (FMF.noNaNs()) 5263 return true; 5264 5265 if (auto *C = dyn_cast<ConstantFP>(V)) 5266 return !C->isNaN(); 5267 5268 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5269 if (!C->getElementType()->isFloatingPointTy()) 5270 return false; 5271 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5272 if (C->getElementAsAPFloat(I).isNaN()) 5273 return false; 5274 } 5275 return true; 5276 } 5277 5278 if (isa<ConstantAggregateZero>(V)) 5279 return true; 5280 5281 return false; 5282 } 5283 5284 static bool isKnownNonZero(const Value *V) { 5285 if (auto *C = dyn_cast<ConstantFP>(V)) 5286 return !C->isZero(); 5287 5288 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5289 if (!C->getElementType()->isFloatingPointTy()) 5290 return false; 5291 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5292 if (C->getElementAsAPFloat(I).isZero()) 5293 return false; 5294 } 5295 return true; 5296 } 5297 5298 return false; 5299 } 5300 5301 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5302 /// Given non-min/max outer cmp/select from the clamp pattern this 5303 /// function recognizes if it can be substitued by a "canonical" min/max 5304 /// pattern. 5305 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5306 Value *CmpLHS, Value *CmpRHS, 5307 Value *TrueVal, Value *FalseVal, 5308 Value *&LHS, Value *&RHS) { 5309 // Try to match 5310 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5311 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5312 // and return description of the outer Max/Min. 5313 5314 // First, check if select has inverse order: 5315 if (CmpRHS == FalseVal) { 5316 std::swap(TrueVal, FalseVal); 5317 Pred = CmpInst::getInversePredicate(Pred); 5318 } 5319 5320 // Assume success now. If there's no match, callers should not use these anyway. 5321 LHS = TrueVal; 5322 RHS = FalseVal; 5323 5324 const APFloat *FC1; 5325 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5326 return {SPF_UNKNOWN, SPNB_NA, false}; 5327 5328 const APFloat *FC2; 5329 switch (Pred) { 5330 case CmpInst::FCMP_OLT: 5331 case CmpInst::FCMP_OLE: 5332 case CmpInst::FCMP_ULT: 5333 case CmpInst::FCMP_ULE: 5334 if (match(FalseVal, 5335 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5336 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5337 *FC1 < *FC2) 5338 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5339 break; 5340 case CmpInst::FCMP_OGT: 5341 case CmpInst::FCMP_OGE: 5342 case CmpInst::FCMP_UGT: 5343 case CmpInst::FCMP_UGE: 5344 if (match(FalseVal, 5345 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5346 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5347 *FC1 > *FC2) 5348 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5349 break; 5350 default: 5351 break; 5352 } 5353 5354 return {SPF_UNKNOWN, SPNB_NA, false}; 5355 } 5356 5357 /// Recognize variations of: 5358 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5359 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5360 Value *CmpLHS, Value *CmpRHS, 5361 Value *TrueVal, Value *FalseVal) { 5362 // Swap the select operands and predicate to match the patterns below. 5363 if (CmpRHS != TrueVal) { 5364 Pred = ICmpInst::getSwappedPredicate(Pred); 5365 std::swap(TrueVal, FalseVal); 5366 } 5367 const APInt *C1; 5368 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5369 const APInt *C2; 5370 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5371 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5372 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5373 return {SPF_SMAX, SPNB_NA, false}; 5374 5375 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5376 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5377 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5378 return {SPF_SMIN, SPNB_NA, false}; 5379 5380 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5381 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5382 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5383 return {SPF_UMAX, SPNB_NA, false}; 5384 5385 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5386 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5387 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5388 return {SPF_UMIN, SPNB_NA, false}; 5389 } 5390 return {SPF_UNKNOWN, SPNB_NA, false}; 5391 } 5392 5393 /// Recognize variations of: 5394 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5395 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5396 Value *CmpLHS, Value *CmpRHS, 5397 Value *TVal, Value *FVal, 5398 unsigned Depth) { 5399 // TODO: Allow FP min/max with nnan/nsz. 5400 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5401 5402 Value *A = nullptr, *B = nullptr; 5403 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5404 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5405 return {SPF_UNKNOWN, SPNB_NA, false}; 5406 5407 Value *C = nullptr, *D = nullptr; 5408 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5409 if (L.Flavor != R.Flavor) 5410 return {SPF_UNKNOWN, SPNB_NA, false}; 5411 5412 // We have something like: x Pred y ? min(a, b) : min(c, d). 5413 // Try to match the compare to the min/max operations of the select operands. 5414 // First, make sure we have the right compare predicate. 5415 switch (L.Flavor) { 5416 case SPF_SMIN: 5417 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5418 Pred = ICmpInst::getSwappedPredicate(Pred); 5419 std::swap(CmpLHS, CmpRHS); 5420 } 5421 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5422 break; 5423 return {SPF_UNKNOWN, SPNB_NA, false}; 5424 case SPF_SMAX: 5425 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5426 Pred = ICmpInst::getSwappedPredicate(Pred); 5427 std::swap(CmpLHS, CmpRHS); 5428 } 5429 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5430 break; 5431 return {SPF_UNKNOWN, SPNB_NA, false}; 5432 case SPF_UMIN: 5433 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5434 Pred = ICmpInst::getSwappedPredicate(Pred); 5435 std::swap(CmpLHS, CmpRHS); 5436 } 5437 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5438 break; 5439 return {SPF_UNKNOWN, SPNB_NA, false}; 5440 case SPF_UMAX: 5441 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5442 Pred = ICmpInst::getSwappedPredicate(Pred); 5443 std::swap(CmpLHS, CmpRHS); 5444 } 5445 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5446 break; 5447 return {SPF_UNKNOWN, SPNB_NA, false}; 5448 default: 5449 return {SPF_UNKNOWN, SPNB_NA, false}; 5450 } 5451 5452 // If there is a common operand in the already matched min/max and the other 5453 // min/max operands match the compare operands (either directly or inverted), 5454 // then this is min/max of the same flavor. 