1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumeBundleQueries.h" 28 #include "llvm/Analysis/AssumptionCache.h" 29 #include "llvm/Analysis/GuardUtils.h" 30 #include "llvm/Analysis/InstructionSimplify.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/IR/Argument.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 // Controls the number of uses of the value searched for possible 81 // dominating comparisons. 82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 83 cl::Hidden, cl::init(20)); 84 85 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 86 /// returns the element type's bitwidth. 87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 88 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 89 return BitWidth; 90 91 return DL.getPointerTypeSizeInBits(Ty); 92 } 93 94 namespace { 95 96 // Simplifying using an assume can only be done in a particular control-flow 97 // context (the context instruction provides that context). If an assume and 98 // the context instruction are not in the same block then the DT helps in 99 // figuring out if we can use it. 100 struct Query { 101 const DataLayout &DL; 102 AssumptionCache *AC; 103 const Instruction *CxtI; 104 const DominatorTree *DT; 105 106 // Unlike the other analyses, this may be a nullptr because not all clients 107 // provide it currently. 108 OptimizationRemarkEmitter *ORE; 109 110 /// Set of assumptions that should be excluded from further queries. 111 /// This is because of the potential for mutual recursion to cause 112 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 113 /// classic case of this is assume(x = y), which will attempt to determine 114 /// bits in x from bits in y, which will attempt to determine bits in y from 115 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 116 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 117 /// (all of which can call computeKnownBits), and so on. 118 std::array<const Value *, MaxAnalysisRecursionDepth> Excluded; 119 120 /// If true, it is safe to use metadata during simplification. 121 InstrInfoQuery IIQ; 122 123 unsigned NumExcluded = 0; 124 125 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 126 const DominatorTree *DT, bool UseInstrInfo, 127 OptimizationRemarkEmitter *ORE = nullptr) 128 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 129 130 Query(const Query &Q, const Value *NewExcl) 131 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 132 NumExcluded(Q.NumExcluded) { 133 Excluded = Q.Excluded; 134 Excluded[NumExcluded++] = NewExcl; 135 assert(NumExcluded <= Excluded.size()); 136 } 137 138 bool isExcluded(const Value *Value) const { 139 if (NumExcluded == 0) 140 return false; 141 auto End = Excluded.begin() + NumExcluded; 142 return std::find(Excluded.begin(), End, Value) != End; 143 } 144 }; 145 146 } // end anonymous namespace 147 148 // Given the provided Value and, potentially, a context instruction, return 149 // the preferred context instruction (if any). 150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 151 // If we've been provided with a context instruction, then use that (provided 152 // it has been inserted). 153 if (CxtI && CxtI->getParent()) 154 return CxtI; 155 156 // If the value is really an already-inserted instruction, then use that. 157 CxtI = dyn_cast<Instruction>(V); 158 if (CxtI && CxtI->getParent()) 159 return CxtI; 160 161 return nullptr; 162 } 163 164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 165 const APInt &DemandedElts, 166 APInt &DemandedLHS, APInt &DemandedRHS) { 167 // The length of scalable vectors is unknown at compile time, thus we 168 // cannot check their values 169 if (isa<ScalableVectorType>(Shuf->getType())) 170 return false; 171 172 int NumElts = 173 cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements(); 174 int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements(); 175 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 176 if (DemandedElts.isNullValue()) 177 return true; 178 // Simple case of a shuffle with zeroinitializer. 179 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 180 DemandedLHS.setBit(0); 181 return true; 182 } 183 for (int i = 0; i != NumMaskElts; ++i) { 184 if (!DemandedElts[i]) 185 continue; 186 int M = Shuf->getMaskValue(i); 187 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 188 189 // For undef elements, we don't know anything about the common state of 190 // the shuffle result. 191 if (M == -1) 192 return false; 193 if (M < NumElts) 194 DemandedLHS.setBit(M % NumElts); 195 else 196 DemandedRHS.setBit(M % NumElts); 197 } 198 199 return true; 200 } 201 202 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 203 KnownBits &Known, unsigned Depth, const Query &Q); 204 205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 206 const Query &Q) { 207 // FIXME: We currently have no way to represent the DemandedElts of a scalable 208 // vector 209 if (isa<ScalableVectorType>(V->getType())) { 210 Known.resetAll(); 211 return; 212 } 213 214 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 215 APInt DemandedElts = 216 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 217 computeKnownBits(V, DemandedElts, Known, Depth, Q); 218 } 219 220 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 221 const DataLayout &DL, unsigned Depth, 222 AssumptionCache *AC, const Instruction *CxtI, 223 const DominatorTree *DT, 224 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 225 ::computeKnownBits(V, Known, Depth, 226 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 227 } 228 229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 230 KnownBits &Known, const DataLayout &DL, 231 unsigned Depth, AssumptionCache *AC, 232 const Instruction *CxtI, const DominatorTree *DT, 233 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 234 ::computeKnownBits(V, DemandedElts, Known, Depth, 235 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 236 } 237 238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 239 unsigned Depth, const Query &Q); 240 241 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 242 const Query &Q); 243 244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 245 unsigned Depth, AssumptionCache *AC, 246 const Instruction *CxtI, 247 const DominatorTree *DT, 248 OptimizationRemarkEmitter *ORE, 249 bool UseInstrInfo) { 250 return ::computeKnownBits( 251 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 252 } 253 254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 255 const DataLayout &DL, unsigned Depth, 256 AssumptionCache *AC, const Instruction *CxtI, 257 const DominatorTree *DT, 258 OptimizationRemarkEmitter *ORE, 259 bool UseInstrInfo) { 260 return ::computeKnownBits( 261 V, DemandedElts, Depth, 262 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 263 } 264 265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 266 const DataLayout &DL, AssumptionCache *AC, 267 const Instruction *CxtI, const DominatorTree *DT, 268 bool UseInstrInfo) { 269 assert(LHS->getType() == RHS->getType() && 270 "LHS and RHS should have the same type"); 271 assert(LHS->getType()->isIntOrIntVectorTy() && 272 "LHS and RHS should be integers"); 273 // Look for an inverted mask: (X & ~M) op (Y & M). 274 Value *M; 275 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 276 match(RHS, m_c_And(m_Specific(M), m_Value()))) 277 return true; 278 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 279 match(LHS, m_c_And(m_Specific(M), m_Value()))) 280 return true; 281 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 282 KnownBits LHSKnown(IT->getBitWidth()); 283 KnownBits RHSKnown(IT->getBitWidth()); 284 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 285 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 286 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 287 } 288 289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 290 for (const User *U : CxtI->users()) { 291 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 292 if (IC->isEquality()) 293 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 294 if (C->isNullValue()) 295 continue; 296 return false; 297 } 298 return true; 299 } 300 301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 302 const Query &Q); 303 304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 305 bool OrZero, unsigned Depth, 306 AssumptionCache *AC, const Instruction *CxtI, 307 const DominatorTree *DT, bool UseInstrInfo) { 308 return ::isKnownToBeAPowerOfTwo( 309 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 310 } 311 312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 313 unsigned Depth, const Query &Q); 314 315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 316 317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 318 AssumptionCache *AC, const Instruction *CxtI, 319 const DominatorTree *DT, bool UseInstrInfo) { 320 return ::isKnownNonZero(V, Depth, 321 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 322 } 323 324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 325 unsigned Depth, AssumptionCache *AC, 326 const Instruction *CxtI, const DominatorTree *DT, 327 bool UseInstrInfo) { 328 KnownBits Known = 329 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 330 return Known.isNonNegative(); 331 } 332 333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 334 AssumptionCache *AC, const Instruction *CxtI, 335 const DominatorTree *DT, bool UseInstrInfo) { 336 if (auto *CI = dyn_cast<ConstantInt>(V)) 337 return CI->getValue().isStrictlyPositive(); 338 339 // TODO: We'd doing two recursive queries here. We should factor this such 340 // that only a single query is needed. 341 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 342 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 343 } 344 345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 346 AssumptionCache *AC, const Instruction *CxtI, 347 const DominatorTree *DT, bool UseInstrInfo) { 348 KnownBits Known = 349 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 350 return Known.isNegative(); 351 } 352 353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 354 355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 356 const DataLayout &DL, AssumptionCache *AC, 357 const Instruction *CxtI, const DominatorTree *DT, 358 bool UseInstrInfo) { 359 return ::isKnownNonEqual(V1, V2, 360 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 361 UseInstrInfo, /*ORE=*/nullptr)); 362 } 363 364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 365 const Query &Q); 366 367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 368 const DataLayout &DL, unsigned Depth, 369 AssumptionCache *AC, const Instruction *CxtI, 370 const DominatorTree *DT, bool UseInstrInfo) { 371 return ::MaskedValueIsZero( 372 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 373 } 374 375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 376 unsigned Depth, const Query &Q); 377 378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 379 const Query &Q) { 380 // FIXME: We currently have no way to represent the DemandedElts of a scalable 381 // vector 382 if (isa<ScalableVectorType>(V->getType())) 383 return 1; 384 385 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 386 APInt DemandedElts = 387 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 388 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 389 } 390 391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 392 unsigned Depth, AssumptionCache *AC, 393 const Instruction *CxtI, 394 const DominatorTree *DT, bool UseInstrInfo) { 395 return ::ComputeNumSignBits( 396 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 397 } 398 399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 400 bool NSW, const APInt &DemandedElts, 401 KnownBits &KnownOut, KnownBits &Known2, 402 unsigned Depth, const Query &Q) { 403 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 404 405 // If one operand is unknown and we have no nowrap information, 406 // the result will be unknown independently of the second operand. 407 if (KnownOut.isUnknown() && !NSW) 408 return; 409 410 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 411 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 412 } 413 414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 415 const APInt &DemandedElts, KnownBits &Known, 416 KnownBits &Known2, unsigned Depth, 417 const Query &Q) { 418 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 419 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 420 421 bool isKnownNegative = false; 422 bool isKnownNonNegative = false; 423 // If the multiplication is known not to overflow, compute the sign bit. 424 if (NSW) { 425 if (Op0 == Op1) { 426 // The product of a number with itself is non-negative. 427 isKnownNonNegative = true; 428 } else { 429 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 430 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 431 bool isKnownNegativeOp1 = Known.isNegative(); 432 bool isKnownNegativeOp0 = Known2.isNegative(); 433 // The product of two numbers with the same sign is non-negative. 434 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 435 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 436 // The product of a negative number and a non-negative number is either 437 // negative or zero. 438 if (!isKnownNonNegative) 439 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 440 isKnownNonZero(Op0, Depth, Q)) || 441 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 442 isKnownNonZero(Op1, Depth, Q)); 443 } 444 } 445 446 Known = KnownBits::computeForMul(Known, Known2); 447 448 // Only make use of no-wrap flags if we failed to compute the sign bit 449 // directly. This matters if the multiplication always overflows, in 450 // which case we prefer to follow the result of the direct computation, 451 // though as the program is invoking undefined behaviour we can choose 452 // whatever we like here. 453 if (isKnownNonNegative && !Known.isNegative()) 454 Known.makeNonNegative(); 455 else if (isKnownNegative && !Known.isNonNegative()) 456 Known.makeNegative(); 457 } 458 459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 460 KnownBits &Known) { 461 unsigned BitWidth = Known.getBitWidth(); 462 unsigned NumRanges = Ranges.getNumOperands() / 2; 463 assert(NumRanges >= 1); 464 465 Known.Zero.setAllBits(); 466 Known.One.setAllBits(); 467 468 for (unsigned i = 0; i < NumRanges; ++i) { 469 ConstantInt *Lower = 470 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 471 ConstantInt *Upper = 472 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 473 ConstantRange Range(Lower->getValue(), Upper->getValue()); 474 475 // The first CommonPrefixBits of all values in Range are equal. 476 unsigned CommonPrefixBits = 477 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 478 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 479 APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth); 480 Known.One &= UnsignedMax & Mask; 481 Known.Zero &= ~UnsignedMax & Mask; 482 } 483 } 484 485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 486 SmallVector<const Value *, 16> WorkSet(1, I); 487 SmallPtrSet<const Value *, 32> Visited; 488 SmallPtrSet<const Value *, 16> EphValues; 489 490 // The instruction defining an assumption's condition itself is always 491 // considered ephemeral to that assumption (even if it has other 492 // non-ephemeral users). See r246696's test case for an example. 493 if (is_contained(I->operands(), E)) 494 return true; 495 496 while (!WorkSet.empty()) { 497 const Value *V = WorkSet.pop_back_val(); 498 if (!Visited.insert(V).second) 499 continue; 500 501 // If all uses of this value are ephemeral, then so is this value. 502 if (llvm::all_of(V->users(), [&](const User *U) { 503 return EphValues.count(U); 504 })) { 505 if (V == E) 506 return true; 507 508 if (V == I || isSafeToSpeculativelyExecute(V)) { 509 EphValues.insert(V); 510 if (const User *U = dyn_cast<User>(V)) 511 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 512 J != JE; ++J) 513 WorkSet.push_back(*J); 514 } 515 } 516 } 517 518 return false; 519 } 520 521 // Is this an intrinsic that cannot be speculated but also cannot trap? 522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 523 if (const CallInst *CI = dyn_cast<CallInst>(I)) 524 if (Function *F = CI->getCalledFunction()) 525 switch (F->getIntrinsicID()) { 526 default: break; 527 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 528 case Intrinsic::assume: 529 case Intrinsic::sideeffect: 530 case Intrinsic::dbg_declare: 531 case Intrinsic::dbg_value: 532 case Intrinsic::dbg_label: 533 case Intrinsic::invariant_start: 534 case Intrinsic::invariant_end: 535 case Intrinsic::lifetime_start: 536 case Intrinsic::lifetime_end: 537 case Intrinsic::objectsize: 538 case Intrinsic::ptr_annotation: 539 case Intrinsic::var_annotation: 540 return true; 541 } 542 543 return false; 544 } 545 546 bool llvm::isValidAssumeForContext(const Instruction *Inv, 547 const Instruction *CxtI, 548 const DominatorTree *DT) { 549 // There are two restrictions on the use of an assume: 550 // 1. The assume must dominate the context (or the control flow must 551 // reach the assume whenever it reaches the context). 552 // 2. The context must not be in the assume's set of ephemeral values 553 // (otherwise we will use the assume to prove that the condition 554 // feeding the assume is trivially true, thus causing the removal of 555 // the assume). 556 557 if (Inv->getParent() == CxtI->getParent()) { 558 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 559 // in the BB. 560 if (Inv->comesBefore(CxtI)) 561 return true; 562 563 // Don't let an assume affect itself - this would cause the problems 564 // `isEphemeralValueOf` is trying to prevent, and it would also make 565 // the loop below go out of bounds. 566 if (Inv == CxtI) 567 return false; 568 569 // The context comes first, but they're both in the same block. 570 // Make sure there is nothing in between that might interrupt 571 // the control flow, not even CxtI itself. 572 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 573 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 574 return false; 575 576 return !isEphemeralValueOf(Inv, CxtI); 577 } 578 579 // Inv and CxtI are in different blocks. 580 if (DT) { 581 if (DT->dominates(Inv, CxtI)) 582 return true; 583 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 584 // We don't have a DT, but this trivially dominates. 585 return true; 586 } 587 588 return false; 589 } 590 591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 592 // Use of assumptions is context-sensitive. If we don't have a context, we 593 // cannot use them! 594 if (!Q.AC || !Q.CxtI) 595 return false; 596 597 // Note that the patterns below need to be kept in sync with the code 598 // in AssumptionCache::updateAffectedValues. 599 600 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 601 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 602 603 Value *RHS; 604 CmpInst::Predicate Pred; 605 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 606 return false; 607 // assume(v u> y) -> assume(v != 0) 608 if (Pred == ICmpInst::ICMP_UGT) 609 return true; 610 611 // assume(v != 0) 612 // We special-case this one to ensure that we handle `assume(v != null)`. 613 if (Pred == ICmpInst::ICMP_NE) 614 return match(RHS, m_Zero()); 615 616 // All other predicates - rely on generic ConstantRange handling. 617 ConstantInt *CI; 618 if (!match(RHS, m_ConstantInt(CI))) 619 return false; 620 ConstantRange RHSRange(CI->getValue()); 621 ConstantRange TrueValues = 622 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 623 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 624 }; 625 626 if (Q.CxtI && V->getType()->isPointerTy()) { 627 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull}; 628 if (!NullPointerIsDefined(Q.CxtI->getFunction(), 629 V->getType()->getPointerAddressSpace())) 630 AttrKinds.push_back(Attribute::Dereferenceable); 631 632 if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC)) 633 return true; 634 } 635 636 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 637 if (!AssumeVH) 638 continue; 639 CallInst *I = cast<CallInst>(AssumeVH); 640 assert(I->getFunction() == Q.CxtI->getFunction() && 641 "Got assumption for the wrong function!"); 642 if (Q.isExcluded(I)) 643 continue; 644 645 // Warning: This loop can end up being somewhat performance sensitive. 646 // We're running this loop for once for each value queried resulting in a 647 // runtime of ~O(#assumes * #values). 648 649 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 650 "must be an assume intrinsic"); 651 652 Value *Arg = I->getArgOperand(0); 653 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 654 if (!Cmp) 655 continue; 656 657 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 658 return true; 659 } 660 661 return false; 662 } 663 664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 665 unsigned Depth, const Query &Q) { 666 // Use of assumptions is context-sensitive. If we don't have a context, we 667 // cannot use them! 668 if (!Q.AC || !Q.CxtI) 669 return; 670 671 unsigned BitWidth = Known.getBitWidth(); 672 673 // Note that the patterns below need to be kept in sync with the code 674 // in AssumptionCache::updateAffectedValues. 675 676 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 677 if (!AssumeVH) 678 continue; 679 CallInst *I = cast<CallInst>(AssumeVH); 680 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 681 "Got assumption for the wrong function!"); 682 if (Q.isExcluded(I)) 683 continue; 684 685 // Warning: This loop can end up being somewhat performance sensitive. 686 // We're running this loop for once for each value queried resulting in a 687 // runtime of ~O(#assumes * #values). 688 689 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 690 "must be an assume intrinsic"); 691 692 Value *Arg = I->getArgOperand(0); 693 694 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 695 assert(BitWidth == 1 && "assume operand is not i1?"); 696 Known.setAllOnes(); 697 return; 698 } 699 if (match(Arg, m_Not(m_Specific(V))) && 700 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 701 assert(BitWidth == 1 && "assume operand is not i1?"); 702 Known.setAllZero(); 703 return; 704 } 705 706 // The remaining tests are all recursive, so bail out if we hit the limit. 707 if (Depth == MaxAnalysisRecursionDepth) 708 continue; 709 710 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 711 if (!Cmp) 712 continue; 713 714 // Note that ptrtoint may change the bitwidth. 715 Value *A, *B; 716 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 717 718 CmpInst::Predicate Pred; 719 uint64_t C; 720 switch (Cmp->getPredicate()) { 721 default: 722 break; 723 case ICmpInst::ICMP_EQ: 724 // assume(v = a) 725 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 726 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 727 KnownBits RHSKnown = 728 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 729 Known.Zero |= RHSKnown.Zero; 730 Known.One |= RHSKnown.One; 731 // assume(v & b = a) 732 } else if (match(Cmp, 733 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 734 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 735 KnownBits RHSKnown = 736 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 737 KnownBits MaskKnown = 738 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 739 740 // For those bits in the mask that are known to be one, we can propagate 741 // known bits from the RHS to V. 742 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 743 Known.One |= RHSKnown.One & MaskKnown.One; 744 // assume(~(v & b) = a) 745 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 746 m_Value(A))) && 747 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 KnownBits RHSKnown = 749 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 750 KnownBits MaskKnown = 751 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 752 753 // For those bits in the mask that are known to be one, we can propagate 754 // inverted known bits from the RHS to V. 755 Known.Zero |= RHSKnown.One & MaskKnown.One; 756 Known.One |= RHSKnown.Zero & MaskKnown.One; 757 // assume(v | b = a) 758 } else if (match(Cmp, 759 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 760 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 761 KnownBits RHSKnown = 762 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 763 KnownBits BKnown = 764 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 765 766 // For those bits in B that are known to be zero, we can propagate known 767 // bits from the RHS to V. 768 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 769 Known.One |= RHSKnown.One & BKnown.Zero; 770 // assume(~(v | b) = a) 771 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 772 m_Value(A))) && 773 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 774 KnownBits RHSKnown = 775 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 776 KnownBits BKnown = 777 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 778 779 // For those bits in B that are known to be zero, we can propagate 780 // inverted known bits from the RHS to V. 781 Known.Zero |= RHSKnown.One & BKnown.Zero; 782 Known.One |= RHSKnown.Zero & BKnown.Zero; 783 // assume(v ^ b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown = 788 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 789 KnownBits BKnown = 790 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 791 792 // For those bits in B that are known to be zero, we can propagate known 793 // bits from the RHS to V. For those bits in B that are known to be one, 794 // we can propagate inverted known bits from the RHS to V. 795 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 796 Known.One |= RHSKnown.One & BKnown.Zero; 797 Known.Zero |= RHSKnown.One & BKnown.One; 798 Known.One |= RHSKnown.Zero & BKnown.One; 799 // assume(~(v ^ b) = a) 800 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 801 m_Value(A))) && 802 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 803 KnownBits RHSKnown = 804 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 805 KnownBits BKnown = 806 computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 807 808 // For those bits in B that are known to be zero, we can propagate 809 // inverted known bits from the RHS to V. For those bits in B that are 810 // known to be one, we can propagate known bits from the RHS to V. 811 Known.Zero |= RHSKnown.One & BKnown.Zero; 812 Known.One |= RHSKnown.Zero & BKnown.Zero; 813 Known.Zero |= RHSKnown.Zero & BKnown.One; 814 Known.One |= RHSKnown.One & BKnown.One; 815 // assume(v << c = a) 816 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 817 m_Value(A))) && 818 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 819 KnownBits RHSKnown = 820 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 821 822 // For those bits in RHS that are known, we can propagate them to known 823 // bits in V shifted to the right by C. 824 RHSKnown.Zero.lshrInPlace(C); 825 Known.Zero |= RHSKnown.Zero; 826 RHSKnown.One.lshrInPlace(C); 827 Known.One |= RHSKnown.One; 828 // assume(~(v << c) = a) 829 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 830 m_Value(A))) && 831 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 832 KnownBits RHSKnown = 833 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 834 // For those bits in RHS that are known, we can propagate them inverted 835 // to known bits in V shifted to the right by C. 836 RHSKnown.One.lshrInPlace(C); 837 Known.Zero |= RHSKnown.One; 838 RHSKnown.Zero.lshrInPlace(C); 839 Known.One |= RHSKnown.Zero; 840 // assume(v >> c = a) 841 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 842 m_Value(A))) && 843 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 844 KnownBits RHSKnown = 845 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 846 // For those bits in RHS that are known, we can propagate them to known 847 // bits in V shifted to the right by C. 848 Known.Zero |= RHSKnown.Zero << C; 849 Known.One |= RHSKnown.One << C; 850 // assume(~(v >> c) = a) 851 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 852 m_Value(A))) && 853 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 854 KnownBits RHSKnown = 855 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 856 // For those bits in RHS that are known, we can propagate them inverted 857 // to known bits in V shifted to the right by C. 858 Known.Zero |= RHSKnown.One << C; 859 Known.One |= RHSKnown.Zero << C; 860 } 861 break; 862 case ICmpInst::ICMP_SGE: 863 // assume(v >=_s c) where c is non-negative 864 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 865 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 866 KnownBits RHSKnown = 867 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 868 869 if (RHSKnown.isNonNegative()) { 870 // We know that the sign bit is zero. 871 Known.makeNonNegative(); 872 } 873 } 874 break; 875 case ICmpInst::ICMP_SGT: 876 // assume(v >_s c) where c is at least -1. 