1 //===- ValueTracking.cpp - Walk computations to compute properties --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/ValueTracking.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/AssumeBundleQueries.h"
28 #include "llvm/Analysis/AssumptionCache.h"
29 #include "llvm/Analysis/GuardUtils.h"
30 #include "llvm/Analysis/InstructionSimplify.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/IR/Argument.h"
36 #include "llvm/IR/Attributes.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constant.h"
39 #include "llvm/IR/ConstantRange.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/GlobalAlias.h"
47 #include "llvm/IR/GlobalValue.h"
48 #include "llvm/IR/GlobalVariable.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/IntrinsicInst.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/IntrinsicsAArch64.h"
55 #include "llvm/IR/IntrinsicsX86.h"
56 #include "llvm/IR/LLVMContext.h"
57 #include "llvm/IR/Metadata.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PatternMatch.h"
61 #include "llvm/IR/Type.h"
62 #include "llvm/IR/User.h"
63 #include "llvm/IR/Value.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/KnownBits.h"
69 #include "llvm/Support/MathExtras.h"
70 #include <algorithm>
71 #include <array>
72 #include <cassert>
73 #include <cstdint>
74 #include <iterator>
75 #include <utility>
76 
77 using namespace llvm;
78 using namespace llvm::PatternMatch;
79 
80 // Controls the number of uses of the value searched for possible
81 // dominating comparisons.
82 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
83                                               cl::Hidden, cl::init(20));
84 
85 /// Returns the bitwidth of the given scalar or pointer type. For vector types,
86 /// returns the element type's bitwidth.
87 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
88   if (unsigned BitWidth = Ty->getScalarSizeInBits())
89     return BitWidth;
90 
91   return DL.getPointerTypeSizeInBits(Ty);
92 }
93 
94 namespace {
95 
96 // Simplifying using an assume can only be done in a particular control-flow
97 // context (the context instruction provides that context). If an assume and
98 // the context instruction are not in the same block then the DT helps in
99 // figuring out if we can use it.
100 struct Query {
101   const DataLayout &DL;
102   AssumptionCache *AC;
103   const Instruction *CxtI;
104   const DominatorTree *DT;
105 
106   // Unlike the other analyses, this may be a nullptr because not all clients
107   // provide it currently.
108   OptimizationRemarkEmitter *ORE;
109 
110   /// Set of assumptions that should be excluded from further queries.
111   /// This is because of the potential for mutual recursion to cause
112   /// computeKnownBits to repeatedly visit the same assume intrinsic. The
113   /// classic case of this is assume(x = y), which will attempt to determine
114   /// bits in x from bits in y, which will attempt to determine bits in y from
115   /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
116   /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
117   /// (all of which can call computeKnownBits), and so on.
118   std::array<const Value *, MaxAnalysisRecursionDepth> Excluded;
119 
120   /// If true, it is safe to use metadata during simplification.
121   InstrInfoQuery IIQ;
122 
123   unsigned NumExcluded = 0;
124 
125   Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
126         const DominatorTree *DT, bool UseInstrInfo,
127         OptimizationRemarkEmitter *ORE = nullptr)
128       : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
129 
130   Query(const Query &Q, const Value *NewExcl)
131       : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
132         NumExcluded(Q.NumExcluded) {
133     Excluded = Q.Excluded;
134     Excluded[NumExcluded++] = NewExcl;
135     assert(NumExcluded <= Excluded.size());
136   }
137 
138   bool isExcluded(const Value *Value) const {
139     if (NumExcluded == 0)
140       return false;
141     auto End = Excluded.begin() + NumExcluded;
142     return std::find(Excluded.begin(), End, Value) != End;
143   }
144 };
145 
146 } // end anonymous namespace
147 
148 // Given the provided Value and, potentially, a context instruction, return
149 // the preferred context instruction (if any).
150 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
151   // If we've been provided with a context instruction, then use that (provided
152   // it has been inserted).
153   if (CxtI && CxtI->getParent())
154     return CxtI;
155 
156   // If the value is really an already-inserted instruction, then use that.
157   CxtI = dyn_cast<Instruction>(V);
158   if (CxtI && CxtI->getParent())
159     return CxtI;
160 
161   return nullptr;
162 }
163 
164 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf,
165                                    const APInt &DemandedElts,
166                                    APInt &DemandedLHS, APInt &DemandedRHS) {
167   // The length of scalable vectors is unknown at compile time, thus we
168   // cannot check their values
169   if (isa<ScalableVectorType>(Shuf->getType()))
170     return false;
171 
172   int NumElts =
173       cast<FixedVectorType>(Shuf->getOperand(0)->getType())->getNumElements();
174   int NumMaskElts = cast<FixedVectorType>(Shuf->getType())->getNumElements();
175   DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts);
176   if (DemandedElts.isNullValue())
177     return true;
178   // Simple case of a shuffle with zeroinitializer.
179   if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) {
180     DemandedLHS.setBit(0);
181     return true;
182   }
183   for (int i = 0; i != NumMaskElts; ++i) {
184     if (!DemandedElts[i])
185       continue;
186     int M = Shuf->getMaskValue(i);
187     assert(M < (NumElts * 2) && "Invalid shuffle mask constant");
188 
189     // For undef elements, we don't know anything about the common state of
190     // the shuffle result.
191     if (M == -1)
192       return false;
193     if (M < NumElts)
194       DemandedLHS.setBit(M % NumElts);
195     else
196       DemandedRHS.setBit(M % NumElts);
197   }
198 
199   return true;
200 }
201 
202 static void computeKnownBits(const Value *V, const APInt &DemandedElts,
203                              KnownBits &Known, unsigned Depth, const Query &Q);
204 
205 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
206                              const Query &Q) {
207   // FIXME: We currently have no way to represent the DemandedElts of a scalable
208   // vector
209   if (isa<ScalableVectorType>(V->getType())) {
210     Known.resetAll();
211     return;
212   }
213 
214   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
215   APInt DemandedElts =
216       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
217   computeKnownBits(V, DemandedElts, Known, Depth, Q);
218 }
219 
220 void llvm::computeKnownBits(const Value *V, KnownBits &Known,
221                             const DataLayout &DL, unsigned Depth,
222                             AssumptionCache *AC, const Instruction *CxtI,
223                             const DominatorTree *DT,
224                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
225   ::computeKnownBits(V, Known, Depth,
226                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
227 }
228 
229 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
230                             KnownBits &Known, const DataLayout &DL,
231                             unsigned Depth, AssumptionCache *AC,
232                             const Instruction *CxtI, const DominatorTree *DT,
233                             OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
234   ::computeKnownBits(V, DemandedElts, Known, Depth,
235                      Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
236 }
237 
238 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
239                                   unsigned Depth, const Query &Q);
240 
241 static KnownBits computeKnownBits(const Value *V, unsigned Depth,
242                                   const Query &Q);
243 
244 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
245                                  unsigned Depth, AssumptionCache *AC,
246                                  const Instruction *CxtI,
247                                  const DominatorTree *DT,
248                                  OptimizationRemarkEmitter *ORE,
249                                  bool UseInstrInfo) {
250   return ::computeKnownBits(
251       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
252 }
253 
254 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts,
255                                  const DataLayout &DL, unsigned Depth,
256                                  AssumptionCache *AC, const Instruction *CxtI,
257                                  const DominatorTree *DT,
258                                  OptimizationRemarkEmitter *ORE,
259                                  bool UseInstrInfo) {
260   return ::computeKnownBits(
261       V, DemandedElts, Depth,
262       Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
263 }
264 
265 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
266                                const DataLayout &DL, AssumptionCache *AC,
267                                const Instruction *CxtI, const DominatorTree *DT,
268                                bool UseInstrInfo) {
269   assert(LHS->getType() == RHS->getType() &&
270          "LHS and RHS should have the same type");
271   assert(LHS->getType()->isIntOrIntVectorTy() &&
272          "LHS and RHS should be integers");
273   // Look for an inverted mask: (X & ~M) op (Y & M).
274   Value *M;
275   if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
276       match(RHS, m_c_And(m_Specific(M), m_Value())))
277     return true;
278   if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
279       match(LHS, m_c_And(m_Specific(M), m_Value())))
280     return true;
281   IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
282   KnownBits LHSKnown(IT->getBitWidth());
283   KnownBits RHSKnown(IT->getBitWidth());
284   computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
285   computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
286   return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
287 }
288 
289 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
290   for (const User *U : CxtI->users()) {
291     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
292       if (IC->isEquality())
293         if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
294           if (C->isNullValue())
295             continue;
296     return false;
297   }
298   return true;
299 }
300 
301 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
302                                    const Query &Q);
303 
304 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
305                                   bool OrZero, unsigned Depth,
306                                   AssumptionCache *AC, const Instruction *CxtI,
307                                   const DominatorTree *DT, bool UseInstrInfo) {
308   return ::isKnownToBeAPowerOfTwo(
309       V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
310 }
311 
312 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts,
313                            unsigned Depth, const Query &Q);
314 
315 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
316 
317 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
318                           AssumptionCache *AC, const Instruction *CxtI,
319                           const DominatorTree *DT, bool UseInstrInfo) {
320   return ::isKnownNonZero(V, Depth,
321                           Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
322 }
323 
324 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
325                               unsigned Depth, AssumptionCache *AC,
326                               const Instruction *CxtI, const DominatorTree *DT,
327                               bool UseInstrInfo) {
328   KnownBits Known =
329       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
330   return Known.isNonNegative();
331 }
332 
333 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
334                            AssumptionCache *AC, const Instruction *CxtI,
335                            const DominatorTree *DT, bool UseInstrInfo) {
336   if (auto *CI = dyn_cast<ConstantInt>(V))
337     return CI->getValue().isStrictlyPositive();
338 
339   // TODO: We'd doing two recursive queries here.  We should factor this such
340   // that only a single query is needed.
341   return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
342          isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
343 }
344 
345 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
346                            AssumptionCache *AC, const Instruction *CxtI,
347                            const DominatorTree *DT, bool UseInstrInfo) {
348   KnownBits Known =
349       computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
350   return Known.isNegative();
351 }
352 
353 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
354 
355 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
356                            const DataLayout &DL, AssumptionCache *AC,
357                            const Instruction *CxtI, const DominatorTree *DT,
358                            bool UseInstrInfo) {
359   return ::isKnownNonEqual(V1, V2,
360                            Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
361                                  UseInstrInfo, /*ORE=*/nullptr));
362 }
363 
364 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
365                               const Query &Q);
366 
367 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
368                              const DataLayout &DL, unsigned Depth,
369                              AssumptionCache *AC, const Instruction *CxtI,
370                              const DominatorTree *DT, bool UseInstrInfo) {
371   return ::MaskedValueIsZero(
372       V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
373 }
374 
375 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
376                                    unsigned Depth, const Query &Q);
377 
378 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
379                                    const Query &Q) {
380   // FIXME: We currently have no way to represent the DemandedElts of a scalable
381   // vector
382   if (isa<ScalableVectorType>(V->getType()))
383     return 1;
384 
385   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
386   APInt DemandedElts =
387       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
388   return ComputeNumSignBits(V, DemandedElts, Depth, Q);
389 }
390 
391 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
392                                   unsigned Depth, AssumptionCache *AC,
393                                   const Instruction *CxtI,
394                                   const DominatorTree *DT, bool UseInstrInfo) {
395   return ::ComputeNumSignBits(
396       V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
397 }
398 
399 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
400                                    bool NSW, const APInt &DemandedElts,
401                                    KnownBits &KnownOut, KnownBits &Known2,
402                                    unsigned Depth, const Query &Q) {
403   computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q);
404 
405   // If one operand is unknown and we have no nowrap information,
406   // the result will be unknown independently of the second operand.
407   if (KnownOut.isUnknown() && !NSW)
408     return;
409 
410   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
411   KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut);
412 }
413 
414 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
415                                 const APInt &DemandedElts, KnownBits &Known,
416                                 KnownBits &Known2, unsigned Depth,
417                                 const Query &Q) {
418   computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q);
419   computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q);
420 
421   bool isKnownNegative = false;
422   bool isKnownNonNegative = false;
423   // If the multiplication is known not to overflow, compute the sign bit.
424   if (NSW) {
425     if (Op0 == Op1) {
426       // The product of a number with itself is non-negative.
427       isKnownNonNegative = true;
428     } else {
429       bool isKnownNonNegativeOp1 = Known.isNonNegative();
430       bool isKnownNonNegativeOp0 = Known2.isNonNegative();
431       bool isKnownNegativeOp1 = Known.isNegative();
432       bool isKnownNegativeOp0 = Known2.isNegative();
433       // The product of two numbers with the same sign is non-negative.
434       isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
435                            (isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
436       // The product of a negative number and a non-negative number is either
437       // negative or zero.
438       if (!isKnownNonNegative)
439         isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
440                            isKnownNonZero(Op0, Depth, Q)) ||
441                           (isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
442                            isKnownNonZero(Op1, Depth, Q));
443     }
444   }
445 
446   Known = KnownBits::computeForMul(Known, Known2);
447 
448   // Only make use of no-wrap flags if we failed to compute the sign bit
449   // directly.  This matters if the multiplication always overflows, in
450   // which case we prefer to follow the result of the direct computation,
451   // though as the program is invoking undefined behaviour we can choose
452   // whatever we like here.
453   if (isKnownNonNegative && !Known.isNegative())
454     Known.makeNonNegative();
455   else if (isKnownNegative && !Known.isNonNegative())
456     Known.makeNegative();
457 }
458 
459 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
460                                              KnownBits &Known) {
461   unsigned BitWidth = Known.getBitWidth();
462   unsigned NumRanges = Ranges.getNumOperands() / 2;
463   assert(NumRanges >= 1);
464 
465   Known.Zero.setAllBits();
466   Known.One.setAllBits();
467 
468   for (unsigned i = 0; i < NumRanges; ++i) {
469     ConstantInt *Lower =
470         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
471     ConstantInt *Upper =
472         mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
473     ConstantRange Range(Lower->getValue(), Upper->getValue());
474 
475     // The first CommonPrefixBits of all values in Range are equal.
476     unsigned CommonPrefixBits =
477         (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
478     APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
479     APInt UnsignedMax = Range.getUnsignedMax().zextOrTrunc(BitWidth);
480     Known.One &= UnsignedMax & Mask;
481     Known.Zero &= ~UnsignedMax & Mask;
482   }
483 }
484 
485 static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
486   SmallVector<const Value *, 16> WorkSet(1, I);
487   SmallPtrSet<const Value *, 32> Visited;
488   SmallPtrSet<const Value *, 16> EphValues;
489 
490   // The instruction defining an assumption's condition itself is always
491   // considered ephemeral to that assumption (even if it has other
492   // non-ephemeral users). See r246696's test case for an example.
493   if (is_contained(I->operands(), E))
494     return true;
495 
496   while (!WorkSet.empty()) {
497     const Value *V = WorkSet.pop_back_val();
498     if (!Visited.insert(V).second)
499       continue;
500 
501     // If all uses of this value are ephemeral, then so is this value.
502     if (llvm::all_of(V->users(), [&](const User *U) {
503                                    return EphValues.count(U);
504                                  })) {
505       if (V == E)
506         return true;
507 
508       if (V == I || isSafeToSpeculativelyExecute(V)) {
509        EphValues.insert(V);
510        if (const User *U = dyn_cast<User>(V))
511          for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
512               J != JE; ++J)
513            WorkSet.push_back(*J);
514       }
515     }
516   }
517 
518   return false;
519 }
520 
521 // Is this an intrinsic that cannot be speculated but also cannot trap?
522 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
523   if (const CallInst *CI = dyn_cast<CallInst>(I))
524     if (Function *F = CI->getCalledFunction())
525       switch (F->getIntrinsicID()) {
526       default: break;
527       // FIXME: This list is repeated from NoTTI::getIntrinsicCost.
528       case Intrinsic::assume:
529       case Intrinsic::sideeffect:
530       case Intrinsic::dbg_declare:
531       case Intrinsic::dbg_value:
532       case Intrinsic::dbg_label:
533       case Intrinsic::invariant_start:
534       case Intrinsic::invariant_end:
535       case Intrinsic::lifetime_start:
536       case Intrinsic::lifetime_end:
537       case Intrinsic::objectsize:
538       case Intrinsic::ptr_annotation:
539       case Intrinsic::var_annotation:
540         return true;
541       }
542 
543   return false;
544 }
545 
546 bool llvm::isValidAssumeForContext(const Instruction *Inv,
547                                    const Instruction *CxtI,
548                                    const DominatorTree *DT) {
549   // There are two restrictions on the use of an assume:
550   //  1. The assume must dominate the context (or the control flow must
551   //     reach the assume whenever it reaches the context).
552   //  2. The context must not be in the assume's set of ephemeral values
553   //     (otherwise we will use the assume to prove that the condition
554   //     feeding the assume is trivially true, thus causing the removal of
555   //     the assume).
556 
557   if (Inv->getParent() == CxtI->getParent()) {
558     // If Inv and CtxI are in the same block, check if the assume (Inv) is first
559     // in the BB.
560     if (Inv->comesBefore(CxtI))
561       return true;
562 
563     // Don't let an assume affect itself - this would cause the problems
564     // `isEphemeralValueOf` is trying to prevent, and it would also make
565     // the loop below go out of bounds.
566     if (Inv == CxtI)
567       return false;
568 
569     // The context comes first, but they're both in the same block.
570     // Make sure there is nothing in between that might interrupt
571     // the control flow, not even CxtI itself.
572     for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I)
573       if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
574         return false;
575 
576     return !isEphemeralValueOf(Inv, CxtI);
577   }
578 
579   // Inv and CxtI are in different blocks.
580   if (DT) {
581     if (DT->dominates(Inv, CxtI))
582       return true;
583   } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
584     // We don't have a DT, but this trivially dominates.
585     return true;
586   }
587 
588   return false;
589 }
590 
591 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) {
592   // Use of assumptions is context-sensitive. If we don't have a context, we
593   // cannot use them!
594   if (!Q.AC || !Q.CxtI)
595     return false;
596 
597   // Note that the patterns below need to be kept in sync with the code
598   // in AssumptionCache::updateAffectedValues.
599 
600   auto CmpExcludesZero = [V](ICmpInst *Cmp) {
601     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
602 
603     Value *RHS;
604     CmpInst::Predicate Pred;
605     if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS))))
606       return false;
607     // assume(v u> y) -> assume(v != 0)
608     if (Pred == ICmpInst::ICMP_UGT)
609       return true;
610 
611     // assume(v != 0)
612     // We special-case this one to ensure that we handle `assume(v != null)`.
613     if (Pred == ICmpInst::ICMP_NE)
614       return match(RHS, m_Zero());
615 
616     // All other predicates - rely on generic ConstantRange handling.
617     ConstantInt *CI;
618     if (!match(RHS, m_ConstantInt(CI)))
619       return false;
620     ConstantRange RHSRange(CI->getValue());
621     ConstantRange TrueValues =
622         ConstantRange::makeAllowedICmpRegion(Pred, RHSRange);
623     return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth()));
624   };
625 
626   if (Q.CxtI && V->getType()->isPointerTy()) {
627     SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NonNull};
628     if (!NullPointerIsDefined(Q.CxtI->getFunction(),
629                               V->getType()->getPointerAddressSpace()))
630       AttrKinds.push_back(Attribute::Dereferenceable);
631 
632     if (getKnowledgeValidInContext(V, AttrKinds, Q.CxtI, Q.DT, Q.AC))
633       return true;
634   }
635 
636   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
637     if (!AssumeVH)
638       continue;
639     CallInst *I = cast<CallInst>(AssumeVH);
640     assert(I->getFunction() == Q.CxtI->getFunction() &&
641            "Got assumption for the wrong function!");
642     if (Q.isExcluded(I))
643       continue;
644 
645     // Warning: This loop can end up being somewhat performance sensitive.
646     // We're running this loop for once for each value queried resulting in a
647     // runtime of ~O(#assumes * #values).
648 
649     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
650            "must be an assume intrinsic");
651 
652     Value *Arg = I->getArgOperand(0);
653     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
654     if (!Cmp)
655       continue;
656 
657     if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT))
658       return true;
659   }
660 
661   return false;
662 }
663 
664 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
665                                        unsigned Depth, const Query &Q) {
666   // Use of assumptions is context-sensitive. If we don't have a context, we
667   // cannot use them!
668   if (!Q.AC || !Q.CxtI)
669     return;
670 
671   unsigned BitWidth = Known.getBitWidth();
672 
673   // Note that the patterns below need to be kept in sync with the code
674   // in AssumptionCache::updateAffectedValues.
675 
676   for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
677     if (!AssumeVH)
678       continue;
679     CallInst *I = cast<CallInst>(AssumeVH);
680     assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
681            "Got assumption for the wrong function!");
682     if (Q.isExcluded(I))
683       continue;
684 
685     // Warning: This loop can end up being somewhat performance sensitive.
686     // We're running this loop for once for each value queried resulting in a
687     // runtime of ~O(#assumes * #values).
688 
689     assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
690            "must be an assume intrinsic");
691 
692     Value *Arg = I->getArgOperand(0);
693 
694     if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
695       assert(BitWidth == 1 && "assume operand is not i1?");
696       Known.setAllOnes();
697       return;
698     }
699     if (match(Arg, m_Not(m_Specific(V))) &&
700         isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
701       assert(BitWidth == 1 && "assume operand is not i1?");
702       Known.setAllZero();
703       return;
704     }
705 
706     // The remaining tests are all recursive, so bail out if we hit the limit.
707     if (Depth == MaxAnalysisRecursionDepth)
708       continue;
709 
710     ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
711     if (!Cmp)
712       continue;
713 
714     // Note that ptrtoint may change the bitwidth.
715     Value *A, *B;
716     auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V)));
717 
718     CmpInst::Predicate Pred;
719     uint64_t C;
720     switch (Cmp->getPredicate()) {
721     default:
722       break;
723     case ICmpInst::ICMP_EQ:
724       // assume(v = a)
725       if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) &&
726           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
727         KnownBits RHSKnown =
728             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
729         Known.Zero |= RHSKnown.Zero;
730         Known.One  |= RHSKnown.One;
731       // assume(v & b = a)
732       } else if (match(Cmp,
733                        m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
734                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
735         KnownBits RHSKnown =
736             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
737         KnownBits MaskKnown =
738             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
739 
740         // For those bits in the mask that are known to be one, we can propagate
741         // known bits from the RHS to V.
742         Known.Zero |= RHSKnown.Zero & MaskKnown.One;
743         Known.One  |= RHSKnown.One  & MaskKnown.One;
744       // assume(~(v & b) = a)
745       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
746                                      m_Value(A))) &&
747                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
748         KnownBits RHSKnown =
749             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
750         KnownBits MaskKnown =
751             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
752 
753         // For those bits in the mask that are known to be one, we can propagate
754         // inverted known bits from the RHS to V.
755         Known.Zero |= RHSKnown.One  & MaskKnown.One;
756         Known.One  |= RHSKnown.Zero & MaskKnown.One;
757       // assume(v | b = a)
758       } else if (match(Cmp,
759                        m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
760                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
761         KnownBits RHSKnown =
762             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
763         KnownBits BKnown =
764             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
765 
766         // For those bits in B that are known to be zero, we can propagate known
767         // bits from the RHS to V.
768         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
769         Known.One  |= RHSKnown.One  & BKnown.Zero;
770       // assume(~(v | b) = a)
771       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
772                                      m_Value(A))) &&
773                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
774         KnownBits RHSKnown =
775             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
776         KnownBits BKnown =
777             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
778 
779         // For those bits in B that are known to be zero, we can propagate
780         // inverted known bits from the RHS to V.
781         Known.Zero |= RHSKnown.One  & BKnown.Zero;
782         Known.One  |= RHSKnown.Zero & BKnown.Zero;
783       // assume(v ^ b = a)
784       } else if (match(Cmp,
785                        m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
786                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
787         KnownBits RHSKnown =
788             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
789         KnownBits BKnown =
790             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
791 
792         // For those bits in B that are known to be zero, we can propagate known
793         // bits from the RHS to V. For those bits in B that are known to be one,
794         // we can propagate inverted known bits from the RHS to V.
795         Known.Zero |= RHSKnown.Zero & BKnown.Zero;
796         Known.One  |= RHSKnown.One  & BKnown.Zero;
797         Known.Zero |= RHSKnown.One  & BKnown.One;
798         Known.One  |= RHSKnown.Zero & BKnown.One;
799       // assume(~(v ^ b) = a)
800       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
801                                      m_Value(A))) &&
802                  isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
803         KnownBits RHSKnown =
804             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
805         KnownBits BKnown =
806             computeKnownBits(B, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
807 
808         // For those bits in B that are known to be zero, we can propagate
809         // inverted known bits from the RHS to V. For those bits in B that are
810         // known to be one, we can propagate known bits from the RHS to V.
811         Known.Zero |= RHSKnown.One  & BKnown.Zero;
812         Known.One  |= RHSKnown.Zero & BKnown.Zero;
813         Known.Zero |= RHSKnown.Zero & BKnown.One;
814         Known.One  |= RHSKnown.One  & BKnown.One;
815       // assume(v << c = a)
816       } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
817                                      m_Value(A))) &&
818                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
819         KnownBits RHSKnown =
820             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
821 
822         // For those bits in RHS that are known, we can propagate them to known
823         // bits in V shifted to the right by C.