5455 5456 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5457 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5458 if (D == B) { 5459 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5460 match(A, m_Not(m_Specific(CmpRHS))))) 5461 return {L.Flavor, SPNB_NA, false}; 5462 } 5463 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5464 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5465 if (C == B) { 5466 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5467 match(A, m_Not(m_Specific(CmpRHS))))) 5468 return {L.Flavor, SPNB_NA, false}; 5469 } 5470 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5471 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5472 if (D == A) { 5473 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5474 match(B, m_Not(m_Specific(CmpRHS))))) 5475 return {L.Flavor, SPNB_NA, false}; 5476 } 5477 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5478 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5479 if (C == A) { 5480 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5481 match(B, m_Not(m_Specific(CmpRHS))))) 5482 return {L.Flavor, SPNB_NA, false}; 5483 } 5484 5485 return {SPF_UNKNOWN, SPNB_NA, false}; 5486 } 5487 5488 /// If the input value is the result of a 'not' op, constant integer, or vector 5489 /// splat of a constant integer, return the bitwise-not source value. 5490 /// TODO: This could be extended to handle non-splat vector integer constants. 5491 static Value *getNotValue(Value *V) { 5492 Value *NotV; 5493 if (match(V, m_Not(m_Value(NotV)))) 5494 return NotV; 5495 5496 const APInt *C; 5497 if (match(V, m_APInt(C))) 5498 return ConstantInt::get(V->getType(), ~(*C)); 5499 5500 return nullptr; 5501 } 5502 5503 /// Match non-obvious integer minimum and maximum sequences. 5504 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5505 Value *CmpLHS, Value *CmpRHS, 5506 Value *TrueVal, Value *FalseVal, 5507 Value *&LHS, Value *&RHS, 5508 unsigned Depth) { 5509 // Assume success. If there's no match, callers should not use these anyway. 5510 LHS = TrueVal; 5511 RHS = FalseVal; 5512 5513 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5514 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5515 return SPR; 5516 5517 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5518 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5519 return SPR; 5520 5521 // Look through 'not' ops to find disguised min/max. 5522 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5523 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5524 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5525 switch (Pred) { 5526 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5527 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5528 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5529 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5530 default: break; 5531 } 5532 } 5533 5534 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5535 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5536 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5537 switch (Pred) { 5538 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5539 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5540 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5541 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5542 default: break; 5543 } 5544 } 5545 5546 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5547 return {SPF_UNKNOWN, SPNB_NA, false}; 5548 5549 // Z = X -nsw Y 5550 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5551 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5552 if (match(TrueVal, m_Zero()) && 5553 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5554 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5555 5556 // Z = X -nsw Y 5557 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5558 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5559 if (match(FalseVal, m_Zero()) && 5560 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5561 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5562 5563 const APInt *C1; 5564 if (!match(CmpRHS, m_APInt(C1))) 5565 return {SPF_UNKNOWN, SPNB_NA, false}; 5566 5567 // An unsigned min/max can be written with a signed compare. 5568 const APInt *C2; 5569 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5570 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5571 // Is the sign bit set? 5572 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5573 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5574 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5575 C2->isMaxSignedValue()) 5576 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5577 5578 // Is the sign bit clear? 5579 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5580 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5581 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5582 C2->isMinSignedValue()) 5583 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5584 } 5585 5586 return {SPF_UNKNOWN, SPNB_NA, false}; 5587 } 5588 5589 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5590 assert(X && Y && "Invalid operand"); 5591 5592 // X = sub (0, Y) || X = sub nsw (0, Y) 5593 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5594 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5595 return true; 5596 5597 // Y = sub (0, X) || Y = sub nsw (0, X) 5598 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5599 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5600 return true; 5601 5602 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5603 Value *A, *B; 5604 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5605 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5606 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5607 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5608 } 5609 5610 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5611 FastMathFlags FMF, 5612 Value *CmpLHS, Value *CmpRHS, 5613 Value *TrueVal, Value *FalseVal, 5614 Value *&LHS, Value *&RHS, 5615 unsigned Depth) { 5616 if (CmpInst::isFPPredicate(Pred)) { 5617 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5618 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5619 // purpose of identifying min/max. Disregard vector constants with undefined 5620 // elements because those can not be back-propagated for analysis. 5621 Value *OutputZeroVal = nullptr; 5622 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5623 !cast<Constant>(TrueVal)->containsUndefOrPoisonElement()) 5624 OutputZeroVal = TrueVal; 5625 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5626 !cast<Constant>(FalseVal)->containsUndefOrPoisonElement()) 5627 OutputZeroVal = FalseVal; 5628 5629 if (OutputZeroVal) { 5630 if (match(CmpLHS, m_AnyZeroFP())) 5631 CmpLHS = OutputZeroVal; 5632 if (match(CmpRHS, m_AnyZeroFP())) 5633 CmpRHS = OutputZeroVal; 5634 } 5635 } 5636 5637 LHS = CmpLHS; 5638 RHS = CmpRHS; 5639 5640 // Signed zero may return inconsistent results between implementations. 