877 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 878 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 879 KnownBits RHSKnown = 880 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 881 882 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 883 // We know that the sign bit is zero. 884 Known.makeNonNegative(); 885 } 886 } 887 break; 888 case ICmpInst::ICMP_SLE: 889 // assume(v <=_s c) where c is negative 890 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 891 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 892 KnownBits RHSKnown = 893 computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth); 894 895 if (RHSKnown.isNegative()) { 896 // We know that the sign bit is one. 897 Known.makeNegative(); 898 } 899 } 900 break; 901 case ICmpInst::ICMP_SLT: 902 // assume(v <_s c) where c is non-positive 903 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 905 KnownBits RHSKnown = 906 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 907 908 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 909 // We know that the sign bit is one. 910 Known.makeNegative(); 911 } 912 } 913 break; 914 case ICmpInst::ICMP_ULE: 915 // assume(v <=_u c) 916 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 917 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 918 KnownBits RHSKnown = 919 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 920 921 // Whatever high bits in c are zero are known to be zero. 922 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 923 } 924 break; 925 case ICmpInst::ICMP_ULT: 926 // assume(v <_u c) 927 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 928 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 929 KnownBits RHSKnown = 930 computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth); 931 932 // If the RHS is known zero, then this assumption must be wrong (nothing 933 // is unsigned less than zero). Signal a conflict and get out of here. 934 if (RHSKnown.isZero()) { 935 Known.Zero.setAllBits(); 936 Known.One.setAllBits(); 937 break; 938 } 939 940 // Whatever high bits in c are zero are known to be zero (if c is a power 941 // of 2, then one more). 942 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 943 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 944 else 945 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 946 } 947 break; 948 } 949 } 950 951 // If assumptions conflict with each other or previous known bits, then we 952 // have a logical fallacy. It's possible that the assumption is not reachable, 953 // so this isn't a real bug. On the other hand, the program may have undefined 954 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 955 // clear out the known bits, try to warn the user, and hope for the best. 956 if (Known.Zero.intersects(Known.One)) { 957 Known.resetAll(); 958 959 if (Q.ORE) 960 Q.ORE->emit([&]() { 961 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 962 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 963 CxtI) 964 << "Detected conflicting code assumptions. Program may " 965 "have undefined behavior, or compiler may have " 966 "internal error."; 967 }); 968 } 969 } 970 971 /// Compute known bits from a shift operator, including those with a 972 /// non-constant shift amount. Known is the output of this function. Known2 is a 973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 974 /// operator-specific functions that, given the known-zero or known-one bits 975 /// respectively, and a shift amount, compute the implied known-zero or 976 /// known-one bits of the shift operator's result respectively for that shift 977 /// amount. The results from calling KZF and KOF are conservatively combined for 978 /// all permitted shift amounts. 979 static void computeKnownBitsFromShiftOperator( 980 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 981 KnownBits &Known2, unsigned Depth, const Query &Q, 982 function_ref<APInt(const APInt &, unsigned)> KZF, 983 function_ref<APInt(const APInt &, unsigned)> KOF) { 984 unsigned BitWidth = Known.getBitWidth(); 985 986 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 987 if (Known.isConstant()) { 988 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 989 990 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 991 Known.Zero = KZF(Known.Zero, ShiftAmt); 992 Known.One = KOF(Known.One, ShiftAmt); 993 // If the known bits conflict, this must be an overflowing left shift, so 994 // the shift result is poison. We can return anything we want. Choose 0 for 995 // the best folding opportunity. 996 if (Known.hasConflict()) 997 Known.setAllZero(); 998 999 return; 1000 } 1001 1002 // If the shift amount could be greater than or equal to the bit-width of the 1003 // LHS, the value could be poison, but bail out because the check below is 1004 // expensive. 1005 // TODO: Should we just carry on? 1006 if (Known.getMaxValue().uge(BitWidth)) { 1007 Known.resetAll(); 1008 return; 1009 } 1010 1011 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1012 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1013 // limit value (which implies all bits are known). 1014 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1015 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1016 1017 // It would be more-clearly correct to use the two temporaries for this 1018 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1019 Known.resetAll(); 1020 1021 // If we know the shifter operand is nonzero, we can sometimes infer more 1022 // known bits. However this is expensive to compute, so be lazy about it and 1023 // only compute it when absolutely necessary. 1024 Optional<bool> ShifterOperandIsNonZero; 1025 1026 // Early exit if we can't constrain any well-defined shift amount. 1027 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1028 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1029 ShifterOperandIsNonZero = 1030 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1031 if (!*ShifterOperandIsNonZero) 1032 return; 1033 } 1034 1035 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1036 1037 Known.Zero.setAllBits(); 1038 Known.One.setAllBits(); 1039 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1040 // Combine the shifted known input bits only for those shift amounts 1041 // compatible with its known constraints. 1042 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1043 continue; 1044 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1045 continue; 1046 // If we know the shifter is nonzero, we may be able to infer more known 1047 // bits. This check is sunk down as far as possible to avoid the expensive 1048 // call to isKnownNonZero if the cheaper checks above fail. 1049 if (ShiftAmt == 0) { 1050 if (!ShifterOperandIsNonZero.hasValue()) 1051 ShifterOperandIsNonZero = 1052 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1053 if (*ShifterOperandIsNonZero) 1054 continue; 1055 } 1056 1057 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1058 Known.One &= KOF(Known2.One, ShiftAmt); 1059 } 1060 1061 // If the known bits conflict, the result is poison. Return a 0 and hope the 1062 // caller can further optimize that. 1063 if (Known.hasConflict()) 1064 Known.setAllZero(); 1065 } 1066 1067 static void computeKnownBitsFromOperator(const Operator *I, 1068 const APInt &DemandedElts, 1069 KnownBits &Known, unsigned Depth, 1070 const Query &Q) { 1071 unsigned BitWidth = Known.getBitWidth(); 1072 1073 KnownBits Known2(BitWidth); 1074 switch (I->getOpcode()) { 1075 default: break; 1076 case Instruction::Load: 1077 if (MDNode *MD = 1078 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1079 computeKnownBitsFromRangeMetadata(*MD, Known); 1080 break; 1081 case Instruction::And: { 1082 // If either the LHS or the RHS are Zero, the result is zero. 1083 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1084 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1085 1086 Known &= Known2; 1087 1088 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1089 // here we handle the more general case of adding any odd number by 1090 // matching the form add(x, add(x, y)) where y is odd. 1091 // TODO: This could be generalized to clearing any bit set in y where the 1092 // following bit is known to be unset in y. 1093 Value *X = nullptr, *Y = nullptr; 1094 if (!Known.Zero[0] && !Known.One[0] && 1095 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1096 Known2.resetAll(); 1097 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1098 if (Known2.countMinTrailingOnes() > 0) 1099 Known.Zero.setBit(0); 1100 } 1101 break; 1102 } 1103 case Instruction::Or: 1104 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1105 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1106 1107 Known |= Known2; 1108 break; 1109 case Instruction::Xor: 1110 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1111 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1112 1113 Known ^= Known2; 1114 break; 1115 case Instruction::Mul: { 1116 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1117 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1118 Known, Known2, Depth, Q); 1119 break; 1120 } 1121 case Instruction::UDiv: { 1122 // For the purposes of computing leading zeros we can conservatively 1123 // treat a udiv as a logical right shift by the power of 2 known to 1124 // be less than the denominator. 1125 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1126 unsigned LeadZ = Known2.countMinLeadingZeros(); 1127 1128 Known2.resetAll(); 1129 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1130 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1131 if (RHSMaxLeadingZeros != BitWidth) 1132 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1133 1134 Known.Zero.setHighBits(LeadZ); 1135 break; 1136 } 1137 case Instruction::Select: { 1138 const Value *LHS = nullptr, *RHS = nullptr; 1139 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1140 if (SelectPatternResult::isMinOrMax(SPF)) { 1141 computeKnownBits(RHS, Known, Depth + 1, Q); 1142 computeKnownBits(LHS, Known2, Depth + 1, Q); 1143 switch (SPF) { 1144 default: 1145 llvm_unreachable("Unhandled select pattern flavor!"); 1146 case SPF_SMAX: 1147 Known = KnownBits::smax(Known, Known2); 1148 break; 1149 case SPF_SMIN: 1150 Known = KnownBits::smin(Known, Known2); 1151 break; 1152 case SPF_UMAX: 1153 Known = KnownBits::umax(Known, Known2); 1154 break; 1155 case SPF_UMIN: 1156 Known = KnownBits::umin(Known, Known2); 1157 break; 1158 } 1159 break; 1160 } 1161 1162 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1163 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1164 1165 // Only known if known in both the LHS and RHS. 1166 Known.One &= Known2.One; 1167 Known.Zero &= Known2.Zero; 1168 1169 if (SPF == SPF_ABS) { 1170 // RHS from matchSelectPattern returns the negation part of abs pattern. 1171 // If the negate has an NSW flag we can assume the sign bit of the result 1172 // will be 0 because that makes abs(INT_MIN) undefined. 1173 if (match(RHS, m_Neg(m_Specific(LHS))) && 1174 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1175 Known.Zero.setSignBit(); 1176 } 1177 1178 break; 1179 } 1180 case Instruction::FPTrunc: 1181 case Instruction::FPExt: 1182 case Instruction::FPToUI: 1183 case Instruction::FPToSI: 1184 case Instruction::SIToFP: 1185 case Instruction::UIToFP: 1186 break; // Can't work with floating point. 1187 case Instruction::PtrToInt: 1188 case Instruction::IntToPtr: 1189 // Fall through and handle them the same as zext/trunc. 1190 LLVM_FALLTHROUGH; 1191 case Instruction::ZExt: 1192 case Instruction::Trunc: { 1193 Type *SrcTy = I->getOperand(0)->getType(); 1194 1195 unsigned SrcBitWidth; 1196 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1197 // which fall through here. 1198 Type *ScalarTy = SrcTy->getScalarType(); 1199 SrcBitWidth = ScalarTy->isPointerTy() ? 1200 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1201 Q.DL.getTypeSizeInBits(ScalarTy); 1202 1203 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1204 Known = Known.anyextOrTrunc(SrcBitWidth); 1205 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1206 Known = Known.zextOrTrunc(BitWidth); 1207 break; 1208 } 1209 case Instruction::BitCast: { 1210 Type *SrcTy = I->getOperand(0)->getType(); 1211 if (SrcTy->isIntOrPtrTy() && 1212 // TODO: For now, not handling conversions like: 1213 // (bitcast i64 %x to <2 x i32>) 1214 !I->getType()->isVectorTy()) { 1215 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1216 break; 1217 } 1218 break; 1219 } 1220 case Instruction::SExt: { 1221 // Compute the bits in the result that are not present in the input. 1222 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1223 1224 Known = Known.trunc(SrcBitWidth); 1225 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1226 // If the sign bit of the input is known set or clear, then we know the 1227 // top bits of the result. 1228 Known = Known.sext(BitWidth); 1229 break; 1230 } 1231 case Instruction::Shl: { 1232 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1233 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1234 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1235 APInt KZResult = KnownZero << ShiftAmt; 1236 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1237 // If this shift has "nsw" keyword, then the result is either a poison 1238 // value or has the same sign bit as the first operand. 1239 if (NSW && KnownZero.isSignBitSet()) 1240 KZResult.setSignBit(); 1241 return KZResult; 1242 }; 1243 1244 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1245 APInt KOResult = KnownOne << ShiftAmt; 1246 if (NSW && KnownOne.isSignBitSet()) 1247 KOResult.setSignBit(); 1248 return KOResult; 1249 }; 1250 1251 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1252 KZF, KOF); 1253 break; 1254 } 1255 case Instruction::LShr: { 1256 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1257 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1258 APInt KZResult = KnownZero.lshr(ShiftAmt); 1259 // High bits known zero. 1260 KZResult.setHighBits(ShiftAmt); 1261 return KZResult; 1262 }; 1263 1264 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1265 return KnownOne.lshr(ShiftAmt); 1266 }; 1267 1268 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1269 KZF, KOF); 1270 break; 1271 } 1272 case Instruction::AShr: { 1273 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1274 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1275 return KnownZero.ashr(ShiftAmt); 1276 }; 1277 1278 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1279 return KnownOne.ashr(ShiftAmt); 1280 }; 1281 1282 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1283 KZF, KOF); 1284 break; 1285 } 1286 case Instruction::Sub: { 1287 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1288 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1289 DemandedElts, Known, Known2, Depth, Q); 1290 break; 1291 } 1292 case Instruction::Add: { 1293 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1294 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1295 DemandedElts, Known, Known2, Depth, Q); 1296 break; 1297 } 1298 case Instruction::SRem: 1299 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1300 APInt RA = Rem->getValue().abs(); 1301 if (RA.isPowerOf2()) { 1302 APInt LowBits = RA - 1; 1303 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1304 1305 // The low bits of the first operand are unchanged by the srem. 1306 Known.Zero = Known2.Zero & LowBits; 1307 Known.One = Known2.One & LowBits; 1308 1309 // If the first operand is non-negative or has all low bits zero, then 1310 // the upper bits are all zero. 1311 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1312 Known.Zero |= ~LowBits; 1313 1314 // If the first operand is negative and not all low bits are zero, then 1315 // the upper bits are all one. 1316 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1317 Known.One |= ~LowBits; 1318 1319 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1320 break; 1321 } 1322 } 1323 1324 // The sign bit is the LHS's sign bit, except when the result of the 1325 // remainder is zero. 1326 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1327 // If it's known zero, our sign bit is also zero. 1328 if (Known2.isNonNegative()) 1329 Known.makeNonNegative(); 1330 1331 break; 1332 case Instruction::URem: { 1333 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1334 const APInt &RA = Rem->getValue(); 1335 if (RA.isPowerOf2()) { 1336 APInt LowBits = (RA - 1); 1337 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1338 Known.Zero |= ~LowBits; 1339 Known.One &= LowBits; 1340 break; 1341 } 1342 } 1343 1344 // Since the result is less than or equal to either operand, any leading 1345 // zero bits in either operand must also exist in the result. 1346 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1347 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1348 1349 unsigned Leaders = 1350 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1351 Known.resetAll(); 1352 Known.Zero.setHighBits(Leaders); 1353 break; 1354 } 1355 case Instruction::Alloca: 1356 Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign())); 1357 break; 1358 case Instruction::GetElementPtr: { 1359 // Analyze all of the subscripts of this getelementptr instruction 1360 // to determine if we can prove known low zero bits. 1361 KnownBits LocalKnown(BitWidth); 1362 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1363 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1364 1365 gep_type_iterator GTI = gep_type_begin(I); 1366 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1367 // TrailZ can only become smaller, short-circuit if we hit zero. 1368 if (TrailZ == 0) 1369 break; 1370 1371 Value *Index = I->getOperand(i); 1372 if (StructType *STy = GTI.getStructTypeOrNull()) { 1373 // Handle struct member offset arithmetic. 1374 1375 // Handle case when index is vector zeroinitializer 1376 Constant *CIndex = cast<Constant>(Index); 1377 if (CIndex->isZeroValue()) 1378 continue; 1379 1380 if (CIndex->getType()->isVectorTy()) 1381 Index = CIndex->getSplatValue(); 1382 1383 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1384 const StructLayout *SL = Q.DL.getStructLayout(STy); 1385 uint64_t Offset = SL->getElementOffset(Idx); 1386 TrailZ = std::min<unsigned>(TrailZ, 1387 countTrailingZeros(Offset)); 1388 } else { 1389 // Handle array index arithmetic. 1390 Type *IndexedTy = GTI.getIndexedType(); 1391 if (!IndexedTy->isSized()) { 1392 TrailZ = 0; 1393 break; 1394 } 1395 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1396 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1397 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1398 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1399 TrailZ = std::min(TrailZ, 1400 unsigned(countTrailingZeros(TypeSize) + 1401 LocalKnown.countMinTrailingZeros())); 1402 } 1403 } 1404 1405 Known.Zero.setLowBits(TrailZ); 1406 break; 1407 } 1408 case Instruction::PHI: { 1409 const PHINode *P = cast<PHINode>(I); 1410 // Handle the case of a simple two-predecessor recurrence PHI. 1411 // There's a lot more that could theoretically be done here, but 1412 // this is sufficient to catch some interesting cases. 1413 if (P->getNumIncomingValues() == 2) { 1414 for (unsigned i = 0; i != 2; ++i) { 1415 Value *L = P->getIncomingValue(i); 1416 Value *R = P->getIncomingValue(!i); 1417 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1418 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1419 Operator *LU = dyn_cast<Operator>(L); 1420 if (!LU) 1421 continue; 1422 unsigned Opcode = LU->getOpcode(); 1423 // Check for operations that have the property that if 1424 // both their operands have low zero bits, the result 1425 // will have low zero bits. 1426 if (Opcode == Instruction::Add || 1427 Opcode == Instruction::Sub || 1428 Opcode == Instruction::And || 1429 Opcode == Instruction::Or || 1430 Opcode == Instruction::Mul) { 1431 Value *LL = LU->getOperand(0); 1432 Value *LR = LU->getOperand(1); 1433 // Find a recurrence. 1434 if (LL == I) 1435 L = LR; 1436 else if (LR == I) 1437 L = LL; 1438 else 1439 continue; // Check for recurrence with L and R flipped. 1440 1441 // Change the context instruction to the "edge" that flows into the 1442 // phi. This is important because that is where the value is actually 1443 // "evaluated" even though it is used later somewhere else. (see also 1444 // D69571). 1445 Query RecQ = Q; 1446 1447 // Ok, we have a PHI of the form L op= R. Check for low 1448 // zero bits. 1449 RecQ.CxtI = RInst; 1450 computeKnownBits(R, Known2, Depth + 1, RecQ); 1451 1452 // We need to take the minimum number of known bits 1453 KnownBits Known3(BitWidth); 1454 RecQ.CxtI = LInst; 1455 computeKnownBits(L, Known3, Depth + 1, RecQ); 1456 1457 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1458 Known3.countMinTrailingZeros())); 1459 1460 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1461 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1462 // If initial value of recurrence is nonnegative, and we are adding 1463 // a nonnegative number with nsw, the result can only be nonnegative 1464 // or poison value regardless of the number of times we execute the 1465 // add in phi recurrence. If initial value is negative and we are 1466 // adding a negative number with nsw, the result can only be 1467 // negative or poison value. Similar arguments apply to sub and mul. 1468 // 1469 // (add non-negative, non-negative) --> non-negative 1470 // (add negative, negative) --> negative 1471 if (Opcode == Instruction::Add) { 1472 if (Known2.isNonNegative() && Known3.isNonNegative()) 1473 Known.makeNonNegative(); 1474 else if (Known2.isNegative() && Known3.isNegative()) 1475 Known.makeNegative(); 1476 } 1477 1478 // (sub nsw non-negative, negative) --> non-negative 1479 // (sub nsw negative, non-negative) --> negative 1480 else if (Opcode == Instruction::Sub && LL == I) { 1481 if (Known2.isNonNegative() && Known3.isNegative()) 1482 Known.makeNonNegative(); 1483 else if (Known2.isNegative() && Known3.isNonNegative()) 1484 Known.makeNegative(); 1485 } 1486 1487 // (mul nsw non-negative, non-negative) --> non-negative 1488 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1489 Known3.isNonNegative()) 1490 Known.makeNonNegative(); 1491 } 1492 1493 break; 1494 } 1495 } 1496 } 1497 1498 // Unreachable blocks may have zero-operand PHI nodes. 1499 if (P->getNumIncomingValues() == 0) 1500 break; 1501 1502 // Otherwise take the unions of the known bit sets of the operands, 1503 // taking conservative care to avoid excessive recursion. 1504 if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) { 1505 // Skip if every incoming value references to ourself. 1506 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1507 break; 1508 1509 Known.Zero.setAllBits(); 1510 Known.One.setAllBits(); 1511 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1512 Value *IncValue = P->getIncomingValue(u); 1513 // Skip direct self references. 1514 if (IncValue == P) continue; 1515 1516 // Change the context instruction to the "edge" that flows into the 1517 // phi. This is important because that is where the value is actually 1518 // "evaluated" even though it is used later somewhere else. (see also 1519 // D69571). 1520 Query RecQ = Q; 1521 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1522 1523 Known2 = KnownBits(BitWidth); 1524 // Recurse, but cap the recursion to one level, because we don't 1525 // want to waste time spinning around in loops. 1526 computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ); 1527 Known.Zero &= Known2.Zero; 1528 Known.One &= Known2.One; 1529 // If all bits have been ruled out, there's no need to check 1530 // more operands. 1531 if (!Known.Zero && !Known.One) 1532 break; 1533 } 1534 } 1535 break; 1536 } 1537 case Instruction::Call: 1538 case Instruction::Invoke: 1539 // If range metadata is attached to this call, set known bits from that, 1540 // and then intersect with known bits based on other properties of the 1541 // function. 1542 if (MDNode *MD = 1543 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1544 computeKnownBitsFromRangeMetadata(*MD, Known); 1545 if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) { 1546 computeKnownBits(RV, Known2, Depth + 1, Q); 1547 Known.Zero |= Known2.Zero; 1548 Known.One |= Known2.One; 1549 } 1550 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1551 switch (II->getIntrinsicID()) { 1552 default: break; 1553 case Intrinsic::abs: 1554 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1555 1556 // If the source's MSB is zero then we know the rest of the bits. 1557 if (Known2.isNonNegative()) { 1558 Known.Zero |= Known2.Zero; 1559 Known.One |= Known2.One; 1560 break; 1561 } 1562 1563 // Absolute value preserves trailing zero count. 1564 Known.Zero.setLowBits(Known2.Zero.countTrailingOnes()); 1565 1566 // If this call is undefined for INT_MIN, the result is positive. We 1567 // also know it can't be INT_MIN if there is a set bit that isn't the 1568 // sign bit. 1569 Known2.One.clearSignBit(); 1570 if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue()) 1571 Known.Zero.setSignBit(); 1572 // FIXME: Handle known negative input? 1573 // FIXME: Calculate the negated Known bits and combine them? 1574 break; 1575 case Intrinsic::bitreverse: 1576 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1577 Known.Zero |= Known2.Zero.reverseBits(); 1578 Known.One |= Known2.One.reverseBits(); 1579 break; 1580 case Intrinsic::bswap: 1581 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1582 Known.Zero |= Known2.Zero.byteSwap(); 1583 Known.One |= Known2.One.byteSwap(); 1584 break; 1585 case Intrinsic::ctlz: { 1586 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1587 // If we have a known 1, its position is our upper bound. 1588 unsigned PossibleLZ = Known2.countMaxLeadingZeros(); 1589 // If this call is undefined for 0, the result will be less than 2^n. 1590 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1591 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1592 unsigned LowBits = Log2_32(PossibleLZ)+1; 1593 Known.Zero.setBitsFrom(LowBits); 1594 break; 1595 } 1596 case Intrinsic::cttz: { 1597 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1598 // If we have a known 1, its position is our upper bound. 1599 unsigned PossibleTZ = Known2.countMaxTrailingZeros(); 1600 // If this call is undefined for 0, the result will be less than 2^n. 1601 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1602 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1603 unsigned LowBits = Log2_32(PossibleTZ)+1; 1604 Known.Zero.setBitsFrom(LowBits); 1605 break; 1606 } 1607 case Intrinsic::ctpop: { 1608 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1609 // We can bound the space the count needs. Also, bits known to be zero 1610 // can't contribute to the population. 1611 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1612 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1613 Known.Zero.setBitsFrom(LowBits); 1614 // TODO: we could bound KnownOne using the lower bound on the number 1615 // of bits which might be set provided by popcnt KnownOne2. 1616 break; 1617 } 1618 case Intrinsic::fshr: 1619 case Intrinsic::fshl: { 1620 const APInt *SA; 1621 if (!match(I->getOperand(2), m_APInt(SA))) 1622 break; 1623 1624 // Normalize to funnel shift left. 1625 uint64_t ShiftAmt = SA->urem(BitWidth); 1626 if (II->getIntrinsicID() == Intrinsic::fshr) 1627 ShiftAmt = BitWidth - ShiftAmt; 1628 1629 KnownBits Known3(BitWidth); 1630 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1631 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1632 1633 Known.Zero = 1634 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1635 Known.One = 1636 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1637 break; 1638 } 1639 case Intrinsic::uadd_sat: 1640 case Intrinsic::usub_sat: { 1641 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1642 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1643 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1644 1645 // Add: Leading ones of either operand are preserved. 1646 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1647 // as leading zeros in the result. 1648 unsigned LeadingKnown; 1649 if (IsAdd) 1650 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1651 Known2.countMinLeadingOnes()); 1652 else 1653 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1654 Known2.countMinLeadingOnes()); 1655 1656 Known = KnownBits::computeForAddSub( 1657 IsAdd, /* NSW */ false, Known, Known2); 1658 1659 // We select between the operation result and all-ones/zero 1660 // respectively, so we can preserve known ones/zeros. 1661 if (IsAdd) { 1662 Known.One.setHighBits(LeadingKnown); 1663 Known.Zero.clearAllBits(); 1664 } else { 1665 Known.Zero.setHighBits(LeadingKnown); 1666 Known.One.clearAllBits(); 1667 } 1668 break; 1669 } 1670 case Intrinsic::umin: 1671 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1672 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1673 Known = KnownBits::umin(Known, Known2); 1674 break; 1675 case Intrinsic::umax: 1676 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1677 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1678 Known = KnownBits::umax(Known, Known2); 1679 break; 1680 case Intrinsic::smin: 1681 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1682 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1683 Known = KnownBits::smin(Known, Known2); 1684 break; 1685 case Intrinsic::smax: 1686 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1687 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1688 Known = KnownBits::smax(Known, Known2); 1689 break; 1690 case Intrinsic::x86_sse42_crc32_64_64: 1691 Known.Zero.setBitsFrom(32); 1692 break; 1693 } 1694 } 1695 break; 1696 case Instruction::ShuffleVector: { 1697 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1698 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1699 if (!Shuf) { 1700 Known.resetAll(); 1701 return; 1702 } 1703 // For undef elements, we don't know anything about the common state of 1704 // the shuffle result. 