824         RHSKnown.Zero.lshrInPlace(C);
825         Known.Zero |= RHSKnown.Zero;
826         RHSKnown.One.lshrInPlace(C);
827         Known.One  |= RHSKnown.One;
828       // assume(~(v << c) = a)
829       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
830                                      m_Value(A))) &&
831                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
832         KnownBits RHSKnown =
833             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
834         // For those bits in RHS that are known, we can propagate them inverted
835         // to known bits in V shifted to the right by C.
836         RHSKnown.One.lshrInPlace(C);
837         Known.Zero |= RHSKnown.One;
838         RHSKnown.Zero.lshrInPlace(C);
839         Known.One  |= RHSKnown.Zero;
840       // assume(v >> c = a)
841       } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
842                                      m_Value(A))) &&
843                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
844         KnownBits RHSKnown =
845             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
846         // For those bits in RHS that are known, we can propagate them to known
847         // bits in V shifted to the right by C.
848         Known.Zero |= RHSKnown.Zero << C;
849         Known.One  |= RHSKnown.One  << C;
850       // assume(~(v >> c) = a)
851       } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
852                                      m_Value(A))) &&
853                  isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) {
854         KnownBits RHSKnown =
855             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
856         // For those bits in RHS that are known, we can propagate them inverted
857         // to known bits in V shifted to the right by C.
858         Known.Zero |= RHSKnown.One  << C;
859         Known.One  |= RHSKnown.Zero << C;
860       }
861       break;
862     case ICmpInst::ICMP_SGE:
863       // assume(v >=_s c) where c is non-negative
864       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
865           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
866         KnownBits RHSKnown =
867             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
868 
869         if (RHSKnown.isNonNegative()) {
870           // We know that the sign bit is zero.
871           Known.makeNonNegative();
872         }
873       }
874       break;
875     case ICmpInst::ICMP_SGT:
876       // assume(v >_s c) where c is at least -1.
877       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
878           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
879         KnownBits RHSKnown =
880             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
881 
882         if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
883           // We know that the sign bit is zero.
884           Known.makeNonNegative();
885         }
886       }
887       break;
888     case ICmpInst::ICMP_SLE:
889       // assume(v <=_s c) where c is negative
890       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
891           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
892         KnownBits RHSKnown =
893             computeKnownBits(A, Depth + 1, Query(Q, I)).anyextOrTrunc(BitWidth);
894 
895         if (RHSKnown.isNegative()) {
896           // We know that the sign bit is one.
897           Known.makeNegative();
898         }
899       }
900       break;
901     case ICmpInst::ICMP_SLT:
902       // assume(v <_s c) where c is non-positive
903       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
904           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
905         KnownBits RHSKnown =
906             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
907 
908         if (RHSKnown.isZero() || RHSKnown.isNegative()) {
909           // We know that the sign bit is one.
910           Known.makeNegative();
911         }
912       }
913       break;
914     case ICmpInst::ICMP_ULE:
915       // assume(v <=_u c)
916       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
917           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
918         KnownBits RHSKnown =
919             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
920 
921         // Whatever high bits in c are zero are known to be zero.
922         Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
923       }
924       break;
925     case ICmpInst::ICMP_ULT:
926       // assume(v <_u c)
927       if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) &&
928           isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
929         KnownBits RHSKnown =
930             computeKnownBits(A, Depth+1, Query(Q, I)).anyextOrTrunc(BitWidth);
931 
932         // If the RHS is known zero, then this assumption must be wrong (nothing
933         // is unsigned less than zero). Signal a conflict and get out of here.
934         if (RHSKnown.isZero()) {
935           Known.Zero.setAllBits();
936           Known.One.setAllBits();
937           break;
938         }
939 
940         // Whatever high bits in c are zero are known to be zero (if c is a power
941         // of 2, then one more).
942         if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
943           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
944         else
945           Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
946       }
947       break;
948     }
949   }
950 
951   // If assumptions conflict with each other or previous known bits, then we
952   // have a logical fallacy. It's possible that the assumption is not reachable,
953   // so this isn't a real bug. On the other hand, the program may have undefined
954   // behavior, or we might have a bug in the compiler. We can't assert/crash, so
955   // clear out the known bits, try to warn the user, and hope for the best.
956   if (Known.Zero.intersects(Known.One)) {
957     Known.resetAll();
958 
959     if (Q.ORE)
960       Q.ORE->emit([&]() {
961         auto *CxtI = const_cast<Instruction *>(Q.CxtI);
962         return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
963                                           CxtI)
964                << "Detected conflicting code assumptions. Program may "
965                   "have undefined behavior, or compiler may have "
966                   "internal error.";
967       });
968   }
969 }
970 
971 /// Compute known bits from a shift operator, including those with a
972 /// non-constant shift amount. Known is the output of this function. Known2 is a
973 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are
974 /// operator-specific functions that, given the known-zero or known-one bits
975 /// respectively, and a shift amount, compute the implied known-zero or
976 /// known-one bits of the shift operator's result respectively for that shift
977 /// amount. The results from calling KZF and KOF are conservatively combined for
978 /// all permitted shift amounts.
979 static void computeKnownBitsFromShiftOperator(
980     const Operator *I, const APInt &DemandedElts, KnownBits &Known,
981     KnownBits &Known2, unsigned Depth, const Query &Q,
982     function_ref<APInt(const APInt &, unsigned)> KZF,
983     function_ref<APInt(const APInt &, unsigned)> KOF) {
984   unsigned BitWidth = Known.getBitWidth();
985 
986   computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
987   if (Known.isConstant()) {
988     unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1);
989 
990     computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q);
991     Known.Zero = KZF(Known.Zero, ShiftAmt);
992     Known.One  = KOF(Known.One, ShiftAmt);
993     // If the known bits conflict, this must be an overflowing left shift, so
994     // the shift result is poison. We can return anything we want. Choose 0 for
995     // the best folding opportunity.
996     if (Known.hasConflict())
997       Known.setAllZero();
998 
999     return;
1000   }
1001 
1002   // If the shift amount could be greater than or equal to the bit-width of the
1003   // LHS, the value could be poison, but bail out because the check below is
1004   // expensive.
1005   // TODO: Should we just carry on?
1006   if (Known.getMaxValue().uge(BitWidth)) {
1007     Known.resetAll();
1008     return;
1009   }
1010 
1011   // Note: We cannot use Known.Zero.getLimitedValue() here, because if
1012   // BitWidth > 64 and any upper bits are known, we'll end up returning the
1013   // limit value (which implies all bits are known).
1014   uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
1015   uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
1016 
1017   // It would be more-clearly correct to use the two temporaries for this
1018   // calculation. Reusing the APInts here to prevent unnecessary allocations.
1019   Known.resetAll();
1020 
1021   // If we know the shifter operand is nonzero, we can sometimes infer more
1022   // known bits. However this is expensive to compute, so be lazy about it and
1023   // only compute it when absolutely necessary.
1024   Optional<bool> ShifterOperandIsNonZero;
1025 
1026   // Early exit if we can't constrain any well-defined shift amount.
1027   if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
1028       !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
1029     ShifterOperandIsNonZero =
1030         isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1031     if (!*ShifterOperandIsNonZero)
1032       return;
1033   }
1034 
1035   computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1036 
1037   Known.Zero.setAllBits();
1038   Known.One.setAllBits();
1039   for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
1040     // Combine the shifted known input bits only for those shift amounts
1041     // compatible with its known constraints.
1042     if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
1043       continue;
1044     if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
1045       continue;
1046     // If we know the shifter is nonzero, we may be able to infer more known
1047     // bits. This check is sunk down as far as possible to avoid the expensive
1048     // call to isKnownNonZero if the cheaper checks above fail.
1049     if (ShiftAmt == 0) {
1050       if (!ShifterOperandIsNonZero.hasValue())
1051         ShifterOperandIsNonZero =
1052             isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q);
1053       if (*ShifterOperandIsNonZero)
1054         continue;
1055     }
1056 
1057     Known.Zero &= KZF(Known2.Zero, ShiftAmt);
1058     Known.One  &= KOF(Known2.One, ShiftAmt);
1059   }
1060 
1061   // If the known bits conflict, the result is poison. Return a 0 and hope the
1062   // caller can further optimize that.
1063   if (Known.hasConflict())
1064     Known.setAllZero();
1065 }
1066 
1067 static void computeKnownBitsFromOperator(const Operator *I,
1068                                          const APInt &DemandedElts,
1069                                          KnownBits &Known, unsigned Depth,
1070                                          const Query &Q) {
1071   unsigned BitWidth = Known.getBitWidth();
1072 
1073   KnownBits Known2(BitWidth);
1074   switch (I->getOpcode()) {
1075   default: break;
1076   case Instruction::Load:
1077     if (MDNode *MD =
1078             Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
1079       computeKnownBitsFromRangeMetadata(*MD, Known);
1080     break;
1081   case Instruction::And: {
1082     // If either the LHS or the RHS are Zero, the result is zero.
1083     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1084     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1085 
1086     Known &= Known2;
1087 
1088     // and(x, add (x, -1)) is a common idiom that always clears the low bit;
1089     // here we handle the more general case of adding any odd number by
1090     // matching the form add(x, add(x, y)) where y is odd.
1091     // TODO: This could be generalized to clearing any bit set in y where the
1092     // following bit is known to be unset in y.
1093     Value *X = nullptr, *Y = nullptr;
1094     if (!Known.Zero[0] && !Known.One[0] &&
1095         match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
1096       Known2.resetAll();
1097       computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q);
1098       if (Known2.countMinTrailingOnes() > 0)
1099         Known.Zero.setBit(0);
1100     }
1101     break;
1102   }
1103   case Instruction::Or:
1104     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1105     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1106 
1107     Known |= Known2;
1108     break;
1109   case Instruction::Xor:
1110     computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q);
1111     computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1112 
1113     Known ^= Known2;
1114     break;
1115   case Instruction::Mul: {
1116     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1117     computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts,
1118                         Known, Known2, Depth, Q);
1119     break;
1120   }
1121   case Instruction::UDiv: {
1122     // For the purposes of computing leading zeros we can conservatively
1123     // treat a udiv as a logical right shift by the power of 2 known to
1124     // be less than the denominator.
1125     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1126     unsigned LeadZ = Known2.countMinLeadingZeros();
1127 
1128     Known2.resetAll();
1129     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1130     unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
1131     if (RHSMaxLeadingZeros != BitWidth)
1132       LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
1133 
1134     Known.Zero.setHighBits(LeadZ);
1135     break;
1136   }
1137   case Instruction::Select: {
1138     const Value *LHS = nullptr, *RHS = nullptr;
1139     SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
1140     if (SelectPatternResult::isMinOrMax(SPF)) {
1141       computeKnownBits(RHS, Known, Depth + 1, Q);
1142       computeKnownBits(LHS, Known2, Depth + 1, Q);
1143       switch (SPF) {
1144       default:
1145         llvm_unreachable("Unhandled select pattern flavor!");
1146       case SPF_SMAX:
1147         Known = KnownBits::smax(Known, Known2);
1148         break;
1149       case SPF_SMIN:
1150         Known = KnownBits::smin(Known, Known2);
1151         break;
1152       case SPF_UMAX:
1153         Known = KnownBits::umax(Known, Known2);
1154         break;
1155       case SPF_UMIN:
1156         Known = KnownBits::umin(Known, Known2);
1157         break;
1158       }
1159       break;
1160     }
1161 
1162     computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
1163     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1164 
1165     // Only known if known in both the LHS and RHS.
1166     Known.One &= Known2.One;
1167     Known.Zero &= Known2.Zero;
1168 
1169     if (SPF == SPF_ABS) {
1170       // RHS from matchSelectPattern returns the negation part of abs pattern.
1171       // If the negate has an NSW flag we can assume the sign bit of the result
1172       // will be 0 because that makes abs(INT_MIN) undefined.
1173       if (match(RHS, m_Neg(m_Specific(LHS))) &&
1174           Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
1175         Known.Zero.setSignBit();
1176     }
1177 
1178     break;
1179   }
1180   case Instruction::FPTrunc:
1181   case Instruction::FPExt:
1182   case Instruction::FPToUI:
1183   case Instruction::FPToSI:
1184   case Instruction::SIToFP:
1185   case Instruction::UIToFP:
1186     break; // Can't work with floating point.
1187   case Instruction::PtrToInt:
1188   case Instruction::IntToPtr:
1189     // Fall through and handle them the same as zext/trunc.
1190     LLVM_FALLTHROUGH;
1191   case Instruction::ZExt:
1192   case Instruction::Trunc: {
1193     Type *SrcTy = I->getOperand(0)->getType();
1194 
1195     unsigned SrcBitWidth;
1196     // Note that we handle pointer operands here because of inttoptr/ptrtoint
1197     // which fall through here.
1198     Type *ScalarTy = SrcTy->getScalarType();
1199     SrcBitWidth = ScalarTy->isPointerTy() ?
1200       Q.DL.getPointerTypeSizeInBits(ScalarTy) :
1201       Q.DL.getTypeSizeInBits(ScalarTy);
1202 
1203     assert(SrcBitWidth && "SrcBitWidth can't be zero");
1204     Known = Known.anyextOrTrunc(SrcBitWidth);
1205     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1206     Known = Known.zextOrTrunc(BitWidth);
1207     break;
1208   }
1209   case Instruction::BitCast: {
1210     Type *SrcTy = I->getOperand(0)->getType();
1211     if (SrcTy->isIntOrPtrTy() &&
1212         // TODO: For now, not handling conversions like:
1213         // (bitcast i64 %x to <2 x i32>)
1214         !I->getType()->isVectorTy()) {
1215       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1216       break;
1217     }
1218     break;
1219   }
1220   case Instruction::SExt: {
1221     // Compute the bits in the result that are not present in the input.
1222     unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
1223 
1224     Known = Known.trunc(SrcBitWidth);
1225     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1226     // If the sign bit of the input is known set or clear, then we know the
1227     // top bits of the result.
1228     Known = Known.sext(BitWidth);
1229     break;
1230   }
1231   case Instruction::Shl: {
1232     // (shl X, C1) & C2 == 0   iff   (X & C2 >>u C1) == 0
1233     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1234     auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
1235       APInt KZResult = KnownZero << ShiftAmt;
1236       KZResult.setLowBits(ShiftAmt); // Low bits known 0.
1237       // If this shift has "nsw" keyword, then the result is either a poison
1238       // value or has the same sign bit as the first operand.
1239       if (NSW && KnownZero.isSignBitSet())
1240         KZResult.setSignBit();
1241       return KZResult;
1242     };
1243 
1244     auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
1245       APInt KOResult = KnownOne << ShiftAmt;
1246       if (NSW && KnownOne.isSignBitSet())
1247         KOResult.setSignBit();
1248       return KOResult;
1249     };
1250 
1251     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1252                                       KZF, KOF);
1253     break;
1254   }
1255   case Instruction::LShr: {
1256     // (lshr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1257     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1258       APInt KZResult = KnownZero.lshr(ShiftAmt);
1259       // High bits known zero.
1260       KZResult.setHighBits(ShiftAmt);
1261       return KZResult;
1262     };
1263 
1264     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1265       return KnownOne.lshr(ShiftAmt);
1266     };
1267 
1268     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1269                                       KZF, KOF);
1270     break;
1271   }
1272   case Instruction::AShr: {
1273     // (ashr X, C1) & C2 == 0   iff  (-1 >> C1) & C2 == 0
1274     auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
1275       return KnownZero.ashr(ShiftAmt);
1276     };
1277 
1278     auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
1279       return KnownOne.ashr(ShiftAmt);
1280     };
1281 
1282     computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q,
1283                                       KZF, KOF);
1284     break;
1285   }
1286   case Instruction::Sub: {
1287     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1288     computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
1289                            DemandedElts, Known, Known2, Depth, Q);
1290     break;
1291   }
1292   case Instruction::Add: {
1293     bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
1294     computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
1295                            DemandedElts, Known, Known2, Depth, Q);
1296     break;
1297   }
1298   case Instruction::SRem:
1299     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1300       APInt RA = Rem->getValue().abs();
1301       if (RA.isPowerOf2()) {
1302         APInt LowBits = RA - 1;
1303         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1304 
1305         // The low bits of the first operand are unchanged by the srem.
1306         Known.Zero = Known2.Zero & LowBits;
1307         Known.One = Known2.One & LowBits;
1308 
1309         // If the first operand is non-negative or has all low bits zero, then
1310         // the upper bits are all zero.
1311         if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
1312           Known.Zero |= ~LowBits;
1313 
1314         // If the first operand is negative and not all low bits are zero, then
1315         // the upper bits are all one.
1316         if (Known2.isNegative() && LowBits.intersects(Known2.One))
1317           Known.One |= ~LowBits;
1318 
1319         assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1320         break;
1321       }
1322     }
1323 
1324     // The sign bit is the LHS's sign bit, except when the result of the
1325     // remainder is zero.
1326     computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1327     // If it's known zero, our sign bit is also zero.
1328     if (Known2.isNonNegative())
1329       Known.makeNonNegative();
1330 
1331     break;
1332   case Instruction::URem: {
1333     if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
1334       const APInt &RA = Rem->getValue();
1335       if (RA.isPowerOf2()) {
1336         APInt LowBits = (RA - 1);
1337         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1338         Known.Zero |= ~LowBits;
1339         Known.One &= LowBits;
1340         break;
1341       }
1342     }
1343 
1344     // Since the result is less than or equal to either operand, any leading
1345     // zero bits in either operand must also exist in the result.
1346     computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1347     computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1348 
1349     unsigned Leaders =
1350         std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
1351     Known.resetAll();
1352     Known.Zero.setHighBits(Leaders);
1353     break;
1354   }
1355   case Instruction::Alloca:
1356     Known.Zero.setLowBits(Log2(cast<AllocaInst>(I)->getAlign()));
1357     break;
1358   case Instruction::GetElementPtr: {
1359     // Analyze all of the subscripts of this getelementptr instruction
1360     // to determine if we can prove known low zero bits.
1361     KnownBits LocalKnown(BitWidth);
1362     computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
1363     unsigned TrailZ = LocalKnown.countMinTrailingZeros();
1364 
1365     gep_type_iterator GTI = gep_type_begin(I);
1366     for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
1367       // TrailZ can only become smaller, short-circuit if we hit zero.
1368       if (TrailZ == 0)
1369         break;
1370 
1371       Value *Index = I->getOperand(i);
1372       if (StructType *STy = GTI.getStructTypeOrNull()) {
1373         // Handle struct member offset arithmetic.
1374 
1375         // Handle case when index is vector zeroinitializer
1376         Constant *CIndex = cast<Constant>(Index);
1377         if (CIndex->isZeroValue())
1378           continue;
1379 
1380         if (CIndex->getType()->isVectorTy())
1381           Index = CIndex->getSplatValue();
1382 
1383         unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
1384         const StructLayout *SL = Q.DL.getStructLayout(STy);
1385         uint64_t Offset = SL->getElementOffset(Idx);
1386         TrailZ = std::min<unsigned>(TrailZ,
1387                                     countTrailingZeros(Offset));
1388       } else {
1389         // Handle array index arithmetic.
1390         Type *IndexedTy = GTI.getIndexedType();
1391         if (!IndexedTy->isSized()) {
1392           TrailZ = 0;
1393           break;
1394         }
1395         unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
1396         uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize();
1397         LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
1398         computeKnownBits(Index, LocalKnown, Depth + 1, Q);
1399         TrailZ = std::min(TrailZ,
1400                           unsigned(countTrailingZeros(TypeSize) +
1401                                    LocalKnown.countMinTrailingZeros()));
1402       }
1403     }
1404 
1405     Known.Zero.setLowBits(TrailZ);
1406     break;
1407   }
1408   case Instruction::PHI: {
1409     const PHINode *P = cast<PHINode>(I);
1410     // Handle the case of a simple two-predecessor recurrence PHI.
1411     // There's a lot more that could theoretically be done here, but
1412     // this is sufficient to catch some interesting cases.
1413     if (P->getNumIncomingValues() == 2) {
1414       for (unsigned i = 0; i != 2; ++i) {
1415         Value *L = P->getIncomingValue(i);
1416         Value *R = P->getIncomingValue(!i);
1417         Instruction *RInst = P->getIncomingBlock(!i)->getTerminator();
1418         Instruction *LInst = P->getIncomingBlock(i)->getTerminator();
1419         Operator *LU = dyn_cast<Operator>(L);
1420         if (!LU)
1421           continue;
1422         unsigned Opcode = LU->getOpcode();
1423         // Check for operations that have the property that if
1424         // both their operands have low zero bits, the result
1425         // will have low zero bits.
1426         if (Opcode == Instruction::Add ||
1427             Opcode == Instruction::Sub ||
1428             Opcode == Instruction::And ||
1429             Opcode == Instruction::Or ||
1430             Opcode == Instruction::Mul) {
1431           Value *LL = LU->getOperand(0);
1432           Value *LR = LU->getOperand(1);
1433           // Find a recurrence.
1434           if (LL == I)
1435             L = LR;
1436           else if (LR == I)
1437             L = LL;
1438           else
1439             continue; // Check for recurrence with L and R flipped.
1440 
1441           // Change the context instruction to the "edge" that flows into the
1442           // phi. This is important because that is where the value is actually
1443           // "evaluated" even though it is used later somewhere else. (see also
1444           // D69571).
1445           Query RecQ = Q;
1446 
1447           // Ok, we have a PHI of the form L op= R. Check for low
1448           // zero bits.
1449           RecQ.CxtI = RInst;
1450           computeKnownBits(R, Known2, Depth + 1, RecQ);
1451 
1452           // We need to take the minimum number of known bits
1453           KnownBits Known3(BitWidth);
1454           RecQ.CxtI = LInst;
1455           computeKnownBits(L, Known3, Depth + 1, RecQ);
1456 
1457           Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
1458                                          Known3.countMinTrailingZeros()));
1459 
1460           auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
1461           if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
1462             // If initial value of recurrence is nonnegative, and we are adding
1463             // a nonnegative number with nsw, the result can only be nonnegative
1464             // or poison value regardless of the number of times we execute the
1465             // add in phi recurrence. If initial value is negative and we are
1466             // adding a negative number with nsw, the result can only be
1467             // negative or poison value. Similar arguments apply to sub and mul.
1468             //
1469             // (add non-negative, non-negative) --> non-negative
1470             // (add negative, negative) --> negative
1471             if (Opcode == Instruction::Add) {
1472               if (Known2.isNonNegative() && Known3.isNonNegative())
1473                 Known.makeNonNegative();
1474               else if (Known2.isNegative() && Known3.isNegative())
1475                 Known.makeNegative();
1476             }
1477 
1478             // (sub nsw non-negative, negative) --> non-negative
1479             // (sub nsw negative, non-negative) --> negative
1480             else if (Opcode == Instruction::Sub && LL == I) {
1481               if (Known2.isNonNegative() && Known3.isNegative())
1482                 Known.makeNonNegative();
1483               else if (Known2.isNegative() && Known3.isNonNegative())
1484                 Known.makeNegative();
1485             }
1486 
1487             // (mul nsw non-negative, non-negative) --> non-negative
1488             else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
1489                      Known3.isNonNegative())
1490               Known.makeNonNegative();
1491           }
1492 
1493           break;
1494         }
1495       }
1496     }
1497 
1498     // Unreachable blocks may have zero-operand PHI nodes.
1499     if (P->getNumIncomingValues() == 0)
1500       break;
1501 
1502     // Otherwise take the unions of the known bit sets of the operands,
1503     // taking conservative care to avoid excessive recursion.
1504     if (Depth < MaxAnalysisRecursionDepth - 1 && !Known.Zero && !Known.One) {
1505       // Skip if every incoming value references to ourself.
1506       if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
1507         break;
1508 
1509       Known.Zero.setAllBits();
1510       Known.One.setAllBits();
1511       for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) {
1512         Value *IncValue = P->getIncomingValue(u);
1513         // Skip direct self references.
1514         if (IncValue == P) continue;
1515 
1516         // Change the context instruction to the "edge" that flows into the
1517         // phi. This is important because that is where the value is actually
1518         // "evaluated" even though it is used later somewhere else. (see also
1519         // D69571).
1520         Query RecQ = Q;
1521         RecQ.CxtI = P->getIncomingBlock(u)->getTerminator();
1522 
1523         Known2 = KnownBits(BitWidth);
1524         // Recurse, but cap the recursion to one level, because we don't
1525         // want to waste time spinning around in loops.
1526         computeKnownBits(IncValue, Known2, MaxAnalysisRecursionDepth - 1, RecQ);
1527         Known.Zero &= Known2.Zero;
1528         Known.One &= Known2.One;
1529         // If all bits have been ruled out, there's no need to check
1530         // more operands.
1531         if (!Known.Zero && !Known.One)
1532           break;
1533       }
1534     }
1535     break;
1536   }
1537   case Instruction::Call:
1538   case Instruction::Invoke:
1539     // If range metadata is attached to this call, set known bits from that,
1540     // and then intersect with known bits based on other properties of the
1541     // function.
1542     if (MDNode *MD =
1543             Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
1544       computeKnownBitsFromRangeMetadata(*MD, Known);
1545     if (const Value *RV = cast<CallBase>(I)->getReturnedArgOperand()) {
1546       computeKnownBits(RV, Known2, Depth + 1, Q);
1547       Known.Zero |= Known2.Zero;
1548       Known.One |= Known2.One;
1549     }
1550     if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
1551       switch (II->getIntrinsicID()) {
1552       default: break;
1553       case Intrinsic::abs:
1554         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1555 
1556         // If the source's MSB is zero then we know the rest of the bits.