5641 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5642 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5643 // Therefore, we behave conservatively and only proceed if at least one of the 5644 // operands is known to not be zero or if we don't care about signed zero. 5645 switch (Pred) { 5646 default: break; 5647 // FIXME: Include OGT/OLT/UGT/ULT. 5648 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5649 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5650 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5651 !isKnownNonZero(CmpRHS)) 5652 return {SPF_UNKNOWN, SPNB_NA, false}; 5653 } 5654 5655 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5656 bool Ordered = false; 5657 5658 // When given one NaN and one non-NaN input: 5659 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5660 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5661 // ordered comparison fails), which could be NaN or non-NaN. 5662 // so here we discover exactly what NaN behavior is required/accepted. 5663 if (CmpInst::isFPPredicate(Pred)) { 5664 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5665 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5666 5667 if (LHSSafe && RHSSafe) { 5668 // Both operands are known non-NaN. 5669 NaNBehavior = SPNB_RETURNS_ANY; 5670 } else if (CmpInst::isOrdered(Pred)) { 5671 // An ordered comparison will return false when given a NaN, so it 5672 // returns the RHS. 5673 Ordered = true; 5674 if (LHSSafe) 5675 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5676 NaNBehavior = SPNB_RETURNS_NAN; 5677 else if (RHSSafe) 5678 NaNBehavior = SPNB_RETURNS_OTHER; 5679 else 5680 // Completely unsafe. 5681 return {SPF_UNKNOWN, SPNB_NA, false}; 5682 } else { 5683 Ordered = false; 5684 // An unordered comparison will return true when given a NaN, so it 5685 // returns the LHS. 5686 if (LHSSafe) 5687 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5688 NaNBehavior = SPNB_RETURNS_OTHER; 5689 else if (RHSSafe) 5690 NaNBehavior = SPNB_RETURNS_NAN; 5691 else 5692 // Completely unsafe. 5693 return {SPF_UNKNOWN, SPNB_NA, false}; 5694 } 5695 } 5696 5697 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5698 std::swap(CmpLHS, CmpRHS); 5699 Pred = CmpInst::getSwappedPredicate(Pred); 5700 if (NaNBehavior == SPNB_RETURNS_NAN) 5701 NaNBehavior = SPNB_RETURNS_OTHER; 5702 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5703 NaNBehavior = SPNB_RETURNS_NAN; 5704 Ordered = !Ordered; 5705 } 5706 5707 // ([if]cmp X, Y) ? X : Y 5708 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5709 switch (Pred) { 5710 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5711 case ICmpInst::ICMP_UGT: 5712 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5713 case ICmpInst::ICMP_SGT: 5714 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5715 case ICmpInst::ICMP_ULT: 5716 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5717 case ICmpInst::ICMP_SLT: 5718 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5719 case FCmpInst::FCMP_UGT: 5720 case FCmpInst::FCMP_UGE: 5721 case FCmpInst::FCMP_OGT: 5722 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5723 case FCmpInst::FCMP_ULT: 5724 case FCmpInst::FCMP_ULE: 5725 case FCmpInst::FCMP_OLT: 5726 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5727 } 5728 } 5729 5730 if (isKnownNegation(TrueVal, FalseVal)) { 5731 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5732 // match against either LHS or sext(LHS). 5733 auto MaybeSExtCmpLHS = 5734 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5735 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5736 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5737 if (match(TrueVal, MaybeSExtCmpLHS)) { 5738 // Set the return values. If the compare uses the negated value (-X >s 0), 5739 // swap the return values because the negated value is always 'RHS'. 5740 LHS = TrueVal; 5741 RHS = FalseVal; 5742 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5743 std::swap(LHS, RHS); 5744 5745 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5746 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5747 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5748 return {SPF_ABS, SPNB_NA, false}; 5749 5750 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5751 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5752 return {SPF_ABS, SPNB_NA, false}; 5753 5754 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5755 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5756 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5757 return {SPF_NABS, SPNB_NA, false}; 5758 } 5759 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5760 // Set the return values. If the compare uses the negated value (-X >s 0), 5761 // swap the return values because the negated value is always 'RHS'. 5762 LHS = FalseVal; 5763 RHS = TrueVal; 5764 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5765 std::swap(LHS, RHS); 5766 5767 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5768 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5769 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5770 return {SPF_NABS, SPNB_NA, false}; 5771 5772 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5773 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5774 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5775 return {SPF_ABS, SPNB_NA, false}; 5776 } 5777 } 5778 5779 if (CmpInst::isIntPredicate(Pred)) 5780 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5781 5782 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5783 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5784 // semantics than minNum. Be conservative in such case. 5785 if (NaNBehavior != SPNB_RETURNS_ANY || 5786 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5787 !isKnownNonZero(CmpRHS))) 5788 return {SPF_UNKNOWN, SPNB_NA, false}; 5789 5790 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5791 } 5792 5793 /// Helps to match a select pattern in case of a type mismatch. 5794 /// 5795 /// The function processes the case when type of true and false values of a 5796 /// select instruction differs from type of the cmp instruction operands because 5797 /// of a cast instruction. The function checks if it is legal to move the cast 5798 /// operation after "select". If yes, it returns the new second value of 5799 /// "select" (with the assumption that cast is moved): 5800 /// 1. As operand of cast instruction when both values of "select" are same cast 5801 /// instructions. 5802 /// 2. As restored constant (by applying reverse cast operation) when the first 5803 /// value of the "select" is a cast operation and the second value is a 5804 /// constant. 5805 /// NOTE: We return only the new second value because the first value could be 5806 /// accessed as operand of cast instruction. 