1705 APInt DemandedLHS, DemandedRHS; 1706 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1707 Known.resetAll(); 1708 return; 1709 } 1710 Known.One.setAllBits(); 1711 Known.Zero.setAllBits(); 1712 if (!!DemandedLHS) { 1713 const Value *LHS = Shuf->getOperand(0); 1714 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1715 // If we don't know any bits, early out. 1716 if (Known.isUnknown()) 1717 break; 1718 } 1719 if (!!DemandedRHS) { 1720 const Value *RHS = Shuf->getOperand(1); 1721 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1722 Known.One &= Known2.One; 1723 Known.Zero &= Known2.Zero; 1724 } 1725 break; 1726 } 1727 case Instruction::InsertElement: { 1728 const Value *Vec = I->getOperand(0); 1729 const Value *Elt = I->getOperand(1); 1730 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1731 // Early out if the index is non-constant or out-of-range. 1732 unsigned NumElts = DemandedElts.getBitWidth(); 1733 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1734 Known.resetAll(); 1735 return; 1736 } 1737 Known.One.setAllBits(); 1738 Known.Zero.setAllBits(); 1739 unsigned EltIdx = CIdx->getZExtValue(); 1740 // Do we demand the inserted element? 1741 if (DemandedElts[EltIdx]) { 1742 computeKnownBits(Elt, Known, Depth + 1, Q); 1743 // If we don't know any bits, early out. 1744 if (Known.isUnknown()) 1745 break; 1746 } 1747 // We don't need the base vector element that has been inserted. 1748 APInt DemandedVecElts = DemandedElts; 1749 DemandedVecElts.clearBit(EltIdx); 1750 if (!!DemandedVecElts) { 1751 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1752 Known.One &= Known2.One; 1753 Known.Zero &= Known2.Zero; 1754 } 1755 break; 1756 } 1757 case Instruction::ExtractElement: { 1758 // Look through extract element. If the index is non-constant or 1759 // out-of-range demand all elements, otherwise just the extracted element. 1760 const Value *Vec = I->getOperand(0); 1761 const Value *Idx = I->getOperand(1); 1762 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1763 if (isa<ScalableVectorType>(Vec->getType())) { 1764 // FIXME: there's probably *something* we can do with scalable vectors 1765 Known.resetAll(); 1766 break; 1767 } 1768 unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements(); 1769 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1770 if (CIdx && CIdx->getValue().ult(NumElts)) 1771 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1772 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1773 break; 1774 } 1775 case Instruction::ExtractValue: 1776 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1777 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1778 if (EVI->getNumIndices() != 1) break; 1779 if (EVI->getIndices()[0] == 0) { 1780 switch (II->getIntrinsicID()) { 1781 default: break; 1782 case Intrinsic::uadd_with_overflow: 1783 case Intrinsic::sadd_with_overflow: 1784 computeKnownBitsAddSub(true, II->getArgOperand(0), 1785 II->getArgOperand(1), false, DemandedElts, 1786 Known, Known2, Depth, Q); 1787 break; 1788 case Intrinsic::usub_with_overflow: 1789 case Intrinsic::ssub_with_overflow: 1790 computeKnownBitsAddSub(false, II->getArgOperand(0), 1791 II->getArgOperand(1), false, DemandedElts, 1792 Known, Known2, Depth, Q); 1793 break; 1794 case Intrinsic::umul_with_overflow: 1795 case Intrinsic::smul_with_overflow: 1796 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1797 DemandedElts, Known, Known2, Depth, Q); 1798 break; 1799 } 1800 } 1801 } 1802 break; 1803 case Instruction::Freeze: 1804 if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT, 1805 Depth + 1)) 1806 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1807 break; 1808 } 1809 } 1810 1811 /// Determine which bits of V are known to be either zero or one and return 1812 /// them. 1813 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1814 unsigned Depth, const Query &Q) { 1815 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1816 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1817 return Known; 1818 } 1819 1820 /// Determine which bits of V are known to be either zero or one and return 1821 /// them. 1822 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1823 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1824 computeKnownBits(V, Known, Depth, Q); 1825 return Known; 1826 } 1827 1828 /// Determine which bits of V are known to be either zero or one and return 1829 /// them in the Known bit set. 1830 /// 1831 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1832 /// we cannot optimize based on the assumption that it is zero without changing 1833 /// it to be an explicit zero. If we don't change it to zero, other code could 1834 /// optimized based on the contradictory assumption that it is non-zero. 1835 /// Because instcombine aggressively folds operations with undef args anyway, 1836 /// this won't lose us code quality. 1837 /// 1838 /// This function is defined on values with integer type, values with pointer 1839 /// type, and vectors of integers. In the case 1840 /// where V is a vector, known zero, and known one values are the 1841 /// same width as the vector element, and the bit is set only if it is true 1842 /// for all of the demanded elements in the vector specified by DemandedElts. 1843 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1844 KnownBits &Known, unsigned Depth, const Query &Q) { 1845 if (!DemandedElts || isa<ScalableVectorType>(V->getType())) { 1846 // No demanded elts or V is a scalable vector, better to assume we don't 1847 // know anything. 1848 Known.resetAll(); 1849 return; 1850 } 1851 1852 assert(V && "No Value?"); 1853 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1854 1855 #ifndef NDEBUG 1856 Type *Ty = V->getType(); 1857 unsigned BitWidth = Known.getBitWidth(); 1858 1859 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1860 "Not integer or pointer type!"); 1861 1862 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 1863 assert( 1864 FVTy->getNumElements() == DemandedElts.getBitWidth() && 1865 "DemandedElt width should equal the fixed vector number of elements"); 1866 } else { 1867 assert(DemandedElts == APInt(1, 1) && 1868 "DemandedElt width should be 1 for scalars"); 1869 } 1870 1871 Type *ScalarTy = Ty->getScalarType(); 1872 if (ScalarTy->isPointerTy()) { 1873 assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) && 1874 "V and Known should have same BitWidth"); 1875 } else { 1876 assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) && 1877 "V and Known should have same BitWidth"); 1878 } 1879 #endif 1880 1881 const APInt *C; 1882 if (match(V, m_APInt(C))) { 1883 // We know all of the bits for a scalar constant or a splat vector constant! 1884 Known.One = *C; 1885 Known.Zero = ~Known.One; 1886 return; 1887 } 1888 // Null and aggregate-zero are all-zeros. 1889 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1890 Known.setAllZero(); 1891 return; 1892 } 1893 // Handle a constant vector by taking the intersection of the known bits of 1894 // each element. 1895 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) { 1896 // We know that CDV must be a vector of integers. Take the intersection of 1897 // each element. 1898 Known.Zero.setAllBits(); Known.One.setAllBits(); 1899 for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) { 1900 if (!DemandedElts[i]) 1901 continue; 1902 APInt Elt = CDV->getElementAsAPInt(i); 1903 Known.Zero &= ~Elt; 1904 Known.One &= Elt; 1905 } 1906 return; 1907 } 1908 1909 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1910 // We know that CV must be a vector of integers. Take the intersection of 1911 // each element. 1912 Known.Zero.setAllBits(); Known.One.setAllBits(); 1913 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1914 if (!DemandedElts[i]) 1915 continue; 1916 Constant *Element = CV->getAggregateElement(i); 1917 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1918 if (!ElementCI) { 1919 Known.resetAll(); 1920 return; 1921 } 1922 const APInt &Elt = ElementCI->getValue(); 1923 Known.Zero &= ~Elt; 1924 Known.One &= Elt; 1925 } 1926 return; 1927 } 1928 1929 // Start out not knowing anything. 1930 Known.resetAll(); 1931 1932 // We can't imply anything about undefs. 1933 if (isa<UndefValue>(V)) 1934 return; 1935 1936 // There's no point in looking through other users of ConstantData for 1937 // assumptions. Confirm that we've handled them all. 1938 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1939 1940 // All recursive calls that increase depth must come after this. 1941 if (Depth == MaxAnalysisRecursionDepth) 1942 return; 1943 1944 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1945 // the bits of its aliasee. 1946 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1947 if (!GA->isInterposable()) 1948 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1949 return; 1950 } 1951 1952 if (const Operator *I = dyn_cast<Operator>(V)) 1953 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1954 1955 // Aligned pointers have trailing zeros - refine Known.Zero set 1956 if (isa<PointerType>(V->getType())) { 1957 Align Alignment = V->getPointerAlignment(Q.DL); 1958 Known.Zero.setLowBits(countTrailingZeros(Alignment.value())); 1959 } 1960 1961 // computeKnownBitsFromAssume strictly refines Known. 1962 // Therefore, we run them after computeKnownBitsFromOperator. 1963 1964 // Check whether a nearby assume intrinsic can determine some known bits. 1965 computeKnownBitsFromAssume(V, Known, Depth, Q); 1966 1967 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1968 } 1969 1970 /// Return true if the given value is known to have exactly one 1971 /// bit set when defined. For vectors return true if every element is known to 1972 /// be a power of two when defined. Supports values with integer or pointer 1973 /// types and vectors of integers. 1974 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 1975 const Query &Q) { 1976 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 1977 1978 // Attempt to match against constants. 1979 if (OrZero && match(V, m_Power2OrZero())) 1980 return true; 1981 if (match(V, m_Power2())) 1982 return true; 1983 1984 // 1 << X is clearly a power of two if the one is not shifted off the end. If 1985 // it is shifted off the end then the result is undefined. 1986 if (match(V, m_Shl(m_One(), m_Value()))) 1987 return true; 1988 1989 // (signmask) >>l X is clearly a power of two if the one is not shifted off 1990 // the bottom. If it is shifted off the bottom then the result is undefined. 1991 if (match(V, m_LShr(m_SignMask(), m_Value()))) 1992 return true; 1993 1994 // The remaining tests are all recursive, so bail out if we hit the limit. 1995 if (Depth++ == MaxAnalysisRecursionDepth) 1996 return false; 1997 1998 Value *X = nullptr, *Y = nullptr; 1999 // A shift left or a logical shift right of a power of two is a power of two 2000 // or zero. 2001 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2002 match(V, m_LShr(m_Value(X), m_Value())))) 2003 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2004 2005 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2006 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2007 2008 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2009 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2010 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2011 2012 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2013 // A power of two and'd with anything is a power of two or zero. 2014 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2015 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2016 return true; 2017 // X & (-X) is always a power of two or zero. 2018 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2019 return true; 2020 return false; 2021 } 2022 2023 // Adding a power-of-two or zero to the same power-of-two or zero yields 2024 // either the original power-of-two, a larger power-of-two or zero. 2025 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2026 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2027 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2028 Q.IIQ.hasNoSignedWrap(VOBO)) { 2029 if (match(X, m_And(m_Specific(Y), m_Value())) || 2030 match(X, m_And(m_Value(), m_Specific(Y)))) 2031 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2032 return true; 2033 if (match(Y, m_And(m_Specific(X), m_Value())) || 2034 match(Y, m_And(m_Value(), m_Specific(X)))) 2035 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2036 return true; 2037 2038 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2039 KnownBits LHSBits(BitWidth); 2040 computeKnownBits(X, LHSBits, Depth, Q); 2041 2042 KnownBits RHSBits(BitWidth); 2043 computeKnownBits(Y, RHSBits, Depth, Q); 2044 // If i8 V is a power of two or zero: 2045 // ZeroBits: 1 1 1 0 1 1 1 1 2046 // ~ZeroBits: 0 0 0 1 0 0 0 0 2047 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2048 // If OrZero isn't set, we cannot give back a zero result. 2049 // Make sure either the LHS or RHS has a bit set. 2050 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2051 return true; 2052 } 2053 } 2054 2055 // An exact divide or right shift can only shift off zero bits, so the result 2056 // is a power of two only if the first operand is a power of two and not 2057 // copying a sign bit (sdiv int_min, 2). 2058 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2059 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2060 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2061 Depth, Q); 2062 } 2063 2064 return false; 2065 } 2066 2067 /// Test whether a GEP's result is known to be non-null. 2068 /// 2069 /// Uses properties inherent in a GEP to try to determine whether it is known 2070 /// to be non-null. 2071 /// 2072 /// Currently this routine does not support vector GEPs. 2073 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2074 const Query &Q) { 2075 const Function *F = nullptr; 2076 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2077 F = I->getFunction(); 2078 2079 if (!GEP->isInBounds() || 2080 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2081 return false; 2082 2083 // FIXME: Support vector-GEPs. 2084 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2085 2086 // If the base pointer is non-null, we cannot walk to a null address with an 2087 // inbounds GEP in address space zero. 2088 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2089 return true; 2090 2091 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2092 // If so, then the GEP cannot produce a null pointer, as doing so would 2093 // inherently violate the inbounds contract within address space zero. 2094 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2095 GTI != GTE; ++GTI) { 2096 // Struct types are easy -- they must always be indexed by a constant. 2097 if (StructType *STy = GTI.getStructTypeOrNull()) { 2098 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2099 unsigned ElementIdx = OpC->getZExtValue(); 2100 const StructLayout *SL = Q.DL.getStructLayout(STy); 2101 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2102 if (ElementOffset > 0) 2103 return true; 2104 continue; 2105 } 2106 2107 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2108 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2109 continue; 2110 2111 // Fast path the constant operand case both for efficiency and so we don't 2112 // increment Depth when just zipping down an all-constant GEP. 2113 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2114 if (!OpC->isZero()) 2115 return true; 2116 continue; 2117 } 2118 2119 // We post-increment Depth here because while isKnownNonZero increments it 2120 // as well, when we pop back up that increment won't persist. We don't want 2121 // to recurse 10k times just because we have 10k GEP operands. We don't 2122 // bail completely out because we want to handle constant GEPs regardless 2123 // of depth. 2124 if (Depth++ >= MaxAnalysisRecursionDepth) 2125 continue; 2126 2127 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2128 return true; 2129 } 2130 2131 return false; 2132 } 2133 2134 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2135 const Instruction *CtxI, 2136 const DominatorTree *DT) { 2137 if (isa<Constant>(V)) 2138 return false; 2139 2140 if (!CtxI || !DT) 2141 return false; 2142 2143 unsigned NumUsesExplored = 0; 2144 for (auto *U : V->users()) { 2145 // Avoid massive lists 2146 if (NumUsesExplored >= DomConditionsMaxUses) 2147 break; 2148 NumUsesExplored++; 2149 2150 // If the value is used as an argument to a call or invoke, then argument 2151 // attributes may provide an answer about null-ness. 2152 if (const auto *CB = dyn_cast<CallBase>(U)) 2153 if (auto *CalledFunc = CB->getCalledFunction()) 2154 for (const Argument &Arg : CalledFunc->args()) 2155 if (CB->getArgOperand(Arg.getArgNo()) == V && 2156 Arg.hasNonNullAttr() && DT->dominates(CB, CtxI)) 2157 return true; 2158 2159 // If the value is used as a load/store, then the pointer must be non null. 2160 if (V == getLoadStorePointerOperand(U)) { 2161 const Instruction *I = cast<Instruction>(U); 2162 if (!NullPointerIsDefined(I->getFunction(), 2163 V->getType()->getPointerAddressSpace()) && 2164 DT->dominates(I, CtxI)) 2165 return true; 2166 } 2167 2168 // Consider only compare instructions uniquely controlling a branch 2169 CmpInst::Predicate Pred; 2170 if (!match(const_cast<User *>(U), 2171 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2172 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2173 continue; 2174 2175 SmallVector<const User *, 4> WorkList; 2176 SmallPtrSet<const User *, 4> Visited; 2177 for (auto *CmpU : U->users()) { 2178 assert(WorkList.empty() && "Should be!"); 2179 if (Visited.insert(CmpU).second) 2180 WorkList.push_back(CmpU); 2181 2182 while (!WorkList.empty()) { 2183 auto *Curr = WorkList.pop_back_val(); 2184 2185 // If a user is an AND, add all its users to the work list. We only 2186 // propagate "pred != null" condition through AND because it is only 2187 // correct to assume that all conditions of AND are met in true branch. 2188 // TODO: Support similar logic of OR and EQ predicate? 2189 if (Pred == ICmpInst::ICMP_NE) 2190 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2191 if (BO->getOpcode() == Instruction::And) { 2192 for (auto *BOU : BO->users()) 2193 if (Visited.insert(BOU).second) 2194 WorkList.push_back(BOU); 2195 continue; 2196 } 2197 2198 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2199 assert(BI->isConditional() && "uses a comparison!"); 2200 2201 BasicBlock *NonNullSuccessor = 2202 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2203 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2204 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2205 return true; 2206 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2207 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2208 return true; 2209 } 2210 } 2211 } 2212 } 2213 2214 return false; 2215 } 2216 2217 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2218 /// ensure that the value it's attached to is never Value? 'RangeType' is 2219 /// is the type of the value described by the range. 2220 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2221 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2222 assert(NumRanges >= 1); 2223 for (unsigned i = 0; i < NumRanges; ++i) { 2224 ConstantInt *Lower = 2225 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2226 ConstantInt *Upper = 2227 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2228 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2229 if (Range.contains(Value)) 2230 return false; 2231 } 2232 return true; 2233 } 2234 2235 /// Return true if the given value is known to be non-zero when defined. For 2236 /// vectors, return true if every demanded element is known to be non-zero when 2237 /// defined. For pointers, if the context instruction and dominator tree are 2238 /// specified, perform context-sensitive analysis and return true if the 2239 /// pointer couldn't possibly be null at the specified instruction. 2240 /// Supports values with integer or pointer type and vectors of integers. 2241 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2242 const Query &Q) { 2243 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2244 // vector 2245 if (isa<ScalableVectorType>(V->getType())) 2246 return false; 2247 2248 if (auto *C = dyn_cast<Constant>(V)) { 2249 if (C->isNullValue()) 2250 return false; 2251 if (isa<ConstantInt>(C)) 2252 // Must be non-zero due to null test above. 2253 return true; 2254 2255 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2256 // See the comment for IntToPtr/PtrToInt instructions below. 2257 if (CE->getOpcode() == Instruction::IntToPtr || 2258 CE->getOpcode() == Instruction::PtrToInt) 2259 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2260 Q.DL.getTypeSizeInBits(CE->getType())) 2261 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2262 } 2263 2264 // For constant vectors, check that all elements are undefined or known 2265 // non-zero to determine that the whole vector is known non-zero. 2266 if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) { 2267 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2268 if (!DemandedElts[i]) 2269 continue; 2270 Constant *Elt = C->getAggregateElement(i); 2271 if (!Elt || Elt->isNullValue()) 2272 return false; 2273 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2274 return false; 2275 } 2276 return true; 2277 } 2278 2279 // A global variable in address space 0 is non null unless extern weak 2280 // or an absolute symbol reference. Other address spaces may have null as a 2281 // valid address for a global, so we can't assume anything. 2282 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2283 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2284 GV->getType()->getAddressSpace() == 0) 2285 return true; 2286 } else 2287 return false; 2288 } 2289 2290 if (auto *I = dyn_cast<Instruction>(V)) { 2291 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2292 // If the possible ranges don't contain zero, then the value is 2293 // definitely non-zero. 2294 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2295 const APInt ZeroValue(Ty->getBitWidth(), 0); 2296 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2297 return true; 2298 } 2299 } 2300 } 2301 2302 if (isKnownNonZeroFromAssume(V, Q)) 2303 return true; 2304 2305 // Some of the tests below are recursive, so bail out if we hit the limit. 2306 if (Depth++ >= MaxAnalysisRecursionDepth) 2307 return false; 2308 2309 // Check for pointer simplifications. 2310 2311 if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) { 2312 // Alloca never returns null, malloc might. 2313 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2314 return true; 2315 2316 // A byval, inalloca may not be null in a non-default addres space. A 2317 // nonnull argument is assumed never 0. 2318 if (const Argument *A = dyn_cast<Argument>(V)) { 2319 if (((A->hasPassPointeeByValueCopyAttr() && 2320 !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) || 2321 A->hasNonNullAttr())) 2322 return true; 2323 } 2324 2325 // A Load tagged with nonnull metadata is never null. 2326 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2327 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2328 return true; 2329 2330 if (const auto *Call = dyn_cast<CallBase>(V)) { 2331 if (Call->isReturnNonNull()) 2332 return true; 2333 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2334 return isKnownNonZero(RP, Depth, Q); 2335 } 2336 } 2337 2338 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2339 return true; 2340 2341 // Check for recursive pointer simplifications. 2342 if (V->getType()->isPointerTy()) { 2343 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2344 // do not alter the value, or at least not the nullness property of the 2345 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2346 // 2347 // Note that we have to take special care to avoid looking through 2348 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2349 // as casts that can alter the value, e.g., AddrSpaceCasts. 2350 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2351 return isGEPKnownNonNull(GEP, Depth, Q); 2352 2353 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2354 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2355 2356 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2357 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2358 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2359 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2360 } 2361 2362 // Similar to int2ptr above, we can look through ptr2int here if the cast 2363 // is a no-op or an extend and not a truncate. 2364 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2365 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2366 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2367 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2368 2369 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2370 2371 // X | Y != 0 if X != 0 or Y != 0. 2372 Value *X = nullptr, *Y = nullptr; 2373 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2374 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2375 isKnownNonZero(Y, DemandedElts, Depth, Q); 2376 2377 // ext X != 0 if X != 0. 2378 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2379 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2380 2381 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2382 // if the lowest bit is shifted off the end. 2383 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2384 // shl nuw can't remove any non-zero bits. 2385 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2386 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2387 return isKnownNonZero(X, Depth, Q); 2388 2389 KnownBits Known(BitWidth); 2390 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2391 if (Known.One[0]) 2392 return true; 2393 } 2394 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2395 // defined if the sign bit is shifted off the end. 2396 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2397 // shr exact can only shift out zero bits. 2398 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2399 if (BO->isExact()) 2400 return isKnownNonZero(X, Depth, Q); 2401 2402 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2403 if (Known.isNegative()) 2404 return true; 2405 2406 // If the shifter operand is a constant, and all of the bits shifted 2407 // out are known to be zero, and X is known non-zero then at least one 2408 // non-zero bit must remain. 2409 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2410 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2411 // Is there a known one in the portion not shifted out? 2412 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2413 return true; 2414 // Are all the bits to be shifted out known zero? 2415 if (Known.countMinTrailingZeros() >= ShiftVal) 2416 return isKnownNonZero(X, DemandedElts, Depth, Q); 2417 } 2418 } 2419 // div exact can only produce a zero if the dividend is zero. 2420 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2421 return isKnownNonZero(X, DemandedElts, Depth, Q); 2422 } 2423 // X + Y. 2424 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2425 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2426 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2427 2428 // If X and Y are both non-negative (as signed values) then their sum is not 2429 // zero unless both X and Y are zero. 2430 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2431 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2432 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2433 return true; 2434 2435 // If X and Y are both negative (as signed values) then their sum is not 2436 // zero unless both X and Y equal INT_MIN. 2437 if (XKnown.isNegative() && YKnown.isNegative()) { 2438 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2439 // The sign bit of X is set. If some other bit is set then X is not equal 2440 // to INT_MIN. 2441 if (XKnown.One.intersects(Mask)) 2442 return true; 2443 // The sign bit of Y is set. If some other bit is set then Y is not equal 2444 // to INT_MIN. 2445 if (YKnown.One.intersects(Mask)) 2446 return true; 2447 } 2448 2449 // The sum of a non-negative number and a power of two is not zero. 2450 if (XKnown.isNonNegative() && 2451 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2452 return true; 2453 if (YKnown.isNonNegative() && 2454 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2455 return true; 2456 } 2457 // X * Y. 2458 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2459 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2460 // If X and Y are non-zero then so is X * Y as long as the multiplication 2461 // does not overflow. 2462 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2463 isKnownNonZero(X, DemandedElts, Depth, Q) && 2464 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2465 return true; 2466 } 2467 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2468 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2469 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2470 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2471 return true; 2472 } 2473 // PHI 2474 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2475 // Try and detect a recurrence that monotonically increases from a 2476 // starting value, as these are common as induction variables. 2477 if (PN->getNumIncomingValues() == 2) { 2478 Value *Start = PN->getIncomingValue(0); 2479 Value *Induction = PN->getIncomingValue(1); 2480 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2481 std::swap(Start, Induction); 2482 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2483 if (!C->isZero() && !C->isNegative()) { 2484 ConstantInt *X; 2485 if (Q.IIQ.UseInstrInfo && 2486 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2487 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2488 !X->isNegative()) 2489 return true; 2490 } 2491 } 2492 } 2493 // Check if all incoming values are non-zero using recursion. 