1557         if (Known2.isNonNegative()) {
1558           Known.Zero |= Known2.Zero;
1559           Known.One |= Known2.One;
1560           break;
1561         }
1562 
1563         // Absolute value preserves trailing zero count.
1564         Known.Zero.setLowBits(Known2.Zero.countTrailingOnes());
1565 
1566         // If this call is undefined for INT_MIN, the result is positive. We
1567         // also know it can't be INT_MIN if there is a set bit that isn't the
1568         // sign bit.
1569         Known2.One.clearSignBit();
1570         if (match(II->getArgOperand(1), m_One()) || Known2.One.getBoolValue())
1571           Known.Zero.setSignBit();
1572         // FIXME: Handle known negative input?
1573         // FIXME: Calculate the negated Known bits and combine them?
1574         break;
1575       case Intrinsic::bitreverse:
1576         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1577         Known.Zero |= Known2.Zero.reverseBits();
1578         Known.One |= Known2.One.reverseBits();
1579         break;
1580       case Intrinsic::bswap:
1581         computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q);
1582         Known.Zero |= Known2.Zero.byteSwap();
1583         Known.One |= Known2.One.byteSwap();
1584         break;
1585       case Intrinsic::ctlz: {
1586         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1587         // If we have a known 1, its position is our upper bound.
1588         unsigned PossibleLZ = Known2.countMaxLeadingZeros();
1589         // If this call is undefined for 0, the result will be less than 2^n.
1590         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1591           PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
1592         unsigned LowBits = Log2_32(PossibleLZ)+1;
1593         Known.Zero.setBitsFrom(LowBits);
1594         break;
1595       }
1596       case Intrinsic::cttz: {
1597         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1598         // If we have a known 1, its position is our upper bound.
1599         unsigned PossibleTZ = Known2.countMaxTrailingZeros();
1600         // If this call is undefined for 0, the result will be less than 2^n.
1601         if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
1602           PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
1603         unsigned LowBits = Log2_32(PossibleTZ)+1;
1604         Known.Zero.setBitsFrom(LowBits);
1605         break;
1606       }
1607       case Intrinsic::ctpop: {
1608         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1609         // We can bound the space the count needs.  Also, bits known to be zero
1610         // can't contribute to the population.
1611         unsigned BitsPossiblySet = Known2.countMaxPopulation();
1612         unsigned LowBits = Log2_32(BitsPossiblySet)+1;
1613         Known.Zero.setBitsFrom(LowBits);
1614         // TODO: we could bound KnownOne using the lower bound on the number
1615         // of bits which might be set provided by popcnt KnownOne2.
1616         break;
1617       }
1618       case Intrinsic::fshr:
1619       case Intrinsic::fshl: {
1620         const APInt *SA;
1621         if (!match(I->getOperand(2), m_APInt(SA)))
1622           break;
1623 
1624         // Normalize to funnel shift left.
1625         uint64_t ShiftAmt = SA->urem(BitWidth);
1626         if (II->getIntrinsicID() == Intrinsic::fshr)
1627           ShiftAmt = BitWidth - ShiftAmt;
1628 
1629         KnownBits Known3(BitWidth);
1630         computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
1631         computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
1632 
1633         Known.Zero =
1634             Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
1635         Known.One =
1636             Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
1637         break;
1638       }
1639       case Intrinsic::uadd_sat:
1640       case Intrinsic::usub_sat: {
1641         bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat;
1642         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1643         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1644 
1645         // Add: Leading ones of either operand are preserved.
1646         // Sub: Leading zeros of LHS and leading ones of RHS are preserved
1647         // as leading zeros in the result.
1648         unsigned LeadingKnown;
1649         if (IsAdd)
1650           LeadingKnown = std::max(Known.countMinLeadingOnes(),
1651                                   Known2.countMinLeadingOnes());
1652         else
1653           LeadingKnown = std::max(Known.countMinLeadingZeros(),
1654                                   Known2.countMinLeadingOnes());
1655 
1656         Known = KnownBits::computeForAddSub(
1657             IsAdd, /* NSW */ false, Known, Known2);
1658 
1659         // We select between the operation result and all-ones/zero
1660         // respectively, so we can preserve known ones/zeros.
1661         if (IsAdd) {
1662           Known.One.setHighBits(LeadingKnown);
1663           Known.Zero.clearAllBits();
1664         } else {
1665           Known.Zero.setHighBits(LeadingKnown);
1666           Known.One.clearAllBits();
1667         }
1668         break;
1669       }
1670       case Intrinsic::umin:
1671         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1672         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1673         Known = KnownBits::umin(Known, Known2);
1674         break;
1675       case Intrinsic::umax:
1676         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1677         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1678         Known = KnownBits::umax(Known, Known2);
1679         break;
1680       case Intrinsic::smin:
1681         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1682         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1683         Known = KnownBits::smin(Known, Known2);
1684         break;
1685       case Intrinsic::smax:
1686         computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1687         computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
1688         Known = KnownBits::smax(Known, Known2);
1689         break;
1690       case Intrinsic::x86_sse42_crc32_64_64:
1691         Known.Zero.setBitsFrom(32);
1692         break;
1693       }
1694     }
1695     break;
1696   case Instruction::ShuffleVector: {
1697     auto *Shuf = dyn_cast<ShuffleVectorInst>(I);
1698     // FIXME: Do we need to handle ConstantExpr involving shufflevectors?
1699     if (!Shuf) {
1700       Known.resetAll();
1701       return;
1702     }
1703     // For undef elements, we don't know anything about the common state of
1704     // the shuffle result.
1705     APInt DemandedLHS, DemandedRHS;
1706     if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) {
1707       Known.resetAll();
1708       return;
1709     }
1710     Known.One.setAllBits();
1711     Known.Zero.setAllBits();
1712     if (!!DemandedLHS) {
1713       const Value *LHS = Shuf->getOperand(0);
1714       computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q);
1715       // If we don't know any bits, early out.
1716       if (Known.isUnknown())
1717         break;
1718     }
1719     if (!!DemandedRHS) {
1720       const Value *RHS = Shuf->getOperand(1);
1721       computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q);
1722       Known.One &= Known2.One;
1723       Known.Zero &= Known2.Zero;
1724     }
1725     break;
1726   }
1727   case Instruction::InsertElement: {
1728     const Value *Vec = I->getOperand(0);
1729     const Value *Elt = I->getOperand(1);
1730     auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2));
1731     // Early out if the index is non-constant or out-of-range.
1732     unsigned NumElts = DemandedElts.getBitWidth();
1733     if (!CIdx || CIdx->getValue().uge(NumElts)) {
1734       Known.resetAll();
1735       return;
1736     }
1737     Known.One.setAllBits();
1738     Known.Zero.setAllBits();
1739     unsigned EltIdx = CIdx->getZExtValue();
1740     // Do we demand the inserted element?
1741     if (DemandedElts[EltIdx]) {
1742       computeKnownBits(Elt, Known, Depth + 1, Q);
1743       // If we don't know any bits, early out.
1744       if (Known.isUnknown())
1745         break;
1746     }
1747     // We don't need the base vector element that has been inserted.
1748     APInt DemandedVecElts = DemandedElts;
1749     DemandedVecElts.clearBit(EltIdx);
1750     if (!!DemandedVecElts) {
1751       computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q);
1752       Known.One &= Known2.One;
1753       Known.Zero &= Known2.Zero;
1754     }
1755     break;
1756   }
1757   case Instruction::ExtractElement: {
1758     // Look through extract element. If the index is non-constant or
1759     // out-of-range demand all elements, otherwise just the extracted element.
1760     const Value *Vec = I->getOperand(0);
1761     const Value *Idx = I->getOperand(1);
1762     auto *CIdx = dyn_cast<ConstantInt>(Idx);
1763     if (isa<ScalableVectorType>(Vec->getType())) {
1764       // FIXME: there's probably *something* we can do with scalable vectors
1765       Known.resetAll();
1766       break;
1767     }
1768     unsigned NumElts = cast<FixedVectorType>(Vec->getType())->getNumElements();
1769     APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
1770     if (CIdx && CIdx->getValue().ult(NumElts))
1771       DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
1772     computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q);
1773     break;
1774   }
1775   case Instruction::ExtractValue:
1776     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
1777       const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
1778       if (EVI->getNumIndices() != 1) break;
1779       if (EVI->getIndices()[0] == 0) {
1780         switch (II->getIntrinsicID()) {
1781         default: break;
1782         case Intrinsic::uadd_with_overflow:
1783         case Intrinsic::sadd_with_overflow:
1784           computeKnownBitsAddSub(true, II->getArgOperand(0),
1785                                  II->getArgOperand(1), false, DemandedElts,
1786                                  Known, Known2, Depth, Q);
1787           break;
1788         case Intrinsic::usub_with_overflow:
1789         case Intrinsic::ssub_with_overflow:
1790           computeKnownBitsAddSub(false, II->getArgOperand(0),
1791                                  II->getArgOperand(1), false, DemandedElts,
1792                                  Known, Known2, Depth, Q);
1793           break;
1794         case Intrinsic::umul_with_overflow:
1795         case Intrinsic::smul_with_overflow:
1796           computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
1797                               DemandedElts, Known, Known2, Depth, Q);
1798           break;
1799         }
1800       }
1801     }
1802     break;
1803   case Instruction::Freeze:
1804     if (isGuaranteedNotToBePoison(I->getOperand(0), Q.AC, Q.CxtI, Q.DT,
1805                                   Depth + 1))
1806       computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
1807     break;
1808   }
1809 }
1810 
1811 /// Determine which bits of V are known to be either zero or one and return
1812 /// them.
1813 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts,
1814                            unsigned Depth, const Query &Q) {
1815   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1816   computeKnownBits(V, DemandedElts, Known, Depth, Q);
1817   return Known;
1818 }
1819 
1820 /// Determine which bits of V are known to be either zero or one and return
1821 /// them.
1822 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
1823   KnownBits Known(getBitWidth(V->getType(), Q.DL));
1824   computeKnownBits(V, Known, Depth, Q);
1825   return Known;
1826 }
1827 
1828 /// Determine which bits of V are known to be either zero or one and return
1829 /// them in the Known bit set.
1830 ///
1831 /// NOTE: we cannot consider 'undef' to be "IsZero" here.  The problem is that
1832 /// we cannot optimize based on the assumption that it is zero without changing
1833 /// it to be an explicit zero.  If we don't change it to zero, other code could
1834 /// optimized based on the contradictory assumption that it is non-zero.
1835 /// Because instcombine aggressively folds operations with undef args anyway,
1836 /// this won't lose us code quality.
1837 ///
1838 /// This function is defined on values with integer type, values with pointer
1839 /// type, and vectors of integers.  In the case
1840 /// where V is a vector, known zero, and known one values are the
1841 /// same width as the vector element, and the bit is set only if it is true
1842 /// for all of the demanded elements in the vector specified by DemandedElts.
1843 void computeKnownBits(const Value *V, const APInt &DemandedElts,
1844                       KnownBits &Known, unsigned Depth, const Query &Q) {
1845   if (!DemandedElts || isa<ScalableVectorType>(V->getType())) {
1846     // No demanded elts or V is a scalable vector, better to assume we don't
1847     // know anything.
1848     Known.resetAll();
1849     return;
1850   }
1851 
1852   assert(V && "No Value?");
1853   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1854 
1855 #ifndef NDEBUG
1856   Type *Ty = V->getType();
1857   unsigned BitWidth = Known.getBitWidth();
1858 
1859   assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) &&
1860          "Not integer or pointer type!");
1861 
1862   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
1863     assert(
1864         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
1865         "DemandedElt width should equal the fixed vector number of elements");
1866   } else {
1867     assert(DemandedElts == APInt(1, 1) &&
1868            "DemandedElt width should be 1 for scalars");
1869   }
1870 
1871   Type *ScalarTy = Ty->getScalarType();
1872   if (ScalarTy->isPointerTy()) {
1873     assert(BitWidth == Q.DL.getPointerTypeSizeInBits(ScalarTy) &&
1874            "V and Known should have same BitWidth");
1875   } else {
1876     assert(BitWidth == Q.DL.getTypeSizeInBits(ScalarTy) &&
1877            "V and Known should have same BitWidth");
1878   }
1879 #endif
1880 
1881   const APInt *C;
1882   if (match(V, m_APInt(C))) {
1883     // We know all of the bits for a scalar constant or a splat vector constant!
1884     Known.One = *C;
1885     Known.Zero = ~Known.One;
1886     return;
1887   }
1888   // Null and aggregate-zero are all-zeros.
1889   if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
1890     Known.setAllZero();
1891     return;
1892   }
1893   // Handle a constant vector by taking the intersection of the known bits of
1894   // each element.
1895   if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(V)) {
1896     // We know that CDV must be a vector of integers. Take the intersection of
1897     // each element.
1898     Known.Zero.setAllBits(); Known.One.setAllBits();
1899     for (unsigned i = 0, e = CDV->getNumElements(); i != e; ++i) {
1900       if (!DemandedElts[i])
1901         continue;
1902       APInt Elt = CDV->getElementAsAPInt(i);
1903       Known.Zero &= ~Elt;
1904       Known.One &= Elt;
1905     }
1906     return;
1907   }
1908 
1909   if (const auto *CV = dyn_cast<ConstantVector>(V)) {
1910     // We know that CV must be a vector of integers. Take the intersection of
1911     // each element.
1912     Known.Zero.setAllBits(); Known.One.setAllBits();
1913     for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
1914       if (!DemandedElts[i])
1915         continue;
1916       Constant *Element = CV->getAggregateElement(i);
1917       auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
1918       if (!ElementCI) {
1919         Known.resetAll();
1920         return;
1921       }
1922       const APInt &Elt = ElementCI->getValue();
1923       Known.Zero &= ~Elt;
1924       Known.One &= Elt;
1925     }
1926     return;
1927   }
1928 
1929   // Start out not knowing anything.
1930   Known.resetAll();
1931 
1932   // We can't imply anything about undefs.
1933   if (isa<UndefValue>(V))
1934     return;
1935 
1936   // There's no point in looking through other users of ConstantData for
1937   // assumptions.  Confirm that we've handled them all.
1938   assert(!isa<ConstantData>(V) && "Unhandled constant data!");
1939 
1940   // All recursive calls that increase depth must come after this.
1941   if (Depth == MaxAnalysisRecursionDepth)
1942     return;
1943 
1944   // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
1945   // the bits of its aliasee.
1946   if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1947     if (!GA->isInterposable())
1948       computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
1949     return;
1950   }
1951 
1952   if (const Operator *I = dyn_cast<Operator>(V))
1953     computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q);
1954 
1955   // Aligned pointers have trailing zeros - refine Known.Zero set
1956   if (isa<PointerType>(V->getType())) {
1957     Align Alignment = V->getPointerAlignment(Q.DL);
1958     Known.Zero.setLowBits(countTrailingZeros(Alignment.value()));
1959   }
1960 
1961   // computeKnownBitsFromAssume strictly refines Known.
1962   // Therefore, we run them after computeKnownBitsFromOperator.
1963 
1964   // Check whether a nearby assume intrinsic can determine some known bits.
1965   computeKnownBitsFromAssume(V, Known, Depth, Q);
1966 
1967   assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
1968 }
1969 
1970 /// Return true if the given value is known to have exactly one
1971 /// bit set when defined. For vectors return true if every element is known to
1972 /// be a power of two when defined. Supports values with integer or pointer
1973 /// types and vectors of integers.
1974 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
1975                             const Query &Q) {
1976   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
1977 
1978   // Attempt to match against constants.
1979   if (OrZero && match(V, m_Power2OrZero()))
1980       return true;
1981   if (match(V, m_Power2()))
1982       return true;
1983 
1984   // 1 << X is clearly a power of two if the one is not shifted off the end.  If
1985   // it is shifted off the end then the result is undefined.
1986   if (match(V, m_Shl(m_One(), m_Value())))
1987     return true;
1988 
1989   // (signmask) >>l X is clearly a power of two if the one is not shifted off
1990   // the bottom.  If it is shifted off the bottom then the result is undefined.
1991   if (match(V, m_LShr(m_SignMask(), m_Value())))
1992     return true;
1993 
1994   // The remaining tests are all recursive, so bail out if we hit the limit.
1995   if (Depth++ == MaxAnalysisRecursionDepth)
1996     return false;
1997 
1998   Value *X = nullptr, *Y = nullptr;
1999   // A shift left or a logical shift right of a power of two is a power of two
2000   // or zero.
2001   if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
2002                  match(V, m_LShr(m_Value(X), m_Value()))))
2003     return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
2004 
2005   if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
2006     return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
2007 
2008   if (const SelectInst *SI = dyn_cast<SelectInst>(V))
2009     return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
2010            isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
2011 
2012   if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
2013     // A power of two and'd with anything is a power of two or zero.
2014     if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
2015         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
2016       return true;
2017     // X & (-X) is always a power of two or zero.
2018     if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
2019       return true;
2020     return false;
2021   }
2022 
2023   // Adding a power-of-two or zero to the same power-of-two or zero yields
2024   // either the original power-of-two, a larger power-of-two or zero.
2025   if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2026     const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
2027     if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
2028         Q.IIQ.hasNoSignedWrap(VOBO)) {
2029       if (match(X, m_And(m_Specific(Y), m_Value())) ||
2030           match(X, m_And(m_Value(), m_Specific(Y))))
2031         if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
2032           return true;
2033       if (match(Y, m_And(m_Specific(X), m_Value())) ||
2034           match(Y, m_And(m_Value(), m_Specific(X))))
2035         if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
2036           return true;
2037 
2038       unsigned BitWidth = V->getType()->getScalarSizeInBits();
2039       KnownBits LHSBits(BitWidth);
2040       computeKnownBits(X, LHSBits, Depth, Q);
2041 
2042       KnownBits RHSBits(BitWidth);
2043       computeKnownBits(Y, RHSBits, Depth, Q);
2044       // If i8 V is a power of two or zero:
2045       //  ZeroBits: 1 1 1 0 1 1 1 1
2046       // ~ZeroBits: 0 0 0 1 0 0 0 0
2047       if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
2048         // If OrZero isn't set, we cannot give back a zero result.
2049         // Make sure either the LHS or RHS has a bit set.
2050         if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
2051           return true;
2052     }
2053   }
2054 
2055   // An exact divide or right shift can only shift off zero bits, so the result
2056   // is a power of two only if the first operand is a power of two and not
2057   // copying a sign bit (sdiv int_min, 2).
2058   if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
2059       match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
2060     return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
2061                                   Depth, Q);
2062   }
2063 
2064   return false;
2065 }
2066 
2067 /// Test whether a GEP's result is known to be non-null.
2068 ///
2069 /// Uses properties inherent in a GEP to try to determine whether it is known
2070 /// to be non-null.
2071 ///
2072 /// Currently this routine does not support vector GEPs.
2073 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
2074                               const Query &Q) {
2075   const Function *F = nullptr;
2076   if (const Instruction *I = dyn_cast<Instruction>(GEP))
2077     F = I->getFunction();
2078 
2079   if (!GEP->isInBounds() ||
2080       NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
2081     return false;
2082 
2083   // FIXME: Support vector-GEPs.
2084   assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
2085 
2086   // If the base pointer is non-null, we cannot walk to a null address with an
2087   // inbounds GEP in address space zero.
2088   if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
2089     return true;
2090 
2091   // Walk the GEP operands and see if any operand introduces a non-zero offset.
2092   // If so, then the GEP cannot produce a null pointer, as doing so would
2093   // inherently violate the inbounds contract within address space zero.
2094   for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
2095        GTI != GTE; ++GTI) {
2096     // Struct types are easy -- they must always be indexed by a constant.
2097     if (StructType *STy = GTI.getStructTypeOrNull()) {
2098       ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
2099       unsigned ElementIdx = OpC->getZExtValue();
2100       const StructLayout *SL = Q.DL.getStructLayout(STy);
2101       uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
2102       if (ElementOffset > 0)
2103         return true;
2104       continue;
2105     }
2106 
2107     // If we have a zero-sized type, the index doesn't matter. Keep looping.
2108     if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0)
2109       continue;
2110 
2111     // Fast path the constant operand case both for efficiency and so we don't
2112     // increment Depth when just zipping down an all-constant GEP.
2113     if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
2114       if (!OpC->isZero())
2115         return true;
2116       continue;
2117     }
2118 
2119     // We post-increment Depth here because while isKnownNonZero increments it
2120     // as well, when we pop back up that increment won't persist. We don't want
2121     // to recurse 10k times just because we have 10k GEP operands. We don't
2122     // bail completely out because we want to handle constant GEPs regardless
2123     // of depth.
2124     if (Depth++ >= MaxAnalysisRecursionDepth)
2125       continue;
2126 
2127     if (isKnownNonZero(GTI.getOperand(), Depth, Q))
2128       return true;
2129   }
2130 
2131   return false;
2132 }
2133 
2134 static bool isKnownNonNullFromDominatingCondition(const Value *V,
2135                                                   const Instruction *CtxI,
2136                                                   const DominatorTree *DT) {
2137   if (isa<Constant>(V))
2138     return false;
2139 
2140   if (!CtxI || !DT)
2141     return false;
2142 
2143   unsigned NumUsesExplored = 0;
2144   for (auto *U : V->users()) {
2145     // Avoid massive lists
2146     if (NumUsesExplored >= DomConditionsMaxUses)
2147       break;
2148     NumUsesExplored++;
2149 
2150     // If the value is used as an argument to a call or invoke, then argument
2151     // attributes may provide an answer about null-ness.
2152     if (const auto *CB = dyn_cast<CallBase>(U))
2153       if (auto *CalledFunc = CB->getCalledFunction())
2154         for (const Argument &Arg : CalledFunc->args())
2155           if (CB->getArgOperand(Arg.getArgNo()) == V &&
2156               Arg.hasNonNullAttr() && DT->dominates(CB, CtxI))
2157             return true;
2158 
2159     // If the value is used as a load/store, then the pointer must be non null.
2160     if (V == getLoadStorePointerOperand(U)) {
2161       const Instruction *I = cast<Instruction>(U);
2162       if (!NullPointerIsDefined(I->getFunction(),
2163                                 V->getType()->getPointerAddressSpace()) &&
2164           DT->dominates(I, CtxI))
2165         return true;
2166     }
2167 
2168     // Consider only compare instructions uniquely controlling a branch
2169     CmpInst::Predicate Pred;
2170     if (!match(const_cast<User *>(U),
2171                m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
2172         (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
2173       continue;
2174 
2175     SmallVector<const User *, 4> WorkList;
2176     SmallPtrSet<const User *, 4> Visited;
2177     for (auto *CmpU : U->users()) {
2178       assert(WorkList.empty() && "Should be!");
2179       if (Visited.insert(CmpU).second)
2180         WorkList.push_back(CmpU);
2181 
2182       while (!WorkList.empty()) {
2183         auto *Curr = WorkList.pop_back_val();
2184 
2185         // If a user is an AND, add all its users to the work list. We only
2186         // propagate "pred != null" condition through AND because it is only
2187         // correct to assume that all conditions of AND are met in true branch.
2188         // TODO: Support similar logic of OR and EQ predicate?
2189         if (Pred == ICmpInst::ICMP_NE)
2190           if (auto *BO = dyn_cast<BinaryOperator>(Curr))
2191             if (BO->getOpcode() == Instruction::And) {
2192               for (auto *BOU : BO->users())
2193                 if (Visited.insert(BOU).second)
2194                   WorkList.push_back(BOU);
2195               continue;
2196             }
2197 
2198         if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
2199           assert(BI->isConditional() && "uses a comparison!");
2200 
2201           BasicBlock *NonNullSuccessor =
2202               BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
2203           BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
2204           if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
2205             return true;
2206         } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
2207                    DT->dominates(cast<Instruction>(Curr), CtxI)) {
2208           return true;
2209         }
2210       }
2211     }
2212   }
2213 
2214   return false;
2215 }
2216 
2217 /// Does the 'Range' metadata (which must be a valid MD_range operand list)
2218 /// ensure that the value it's attached to is never Value?  'RangeType' is
2219 /// is the type of the value described by the range.
2220 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
2221   const unsigned NumRanges = Ranges->getNumOperands() / 2;
2222   assert(NumRanges >= 1);
2223   for (unsigned i = 0; i < NumRanges; ++i) {
2224     ConstantInt *Lower =
2225         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
2226     ConstantInt *Upper =
2227         mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
2228     ConstantRange Range(Lower->getValue(), Upper->getValue());
2229     if (Range.contains(Value))
2230       return false;
2231   }
2232   return true;
2233 }
2234 
2235 /// Return true if the given value is known to be non-zero when defined. For
2236 /// vectors, return true if every demanded element is known to be non-zero when
2237 /// defined. For pointers, if the context instruction and dominator tree are
2238 /// specified, perform context-sensitive analysis and return true if the
2239 /// pointer couldn't possibly be null at the specified instruction.
2240 /// Supports values with integer or pointer type and vectors of integers.
2241 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth,
2242                     const Query &Q) {
2243   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2244   // vector
2245   if (isa<ScalableVectorType>(V->getType()))
2246     return false;
2247 
2248   if (auto *C = dyn_cast<Constant>(V)) {
2249     if (C->isNullValue())
2250       return false;
2251     if (isa<ConstantInt>(C))
2252       // Must be non-zero due to null test above.
2253       return true;
2254 
2255     if (auto *CE = dyn_cast<ConstantExpr>(C)) {
2256       // See the comment for IntToPtr/PtrToInt instructions below.