5807 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5808 Instruction::CastOps *CastOp) { 5809 auto *Cast1 = dyn_cast<CastInst>(V1); 5810 if (!Cast1) 5811 return nullptr; 5812 5813 *CastOp = Cast1->getOpcode(); 5814 Type *SrcTy = Cast1->getSrcTy(); 5815 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5816 // If V1 and V2 are both the same cast from the same type, look through V1. 5817 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5818 return Cast2->getOperand(0); 5819 return nullptr; 5820 } 5821 5822 auto *C = dyn_cast<Constant>(V2); 5823 if (!C) 5824 return nullptr; 5825 5826 Constant *CastedTo = nullptr; 5827 switch (*CastOp) { 5828 case Instruction::ZExt: 5829 if (CmpI->isUnsigned()) 5830 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5831 break; 5832 case Instruction::SExt: 5833 if (CmpI->isSigned()) 5834 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5835 break; 5836 case Instruction::Trunc: 5837 Constant *CmpConst; 5838 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5839 CmpConst->getType() == SrcTy) { 5840 // Here we have the following case: 5841 // 5842 // %cond = cmp iN %x, CmpConst 5843 // %tr = trunc iN %x to iK 5844 // %narrowsel = select i1 %cond, iK %t, iK C 5845 // 5846 // We can always move trunc after select operation: 5847 // 5848 // %cond = cmp iN %x, CmpConst 5849 // %widesel = select i1 %cond, iN %x, iN CmpConst 5850 // %tr = trunc iN %widesel to iK 5851 // 5852 // Note that C could be extended in any way because we don't care about 5853 // upper bits after truncation. It can't be abs pattern, because it would 5854 // look like: 5855 // 5856 // select i1 %cond, x, -x. 5857 // 5858 // So only min/max pattern could be matched. Such match requires widened C 5859 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5860 // CmpConst == C is checked below. 5861 CastedTo = CmpConst; 5862 } else { 5863 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5864 } 5865 break; 5866 case Instruction::FPTrunc: 5867 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5868 break; 5869 case Instruction::FPExt: 5870 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5871 break; 5872 case Instruction::FPToUI: 5873 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5874 break; 5875 case Instruction::FPToSI: 5876 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5877 break; 5878 case Instruction::UIToFP: 5879 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5880 break; 5881 case Instruction::SIToFP: 5882 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5883 break; 5884 default: 5885 break; 5886 } 5887 5888 if (!CastedTo) 5889 return nullptr; 5890 5891 // Make sure the cast doesn't lose any information. 5892 Constant *CastedBack = 5893 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5894 if (CastedBack != C) 5895 return nullptr; 5896 5897 return CastedTo; 5898 } 5899 5900 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5901 Instruction::CastOps *CastOp, 5902 unsigned Depth) { 5903 if (Depth >= MaxAnalysisRecursionDepth) 5904 return {SPF_UNKNOWN, SPNB_NA, false}; 5905 5906 SelectInst *SI = dyn_cast<SelectInst>(V); 5907 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5908 5909 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5910 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5911 5912 Value *TrueVal = SI->getTrueValue(); 5913 Value *FalseVal = SI->getFalseValue(); 5914 5915 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5916 CastOp, Depth); 5917 } 5918 5919 SelectPatternResult llvm::matchDecomposedSelectPattern( 5920 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5921 Instruction::CastOps *CastOp, unsigned Depth) { 5922 CmpInst::Predicate Pred = CmpI->getPredicate(); 5923 Value *CmpLHS = CmpI->getOperand(0); 5924 Value *CmpRHS = CmpI->getOperand(1); 5925 FastMathFlags FMF; 5926 if (isa<FPMathOperator>(CmpI)) 5927 FMF = CmpI->getFastMathFlags(); 5928 5929 // Bail out early. 5930 if (CmpI->isEquality()) 5931 return {SPF_UNKNOWN, SPNB_NA, false}; 5932 5933 // Deal with type mismatches. 5934 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5935 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5936 // If this is a potential fmin/fmax with a cast to integer, then ignore 5937 // -0.0 because there is no corresponding integer value. 5938 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5939 FMF.setNoSignedZeros(); 5940 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5941 cast<CastInst>(TrueVal)->getOperand(0), C, 5942 LHS, RHS, Depth); 5943 } 5944 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5945 // If this is a potential fmin/fmax with a cast to integer, then ignore 5946 // -0.0 because there is no corresponding integer value. 5947 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5948 FMF.setNoSignedZeros(); 5949 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5950 C, cast<CastInst>(FalseVal)->getOperand(0), 5951 LHS, RHS, Depth); 5952 } 5953 } 5954 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5955 LHS, RHS, Depth); 5956 } 5957 5958 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5959 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5960 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5961 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5962 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5963 if (SPF == SPF_FMINNUM) 5964 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5965 if (SPF == SPF_FMAXNUM) 5966 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5967 llvm_unreachable("unhandled!"); 5968 } 5969 5970 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5971 if (SPF == SPF_SMIN) return SPF_SMAX; 5972 if (SPF == SPF_UMIN) return SPF_UMAX; 5973 if (SPF == SPF_SMAX) return SPF_SMIN; 5974 if (SPF == SPF_UMAX) return SPF_UMIN; 5975 llvm_unreachable("unhandled!"); 5976 } 5977 5978 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5979 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5980 } 5981 5982 std::pair<Intrinsic::ID, bool> 5983 llvm::canConvertToMinOrMaxIntrinsic(ArrayRef<Value *> VL) { 5984 // Check if VL contains select instructions that can be folded into a min/max 5985 // vector intrinsic and return the intrinsic if it is possible. 