2494 Query RecQ = Q; 2495 unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1); 2496 return llvm::all_of(PN->operands(), [&](const Use &U) { 2497 if (U.get() == PN) 2498 return true; 2499 RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator(); 2500 return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ); 2501 }); 2502 } 2503 // ExtractElement 2504 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2505 const Value *Vec = EEI->getVectorOperand(); 2506 const Value *Idx = EEI->getIndexOperand(); 2507 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2508 if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) { 2509 unsigned NumElts = VecTy->getNumElements(); 2510 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2511 if (CIdx && CIdx->getValue().ult(NumElts)) 2512 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2513 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2514 } 2515 } 2516 // Freeze 2517 else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) { 2518 auto *Op = FI->getOperand(0); 2519 if (isKnownNonZero(Op, Depth, Q) && 2520 isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth)) 2521 return true; 2522 } 2523 2524 KnownBits Known(BitWidth); 2525 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2526 return Known.One != 0; 2527 } 2528 2529 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2530 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2531 // vector 2532 if (isa<ScalableVectorType>(V->getType())) 2533 return false; 2534 2535 auto *FVTy = dyn_cast<FixedVectorType>(V->getType()); 2536 APInt DemandedElts = 2537 FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1); 2538 return isKnownNonZero(V, DemandedElts, Depth, Q); 2539 } 2540 2541 /// Return true if V2 == V1 + X, where X is known non-zero. 2542 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2543 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2544 if (!BO || BO->getOpcode() != Instruction::Add) 2545 return false; 2546 Value *Op = nullptr; 2547 if (V2 == BO->getOperand(0)) 2548 Op = BO->getOperand(1); 2549 else if (V2 == BO->getOperand(1)) 2550 Op = BO->getOperand(0); 2551 else 2552 return false; 2553 return isKnownNonZero(Op, 0, Q); 2554 } 2555 2556 /// Return true if it is known that V1 != V2. 2557 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2558 if (V1 == V2) 2559 return false; 2560 if (V1->getType() != V2->getType()) 2561 // We can't look through casts yet. 2562 return false; 2563 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2564 return true; 2565 2566 if (V1->getType()->isIntOrIntVectorTy()) { 2567 // Are any known bits in V1 contradictory to known bits in V2? If V1 2568 // has a known zero where V2 has a known one, they must not be equal. 2569 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2570 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2571 2572 if (Known1.Zero.intersects(Known2.One) || 2573 Known2.Zero.intersects(Known1.One)) 2574 return true; 2575 } 2576 return false; 2577 } 2578 2579 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2580 /// simplify operations downstream. Mask is known to be zero for bits that V 2581 /// cannot have. 2582 /// 2583 /// This function is defined on values with integer type, values with pointer 2584 /// type, and vectors of integers. In the case 2585 /// where V is a vector, the mask, known zero, and known one values are the 2586 /// same width as the vector element, and the bit is set only if it is true 2587 /// for all of the elements in the vector. 2588 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2589 const Query &Q) { 2590 KnownBits Known(Mask.getBitWidth()); 2591 computeKnownBits(V, Known, Depth, Q); 2592 return Mask.isSubsetOf(Known.Zero); 2593 } 2594 2595 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2596 // Returns the input and lower/upper bounds. 2597 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2598 const APInt *&CLow, const APInt *&CHigh) { 2599 assert(isa<Operator>(Select) && 2600 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2601 "Input should be a Select!"); 2602 2603 const Value *LHS = nullptr, *RHS = nullptr; 2604 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2605 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2606 return false; 2607 2608 if (!match(RHS, m_APInt(CLow))) 2609 return false; 2610 2611 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2612 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2613 if (getInverseMinMaxFlavor(SPF) != SPF2) 2614 return false; 2615 2616 if (!match(RHS2, m_APInt(CHigh))) 2617 return false; 2618 2619 if (SPF == SPF_SMIN) 2620 std::swap(CLow, CHigh); 2621 2622 In = LHS2; 2623 return CLow->sle(*CHigh); 2624 } 2625 2626 /// For vector constants, loop over the elements and find the constant with the 2627 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2628 /// or if any element was not analyzed; otherwise, return the count for the 2629 /// element with the minimum number of sign bits. 2630 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2631 const APInt &DemandedElts, 2632 unsigned TyBits) { 2633 const auto *CV = dyn_cast<Constant>(V); 2634 if (!CV || !isa<FixedVectorType>(CV->getType())) 2635 return 0; 2636 2637 unsigned MinSignBits = TyBits; 2638 unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements(); 2639 for (unsigned i = 0; i != NumElts; ++i) { 2640 if (!DemandedElts[i]) 2641 continue; 2642 // If we find a non-ConstantInt, bail out. 2643 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2644 if (!Elt) 2645 return 0; 2646 2647 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2648 } 2649 2650 return MinSignBits; 2651 } 2652 2653 static unsigned ComputeNumSignBitsImpl(const Value *V, 2654 const APInt &DemandedElts, 2655 unsigned Depth, const Query &Q); 2656 2657 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2658 unsigned Depth, const Query &Q) { 2659 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2660 assert(Result > 0 && "At least one sign bit needs to be present!"); 2661 return Result; 2662 } 2663 2664 /// Return the number of times the sign bit of the register is replicated into 2665 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2666 /// (itself), but other cases can give us information. For example, immediately 2667 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2668 /// other, so we return 3. For vectors, return the number of sign bits for the 2669 /// vector element with the minimum number of known sign bits of the demanded 2670 /// elements in the vector specified by DemandedElts. 2671 static unsigned ComputeNumSignBitsImpl(const Value *V, 2672 const APInt &DemandedElts, 2673 unsigned Depth, const Query &Q) { 2674 Type *Ty = V->getType(); 2675 2676 // FIXME: We currently have no way to represent the DemandedElts of a scalable 2677 // vector 2678 if (isa<ScalableVectorType>(Ty)) 2679 return 1; 2680 2681 #ifndef NDEBUG 2682 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 2683 2684 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 2685 assert( 2686 FVTy->getNumElements() == DemandedElts.getBitWidth() && 2687 "DemandedElt width should equal the fixed vector number of elements"); 2688 } else { 2689 assert(DemandedElts == APInt(1, 1) && 2690 "DemandedElt width should be 1 for scalars"); 2691 } 2692 #endif 2693 2694 // We return the minimum number of sign bits that are guaranteed to be present 2695 // in V, so for undef we have to conservatively return 1. We don't have the 2696 // same behavior for poison though -- that's a FIXME today. 2697 2698 Type *ScalarTy = Ty->getScalarType(); 2699 unsigned TyBits = ScalarTy->isPointerTy() ? 2700 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2701 Q.DL.getTypeSizeInBits(ScalarTy); 2702 2703 unsigned Tmp, Tmp2; 2704 unsigned FirstAnswer = 1; 2705 2706 // Note that ConstantInt is handled by the general computeKnownBits case 2707 // below. 2708 2709 if (Depth == MaxAnalysisRecursionDepth) 2710 return 1; 2711 2712 if (auto *U = dyn_cast<Operator>(V)) { 2713 switch (Operator::getOpcode(V)) { 2714 default: break; 2715 case Instruction::SExt: 2716 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2717 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2718 2719 case Instruction::SDiv: { 2720 const APInt *Denominator; 2721 // sdiv X, C -> adds log(C) sign bits. 2722 if (match(U->getOperand(1), m_APInt(Denominator))) { 2723 2724 // Ignore non-positive denominator. 2725 if (!Denominator->isStrictlyPositive()) 2726 break; 2727 2728 // Calculate the incoming numerator bits. 2729 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2730 2731 // Add floor(log(C)) bits to the numerator bits. 2732 return std::min(TyBits, NumBits + Denominator->logBase2()); 2733 } 2734 break; 2735 } 2736 2737 case Instruction::SRem: { 2738 const APInt *Denominator; 2739 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2740 // positive constant. This let us put a lower bound on the number of sign 2741 // bits. 2742 if (match(U->getOperand(1), m_APInt(Denominator))) { 2743 2744 // Ignore non-positive denominator. 2745 if (!Denominator->isStrictlyPositive()) 2746 break; 2747 2748 // Calculate the incoming numerator bits. SRem by a positive constant 2749 // can't lower the number of sign bits. 2750 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2751 2752 // Calculate the leading sign bit constraints by examining the 2753 // denominator. Given that the denominator is positive, there are two 2754 // cases: 2755 // 2756 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2757 // (1 << ceilLogBase2(C)). 2758 // 2759 // 2. the numerator is negative. Then the result range is (-C,0] and 2760 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2761 // 2762 // Thus a lower bound on the number of sign bits is `TyBits - 2763 // ceilLogBase2(C)`. 2764 2765 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2766 return std::max(NumrBits, ResBits); 2767 } 2768 break; 2769 } 2770 2771 case Instruction::AShr: { 2772 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2773 // ashr X, C -> adds C sign bits. Vectors too. 2774 const APInt *ShAmt; 2775 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2776 if (ShAmt->uge(TyBits)) 2777 break; // Bad shift. 2778 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2779 Tmp += ShAmtLimited; 2780 if (Tmp > TyBits) Tmp = TyBits; 2781 } 2782 return Tmp; 2783 } 2784 case Instruction::Shl: { 2785 const APInt *ShAmt; 2786 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2787 // shl destroys sign bits. 2788 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2789 if (ShAmt->uge(TyBits) || // Bad shift. 2790 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2791 Tmp2 = ShAmt->getZExtValue(); 2792 return Tmp - Tmp2; 2793 } 2794 break; 2795 } 2796 case Instruction::And: 2797 case Instruction::Or: 2798 case Instruction::Xor: // NOT is handled here. 2799 // Logical binary ops preserve the number of sign bits at the worst. 2800 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2801 if (Tmp != 1) { 2802 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2803 FirstAnswer = std::min(Tmp, Tmp2); 2804 // We computed what we know about the sign bits as our first 2805 // answer. Now proceed to the generic code that uses 2806 // computeKnownBits, and pick whichever answer is better. 2807 } 2808 break; 2809 2810 case Instruction::Select: { 2811 // If we have a clamp pattern, we know that the number of sign bits will 2812 // be the minimum of the clamp min/max range. 2813 const Value *X; 2814 const APInt *CLow, *CHigh; 2815 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2816 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2817 2818 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2819 if (Tmp == 1) break; 2820 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2821 return std::min(Tmp, Tmp2); 2822 } 2823 2824 case Instruction::Add: 2825 // Add can have at most one carry bit. Thus we know that the output 2826 // is, at worst, one more bit than the inputs. 2827 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2828 if (Tmp == 1) break; 2829 2830 // Special case decrementing a value (ADD X, -1): 2831 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2832 if (CRHS->isAllOnesValue()) { 2833 KnownBits Known(TyBits); 2834 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2835 2836 // If the input is known to be 0 or 1, the output is 0/-1, which is 2837 // all sign bits set. 2838 if ((Known.Zero | 1).isAllOnesValue()) 2839 return TyBits; 2840 2841 // If we are subtracting one from a positive number, there is no carry 2842 // out of the result. 2843 if (Known.isNonNegative()) 2844 return Tmp; 2845 } 2846 2847 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2848 if (Tmp2 == 1) break; 2849 return std::min(Tmp, Tmp2) - 1; 2850 2851 case Instruction::Sub: 2852 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2853 if (Tmp2 == 1) break; 2854 2855 // Handle NEG. 2856 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2857 if (CLHS->isNullValue()) { 2858 KnownBits Known(TyBits); 2859 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2860 // If the input is known to be 0 or 1, the output is 0/-1, which is 2861 // all sign bits set. 2862 if ((Known.Zero | 1).isAllOnesValue()) 2863 return TyBits; 2864 2865 // If the input is known to be positive (the sign bit is known clear), 2866 // the output of the NEG has the same number of sign bits as the 2867 // input. 2868 if (Known.isNonNegative()) 2869 return Tmp2; 2870 2871 // Otherwise, we treat this like a SUB. 2872 } 2873 2874 // Sub can have at most one carry bit. Thus we know that the output 2875 // is, at worst, one more bit than the inputs. 2876 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2877 if (Tmp == 1) break; 2878 return std::min(Tmp, Tmp2) - 1; 2879 2880 case Instruction::Mul: { 2881 // The output of the Mul can be at most twice the valid bits in the 2882 // inputs. 2883 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2884 if (SignBitsOp0 == 1) break; 2885 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2886 if (SignBitsOp1 == 1) break; 2887 unsigned OutValidBits = 2888 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2889 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2890 } 2891 2892 case Instruction::PHI: { 2893 const PHINode *PN = cast<PHINode>(U); 2894 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2895 // Don't analyze large in-degree PHIs. 2896 if (NumIncomingValues > 4) break; 2897 // Unreachable blocks may have zero-operand PHI nodes. 2898 if (NumIncomingValues == 0) break; 2899 2900 // Take the minimum of all incoming values. This can't infinitely loop 2901 // because of our depth threshold. 2902 Query RecQ = Q; 2903 Tmp = TyBits; 2904 for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) { 2905 if (Tmp == 1) return Tmp; 2906 RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator(); 2907 Tmp = std::min( 2908 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ)); 2909 } 2910 return Tmp; 2911 } 2912 2913 case Instruction::Trunc: 2914 // FIXME: it's tricky to do anything useful for this, but it is an 2915 // important case for targets like X86. 2916 break; 2917 2918 case Instruction::ExtractElement: 2919 // Look through extract element. At the moment we keep this simple and 2920 // skip tracking the specific element. But at least we might find 2921 // information valid for all elements of the vector (for example if vector 2922 // is sign extended, shifted, etc). 2923 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2924 2925 case Instruction::ShuffleVector: { 2926 // Collect the minimum number of sign bits that are shared by every vector 2927 // element referenced by the shuffle. 2928 auto *Shuf = dyn_cast<ShuffleVectorInst>(U); 2929 if (!Shuf) { 2930 // FIXME: Add support for shufflevector constant expressions. 2931 return 1; 2932 } 2933 APInt DemandedLHS, DemandedRHS; 2934 // For undef elements, we don't know anything about the common state of 2935 // the shuffle result. 2936 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2937 return 1; 2938 Tmp = std::numeric_limits<unsigned>::max(); 2939 if (!!DemandedLHS) { 2940 const Value *LHS = Shuf->getOperand(0); 2941 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2942 } 2943 // If we don't know anything, early out and try computeKnownBits 2944 // fall-back. 2945 if (Tmp == 1) 2946 break; 2947 if (!!DemandedRHS) { 2948 const Value *RHS = Shuf->getOperand(1); 2949 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2950 Tmp = std::min(Tmp, Tmp2); 2951 } 2952 // If we don't know anything, early out and try computeKnownBits 2953 // fall-back. 2954 if (Tmp == 1) 2955 break; 2956 assert(Tmp <= Ty->getScalarSizeInBits() && 2957 "Failed to determine minimum sign bits"); 2958 return Tmp; 2959 } 2960 case Instruction::Call: { 2961 if (const auto *II = dyn_cast<IntrinsicInst>(U)) { 2962 switch (II->getIntrinsicID()) { 2963 default: break; 2964 case Intrinsic::abs: 2965 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2966 if (Tmp == 1) break; 2967 2968 // Absolute value reduces number of sign bits by at most 1. 2969 return Tmp - 1; 2970 } 2971 } 2972 } 2973 } 2974 } 2975 2976 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2977 // use this information. 2978 2979 // If we can examine all elements of a vector constant successfully, we're 2980 // done (we can't do any better than that). If not, keep trying. 2981 if (unsigned VecSignBits = 2982 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2983 return VecSignBits; 2984 2985 KnownBits Known(TyBits); 2986 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2987 2988 // If we know that the sign bit is either zero or one, determine the number of 2989 // identical bits in the top of the input value. 2990 return std::max(FirstAnswer, Known.countMinSignBits()); 2991 } 2992 2993 /// This function computes the integer multiple of Base that equals V. 2994 /// If successful, it returns true and returns the multiple in 2995 /// Multiple. If unsuccessful, it returns false. It looks 2996 /// through SExt instructions only if LookThroughSExt is true. 2997 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2998 bool LookThroughSExt, unsigned Depth) { 2999 assert(V && "No Value?"); 3000 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth"); 3001 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 3002 3003 Type *T = V->getType(); 3004 3005 ConstantInt *CI = dyn_cast<ConstantInt>(V); 3006 3007 if (Base == 0) 3008 return false; 3009 3010 if (Base == 1) { 3011 Multiple = V; 3012 return true; 3013 } 3014 3015 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 3016 Constant *BaseVal = ConstantInt::get(T, Base); 3017 if (CO && CO == BaseVal) { 3018 // Multiple is 1. 3019 Multiple = ConstantInt::get(T, 1); 3020 return true; 3021 } 3022 3023 if (CI && CI->getZExtValue() % Base == 0) { 3024 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 3025 return true; 3026 } 3027 3028 if (Depth == MaxAnalysisRecursionDepth) return false; 3029 3030 Operator *I = dyn_cast<Operator>(V); 3031 if (!I) return false; 3032 3033 switch (I->getOpcode()) { 3034 default: break; 3035 case Instruction::SExt: 3036 if (!LookThroughSExt) return false; 3037 // otherwise fall through to ZExt 3038 LLVM_FALLTHROUGH; 3039 case Instruction::ZExt: 3040 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3041 LookThroughSExt, Depth+1); 3042 case Instruction::Shl: 3043 case Instruction::Mul: { 3044 Value *Op0 = I->getOperand(0); 3045 Value *Op1 = I->getOperand(1); 3046 3047 if (I->getOpcode() == Instruction::Shl) { 3048 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3049 if (!Op1CI) return false; 3050 // Turn Op0 << Op1 into Op0 * 2^Op1 3051 APInt Op1Int = Op1CI->getValue(); 3052 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3053 APInt API(Op1Int.getBitWidth(), 0); 3054 API.setBit(BitToSet); 3055 Op1 = ConstantInt::get(V->getContext(), API); 3056 } 3057 3058 Value *Mul0 = nullptr; 3059 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3060 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3061 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3062 if (Op1C->getType()->getPrimitiveSizeInBits() < 3063 MulC->getType()->getPrimitiveSizeInBits()) 3064 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3065 if (Op1C->getType()->getPrimitiveSizeInBits() > 3066 MulC->getType()->getPrimitiveSizeInBits()) 3067 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3068 3069 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3070 Multiple = ConstantExpr::getMul(MulC, Op1C); 3071 return true; 3072 } 3073 3074 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3075 if (Mul0CI->getValue() == 1) { 3076 // V == Base * Op1, so return Op1 3077 Multiple = Op1; 3078 return true; 3079 } 3080 } 3081 3082 Value *Mul1 = nullptr; 3083 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3084 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3085 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3086 if (Op0C->getType()->getPrimitiveSizeInBits() < 3087 MulC->getType()->getPrimitiveSizeInBits()) 3088 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3089 if (Op0C->getType()->getPrimitiveSizeInBits() > 3090 MulC->getType()->getPrimitiveSizeInBits()) 3091 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3092 3093 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3094 Multiple = ConstantExpr::getMul(MulC, Op0C); 3095 return true; 3096 } 3097 3098 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3099 if (Mul1CI->getValue() == 1) { 3100 // V == Base * Op0, so return Op0 3101 Multiple = Op0; 3102 return true; 3103 } 3104 } 3105 } 3106 } 3107 3108 // We could not determine if V is a multiple of Base. 3109 return false; 3110 } 3111 3112 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB, 3113 const TargetLibraryInfo *TLI) { 3114 const Function *F = CB.getCalledFunction(); 3115 if (!F) 3116 return Intrinsic::not_intrinsic; 3117 3118 if (F->isIntrinsic()) 3119 return F->getIntrinsicID(); 3120 3121 // We are going to infer semantics of a library function based on mapping it 3122 // to an LLVM intrinsic. Check that the library function is available from 3123 // this callbase and in this environment. 3124 LibFunc Func; 3125 if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) || 3126 !CB.onlyReadsMemory()) 3127 return Intrinsic::not_intrinsic; 3128 3129 switch (Func) { 3130 default: 3131 break; 3132 case LibFunc_sin: 3133 case LibFunc_sinf: 3134 case LibFunc_sinl: 3135 return Intrinsic::sin; 3136 case LibFunc_cos: 3137 case LibFunc_cosf: 3138 case LibFunc_cosl: 3139 return Intrinsic::cos; 3140 case LibFunc_exp: 3141 case LibFunc_expf: 3142 case LibFunc_expl: 3143 return Intrinsic::exp; 3144 case LibFunc_exp2: 3145 case LibFunc_exp2f: 3146 case LibFunc_exp2l: 3147 return Intrinsic::exp2; 3148 case LibFunc_log: 3149 case LibFunc_logf: 3150 case LibFunc_logl: 3151 return Intrinsic::log; 3152 case LibFunc_log10: 3153 case LibFunc_log10f: 3154 case LibFunc_log10l: 3155 return Intrinsic::log10; 3156 case LibFunc_log2: 3157 case LibFunc_log2f: 3158 case LibFunc_log2l: 3159 return Intrinsic::log2; 3160 case LibFunc_fabs: 3161 case LibFunc_fabsf: 3162 case LibFunc_fabsl: 3163 return Intrinsic::fabs; 3164 case LibFunc_fmin: 3165 case LibFunc_fminf: 3166 case LibFunc_fminl: 3167 return Intrinsic::minnum; 3168 case LibFunc_fmax: 3169 case LibFunc_fmaxf: 3170 case LibFunc_fmaxl: 3171 return Intrinsic::maxnum; 3172 case LibFunc_copysign: 3173 case LibFunc_copysignf: 3174 case LibFunc_copysignl: 3175 return Intrinsic::copysign; 3176 case LibFunc_floor: 3177 case LibFunc_floorf: 3178 case LibFunc_floorl: 3179 return Intrinsic::floor; 3180 case LibFunc_ceil: 3181 case LibFunc_ceilf: 3182 case LibFunc_ceill: 3183 return Intrinsic::ceil; 3184 case LibFunc_trunc: 3185 case LibFunc_truncf: 3186 case LibFunc_truncl: 3187 return Intrinsic::trunc; 3188 case LibFunc_rint: 3189 case LibFunc_rintf: 3190 case LibFunc_rintl: 3191 return Intrinsic::rint; 3192 case LibFunc_nearbyint: 3193 case LibFunc_nearbyintf: 3194 case LibFunc_nearbyintl: 3195 return Intrinsic::nearbyint; 3196 case LibFunc_round: 3197 case LibFunc_roundf: 3198 case LibFunc_roundl: 3199 return Intrinsic::round; 3200 case LibFunc_roundeven: 3201 case LibFunc_roundevenf: 3202 case LibFunc_roundevenl: 3203 return Intrinsic::roundeven; 3204 case LibFunc_pow: 3205 case LibFunc_powf: 3206 case LibFunc_powl: 3207 return Intrinsic::pow; 3208 case LibFunc_sqrt: 3209 case LibFunc_sqrtf: 3210 case LibFunc_sqrtl: 3211 return Intrinsic::sqrt; 3212 } 3213 3214 return Intrinsic::not_intrinsic; 3215 } 3216 3217 /// Return true if we can prove that the specified FP value is never equal to 3218 /// -0.0. 3219 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee 3220 /// that a value is not -0.0. It only guarantees that -0.0 may be treated 3221 /// the same as +0.0 in floating-point ops. 3222 /// 3223 /// NOTE: this function will need to be revisited when we support non-default 3224 /// rounding modes! 3225 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3226 unsigned Depth) { 3227 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3228 return !CFP->getValueAPF().isNegZero(); 3229 3230 if (Depth == MaxAnalysisRecursionDepth) 3231 return false; 3232 3233 auto *Op = dyn_cast<Operator>(V); 3234 if (!Op) 3235 return false; 3236 3237 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3238 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3239 return true; 3240 3241 // sitofp and uitofp turn into +0.0 for zero. 3242 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3243 return true; 3244 3245 if (auto *Call = dyn_cast<CallInst>(Op)) { 3246 Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI); 3247 switch (IID) { 3248 default: 3249 break; 3250 // sqrt(-0.0) = -0.0, no other negative results are possible. 3251 case Intrinsic::sqrt: 3252 case Intrinsic::canonicalize: 3253 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3254 // fabs(x) != -0.0 3255 case Intrinsic::fabs: 3256 return true; 3257 } 3258 } 3259 3260 return false; 3261 } 3262 3263 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3264 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3265 /// bit despite comparing equal. 3266 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3267 const TargetLibraryInfo *TLI, 3268 bool SignBitOnly, 3269 unsigned Depth) { 3270 // TODO: This function does not do the right thing when SignBitOnly is true 3271 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3272 // which flips the sign bits of NaNs. See 3273 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3274 3275 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3276 return !CFP->getValueAPF().isNegative() || 3277 (!SignBitOnly && CFP->getValueAPF().isZero()); 3278 } 3279 3280 // Handle vector of constants. 3281 if (auto *CV = dyn_cast<Constant>(V)) { 3282 if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) { 3283 unsigned NumElts = CVFVTy->getNumElements(); 3284 for (unsigned i = 0; i != NumElts; ++i) { 3285 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3286 if (!CFP) 3287 return false; 3288 if (CFP->getValueAPF().isNegative() && 3289 (SignBitOnly || !CFP->getValueAPF().isZero())) 3290 return false; 3291 } 3292 3293 // All non-negative ConstantFPs. 3294 return true; 3295 } 3296 } 3297 3298 if (Depth == MaxAnalysisRecursionDepth) 3299 return false; 3300 3301 const Operator *I = dyn_cast<Operator>(V); 3302 if (!I) 3303 return false; 3304 3305 switch (I->getOpcode()) { 3306 default: 3307 break; 3308 // Unsigned integers are always nonnegative. 3309 case Instruction::UIToFP: 3310 return true; 3311 case Instruction::FMul: 3312 case Instruction::FDiv: 3313 // X * X is always non-negative or a NaN. 3314 // X / X is always exactly 1.0 or a NaN. 3315 if (I->getOperand(0) == I->getOperand(1) && 3316 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3317 return true; 3318 3319 LLVM_FALLTHROUGH; 3320 case Instruction::FAdd: 3321 case Instruction::FRem: 3322 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3323 Depth + 1) && 3324 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3325 Depth + 1); 3326 case Instruction::Select: 3327 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3328 Depth + 1) && 3329 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3330 Depth + 1); 3331 case Instruction::FPExt: 3332 case Instruction::FPTrunc: 3333 // Widening/narrowing never change sign. 3334 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3335 Depth + 1); 3336 case Instruction::ExtractElement: 3337 // Look through extract element. At the moment we keep this simple and skip 3338 // tracking the specific element. But at least we might find information 3339 // valid for all elements of the vector. 3340 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3341 Depth + 1); 3342 case Instruction::Call: 3343 const auto *CI = cast<CallInst>(I); 3344 Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI); 3345 switch (IID) { 3346 default: 3347 break; 3348 case Intrinsic::maxnum: { 3349 Value *V0 = I->getOperand(0), *V1 = I->getOperand(1); 3350 auto isPositiveNum = [&](Value *V) { 3351 if (SignBitOnly) { 3352 // With SignBitOnly, this is tricky because the result of 3353 // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is 3354 // a constant strictly greater than 0.0. 