2257       if (CE->getOpcode() == Instruction::IntToPtr ||
2258           CE->getOpcode() == Instruction::PtrToInt)
2259         if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <=
2260             Q.DL.getTypeSizeInBits(CE->getType()))
2261           return isKnownNonZero(CE->getOperand(0), Depth, Q);
2262     }
2263 
2264     // For constant vectors, check that all elements are undefined or known
2265     // non-zero to determine that the whole vector is known non-zero.
2266     if (auto *VecTy = dyn_cast<FixedVectorType>(C->getType())) {
2267       for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
2268         if (!DemandedElts[i])
2269           continue;
2270         Constant *Elt = C->getAggregateElement(i);
2271         if (!Elt || Elt->isNullValue())
2272           return false;
2273         if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
2274           return false;
2275       }
2276       return true;
2277     }
2278 
2279     // A global variable in address space 0 is non null unless extern weak
2280     // or an absolute symbol reference. Other address spaces may have null as a
2281     // valid address for a global, so we can't assume anything.
2282     if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2283       if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
2284           GV->getType()->getAddressSpace() == 0)
2285         return true;
2286     } else
2287       return false;
2288   }
2289 
2290   if (auto *I = dyn_cast<Instruction>(V)) {
2291     if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
2292       // If the possible ranges don't contain zero, then the value is
2293       // definitely non-zero.
2294       if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
2295         const APInt ZeroValue(Ty->getBitWidth(), 0);
2296         if (rangeMetadataExcludesValue(Ranges, ZeroValue))
2297           return true;
2298       }
2299     }
2300   }
2301 
2302   if (isKnownNonZeroFromAssume(V, Q))
2303     return true;
2304 
2305   // Some of the tests below are recursive, so bail out if we hit the limit.
2306   if (Depth++ >= MaxAnalysisRecursionDepth)
2307     return false;
2308 
2309   // Check for pointer simplifications.
2310 
2311   if (PointerType *PtrTy = dyn_cast<PointerType>(V->getType())) {
2312     // Alloca never returns null, malloc might.
2313     if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
2314       return true;
2315 
2316     // A byval, inalloca may not be null in a non-default addres space. A
2317     // nonnull argument is assumed never 0.
2318     if (const Argument *A = dyn_cast<Argument>(V)) {
2319       if (((A->hasPassPointeeByValueCopyAttr() &&
2320             !NullPointerIsDefined(A->getParent(), PtrTy->getAddressSpace())) ||
2321            A->hasNonNullAttr()))
2322         return true;
2323     }
2324 
2325     // A Load tagged with nonnull metadata is never null.
2326     if (const LoadInst *LI = dyn_cast<LoadInst>(V))
2327       if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
2328         return true;
2329 
2330     if (const auto *Call = dyn_cast<CallBase>(V)) {
2331       if (Call->isReturnNonNull())
2332         return true;
2333       if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true))
2334         return isKnownNonZero(RP, Depth, Q);
2335     }
2336   }
2337 
2338   if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
2339     return true;
2340 
2341   // Check for recursive pointer simplifications.
2342   if (V->getType()->isPointerTy()) {
2343     // Look through bitcast operations, GEPs, and int2ptr instructions as they
2344     // do not alter the value, or at least not the nullness property of the
2345     // value, e.g., int2ptr is allowed to zero/sign extend the value.
2346     //
2347     // Note that we have to take special care to avoid looking through
2348     // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
2349     // as casts that can alter the value, e.g., AddrSpaceCasts.
2350     if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
2351       return isGEPKnownNonNull(GEP, Depth, Q);
2352 
2353     if (auto *BCO = dyn_cast<BitCastOperator>(V))
2354       return isKnownNonZero(BCO->getOperand(0), Depth, Q);
2355 
2356     if (auto *I2P = dyn_cast<IntToPtrInst>(V))
2357       if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
2358           Q.DL.getTypeSizeInBits(I2P->getDestTy()))
2359         return isKnownNonZero(I2P->getOperand(0), Depth, Q);
2360   }
2361 
2362   // Similar to int2ptr above, we can look through ptr2int here if the cast
2363   // is a no-op or an extend and not a truncate.
2364   if (auto *P2I = dyn_cast<PtrToIntInst>(V))
2365     if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
2366         Q.DL.getTypeSizeInBits(P2I->getDestTy()))
2367       return isKnownNonZero(P2I->getOperand(0), Depth, Q);
2368 
2369   unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
2370 
2371   // X | Y != 0 if X != 0 or Y != 0.
2372   Value *X = nullptr, *Y = nullptr;
2373   if (match(V, m_Or(m_Value(X), m_Value(Y))))
2374     return isKnownNonZero(X, DemandedElts, Depth, Q) ||
2375            isKnownNonZero(Y, DemandedElts, Depth, Q);
2376 
2377   // ext X != 0 if X != 0.
2378   if (isa<SExtInst>(V) || isa<ZExtInst>(V))
2379     return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
2380 
2381   // shl X, Y != 0 if X is odd.  Note that the value of the shift is undefined
2382   // if the lowest bit is shifted off the end.
2383   if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
2384     // shl nuw can't remove any non-zero bits.
2385     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2386     if (Q.IIQ.hasNoUnsignedWrap(BO))
2387       return isKnownNonZero(X, Depth, Q);
2388 
2389     KnownBits Known(BitWidth);
2390     computeKnownBits(X, DemandedElts, Known, Depth, Q);
2391     if (Known.One[0])
2392       return true;
2393   }
2394   // shr X, Y != 0 if X is negative.  Note that the value of the shift is not
2395   // defined if the sign bit is shifted off the end.
2396   else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
2397     // shr exact can only shift out zero bits.
2398     const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
2399     if (BO->isExact())
2400       return isKnownNonZero(X, Depth, Q);
2401 
2402     KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q);
2403     if (Known.isNegative())
2404       return true;
2405 
2406     // If the shifter operand is a constant, and all of the bits shifted
2407     // out are known to be zero, and X is known non-zero then at least one
2408     // non-zero bit must remain.
2409     if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
2410       auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
2411       // Is there a known one in the portion not shifted out?
2412       if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
2413         return true;
2414       // Are all the bits to be shifted out known zero?
2415       if (Known.countMinTrailingZeros() >= ShiftVal)
2416         return isKnownNonZero(X, DemandedElts, Depth, Q);
2417     }
2418   }
2419   // div exact can only produce a zero if the dividend is zero.
2420   else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
2421     return isKnownNonZero(X, DemandedElts, Depth, Q);
2422   }
2423   // X + Y.
2424   else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
2425     KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q);
2426     KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q);
2427 
2428     // If X and Y are both non-negative (as signed values) then their sum is not
2429     // zero unless both X and Y are zero.
2430     if (XKnown.isNonNegative() && YKnown.isNonNegative())
2431       if (isKnownNonZero(X, DemandedElts, Depth, Q) ||
2432           isKnownNonZero(Y, DemandedElts, Depth, Q))
2433         return true;
2434 
2435     // If X and Y are both negative (as signed values) then their sum is not
2436     // zero unless both X and Y equal INT_MIN.
2437     if (XKnown.isNegative() && YKnown.isNegative()) {
2438       APInt Mask = APInt::getSignedMaxValue(BitWidth);
2439       // The sign bit of X is set.  If some other bit is set then X is not equal
2440       // to INT_MIN.
2441       if (XKnown.One.intersects(Mask))
2442         return true;
2443       // The sign bit of Y is set.  If some other bit is set then Y is not equal
2444       // to INT_MIN.
2445       if (YKnown.One.intersects(Mask))
2446         return true;
2447     }
2448 
2449     // The sum of a non-negative number and a power of two is not zero.
2450     if (XKnown.isNonNegative() &&
2451         isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
2452       return true;
2453     if (YKnown.isNonNegative() &&
2454         isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
2455       return true;
2456   }
2457   // X * Y.
2458   else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
2459     const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
2460     // If X and Y are non-zero then so is X * Y as long as the multiplication
2461     // does not overflow.
2462     if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
2463         isKnownNonZero(X, DemandedElts, Depth, Q) &&
2464         isKnownNonZero(Y, DemandedElts, Depth, Q))
2465       return true;
2466   }
2467   // (C ? X : Y) != 0 if X != 0 and Y != 0.
2468   else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
2469     if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) &&
2470         isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q))
2471       return true;
2472   }
2473   // PHI
2474   else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
2475     // Try and detect a recurrence that monotonically increases from a
2476     // starting value, as these are common as induction variables.
2477     if (PN->getNumIncomingValues() == 2) {
2478       Value *Start = PN->getIncomingValue(0);
2479       Value *Induction = PN->getIncomingValue(1);
2480       if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
2481         std::swap(Start, Induction);
2482       if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
2483         if (!C->isZero() && !C->isNegative()) {
2484           ConstantInt *X;
2485           if (Q.IIQ.UseInstrInfo &&
2486               (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
2487                match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
2488               !X->isNegative())
2489             return true;
2490         }
2491       }
2492     }
2493     // Check if all incoming values are non-zero using recursion.
2494     Query RecQ = Q;
2495     unsigned NewDepth = std::max(Depth, MaxAnalysisRecursionDepth - 1);
2496     return llvm::all_of(PN->operands(), [&](const Use &U) {
2497       if (U.get() == PN)
2498         return true;
2499       RecQ.CxtI = PN->getIncomingBlock(U)->getTerminator();
2500       return isKnownNonZero(U.get(), DemandedElts, NewDepth, RecQ);
2501     });
2502   }
2503   // ExtractElement
2504   else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) {
2505     const Value *Vec = EEI->getVectorOperand();
2506     const Value *Idx = EEI->getIndexOperand();
2507     auto *CIdx = dyn_cast<ConstantInt>(Idx);
2508     if (auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType())) {
2509       unsigned NumElts = VecTy->getNumElements();
2510       APInt DemandedVecElts = APInt::getAllOnesValue(NumElts);
2511       if (CIdx && CIdx->getValue().ult(NumElts))
2512         DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue());
2513       return isKnownNonZero(Vec, DemandedVecElts, Depth, Q);
2514     }
2515   }
2516   // Freeze
2517   else if (const FreezeInst *FI = dyn_cast<FreezeInst>(V)) {
2518     auto *Op = FI->getOperand(0);
2519     if (isKnownNonZero(Op, Depth, Q) &&
2520         isGuaranteedNotToBePoison(Op, Q.AC, Q.CxtI, Q.DT, Depth))
2521       return true;
2522   }
2523 
2524   KnownBits Known(BitWidth);
2525   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2526   return Known.One != 0;
2527 }
2528 
2529 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) {
2530   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2531   // vector
2532   if (isa<ScalableVectorType>(V->getType()))
2533     return false;
2534 
2535   auto *FVTy = dyn_cast<FixedVectorType>(V->getType());
2536   APInt DemandedElts =
2537       FVTy ? APInt::getAllOnesValue(FVTy->getNumElements()) : APInt(1, 1);
2538   return isKnownNonZero(V, DemandedElts, Depth, Q);
2539 }
2540 
2541 /// Return true if V2 == V1 + X, where X is known non-zero.
2542 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
2543   const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
2544   if (!BO || BO->getOpcode() != Instruction::Add)
2545     return false;
2546   Value *Op = nullptr;
2547   if (V2 == BO->getOperand(0))
2548     Op = BO->getOperand(1);
2549   else if (V2 == BO->getOperand(1))
2550     Op = BO->getOperand(0);
2551   else
2552     return false;
2553   return isKnownNonZero(Op, 0, Q);
2554 }
2555 
2556 /// Return true if it is known that V1 != V2.
2557 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
2558   if (V1 == V2)
2559     return false;
2560   if (V1->getType() != V2->getType())
2561     // We can't look through casts yet.
2562     return false;
2563   if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
2564     return true;
2565 
2566   if (V1->getType()->isIntOrIntVectorTy()) {
2567     // Are any known bits in V1 contradictory to known bits in V2? If V1
2568     // has a known zero where V2 has a known one, they must not be equal.
2569     KnownBits Known1 = computeKnownBits(V1, 0, Q);
2570     KnownBits Known2 = computeKnownBits(V2, 0, Q);
2571 
2572     if (Known1.Zero.intersects(Known2.One) ||
2573         Known2.Zero.intersects(Known1.One))
2574       return true;
2575   }
2576   return false;
2577 }
2578 
2579 /// Return true if 'V & Mask' is known to be zero.  We use this predicate to
2580 /// simplify operations downstream. Mask is known to be zero for bits that V
2581 /// cannot have.
2582 ///
2583 /// This function is defined on values with integer type, values with pointer
2584 /// type, and vectors of integers.  In the case
2585 /// where V is a vector, the mask, known zero, and known one values are the
2586 /// same width as the vector element, and the bit is set only if it is true
2587 /// for all of the elements in the vector.
2588 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
2589                        const Query &Q) {
2590   KnownBits Known(Mask.getBitWidth());
2591   computeKnownBits(V, Known, Depth, Q);
2592   return Mask.isSubsetOf(Known.Zero);
2593 }
2594 
2595 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
2596 // Returns the input and lower/upper bounds.
2597 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
2598                                 const APInt *&CLow, const APInt *&CHigh) {
2599   assert(isa<Operator>(Select) &&
2600          cast<Operator>(Select)->getOpcode() == Instruction::Select &&
2601          "Input should be a Select!");
2602 
2603   const Value *LHS = nullptr, *RHS = nullptr;
2604   SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
2605   if (SPF != SPF_SMAX && SPF != SPF_SMIN)
2606     return false;
2607 
2608   if (!match(RHS, m_APInt(CLow)))
2609     return false;
2610 
2611   const Value *LHS2 = nullptr, *RHS2 = nullptr;
2612   SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
2613   if (getInverseMinMaxFlavor(SPF) != SPF2)
2614     return false;
2615 
2616   if (!match(RHS2, m_APInt(CHigh)))
2617     return false;
2618 
2619   if (SPF == SPF_SMIN)
2620     std::swap(CLow, CHigh);
2621 
2622   In = LHS2;
2623   return CLow->sle(*CHigh);
2624 }
2625 
2626 /// For vector constants, loop over the elements and find the constant with the
2627 /// minimum number of sign bits. Return 0 if the value is not a vector constant
2628 /// or if any element was not analyzed; otherwise, return the count for the
2629 /// element with the minimum number of sign bits.
2630 static unsigned computeNumSignBitsVectorConstant(const Value *V,
2631                                                  const APInt &DemandedElts,
2632                                                  unsigned TyBits) {
2633   const auto *CV = dyn_cast<Constant>(V);
2634   if (!CV || !isa<FixedVectorType>(CV->getType()))
2635     return 0;
2636 
2637   unsigned MinSignBits = TyBits;
2638   unsigned NumElts = cast<FixedVectorType>(CV->getType())->getNumElements();
2639   for (unsigned i = 0; i != NumElts; ++i) {
2640     if (!DemandedElts[i])
2641       continue;
2642     // If we find a non-ConstantInt, bail out.
2643     auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
2644     if (!Elt)
2645       return 0;
2646 
2647     MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
2648   }
2649 
2650   return MinSignBits;
2651 }
2652 
2653 static unsigned ComputeNumSignBitsImpl(const Value *V,
2654                                        const APInt &DemandedElts,
2655                                        unsigned Depth, const Query &Q);
2656 
2657 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts,
2658                                    unsigned Depth, const Query &Q) {
2659   unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q);
2660   assert(Result > 0 && "At least one sign bit needs to be present!");
2661   return Result;
2662 }
2663 
2664 /// Return the number of times the sign bit of the register is replicated into
2665 /// the other bits. We know that at least 1 bit is always equal to the sign bit
2666 /// (itself), but other cases can give us information. For example, immediately
2667 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each
2668 /// other, so we return 3. For vectors, return the number of sign bits for the
2669 /// vector element with the minimum number of known sign bits of the demanded
2670 /// elements in the vector specified by DemandedElts.
2671 static unsigned ComputeNumSignBitsImpl(const Value *V,
2672                                        const APInt &DemandedElts,
2673                                        unsigned Depth, const Query &Q) {
2674   Type *Ty = V->getType();
2675 
2676   // FIXME: We currently have no way to represent the DemandedElts of a scalable
2677   // vector
2678   if (isa<ScalableVectorType>(Ty))
2679     return 1;
2680 
2681 #ifndef NDEBUG
2682   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
2683 
2684   if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) {
2685     assert(
2686         FVTy->getNumElements() == DemandedElts.getBitWidth() &&
2687         "DemandedElt width should equal the fixed vector number of elements");
2688   } else {
2689     assert(DemandedElts == APInt(1, 1) &&
2690            "DemandedElt width should be 1 for scalars");
2691   }
2692 #endif
2693 
2694   // We return the minimum number of sign bits that are guaranteed to be present
2695   // in V, so for undef we have to conservatively return 1.  We don't have the
2696   // same behavior for poison though -- that's a FIXME today.
2697 
2698   Type *ScalarTy = Ty->getScalarType();
2699   unsigned TyBits = ScalarTy->isPointerTy() ?
2700     Q.DL.getPointerTypeSizeInBits(ScalarTy) :
2701     Q.DL.getTypeSizeInBits(ScalarTy);
2702 
2703   unsigned Tmp, Tmp2;
2704   unsigned FirstAnswer = 1;
2705 
2706   // Note that ConstantInt is handled by the general computeKnownBits case
2707   // below.
2708 
2709   if (Depth == MaxAnalysisRecursionDepth)
2710     return 1;
2711 
2712   if (auto *U = dyn_cast<Operator>(V)) {
2713     switch (Operator::getOpcode(V)) {
2714     default: break;
2715     case Instruction::SExt:
2716       Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
2717       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
2718 
2719     case Instruction::SDiv: {
2720       const APInt *Denominator;
2721       // sdiv X, C -> adds log(C) sign bits.
2722       if (match(U->getOperand(1), m_APInt(Denominator))) {
2723 
2724         // Ignore non-positive denominator.
2725         if (!Denominator->isStrictlyPositive())
2726           break;
2727 
2728         // Calculate the incoming numerator bits.
2729         unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2730 
2731         // Add floor(log(C)) bits to the numerator bits.
2732         return std::min(TyBits, NumBits + Denominator->logBase2());
2733       }
2734       break;
2735     }
2736 
2737     case Instruction::SRem: {
2738       const APInt *Denominator;
2739       // srem X, C -> we know that the result is within [-C+1,C) when C is a
2740       // positive constant.  This let us put a lower bound on the number of sign
2741       // bits.
2742       if (match(U->getOperand(1), m_APInt(Denominator))) {
2743 
2744         // Ignore non-positive denominator.
2745         if (!Denominator->isStrictlyPositive())
2746           break;
2747 
2748         // Calculate the incoming numerator bits. SRem by a positive constant
2749         // can't lower the number of sign bits.
2750         unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2751 
2752         // Calculate the leading sign bit constraints by examining the
2753         // denominator.  Given that the denominator is positive, there are two
2754         // cases:
2755         //
2756         //  1. the numerator is positive. The result range is [0,C) and [0,C) u<
2757         //     (1 << ceilLogBase2(C)).
2758         //
2759         //  2. the numerator is negative. Then the result range is (-C,0] and
2760         //     integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
2761         //
2762         // Thus a lower bound on the number of sign bits is `TyBits -
2763         // ceilLogBase2(C)`.
2764 
2765         unsigned ResBits = TyBits - Denominator->ceilLogBase2();
2766         return std::max(NumrBits, ResBits);
2767       }
2768       break;
2769     }
2770 
2771     case Instruction::AShr: {
2772       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2773       // ashr X, C   -> adds C sign bits.  Vectors too.
2774       const APInt *ShAmt;
2775       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2776         if (ShAmt->uge(TyBits))
2777           break; // Bad shift.
2778         unsigned ShAmtLimited = ShAmt->getZExtValue();
2779         Tmp += ShAmtLimited;
2780         if (Tmp > TyBits) Tmp = TyBits;
2781       }
2782       return Tmp;
2783     }
2784     case Instruction::Shl: {
2785       const APInt *ShAmt;
2786       if (match(U->getOperand(1), m_APInt(ShAmt))) {
2787         // shl destroys sign bits.
2788         Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2789         if (ShAmt->uge(TyBits) ||   // Bad shift.
2790             ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
2791         Tmp2 = ShAmt->getZExtValue();
2792         return Tmp - Tmp2;
2793       }
2794       break;
2795     }
2796     case Instruction::And:
2797     case Instruction::Or:
2798     case Instruction::Xor: // NOT is handled here.
2799       // Logical binary ops preserve the number of sign bits at the worst.
2800       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2801       if (Tmp != 1) {
2802         Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2803         FirstAnswer = std::min(Tmp, Tmp2);
2804         // We computed what we know about the sign bits as our first
2805         // answer. Now proceed to the generic code that uses
2806         // computeKnownBits, and pick whichever answer is better.
2807       }
2808       break;
2809 
2810     case Instruction::Select: {
2811       // If we have a clamp pattern, we know that the number of sign bits will
2812       // be the minimum of the clamp min/max range.
2813       const Value *X;
2814       const APInt *CLow, *CHigh;
2815       if (isSignedMinMaxClamp(U, X, CLow, CHigh))
2816         return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
2817 
2818       Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2819       if (Tmp == 1) break;
2820       Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
2821       return std::min(Tmp, Tmp2);
2822     }
2823 
2824     case Instruction::Add:
2825       // Add can have at most one carry bit.  Thus we know that the output
2826       // is, at worst, one more bit than the inputs.
2827       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2828       if (Tmp == 1) break;
2829 
2830       // Special case decrementing a value (ADD X, -1):
2831       if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
2832         if (CRHS->isAllOnesValue()) {
2833           KnownBits Known(TyBits);
2834           computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
2835 
2836           // If the input is known to be 0 or 1, the output is 0/-1, which is
2837           // all sign bits set.
2838           if ((Known.Zero | 1).isAllOnesValue())
2839             return TyBits;
2840 
2841           // If we are subtracting one from a positive number, there is no carry
2842           // out of the result.
2843           if (Known.isNonNegative())
2844             return Tmp;
2845         }
2846 
2847       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2848       if (Tmp2 == 1) break;
2849       return std::min(Tmp, Tmp2) - 1;
2850 
2851     case Instruction::Sub:
2852       Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2853       if (Tmp2 == 1) break;
2854 
2855       // Handle NEG.
2856       if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
2857         if (CLHS->isNullValue()) {
2858           KnownBits Known(TyBits);
2859           computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
2860           // If the input is known to be 0 or 1, the output is 0/-1, which is
2861           // all sign bits set.
2862           if ((Known.Zero | 1).isAllOnesValue())
2863             return TyBits;
2864 
2865           // If the input is known to be positive (the sign bit is known clear),
2866           // the output of the NEG has the same number of sign bits as the
2867           // input.
2868           if (Known.isNonNegative())
2869             return Tmp2;
2870 
2871           // Otherwise, we treat this like a SUB.
2872         }
2873 
2874       // Sub can have at most one carry bit.  Thus we know that the output
2875       // is, at worst, one more bit than the inputs.
2876       Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2877       if (Tmp == 1) break;
2878       return std::min(Tmp, Tmp2) - 1;
2879 
2880     case Instruction::Mul: {
2881       // The output of the Mul can be at most twice the valid bits in the
2882       // inputs.
2883       unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2884       if (SignBitsOp0 == 1) break;
2885       unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
2886       if (SignBitsOp1 == 1) break;
2887       unsigned OutValidBits =
2888           (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
2889       return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
2890     }
2891 
2892     case Instruction::PHI: {
2893       const PHINode *PN = cast<PHINode>(U);
2894       unsigned NumIncomingValues = PN->getNumIncomingValues();
2895       // Don't analyze large in-degree PHIs.
2896       if (NumIncomingValues > 4) break;
2897       // Unreachable blocks may have zero-operand PHI nodes.
2898       if (NumIncomingValues == 0) break;
2899 
2900       // Take the minimum of all incoming values.  This can't infinitely loop
2901       // because of our depth threshold.
2902       Query RecQ = Q;
2903       Tmp = TyBits;
2904       for (unsigned i = 0, e = NumIncomingValues; i != e; ++i) {
2905         if (Tmp == 1) return Tmp;
2906         RecQ.CxtI = PN->getIncomingBlock(i)->getTerminator();
2907         Tmp = std::min(
2908             Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, RecQ));
2909       }
2910       return Tmp;
2911     }
2912 
2913     case Instruction::Trunc:
2914       // FIXME: it's tricky to do anything useful for this, but it is an
2915       // important case for targets like X86.
2916       break;
2917 
2918     case Instruction::ExtractElement:
2919       // Look through extract element. At the moment we keep this simple and
2920       // skip tracking the specific element. But at least we might find
2921       // information valid for all elements of the vector (for example if vector
2922       // is sign extended, shifted, etc).
2923       return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2924 
2925     case Instruction::ShuffleVector: {
2926       // Collect the minimum number of sign bits that are shared by every vector
2927       // element referenced by the shuffle.
2928       auto *Shuf = dyn_cast<ShuffleVectorInst>(U);
2929       if (!Shuf) {
2930         // FIXME: Add support for shufflevector constant expressions.
2931         return 1;
2932       }
2933       APInt DemandedLHS, DemandedRHS;
2934       // For undef elements, we don't know anything about the common state of
2935       // the shuffle result.
2936       if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS))
2937         return 1;
2938       Tmp = std::numeric_limits<unsigned>::max();
2939       if (!!DemandedLHS) {
2940         const Value *LHS = Shuf->getOperand(0);
2941         Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q);
2942       }
2943       // If we don't know anything, early out and try computeKnownBits
2944       // fall-back.