5986 // TODO: Support floating point min/max. 5987 bool AllCmpSingleUse = true; 5988 SelectPatternResult SelectPattern; 5989 SelectPattern.Flavor = SPF_UNKNOWN; 5990 if (all_of(VL, [&SelectPattern, &AllCmpSingleUse](Value *I) { 5991 Value *LHS, *RHS; 5992 auto CurrentPattern = matchSelectPattern(I, LHS, RHS); 5993 if (!SelectPatternResult::isMinOrMax(CurrentPattern.Flavor) || 5994 CurrentPattern.Flavor == SPF_FMINNUM || 5995 CurrentPattern.Flavor == SPF_FMAXNUM || 5996 !I->getType()->isIntOrIntVectorTy()) 5997 return false; 5998 if (SelectPattern.Flavor != SPF_UNKNOWN && 5999 SelectPattern.Flavor != CurrentPattern.Flavor) 6000 return false; 6001 SelectPattern = CurrentPattern; 6002 AllCmpSingleUse &= 6003 match(I, m_Select(m_OneUse(m_Value()), m_Value(), m_Value())); 6004 return true; 6005 })) { 6006 switch (SelectPattern.Flavor) { 6007 case SPF_SMIN: 6008 return {Intrinsic::smin, AllCmpSingleUse}; 6009 case SPF_UMIN: 6010 return {Intrinsic::umin, AllCmpSingleUse}; 6011 case SPF_SMAX: 6012 return {Intrinsic::smax, AllCmpSingleUse}; 6013 case SPF_UMAX: 6014 return {Intrinsic::umax, AllCmpSingleUse}; 6015 default: 6016 llvm_unreachable("unexpected select pattern flavor"); 6017 } 6018 } 6019 return {Intrinsic::not_intrinsic, false}; 6020 } 6021 6022 /// Return true if "icmp Pred LHS RHS" is always true. 6023 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 6024 const Value *RHS, const DataLayout &DL, 6025 unsigned Depth) { 6026 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 6027 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 6028 return true; 6029 6030 switch (Pred) { 6031 default: 6032 return false; 6033 6034 case CmpInst::ICMP_SLE: { 6035 const APInt *C; 6036 6037 // LHS s<= LHS +_{nsw} C if C >= 0 6038 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 6039 return !C->isNegative(); 6040 return false; 6041 } 6042 6043 case CmpInst::ICMP_ULE: { 6044 const APInt *C; 6045 6046 // LHS u<= LHS +_{nuw} C for any C 6047 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 6048 return true; 6049 6050 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 6051 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 6052 const Value *&X, 6053 const APInt *&CA, const APInt *&CB) { 6054 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 6055 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 6056 return true; 6057 6058 // If X & C == 0 then (X | C) == X +_{nuw} C 6059 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 6060 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 6061 KnownBits Known(CA->getBitWidth()); 6062 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 6063 /*CxtI*/ nullptr, /*DT*/ nullptr); 6064 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 6065 return true; 6066 } 6067 6068 return false; 6069 }; 6070 6071 const Value *X; 6072 const APInt *CLHS, *CRHS; 6073 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 6074 return CLHS->ule(*CRHS); 6075 6076 return false; 6077 } 6078 } 6079 } 6080 6081 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6082 /// ALHS ARHS" is true. Otherwise, return None. 6083 static Optional<bool> 6084 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6085 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6086 const DataLayout &DL, unsigned Depth) { 6087 switch (Pred) { 6088 default: 6089 return None; 6090 6091 case CmpInst::ICMP_SLT: 6092 case CmpInst::ICMP_SLE: 6093 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6094 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6095 return true; 6096 return None; 6097 6098 case CmpInst::ICMP_ULT: 6099 case CmpInst::ICMP_ULE: 6100 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6101 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6102 return true; 6103 return None; 6104 } 6105 } 6106 6107 /// Return true if the operands of the two compares match. IsSwappedOps is true 6108 /// when the operands match, but are swapped. 6109 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6110 const Value *BLHS, const Value *BRHS, 6111 bool &IsSwappedOps) { 6112 6113 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6114 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6115 return IsMatchingOps || IsSwappedOps; 6116 } 6117 6118 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6119 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6120 /// Otherwise, return None if we can't infer anything. 6121 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6122 CmpInst::Predicate BPred, 6123 bool AreSwappedOps) { 6124 // Canonicalize the predicate as if the operands were not commuted. 6125 if (AreSwappedOps) 6126 BPred = ICmpInst::getSwappedPredicate(BPred); 6127 6128 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6129 return true; 6130 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6131 return false; 6132 6133 return None; 6134 } 6135 6136 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6137 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6138 /// Otherwise, return None if we can't infer anything. 6139 static Optional<bool> 6140 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6141 const ConstantInt *C1, 6142 CmpInst::Predicate BPred, 6143 const ConstantInt *C2) { 6144 ConstantRange DomCR = 6145 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6146 ConstantRange CR = 6147 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6148 ConstantRange Intersection = DomCR.intersectWith(CR); 6149 ConstantRange Difference = DomCR.difference(CR); 6150 if (Intersection.isEmptySet()) 6151 return false; 6152 if (Difference.isEmptySet()) 6153 return true; 6154 return None; 6155 } 6156 6157 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6158 /// false. Otherwise, return None if we can't infer anything. 6159 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6160 CmpInst::Predicate BPred, 6161 const Value *BLHS, const Value *BRHS, 6162 const DataLayout &DL, bool LHSIsTrue, 6163 unsigned Depth) { 6164 Value *ALHS = LHS->getOperand(0); 6165 Value *ARHS = LHS->getOperand(1); 6166 6167 // The rest of the logic assumes the LHS condition is true. If that's not the 6168 // case, invert the predicate to make it so. 6169 CmpInst::Predicate APred = 6170 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6171 6172 // Can we infer anything when the two compares have matching operands? 6173 bool AreSwappedOps; 6174 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6175 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6176 APred, BPred, AreSwappedOps)) 6177 return Implication; 6178 // No amount of additional analysis will infer the second condition, so 6179 // early exit. 6180 return None; 6181 } 6182 6183 // Can we infer anything when the LHS operands match and the RHS operands are 6184 // constants (not necessarily matching)? 6185 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6186 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6187 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6188 return Implication; 6189 // No amount of additional analysis will infer the second condition, so 6190 // early exit. 6191 return None; 6192 } 6193 6194 if (APred == BPred) 6195 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6196 return None; 6197 } 6198 6199 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6200 /// false. Otherwise, return None if we can't infer anything. We expect the 6201 /// RHS to be an icmp and the LHS to be an 'and', 'or', or a 'select' instruction. 