3355 const APFloat *C; 3356 return match(V, m_APFloat(C)) && 3357 *C > APFloat::getZero(C->getSemantics()); 3358 } 3359 3360 // -0.0 compares equal to 0.0, so if this operand is at least -0.0, 3361 // maxnum can't be ordered-less-than-zero. 3362 return isKnownNeverNaN(V, TLI) && 3363 cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1); 3364 }; 3365 3366 // TODO: This could be improved. We could also check that neither operand 3367 // has its sign bit set (and at least 1 is not-NAN?). 3368 return isPositiveNum(V0) || isPositiveNum(V1); 3369 } 3370 3371 case Intrinsic::maximum: 3372 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3373 Depth + 1) || 3374 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3375 Depth + 1); 3376 case Intrinsic::minnum: 3377 case Intrinsic::minimum: 3378 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3379 Depth + 1) && 3380 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3381 Depth + 1); 3382 case Intrinsic::exp: 3383 case Intrinsic::exp2: 3384 case Intrinsic::fabs: 3385 return true; 3386 3387 case Intrinsic::sqrt: 3388 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3389 if (!SignBitOnly) 3390 return true; 3391 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3392 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3393 3394 case Intrinsic::powi: 3395 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3396 // powi(x,n) is non-negative if n is even. 3397 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3398 return true; 3399 } 3400 // TODO: This is not correct. Given that exp is an integer, here are the 3401 // ways that pow can return a negative value: 3402 // 3403 // pow(x, exp) --> negative if exp is odd and x is negative. 3404 // pow(-0, exp) --> -inf if exp is negative odd. 3405 // pow(-0, exp) --> -0 if exp is positive odd. 3406 // pow(-inf, exp) --> -0 if exp is negative odd. 3407 // pow(-inf, exp) --> -inf if exp is positive odd. 3408 // 3409 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3410 // but we must return false if x == -0. Unfortunately we do not currently 3411 // have a way of expressing this constraint. See details in 3412 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3413 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3414 Depth + 1); 3415 3416 case Intrinsic::fma: 3417 case Intrinsic::fmuladd: 3418 // x*x+y is non-negative if y is non-negative. 3419 return I->getOperand(0) == I->getOperand(1) && 3420 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3421 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3422 Depth + 1); 3423 } 3424 break; 3425 } 3426 return false; 3427 } 3428 3429 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3430 const TargetLibraryInfo *TLI) { 3431 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3432 } 3433 3434 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3435 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3436 } 3437 3438 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3439 unsigned Depth) { 3440 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3441 3442 // If we're told that infinities won't happen, assume they won't. 3443 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3444 if (FPMathOp->hasNoInfs()) 3445 return true; 3446 3447 // Handle scalar constants. 3448 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3449 return !CFP->isInfinity(); 3450 3451 if (Depth == MaxAnalysisRecursionDepth) 3452 return false; 3453 3454 if (auto *Inst = dyn_cast<Instruction>(V)) { 3455 switch (Inst->getOpcode()) { 3456 case Instruction::Select: { 3457 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3458 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3459 } 3460 case Instruction::SIToFP: 3461 case Instruction::UIToFP: { 3462 // Get width of largest magnitude integer (remove a bit if signed). 3463 // This still works for a signed minimum value because the largest FP 3464 // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx). 3465 int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3466 if (Inst->getOpcode() == Instruction::SIToFP) 3467 --IntSize; 3468 3469 // If the exponent of the largest finite FP value can hold the largest 3470 // integer, the result of the cast must be finite. 3471 Type *FPTy = Inst->getType()->getScalarType(); 3472 return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize; 3473 } 3474 default: 3475 break; 3476 } 3477 } 3478 3479 // try to handle fixed width vector constants 3480 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3481 if (VFVTy && isa<Constant>(V)) { 3482 // For vectors, verify that each element is not infinity. 3483 unsigned NumElts = VFVTy->getNumElements(); 3484 for (unsigned i = 0; i != NumElts; ++i) { 3485 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3486 if (!Elt) 3487 return false; 3488 if (isa<UndefValue>(Elt)) 3489 continue; 3490 auto *CElt = dyn_cast<ConstantFP>(Elt); 3491 if (!CElt || CElt->isInfinity()) 3492 return false; 3493 } 3494 // All elements were confirmed non-infinity or undefined. 3495 return true; 3496 } 3497 3498 // was not able to prove that V never contains infinity 3499 return false; 3500 } 3501 3502 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3503 unsigned Depth) { 3504 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3505 3506 // If we're told that NaNs won't happen, assume they won't. 3507 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3508 if (FPMathOp->hasNoNaNs()) 3509 return true; 3510 3511 // Handle scalar constants. 3512 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3513 return !CFP->isNaN(); 3514 3515 if (Depth == MaxAnalysisRecursionDepth) 3516 return false; 3517 3518 if (auto *Inst = dyn_cast<Instruction>(V)) { 3519 switch (Inst->getOpcode()) { 3520 case Instruction::FAdd: 3521 case Instruction::FSub: 3522 // Adding positive and negative infinity produces NaN. 3523 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3524 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3525 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3526 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3527 3528 case Instruction::FMul: 3529 // Zero multiplied with infinity produces NaN. 3530 // FIXME: If neither side can be zero fmul never produces NaN. 3531 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3532 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3533 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3534 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3535 3536 case Instruction::FDiv: 3537 case Instruction::FRem: 3538 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3539 return false; 3540 3541 case Instruction::Select: { 3542 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3543 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3544 } 3545 case Instruction::SIToFP: 3546 case Instruction::UIToFP: 3547 return true; 3548 case Instruction::FPTrunc: 3549 case Instruction::FPExt: 3550 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3551 default: 3552 break; 3553 } 3554 } 3555 3556 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3557 switch (II->getIntrinsicID()) { 3558 case Intrinsic::canonicalize: 3559 case Intrinsic::fabs: 3560 case Intrinsic::copysign: 3561 case Intrinsic::exp: 3562 case Intrinsic::exp2: 3563 case Intrinsic::floor: 3564 case Intrinsic::ceil: 3565 case Intrinsic::trunc: 3566 case Intrinsic::rint: 3567 case Intrinsic::nearbyint: 3568 case Intrinsic::round: 3569 case Intrinsic::roundeven: 3570 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3571 case Intrinsic::sqrt: 3572 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3573 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3574 case Intrinsic::minnum: 3575 case Intrinsic::maxnum: 3576 // If either operand is not NaN, the result is not NaN. 3577 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3578 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3579 default: 3580 return false; 3581 } 3582 } 3583 3584 // Try to handle fixed width vector constants 3585 auto *VFVTy = dyn_cast<FixedVectorType>(V->getType()); 3586 if (VFVTy && isa<Constant>(V)) { 3587 // For vectors, verify that each element is not NaN. 3588 unsigned NumElts = VFVTy->getNumElements(); 3589 for (unsigned i = 0; i != NumElts; ++i) { 3590 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3591 if (!Elt) 3592 return false; 3593 if (isa<UndefValue>(Elt)) 3594 continue; 3595 auto *CElt = dyn_cast<ConstantFP>(Elt); 3596 if (!CElt || CElt->isNaN()) 3597 return false; 3598 } 3599 // All elements were confirmed not-NaN or undefined. 3600 return true; 3601 } 3602 3603 // Was not able to prove that V never contains NaN 3604 return false; 3605 } 3606 3607 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3608 3609 // All byte-wide stores are splatable, even of arbitrary variables. 3610 if (V->getType()->isIntegerTy(8)) 3611 return V; 3612 3613 LLVMContext &Ctx = V->getContext(); 3614 3615 // Undef don't care. 3616 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3617 if (isa<UndefValue>(V)) 3618 return UndefInt8; 3619 3620 // Return Undef for zero-sized type. 3621 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3622 return UndefInt8; 3623 3624 Constant *C = dyn_cast<Constant>(V); 3625 if (!C) { 3626 // Conceptually, we could handle things like: 3627 // %a = zext i8 %X to i16 3628 // %b = shl i16 %a, 8 3629 // %c = or i16 %a, %b 3630 // but until there is an example that actually needs this, it doesn't seem 3631 // worth worrying about. 3632 return nullptr; 3633 } 3634 3635 // Handle 'null' ConstantArrayZero etc. 3636 if (C->isNullValue()) 3637 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3638 3639 // Constant floating-point values can be handled as integer values if the 3640 // corresponding integer value is "byteable". An important case is 0.0. 3641 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3642 Type *Ty = nullptr; 3643 if (CFP->getType()->isHalfTy()) 3644 Ty = Type::getInt16Ty(Ctx); 3645 else if (CFP->getType()->isFloatTy()) 3646 Ty = Type::getInt32Ty(Ctx); 3647 else if (CFP->getType()->isDoubleTy()) 3648 Ty = Type::getInt64Ty(Ctx); 3649 // Don't handle long double formats, which have strange constraints. 3650 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3651 : nullptr; 3652 } 3653 3654 // We can handle constant integers that are multiple of 8 bits. 3655 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3656 if (CI->getBitWidth() % 8 == 0) { 3657 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3658 if (!CI->getValue().isSplat(8)) 3659 return nullptr; 3660 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3661 } 3662 } 3663 3664 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3665 if (CE->getOpcode() == Instruction::IntToPtr) { 3666 auto PS = DL.getPointerSizeInBits( 3667 cast<PointerType>(CE->getType())->getAddressSpace()); 3668 return isBytewiseValue( 3669 ConstantExpr::getIntegerCast(CE->getOperand(0), 3670 Type::getIntNTy(Ctx, PS), false), 3671 DL); 3672 } 3673 } 3674 3675 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3676 if (LHS == RHS) 3677 return LHS; 3678 if (!LHS || !RHS) 3679 return nullptr; 3680 if (LHS == UndefInt8) 3681 return RHS; 3682 if (RHS == UndefInt8) 3683 return LHS; 3684 return nullptr; 3685 }; 3686 3687 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3688 Value *Val = UndefInt8; 3689 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3690 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3691 return nullptr; 3692 return Val; 3693 } 3694 3695 if (isa<ConstantAggregate>(C)) { 3696 Value *Val = UndefInt8; 3697 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3698 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3699 return nullptr; 3700 return Val; 3701 } 3702 3703 // Don't try to handle the handful of other constants. 3704 return nullptr; 3705 } 3706 3707 // This is the recursive version of BuildSubAggregate. It takes a few different 3708 // arguments. Idxs is the index within the nested struct From that we are 3709 // looking at now (which is of type IndexedType). IdxSkip is the number of 3710 // indices from Idxs that should be left out when inserting into the resulting 3711 // struct. To is the result struct built so far, new insertvalue instructions 3712 // build on that. 3713 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3714 SmallVectorImpl<unsigned> &Idxs, 3715 unsigned IdxSkip, 3716 Instruction *InsertBefore) { 3717 StructType *STy = dyn_cast<StructType>(IndexedType); 3718 if (STy) { 3719 // Save the original To argument so we can modify it 3720 Value *OrigTo = To; 3721 // General case, the type indexed by Idxs is a struct 3722 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3723 // Process each struct element recursively 3724 Idxs.push_back(i); 3725 Value *PrevTo = To; 3726 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3727 InsertBefore); 3728 Idxs.pop_back(); 3729 if (!To) { 3730 // Couldn't find any inserted value for this index? Cleanup 3731 while (PrevTo != OrigTo) { 3732 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3733 PrevTo = Del->getAggregateOperand(); 3734 Del->eraseFromParent(); 3735 } 3736 // Stop processing elements 3737 break; 3738 } 3739 } 3740 // If we successfully found a value for each of our subaggregates 3741 if (To) 3742 return To; 3743 } 3744 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3745 // the struct's elements had a value that was inserted directly. In the latter 3746 // case, perhaps we can't determine each of the subelements individually, but 3747 // we might be able to find the complete struct somewhere. 3748 3749 // Find the value that is at that particular spot 3750 Value *V = FindInsertedValue(From, Idxs); 3751 3752 if (!V) 3753 return nullptr; 3754 3755 // Insert the value in the new (sub) aggregate 3756 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3757 "tmp", InsertBefore); 3758 } 3759 3760 // This helper takes a nested struct and extracts a part of it (which is again a 3761 // struct) into a new value. For example, given the struct: 3762 // { a, { b, { c, d }, e } } 3763 // and the indices "1, 1" this returns 3764 // { c, d }. 3765 // 3766 // It does this by inserting an insertvalue for each element in the resulting 3767 // struct, as opposed to just inserting a single struct. This will only work if 3768 // each of the elements of the substruct are known (ie, inserted into From by an 3769 // insertvalue instruction somewhere). 3770 // 3771 // All inserted insertvalue instructions are inserted before InsertBefore 3772 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3773 Instruction *InsertBefore) { 3774 assert(InsertBefore && "Must have someplace to insert!"); 3775 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3776 idx_range); 3777 Value *To = UndefValue::get(IndexedType); 3778 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3779 unsigned IdxSkip = Idxs.size(); 3780 3781 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3782 } 3783 3784 /// Given an aggregate and a sequence of indices, see if the scalar value 3785 /// indexed is already around as a register, for example if it was inserted 3786 /// directly into the aggregate. 3787 /// 3788 /// If InsertBefore is not null, this function will duplicate (modified) 3789 /// insertvalues when a part of a nested struct is extracted. 3790 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3791 Instruction *InsertBefore) { 3792 // Nothing to index? Just return V then (this is useful at the end of our 3793 // recursion). 3794 if (idx_range.empty()) 3795 return V; 3796 // We have indices, so V should have an indexable type. 3797 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3798 "Not looking at a struct or array?"); 3799 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3800 "Invalid indices for type?"); 3801 3802 if (Constant *C = dyn_cast<Constant>(V)) { 3803 C = C->getAggregateElement(idx_range[0]); 3804 if (!C) return nullptr; 3805 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3806 } 3807 3808 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3809 // Loop the indices for the insertvalue instruction in parallel with the 3810 // requested indices 3811 const unsigned *req_idx = idx_range.begin(); 3812 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3813 i != e; ++i, ++req_idx) { 3814 if (req_idx == idx_range.end()) { 3815 // We can't handle this without inserting insertvalues 3816 if (!InsertBefore) 3817 return nullptr; 3818 3819 // The requested index identifies a part of a nested aggregate. Handle 3820 // this specially. For example, 3821 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3822 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3823 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3824 // This can be changed into 3825 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3826 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3827 // which allows the unused 0,0 element from the nested struct to be 3828 // removed. 3829 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3830 InsertBefore); 3831 } 3832 3833 // This insert value inserts something else than what we are looking for. 3834 // See if the (aggregate) value inserted into has the value we are 3835 // looking for, then. 3836 if (*req_idx != *i) 3837 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3838 InsertBefore); 3839 } 3840 // If we end up here, the indices of the insertvalue match with those 3841 // requested (though possibly only partially). Now we recursively look at 3842 // the inserted value, passing any remaining indices. 3843 return FindInsertedValue(I->getInsertedValueOperand(), 3844 makeArrayRef(req_idx, idx_range.end()), 3845 InsertBefore); 3846 } 3847 3848 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3849 // If we're extracting a value from an aggregate that was extracted from 3850 // something else, we can extract from that something else directly instead. 3851 // However, we will need to chain I's indices with the requested indices. 3852 3853 // Calculate the number of indices required 3854 unsigned size = I->getNumIndices() + idx_range.size(); 3855 // Allocate some space to put the new indices in 3856 SmallVector<unsigned, 5> Idxs; 3857 Idxs.reserve(size); 3858 // Add indices from the extract value instruction 3859 Idxs.append(I->idx_begin(), I->idx_end()); 3860 3861 // Add requested indices 3862 Idxs.append(idx_range.begin(), idx_range.end()); 3863 3864 assert(Idxs.size() == size 3865 && "Number of indices added not correct?"); 3866 3867 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3868 } 3869 // Otherwise, we don't know (such as, extracting from a function return value 3870 // or load instruction) 3871 return nullptr; 3872 } 3873 3874 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3875 unsigned CharSize) { 3876 // Make sure the GEP has exactly three arguments. 3877 if (GEP->getNumOperands() != 3) 3878 return false; 3879 3880 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3881 // CharSize. 3882 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3883 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3884 return false; 3885 3886 // Check to make sure that the first operand of the GEP is an integer and 3887 // has value 0 so that we are sure we're indexing into the initializer. 3888 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3889 if (!FirstIdx || !FirstIdx->isZero()) 3890 return false; 3891 3892 return true; 3893 } 3894 3895 bool llvm::getConstantDataArrayInfo(const Value *V, 3896 ConstantDataArraySlice &Slice, 3897 unsigned ElementSize, uint64_t Offset) { 3898 assert(V); 3899 3900 // Look through bitcast instructions and geps. 3901 V = V->stripPointerCasts(); 3902 3903 // If the value is a GEP instruction or constant expression, treat it as an 3904 // offset. 3905 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3906 // The GEP operator should be based on a pointer to string constant, and is 3907 // indexing into the string constant. 3908 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3909 return false; 3910 3911 // If the second index isn't a ConstantInt, then this is a variable index 3912 // into the array. If this occurs, we can't say anything meaningful about 3913 // the string. 3914 uint64_t StartIdx = 0; 3915 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3916 StartIdx = CI->getZExtValue(); 3917 else 3918 return false; 3919 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3920 StartIdx + Offset); 3921 } 3922 3923 // The GEP instruction, constant or instruction, must reference a global 3924 // variable that is a constant and is initialized. The referenced constant 3925 // initializer is the array that we'll use for optimization. 3926 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3927 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3928 return false; 3929 3930 const ConstantDataArray *Array; 3931 ArrayType *ArrayTy; 3932 if (GV->getInitializer()->isNullValue()) { 3933 Type *GVTy = GV->getValueType(); 3934 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3935 // A zeroinitializer for the array; there is no ConstantDataArray. 3936 Array = nullptr; 3937 } else { 3938 const DataLayout &DL = GV->getParent()->getDataLayout(); 3939 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3940 uint64_t Length = SizeInBytes / (ElementSize / 8); 3941 if (Length <= Offset) 3942 return false; 3943 3944 Slice.Array = nullptr; 3945 Slice.Offset = 0; 3946 Slice.Length = Length - Offset; 3947 return true; 3948 } 3949 } else { 3950 // This must be a ConstantDataArray. 3951 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3952 if (!Array) 3953 return false; 3954 ArrayTy = Array->getType(); 3955 } 3956 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3957 return false; 3958 3959 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3960 if (Offset > NumElts) 3961 return false; 3962 3963 Slice.Array = Array; 3964 Slice.Offset = Offset; 3965 Slice.Length = NumElts - Offset; 3966 return true; 3967 } 3968 3969 /// This function computes the length of a null-terminated C string pointed to 3970 /// by V. If successful, it returns true and returns the string in Str. 3971 /// If unsuccessful, it returns false. 3972 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3973 uint64_t Offset, bool TrimAtNul) { 3974 ConstantDataArraySlice Slice; 3975 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3976 return false; 3977 3978 if (Slice.Array == nullptr) { 3979 if (TrimAtNul) { 3980 Str = StringRef(); 3981 return true; 3982 } 3983 if (Slice.Length == 1) { 3984 Str = StringRef("", 1); 3985 return true; 3986 } 3987 // We cannot instantiate a StringRef as we do not have an appropriate string 3988 // of 0s at hand. 3989 return false; 3990 } 3991 3992 // Start out with the entire array in the StringRef. 3993 Str = Slice.Array->getAsString(); 3994 // Skip over 'offset' bytes. 3995 Str = Str.substr(Slice.Offset); 3996 3997 if (TrimAtNul) { 3998 // Trim off the \0 and anything after it. If the array is not nul 3999 // terminated, we just return the whole end of string. The client may know 4000 // some other way that the string is length-bound. 4001 Str = Str.substr(0, Str.find('\0')); 4002 } 4003 return true; 4004 } 4005 4006 // These next two are very similar to the above, but also look through PHI 4007 // nodes. 4008 // TODO: See if we can integrate these two together. 4009 4010 /// If we can compute the length of the string pointed to by 4011 /// the specified pointer, return 'len+1'. If we can't, return 0. 4012 static uint64_t GetStringLengthH(const Value *V, 4013 SmallPtrSetImpl<const PHINode*> &PHIs, 4014 unsigned CharSize) { 4015 // Look through noop bitcast instructions. 4016 V = V->stripPointerCasts(); 4017 4018 // If this is a PHI node, there are two cases: either we have already seen it 4019 // or we haven't. 4020 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 4021 if (!PHIs.insert(PN).second) 4022 return ~0ULL; // already in the set. 4023 4024 // If it was new, see if all the input strings are the same length. 4025 uint64_t LenSoFar = ~0ULL; 4026 for (Value *IncValue : PN->incoming_values()) { 4027 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 4028 if (Len == 0) return 0; // Unknown length -> unknown. 4029 4030 if (Len == ~0ULL) continue; 4031 4032 if (Len != LenSoFar && LenSoFar != ~0ULL) 4033 return 0; // Disagree -> unknown. 4034 LenSoFar = Len; 4035 } 4036 4037 // Success, all agree. 4038 return LenSoFar; 4039 } 4040 4041 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 4042 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 4043 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 4044 if (Len1 == 0) return 0; 4045 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 4046 if (Len2 == 0) return 0; 4047 if (Len1 == ~0ULL) return Len2; 4048 if (Len2 == ~0ULL) return Len1; 4049 if (Len1 != Len2) return 0; 4050 return Len1; 4051 } 4052 4053 // Otherwise, see if we can read the string. 4054 ConstantDataArraySlice Slice; 4055 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4056 return 0; 4057 4058 if (Slice.Array == nullptr) 4059 return 1; 4060 4061 // Search for nul characters 4062 unsigned NullIndex = 0; 4063 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4064 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4065 break; 4066 } 4067 4068 return NullIndex + 1; 4069 } 4070 4071 /// If we can compute the length of the string pointed to by 4072 /// the specified pointer, return 'len+1'. If we can't, return 0. 4073 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4074 if (!V->getType()->isPointerTy()) 4075 return 0; 4076 4077 SmallPtrSet<const PHINode*, 32> PHIs; 4078 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4079 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4080 // an empty string as a length. 4081 return Len == ~0ULL ? 1 : Len; 4082 } 4083 4084 const Value * 4085 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4086 bool MustPreserveNullness) { 4087 assert(Call && 4088 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4089 if (const Value *RV = Call->getReturnedArgOperand()) 4090 return RV; 4091 // This can be used only as a aliasing property. 4092 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4093 Call, MustPreserveNullness)) 4094 return Call->getArgOperand(0); 4095 return nullptr; 4096 } 4097 4098 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4099 const CallBase *Call, bool MustPreserveNullness) { 4100 switch (Call->getIntrinsicID()) { 4101 case Intrinsic::launder_invariant_group: 4102 case Intrinsic::strip_invariant_group: 4103 case Intrinsic::aarch64_irg: 4104 case Intrinsic::aarch64_tagp: 4105 return true; 4106 case Intrinsic::ptrmask: 4107 return !MustPreserveNullness; 4108 default: 4109 return false; 4110 } 4111 } 4112 4113 /// \p PN defines a loop-variant pointer to an object. Check if the 4114 /// previous iteration of the loop was referring to the same object as \p PN. 4115 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4116 const LoopInfo *LI) { 4117 // Find the loop-defined value. 4118 Loop *L = LI->getLoopFor(PN->getParent()); 4119 if (PN->getNumIncomingValues() != 2) 4120 return true; 4121 4122 // Find the value from previous iteration. 4123 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4124 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4125 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4126 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4127 return true; 4128 4129 // If a new pointer is loaded in the loop, the pointer references a different 4130 // object in every iteration. E.g.: 4131 // for (i) 4132 // int *p = a[i]; 4133 // ... 4134 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4135 if (!L->isLoopInvariant(Load->getPointerOperand())) 4136 return false; 4137 return true; 4138 } 4139 4140 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) { 4141 if (!V->getType()->isPointerTy()) 4142 return V; 4143 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4144 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4145 V = GEP->getPointerOperand(); 4146 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4147 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4148 V = cast<Operator>(V)->getOperand(0); 4149 if (!V->getType()->isPointerTy()) 4150 return V; 4151 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4152 if (GA->isInterposable()) 4153 return V; 4154 V = GA->getAliasee(); 4155 } else { 4156 if (auto *PHI = dyn_cast<PHINode>(V)) { 4157 // Look through single-arg phi nodes created by LCSSA. 4158 if (PHI->getNumIncomingValues() == 1) { 4159 V = PHI->getIncomingValue(0); 4160 continue; 4161 } 4162 } else if (auto *Call = dyn_cast<CallBase>(V)) { 4163 // CaptureTracking can know about special capturing properties of some 4164 // intrinsics like launder.invariant.group, that can't be expressed with 4165 // the attributes, but have properties like returning aliasing pointer. 4166 // Because some analysis may assume that nocaptured pointer is not 4167 // returned from some special intrinsic (because function would have to 4168 // be marked with returns attribute), it is crucial to use this function 4169 // because it should be in sync with CaptureTracking. Not using it may 4170 // cause weird miscompilations where 2 aliasing pointers are assumed to 4171 // noalias. 