2945       if (Tmp == 1)
2946         break;
2947       if (!!DemandedRHS) {
2948         const Value *RHS = Shuf->getOperand(1);
2949         Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q);
2950         Tmp = std::min(Tmp, Tmp2);
2951       }
2952       // If we don't know anything, early out and try computeKnownBits
2953       // fall-back.
2954       if (Tmp == 1)
2955         break;
2956       assert(Tmp <= Ty->getScalarSizeInBits() &&
2957              "Failed to determine minimum sign bits");
2958       return Tmp;
2959     }
2960     case Instruction::Call: {
2961       if (const auto *II = dyn_cast<IntrinsicInst>(U)) {
2962         switch (II->getIntrinsicID()) {
2963         default: break;
2964         case Intrinsic::abs:
2965           Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
2966           if (Tmp == 1) break;
2967 
2968           // Absolute value reduces number of sign bits by at most 1.
2969           return Tmp - 1;
2970         }
2971       }
2972     }
2973     }
2974   }
2975 
2976   // Finally, if we can prove that the top bits of the result are 0's or 1's,
2977   // use this information.
2978 
2979   // If we can examine all elements of a vector constant successfully, we're
2980   // done (we can't do any better than that). If not, keep trying.
2981   if (unsigned VecSignBits =
2982           computeNumSignBitsVectorConstant(V, DemandedElts, TyBits))
2983     return VecSignBits;
2984 
2985   KnownBits Known(TyBits);
2986   computeKnownBits(V, DemandedElts, Known, Depth, Q);
2987 
2988   // If we know that the sign bit is either zero or one, determine the number of
2989   // identical bits in the top of the input value.
2990   return std::max(FirstAnswer, Known.countMinSignBits());
2991 }
2992 
2993 /// This function computes the integer multiple of Base that equals V.
2994 /// If successful, it returns true and returns the multiple in
2995 /// Multiple. If unsuccessful, it returns false. It looks
2996 /// through SExt instructions only if LookThroughSExt is true.
2997 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
2998                            bool LookThroughSExt, unsigned Depth) {
2999   assert(V && "No Value?");
3000   assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
3001   assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
3002 
3003   Type *T = V->getType();
3004 
3005   ConstantInt *CI = dyn_cast<ConstantInt>(V);
3006 
3007   if (Base == 0)
3008     return false;
3009 
3010   if (Base == 1) {
3011     Multiple = V;
3012     return true;
3013   }
3014 
3015   ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
3016   Constant *BaseVal = ConstantInt::get(T, Base);
3017   if (CO && CO == BaseVal) {
3018     // Multiple is 1.
3019     Multiple = ConstantInt::get(T, 1);
3020     return true;
3021   }
3022 
3023   if (CI && CI->getZExtValue() % Base == 0) {
3024     Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
3025     return true;
3026   }
3027 
3028   if (Depth == MaxAnalysisRecursionDepth) return false;
3029 
3030   Operator *I = dyn_cast<Operator>(V);
3031   if (!I) return false;
3032 
3033   switch (I->getOpcode()) {
3034   default: break;
3035   case Instruction::SExt:
3036     if (!LookThroughSExt) return false;
3037     // otherwise fall through to ZExt
3038     LLVM_FALLTHROUGH;
3039   case Instruction::ZExt:
3040     return ComputeMultiple(I->getOperand(0), Base, Multiple,
3041                            LookThroughSExt, Depth+1);
3042   case Instruction::Shl:
3043   case Instruction::Mul: {
3044     Value *Op0 = I->getOperand(0);
3045     Value *Op1 = I->getOperand(1);
3046 
3047     if (I->getOpcode() == Instruction::Shl) {
3048       ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
3049       if (!Op1CI) return false;
3050       // Turn Op0 << Op1 into Op0 * 2^Op1
3051       APInt Op1Int = Op1CI->getValue();
3052       uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
3053       APInt API(Op1Int.getBitWidth(), 0);
3054       API.setBit(BitToSet);
3055       Op1 = ConstantInt::get(V->getContext(), API);
3056     }
3057 
3058     Value *Mul0 = nullptr;
3059     if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
3060       if (Constant *Op1C = dyn_cast<Constant>(Op1))
3061         if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
3062           if (Op1C->getType()->getPrimitiveSizeInBits() <
3063               MulC->getType()->getPrimitiveSizeInBits())
3064             Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
3065           if (Op1C->getType()->getPrimitiveSizeInBits() >
3066               MulC->getType()->getPrimitiveSizeInBits())
3067             MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
3068 
3069           // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
3070           Multiple = ConstantExpr::getMul(MulC, Op1C);
3071           return true;
3072         }
3073 
3074       if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
3075         if (Mul0CI->getValue() == 1) {
3076           // V == Base * Op1, so return Op1
3077           Multiple = Op1;
3078           return true;
3079         }
3080     }
3081 
3082     Value *Mul1 = nullptr;
3083     if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
3084       if (Constant *Op0C = dyn_cast<Constant>(Op0))
3085         if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
3086           if (Op0C->getType()->getPrimitiveSizeInBits() <
3087               MulC->getType()->getPrimitiveSizeInBits())
3088             Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
3089           if (Op0C->getType()->getPrimitiveSizeInBits() >
3090               MulC->getType()->getPrimitiveSizeInBits())
3091             MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
3092 
3093           // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
3094           Multiple = ConstantExpr::getMul(MulC, Op0C);
3095           return true;
3096         }
3097 
3098       if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
3099         if (Mul1CI->getValue() == 1) {
3100           // V == Base * Op0, so return Op0
3101           Multiple = Op0;
3102           return true;
3103         }
3104     }
3105   }
3106   }
3107 
3108   // We could not determine if V is a multiple of Base.
3109   return false;
3110 }
3111 
3112 Intrinsic::ID llvm::getIntrinsicForCallSite(const CallBase &CB,
3113                                             const TargetLibraryInfo *TLI) {
3114   const Function *F = CB.getCalledFunction();
3115   if (!F)
3116     return Intrinsic::not_intrinsic;
3117 
3118   if (F->isIntrinsic())
3119     return F->getIntrinsicID();
3120 
3121   // We are going to infer semantics of a library function based on mapping it
3122   // to an LLVM intrinsic. Check that the library function is available from
3123   // this callbase and in this environment.
3124   LibFunc Func;
3125   if (F->hasLocalLinkage() || !TLI || !TLI->getLibFunc(CB, Func) ||
3126       !CB.onlyReadsMemory())
3127     return Intrinsic::not_intrinsic;
3128 
3129   switch (Func) {
3130   default:
3131     break;
3132   case LibFunc_sin:
3133   case LibFunc_sinf:
3134   case LibFunc_sinl:
3135     return Intrinsic::sin;
3136   case LibFunc_cos:
3137   case LibFunc_cosf:
3138   case LibFunc_cosl:
3139     return Intrinsic::cos;
3140   case LibFunc_exp:
3141   case LibFunc_expf:
3142   case LibFunc_expl:
3143     return Intrinsic::exp;
3144   case LibFunc_exp2:
3145   case LibFunc_exp2f:
3146   case LibFunc_exp2l:
3147     return Intrinsic::exp2;
3148   case LibFunc_log:
3149   case LibFunc_logf:
3150   case LibFunc_logl:
3151     return Intrinsic::log;
3152   case LibFunc_log10:
3153   case LibFunc_log10f:
3154   case LibFunc_log10l:
3155     return Intrinsic::log10;
3156   case LibFunc_log2:
3157   case LibFunc_log2f:
3158   case LibFunc_log2l:
3159     return Intrinsic::log2;
3160   case LibFunc_fabs:
3161   case LibFunc_fabsf:
3162   case LibFunc_fabsl:
3163     return Intrinsic::fabs;
3164   case LibFunc_fmin:
3165   case LibFunc_fminf:
3166   case LibFunc_fminl:
3167     return Intrinsic::minnum;
3168   case LibFunc_fmax:
3169   case LibFunc_fmaxf:
3170   case LibFunc_fmaxl:
3171     return Intrinsic::maxnum;
3172   case LibFunc_copysign:
3173   case LibFunc_copysignf:
3174   case LibFunc_copysignl:
3175     return Intrinsic::copysign;
3176   case LibFunc_floor:
3177   case LibFunc_floorf:
3178   case LibFunc_floorl:
3179     return Intrinsic::floor;
3180   case LibFunc_ceil:
3181   case LibFunc_ceilf:
3182   case LibFunc_ceill:
3183     return Intrinsic::ceil;
3184   case LibFunc_trunc:
3185   case LibFunc_truncf:
3186   case LibFunc_truncl:
3187     return Intrinsic::trunc;
3188   case LibFunc_rint:
3189   case LibFunc_rintf:
3190   case LibFunc_rintl:
3191     return Intrinsic::rint;
3192   case LibFunc_nearbyint:
3193   case LibFunc_nearbyintf:
3194   case LibFunc_nearbyintl:
3195     return Intrinsic::nearbyint;
3196   case LibFunc_round:
3197   case LibFunc_roundf:
3198   case LibFunc_roundl:
3199     return Intrinsic::round;
3200   case LibFunc_roundeven:
3201   case LibFunc_roundevenf:
3202   case LibFunc_roundevenl:
3203     return Intrinsic::roundeven;
3204   case LibFunc_pow:
3205   case LibFunc_powf:
3206   case LibFunc_powl:
3207     return Intrinsic::pow;
3208   case LibFunc_sqrt:
3209   case LibFunc_sqrtf:
3210   case LibFunc_sqrtl:
3211     return Intrinsic::sqrt;
3212   }
3213 
3214   return Intrinsic::not_intrinsic;
3215 }
3216 
3217 /// Return true if we can prove that the specified FP value is never equal to
3218 /// -0.0.
3219 /// NOTE: Do not check 'nsz' here because that fast-math-flag does not guarantee
3220 ///       that a value is not -0.0. It only guarantees that -0.0 may be treated
3221 ///       the same as +0.0 in floating-point ops.
3222 ///
3223 /// NOTE: this function will need to be revisited when we support non-default
3224 /// rounding modes!
3225 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
3226                                 unsigned Depth) {
3227   if (auto *CFP = dyn_cast<ConstantFP>(V))
3228     return !CFP->getValueAPF().isNegZero();
3229 
3230   if (Depth == MaxAnalysisRecursionDepth)
3231     return false;
3232 
3233   auto *Op = dyn_cast<Operator>(V);
3234   if (!Op)
3235     return false;
3236 
3237   // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
3238   if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
3239     return true;
3240 
3241   // sitofp and uitofp turn into +0.0 for zero.
3242   if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
3243     return true;
3244 
3245   if (auto *Call = dyn_cast<CallInst>(Op)) {
3246     Intrinsic::ID IID = getIntrinsicForCallSite(*Call, TLI);
3247     switch (IID) {
3248     default:
3249       break;
3250     // sqrt(-0.0) = -0.0, no other negative results are possible.
3251     case Intrinsic::sqrt:
3252     case Intrinsic::canonicalize:
3253       return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
3254     // fabs(x) != -0.0
3255     case Intrinsic::fabs:
3256       return true;
3257     }
3258   }
3259 
3260   return false;
3261 }
3262 
3263 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
3264 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
3265 /// bit despite comparing equal.
3266 static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
3267                                             const TargetLibraryInfo *TLI,
3268                                             bool SignBitOnly,
3269                                             unsigned Depth) {
3270   // TODO: This function does not do the right thing when SignBitOnly is true
3271   // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
3272   // which flips the sign bits of NaNs.  See
3273   // https://llvm.org/bugs/show_bug.cgi?id=31702.
3274 
3275   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3276     return !CFP->getValueAPF().isNegative() ||
3277            (!SignBitOnly && CFP->getValueAPF().isZero());
3278   }
3279 
3280   // Handle vector of constants.
3281   if (auto *CV = dyn_cast<Constant>(V)) {
3282     if (auto *CVFVTy = dyn_cast<FixedVectorType>(CV->getType())) {
3283       unsigned NumElts = CVFVTy->getNumElements();
3284       for (unsigned i = 0; i != NumElts; ++i) {
3285         auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
3286         if (!CFP)
3287           return false;
3288         if (CFP->getValueAPF().isNegative() &&
3289             (SignBitOnly || !CFP->getValueAPF().isZero()))
3290           return false;
3291       }
3292 
3293       // All non-negative ConstantFPs.
3294       return true;
3295     }
3296   }
3297 
3298   if (Depth == MaxAnalysisRecursionDepth)
3299     return false;
3300 
3301   const Operator *I = dyn_cast<Operator>(V);
3302   if (!I)
3303     return false;
3304 
3305   switch (I->getOpcode()) {
3306   default:
3307     break;
3308   // Unsigned integers are always nonnegative.
3309   case Instruction::UIToFP:
3310     return true;
3311   case Instruction::FMul:
3312   case Instruction::FDiv:
3313     // X * X is always non-negative or a NaN.
3314     // X / X is always exactly 1.0 or a NaN.
3315     if (I->getOperand(0) == I->getOperand(1) &&
3316         (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
3317       return true;
3318 
3319     LLVM_FALLTHROUGH;
3320   case Instruction::FAdd:
3321   case Instruction::FRem:
3322     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3323                                            Depth + 1) &&
3324            cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3325                                            Depth + 1);
3326   case Instruction::Select:
3327     return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3328                                            Depth + 1) &&
3329            cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3330                                            Depth + 1);
3331   case Instruction::FPExt:
3332   case Instruction::FPTrunc:
3333     // Widening/narrowing never change sign.
3334     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3335                                            Depth + 1);
3336   case Instruction::ExtractElement:
3337     // Look through extract element. At the moment we keep this simple and skip
3338     // tracking the specific element. But at least we might find information
3339     // valid for all elements of the vector.
3340     return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3341                                            Depth + 1);
3342   case Instruction::Call:
3343     const auto *CI = cast<CallInst>(I);
3344     Intrinsic::ID IID = getIntrinsicForCallSite(*CI, TLI);
3345     switch (IID) {
3346     default:
3347       break;
3348     case Intrinsic::maxnum: {
3349       Value *V0 = I->getOperand(0), *V1 = I->getOperand(1);
3350       auto isPositiveNum = [&](Value *V) {
3351         if (SignBitOnly) {
3352           // With SignBitOnly, this is tricky because the result of
3353           // maxnum(+0.0, -0.0) is unspecified. Just check if the operand is
3354           // a constant strictly greater than 0.0.
3355           const APFloat *C;
3356           return match(V, m_APFloat(C)) &&
3357                  *C > APFloat::getZero(C->getSemantics());
3358         }
3359 
3360         // -0.0 compares equal to 0.0, so if this operand is at least -0.0,
3361         // maxnum can't be ordered-less-than-zero.
3362         return isKnownNeverNaN(V, TLI) &&
3363                cannotBeOrderedLessThanZeroImpl(V, TLI, false, Depth + 1);
3364       };
3365 
3366       // TODO: This could be improved. We could also check that neither operand
3367       //       has its sign bit set (and at least 1 is not-NAN?).
3368       return isPositiveNum(V0) || isPositiveNum(V1);
3369     }
3370 
3371     case Intrinsic::maximum:
3372       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3373                                              Depth + 1) ||
3374              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3375                                              Depth + 1);
3376     case Intrinsic::minnum:
3377     case Intrinsic::minimum:
3378       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3379                                              Depth + 1) &&
3380              cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
3381                                              Depth + 1);
3382     case Intrinsic::exp:
3383     case Intrinsic::exp2:
3384     case Intrinsic::fabs:
3385       return true;
3386 
3387     case Intrinsic::sqrt:
3388       // sqrt(x) is always >= -0 or NaN.  Moreover, sqrt(x) == -0 iff x == -0.
3389       if (!SignBitOnly)
3390         return true;
3391       return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
3392                                  CannotBeNegativeZero(CI->getOperand(0), TLI));
3393 
3394     case Intrinsic::powi:
3395       if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
3396         // powi(x,n) is non-negative if n is even.
3397         if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
3398           return true;
3399       }
3400       // TODO: This is not correct.  Given that exp is an integer, here are the
3401       // ways that pow can return a negative value:
3402       //
3403       //   pow(x, exp)    --> negative if exp is odd and x is negative.
3404       //   pow(-0, exp)   --> -inf if exp is negative odd.
3405       //   pow(-0, exp)   --> -0 if exp is positive odd.
3406       //   pow(-inf, exp) --> -0 if exp is negative odd.
3407       //   pow(-inf, exp) --> -inf if exp is positive odd.
3408       //
3409       // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
3410       // but we must return false if x == -0.  Unfortunately we do not currently
3411       // have a way of expressing this constraint.  See details in
3412       // https://llvm.org/bugs/show_bug.cgi?id=31702.
3413       return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
3414                                              Depth + 1);
3415 
3416     case Intrinsic::fma:
3417     case Intrinsic::fmuladd:
3418       // x*x+y is non-negative if y is non-negative.
3419       return I->getOperand(0) == I->getOperand(1) &&
3420              (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
3421              cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
3422                                              Depth + 1);
3423     }
3424     break;
3425   }
3426   return false;
3427 }
3428 
3429 bool llvm::CannotBeOrderedLessThanZero(const Value *V,
3430                                        const TargetLibraryInfo *TLI) {
3431   return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
3432 }
3433 
3434 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
3435   return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
3436 }
3437 
3438 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI,
3439                                 unsigned Depth) {
3440   assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type");
3441 
3442   // If we're told that infinities won't happen, assume they won't.
3443   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3444     if (FPMathOp->hasNoInfs())
3445       return true;
3446 
3447   // Handle scalar constants.
3448   if (auto *CFP = dyn_cast<ConstantFP>(V))
3449     return !CFP->isInfinity();
3450 
3451   if (Depth == MaxAnalysisRecursionDepth)
3452     return false;
3453 
3454   if (auto *Inst = dyn_cast<Instruction>(V)) {
3455     switch (Inst->getOpcode()) {
3456     case Instruction::Select: {
3457       return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) &&
3458              isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1);
3459     }
3460     case Instruction::SIToFP:
3461     case Instruction::UIToFP: {
3462       // Get width of largest magnitude integer (remove a bit if signed).
3463       // This still works for a signed minimum value because the largest FP
3464       // value is scaled by some fraction close to 2.0 (1.0 + 0.xxxx).
3465       int IntSize = Inst->getOperand(0)->getType()->getScalarSizeInBits();
3466       if (Inst->getOpcode() == Instruction::SIToFP)
3467         --IntSize;
3468 
3469       // If the exponent of the largest finite FP value can hold the largest
3470       // integer, the result of the cast must be finite.
3471       Type *FPTy = Inst->getType()->getScalarType();
3472       return ilogb(APFloat::getLargest(FPTy->getFltSemantics())) >= IntSize;
3473     }
3474     default:
3475       break;
3476     }
3477   }
3478 
3479   // try to handle fixed width vector constants
3480   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3481   if (VFVTy && isa<Constant>(V)) {
3482     // For vectors, verify that each element is not infinity.
3483     unsigned NumElts = VFVTy->getNumElements();
3484     for (unsigned i = 0; i != NumElts; ++i) {
3485       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3486       if (!Elt)
3487         return false;
3488       if (isa<UndefValue>(Elt))
3489         continue;
3490       auto *CElt = dyn_cast<ConstantFP>(Elt);
3491       if (!CElt || CElt->isInfinity())
3492         return false;
3493     }
3494     // All elements were confirmed non-infinity or undefined.
3495     return true;
3496   }
3497 
3498   // was not able to prove that V never contains infinity
3499   return false;
3500 }
3501 
3502 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
3503                            unsigned Depth) {
3504   assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
3505 
3506   // If we're told that NaNs won't happen, assume they won't.
3507   if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
3508     if (FPMathOp->hasNoNaNs())
3509       return true;
3510 
3511   // Handle scalar constants.
3512   if (auto *CFP = dyn_cast<ConstantFP>(V))
3513     return !CFP->isNaN();
3514 
3515   if (Depth == MaxAnalysisRecursionDepth)
3516     return false;
3517 
3518   if (auto *Inst = dyn_cast<Instruction>(V)) {
3519     switch (Inst->getOpcode()) {
3520     case Instruction::FAdd:
3521     case Instruction::FSub:
3522       // Adding positive and negative infinity produces NaN.
3523       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3524              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3525              (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) ||
3526               isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1));
3527 
3528     case Instruction::FMul:
3529       // Zero multiplied with infinity produces NaN.
3530       // FIXME: If neither side can be zero fmul never produces NaN.
3531       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) &&
3532              isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) &&
3533              isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3534              isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1);
3535 
3536     case Instruction::FDiv:
3537     case Instruction::FRem:
3538       // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN.
3539       return false;
3540 
3541     case Instruction::Select: {
3542       return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
3543              isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
3544     }
3545     case Instruction::SIToFP:
3546     case Instruction::UIToFP:
3547       return true;
3548     case Instruction::FPTrunc:
3549     case Instruction::FPExt:
3550       return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
3551     default:
3552       break;
3553     }
3554   }
3555 
3556   if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
3557     switch (II->getIntrinsicID()) {
3558     case Intrinsic::canonicalize:
3559     case Intrinsic::fabs:
3560     case Intrinsic::copysign:
3561     case Intrinsic::exp:
3562     case Intrinsic::exp2:
3563     case Intrinsic::floor:
3564     case Intrinsic::ceil:
3565     case Intrinsic::trunc:
3566     case Intrinsic::rint:
3567     case Intrinsic::nearbyint:
3568     case Intrinsic::round:
3569     case Intrinsic::roundeven:
3570       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
3571     case Intrinsic::sqrt:
3572       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
3573              CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
3574     case Intrinsic::minnum:
3575     case Intrinsic::maxnum:
3576       // If either operand is not NaN, the result is not NaN.
3577       return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) ||
3578              isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1);
3579     default:
3580       return false;
3581     }
3582   }
3583 
3584   // Try to handle fixed width vector constants
3585   auto *VFVTy = dyn_cast<FixedVectorType>(V->getType());
3586   if (VFVTy && isa<Constant>(V)) {
3587     // For vectors, verify that each element is not NaN.
3588     unsigned NumElts = VFVTy->getNumElements();
3589     for (unsigned i = 0; i != NumElts; ++i) {
3590       Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
3591       if (!Elt)
3592         return false;
3593       if (isa<UndefValue>(Elt))
3594         continue;
3595       auto *CElt = dyn_cast<ConstantFP>(Elt);
3596       if (!CElt || CElt->isNaN())
3597         return false;
3598     }
3599     // All elements were confirmed not-NaN or undefined.
3600     return true;
3601   }
3602 
3603   // Was not able to prove that V never contains NaN
3604   return false;
3605 }
3606 
3607 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) {
3608 
3609   // All byte-wide stores are splatable, even of arbitrary variables.
3610   if (V->getType()->isIntegerTy(8))
3611     return V;
3612 
3613   LLVMContext &Ctx = V->getContext();
3614 
3615   // Undef don't care.
3616   auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
3617   if (isa<UndefValue>(V))
3618     return UndefInt8;
3619 
3620   // Return Undef for zero-sized type.
3621   if (!DL.getTypeStoreSize(V->getType()).isNonZero())
3622     return UndefInt8;
3623 
3624   Constant *C = dyn_cast<Constant>(V);
3625   if (!C) {
3626     // Conceptually, we could handle things like:
3627     //   %a = zext i8 %X to i16
3628     //   %b = shl i16 %a, 8
3629     //   %c = or i16 %a, %b
3630     // but until there is an example that actually needs this, it doesn't seem
3631     // worth worrying about.
3632     return nullptr;
3633   }
3634 
3635   // Handle 'null' ConstantArrayZero etc.
3636   if (C->isNullValue())
3637     return Constant::getNullValue(Type::getInt8Ty(Ctx));
3638 
3639   // Constant floating-point values can be handled as integer values if the
3640   // corresponding integer value is "byteable".  An important case is 0.0.
3641   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3642     Type *Ty = nullptr;
3643     if (CFP->getType()->isHalfTy())
3644       Ty = Type::getInt16Ty(Ctx);
3645     else if (CFP->getType()->isFloatTy())
3646       Ty = Type::getInt32Ty(Ctx);
3647     else if (CFP->getType()->isDoubleTy())
3648       Ty = Type::getInt64Ty(Ctx);
3649     // Don't handle long double formats, which have strange constraints.
3650     return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL)
3651               : nullptr;
3652   }
3653 
3654   // We can handle constant integers that are multiple of 8 bits.
3655   if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
3656     if (CI->getBitWidth() % 8 == 0) {
3657       assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
3658       if (!CI->getValue().isSplat(8))
3659         return nullptr;
3660       return ConstantInt::get(Ctx, CI->getValue().trunc(8));
3661     }
3662   }
3663 
3664   if (auto *CE = dyn_cast<ConstantExpr>(C)) {
3665     if (CE->getOpcode() == Instruction::IntToPtr) {
3666       auto PS = DL.getPointerSizeInBits(
3667           cast<PointerType>(CE->getType())->getAddressSpace());
3668       return isBytewiseValue(
3669           ConstantExpr::getIntegerCast(CE->getOperand(0),
3670                                        Type::getIntNTy(Ctx, PS), false),
3671           DL);
3672     }
3673   }
3674 
3675   auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
3676     if (LHS == RHS)
3677       return LHS;
3678     if (!LHS || !RHS)
3679       return nullptr;
3680     if (LHS == UndefInt8)
3681       return RHS;
3682     if (RHS == UndefInt8)
3683       return LHS;
3684     return nullptr;
3685   };
3686 
3687   if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
3688     Value *Val = UndefInt8;
3689     for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
3690       if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL))))
3691         return nullptr;
3692     return Val;
3693   }
3694 
3695   if (isa<ConstantAggregate>(C)) {
3696     Value *Val = UndefInt8;
3697     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
3698       if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL))))
3699         return nullptr;
3700     return Val;
3701   }
3702 
3703   // Don't try to handle the handful of other constants.