6202 static Optional<bool> 6203 isImpliedCondAndOr(const Instruction *LHS, CmpInst::Predicate RHSPred, 6204 const Value *RHSOp0, const Value *RHSOp1, 6205 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6206 // The LHS must be an 'or', 'and', or a 'select' instruction. 6207 assert((LHS->getOpcode() == Instruction::And || 6208 LHS->getOpcode() == Instruction::Or || 6209 LHS->getOpcode() == Instruction::Select) && 6210 "Expected LHS to be 'and', 'or', or 'select'."); 6211 6212 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6213 6214 // If the result of an 'or' is false, then we know both legs of the 'or' are 6215 // false. Similarly, if the result of an 'and' is true, then we know both 6216 // legs of the 'and' are true. 6217 const Value *ALHS, *ARHS; 6218 if ((!LHSIsTrue && match(LHS, m_LogicalOr(m_Value(ALHS), m_Value(ARHS)))) || 6219 (LHSIsTrue && match(LHS, m_LogicalAnd(m_Value(ALHS), m_Value(ARHS))))) { 6220 // FIXME: Make this non-recursion. 6221 if (Optional<bool> Implication = isImpliedCondition( 6222 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6223 return Implication; 6224 if (Optional<bool> Implication = isImpliedCondition( 6225 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6226 return Implication; 6227 return None; 6228 } 6229 return None; 6230 } 6231 6232 Optional<bool> 6233 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6234 const Value *RHSOp0, const Value *RHSOp1, 6235 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6236 // Bail out when we hit the limit. 6237 if (Depth == MaxAnalysisRecursionDepth) 6238 return None; 6239 6240 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6241 // example. 6242 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6243 return None; 6244 6245 Type *OpTy = LHS->getType(); 6246 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6247 6248 // FIXME: Extending the code below to handle vectors. 6249 if (OpTy->isVectorTy()) 6250 return None; 6251 6252 assert(OpTy->isIntegerTy(1) && "implied by above"); 6253 6254 // Both LHS and RHS are icmps. 6255 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6256 if (LHSCmp) 6257 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6258 Depth); 6259 6260 /// The LHS should be an 'or', 'and', or a 'select' instruction. We expect 6261 /// the RHS to be an icmp. 6262 /// FIXME: Add support for and/or/select on the RHS. 6263 if (const Instruction *LHSI = dyn_cast<Instruction>(LHS)) { 6264 if ((LHSI->getOpcode() == Instruction::And || 6265 LHSI->getOpcode() == Instruction::Or || 6266 LHSI->getOpcode() == Instruction::Select)) 6267 return isImpliedCondAndOr(LHSI, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6268 Depth); 6269 } 6270 return None; 6271 } 6272 6273 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6274 const DataLayout &DL, bool LHSIsTrue, 6275 unsigned Depth) { 6276 // LHS ==> RHS by definition 6277 if (LHS == RHS) 6278 return LHSIsTrue; 6279 6280 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6281 if (RHSCmp) 6282 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6283 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6284 LHSIsTrue, Depth); 6285 return None; 6286 } 6287 6288 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6289 // condition dominating ContextI or nullptr, if no condition is found. 6290 static std::pair<Value *, bool> 6291 getDomPredecessorCondition(const Instruction *ContextI) { 6292 if (!ContextI || !ContextI->getParent()) 6293 return {nullptr, false}; 6294 6295 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6296 // dominator tree (eg, from a SimplifyQuery) instead? 6297 const BasicBlock *ContextBB = ContextI->getParent(); 6298 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6299 if (!PredBB) 6300 return {nullptr, false}; 6301 6302 // We need a conditional branch in the predecessor. 6303 Value *PredCond; 6304 BasicBlock *TrueBB, *FalseBB; 6305 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6306 return {nullptr, false}; 6307 6308 // The branch should get simplified. Don't bother simplifying this condition. 6309 if (TrueBB == FalseBB) 6310 return {nullptr, false}; 6311 6312 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6313 "Predecessor block does not point to successor?"); 6314 6315 // Is this condition implied by the predecessor condition? 6316 return {PredCond, TrueBB == ContextBB}; 6317 } 6318 6319 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6320 const Instruction *ContextI, 6321 const DataLayout &DL) { 6322 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6323 auto PredCond = getDomPredecessorCondition(ContextI); 6324 if (PredCond.first) 6325 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6326 return None; 6327 } 6328 6329 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6330 const Value *LHS, const Value *RHS, 6331 const Instruction *ContextI, 6332 const DataLayout &DL) { 6333 auto PredCond = getDomPredecessorCondition(ContextI); 6334 if (PredCond.first) 6335 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6336 PredCond.second); 6337 return None; 6338 } 6339 6340 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6341 APInt &Upper, const InstrInfoQuery &IIQ) { 6342 unsigned Width = Lower.getBitWidth(); 6343 const APInt *C; 6344 switch (BO.getOpcode()) { 6345 case Instruction::Add: 6346 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6347 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6348 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6349 // 'add nuw x, C' produces [C, UINT_MAX]. 6350 Lower = *C; 6351 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6352 if (C->isNegative()) { 6353 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6354 Lower = APInt::getSignedMinValue(Width); 6355 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6356 } else { 6357 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6358 Lower = APInt::getSignedMinValue(Width) + *C; 6359 Upper = APInt::getSignedMaxValue(Width) + 1; 6360 } 6361 } 6362 } 6363 break; 6364 6365 case Instruction::And: 6366 if (match(BO.getOperand(1), m_APInt(C))) 6367 // 'and x, C' produces [0, C]. 6368 Upper = *C + 1; 6369 break; 6370 6371 case Instruction::Or: 6372 if (match(BO.getOperand(1), m_APInt(C))) 6373 // 'or x, C' produces [C, UINT_MAX]. 6374 Lower = *C; 6375 break; 6376 6377 case Instruction::AShr: 6378 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6379 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6380 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6381 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6382 } else if (match(BO.getOperand(0), m_APInt(C))) { 6383 unsigned ShiftAmount = Width - 1; 6384 if (!C->isNullValue() && IIQ.isExact(&BO)) 6385 ShiftAmount = C->countTrailingZeros(); 6386 if (C->isNegative()) { 6387 // 'ashr C, x' produces [C, C >> (Width-1)] 6388 Lower = *C; 6389 Upper = C->ashr(ShiftAmount) + 1; 6390 } else { 6391 // 'ashr C, x' produces [C >> (Width-1), C] 6392 Lower = C->ashr(ShiftAmount); 6393 Upper = *C + 1; 6394 } 6395 } 6396 break; 6397 6398 case Instruction::LShr: 6399 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6400 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6401 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6402 } else if (match(BO.getOperand(0), m_APInt(C))) { 6403 // 'lshr C, x' produces [C >> (Width-1), C]. 