4172 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4173 V = RP; 4174 continue; 4175 } 4176 } 4177 4178 return V; 4179 } 4180 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4181 } 4182 return V; 4183 } 4184 4185 void llvm::getUnderlyingObjects(const Value *V, 4186 SmallVectorImpl<const Value *> &Objects, 4187 LoopInfo *LI, unsigned MaxLookup) { 4188 SmallPtrSet<const Value *, 4> Visited; 4189 SmallVector<const Value *, 4> Worklist; 4190 Worklist.push_back(V); 4191 do { 4192 const Value *P = Worklist.pop_back_val(); 4193 P = getUnderlyingObject(P, MaxLookup); 4194 4195 if (!Visited.insert(P).second) 4196 continue; 4197 4198 if (auto *SI = dyn_cast<SelectInst>(P)) { 4199 Worklist.push_back(SI->getTrueValue()); 4200 Worklist.push_back(SI->getFalseValue()); 4201 continue; 4202 } 4203 4204 if (auto *PN = dyn_cast<PHINode>(P)) { 4205 // If this PHI changes the underlying object in every iteration of the 4206 // loop, don't look through it. Consider: 4207 // int **A; 4208 // for (i) { 4209 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4210 // Curr = A[i]; 4211 // *Prev, *Curr; 4212 // 4213 // Prev is tracking Curr one iteration behind so they refer to different 4214 // underlying objects. 4215 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4216 isSameUnderlyingObjectInLoop(PN, LI)) 4217 for (Value *IncValue : PN->incoming_values()) 4218 Worklist.push_back(IncValue); 4219 continue; 4220 } 4221 4222 Objects.push_back(P); 4223 } while (!Worklist.empty()); 4224 } 4225 4226 /// This is the function that does the work of looking through basic 4227 /// ptrtoint+arithmetic+inttoptr sequences. 4228 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4229 do { 4230 if (const Operator *U = dyn_cast<Operator>(V)) { 4231 // If we find a ptrtoint, we can transfer control back to the 4232 // regular getUnderlyingObjectFromInt. 4233 if (U->getOpcode() == Instruction::PtrToInt) 4234 return U->getOperand(0); 4235 // If we find an add of a constant, a multiplied value, or a phi, it's 4236 // likely that the other operand will lead us to the base 4237 // object. We don't have to worry about the case where the 4238 // object address is somehow being computed by the multiply, 4239 // because our callers only care when the result is an 4240 // identifiable object. 4241 if (U->getOpcode() != Instruction::Add || 4242 (!isa<ConstantInt>(U->getOperand(1)) && 4243 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4244 !isa<PHINode>(U->getOperand(1)))) 4245 return V; 4246 V = U->getOperand(0); 4247 } else { 4248 return V; 4249 } 4250 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4251 } while (true); 4252 } 4253 4254 /// This is a wrapper around getUnderlyingObjects and adds support for basic 4255 /// ptrtoint+arithmetic+inttoptr sequences. 4256 /// It returns false if unidentified object is found in getUnderlyingObjects. 4257 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4258 SmallVectorImpl<Value *> &Objects) { 4259 SmallPtrSet<const Value *, 16> Visited; 4260 SmallVector<const Value *, 4> Working(1, V); 4261 do { 4262 V = Working.pop_back_val(); 4263 4264 SmallVector<const Value *, 4> Objs; 4265 getUnderlyingObjects(V, Objs); 4266 4267 for (const Value *V : Objs) { 4268 if (!Visited.insert(V).second) 4269 continue; 4270 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4271 const Value *O = 4272 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4273 if (O->getType()->isPointerTy()) { 4274 Working.push_back(O); 4275 continue; 4276 } 4277 } 4278 // If getUnderlyingObjects fails to find an identifiable object, 4279 // getUnderlyingObjectsForCodeGen also fails for safety. 4280 if (!isIdentifiedObject(V)) { 4281 Objects.clear(); 4282 return false; 4283 } 4284 Objects.push_back(const_cast<Value *>(V)); 4285 } 4286 } while (!Working.empty()); 4287 return true; 4288 } 4289 4290 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) { 4291 AllocaInst *Result = nullptr; 4292 SmallPtrSet<Value *, 4> Visited; 4293 SmallVector<Value *, 4> Worklist; 4294 4295 auto AddWork = [&](Value *V) { 4296 if (Visited.insert(V).second) 4297 Worklist.push_back(V); 4298 }; 4299 4300 AddWork(V); 4301 do { 4302 V = Worklist.pop_back_val(); 4303 assert(Visited.count(V)); 4304 4305 if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 4306 if (Result && Result != AI) 4307 return nullptr; 4308 Result = AI; 4309 } else if (CastInst *CI = dyn_cast<CastInst>(V)) { 4310 AddWork(CI->getOperand(0)); 4311 } else if (PHINode *PN = dyn_cast<PHINode>(V)) { 4312 for (Value *IncValue : PN->incoming_values()) 4313 AddWork(IncValue); 4314 } else if (auto *SI = dyn_cast<SelectInst>(V)) { 4315 AddWork(SI->getTrueValue()); 4316 AddWork(SI->getFalseValue()); 4317 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { 4318 if (OffsetZero && !GEP->hasAllZeroIndices()) 4319 return nullptr; 4320 AddWork(GEP->getPointerOperand()); 4321 } else { 4322 return nullptr; 4323 } 4324 } while (!Worklist.empty()); 4325 4326 return Result; 4327 } 4328 4329 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4330 const Value *V, bool AllowLifetime, bool AllowDroppable) { 4331 for (const User *U : V->users()) { 4332 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4333 if (!II) 4334 return false; 4335 4336 if (AllowLifetime && II->isLifetimeStartOrEnd()) 4337 continue; 4338 4339 if (AllowDroppable && II->isDroppable()) 4340 continue; 4341 4342 return false; 4343 } 4344 return true; 4345 } 4346 4347 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4348 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4349 V, /* AllowLifetime */ true, /* AllowDroppable */ false); 4350 } 4351 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) { 4352 return onlyUsedByLifetimeMarkersOrDroppableInstsHelper( 4353 V, /* AllowLifetime */ true, /* AllowDroppable */ true); 4354 } 4355 4356 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4357 if (!LI.isUnordered()) 4358 return true; 4359 const Function &F = *LI.getFunction(); 4360 // Speculative load may create a race that did not exist in the source. 4361 return F.hasFnAttribute(Attribute::SanitizeThread) || 4362 // Speculative load may load data from dirty regions. 4363 F.hasFnAttribute(Attribute::SanitizeAddress) || 4364 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4365 } 4366 4367 4368 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4369 const Instruction *CtxI, 4370 const DominatorTree *DT) { 4371 const Operator *Inst = dyn_cast<Operator>(V); 4372 if (!Inst) 4373 return false; 4374 4375 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4376 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4377 if (C->canTrap()) 4378 return false; 4379 4380 switch (Inst->getOpcode()) { 4381 default: 4382 return true; 4383 case Instruction::UDiv: 4384 case Instruction::URem: { 4385 // x / y is undefined if y == 0. 4386 const APInt *V; 4387 if (match(Inst->getOperand(1), m_APInt(V))) 4388 return *V != 0; 4389 return false; 4390 } 4391 case Instruction::SDiv: 4392 case Instruction::SRem: { 4393 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4394 const APInt *Numerator, *Denominator; 4395 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4396 return false; 4397 // We cannot hoist this division if the denominator is 0. 4398 if (*Denominator == 0) 4399 return false; 4400 // It's safe to hoist if the denominator is not 0 or -1. 4401 if (*Denominator != -1) 4402 return true; 4403 // At this point we know that the denominator is -1. It is safe to hoist as 4404 // long we know that the numerator is not INT_MIN. 4405 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4406 return !Numerator->isMinSignedValue(); 4407 // The numerator *might* be MinSignedValue. 4408 return false; 4409 } 4410 case Instruction::Load: { 4411 const LoadInst *LI = cast<LoadInst>(Inst); 4412 if (mustSuppressSpeculation(*LI)) 4413 return false; 4414 const DataLayout &DL = LI->getModule()->getDataLayout(); 4415 return isDereferenceableAndAlignedPointer( 4416 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4417 DL, CtxI, DT); 4418 } 4419 case Instruction::Call: { 4420 auto *CI = cast<const CallInst>(Inst); 4421 const Function *Callee = CI->getCalledFunction(); 4422 4423 // The called function could have undefined behavior or side-effects, even 4424 // if marked readnone nounwind. 4425 return Callee && Callee->isSpeculatable(); 4426 } 4427 case Instruction::VAArg: 4428 case Instruction::Alloca: 4429 case Instruction::Invoke: 4430 case Instruction::CallBr: 4431 case Instruction::PHI: 4432 case Instruction::Store: 4433 case Instruction::Ret: 4434 case Instruction::Br: 4435 case Instruction::IndirectBr: 4436 case Instruction::Switch: 4437 case Instruction::Unreachable: 4438 case Instruction::Fence: 4439 case Instruction::AtomicRMW: 4440 case Instruction::AtomicCmpXchg: 4441 case Instruction::LandingPad: 4442 case Instruction::Resume: 4443 case Instruction::CatchSwitch: 4444 case Instruction::CatchPad: 4445 case Instruction::CatchRet: 4446 case Instruction::CleanupPad: 4447 case Instruction::CleanupRet: 4448 return false; // Misc instructions which have effects 4449 } 4450 } 4451 4452 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4453 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4454 } 4455 4456 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4457 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4458 switch (OR) { 4459 case ConstantRange::OverflowResult::MayOverflow: 4460 return OverflowResult::MayOverflow; 4461 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4462 return OverflowResult::AlwaysOverflowsLow; 4463 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4464 return OverflowResult::AlwaysOverflowsHigh; 4465 case ConstantRange::OverflowResult::NeverOverflows: 4466 return OverflowResult::NeverOverflows; 4467 } 4468 llvm_unreachable("Unknown OverflowResult"); 4469 } 4470 4471 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4472 static ConstantRange computeConstantRangeIncludingKnownBits( 4473 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4474 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4475 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4476 KnownBits Known = computeKnownBits( 4477 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4478 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4479 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4480 ConstantRange::PreferredRangeType RangeType = 4481 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4482 return CR1.intersectWith(CR2, RangeType); 4483 } 4484 4485 OverflowResult llvm::computeOverflowForUnsignedMul( 4486 const Value *LHS, const Value *RHS, const DataLayout &DL, 4487 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4488 bool UseInstrInfo) { 4489 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4490 nullptr, UseInstrInfo); 4491 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4492 nullptr, UseInstrInfo); 4493 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4494 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4495 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4496 } 4497 4498 OverflowResult 4499 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4500 const DataLayout &DL, AssumptionCache *AC, 4501 const Instruction *CxtI, 4502 const DominatorTree *DT, bool UseInstrInfo) { 4503 // Multiplying n * m significant bits yields a result of n + m significant 4504 // bits. If the total number of significant bits does not exceed the 4505 // result bit width (minus 1), there is no overflow. 4506 // This means if we have enough leading sign bits in the operands 4507 // we can guarantee that the result does not overflow. 4508 // Ref: "Hacker's Delight" by Henry Warren 4509 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4510 4511 // Note that underestimating the number of sign bits gives a more 4512 // conservative answer. 4513 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4514 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4515 4516 // First handle the easy case: if we have enough sign bits there's 4517 // definitely no overflow. 4518 if (SignBits > BitWidth + 1) 4519 return OverflowResult::NeverOverflows; 4520 4521 // There are two ambiguous cases where there can be no overflow: 4522 // SignBits == BitWidth + 1 and 4523 // SignBits == BitWidth 4524 // The second case is difficult to check, therefore we only handle the 4525 // first case. 4526 if (SignBits == BitWidth + 1) { 4527 // It overflows only when both arguments are negative and the true 4528 // product is exactly the minimum negative number. 4529 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4530 // For simplicity we just check if at least one side is not negative. 4531 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4532 nullptr, UseInstrInfo); 4533 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4534 nullptr, UseInstrInfo); 4535 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4536 return OverflowResult::NeverOverflows; 4537 } 4538 return OverflowResult::MayOverflow; 4539 } 4540 4541 OverflowResult llvm::computeOverflowForUnsignedAdd( 4542 const Value *LHS, const Value *RHS, const DataLayout &DL, 4543 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4544 bool UseInstrInfo) { 4545 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4546 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4547 nullptr, UseInstrInfo); 4548 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4549 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4550 nullptr, UseInstrInfo); 4551 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4552 } 4553 4554 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4555 const Value *RHS, 4556 const AddOperator *Add, 4557 const DataLayout &DL, 4558 AssumptionCache *AC, 4559 const Instruction *CxtI, 4560 const DominatorTree *DT) { 4561 if (Add && Add->hasNoSignedWrap()) { 4562 return OverflowResult::NeverOverflows; 4563 } 4564 4565 // If LHS and RHS each have at least two sign bits, the addition will look 4566 // like 4567 // 4568 // XX..... + 4569 // YY..... 4570 // 4571 // If the carry into the most significant position is 0, X and Y can't both 4572 // be 1 and therefore the carry out of the addition is also 0. 4573 // 4574 // If the carry into the most significant position is 1, X and Y can't both 4575 // be 0 and therefore the carry out of the addition is also 1. 4576 // 4577 // Since the carry into the most significant position is always equal to 4578 // the carry out of the addition, there is no signed overflow. 4579 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4580 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4581 return OverflowResult::NeverOverflows; 4582 4583 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4584 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4585 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4586 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4587 OverflowResult OR = 4588 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4589 if (OR != OverflowResult::MayOverflow) 4590 return OR; 4591 4592 // The remaining code needs Add to be available. Early returns if not so. 4593 if (!Add) 4594 return OverflowResult::MayOverflow; 4595 4596 // If the sign of Add is the same as at least one of the operands, this add 4597 // CANNOT overflow. If this can be determined from the known bits of the 4598 // operands the above signedAddMayOverflow() check will have already done so. 4599 // The only other way to improve on the known bits is from an assumption, so 4600 // call computeKnownBitsFromAssume() directly. 4601 bool LHSOrRHSKnownNonNegative = 4602 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4603 bool LHSOrRHSKnownNegative = 4604 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4605 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4606 KnownBits AddKnown(LHSRange.getBitWidth()); 4607 computeKnownBitsFromAssume( 4608 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4609 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4610 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4611 return OverflowResult::NeverOverflows; 4612 } 4613 4614 return OverflowResult::MayOverflow; 4615 } 4616 4617 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4618 const Value *RHS, 4619 const DataLayout &DL, 4620 AssumptionCache *AC, 4621 const Instruction *CxtI, 4622 const DominatorTree *DT) { 4623 // Checking for conditions implied by dominating conditions may be expensive. 4624 // Limit it to usub_with_overflow calls for now. 4625 if (match(CxtI, 4626 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4627 if (auto C = 4628 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4629 if (*C) 4630 return OverflowResult::NeverOverflows; 4631 return OverflowResult::AlwaysOverflowsLow; 4632 } 4633 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4634 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4635 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4636 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4637 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4638 } 4639 4640 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4641 const Value *RHS, 4642 const DataLayout &DL, 4643 AssumptionCache *AC, 4644 const Instruction *CxtI, 4645 const DominatorTree *DT) { 4646 // If LHS and RHS each have at least two sign bits, the subtraction 4647 // cannot overflow. 4648 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4649 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4650 return OverflowResult::NeverOverflows; 4651 4652 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4653 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4654 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4655 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4656 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4657 } 4658 4659 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4660 const DominatorTree &DT) { 4661 SmallVector<const BranchInst *, 2> GuardingBranches; 4662 SmallVector<const ExtractValueInst *, 2> Results; 4663 4664 for (const User *U : WO->users()) { 4665 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4666 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4667 4668 if (EVI->getIndices()[0] == 0) 4669 Results.push_back(EVI); 4670 else { 4671 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4672 4673 for (const auto *U : EVI->users()) 4674 if (const auto *B = dyn_cast<BranchInst>(U)) { 4675 assert(B->isConditional() && "How else is it using an i1?"); 4676 GuardingBranches.push_back(B); 4677 } 4678 } 4679 } else { 4680 // We are using the aggregate directly in a way we don't want to analyze 4681 // here (storing it to a global, say). 4682 return false; 4683 } 4684 } 4685 4686 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4687 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4688 if (!NoWrapEdge.isSingleEdge()) 4689 return false; 4690 4691 // Check if all users of the add are provably no-wrap. 4692 for (const auto *Result : Results) { 4693 // If the extractvalue itself is not executed on overflow, the we don't 4694 // need to check each use separately, since domination is transitive. 4695 if (DT.dominates(NoWrapEdge, Result->getParent())) 4696 continue; 4697 4698 for (auto &RU : Result->uses()) 4699 if (!DT.dominates(NoWrapEdge, RU)) 4700 return false; 4701 } 4702 4703 return true; 4704 }; 4705 4706 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4707 } 4708 4709 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) { 4710 // See whether I has flags that may create poison 4711 if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) { 4712 if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap()) 4713 return true; 4714 } 4715 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op)) 4716 if (ExactOp->isExact()) 4717 return true; 4718 if (const auto *FP = dyn_cast<FPMathOperator>(Op)) { 4719 auto FMF = FP->getFastMathFlags(); 4720 if (FMF.noNaNs() || FMF.noInfs()) 4721 return true; 4722 } 4723 4724 unsigned Opcode = Op->getOpcode(); 4725 4726 // Check whether opcode is a poison/undef-generating operation 4727 switch (Opcode) { 4728 case Instruction::Shl: 4729 case Instruction::AShr: 4730 case Instruction::LShr: { 4731 // Shifts return poison if shiftwidth is larger than the bitwidth. 4732 if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) { 4733 SmallVector<Constant *, 4> ShiftAmounts; 4734 if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) { 4735 unsigned NumElts = FVTy->getNumElements(); 4736 for (unsigned i = 0; i < NumElts; ++i) 4737 ShiftAmounts.push_back(C->getAggregateElement(i)); 4738 } else if (isa<ScalableVectorType>(C->getType())) 4739 return true; // Can't tell, just return true to be safe 4740 else 4741 ShiftAmounts.push_back(C); 4742 4743 bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) { 4744 auto *CI = dyn_cast<ConstantInt>(C); 4745 return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth()); 4746 }); 4747 return !Safe; 4748 } 4749 return true; 4750 } 4751 case Instruction::FPToSI: 4752 case Instruction::FPToUI: 4753 // fptosi/ui yields poison if the resulting value does not fit in the 4754 // destination type. 4755 return true; 4756 case Instruction::Call: 4757 case Instruction::CallBr: 4758 case Instruction::Invoke: { 4759 const auto *CB = cast<CallBase>(Op); 4760 return !CB->hasRetAttr(Attribute::NoUndef); 4761 } 4762 case Instruction::InsertElement: 4763 case Instruction::ExtractElement: { 4764 // If index exceeds the length of the vector, it returns poison 4765 auto *VTy = cast<VectorType>(Op->getOperand(0)->getType()); 4766 unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1; 4767 auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp)); 4768 if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue())) 4769 return true; 4770 return false; 4771 } 4772 case Instruction::ShuffleVector: { 4773 // shufflevector may return undef. 4774 if (PoisonOnly) 4775 return false; 4776 ArrayRef<int> Mask = isa<ConstantExpr>(Op) 4777 ? cast<ConstantExpr>(Op)->getShuffleMask() 4778 : cast<ShuffleVectorInst>(Op)->getShuffleMask(); 4779 return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; }); 4780 } 4781 case Instruction::FNeg: 4782 case Instruction::PHI: 4783 case Instruction::Select: 4784 case Instruction::URem: 4785 case Instruction::SRem: 4786 case Instruction::ExtractValue: 4787 case Instruction::InsertValue: 4788 case Instruction::Freeze: 4789 case Instruction::ICmp: 4790 case Instruction::FCmp: 4791 return false; 4792 case Instruction::GetElementPtr: { 4793 const auto *GEP = cast<GEPOperator>(Op); 4794 return GEP->isInBounds(); 4795 } 4796 default: { 4797 const auto *CE = dyn_cast<ConstantExpr>(Op); 4798 if (isa<CastInst>(Op) || (CE && CE->isCast())) 4799 return false; 4800 else if (Instruction::isBinaryOp(Opcode)) 4801 return false; 4802 // Be conservative and return true. 4803 return true; 4804 } 4805 } 4806 } 4807 4808 bool llvm::canCreateUndefOrPoison(const Operator *Op) { 4809 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false); 4810 } 4811 4812 bool llvm::canCreatePoison(const Operator *Op) { 4813 return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true); 4814 } 4815 4816 static bool programUndefinedIfUndefOrPoison(const Value *V, 4817 bool PoisonOnly); 4818 4819 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V, 4820 AssumptionCache *AC, 4821 const Instruction *CtxI, 4822 const DominatorTree *DT, 4823 unsigned Depth, bool PoisonOnly) { 4824 if (Depth >= MaxAnalysisRecursionDepth) 4825 return false; 4826 4827 if (isa<MetadataAsValue>(V)) 4828 return false; 4829 4830 if (const auto *A = dyn_cast<Argument>(V)) { 4831 if (A->hasAttribute(Attribute::NoUndef)) 4832 return true; 4833 } 4834 4835 if (auto *C = dyn_cast<Constant>(V)) { 4836 if (isa<UndefValue>(C)) 4837 return PoisonOnly; 4838 4839 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) || 4840 isa<ConstantPointerNull>(C) || isa<Function>(C)) 4841 return true; 4842 4843 if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C)) 4844 return (PoisonOnly || !C->containsUndefElement()) && 4845 !C->containsConstantExpression(); 4846 } 4847 4848 // Strip cast operations from a pointer value. 4849 // Note that stripPointerCastsSameRepresentation can strip off getelementptr 4850 // inbounds with zero offset. To guarantee that the result isn't poison, the 4851 // stripped pointer is checked as it has to be pointing into an allocated 4852 // object or be null `null` to ensure `inbounds` getelement pointers with a 4853 // zero offset could not produce poison. 4854 // It can strip off addrspacecast that do not change bit representation as 4855 // well. We believe that such addrspacecast is equivalent to no-op. 4856 auto *StrippedV = V->stripPointerCastsSameRepresentation(); 4857 if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) || 4858 isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV)) 4859 return true; 4860 4861 auto OpCheck = [&](const Value *V) { 4862 return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1, 4863 PoisonOnly); 4864 }; 4865 4866 if (auto *Opr = dyn_cast<Operator>(V)) { 4867 // If the value is a freeze instruction, then it can never 4868 // be undef or poison. 4869 if (isa<FreezeInst>(V)) 4870 return true; 4871 4872 if (const auto *CB = dyn_cast<CallBase>(V)) { 4873 if (CB->hasRetAttr(Attribute::NoUndef)) 4874 return true; 4875 } 4876 4877 if (const auto *PN = dyn_cast<PHINode>(V)) { 4878 unsigned Num = PN->getNumIncomingValues(); 4879 bool IsWellDefined = true; 4880 for (unsigned i = 0; i < Num; ++i) { 4881 auto *TI = PN->getIncomingBlock(i)->getTerminator(); 4882 if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI, 4883 DT, Depth + 1, PoisonOnly)) { 4884 IsWellDefined = false; 4885 break; 4886 } 4887 } 4888 if (IsWellDefined) 4889 return true; 4890 } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck)) 4891 return true; 4892 } 4893 4894 if (programUndefinedIfUndefOrPoison(V, PoisonOnly)) 4895 return true; 4896 4897 // CxtI may be null or a cloned instruction. 4898 if (!CtxI || !CtxI->getParent() || !DT) 4899 return false; 4900 4901 auto *DNode = DT->getNode(CtxI->getParent()); 4902 if (!DNode) 4903 // Unreachable block 4904 return false; 4905 4906 // If V is used as a branch condition before reaching CtxI, V cannot be 4907 // undef or poison. 4908 // br V, BB1, BB2 4909 // BB1: 4910 // CtxI ; V cannot be undef or poison here 4911 auto *Dominator = DNode->getIDom(); 4912 while (Dominator) { 4913 auto *TI = Dominator->getBlock()->getTerminator(); 4914 4915 Value *Cond = nullptr; 4916 if (auto BI = dyn_cast<BranchInst>(TI)) { 4917 if (BI->isConditional()) 4918 Cond = BI->getCondition(); 4919 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4920 Cond = SI->getCondition(); 4921 } 4922 4923 if (Cond) { 4924 if (Cond == V) 4925 return true; 4926 else if (PoisonOnly && isa<Operator>(Cond)) { 4927 // For poison, we can analyze further 4928 auto *Opr = cast<Operator>(Cond); 4929 if (propagatesPoison(Opr) && 4930 any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; })) 4931 return true; 4932 } 4933 } 4934 4935 Dominator = Dominator->getIDom(); 4936 } 4937 4938 SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef}; 4939 if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC)) 4940 return true; 4941 4942 return false; 4943 } 4944 4945 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC, 4946 const Instruction *CtxI, 4947 const DominatorTree *DT, 4948 unsigned Depth) { 4949 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false); 4950 } 4951 4952 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC, 4953 const Instruction *CtxI, 4954 const DominatorTree *DT, unsigned Depth) { 4955 return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true); 4956 } 4957 4958 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4959 const DataLayout &DL, 4960 AssumptionCache *AC, 4961 const Instruction *CxtI, 4962 const DominatorTree *DT) { 4963 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4964 Add, DL, AC, CxtI, DT); 4965 } 4966 4967 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4968 const Value *RHS, 4969 const DataLayout &DL, 4970 AssumptionCache *AC, 4971 const Instruction *CxtI, 4972 const DominatorTree *DT) { 4973 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4974 } 4975 4976 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4977 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4978 // of time because it's possible for another thread to interfere with it for an 4979 // arbitrary length of time, but programs aren't allowed to rely on that. 4980 4981 // If there is no successor, then execution can't transfer to it. 4982 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4983 return !CRI->unwindsToCaller(); 4984 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4985 return !CatchSwitch->unwindsToCaller(); 4986 if (isa<ResumeInst>(I)) 4987 return false; 4988 if (isa<ReturnInst>(I)) 4989 return false; 4990 if (isa<UnreachableInst>(I)) 4991 return false; 4992 4993 // Calls can throw, or contain an infinite loop, or kill the process. 4994 if (const auto *CB = dyn_cast<CallBase>(I)) { 4995 // Call sites that throw have implicit non-local control flow. 4996 if (!CB->doesNotThrow()) 4997 return false; 4998 4999 // A function which doens't throw and has "willreturn" attribute will 5000 // always return. 5001 if (CB->hasFnAttr(Attribute::WillReturn)) 5002 return true; 5003 5004 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 5005 // etc. and thus not return. However, LLVM already assumes that 5006 // 5007 // - Thread exiting actions are modeled as writes to memory invisible to 5008 // the program. 5009 // 5010 // - Loops that don't have side effects (side effects are volatile/atomic 5011 // stores and IO) always terminate (see http://llvm.org/PR965). 5012 // Furthermore IO itself is also modeled as writes to memory invisible to 5013 // the program. 