3704   return nullptr;
3705 }
3706 
3707 // This is the recursive version of BuildSubAggregate. It takes a few different
3708 // arguments. Idxs is the index within the nested struct From that we are
3709 // looking at now (which is of type IndexedType). IdxSkip is the number of
3710 // indices from Idxs that should be left out when inserting into the resulting
3711 // struct. To is the result struct built so far, new insertvalue instructions
3712 // build on that.
3713 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
3714                                 SmallVectorImpl<unsigned> &Idxs,
3715                                 unsigned IdxSkip,
3716                                 Instruction *InsertBefore) {
3717   StructType *STy = dyn_cast<StructType>(IndexedType);
3718   if (STy) {
3719     // Save the original To argument so we can modify it
3720     Value *OrigTo = To;
3721     // General case, the type indexed by Idxs is a struct
3722     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3723       // Process each struct element recursively
3724       Idxs.push_back(i);
3725       Value *PrevTo = To;
3726       To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
3727                              InsertBefore);
3728       Idxs.pop_back();
3729       if (!To) {
3730         // Couldn't find any inserted value for this index? Cleanup
3731         while (PrevTo != OrigTo) {
3732           InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
3733           PrevTo = Del->getAggregateOperand();
3734           Del->eraseFromParent();
3735         }
3736         // Stop processing elements
3737         break;
3738       }
3739     }
3740     // If we successfully found a value for each of our subaggregates
3741     if (To)
3742       return To;
3743   }
3744   // Base case, the type indexed by SourceIdxs is not a struct, or not all of
3745   // the struct's elements had a value that was inserted directly. In the latter
3746   // case, perhaps we can't determine each of the subelements individually, but
3747   // we might be able to find the complete struct somewhere.
3748 
3749   // Find the value that is at that particular spot
3750   Value *V = FindInsertedValue(From, Idxs);
3751 
3752   if (!V)
3753     return nullptr;
3754 
3755   // Insert the value in the new (sub) aggregate
3756   return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
3757                                  "tmp", InsertBefore);
3758 }
3759 
3760 // This helper takes a nested struct and extracts a part of it (which is again a
3761 // struct) into a new value. For example, given the struct:
3762 // { a, { b, { c, d }, e } }
3763 // and the indices "1, 1" this returns
3764 // { c, d }.
3765 //
3766 // It does this by inserting an insertvalue for each element in the resulting
3767 // struct, as opposed to just inserting a single struct. This will only work if
3768 // each of the elements of the substruct are known (ie, inserted into From by an
3769 // insertvalue instruction somewhere).
3770 //
3771 // All inserted insertvalue instructions are inserted before InsertBefore
3772 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
3773                                 Instruction *InsertBefore) {
3774   assert(InsertBefore && "Must have someplace to insert!");
3775   Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
3776                                                              idx_range);
3777   Value *To = UndefValue::get(IndexedType);
3778   SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
3779   unsigned IdxSkip = Idxs.size();
3780 
3781   return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
3782 }
3783 
3784 /// Given an aggregate and a sequence of indices, see if the scalar value
3785 /// indexed is already around as a register, for example if it was inserted
3786 /// directly into the aggregate.
3787 ///
3788 /// If InsertBefore is not null, this function will duplicate (modified)
3789 /// insertvalues when a part of a nested struct is extracted.
3790 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
3791                                Instruction *InsertBefore) {
3792   // Nothing to index? Just return V then (this is useful at the end of our
3793   // recursion).
3794   if (idx_range.empty())
3795     return V;
3796   // We have indices, so V should have an indexable type.
3797   assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
3798          "Not looking at a struct or array?");
3799   assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
3800          "Invalid indices for type?");
3801 
3802   if (Constant *C = dyn_cast<Constant>(V)) {
3803     C = C->getAggregateElement(idx_range[0]);
3804     if (!C) return nullptr;
3805     return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
3806   }
3807 
3808   if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
3809     // Loop the indices for the insertvalue instruction in parallel with the
3810     // requested indices
3811     const unsigned *req_idx = idx_range.begin();
3812     for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
3813          i != e; ++i, ++req_idx) {
3814       if (req_idx == idx_range.end()) {
3815         // We can't handle this without inserting insertvalues
3816         if (!InsertBefore)
3817           return nullptr;
3818 
3819         // The requested index identifies a part of a nested aggregate. Handle
3820         // this specially. For example,
3821         // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
3822         // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
3823         // %C = extractvalue {i32, { i32, i32 } } %B, 1
3824         // This can be changed into
3825         // %A = insertvalue {i32, i32 } undef, i32 10, 0
3826         // %C = insertvalue {i32, i32 } %A, i32 11, 1
3827         // which allows the unused 0,0 element from the nested struct to be
3828         // removed.
3829         return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
3830                                  InsertBefore);
3831       }
3832 
3833       // This insert value inserts something else than what we are looking for.
3834       // See if the (aggregate) value inserted into has the value we are
3835       // looking for, then.
3836       if (*req_idx != *i)
3837         return FindInsertedValue(I->getAggregateOperand(), idx_range,
3838                                  InsertBefore);
3839     }
3840     // If we end up here, the indices of the insertvalue match with those
3841     // requested (though possibly only partially). Now we recursively look at
3842     // the inserted value, passing any remaining indices.
3843     return FindInsertedValue(I->getInsertedValueOperand(),
3844                              makeArrayRef(req_idx, idx_range.end()),
3845                              InsertBefore);
3846   }
3847 
3848   if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
3849     // If we're extracting a value from an aggregate that was extracted from
3850     // something else, we can extract from that something else directly instead.
3851     // However, we will need to chain I's indices with the requested indices.
3852 
3853     // Calculate the number of indices required
3854     unsigned size = I->getNumIndices() + idx_range.size();
3855     // Allocate some space to put the new indices in
3856     SmallVector<unsigned, 5> Idxs;
3857     Idxs.reserve(size);
3858     // Add indices from the extract value instruction
3859     Idxs.append(I->idx_begin(), I->idx_end());
3860 
3861     // Add requested indices
3862     Idxs.append(idx_range.begin(), idx_range.end());
3863 
3864     assert(Idxs.size() == size
3865            && "Number of indices added not correct?");
3866 
3867     return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
3868   }
3869   // Otherwise, we don't know (such as, extracting from a function return value
3870   // or load instruction)
3871   return nullptr;
3872 }
3873 
3874 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
3875                                        unsigned CharSize) {
3876   // Make sure the GEP has exactly three arguments.
3877   if (GEP->getNumOperands() != 3)
3878     return false;
3879 
3880   // Make sure the index-ee is a pointer to array of \p CharSize integers.
3881   // CharSize.
3882   ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
3883   if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
3884     return false;
3885 
3886   // Check to make sure that the first operand of the GEP is an integer and
3887   // has value 0 so that we are sure we're indexing into the initializer.
3888   const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
3889   if (!FirstIdx || !FirstIdx->isZero())
3890     return false;
3891 
3892   return true;
3893 }
3894 
3895 bool llvm::getConstantDataArrayInfo(const Value *V,
3896                                     ConstantDataArraySlice &Slice,
3897                                     unsigned ElementSize, uint64_t Offset) {
3898   assert(V);
3899 
3900   // Look through bitcast instructions and geps.
3901   V = V->stripPointerCasts();
3902 
3903   // If the value is a GEP instruction or constant expression, treat it as an
3904   // offset.
3905   if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
3906     // The GEP operator should be based on a pointer to string constant, and is
3907     // indexing into the string constant.
3908     if (!isGEPBasedOnPointerToString(GEP, ElementSize))
3909       return false;
3910 
3911     // If the second index isn't a ConstantInt, then this is a variable index
3912     // into the array.  If this occurs, we can't say anything meaningful about
3913     // the string.
3914     uint64_t StartIdx = 0;
3915     if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
3916       StartIdx = CI->getZExtValue();
3917     else
3918       return false;
3919     return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
3920                                     StartIdx + Offset);
3921   }
3922 
3923   // The GEP instruction, constant or instruction, must reference a global
3924   // variable that is a constant and is initialized. The referenced constant
3925   // initializer is the array that we'll use for optimization.
3926   const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
3927   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
3928     return false;
3929 
3930   const ConstantDataArray *Array;
3931   ArrayType *ArrayTy;
3932   if (GV->getInitializer()->isNullValue()) {
3933     Type *GVTy = GV->getValueType();
3934     if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
3935       // A zeroinitializer for the array; there is no ConstantDataArray.
3936       Array = nullptr;
3937     } else {
3938       const DataLayout &DL = GV->getParent()->getDataLayout();
3939       uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize();
3940       uint64_t Length = SizeInBytes / (ElementSize / 8);
3941       if (Length <= Offset)
3942         return false;
3943 
3944       Slice.Array = nullptr;
3945       Slice.Offset = 0;
3946       Slice.Length = Length - Offset;
3947       return true;
3948     }
3949   } else {
3950     // This must be a ConstantDataArray.
3951     Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
3952     if (!Array)
3953       return false;
3954     ArrayTy = Array->getType();
3955   }
3956   if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
3957     return false;
3958 
3959   uint64_t NumElts = ArrayTy->getArrayNumElements();
3960   if (Offset > NumElts)
3961     return false;
3962 
3963   Slice.Array = Array;
3964   Slice.Offset = Offset;
3965   Slice.Length = NumElts - Offset;
3966   return true;
3967 }
3968 
3969 /// This function computes the length of a null-terminated C string pointed to
3970 /// by V. If successful, it returns true and returns the string in Str.
3971 /// If unsuccessful, it returns false.
3972 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
3973                                  uint64_t Offset, bool TrimAtNul) {
3974   ConstantDataArraySlice Slice;
3975   if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
3976     return false;
3977 
3978   if (Slice.Array == nullptr) {
3979     if (TrimAtNul) {
3980       Str = StringRef();
3981       return true;
3982     }
3983     if (Slice.Length == 1) {
3984       Str = StringRef("", 1);
3985       return true;
3986     }
3987     // We cannot instantiate a StringRef as we do not have an appropriate string
3988     // of 0s at hand.
3989     return false;
3990   }
3991 
3992   // Start out with the entire array in the StringRef.
3993   Str = Slice.Array->getAsString();
3994   // Skip over 'offset' bytes.
3995   Str = Str.substr(Slice.Offset);
3996 
3997   if (TrimAtNul) {
3998     // Trim off the \0 and anything after it.  If the array is not nul
3999     // terminated, we just return the whole end of string.  The client may know
4000     // some other way that the string is length-bound.
4001     Str = Str.substr(0, Str.find('\0'));
4002   }
4003   return true;
4004 }
4005 
4006 // These next two are very similar to the above, but also look through PHI
4007 // nodes.
4008 // TODO: See if we can integrate these two together.
4009 
4010 /// If we can compute the length of the string pointed to by
4011 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4012 static uint64_t GetStringLengthH(const Value *V,
4013                                  SmallPtrSetImpl<const PHINode*> &PHIs,
4014                                  unsigned CharSize) {
4015   // Look through noop bitcast instructions.
4016   V = V->stripPointerCasts();
4017 
4018   // If this is a PHI node, there are two cases: either we have already seen it
4019   // or we haven't.
4020   if (const PHINode *PN = dyn_cast<PHINode>(V)) {
4021     if (!PHIs.insert(PN).second)
4022       return ~0ULL;  // already in the set.
4023 
4024     // If it was new, see if all the input strings are the same length.
4025     uint64_t LenSoFar = ~0ULL;
4026     for (Value *IncValue : PN->incoming_values()) {
4027       uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
4028       if (Len == 0) return 0; // Unknown length -> unknown.
4029 
4030       if (Len == ~0ULL) continue;
4031 
4032       if (Len != LenSoFar && LenSoFar != ~0ULL)
4033         return 0;    // Disagree -> unknown.
4034       LenSoFar = Len;
4035     }
4036 
4037     // Success, all agree.
4038     return LenSoFar;
4039   }
4040 
4041   // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
4042   if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
4043     uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
4044     if (Len1 == 0) return 0;
4045     uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
4046     if (Len2 == 0) return 0;
4047     if (Len1 == ~0ULL) return Len2;
4048     if (Len2 == ~0ULL) return Len1;
4049     if (Len1 != Len2) return 0;
4050     return Len1;
4051   }
4052 
4053   // Otherwise, see if we can read the string.
4054   ConstantDataArraySlice Slice;
4055   if (!getConstantDataArrayInfo(V, Slice, CharSize))
4056     return 0;
4057 
4058   if (Slice.Array == nullptr)
4059     return 1;
4060 
4061   // Search for nul characters
4062   unsigned NullIndex = 0;
4063   for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
4064     if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
4065       break;
4066   }
4067 
4068   return NullIndex + 1;
4069 }
4070 
4071 /// If we can compute the length of the string pointed to by
4072 /// the specified pointer, return 'len+1'.  If we can't, return 0.
4073 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
4074   if (!V->getType()->isPointerTy())
4075     return 0;
4076 
4077   SmallPtrSet<const PHINode*, 32> PHIs;
4078   uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
4079   // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
4080   // an empty string as a length.
4081   return Len == ~0ULL ? 1 : Len;
4082 }
4083 
4084 const Value *
4085 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call,
4086                                            bool MustPreserveNullness) {
4087   assert(Call &&
4088          "getArgumentAliasingToReturnedPointer only works on nonnull calls");
4089   if (const Value *RV = Call->getReturnedArgOperand())
4090     return RV;
4091   // This can be used only as a aliasing property.
4092   if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4093           Call, MustPreserveNullness))
4094     return Call->getArgOperand(0);
4095   return nullptr;
4096 }
4097 
4098 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
4099     const CallBase *Call, bool MustPreserveNullness) {
4100   switch (Call->getIntrinsicID()) {
4101   case Intrinsic::launder_invariant_group:
4102   case Intrinsic::strip_invariant_group:
4103   case Intrinsic::aarch64_irg:
4104   case Intrinsic::aarch64_tagp:
4105     return true;
4106   case Intrinsic::ptrmask:
4107     return !MustPreserveNullness;
4108   default:
4109     return false;
4110   }
4111 }
4112 
4113 /// \p PN defines a loop-variant pointer to an object.  Check if the
4114 /// previous iteration of the loop was referring to the same object as \p PN.
4115 static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
4116                                          const LoopInfo *LI) {
4117   // Find the loop-defined value.
4118   Loop *L = LI->getLoopFor(PN->getParent());
4119   if (PN->getNumIncomingValues() != 2)
4120     return true;
4121 
4122   // Find the value from previous iteration.
4123   auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
4124   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4125     PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
4126   if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
4127     return true;
4128 
4129   // If a new pointer is loaded in the loop, the pointer references a different
4130   // object in every iteration.  E.g.:
4131   //    for (i)
4132   //       int *p = a[i];
4133   //       ...
4134   if (auto *Load = dyn_cast<LoadInst>(PrevValue))
4135     if (!L->isLoopInvariant(Load->getPointerOperand()))
4136       return false;
4137   return true;
4138 }
4139 
4140 Value *llvm::getUnderlyingObject(Value *V, unsigned MaxLookup) {
4141   if (!V->getType()->isPointerTy())
4142     return V;
4143   for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
4144     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
4145       V = GEP->getPointerOperand();
4146     } else if (Operator::getOpcode(V) == Instruction::BitCast ||
4147                Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
4148       V = cast<Operator>(V)->getOperand(0);
4149       if (!V->getType()->isPointerTy())
4150         return V;
4151     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
4152       if (GA->isInterposable())
4153         return V;
4154       V = GA->getAliasee();
4155     } else {
4156       if (auto *PHI = dyn_cast<PHINode>(V)) {
4157         // Look through single-arg phi nodes created by LCSSA.
4158         if (PHI->getNumIncomingValues() == 1) {
4159           V = PHI->getIncomingValue(0);
4160           continue;
4161         }
4162       } else if (auto *Call = dyn_cast<CallBase>(V)) {
4163         // CaptureTracking can know about special capturing properties of some
4164         // intrinsics like launder.invariant.group, that can't be expressed with
4165         // the attributes, but have properties like returning aliasing pointer.
4166         // Because some analysis may assume that nocaptured pointer is not
4167         // returned from some special intrinsic (because function would have to
4168         // be marked with returns attribute), it is crucial to use this function
4169         // because it should be in sync with CaptureTracking. Not using it may
4170         // cause weird miscompilations where 2 aliasing pointers are assumed to
4171         // noalias.
4172         if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) {
4173           V = RP;
4174           continue;
4175         }
4176       }
4177 
4178       return V;
4179     }
4180     assert(V->getType()->isPointerTy() && "Unexpected operand type!");
4181   }
4182   return V;
4183 }
4184 
4185 void llvm::getUnderlyingObjects(const Value *V,
4186                                 SmallVectorImpl<const Value *> &Objects,
4187                                 LoopInfo *LI, unsigned MaxLookup) {
4188   SmallPtrSet<const Value *, 4> Visited;
4189   SmallVector<const Value *, 4> Worklist;
4190   Worklist.push_back(V);
4191   do {
4192     const Value *P = Worklist.pop_back_val();
4193     P = getUnderlyingObject(P, MaxLookup);
4194 
4195     if (!Visited.insert(P).second)
4196       continue;
4197 
4198     if (auto *SI = dyn_cast<SelectInst>(P)) {
4199       Worklist.push_back(SI->getTrueValue());
4200       Worklist.push_back(SI->getFalseValue());
4201       continue;
4202     }
4203 
4204     if (auto *PN = dyn_cast<PHINode>(P)) {
4205       // If this PHI changes the underlying object in every iteration of the
4206       // loop, don't look through it.  Consider:
4207       //   int **A;
4208       //   for (i) {
4209       //     Prev = Curr;     // Prev = PHI (Prev_0, Curr)
4210       //     Curr = A[i];
4211       //     *Prev, *Curr;
4212       //
4213       // Prev is tracking Curr one iteration behind so they refer to different
4214       // underlying objects.
4215       if (!LI || !LI->isLoopHeader(PN->getParent()) ||
4216           isSameUnderlyingObjectInLoop(PN, LI))
4217         for (Value *IncValue : PN->incoming_values())
4218           Worklist.push_back(IncValue);
4219       continue;
4220     }
4221 
4222     Objects.push_back(P);
4223   } while (!Worklist.empty());
4224 }
4225 
4226 /// This is the function that does the work of looking through basic
4227 /// ptrtoint+arithmetic+inttoptr sequences.
4228 static const Value *getUnderlyingObjectFromInt(const Value *V) {
4229   do {
4230     if (const Operator *U = dyn_cast<Operator>(V)) {
4231       // If we find a ptrtoint, we can transfer control back to the
4232       // regular getUnderlyingObjectFromInt.
4233       if (U->getOpcode() == Instruction::PtrToInt)
4234         return U->getOperand(0);
4235       // If we find an add of a constant, a multiplied value, or a phi, it's
4236       // likely that the other operand will lead us to the base
4237       // object. We don't have to worry about the case where the
4238       // object address is somehow being computed by the multiply,
4239       // because our callers only care when the result is an
4240       // identifiable object.
4241       if (U->getOpcode() != Instruction::Add ||
4242           (!isa<ConstantInt>(U->getOperand(1)) &&
4243            Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
4244            !isa<PHINode>(U->getOperand(1))))
4245         return V;
4246       V = U->getOperand(0);
4247     } else {
4248       return V;
4249     }
4250     assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
4251   } while (true);
4252 }
4253 
4254 /// This is a wrapper around getUnderlyingObjects and adds support for basic
4255 /// ptrtoint+arithmetic+inttoptr sequences.
4256 /// It returns false if unidentified object is found in getUnderlyingObjects.
4257 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
4258                                           SmallVectorImpl<Value *> &Objects) {
4259   SmallPtrSet<const Value *, 16> Visited;
4260   SmallVector<const Value *, 4> Working(1, V);
4261   do {
4262     V = Working.pop_back_val();
4263 
4264     SmallVector<const Value *, 4> Objs;
4265     getUnderlyingObjects(V, Objs);
4266 
4267     for (const Value *V : Objs) {
4268       if (!Visited.insert(V).second)
4269         continue;
4270       if (Operator::getOpcode(V) == Instruction::IntToPtr) {
4271         const Value *O =
4272           getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
4273         if (O->getType()->isPointerTy()) {
4274           Working.push_back(O);
4275           continue;
4276         }
4277       }
4278       // If getUnderlyingObjects fails to find an identifiable object,
4279       // getUnderlyingObjectsForCodeGen also fails for safety.
4280       if (!isIdentifiedObject(V)) {
4281         Objects.clear();
4282         return false;
4283       }
4284       Objects.push_back(const_cast<Value *>(V));
4285     }
4286   } while (!Working.empty());
4287   return true;
4288 }
4289 
4290 AllocaInst *llvm::findAllocaForValue(Value *V, bool OffsetZero) {
4291   AllocaInst *Result = nullptr;
4292   SmallPtrSet<Value *, 4> Visited;
4293   SmallVector<Value *, 4> Worklist;
4294 
4295   auto AddWork = [&](Value *V) {
4296     if (Visited.insert(V).second)
4297       Worklist.push_back(V);
4298   };
4299 
4300   AddWork(V);
4301   do {
4302     V = Worklist.pop_back_val();
4303     assert(Visited.count(V));
4304 
4305     if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
4306       if (Result && Result != AI)
4307         return nullptr;
4308       Result = AI;
4309     } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
4310       AddWork(CI->getOperand(0));
4311     } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
4312       for (Value *IncValue : PN->incoming_values())
4313         AddWork(IncValue);
4314     } else if (auto *SI = dyn_cast<SelectInst>(V)) {
4315       AddWork(SI->getTrueValue());
4316       AddWork(SI->getFalseValue());
4317     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
4318       if (OffsetZero && !GEP->hasAllZeroIndices())
4319         return nullptr;
4320       AddWork(GEP->getPointerOperand());
4321     } else {
4322       return nullptr;
4323     }
4324   } while (!Worklist.empty());
4325 
4326   return Result;
4327 }
4328 
4329 static bool onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4330     const Value *V, bool AllowLifetime, bool AllowDroppable) {
4331   for (const User *U : V->users()) {
4332     const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
4333     if (!II)
4334       return false;
4335 
4336     if (AllowLifetime && II->isLifetimeStartOrEnd())
4337       continue;
4338 
4339     if (AllowDroppable && II->isDroppable())
4340       continue;
4341 
4342     return false;
4343   }
4344   return true;
4345 }
4346 
4347 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
4348   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4349       V, /* AllowLifetime */ true, /* AllowDroppable */ false);
4350 }
4351 bool llvm::onlyUsedByLifetimeMarkersOrDroppableInsts(const Value *V) {
4352   return onlyUsedByLifetimeMarkersOrDroppableInstsHelper(
4353       V, /* AllowLifetime */ true, /* AllowDroppable */ true);
4354 }
4355 
4356 bool llvm::mustSuppressSpeculation(const LoadInst &LI) {
4357   if (!LI.isUnordered())
4358     return true;
4359   const Function &F = *LI.getFunction();
4360   // Speculative load may create a race that did not exist in the source.
4361   return F.hasFnAttribute(Attribute::SanitizeThread) ||
4362     // Speculative load may load data from dirty regions.
4363     F.hasFnAttribute(Attribute::SanitizeAddress) ||
4364     F.hasFnAttribute(Attribute::SanitizeHWAddress);
4365 }
4366 
4367 
4368 bool llvm::isSafeToSpeculativelyExecute(const Value *V,
4369                                         const Instruction *CtxI,
4370                                         const DominatorTree *DT) {
4371   const Operator *Inst = dyn_cast<Operator>(V);
4372   if (!Inst)
4373     return false;
4374 
4375   for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
4376     if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
4377       if (C->canTrap())
4378         return false;
4379 
4380   switch (Inst->getOpcode()) {
4381   default:
4382     return true;
4383   case Instruction::UDiv:
4384   case Instruction::URem: {
4385     // x / y is undefined if y == 0.
4386     const APInt *V;
4387     if (match(Inst->getOperand(1), m_APInt(V)))
4388       return *V != 0;
4389     return false;
4390   }
4391   case Instruction::SDiv:
4392   case Instruction::SRem: {
4393     // x / y is undefined if y == 0 or x == INT_MIN and y == -1
4394     const APInt *Numerator, *Denominator;
4395     if (!match(Inst->getOperand(1), m_APInt(Denominator)))
4396       return false;
4397     // We cannot hoist this division if the denominator is 0.
4398     if (*Denominator == 0)
4399       return false;
4400     // It's safe to hoist if the denominator is not 0 or -1.
4401     if (*Denominator != -1)
4402       return true;
4403     // At this point we know that the denominator is -1.  It is safe to hoist as
4404     // long we know that the numerator is not INT_MIN.
4405     if (match(Inst->getOperand(0), m_APInt(Numerator)))
4406       return !Numerator->isMinSignedValue();
4407     // The numerator *might* be MinSignedValue.