6404 unsigned ShiftAmount = Width - 1; 6405 if (!C->isNullValue() && IIQ.isExact(&BO)) 6406 ShiftAmount = C->countTrailingZeros(); 6407 Lower = C->lshr(ShiftAmount); 6408 Upper = *C + 1; 6409 } 6410 break; 6411 6412 case Instruction::Shl: 6413 if (match(BO.getOperand(0), m_APInt(C))) { 6414 if (IIQ.hasNoUnsignedWrap(&BO)) { 6415 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6416 Lower = *C; 6417 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6418 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6419 if (C->isNegative()) { 6420 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6421 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6422 Lower = C->shl(ShiftAmount); 6423 Upper = *C + 1; 6424 } else { 6425 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6426 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6427 Lower = *C; 6428 Upper = C->shl(ShiftAmount) + 1; 6429 } 6430 } 6431 } 6432 break; 6433 6434 case Instruction::SDiv: 6435 if (match(BO.getOperand(1), m_APInt(C))) { 6436 APInt IntMin = APInt::getSignedMinValue(Width); 6437 APInt IntMax = APInt::getSignedMaxValue(Width); 6438 if (C->isAllOnesValue()) { 6439 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6440 // where C != -1 and C != 0 and C != 1 6441 Lower = IntMin + 1; 6442 Upper = IntMax + 1; 6443 } else if (C->countLeadingZeros() < Width - 1) { 6444 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6445 // where C != -1 and C != 0 and C != 1 6446 Lower = IntMin.sdiv(*C); 6447 Upper = IntMax.sdiv(*C); 6448 if (Lower.sgt(Upper)) 6449 std::swap(Lower, Upper); 6450 Upper = Upper + 1; 6451 assert(Upper != Lower && "Upper part of range has wrapped!"); 6452 } 6453 } else if (match(BO.getOperand(0), m_APInt(C))) { 6454 if (C->isMinSignedValue()) { 6455 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6456 Lower = *C; 6457 Upper = Lower.lshr(1) + 1; 6458 } else { 6459 // 'sdiv C, x' produces [-|C|, |C|]. 6460 Upper = C->abs() + 1; 6461 Lower = (-Upper) + 1; 6462 } 6463 } 6464 break; 6465 6466 case Instruction::UDiv: 6467 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6468 // 'udiv x, C' produces [0, UINT_MAX / C]. 6469 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6470 } else if (match(BO.getOperand(0), m_APInt(C))) { 6471 // 'udiv C, x' produces [0, C]. 6472 Upper = *C + 1; 6473 } 6474 break; 6475 6476 case Instruction::SRem: 6477 if (match(BO.getOperand(1), m_APInt(C))) { 6478 // 'srem x, C' produces (-|C|, |C|). 6479 Upper = C->abs(); 6480 Lower = (-Upper) + 1; 6481 } 6482 break; 6483 6484 case Instruction::URem: 6485 if (match(BO.getOperand(1), m_APInt(C))) 6486 // 'urem x, C' produces [0, C). 6487 Upper = *C; 6488 break; 6489 6490 default: 6491 break; 6492 } 6493 } 6494 6495 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6496 APInt &Upper) { 6497 unsigned Width = Lower.getBitWidth(); 6498 const APInt *C; 6499 switch (II.getIntrinsicID()) { 6500 case Intrinsic::ctpop: 6501 case Intrinsic::ctlz: 6502 case Intrinsic::cttz: 6503 // Maximum of set/clear bits is the bit width. 6504 assert(Lower == 0 && "Expected lower bound to be zero"); 6505 Upper = Width + 1; 6506 break; 6507 case Intrinsic::uadd_sat: 6508 // uadd.sat(x, C) produces [C, UINT_MAX]. 6509 if (match(II.getOperand(0), m_APInt(C)) || 6510 match(II.getOperand(1), m_APInt(C))) 6511 Lower = *C; 6512 break; 6513 case Intrinsic::sadd_sat: 6514 if (match(II.getOperand(0), m_APInt(C)) || 6515 match(II.getOperand(1), m_APInt(C))) { 6516 if (C->isNegative()) { 6517 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6518 Lower = APInt::getSignedMinValue(Width); 6519 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6520 } else { 6521 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6522 Lower = APInt::getSignedMinValue(Width) + *C; 6523 Upper = APInt::getSignedMaxValue(Width) + 1; 6524 } 6525 } 6526 break; 6527 case Intrinsic::usub_sat: 6528 // usub.sat(C, x) produces [0, C]. 6529 if (match(II.getOperand(0), m_APInt(C))) 6530 Upper = *C + 1; 6531 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6532 else if (match(II.getOperand(1), m_APInt(C))) 6533 Upper = APInt::getMaxValue(Width) - *C + 1; 6534 break; 6535 case Intrinsic::ssub_sat: 6536 if (match(II.getOperand(0), m_APInt(C))) { 6537 if (C->isNegative()) { 6538 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6539 Lower = APInt::getSignedMinValue(Width); 6540 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6541 } else { 6542 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6543 Lower = *C - APInt::getSignedMaxValue(Width); 6544 Upper = APInt::getSignedMaxValue(Width) + 1; 6545 } 6546 } else if (match(II.getOperand(1), m_APInt(C))) { 6547 if (C->isNegative()) { 6548 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6549 Lower = APInt::getSignedMinValue(Width) - *C; 6550 Upper = APInt::getSignedMaxValue(Width) + 1; 6551 } else { 6552 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6553 Lower = APInt::getSignedMinValue(Width); 6554 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6555 } 6556 } 6557 break; 6558 case Intrinsic::umin: 6559 case Intrinsic::umax: 6560 case Intrinsic::smin: 6561 case Intrinsic::smax: 6562 if (!match(II.getOperand(0), m_APInt(C)) && 6563 !match(II.getOperand(1), m_APInt(C))) 6564 break; 6565 6566 switch (II.getIntrinsicID()) { 6567 case Intrinsic::umin: 6568 Upper = *C + 1; 6569 break; 6570 case Intrinsic::umax: 6571 Lower = *C; 6572 break; 6573 case Intrinsic::smin: 6574 Lower = APInt::getSignedMinValue(Width); 6575 Upper = *C + 1; 6576 break; 6577 case Intrinsic::smax: 6578 Lower = *C; 6579 Upper = APInt::getSignedMaxValue(Width) + 1; 6580 break; 6581 default: 6582 llvm_unreachable("Must be min/max intrinsic"); 6583 } 6584 break; 6585 case Intrinsic::abs: 6586 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6587 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6588 if (match(II.getOperand(1), m_One())) 6589 Upper = APInt::getSignedMaxValue(Width) + 1; 6590 else 6591 Upper = APInt::getSignedMinValue(Width) + 1; 6592 break; 6593 default: 6594 break; 6595 } 6596 } 6597 6598 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6599 APInt &Upper, const InstrInfoQuery &IIQ) { 6600 const Value *LHS = nullptr, *RHS = nullptr; 6601 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6602 if (R.Flavor == SPF_UNKNOWN) 6603 return; 6604 6605 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6606 6607 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6608 // If the negation part of the abs (in RHS) has the NSW flag, 6609 // then the result of abs(X) is [0..SIGNED_MAX], 6610 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6611 Lower = APInt::getNullValue(BitWidth); 6612 if (match(RHS, m_Neg(m_Specific(LHS))) && 6613 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6614 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6615 else 6616 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6617 return; 6618 } 6619 6620 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6621 // The result of -abs(X) is <= 0. 