5014 // 5015 // We rely on those assumptions here, and use the memory effects of the call 5016 // target as a proxy for checking that it always returns. 5017 5018 // FIXME: This isn't aggressive enough; a call which only writes to a global 5019 // is guaranteed to return. 5020 return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory(); 5021 } 5022 5023 // Other instructions return normally. 5024 return true; 5025 } 5026 5027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 5028 // TODO: This is slightly conservative for invoke instruction since exiting 5029 // via an exception *is* normal control for them. 5030 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 5031 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 5032 return false; 5033 return true; 5034 } 5035 5036 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 5037 const Loop *L) { 5038 // The loop header is guaranteed to be executed for every iteration. 5039 // 5040 // FIXME: Relax this constraint to cover all basic blocks that are 5041 // guaranteed to be executed at every iteration. 5042 if (I->getParent() != L->getHeader()) return false; 5043 5044 for (const Instruction &LI : *L->getHeader()) { 5045 if (&LI == I) return true; 5046 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 5047 } 5048 llvm_unreachable("Instruction not contained in its own parent basic block."); 5049 } 5050 5051 bool llvm::propagatesPoison(const Operator *I) { 5052 switch (I->getOpcode()) { 5053 case Instruction::Freeze: 5054 case Instruction::Select: 5055 case Instruction::PHI: 5056 case Instruction::Call: 5057 case Instruction::Invoke: 5058 return false; 5059 case Instruction::ICmp: 5060 case Instruction::FCmp: 5061 case Instruction::GetElementPtr: 5062 return true; 5063 default: 5064 if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I)) 5065 return true; 5066 5067 // Be conservative and return false. 5068 return false; 5069 } 5070 } 5071 5072 void llvm::getGuaranteedNonPoisonOps(const Instruction *I, 5073 SmallPtrSetImpl<const Value *> &Operands) { 5074 switch (I->getOpcode()) { 5075 case Instruction::Store: 5076 Operands.insert(cast<StoreInst>(I)->getPointerOperand()); 5077 break; 5078 5079 case Instruction::Load: 5080 Operands.insert(cast<LoadInst>(I)->getPointerOperand()); 5081 break; 5082 5083 case Instruction::AtomicCmpXchg: 5084 Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand()); 5085 break; 5086 5087 case Instruction::AtomicRMW: 5088 Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand()); 5089 break; 5090 5091 case Instruction::UDiv: 5092 case Instruction::SDiv: 5093 case Instruction::URem: 5094 case Instruction::SRem: 5095 Operands.insert(I->getOperand(1)); 5096 break; 5097 5098 case Instruction::Call: 5099 case Instruction::Invoke: { 5100 const CallBase *CB = cast<CallBase>(I); 5101 if (CB->isIndirectCall()) 5102 Operands.insert(CB->getCalledOperand()); 5103 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5104 if (CB->paramHasAttr(i, Attribute::NoUndef)) 5105 Operands.insert(CB->getArgOperand(i)); 5106 } 5107 break; 5108 } 5109 5110 default: 5111 break; 5112 } 5113 } 5114 5115 bool llvm::mustTriggerUB(const Instruction *I, 5116 const SmallSet<const Value *, 16>& KnownPoison) { 5117 SmallPtrSet<const Value *, 4> NonPoisonOps; 5118 getGuaranteedNonPoisonOps(I, NonPoisonOps); 5119 5120 for (const auto *V : NonPoisonOps) 5121 if (KnownPoison.count(V)) 5122 return true; 5123 5124 return false; 5125 } 5126 5127 static bool programUndefinedIfUndefOrPoison(const Value *V, 5128 bool PoisonOnly) { 5129 // We currently only look for uses of values within the same basic 5130 // block, as that makes it easier to guarantee that the uses will be 5131 // executed given that Inst is executed. 5132 // 5133 // FIXME: Expand this to consider uses beyond the same basic block. To do 5134 // this, look out for the distinction between post-dominance and strong 5135 // post-dominance. 5136 const BasicBlock *BB = nullptr; 5137 BasicBlock::const_iterator Begin; 5138 if (const auto *Inst = dyn_cast<Instruction>(V)) { 5139 BB = Inst->getParent(); 5140 Begin = Inst->getIterator(); 5141 Begin++; 5142 } else if (const auto *Arg = dyn_cast<Argument>(V)) { 5143 BB = &Arg->getParent()->getEntryBlock(); 5144 Begin = BB->begin(); 5145 } else { 5146 return false; 5147 } 5148 5149 BasicBlock::const_iterator End = BB->end(); 5150 5151 if (!PoisonOnly) { 5152 // Be conservative & just check whether a value is passed to a noundef 5153 // argument. 5154 // Instructions that raise UB with a poison operand are well-defined 5155 // or have unclear semantics when the input is partially undef. 5156 // For example, 'udiv x, (undef | 1)' isn't UB. 5157 5158 for (auto &I : make_range(Begin, End)) { 5159 if (const auto *CB = dyn_cast<CallBase>(&I)) { 5160 for (unsigned i = 0; i < CB->arg_size(); ++i) { 5161 if (CB->paramHasAttr(i, Attribute::NoUndef) && 5162 CB->getArgOperand(i) == V) 5163 return true; 5164 } 5165 } 5166 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5167 break; 5168 } 5169 return false; 5170 } 5171 5172 // Set of instructions that we have proved will yield poison if Inst 5173 // does. 5174 SmallSet<const Value *, 16> YieldsPoison; 5175 SmallSet<const BasicBlock *, 4> Visited; 5176 5177 YieldsPoison.insert(V); 5178 auto Propagate = [&](const User *User) { 5179 if (propagatesPoison(cast<Operator>(User))) 5180 YieldsPoison.insert(User); 5181 }; 5182 for_each(V->users(), Propagate); 5183 Visited.insert(BB); 5184 5185 unsigned Iter = 0; 5186 while (Iter++ < MaxAnalysisRecursionDepth) { 5187 for (auto &I : make_range(Begin, End)) { 5188 if (mustTriggerUB(&I, YieldsPoison)) 5189 return true; 5190 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5191 return false; 5192 5193 // Mark poison that propagates from I through uses of I. 5194 if (YieldsPoison.count(&I)) 5195 for_each(I.users(), Propagate); 5196 } 5197 5198 if (auto *NextBB = BB->getSingleSuccessor()) { 5199 if (Visited.insert(NextBB).second) { 5200 BB = NextBB; 5201 Begin = BB->getFirstNonPHI()->getIterator(); 5202 End = BB->end(); 5203 continue; 5204 } 5205 } 5206 5207 break; 5208 } 5209 return false; 5210 } 5211 5212 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) { 5213 return ::programUndefinedIfUndefOrPoison(Inst, false); 5214 } 5215 5216 bool llvm::programUndefinedIfPoison(const Instruction *Inst) { 5217 return ::programUndefinedIfUndefOrPoison(Inst, true); 5218 } 5219 5220 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 5221 if (FMF.noNaNs()) 5222 return true; 5223 5224 if (auto *C = dyn_cast<ConstantFP>(V)) 5225 return !C->isNaN(); 5226 5227 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5228 if (!C->getElementType()->isFloatingPointTy()) 5229 return false; 5230 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5231 if (C->getElementAsAPFloat(I).isNaN()) 5232 return false; 5233 } 5234 return true; 5235 } 5236 5237 if (isa<ConstantAggregateZero>(V)) 5238 return true; 5239 5240 return false; 5241 } 5242 5243 static bool isKnownNonZero(const Value *V) { 5244 if (auto *C = dyn_cast<ConstantFP>(V)) 5245 return !C->isZero(); 5246 5247 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 5248 if (!C->getElementType()->isFloatingPointTy()) 5249 return false; 5250 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 5251 if (C->getElementAsAPFloat(I).isZero()) 5252 return false; 5253 } 5254 return true; 5255 } 5256 5257 return false; 5258 } 5259 5260 /// Match clamp pattern for float types without care about NaNs or signed zeros. 5261 /// Given non-min/max outer cmp/select from the clamp pattern this 5262 /// function recognizes if it can be substitued by a "canonical" min/max 5263 /// pattern. 5264 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 5265 Value *CmpLHS, Value *CmpRHS, 5266 Value *TrueVal, Value *FalseVal, 5267 Value *&LHS, Value *&RHS) { 5268 // Try to match 5269 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 5270 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 5271 // and return description of the outer Max/Min. 5272 5273 // First, check if select has inverse order: 5274 if (CmpRHS == FalseVal) { 5275 std::swap(TrueVal, FalseVal); 5276 Pred = CmpInst::getInversePredicate(Pred); 5277 } 5278 5279 // Assume success now. If there's no match, callers should not use these anyway. 5280 LHS = TrueVal; 5281 RHS = FalseVal; 5282 5283 const APFloat *FC1; 5284 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 5285 return {SPF_UNKNOWN, SPNB_NA, false}; 5286 5287 const APFloat *FC2; 5288 switch (Pred) { 5289 case CmpInst::FCMP_OLT: 5290 case CmpInst::FCMP_OLE: 5291 case CmpInst::FCMP_ULT: 5292 case CmpInst::FCMP_ULE: 5293 if (match(FalseVal, 5294 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 5295 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5296 *FC1 < *FC2) 5297 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 5298 break; 5299 case CmpInst::FCMP_OGT: 5300 case CmpInst::FCMP_OGE: 5301 case CmpInst::FCMP_UGT: 5302 case CmpInst::FCMP_UGE: 5303 if (match(FalseVal, 5304 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 5305 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 5306 *FC1 > *FC2) 5307 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 5308 break; 5309 default: 5310 break; 5311 } 5312 5313 return {SPF_UNKNOWN, SPNB_NA, false}; 5314 } 5315 5316 /// Recognize variations of: 5317 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 5318 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 5319 Value *CmpLHS, Value *CmpRHS, 5320 Value *TrueVal, Value *FalseVal) { 5321 // Swap the select operands and predicate to match the patterns below. 5322 if (CmpRHS != TrueVal) { 5323 Pred = ICmpInst::getSwappedPredicate(Pred); 5324 std::swap(TrueVal, FalseVal); 5325 } 5326 const APInt *C1; 5327 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5328 const APInt *C2; 5329 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5330 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5331 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5332 return {SPF_SMAX, SPNB_NA, false}; 5333 5334 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5335 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5336 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5337 return {SPF_SMIN, SPNB_NA, false}; 5338 5339 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5340 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5341 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5342 return {SPF_UMAX, SPNB_NA, false}; 5343 5344 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5345 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5346 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5347 return {SPF_UMIN, SPNB_NA, false}; 5348 } 5349 return {SPF_UNKNOWN, SPNB_NA, false}; 5350 } 5351 5352 /// Recognize variations of: 5353 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5354 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5355 Value *CmpLHS, Value *CmpRHS, 5356 Value *TVal, Value *FVal, 5357 unsigned Depth) { 5358 // TODO: Allow FP min/max with nnan/nsz. 5359 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5360 5361 Value *A = nullptr, *B = nullptr; 5362 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5363 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5364 return {SPF_UNKNOWN, SPNB_NA, false}; 5365 5366 Value *C = nullptr, *D = nullptr; 5367 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5368 if (L.Flavor != R.Flavor) 5369 return {SPF_UNKNOWN, SPNB_NA, false}; 5370 5371 // We have something like: x Pred y ? min(a, b) : min(c, d). 5372 // Try to match the compare to the min/max operations of the select operands. 5373 // First, make sure we have the right compare predicate. 5374 switch (L.Flavor) { 5375 case SPF_SMIN: 5376 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5377 Pred = ICmpInst::getSwappedPredicate(Pred); 5378 std::swap(CmpLHS, CmpRHS); 5379 } 5380 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5381 break; 5382 return {SPF_UNKNOWN, SPNB_NA, false}; 5383 case SPF_SMAX: 5384 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5385 Pred = ICmpInst::getSwappedPredicate(Pred); 5386 std::swap(CmpLHS, CmpRHS); 5387 } 5388 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5389 break; 5390 return {SPF_UNKNOWN, SPNB_NA, false}; 5391 case SPF_UMIN: 5392 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5393 Pred = ICmpInst::getSwappedPredicate(Pred); 5394 std::swap(CmpLHS, CmpRHS); 5395 } 5396 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5397 break; 5398 return {SPF_UNKNOWN, SPNB_NA, false}; 5399 case SPF_UMAX: 5400 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5401 Pred = ICmpInst::getSwappedPredicate(Pred); 5402 std::swap(CmpLHS, CmpRHS); 5403 } 5404 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5405 break; 5406 return {SPF_UNKNOWN, SPNB_NA, false}; 5407 default: 5408 return {SPF_UNKNOWN, SPNB_NA, false}; 5409 } 5410 5411 // If there is a common operand in the already matched min/max and the other 5412 // min/max operands match the compare operands (either directly or inverted), 5413 // then this is min/max of the same flavor. 5414 5415 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5416 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5417 if (D == B) { 5418 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5419 match(A, m_Not(m_Specific(CmpRHS))))) 5420 return {L.Flavor, SPNB_NA, false}; 5421 } 5422 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5423 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5424 if (C == B) { 5425 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5426 match(A, m_Not(m_Specific(CmpRHS))))) 5427 return {L.Flavor, SPNB_NA, false}; 5428 } 5429 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5430 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5431 if (D == A) { 5432 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5433 match(B, m_Not(m_Specific(CmpRHS))))) 5434 return {L.Flavor, SPNB_NA, false}; 5435 } 5436 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5437 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5438 if (C == A) { 5439 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5440 match(B, m_Not(m_Specific(CmpRHS))))) 5441 return {L.Flavor, SPNB_NA, false}; 5442 } 5443 5444 return {SPF_UNKNOWN, SPNB_NA, false}; 5445 } 5446 5447 /// If the input value is the result of a 'not' op, constant integer, or vector 5448 /// splat of a constant integer, return the bitwise-not source value. 5449 /// TODO: This could be extended to handle non-splat vector integer constants. 5450 static Value *getNotValue(Value *V) { 5451 Value *NotV; 5452 if (match(V, m_Not(m_Value(NotV)))) 5453 return NotV; 5454 5455 const APInt *C; 5456 if (match(V, m_APInt(C))) 5457 return ConstantInt::get(V->getType(), ~(*C)); 5458 5459 return nullptr; 5460 } 5461 5462 /// Match non-obvious integer minimum and maximum sequences. 5463 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5464 Value *CmpLHS, Value *CmpRHS, 5465 Value *TrueVal, Value *FalseVal, 5466 Value *&LHS, Value *&RHS, 5467 unsigned Depth) { 5468 // Assume success. If there's no match, callers should not use these anyway. 5469 LHS = TrueVal; 5470 RHS = FalseVal; 5471 5472 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5473 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5474 return SPR; 5475 5476 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5477 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5478 return SPR; 5479 5480 // Look through 'not' ops to find disguised min/max. 5481 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5482 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5483 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5484 switch (Pred) { 5485 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5486 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5487 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5488 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5489 default: break; 5490 } 5491 } 5492 5493 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5494 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5495 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5496 switch (Pred) { 5497 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5498 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5499 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5500 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5501 default: break; 5502 } 5503 } 5504 5505 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5506 return {SPF_UNKNOWN, SPNB_NA, false}; 5507 5508 // Z = X -nsw Y 5509 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5510 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5511 if (match(TrueVal, m_Zero()) && 5512 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5513 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5514 5515 // Z = X -nsw Y 5516 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5517 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5518 if (match(FalseVal, m_Zero()) && 5519 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5520 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5521 5522 const APInt *C1; 5523 if (!match(CmpRHS, m_APInt(C1))) 5524 return {SPF_UNKNOWN, SPNB_NA, false}; 5525 5526 // An unsigned min/max can be written with a signed compare. 5527 const APInt *C2; 5528 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5529 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5530 // Is the sign bit set? 5531 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5532 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5533 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5534 C2->isMaxSignedValue()) 5535 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5536 5537 // Is the sign bit clear? 5538 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5539 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5540 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5541 C2->isMinSignedValue()) 5542 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5543 } 5544 5545 return {SPF_UNKNOWN, SPNB_NA, false}; 5546 } 5547 5548 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5549 assert(X && Y && "Invalid operand"); 5550 5551 // X = sub (0, Y) || X = sub nsw (0, Y) 5552 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5553 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5554 return true; 5555 5556 // Y = sub (0, X) || Y = sub nsw (0, X) 5557 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5558 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5559 return true; 5560 5561 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5562 Value *A, *B; 5563 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5564 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5565 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5566 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5567 } 5568 5569 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5570 FastMathFlags FMF, 5571 Value *CmpLHS, Value *CmpRHS, 5572 Value *TrueVal, Value *FalseVal, 5573 Value *&LHS, Value *&RHS, 5574 unsigned Depth) { 5575 if (CmpInst::isFPPredicate(Pred)) { 5576 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5577 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5578 // purpose of identifying min/max. Disregard vector constants with undefined 5579 // elements because those can not be back-propagated for analysis. 5580 Value *OutputZeroVal = nullptr; 5581 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5582 !cast<Constant>(TrueVal)->containsUndefElement()) 5583 OutputZeroVal = TrueVal; 5584 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5585 !cast<Constant>(FalseVal)->containsUndefElement()) 5586 OutputZeroVal = FalseVal; 5587 5588 if (OutputZeroVal) { 5589 if (match(CmpLHS, m_AnyZeroFP())) 5590 CmpLHS = OutputZeroVal; 5591 if (match(CmpRHS, m_AnyZeroFP())) 5592 CmpRHS = OutputZeroVal; 5593 } 5594 } 5595 5596 LHS = CmpLHS; 5597 RHS = CmpRHS; 5598 5599 // Signed zero may return inconsistent results between implementations. 5600 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5601 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5602 // Therefore, we behave conservatively and only proceed if at least one of the 5603 // operands is known to not be zero or if we don't care about signed zero. 5604 switch (Pred) { 5605 default: break; 5606 // FIXME: Include OGT/OLT/UGT/ULT. 5607 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5608 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5609 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5610 !isKnownNonZero(CmpRHS)) 5611 return {SPF_UNKNOWN, SPNB_NA, false}; 5612 } 5613 5614 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5615 bool Ordered = false; 5616 5617 // When given one NaN and one non-NaN input: 5618 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5619 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5620 // ordered comparison fails), which could be NaN or non-NaN. 5621 // so here we discover exactly what NaN behavior is required/accepted. 5622 if (CmpInst::isFPPredicate(Pred)) { 5623 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5624 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5625 5626 if (LHSSafe && RHSSafe) { 5627 // Both operands are known non-NaN. 5628 NaNBehavior = SPNB_RETURNS_ANY; 5629 } else if (CmpInst::isOrdered(Pred)) { 5630 // An ordered comparison will return false when given a NaN, so it 5631 // returns the RHS. 5632 Ordered = true; 5633 if (LHSSafe) 5634 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5635 NaNBehavior = SPNB_RETURNS_NAN; 5636 else if (RHSSafe) 5637 NaNBehavior = SPNB_RETURNS_OTHER; 5638 else 5639 // Completely unsafe. 5640 return {SPF_UNKNOWN, SPNB_NA, false}; 5641 } else { 5642 Ordered = false; 5643 // An unordered comparison will return true when given a NaN, so it 5644 // returns the LHS. 5645 if (LHSSafe) 5646 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5647 NaNBehavior = SPNB_RETURNS_OTHER; 5648 else if (RHSSafe) 5649 NaNBehavior = SPNB_RETURNS_NAN; 5650 else 5651 // Completely unsafe. 5652 return {SPF_UNKNOWN, SPNB_NA, false}; 5653 } 5654 } 5655 5656 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5657 std::swap(CmpLHS, CmpRHS); 5658 Pred = CmpInst::getSwappedPredicate(Pred); 5659 if (NaNBehavior == SPNB_RETURNS_NAN) 5660 NaNBehavior = SPNB_RETURNS_OTHER; 5661 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5662 NaNBehavior = SPNB_RETURNS_NAN; 5663 Ordered = !Ordered; 5664 } 5665 5666 // ([if]cmp X, Y) ? X : Y 5667 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5668 switch (Pred) { 5669 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5670 case ICmpInst::ICMP_UGT: 5671 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5672 case ICmpInst::ICMP_SGT: 5673 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5674 case ICmpInst::ICMP_ULT: 5675 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5676 case ICmpInst::ICMP_SLT: 5677 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5678 case FCmpInst::FCMP_UGT: 5679 case FCmpInst::FCMP_UGE: 5680 case FCmpInst::FCMP_OGT: 5681 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5682 case FCmpInst::FCMP_ULT: 5683 case FCmpInst::FCMP_ULE: 5684 case FCmpInst::FCMP_OLT: 5685 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5686 } 5687 } 5688 5689 if (isKnownNegation(TrueVal, FalseVal)) { 5690 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5691 // match against either LHS or sext(LHS). 5692 auto MaybeSExtCmpLHS = 5693 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5694 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5695 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5696 if (match(TrueVal, MaybeSExtCmpLHS)) { 5697 // Set the return values. If the compare uses the negated value (-X >s 0), 5698 // swap the return values because the negated value is always 'RHS'. 5699 LHS = TrueVal; 5700 RHS = FalseVal; 5701 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5702 std::swap(LHS, RHS); 5703 5704 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5705 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5706 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5707 return {SPF_ABS, SPNB_NA, false}; 5708 5709 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5710 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5711 return {SPF_ABS, SPNB_NA, false}; 5712 5713 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5714 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5715 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5716 return {SPF_NABS, SPNB_NA, false}; 5717 } 5718 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5719 // Set the return values. If the compare uses the negated value (-X >s 0), 5720 // swap the return values because the negated value is always 'RHS'. 5721 LHS = FalseVal; 5722 RHS = TrueVal; 5723 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5724 std::swap(LHS, RHS); 5725 5726 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5727 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5728 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5729 return {SPF_NABS, SPNB_NA, false}; 5730 5731 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5732 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5733 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5734 return {SPF_ABS, SPNB_NA, false}; 5735 } 5736 } 5737 5738 if (CmpInst::isIntPredicate(Pred)) 5739 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5740 5741 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5742 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5743 // semantics than minNum. Be conservative in such case. 5744 if (NaNBehavior != SPNB_RETURNS_ANY || 5745 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5746 !isKnownNonZero(CmpRHS))) 5747 return {SPF_UNKNOWN, SPNB_NA, false}; 5748 5749 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5750 } 5751 5752 /// Helps to match a select pattern in case of a type mismatch. 5753 /// 5754 /// The function processes the case when type of true and false values of a 5755 /// select instruction differs from type of the cmp instruction operands because 5756 /// of a cast instruction. The function checks if it is legal to move the cast 5757 /// operation after "select". If yes, it returns the new second value of 5758 /// "select" (with the assumption that cast is moved): 5759 /// 1. As operand of cast instruction when both values of "select" are same cast 5760 /// instructions. 5761 /// 2. As restored constant (by applying reverse cast operation) when the first 5762 /// value of the "select" is a cast operation and the second value is a 5763 /// constant. 5764 /// NOTE: We return only the new second value because the first value could be 5765 /// accessed as operand of cast instruction. 5766 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5767 Instruction::CastOps *CastOp) { 5768 auto *Cast1 = dyn_cast<CastInst>(V1); 5769 if (!Cast1) 5770 return nullptr; 5771 5772 *CastOp = Cast1->getOpcode(); 5773 Type *SrcTy = Cast1->getSrcTy(); 5774 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5775 // If V1 and V2 are both the same cast from the same type, look through V1. 5776 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5777 return Cast2->getOperand(0); 5778 return nullptr; 5779 } 5780 5781 auto *C = dyn_cast<Constant>(V2); 5782 if (!C) 5783 return nullptr; 5784 5785 Constant *CastedTo = nullptr; 5786 switch (*CastOp) { 5787 case Instruction::ZExt: 5788 if (CmpI->isUnsigned()) 5789 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5790 break; 5791 case Instruction::SExt: 5792 if (CmpI->isSigned()) 5793 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5794 break; 5795 case Instruction::Trunc: 5796 Constant *CmpConst; 5797 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5798 CmpConst->getType() == SrcTy) { 5799 // Here we have the following case: 5800 // 5801 // %cond = cmp iN %x, CmpConst 5802 // %tr = trunc iN %x to iK 5803 // %narrowsel = select i1 %cond, iK %t, iK C 5804 // 5805 // We can always move trunc after select operation: 5806 // 5807 // %cond = cmp iN %x, CmpConst 5808 // %widesel = select i1 %cond, iN %x, iN CmpConst 5809 // %tr = trunc iN %widesel to iK 5810 // 5811 // Note that C could be extended in any way because we don't care about 5812 // upper bits after truncation. It can't be abs pattern, because it would 5813 // look like: 5814 // 5815 // select i1 %cond, x, -x. 5816 // 5817 // So only min/max pattern could be matched. Such match requires widened C 5818 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5819 // CmpConst == C is checked below. 5820 CastedTo = CmpConst; 5821 } else { 5822 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5823 } 5824 break; 5825 case Instruction::FPTrunc: 5826 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5827 break; 5828 case Instruction::FPExt: 5829 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5830 break; 5831 case Instruction::FPToUI: 5832 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5833 break; 5834 case Instruction::FPToSI: 5835 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5836 break; 5837 case Instruction::UIToFP: 5838 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5839 break; 5840 case Instruction::SIToFP: 5841 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5842 break; 5843 default: 5844 break; 5845 } 5846 5847 if (!CastedTo) 5848 return nullptr; 5849 5850 // Make sure the cast doesn't lose any information. 