4408     return false;
4409   }
4410   case Instruction::Load: {
4411     const LoadInst *LI = cast<LoadInst>(Inst);
4412     if (mustSuppressSpeculation(*LI))
4413       return false;
4414     const DataLayout &DL = LI->getModule()->getDataLayout();
4415     return isDereferenceableAndAlignedPointer(
4416         LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()),
4417         DL, CtxI, DT);
4418   }
4419   case Instruction::Call: {
4420     auto *CI = cast<const CallInst>(Inst);
4421     const Function *Callee = CI->getCalledFunction();
4422 
4423     // The called function could have undefined behavior or side-effects, even
4424     // if marked readnone nounwind.
4425     return Callee && Callee->isSpeculatable();
4426   }
4427   case Instruction::VAArg:
4428   case Instruction::Alloca:
4429   case Instruction::Invoke:
4430   case Instruction::CallBr:
4431   case Instruction::PHI:
4432   case Instruction::Store:
4433   case Instruction::Ret:
4434   case Instruction::Br:
4435   case Instruction::IndirectBr:
4436   case Instruction::Switch:
4437   case Instruction::Unreachable:
4438   case Instruction::Fence:
4439   case Instruction::AtomicRMW:
4440   case Instruction::AtomicCmpXchg:
4441   case Instruction::LandingPad:
4442   case Instruction::Resume:
4443   case Instruction::CatchSwitch:
4444   case Instruction::CatchPad:
4445   case Instruction::CatchRet:
4446   case Instruction::CleanupPad:
4447   case Instruction::CleanupRet:
4448     return false; // Misc instructions which have effects
4449   }
4450 }
4451 
4452 bool llvm::mayBeMemoryDependent(const Instruction &I) {
4453   return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
4454 }
4455 
4456 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult.
4457 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) {
4458   switch (OR) {
4459     case ConstantRange::OverflowResult::MayOverflow:
4460       return OverflowResult::MayOverflow;
4461     case ConstantRange::OverflowResult::AlwaysOverflowsLow:
4462       return OverflowResult::AlwaysOverflowsLow;
4463     case ConstantRange::OverflowResult::AlwaysOverflowsHigh:
4464       return OverflowResult::AlwaysOverflowsHigh;
4465     case ConstantRange::OverflowResult::NeverOverflows:
4466       return OverflowResult::NeverOverflows;
4467   }
4468   llvm_unreachable("Unknown OverflowResult");
4469 }
4470 
4471 /// Combine constant ranges from computeConstantRange() and computeKnownBits().
4472 static ConstantRange computeConstantRangeIncludingKnownBits(
4473     const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth,
4474     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4475     OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) {
4476   KnownBits Known = computeKnownBits(
4477       V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo);
4478   ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned);
4479   ConstantRange CR2 = computeConstantRange(V, UseInstrInfo);
4480   ConstantRange::PreferredRangeType RangeType =
4481       ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned;
4482   return CR1.intersectWith(CR2, RangeType);
4483 }
4484 
4485 OverflowResult llvm::computeOverflowForUnsignedMul(
4486     const Value *LHS, const Value *RHS, const DataLayout &DL,
4487     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4488     bool UseInstrInfo) {
4489   KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4490                                         nullptr, UseInstrInfo);
4491   KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4492                                         nullptr, UseInstrInfo);
4493   ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false);
4494   ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false);
4495   return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange));
4496 }
4497 
4498 OverflowResult
4499 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
4500                                   const DataLayout &DL, AssumptionCache *AC,
4501                                   const Instruction *CxtI,
4502                                   const DominatorTree *DT, bool UseInstrInfo) {
4503   // Multiplying n * m significant bits yields a result of n + m significant
4504   // bits. If the total number of significant bits does not exceed the
4505   // result bit width (minus 1), there is no overflow.
4506   // This means if we have enough leading sign bits in the operands
4507   // we can guarantee that the result does not overflow.
4508   // Ref: "Hacker's Delight" by Henry Warren
4509   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
4510 
4511   // Note that underestimating the number of sign bits gives a more
4512   // conservative answer.
4513   unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
4514                       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
4515 
4516   // First handle the easy case: if we have enough sign bits there's
4517   // definitely no overflow.
4518   if (SignBits > BitWidth + 1)
4519     return OverflowResult::NeverOverflows;
4520 
4521   // There are two ambiguous cases where there can be no overflow:
4522   //   SignBits == BitWidth + 1    and
4523   //   SignBits == BitWidth
4524   // The second case is difficult to check, therefore we only handle the
4525   // first case.
4526   if (SignBits == BitWidth + 1) {
4527     // It overflows only when both arguments are negative and the true
4528     // product is exactly the minimum negative number.
4529     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
4530     // For simplicity we just check if at least one side is not negative.
4531     KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
4532                                           nullptr, UseInstrInfo);
4533     KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
4534                                           nullptr, UseInstrInfo);
4535     if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
4536       return OverflowResult::NeverOverflows;
4537   }
4538   return OverflowResult::MayOverflow;
4539 }
4540 
4541 OverflowResult llvm::computeOverflowForUnsignedAdd(
4542     const Value *LHS, const Value *RHS, const DataLayout &DL,
4543     AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
4544     bool UseInstrInfo) {
4545   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4546       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4547       nullptr, UseInstrInfo);
4548   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4549       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT,
4550       nullptr, UseInstrInfo);
4551   return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange));
4552 }
4553 
4554 static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
4555                                                   const Value *RHS,
4556                                                   const AddOperator *Add,
4557                                                   const DataLayout &DL,
4558                                                   AssumptionCache *AC,
4559                                                   const Instruction *CxtI,
4560                                                   const DominatorTree *DT) {
4561   if (Add && Add->hasNoSignedWrap()) {
4562     return OverflowResult::NeverOverflows;
4563   }
4564 
4565   // If LHS and RHS each have at least two sign bits, the addition will look
4566   // like
4567   //
4568   // XX..... +
4569   // YY.....
4570   //
4571   // If the carry into the most significant position is 0, X and Y can't both
4572   // be 1 and therefore the carry out of the addition is also 0.
4573   //
4574   // If the carry into the most significant position is 1, X and Y can't both
4575   // be 0 and therefore the carry out of the addition is also 1.
4576   //
4577   // Since the carry into the most significant position is always equal to
4578   // the carry out of the addition, there is no signed overflow.
4579   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4580       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4581     return OverflowResult::NeverOverflows;
4582 
4583   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4584       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4585   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4586       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4587   OverflowResult OR =
4588       mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange));
4589   if (OR != OverflowResult::MayOverflow)
4590     return OR;
4591 
4592   // The remaining code needs Add to be available. Early returns if not so.
4593   if (!Add)
4594     return OverflowResult::MayOverflow;
4595 
4596   // If the sign of Add is the same as at least one of the operands, this add
4597   // CANNOT overflow. If this can be determined from the known bits of the
4598   // operands the above signedAddMayOverflow() check will have already done so.
4599   // The only other way to improve on the known bits is from an assumption, so
4600   // call computeKnownBitsFromAssume() directly.
4601   bool LHSOrRHSKnownNonNegative =
4602       (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative());
4603   bool LHSOrRHSKnownNegative =
4604       (LHSRange.isAllNegative() || RHSRange.isAllNegative());
4605   if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
4606     KnownBits AddKnown(LHSRange.getBitWidth());
4607     computeKnownBitsFromAssume(
4608         Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true));
4609     if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
4610         (AddKnown.isNegative() && LHSOrRHSKnownNegative))
4611       return OverflowResult::NeverOverflows;
4612   }
4613 
4614   return OverflowResult::MayOverflow;
4615 }
4616 
4617 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
4618                                                    const Value *RHS,
4619                                                    const DataLayout &DL,
4620                                                    AssumptionCache *AC,
4621                                                    const Instruction *CxtI,
4622                                                    const DominatorTree *DT) {
4623   // Checking for conditions implied by dominating conditions may be expensive.
4624   // Limit it to usub_with_overflow calls for now.
4625   if (match(CxtI,
4626             m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value())))
4627     if (auto C =
4628             isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) {
4629       if (*C)
4630         return OverflowResult::NeverOverflows;
4631       return OverflowResult::AlwaysOverflowsLow;
4632     }
4633   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4634       LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4635   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4636       RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT);
4637   return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange));
4638 }
4639 
4640 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
4641                                                  const Value *RHS,
4642                                                  const DataLayout &DL,
4643                                                  AssumptionCache *AC,
4644                                                  const Instruction *CxtI,
4645                                                  const DominatorTree *DT) {
4646   // If LHS and RHS each have at least two sign bits, the subtraction
4647   // cannot overflow.
4648   if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
4649       ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
4650     return OverflowResult::NeverOverflows;
4651 
4652   ConstantRange LHSRange = computeConstantRangeIncludingKnownBits(
4653       LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4654   ConstantRange RHSRange = computeConstantRangeIncludingKnownBits(
4655       RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT);
4656   return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange));
4657 }
4658 
4659 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO,
4660                                      const DominatorTree &DT) {
4661   SmallVector<const BranchInst *, 2> GuardingBranches;
4662   SmallVector<const ExtractValueInst *, 2> Results;
4663 
4664   for (const User *U : WO->users()) {
4665     if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
4666       assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
4667 
4668       if (EVI->getIndices()[0] == 0)
4669         Results.push_back(EVI);
4670       else {
4671         assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
4672 
4673         for (const auto *U : EVI->users())
4674           if (const auto *B = dyn_cast<BranchInst>(U)) {
4675             assert(B->isConditional() && "How else is it using an i1?");
4676             GuardingBranches.push_back(B);
4677           }
4678       }
4679     } else {
4680       // We are using the aggregate directly in a way we don't want to analyze
4681       // here (storing it to a global, say).
4682       return false;
4683     }
4684   }
4685 
4686   auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
4687     BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
4688     if (!NoWrapEdge.isSingleEdge())
4689       return false;
4690 
4691     // Check if all users of the add are provably no-wrap.
4692     for (const auto *Result : Results) {
4693       // If the extractvalue itself is not executed on overflow, the we don't
4694       // need to check each use separately, since domination is transitive.
4695       if (DT.dominates(NoWrapEdge, Result->getParent()))
4696         continue;
4697 
4698       for (auto &RU : Result->uses())
4699         if (!DT.dominates(NoWrapEdge, RU))
4700           return false;
4701     }
4702 
4703     return true;
4704   };
4705 
4706   return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
4707 }
4708 
4709 static bool canCreateUndefOrPoison(const Operator *Op, bool PoisonOnly) {
4710   // See whether I has flags that may create poison
4711   if (const auto *OvOp = dyn_cast<OverflowingBinaryOperator>(Op)) {
4712     if (OvOp->hasNoSignedWrap() || OvOp->hasNoUnsignedWrap())
4713       return true;
4714   }
4715   if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(Op))
4716     if (ExactOp->isExact())
4717       return true;
4718   if (const auto *FP = dyn_cast<FPMathOperator>(Op)) {
4719     auto FMF = FP->getFastMathFlags();
4720     if (FMF.noNaNs() || FMF.noInfs())
4721       return true;
4722   }
4723 
4724   unsigned Opcode = Op->getOpcode();
4725 
4726   // Check whether opcode is a poison/undef-generating operation
4727   switch (Opcode) {
4728   case Instruction::Shl:
4729   case Instruction::AShr:
4730   case Instruction::LShr: {
4731     // Shifts return poison if shiftwidth is larger than the bitwidth.
4732     if (auto *C = dyn_cast<Constant>(Op->getOperand(1))) {
4733       SmallVector<Constant *, 4> ShiftAmounts;
4734       if (auto *FVTy = dyn_cast<FixedVectorType>(C->getType())) {
4735         unsigned NumElts = FVTy->getNumElements();
4736         for (unsigned i = 0; i < NumElts; ++i)
4737           ShiftAmounts.push_back(C->getAggregateElement(i));
4738       } else if (isa<ScalableVectorType>(C->getType()))
4739         return true; // Can't tell, just return true to be safe
4740       else
4741         ShiftAmounts.push_back(C);
4742 
4743       bool Safe = llvm::all_of(ShiftAmounts, [](Constant *C) {
4744         auto *CI = dyn_cast<ConstantInt>(C);
4745         return CI && CI->getValue().ult(C->getType()->getIntegerBitWidth());
4746       });
4747       return !Safe;
4748     }
4749     return true;
4750   }
4751   case Instruction::FPToSI:
4752   case Instruction::FPToUI:
4753     // fptosi/ui yields poison if the resulting value does not fit in the
4754     // destination type.
4755     return true;
4756   case Instruction::Call:
4757   case Instruction::CallBr:
4758   case Instruction::Invoke: {
4759     const auto *CB = cast<CallBase>(Op);
4760     return !CB->hasRetAttr(Attribute::NoUndef);
4761   }
4762   case Instruction::InsertElement:
4763   case Instruction::ExtractElement: {
4764     // If index exceeds the length of the vector, it returns poison
4765     auto *VTy = cast<VectorType>(Op->getOperand(0)->getType());
4766     unsigned IdxOp = Op->getOpcode() == Instruction::InsertElement ? 2 : 1;
4767     auto *Idx = dyn_cast<ConstantInt>(Op->getOperand(IdxOp));
4768     if (!Idx || Idx->getValue().uge(VTy->getElementCount().getKnownMinValue()))
4769       return true;
4770     return false;
4771   }
4772   case Instruction::ShuffleVector: {
4773     // shufflevector may return undef.
4774     if (PoisonOnly)
4775       return false;
4776     ArrayRef<int> Mask = isa<ConstantExpr>(Op)
4777                              ? cast<ConstantExpr>(Op)->getShuffleMask()
4778                              : cast<ShuffleVectorInst>(Op)->getShuffleMask();
4779     return any_of(Mask, [](int Elt) { return Elt == UndefMaskElem; });
4780   }
4781   case Instruction::FNeg:
4782   case Instruction::PHI:
4783   case Instruction::Select:
4784   case Instruction::URem:
4785   case Instruction::SRem:
4786   case Instruction::ExtractValue:
4787   case Instruction::InsertValue:
4788   case Instruction::Freeze:
4789   case Instruction::ICmp:
4790   case Instruction::FCmp:
4791     return false;
4792   case Instruction::GetElementPtr: {
4793     const auto *GEP = cast<GEPOperator>(Op);
4794     return GEP->isInBounds();
4795   }
4796   default: {
4797     const auto *CE = dyn_cast<ConstantExpr>(Op);
4798     if (isa<CastInst>(Op) || (CE && CE->isCast()))
4799       return false;
4800     else if (Instruction::isBinaryOp(Opcode))
4801       return false;
4802     // Be conservative and return true.
4803     return true;
4804   }
4805   }
4806 }
4807 
4808 bool llvm::canCreateUndefOrPoison(const Operator *Op) {
4809   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/false);
4810 }
4811 
4812 bool llvm::canCreatePoison(const Operator *Op) {
4813   return ::canCreateUndefOrPoison(Op, /*PoisonOnly=*/true);
4814 }
4815 
4816 static bool programUndefinedIfUndefOrPoison(const Value *V,
4817                                             bool PoisonOnly);
4818 
4819 static bool isGuaranteedNotToBeUndefOrPoison(const Value *V,
4820                                              AssumptionCache *AC,
4821                                              const Instruction *CtxI,
4822                                              const DominatorTree *DT,
4823                                              unsigned Depth, bool PoisonOnly) {
4824   if (Depth >= MaxAnalysisRecursionDepth)
4825     return false;
4826 
4827   if (isa<MetadataAsValue>(V))
4828     return false;
4829 
4830   if (const auto *A = dyn_cast<Argument>(V)) {
4831     if (A->hasAttribute(Attribute::NoUndef))
4832       return true;
4833   }
4834 
4835   if (auto *C = dyn_cast<Constant>(V)) {
4836     if (isa<UndefValue>(C))
4837       return PoisonOnly;
4838 
4839     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(V) ||
4840         isa<ConstantPointerNull>(C) || isa<Function>(C))
4841       return true;
4842 
4843     if (C->getType()->isVectorTy() && !isa<ConstantExpr>(C))
4844       return (PoisonOnly || !C->containsUndefElement()) &&
4845              !C->containsConstantExpression();
4846   }
4847 
4848   // Strip cast operations from a pointer value.
4849   // Note that stripPointerCastsSameRepresentation can strip off getelementptr
4850   // inbounds with zero offset. To guarantee that the result isn't poison, the
4851   // stripped pointer is checked as it has to be pointing into an allocated
4852   // object or be null `null` to ensure `inbounds` getelement pointers with a
4853   // zero offset could not produce poison.
4854   // It can strip off addrspacecast that do not change bit representation as
4855   // well. We believe that such addrspacecast is equivalent to no-op.
4856   auto *StrippedV = V->stripPointerCastsSameRepresentation();
4857   if (isa<AllocaInst>(StrippedV) || isa<GlobalVariable>(StrippedV) ||
4858       isa<Function>(StrippedV) || isa<ConstantPointerNull>(StrippedV))
4859     return true;
4860 
4861   auto OpCheck = [&](const Value *V) {
4862     return isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth + 1,
4863                                             PoisonOnly);
4864   };
4865 
4866   if (auto *Opr = dyn_cast<Operator>(V)) {
4867     // If the value is a freeze instruction, then it can never
4868     // be undef or poison.
4869     if (isa<FreezeInst>(V))
4870       return true;
4871 
4872     if (const auto *CB = dyn_cast<CallBase>(V)) {
4873       if (CB->hasRetAttr(Attribute::NoUndef))
4874         return true;
4875     }
4876 
4877     if (const auto *PN = dyn_cast<PHINode>(V)) {
4878       unsigned Num = PN->getNumIncomingValues();
4879       bool IsWellDefined = true;
4880       for (unsigned i = 0; i < Num; ++i) {
4881         auto *TI = PN->getIncomingBlock(i)->getTerminator();
4882         if (!isGuaranteedNotToBeUndefOrPoison(PN->getIncomingValue(i), AC, TI,
4883                                               DT, Depth + 1, PoisonOnly)) {
4884           IsWellDefined = false;
4885           break;
4886         }
4887       }
4888       if (IsWellDefined)
4889         return true;
4890     } else if (!canCreateUndefOrPoison(Opr) && all_of(Opr->operands(), OpCheck))
4891       return true;
4892   }
4893 
4894   if (programUndefinedIfUndefOrPoison(V, PoisonOnly))
4895     return true;
4896 
4897   // CxtI may be null or a cloned instruction.
4898   if (!CtxI || !CtxI->getParent() || !DT)
4899     return false;
4900 
4901   auto *DNode = DT->getNode(CtxI->getParent());
4902   if (!DNode)
4903     // Unreachable block
4904     return false;
4905 
4906   // If V is used as a branch condition before reaching CtxI, V cannot be
4907   // undef or poison.
4908   //   br V, BB1, BB2
4909   // BB1:
4910   //   CtxI ; V cannot be undef or poison here
4911   auto *Dominator = DNode->getIDom();
4912   while (Dominator) {
4913     auto *TI = Dominator->getBlock()->getTerminator();
4914 
4915     Value *Cond = nullptr;
4916     if (auto BI = dyn_cast<BranchInst>(TI)) {
4917       if (BI->isConditional())
4918         Cond = BI->getCondition();
4919     } else if (auto SI = dyn_cast<SwitchInst>(TI)) {
4920       Cond = SI->getCondition();
4921     }
4922 
4923     if (Cond) {
4924       if (Cond == V)
4925         return true;
4926       else if (PoisonOnly && isa<Operator>(Cond)) {
4927         // For poison, we can analyze further
4928         auto *Opr = cast<Operator>(Cond);
4929         if (propagatesPoison(Opr) &&
4930             any_of(Opr->operand_values(), [&](Value *Op) { return Op == V; }))
4931           return true;
4932       }
4933     }
4934 
4935     Dominator = Dominator->getIDom();
4936   }
4937 
4938   SmallVector<Attribute::AttrKind, 2> AttrKinds{Attribute::NoUndef};
4939   if (getKnowledgeValidInContext(V, AttrKinds, CtxI, DT, AC))
4940     return true;
4941 
4942   return false;
4943 }
4944 
4945 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC,
4946                                             const Instruction *CtxI,
4947                                             const DominatorTree *DT,
4948                                             unsigned Depth) {
4949   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, false);
4950 }
4951 
4952 bool llvm::isGuaranteedNotToBePoison(const Value *V, AssumptionCache *AC,
4953                                      const Instruction *CtxI,
4954                                      const DominatorTree *DT, unsigned Depth) {
4955   return ::isGuaranteedNotToBeUndefOrPoison(V, AC, CtxI, DT, Depth, true);
4956 }
4957 
4958 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
4959                                                  const DataLayout &DL,
4960                                                  AssumptionCache *AC,
4961                                                  const Instruction *CxtI,
4962                                                  const DominatorTree *DT) {
4963   return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
4964                                        Add, DL, AC, CxtI, DT);
4965 }
4966 
4967 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
4968                                                  const Value *RHS,
4969                                                  const DataLayout &DL,
4970                                                  AssumptionCache *AC,
4971                                                  const Instruction *CxtI,
4972                                                  const DominatorTree *DT) {
4973   return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
4974 }
4975 
4976 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
4977   // Note: An atomic operation isn't guaranteed to return in a reasonable amount
4978   // of time because it's possible for another thread to interfere with it for an
4979   // arbitrary length of time, but programs aren't allowed to rely on that.
4980 
4981   // If there is no successor, then execution can't transfer to it.
4982   if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
4983     return !CRI->unwindsToCaller();
4984   if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
4985     return !CatchSwitch->unwindsToCaller();
4986   if (isa<ResumeInst>(I))
4987     return false;
4988   if (isa<ReturnInst>(I))
4989     return false;
4990   if (isa<UnreachableInst>(I))
4991     return false;
4992 
4993   // Calls can throw, or contain an infinite loop, or kill the process.
4994   if (const auto *CB = dyn_cast<CallBase>(I)) {
4995     // Call sites that throw have implicit non-local control flow.
4996     if (!CB->doesNotThrow())
4997       return false;
4998 
4999     // A function which doens't throw and has "willreturn" attribute will
5000     // always return.
5001     if (CB->hasFnAttr(Attribute::WillReturn))
5002       return true;
5003 
5004     // Non-throwing call sites can loop infinitely, call exit/pthread_exit
5005     // etc. and thus not return.  However, LLVM already assumes that
5006     //
5007     //  - Thread exiting actions are modeled as writes to memory invisible to
5008     //    the program.
5009     //
5010     //  - Loops that don't have side effects (side effects are volatile/atomic
5011     //    stores and IO) always terminate (see http://llvm.org/PR965).
5012     //    Furthermore IO itself is also modeled as writes to memory invisible to
5013     //    the program.
5014     //
5015     // We rely on those assumptions here, and use the memory effects of the call
5016     // target as a proxy for checking that it always returns.
5017 
5018     // FIXME: This isn't aggressive enough; a call which only writes to a global
5019     // is guaranteed to return.
5020     return CB->onlyReadsMemory() || CB->onlyAccessesArgMemory();
5021   }
5022 
5023   // Other instructions return normally.
5024   return true;
5025 }
5026 
5027 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
5028   // TODO: This is slightly conservative for invoke instruction since exiting
5029   // via an exception *is* normal control for them.
5030   for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
5031     if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
5032       return false;
5033   return true;
5034 }
5035 
5036 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
5037                                                   const Loop *L) {
5038   // The loop header is guaranteed to be executed for every iteration.
5039   //
5040   // FIXME: Relax this constraint to cover all basic blocks that are
5041   // guaranteed to be executed at every iteration.
5042   if (I->getParent() != L->getHeader()) return false;
5043 
5044   for (const Instruction &LI : *L->getHeader()) {
5045     if (&LI == I) return true;
5046     if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
5047   }
5048   llvm_unreachable("Instruction not contained in its own parent basic block.");
5049 }
5050 
5051 bool llvm::propagatesPoison(const Operator *I) {
5052   switch (I->getOpcode()) {
5053   case Instruction::Freeze:
5054   case Instruction::Select:
5055   case Instruction::PHI:
5056   case Instruction::Call:
5057   case Instruction::Invoke:
5058     return false;
5059   case Instruction::ICmp:
5060   case Instruction::FCmp:
5061   case Instruction::GetElementPtr:
5062     return true;
5063   default:
5064     if (isa<BinaryOperator>(I) || isa<UnaryOperator>(I) || isa<CastInst>(I))
5065       return true;
5066 
5067     // Be conservative and return false.
5068     return false;
5069   }
5070 }
5071 
5072 void llvm::getGuaranteedNonPoisonOps(const Instruction *I,
5073                                      SmallPtrSetImpl<const Value *> &Operands) {
5074   switch (I->getOpcode()) {
5075     case Instruction::Store:
5076       Operands.insert(cast<StoreInst>(I)->getPointerOperand());
5077       break;
5078 
5079     case Instruction::Load:
5080       Operands.insert(cast<LoadInst>(I)->getPointerOperand());
5081       break;
5082 
5083     case Instruction::AtomicCmpXchg:
5084       Operands.insert(cast<AtomicCmpXchgInst>(I)->getPointerOperand());
5085       break;
5086 
5087     case Instruction::AtomicRMW:
5088       Operands.insert(cast<AtomicRMWInst>(I)->getPointerOperand());
5089       break;
5090 
5091     case Instruction::UDiv:
5092     case Instruction::SDiv:
5093     case Instruction::URem:
5094     case Instruction::SRem:
5095       Operands.insert(I->getOperand(1));
5096       break;
5097 
5098     case Instruction::Call:
5099     case Instruction::Invoke: {
5100       const CallBase *CB = cast<CallBase>(I);
5101       if (CB->isIndirectCall())
5102         Operands.insert(CB->getCalledOperand());
5103       for (unsigned i = 0; i < CB->arg_size(); ++i) {
5104         if (CB->paramHasAttr(i, Attribute::NoUndef))
5105           Operands.insert(CB->getArgOperand(i));
5106       }
5107       break;
5108     }
5109 
5110     default:
5111       break;
5112   }
5113 }
5114 
5115 bool llvm::mustTriggerUB(const Instruction *I,
5116                          const SmallSet<const Value *, 16>& KnownPoison) {
5117   SmallPtrSet<const Value *, 4> NonPoisonOps;
5118   getGuaranteedNonPoisonOps(I, NonPoisonOps);
5119 
5120   for (const auto *V : NonPoisonOps)
5121     if (KnownPoison.count(V))
5122       return true;
5123 
5124   return false;
5125 }
5126 
5127 static bool programUndefinedIfUndefOrPoison(const Value *V,
5128                                             bool PoisonOnly) {
5129   // We currently only look for uses of values within the same basic
5130   // block, as that makes it easier to guarantee that the uses will be
5131   // executed given that Inst is executed.