6622 Lower = APInt::getSignedMinValue(BitWidth); 6623 Upper = APInt(BitWidth, 1); 6624 return; 6625 } 6626 6627 const APInt *C; 6628 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6629 return; 6630 6631 switch (R.Flavor) { 6632 case SPF_UMIN: 6633 Upper = *C + 1; 6634 break; 6635 case SPF_UMAX: 6636 Lower = *C; 6637 break; 6638 case SPF_SMIN: 6639 Lower = APInt::getSignedMinValue(BitWidth); 6640 Upper = *C + 1; 6641 break; 6642 case SPF_SMAX: 6643 Lower = *C; 6644 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6645 break; 6646 default: 6647 break; 6648 } 6649 } 6650 6651 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6652 AssumptionCache *AC, 6653 const Instruction *CtxI, 6654 unsigned Depth) { 6655 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6656 6657 if (Depth == MaxAnalysisRecursionDepth) 6658 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6659 6660 const APInt *C; 6661 if (match(V, m_APInt(C))) 6662 return ConstantRange(*C); 6663 6664 InstrInfoQuery IIQ(UseInstrInfo); 6665 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6666 APInt Lower = APInt(BitWidth, 0); 6667 APInt Upper = APInt(BitWidth, 0); 6668 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6669 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6670 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6671 setLimitsForIntrinsic(*II, Lower, Upper); 6672 else if (auto *SI = dyn_cast<SelectInst>(V)) 6673 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6674 6675 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6676 6677 if (auto *I = dyn_cast<Instruction>(V)) 6678 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6679 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6680 6681 if (CtxI && AC) { 6682 // Try to restrict the range based on information from assumptions. 6683 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6684 if (!AssumeVH) 6685 continue; 6686 CallInst *I = cast<CallInst>(AssumeVH); 6687 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6688 "Got assumption for the wrong function!"); 6689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6690 "must be an assume intrinsic"); 6691 6692 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6693 continue; 6694 Value *Arg = I->getArgOperand(0); 6695 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6696 // Currently we just use information from comparisons. 6697 if (!Cmp || Cmp->getOperand(0) != V) 6698 continue; 6699 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6700 AC, I, Depth + 1); 6701 CR = CR.intersectWith( 6702 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6703 } 6704 } 6705 6706 return CR; 6707 } 6708 6709 static Optional<int64_t> 6710 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6711 // Skip over the first indices. 6712 gep_type_iterator GTI = gep_type_begin(GEP); 6713 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6714 /*skip along*/; 6715 6716 // Compute the offset implied by the rest of the indices. 6717 int64_t Offset = 0; 6718 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6719 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6720 if (!OpC) 6721 return None; 6722 if (OpC->isZero()) 6723 continue; // No offset. 6724 6725 // Handle struct indices, which add their field offset to the pointer. 6726 if (StructType *STy = GTI.getStructTypeOrNull()) { 6727 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6728 continue; 6729 } 6730 6731 // Otherwise, we have a sequential type like an array or fixed-length 6732 // vector. Multiply the index by the ElementSize. 6733 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6734 if (Size.isScalable()) 6735 return None; 6736 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6737 } 6738 6739 return Offset; 6740 } 6741 6742 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6743 const DataLayout &DL) { 6744 Ptr1 = Ptr1->stripPointerCasts(); 6745 Ptr2 = Ptr2->stripPointerCasts(); 6746 6747 // Handle the trivial case first. 6748 if (Ptr1 == Ptr2) { 6749 return 0; 6750 } 6751 6752 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6753 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6754 6755 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6756 // as in "P" and "gep P, 1". 6757 // Also do this iteratively to handle the the following case: 6758 // Ptr_t1 = GEP Ptr1, c1 6759 // Ptr_t2 = GEP Ptr_t1, c2 6760 // Ptr2 = GEP Ptr_t2, c3 6761 // where we will return c1+c2+c3. 6762 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6763 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6764 // are the same, and return the difference between offsets. 6765 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6766 const Value *Ptr) -> Optional<int64_t> { 6767 const GEPOperator *GEP_T = GEP; 6768 int64_t OffsetVal = 0; 6769 bool HasSameBase = false; 6770 while (GEP_T) { 6771 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6772 if (!Offset) 6773 return None; 6774 OffsetVal += *Offset; 6775 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6776 if (Op0 == Ptr) { 6777 HasSameBase = true; 6778 break; 6779 } 6780 GEP_T = dyn_cast<GEPOperator>(Op0); 6781 } 6782 if (!HasSameBase) 6783 return None; 6784 return OffsetVal; 6785 }; 6786 6787 if (GEP1) { 6788 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6789 if (Offset) 6790 return -*Offset; 6791 } 6792 if (GEP2) { 6793 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6794 if (Offset) 6795 return Offset; 6796 } 6797 6798 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6799 // base. After that base, they may have some number of common (and 6800 // potentially variable) indices. After that they handle some constant 6801 // offset, which determines their offset from each other. At this point, we 6802 // handle no other case. 6803 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6804 return None; 6805 6806 // Skip any common indices and track the GEP types. 6807 unsigned Idx = 1; 6808 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6809 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6810 break; 6811 6812 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6813 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6814 if (!Offset1 || !Offset2) 6815 return None; 6816 return *Offset2 - *Offset1; 6817 } 6818