5851 Constant *CastedBack = 5852 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5853 if (CastedBack != C) 5854 return nullptr; 5855 5856 return CastedTo; 5857 } 5858 5859 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5860 Instruction::CastOps *CastOp, 5861 unsigned Depth) { 5862 if (Depth >= MaxAnalysisRecursionDepth) 5863 return {SPF_UNKNOWN, SPNB_NA, false}; 5864 5865 SelectInst *SI = dyn_cast<SelectInst>(V); 5866 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5867 5868 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5869 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5870 5871 Value *TrueVal = SI->getTrueValue(); 5872 Value *FalseVal = SI->getFalseValue(); 5873 5874 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5875 CastOp, Depth); 5876 } 5877 5878 SelectPatternResult llvm::matchDecomposedSelectPattern( 5879 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5880 Instruction::CastOps *CastOp, unsigned Depth) { 5881 CmpInst::Predicate Pred = CmpI->getPredicate(); 5882 Value *CmpLHS = CmpI->getOperand(0); 5883 Value *CmpRHS = CmpI->getOperand(1); 5884 FastMathFlags FMF; 5885 if (isa<FPMathOperator>(CmpI)) 5886 FMF = CmpI->getFastMathFlags(); 5887 5888 // Bail out early. 5889 if (CmpI->isEquality()) 5890 return {SPF_UNKNOWN, SPNB_NA, false}; 5891 5892 // Deal with type mismatches. 5893 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5894 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5895 // If this is a potential fmin/fmax with a cast to integer, then ignore 5896 // -0.0 because there is no corresponding integer value. 5897 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5898 FMF.setNoSignedZeros(); 5899 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5900 cast<CastInst>(TrueVal)->getOperand(0), C, 5901 LHS, RHS, Depth); 5902 } 5903 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5904 // If this is a potential fmin/fmax with a cast to integer, then ignore 5905 // -0.0 because there is no corresponding integer value. 5906 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5907 FMF.setNoSignedZeros(); 5908 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5909 C, cast<CastInst>(FalseVal)->getOperand(0), 5910 LHS, RHS, Depth); 5911 } 5912 } 5913 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5914 LHS, RHS, Depth); 5915 } 5916 5917 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5918 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5919 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5920 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5921 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5922 if (SPF == SPF_FMINNUM) 5923 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5924 if (SPF == SPF_FMAXNUM) 5925 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5926 llvm_unreachable("unhandled!"); 5927 } 5928 5929 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5930 if (SPF == SPF_SMIN) return SPF_SMAX; 5931 if (SPF == SPF_UMIN) return SPF_UMAX; 5932 if (SPF == SPF_SMAX) return SPF_SMIN; 5933 if (SPF == SPF_UMAX) return SPF_UMIN; 5934 llvm_unreachable("unhandled!"); 5935 } 5936 5937 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5938 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5939 } 5940 5941 /// Return true if "icmp Pred LHS RHS" is always true. 5942 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5943 const Value *RHS, const DataLayout &DL, 5944 unsigned Depth) { 5945 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5946 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5947 return true; 5948 5949 switch (Pred) { 5950 default: 5951 return false; 5952 5953 case CmpInst::ICMP_SLE: { 5954 const APInt *C; 5955 5956 // LHS s<= LHS +_{nsw} C if C >= 0 5957 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5958 return !C->isNegative(); 5959 return false; 5960 } 5961 5962 case CmpInst::ICMP_ULE: { 5963 const APInt *C; 5964 5965 // LHS u<= LHS +_{nuw} C for any C 5966 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5967 return true; 5968 5969 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5970 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5971 const Value *&X, 5972 const APInt *&CA, const APInt *&CB) { 5973 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5974 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5975 return true; 5976 5977 // If X & C == 0 then (X | C) == X +_{nuw} C 5978 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5979 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5980 KnownBits Known(CA->getBitWidth()); 5981 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5982 /*CxtI*/ nullptr, /*DT*/ nullptr); 5983 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5984 return true; 5985 } 5986 5987 return false; 5988 }; 5989 5990 const Value *X; 5991 const APInt *CLHS, *CRHS; 5992 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5993 return CLHS->ule(*CRHS); 5994 5995 return false; 5996 } 5997 } 5998 } 5999 6000 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 6001 /// ALHS ARHS" is true. Otherwise, return None. 6002 static Optional<bool> 6003 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 6004 const Value *ARHS, const Value *BLHS, const Value *BRHS, 6005 const DataLayout &DL, unsigned Depth) { 6006 switch (Pred) { 6007 default: 6008 return None; 6009 6010 case CmpInst::ICMP_SLT: 6011 case CmpInst::ICMP_SLE: 6012 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 6013 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 6014 return true; 6015 return None; 6016 6017 case CmpInst::ICMP_ULT: 6018 case CmpInst::ICMP_ULE: 6019 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 6020 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 6021 return true; 6022 return None; 6023 } 6024 } 6025 6026 /// Return true if the operands of the two compares match. IsSwappedOps is true 6027 /// when the operands match, but are swapped. 6028 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 6029 const Value *BLHS, const Value *BRHS, 6030 bool &IsSwappedOps) { 6031 6032 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 6033 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 6034 return IsMatchingOps || IsSwappedOps; 6035 } 6036 6037 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 6038 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 6039 /// Otherwise, return None if we can't infer anything. 6040 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 6041 CmpInst::Predicate BPred, 6042 bool AreSwappedOps) { 6043 // Canonicalize the predicate as if the operands were not commuted. 6044 if (AreSwappedOps) 6045 BPred = ICmpInst::getSwappedPredicate(BPred); 6046 6047 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 6048 return true; 6049 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 6050 return false; 6051 6052 return None; 6053 } 6054 6055 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 6056 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 6057 /// Otherwise, return None if we can't infer anything. 6058 static Optional<bool> 6059 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 6060 const ConstantInt *C1, 6061 CmpInst::Predicate BPred, 6062 const ConstantInt *C2) { 6063 ConstantRange DomCR = 6064 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 6065 ConstantRange CR = 6066 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 6067 ConstantRange Intersection = DomCR.intersectWith(CR); 6068 ConstantRange Difference = DomCR.difference(CR); 6069 if (Intersection.isEmptySet()) 6070 return false; 6071 if (Difference.isEmptySet()) 6072 return true; 6073 return None; 6074 } 6075 6076 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6077 /// false. Otherwise, return None if we can't infer anything. 6078 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 6079 CmpInst::Predicate BPred, 6080 const Value *BLHS, const Value *BRHS, 6081 const DataLayout &DL, bool LHSIsTrue, 6082 unsigned Depth) { 6083 Value *ALHS = LHS->getOperand(0); 6084 Value *ARHS = LHS->getOperand(1); 6085 6086 // The rest of the logic assumes the LHS condition is true. If that's not the 6087 // case, invert the predicate to make it so. 6088 CmpInst::Predicate APred = 6089 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 6090 6091 // Can we infer anything when the two compares have matching operands? 6092 bool AreSwappedOps; 6093 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 6094 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 6095 APred, BPred, AreSwappedOps)) 6096 return Implication; 6097 // No amount of additional analysis will infer the second condition, so 6098 // early exit. 6099 return None; 6100 } 6101 6102 // Can we infer anything when the LHS operands match and the RHS operands are 6103 // constants (not necessarily matching)? 6104 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 6105 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 6106 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 6107 return Implication; 6108 // No amount of additional analysis will infer the second condition, so 6109 // early exit. 6110 return None; 6111 } 6112 6113 if (APred == BPred) 6114 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 6115 return None; 6116 } 6117 6118 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 6119 /// false. Otherwise, return None if we can't infer anything. We expect the 6120 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 6121 static Optional<bool> 6122 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 6123 const Value *RHSOp0, const Value *RHSOp1, 6124 6125 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6126 // The LHS must be an 'or' or an 'and' instruction. 6127 assert((LHS->getOpcode() == Instruction::And || 6128 LHS->getOpcode() == Instruction::Or) && 6129 "Expected LHS to be 'and' or 'or'."); 6130 6131 assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit"); 6132 6133 // If the result of an 'or' is false, then we know both legs of the 'or' are 6134 // false. Similarly, if the result of an 'and' is true, then we know both 6135 // legs of the 'and' are true. 6136 Value *ALHS, *ARHS; 6137 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 6138 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 6139 // FIXME: Make this non-recursion. 6140 if (Optional<bool> Implication = isImpliedCondition( 6141 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6142 return Implication; 6143 if (Optional<bool> Implication = isImpliedCondition( 6144 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 6145 return Implication; 6146 return None; 6147 } 6148 return None; 6149 } 6150 6151 Optional<bool> 6152 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 6153 const Value *RHSOp0, const Value *RHSOp1, 6154 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 6155 // Bail out when we hit the limit. 6156 if (Depth == MaxAnalysisRecursionDepth) 6157 return None; 6158 6159 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 6160 // example. 6161 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 6162 return None; 6163 6164 Type *OpTy = LHS->getType(); 6165 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 6166 6167 // FIXME: Extending the code below to handle vectors. 6168 if (OpTy->isVectorTy()) 6169 return None; 6170 6171 assert(OpTy->isIntegerTy(1) && "implied by above"); 6172 6173 // Both LHS and RHS are icmps. 6174 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 6175 if (LHSCmp) 6176 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6177 Depth); 6178 6179 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 6180 /// be / an icmp. FIXME: Add support for and/or on the RHS. 6181 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 6182 if (LHSBO) { 6183 if ((LHSBO->getOpcode() == Instruction::And || 6184 LHSBO->getOpcode() == Instruction::Or)) 6185 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 6186 Depth); 6187 } 6188 return None; 6189 } 6190 6191 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 6192 const DataLayout &DL, bool LHSIsTrue, 6193 unsigned Depth) { 6194 // LHS ==> RHS by definition 6195 if (LHS == RHS) 6196 return LHSIsTrue; 6197 6198 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 6199 if (RHSCmp) 6200 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 6201 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 6202 LHSIsTrue, Depth); 6203 return None; 6204 } 6205 6206 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 6207 // condition dominating ContextI or nullptr, if no condition is found. 6208 static std::pair<Value *, bool> 6209 getDomPredecessorCondition(const Instruction *ContextI) { 6210 if (!ContextI || !ContextI->getParent()) 6211 return {nullptr, false}; 6212 6213 // TODO: This is a poor/cheap way to determine dominance. Should we use a 6214 // dominator tree (eg, from a SimplifyQuery) instead? 6215 const BasicBlock *ContextBB = ContextI->getParent(); 6216 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 6217 if (!PredBB) 6218 return {nullptr, false}; 6219 6220 // We need a conditional branch in the predecessor. 6221 Value *PredCond; 6222 BasicBlock *TrueBB, *FalseBB; 6223 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 6224 return {nullptr, false}; 6225 6226 // The branch should get simplified. Don't bother simplifying this condition. 6227 if (TrueBB == FalseBB) 6228 return {nullptr, false}; 6229 6230 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 6231 "Predecessor block does not point to successor?"); 6232 6233 // Is this condition implied by the predecessor condition? 6234 return {PredCond, TrueBB == ContextBB}; 6235 } 6236 6237 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 6238 const Instruction *ContextI, 6239 const DataLayout &DL) { 6240 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 6241 auto PredCond = getDomPredecessorCondition(ContextI); 6242 if (PredCond.first) 6243 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 6244 return None; 6245 } 6246 6247 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 6248 const Value *LHS, const Value *RHS, 6249 const Instruction *ContextI, 6250 const DataLayout &DL) { 6251 auto PredCond = getDomPredecessorCondition(ContextI); 6252 if (PredCond.first) 6253 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 6254 PredCond.second); 6255 return None; 6256 } 6257 6258 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 6259 APInt &Upper, const InstrInfoQuery &IIQ) { 6260 unsigned Width = Lower.getBitWidth(); 6261 const APInt *C; 6262 switch (BO.getOpcode()) { 6263 case Instruction::Add: 6264 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6265 // FIXME: If we have both nuw and nsw, we should reduce the range further. 6266 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6267 // 'add nuw x, C' produces [C, UINT_MAX]. 6268 Lower = *C; 6269 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 6270 if (C->isNegative()) { 6271 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 6272 Lower = APInt::getSignedMinValue(Width); 6273 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6274 } else { 6275 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 6276 Lower = APInt::getSignedMinValue(Width) + *C; 6277 Upper = APInt::getSignedMaxValue(Width) + 1; 6278 } 6279 } 6280 } 6281 break; 6282 6283 case Instruction::And: 6284 if (match(BO.getOperand(1), m_APInt(C))) 6285 // 'and x, C' produces [0, C]. 6286 Upper = *C + 1; 6287 break; 6288 6289 case Instruction::Or: 6290 if (match(BO.getOperand(1), m_APInt(C))) 6291 // 'or x, C' produces [C, UINT_MAX]. 6292 Lower = *C; 6293 break; 6294 6295 case Instruction::AShr: 6296 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6297 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 6298 Lower = APInt::getSignedMinValue(Width).ashr(*C); 6299 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 6300 } else if (match(BO.getOperand(0), m_APInt(C))) { 6301 unsigned ShiftAmount = Width - 1; 6302 if (!C->isNullValue() && IIQ.isExact(&BO)) 6303 ShiftAmount = C->countTrailingZeros(); 6304 if (C->isNegative()) { 6305 // 'ashr C, x' produces [C, C >> (Width-1)] 6306 Lower = *C; 6307 Upper = C->ashr(ShiftAmount) + 1; 6308 } else { 6309 // 'ashr C, x' produces [C >> (Width-1), C] 6310 Lower = C->ashr(ShiftAmount); 6311 Upper = *C + 1; 6312 } 6313 } 6314 break; 6315 6316 case Instruction::LShr: 6317 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 6318 // 'lshr x, C' produces [0, UINT_MAX >> C]. 6319 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6320 } else if (match(BO.getOperand(0), m_APInt(C))) { 6321 // 'lshr C, x' produces [C >> (Width-1), C]. 6322 unsigned ShiftAmount = Width - 1; 6323 if (!C->isNullValue() && IIQ.isExact(&BO)) 6324 ShiftAmount = C->countTrailingZeros(); 6325 Lower = C->lshr(ShiftAmount); 6326 Upper = *C + 1; 6327 } 6328 break; 6329 6330 case Instruction::Shl: 6331 if (match(BO.getOperand(0), m_APInt(C))) { 6332 if (IIQ.hasNoUnsignedWrap(&BO)) { 6333 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6334 Lower = *C; 6335 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6336 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6337 if (C->isNegative()) { 6338 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6339 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6340 Lower = C->shl(ShiftAmount); 6341 Upper = *C + 1; 6342 } else { 6343 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6344 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6345 Lower = *C; 6346 Upper = C->shl(ShiftAmount) + 1; 6347 } 6348 } 6349 } 6350 break; 6351 6352 case Instruction::SDiv: 6353 if (match(BO.getOperand(1), m_APInt(C))) { 6354 APInt IntMin = APInt::getSignedMinValue(Width); 6355 APInt IntMax = APInt::getSignedMaxValue(Width); 6356 if (C->isAllOnesValue()) { 6357 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6358 // where C != -1 and C != 0 and C != 1 6359 Lower = IntMin + 1; 6360 Upper = IntMax + 1; 6361 } else if (C->countLeadingZeros() < Width - 1) { 6362 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6363 // where C != -1 and C != 0 and C != 1 6364 Lower = IntMin.sdiv(*C); 6365 Upper = IntMax.sdiv(*C); 6366 if (Lower.sgt(Upper)) 6367 std::swap(Lower, Upper); 6368 Upper = Upper + 1; 6369 assert(Upper != Lower && "Upper part of range has wrapped!"); 6370 } 6371 } else if (match(BO.getOperand(0), m_APInt(C))) { 6372 if (C->isMinSignedValue()) { 6373 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6374 Lower = *C; 6375 Upper = Lower.lshr(1) + 1; 6376 } else { 6377 // 'sdiv C, x' produces [-|C|, |C|]. 6378 Upper = C->abs() + 1; 6379 Lower = (-Upper) + 1; 6380 } 6381 } 6382 break; 6383 6384 case Instruction::UDiv: 6385 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6386 // 'udiv x, C' produces [0, UINT_MAX / C]. 6387 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6388 } else if (match(BO.getOperand(0), m_APInt(C))) { 6389 // 'udiv C, x' produces [0, C]. 6390 Upper = *C + 1; 6391 } 6392 break; 6393 6394 case Instruction::SRem: 6395 if (match(BO.getOperand(1), m_APInt(C))) { 6396 // 'srem x, C' produces (-|C|, |C|). 6397 Upper = C->abs(); 6398 Lower = (-Upper) + 1; 6399 } 6400 break; 6401 6402 case Instruction::URem: 6403 if (match(BO.getOperand(1), m_APInt(C))) 6404 // 'urem x, C' produces [0, C). 6405 Upper = *C; 6406 break; 6407 6408 default: 6409 break; 6410 } 6411 } 6412 6413 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6414 APInt &Upper) { 6415 unsigned Width = Lower.getBitWidth(); 6416 const APInt *C; 6417 switch (II.getIntrinsicID()) { 6418 case Intrinsic::uadd_sat: 6419 // uadd.sat(x, C) produces [C, UINT_MAX]. 6420 if (match(II.getOperand(0), m_APInt(C)) || 6421 match(II.getOperand(1), m_APInt(C))) 6422 Lower = *C; 6423 break; 6424 case Intrinsic::sadd_sat: 6425 if (match(II.getOperand(0), m_APInt(C)) || 6426 match(II.getOperand(1), m_APInt(C))) { 6427 if (C->isNegative()) { 6428 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6429 Lower = APInt::getSignedMinValue(Width); 6430 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6431 } else { 6432 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6433 Lower = APInt::getSignedMinValue(Width) + *C; 6434 Upper = APInt::getSignedMaxValue(Width) + 1; 6435 } 6436 } 6437 break; 6438 case Intrinsic::usub_sat: 6439 // usub.sat(C, x) produces [0, C]. 6440 if (match(II.getOperand(0), m_APInt(C))) 6441 Upper = *C + 1; 6442 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6443 else if (match(II.getOperand(1), m_APInt(C))) 6444 Upper = APInt::getMaxValue(Width) - *C + 1; 6445 break; 6446 case Intrinsic::ssub_sat: 6447 if (match(II.getOperand(0), m_APInt(C))) { 6448 if (C->isNegative()) { 6449 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6450 Lower = APInt::getSignedMinValue(Width); 6451 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6452 } else { 6453 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6454 Lower = *C - APInt::getSignedMaxValue(Width); 6455 Upper = APInt::getSignedMaxValue(Width) + 1; 6456 } 6457 } else if (match(II.getOperand(1), m_APInt(C))) { 6458 if (C->isNegative()) { 6459 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6460 Lower = APInt::getSignedMinValue(Width) - *C; 6461 Upper = APInt::getSignedMaxValue(Width) + 1; 6462 } else { 6463 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6464 Lower = APInt::getSignedMinValue(Width); 6465 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6466 } 6467 } 6468 break; 6469 case Intrinsic::umin: 6470 case Intrinsic::umax: 6471 case Intrinsic::smin: 6472 case Intrinsic::smax: 6473 if (!match(II.getOperand(0), m_APInt(C)) && 6474 !match(II.getOperand(1), m_APInt(C))) 6475 break; 6476 6477 switch (II.getIntrinsicID()) { 6478 case Intrinsic::umin: 6479 Upper = *C + 1; 6480 break; 6481 case Intrinsic::umax: 6482 Lower = *C; 6483 break; 6484 case Intrinsic::smin: 6485 Lower = APInt::getSignedMinValue(Width); 6486 Upper = *C + 1; 6487 break; 6488 case Intrinsic::smax: 6489 Lower = *C; 6490 Upper = APInt::getSignedMaxValue(Width) + 1; 6491 break; 6492 default: 6493 llvm_unreachable("Must be min/max intrinsic"); 6494 } 6495 break; 6496 case Intrinsic::abs: 6497 // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX], 6498 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6499 if (match(II.getOperand(1), m_One())) 6500 Upper = APInt::getSignedMaxValue(Width) + 1; 6501 else 6502 Upper = APInt::getSignedMinValue(Width) + 1; 6503 break; 6504 default: 6505 break; 6506 } 6507 } 6508 6509 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6510 APInt &Upper, const InstrInfoQuery &IIQ) { 6511 const Value *LHS = nullptr, *RHS = nullptr; 6512 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6513 if (R.Flavor == SPF_UNKNOWN) 6514 return; 6515 6516 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6517 6518 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6519 // If the negation part of the abs (in RHS) has the NSW flag, 6520 // then the result of abs(X) is [0..SIGNED_MAX], 6521 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6522 Lower = APInt::getNullValue(BitWidth); 6523 if (match(RHS, m_Neg(m_Specific(LHS))) && 6524 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6525 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6526 else 6527 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6528 return; 6529 } 6530 6531 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6532 // The result of -abs(X) is <= 0. 6533 Lower = APInt::getSignedMinValue(BitWidth); 6534 Upper = APInt(BitWidth, 1); 6535 return; 6536 } 6537 6538 const APInt *C; 6539 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6540 return; 6541 6542 switch (R.Flavor) { 6543 case SPF_UMIN: 6544 Upper = *C + 1; 6545 break; 6546 case SPF_UMAX: 6547 Lower = *C; 6548 break; 6549 case SPF_SMIN: 6550 Lower = APInt::getSignedMinValue(BitWidth); 6551 Upper = *C + 1; 6552 break; 6553 case SPF_SMAX: 6554 Lower = *C; 6555 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6556 break; 6557 default: 6558 break; 6559 } 6560 } 6561 6562 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo, 6563 AssumptionCache *AC, 6564 const Instruction *CtxI, 6565 unsigned Depth) { 6566 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6567 6568 if (Depth == MaxAnalysisRecursionDepth) 6569 return ConstantRange::getFull(V->getType()->getScalarSizeInBits()); 6570 6571 const APInt *C; 6572 if (match(V, m_APInt(C))) 6573 return ConstantRange(*C); 6574 6575 InstrInfoQuery IIQ(UseInstrInfo); 6576 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6577 APInt Lower = APInt(BitWidth, 0); 6578 APInt Upper = APInt(BitWidth, 0); 6579 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6580 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6581 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6582 setLimitsForIntrinsic(*II, Lower, Upper); 6583 else if (auto *SI = dyn_cast<SelectInst>(V)) 6584 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6585 6586 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6587 6588 if (auto *I = dyn_cast<Instruction>(V)) 6589 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6590 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6591 6592 if (CtxI && AC) { 6593 // Try to restrict the range based on information from assumptions. 6594 for (auto &AssumeVH : AC->assumptionsFor(V)) { 6595 if (!AssumeVH) 6596 continue; 6597 CallInst *I = cast<CallInst>(AssumeVH); 6598 assert(I->getParent()->getParent() == CtxI->getParent()->getParent() && 6599 "Got assumption for the wrong function!"); 6600 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 6601 "must be an assume intrinsic"); 6602 6603 if (!isValidAssumeForContext(I, CtxI, nullptr)) 6604 continue; 6605 Value *Arg = I->getArgOperand(0); 6606 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 6607 // Currently we just use information from comparisons. 6608 if (!Cmp || Cmp->getOperand(0) != V) 6609 continue; 6610 ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo, 6611 AC, I, Depth + 1); 6612 CR = CR.intersectWith( 6613 ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS)); 6614 } 6615 } 6616 6617 return CR; 6618 } 6619 6620 static Optional<int64_t> 6621 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6622 // Skip over the first indices. 6623 gep_type_iterator GTI = gep_type_begin(GEP); 6624 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6625 /*skip along*/; 6626 6627 // Compute the offset implied by the rest of the indices. 6628 int64_t Offset = 0; 6629 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6630 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6631 if (!OpC) 6632 return None; 6633 if (OpC->isZero()) 6634 continue; // No offset. 6635 6636 // Handle struct indices, which add their field offset to the pointer. 6637 if (StructType *STy = GTI.getStructTypeOrNull()) { 6638 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6639 continue; 6640 } 6641 6642 // Otherwise, we have a sequential type like an array or fixed-length 6643 // vector. Multiply the index by the ElementSize. 6644 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6645 if (Size.isScalable()) 6646 return None; 6647 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6648 } 6649 6650 return Offset; 6651 } 6652 6653 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6654 const DataLayout &DL) { 6655 Ptr1 = Ptr1->stripPointerCasts(); 6656 Ptr2 = Ptr2->stripPointerCasts(); 6657 6658 // Handle the trivial case first. 6659 if (Ptr1 == Ptr2) { 6660 return 0; 6661 } 6662 6663 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6664 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6665 6666 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6667 // as in "P" and "gep P, 1". 6668 // Also do this iteratively to handle the the following case: 6669 // Ptr_t1 = GEP Ptr1, c1 6670 // Ptr_t2 = GEP Ptr_t1, c2 6671 // Ptr2 = GEP Ptr_t2, c3 6672 // where we will return c1+c2+c3. 6673 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6674 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6675 // are the same, and return the difference between offsets. 6676 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6677 const Value *Ptr) -> Optional<int64_t> { 6678 const GEPOperator *GEP_T = GEP; 6679 int64_t OffsetVal = 0; 6680 bool HasSameBase = false; 6681 while (GEP_T) { 6682 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6683 if (!Offset) 6684 return None; 6685 OffsetVal += *Offset; 6686 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6687 if (Op0 == Ptr) { 6688 HasSameBase = true; 6689 break; 6690 } 6691 GEP_T = dyn_cast<GEPOperator>(Op0); 6692 } 6693 if (!HasSameBase) 6694 return None; 6695 return OffsetVal; 6696 }; 6697 6698 if (GEP1) { 6699 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6700 if (Offset) 6701 return -*Offset; 6702 } 6703 if (GEP2) { 6704 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6705 if (Offset) 6706 return Offset; 6707 } 6708 6709 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6710 // base. After that base, they may have some number of common (and 6711 // potentially variable) indices. After that they handle some constant 6712 // offset, which determines their offset from each other. At this point, we 6713 // handle no other case. 6714 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6715 return None; 6716 6717 // Skip any common indices and track the GEP types. 6718 unsigned Idx = 1; 6719 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6720 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6721 break; 6722 6723 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6724 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6725 if (!Offset1 || !Offset2) 6726 return None; 6727 return *Offset2 - *Offset1; 6728 } 6729