5132   //
5133   // FIXME: Expand this to consider uses beyond the same basic block. To do
5134   // this, look out for the distinction between post-dominance and strong
5135   // post-dominance.
5136   const BasicBlock *BB = nullptr;
5137   BasicBlock::const_iterator Begin;
5138   if (const auto *Inst = dyn_cast<Instruction>(V)) {
5139     BB = Inst->getParent();
5140     Begin = Inst->getIterator();
5141     Begin++;
5142   } else if (const auto *Arg = dyn_cast<Argument>(V)) {
5143     BB = &Arg->getParent()->getEntryBlock();
5144     Begin = BB->begin();
5145   } else {
5146     return false;
5147   }
5148 
5149   BasicBlock::const_iterator End = BB->end();
5150 
5151   if (!PoisonOnly) {
5152     // Be conservative & just check whether a value is passed to a noundef
5153     // argument.
5154     // Instructions that raise UB with a poison operand are well-defined
5155     // or have unclear semantics when the input is partially undef.
5156     // For example, 'udiv x, (undef | 1)' isn't UB.
5157 
5158     for (auto &I : make_range(Begin, End)) {
5159       if (const auto *CB = dyn_cast<CallBase>(&I)) {
5160         for (unsigned i = 0; i < CB->arg_size(); ++i) {
5161           if (CB->paramHasAttr(i, Attribute::NoUndef) &&
5162               CB->getArgOperand(i) == V)
5163             return true;
5164         }
5165       }
5166       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5167         break;
5168     }
5169     return false;
5170   }
5171 
5172   // Set of instructions that we have proved will yield poison if Inst
5173   // does.
5174   SmallSet<const Value *, 16> YieldsPoison;
5175   SmallSet<const BasicBlock *, 4> Visited;
5176 
5177   YieldsPoison.insert(V);
5178   auto Propagate = [&](const User *User) {
5179     if (propagatesPoison(cast<Operator>(User)))
5180       YieldsPoison.insert(User);
5181   };
5182   for_each(V->users(), Propagate);
5183   Visited.insert(BB);
5184 
5185   unsigned Iter = 0;
5186   while (Iter++ < MaxAnalysisRecursionDepth) {
5187     for (auto &I : make_range(Begin, End)) {
5188       if (mustTriggerUB(&I, YieldsPoison))
5189         return true;
5190       if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5191         return false;
5192 
5193       // Mark poison that propagates from I through uses of I.
5194       if (YieldsPoison.count(&I))
5195         for_each(I.users(), Propagate);
5196     }
5197 
5198     if (auto *NextBB = BB->getSingleSuccessor()) {
5199       if (Visited.insert(NextBB).second) {
5200         BB = NextBB;
5201         Begin = BB->getFirstNonPHI()->getIterator();
5202         End = BB->end();
5203         continue;
5204       }
5205     }
5206 
5207     break;
5208   }
5209   return false;
5210 }
5211 
5212 bool llvm::programUndefinedIfUndefOrPoison(const Instruction *Inst) {
5213   return ::programUndefinedIfUndefOrPoison(Inst, false);
5214 }
5215 
5216 bool llvm::programUndefinedIfPoison(const Instruction *Inst) {
5217   return ::programUndefinedIfUndefOrPoison(Inst, true);
5218 }
5219 
5220 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
5221   if (FMF.noNaNs())
5222     return true;
5223 
5224   if (auto *C = dyn_cast<ConstantFP>(V))
5225     return !C->isNaN();
5226 
5227   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5228     if (!C->getElementType()->isFloatingPointTy())
5229       return false;
5230     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5231       if (C->getElementAsAPFloat(I).isNaN())
5232         return false;
5233     }
5234     return true;
5235   }
5236 
5237   if (isa<ConstantAggregateZero>(V))
5238     return true;
5239 
5240   return false;
5241 }
5242 
5243 static bool isKnownNonZero(const Value *V) {
5244   if (auto *C = dyn_cast<ConstantFP>(V))
5245     return !C->isZero();
5246 
5247   if (auto *C = dyn_cast<ConstantDataVector>(V)) {
5248     if (!C->getElementType()->isFloatingPointTy())
5249       return false;
5250     for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
5251       if (C->getElementAsAPFloat(I).isZero())
5252         return false;
5253     }
5254     return true;
5255   }
5256 
5257   return false;
5258 }
5259 
5260 /// Match clamp pattern for float types without care about NaNs or signed zeros.
5261 /// Given non-min/max outer cmp/select from the clamp pattern this
5262 /// function recognizes if it can be substitued by a "canonical" min/max
5263 /// pattern.
5264 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
5265                                                Value *CmpLHS, Value *CmpRHS,
5266                                                Value *TrueVal, Value *FalseVal,
5267                                                Value *&LHS, Value *&RHS) {
5268   // Try to match
5269   //   X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
5270   //   X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
5271   // and return description of the outer Max/Min.
5272 
5273   // First, check if select has inverse order:
5274   if (CmpRHS == FalseVal) {
5275     std::swap(TrueVal, FalseVal);
5276     Pred = CmpInst::getInversePredicate(Pred);
5277   }
5278 
5279   // Assume success now. If there's no match, callers should not use these anyway.
5280   LHS = TrueVal;
5281   RHS = FalseVal;
5282 
5283   const APFloat *FC1;
5284   if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
5285     return {SPF_UNKNOWN, SPNB_NA, false};
5286 
5287   const APFloat *FC2;
5288   switch (Pred) {
5289   case CmpInst::FCMP_OLT:
5290   case CmpInst::FCMP_OLE:
5291   case CmpInst::FCMP_ULT:
5292   case CmpInst::FCMP_ULE:
5293     if (match(FalseVal,
5294               m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
5295                           m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5296         *FC1 < *FC2)
5297       return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
5298     break;
5299   case CmpInst::FCMP_OGT:
5300   case CmpInst::FCMP_OGE:
5301   case CmpInst::FCMP_UGT:
5302   case CmpInst::FCMP_UGE:
5303     if (match(FalseVal,
5304               m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
5305                           m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
5306         *FC1 > *FC2)
5307       return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
5308     break;
5309   default:
5310     break;
5311   }
5312 
5313   return {SPF_UNKNOWN, SPNB_NA, false};
5314 }
5315 
5316 /// Recognize variations of:
5317 ///   CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
5318 static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
5319                                       Value *CmpLHS, Value *CmpRHS,
5320                                       Value *TrueVal, Value *FalseVal) {
5321   // Swap the select operands and predicate to match the patterns below.
5322   if (CmpRHS != TrueVal) {
5323     Pred = ICmpInst::getSwappedPredicate(Pred);
5324     std::swap(TrueVal, FalseVal);
5325   }
5326   const APInt *C1;
5327   if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
5328     const APInt *C2;
5329     // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
5330     if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5331         C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
5332       return {SPF_SMAX, SPNB_NA, false};
5333 
5334     // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
5335     if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5336         C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
5337       return {SPF_SMIN, SPNB_NA, false};
5338 
5339     // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
5340     if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
5341         C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
5342       return {SPF_UMAX, SPNB_NA, false};
5343 
5344     // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
5345     if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
5346         C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
5347       return {SPF_UMIN, SPNB_NA, false};
5348   }
5349   return {SPF_UNKNOWN, SPNB_NA, false};
5350 }
5351 
5352 /// Recognize variations of:
5353 ///   a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
5354 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
5355                                                Value *CmpLHS, Value *CmpRHS,
5356                                                Value *TVal, Value *FVal,
5357                                                unsigned Depth) {
5358   // TODO: Allow FP min/max with nnan/nsz.
5359   assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
5360 
5361   Value *A = nullptr, *B = nullptr;
5362   SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
5363   if (!SelectPatternResult::isMinOrMax(L.Flavor))
5364     return {SPF_UNKNOWN, SPNB_NA, false};
5365 
5366   Value *C = nullptr, *D = nullptr;
5367   SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
5368   if (L.Flavor != R.Flavor)
5369     return {SPF_UNKNOWN, SPNB_NA, false};
5370 
5371   // We have something like: x Pred y ? min(a, b) : min(c, d).
5372   // Try to match the compare to the min/max operations of the select operands.
5373   // First, make sure we have the right compare predicate.
5374   switch (L.Flavor) {
5375   case SPF_SMIN:
5376     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
5377       Pred = ICmpInst::getSwappedPredicate(Pred);
5378       std::swap(CmpLHS, CmpRHS);
5379     }
5380     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
5381       break;
5382     return {SPF_UNKNOWN, SPNB_NA, false};
5383   case SPF_SMAX:
5384     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
5385       Pred = ICmpInst::getSwappedPredicate(Pred);
5386       std::swap(CmpLHS, CmpRHS);
5387     }
5388     if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
5389       break;
5390     return {SPF_UNKNOWN, SPNB_NA, false};
5391   case SPF_UMIN:
5392     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
5393       Pred = ICmpInst::getSwappedPredicate(Pred);
5394       std::swap(CmpLHS, CmpRHS);
5395     }
5396     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
5397       break;
5398     return {SPF_UNKNOWN, SPNB_NA, false};
5399   case SPF_UMAX:
5400     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
5401       Pred = ICmpInst::getSwappedPredicate(Pred);
5402       std::swap(CmpLHS, CmpRHS);
5403     }
5404     if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
5405       break;
5406     return {SPF_UNKNOWN, SPNB_NA, false};
5407   default:
5408     return {SPF_UNKNOWN, SPNB_NA, false};
5409   }
5410 
5411   // If there is a common operand in the already matched min/max and the other
5412   // min/max operands match the compare operands (either directly or inverted),
5413   // then this is min/max of the same flavor.
5414 
5415   // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5416   // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
5417   if (D == B) {
5418     if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5419                                          match(A, m_Not(m_Specific(CmpRHS)))))
5420       return {L.Flavor, SPNB_NA, false};
5421   }
5422   // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5423   // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
5424   if (C == B) {
5425     if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5426                                          match(A, m_Not(m_Specific(CmpRHS)))))
5427       return {L.Flavor, SPNB_NA, false};
5428   }
5429   // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5430   // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
5431   if (D == A) {
5432     if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
5433                                          match(B, m_Not(m_Specific(CmpRHS)))))
5434       return {L.Flavor, SPNB_NA, false};
5435   }
5436   // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5437   // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
5438   if (C == A) {
5439     if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
5440                                          match(B, m_Not(m_Specific(CmpRHS)))))
5441       return {L.Flavor, SPNB_NA, false};
5442   }
5443 
5444   return {SPF_UNKNOWN, SPNB_NA, false};
5445 }
5446 
5447 /// If the input value is the result of a 'not' op, constant integer, or vector
5448 /// splat of a constant integer, return the bitwise-not source value.
5449 /// TODO: This could be extended to handle non-splat vector integer constants.
5450 static Value *getNotValue(Value *V) {
5451   Value *NotV;
5452   if (match(V, m_Not(m_Value(NotV))))
5453     return NotV;
5454 
5455   const APInt *C;
5456   if (match(V, m_APInt(C)))
5457     return ConstantInt::get(V->getType(), ~(*C));
5458 
5459   return nullptr;
5460 }
5461 
5462 /// Match non-obvious integer minimum and maximum sequences.
5463 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
5464                                        Value *CmpLHS, Value *CmpRHS,
5465                                        Value *TrueVal, Value *FalseVal,
5466                                        Value *&LHS, Value *&RHS,
5467                                        unsigned Depth) {
5468   // Assume success. If there's no match, callers should not use these anyway.
5469   LHS = TrueVal;
5470   RHS = FalseVal;
5471 
5472   SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
5473   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5474     return SPR;
5475 
5476   SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
5477   if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
5478     return SPR;
5479 
5480   // Look through 'not' ops to find disguised min/max.
5481   // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y)
5482   // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y)
5483   if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) {
5484     switch (Pred) {
5485     case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false};
5486     case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false};
5487     case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false};
5488     case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false};
5489     default: break;
5490     }
5491   }
5492 
5493   // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X)
5494   // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X)
5495   if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) {
5496     switch (Pred) {
5497     case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false};
5498     case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false};
5499     case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false};
5500     case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false};
5501     default: break;
5502     }
5503   }
5504 
5505   if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
5506     return {SPF_UNKNOWN, SPNB_NA, false};
5507 
5508   // Z = X -nsw Y
5509   // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
5510   // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
5511   if (match(TrueVal, m_Zero()) &&
5512       match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5513     return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
5514 
5515   // Z = X -nsw Y
5516   // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
5517   // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
5518   if (match(FalseVal, m_Zero()) &&
5519       match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
5520     return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
5521 
5522   const APInt *C1;
5523   if (!match(CmpRHS, m_APInt(C1)))
5524     return {SPF_UNKNOWN, SPNB_NA, false};
5525 
5526   // An unsigned min/max can be written with a signed compare.
5527   const APInt *C2;
5528   if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
5529       (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
5530     // Is the sign bit set?
5531     // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
5532     // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
5533     if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
5534         C2->isMaxSignedValue())
5535       return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5536 
5537     // Is the sign bit clear?
5538     // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
5539     // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
5540     if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
5541         C2->isMinSignedValue())
5542       return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
5543   }
5544 
5545   return {SPF_UNKNOWN, SPNB_NA, false};
5546 }
5547 
5548 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
5549   assert(X && Y && "Invalid operand");
5550 
5551   // X = sub (0, Y) || X = sub nsw (0, Y)
5552   if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
5553       (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
5554     return true;
5555 
5556   // Y = sub (0, X) || Y = sub nsw (0, X)
5557   if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
5558       (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
5559     return true;
5560 
5561   // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
5562   Value *A, *B;
5563   return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
5564                         match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
5565          (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
5566                        match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
5567 }
5568 
5569 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
5570                                               FastMathFlags FMF,
5571                                               Value *CmpLHS, Value *CmpRHS,
5572                                               Value *TrueVal, Value *FalseVal,
5573                                               Value *&LHS, Value *&RHS,
5574                                               unsigned Depth) {
5575   if (CmpInst::isFPPredicate(Pred)) {
5576     // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
5577     // 0.0 operand, set the compare's 0.0 operands to that same value for the
5578     // purpose of identifying min/max. Disregard vector constants with undefined
5579     // elements because those can not be back-propagated for analysis.
5580     Value *OutputZeroVal = nullptr;
5581     if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
5582         !cast<Constant>(TrueVal)->containsUndefElement())
5583       OutputZeroVal = TrueVal;
5584     else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
5585              !cast<Constant>(FalseVal)->containsUndefElement())
5586       OutputZeroVal = FalseVal;
5587 
5588     if (OutputZeroVal) {
5589       if (match(CmpLHS, m_AnyZeroFP()))
5590         CmpLHS = OutputZeroVal;
5591       if (match(CmpRHS, m_AnyZeroFP()))
5592         CmpRHS = OutputZeroVal;
5593     }
5594   }
5595 
5596   LHS = CmpLHS;
5597   RHS = CmpRHS;
5598 
5599   // Signed zero may return inconsistent results between implementations.
5600   //  (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
5601   //  minNum(0.0, -0.0)          // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
5602   // Therefore, we behave conservatively and only proceed if at least one of the
5603   // operands is known to not be zero or if we don't care about signed zero.
5604   switch (Pred) {
5605   default: break;
5606   // FIXME: Include OGT/OLT/UGT/ULT.
5607   case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
5608   case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
5609     if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5610         !isKnownNonZero(CmpRHS))
5611       return {SPF_UNKNOWN, SPNB_NA, false};
5612   }
5613 
5614   SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
5615   bool Ordered = false;
5616 
5617   // When given one NaN and one non-NaN input:
5618   //   - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
5619   //   - A simple C99 (a < b ? a : b) construction will return 'b' (as the
5620   //     ordered comparison fails), which could be NaN or non-NaN.
5621   // so here we discover exactly what NaN behavior is required/accepted.
5622   if (CmpInst::isFPPredicate(Pred)) {
5623     bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
5624     bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
5625 
5626     if (LHSSafe && RHSSafe) {
5627       // Both operands are known non-NaN.
5628       NaNBehavior = SPNB_RETURNS_ANY;
5629     } else if (CmpInst::isOrdered(Pred)) {
5630       // An ordered comparison will return false when given a NaN, so it
5631       // returns the RHS.
5632       Ordered = true;
5633       if (LHSSafe)
5634         // LHS is non-NaN, so if RHS is NaN then NaN will be returned.
5635         NaNBehavior = SPNB_RETURNS_NAN;
5636       else if (RHSSafe)
5637         NaNBehavior = SPNB_RETURNS_OTHER;
5638       else
5639         // Completely unsafe.
5640         return {SPF_UNKNOWN, SPNB_NA, false};
5641     } else {
5642       Ordered = false;
5643       // An unordered comparison will return true when given a NaN, so it
5644       // returns the LHS.
5645       if (LHSSafe)
5646         // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
5647         NaNBehavior = SPNB_RETURNS_OTHER;
5648       else if (RHSSafe)
5649         NaNBehavior = SPNB_RETURNS_NAN;
5650       else
5651         // Completely unsafe.
5652         return {SPF_UNKNOWN, SPNB_NA, false};
5653     }
5654   }
5655 
5656   if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
5657     std::swap(CmpLHS, CmpRHS);
5658     Pred = CmpInst::getSwappedPredicate(Pred);
5659     if (NaNBehavior == SPNB_RETURNS_NAN)
5660       NaNBehavior = SPNB_RETURNS_OTHER;
5661     else if (NaNBehavior == SPNB_RETURNS_OTHER)
5662       NaNBehavior = SPNB_RETURNS_NAN;
5663     Ordered = !Ordered;
5664   }
5665 
5666   // ([if]cmp X, Y) ? X : Y
5667   if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
5668     switch (Pred) {
5669     default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
5670     case ICmpInst::ICMP_UGT:
5671     case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
5672     case ICmpInst::ICMP_SGT:
5673     case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
5674     case ICmpInst::ICMP_ULT:
5675     case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
5676     case ICmpInst::ICMP_SLT:
5677     case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
5678     case FCmpInst::FCMP_UGT:
5679     case FCmpInst::FCMP_UGE:
5680     case FCmpInst::FCMP_OGT:
5681     case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
5682     case FCmpInst::FCMP_ULT:
5683     case FCmpInst::FCMP_ULE:
5684     case FCmpInst::FCMP_OLT:
5685     case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
5686     }
5687   }
5688 
5689   if (isKnownNegation(TrueVal, FalseVal)) {
5690     // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
5691     // match against either LHS or sext(LHS).
5692     auto MaybeSExtCmpLHS =
5693         m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
5694     auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
5695     auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
5696     if (match(TrueVal, MaybeSExtCmpLHS)) {
5697       // Set the return values. If the compare uses the negated value (-X >s 0),
5698       // swap the return values because the negated value is always 'RHS'.
5699       LHS = TrueVal;
5700       RHS = FalseVal;
5701       if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
5702         std::swap(LHS, RHS);
5703 
5704       // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
5705       // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
5706       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5707         return {SPF_ABS, SPNB_NA, false};
5708 
5709       // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X)
5710       if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne))
5711         return {SPF_ABS, SPNB_NA, false};
5712 
5713       // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
5714       // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
5715       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5716         return {SPF_NABS, SPNB_NA, false};
5717     }
5718     else if (match(FalseVal, MaybeSExtCmpLHS)) {
5719       // Set the return values. If the compare uses the negated value (-X >s 0),
5720       // swap the return values because the negated value is always 'RHS'.
5721       LHS = FalseVal;
5722       RHS = TrueVal;
5723       if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
5724         std::swap(LHS, RHS);
5725 
5726       // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
5727       // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
5728       if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
5729         return {SPF_NABS, SPNB_NA, false};
5730 
5731       // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
5732       // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
5733       if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
5734         return {SPF_ABS, SPNB_NA, false};
5735     }
5736   }
5737 
5738   if (CmpInst::isIntPredicate(Pred))
5739     return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
5740 
5741   // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
5742   // may return either -0.0 or 0.0, so fcmp/select pair has stricter
5743   // semantics than minNum. Be conservative in such case.
5744   if (NaNBehavior != SPNB_RETURNS_ANY ||
5745       (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
5746        !isKnownNonZero(CmpRHS)))
5747     return {SPF_UNKNOWN, SPNB_NA, false};
5748 
5749   return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
5750 }
5751 
5752 /// Helps to match a select pattern in case of a type mismatch.
5753 ///
5754 /// The function processes the case when type of true and false values of a
5755 /// select instruction differs from type of the cmp instruction operands because
5756 /// of a cast instruction. The function checks if it is legal to move the cast
5757 /// operation after "select". If yes, it returns the new second value of
5758 /// "select" (with the assumption that cast is moved):
5759 /// 1. As operand of cast instruction when both values of "select" are same cast
5760 /// instructions.
5761 /// 2. As restored constant (by applying reverse cast operation) when the first
5762 /// value of the "select" is a cast operation and the second value is a
5763 /// constant.
5764 /// NOTE: We return only the new second value because the first value could be
5765 /// accessed as operand of cast instruction.
5766 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
5767                               Instruction::CastOps *CastOp) {
5768   auto *Cast1 = dyn_cast<CastInst>(V1);
5769   if (!Cast1)
5770     return nullptr;
5771 
5772   *CastOp = Cast1->getOpcode();
5773   Type *SrcTy = Cast1->getSrcTy();
5774   if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
5775     // If V1 and V2 are both the same cast from the same type, look through V1.
5776     if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
5777       return Cast2->getOperand(0);
5778     return nullptr;
5779   }
5780 
5781   auto *C = dyn_cast<Constant>(V2);
5782   if (!C)
5783     return nullptr;
5784 
5785   Constant *CastedTo = nullptr;
5786   switch (*CastOp) {
5787   case Instruction::ZExt:
5788     if (CmpI->isUnsigned())
5789       CastedTo = ConstantExpr::getTrunc(C, SrcTy);
5790     break;
5791   case Instruction::SExt:
5792     if (CmpI->isSigned())
5793       CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
5794     break;
5795   case Instruction::Trunc:
5796     Constant *CmpConst;
5797     if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
5798         CmpConst->getType() == SrcTy) {
5799       // Here we have the following case:
5800       //
5801       //   %cond = cmp iN %x, CmpConst
5802       //   %tr = trunc iN %x to iK
5803       //   %narrowsel = select i1 %cond, iK %t, iK C
5804       //
5805       // We can always move trunc after select operation:
5806       //
5807       //   %cond = cmp iN %x, CmpConst
5808       //   %widesel = select i1 %cond, iN %x, iN CmpConst
5809       //   %tr = trunc iN %widesel to iK
5810       //
5811       // Note that C could be extended in any way because we don't care about
5812       // upper bits after truncation. It can't be abs pattern, because it would
5813       // look like:
5814       //
5815       //   select i1 %cond, x, -x.
5816       //
5817       // So only min/max pattern could be matched. Such match requires widened C
5818       // == CmpConst. That is why set widened C = CmpConst, condition trunc
5819       // CmpConst == C is checked below.
5820       CastedTo = CmpConst;
5821     } else {
5822       CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
5823     }
5824     break;
5825   case Instruction::FPTrunc:
5826     CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
5827     break;
5828   case Instruction::FPExt:
5829     CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
5830     break;
5831   case Instruction::FPToUI:
5832     CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
5833     break;
5834   case Instruction::FPToSI:
5835     CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
5836     break;
5837   case Instruction::UIToFP:
5838     CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
5839     break;
5840   case Instruction::SIToFP:
5841     CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
5842     break;
5843   default:
5844     break;
5845   }
5846 
5847   if (!CastedTo)
5848     return nullptr;
5849 
5850   // Make sure the cast doesn't lose any information.
5851   Constant *CastedBack =
5852       ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
5853   if (CastedBack != C)
5854     return nullptr;
5855 
5856   return CastedTo;
5857 }
5858 
5859 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
5860                                              Instruction::CastOps *CastOp,
5861                                              unsigned Depth) {
5862   if (Depth >= MaxAnalysisRecursionDepth)
5863     return {SPF_UNKNOWN, SPNB_NA, false};
5864 
5865   SelectInst *SI = dyn_cast<SelectInst>(V);
5866   if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
5867 
5868   CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
5869   if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
5870 
5871   Value *TrueVal = SI->getTrueValue();
5872   Value *FalseVal = SI->getFalseValue();
5873 
5874   return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS,
5875                                             CastOp, Depth);
5876 }
5877 
5878 SelectPatternResult llvm::matchDecomposedSelectPattern(
5879     CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS,
5880     Instruction::CastOps *CastOp, unsigned Depth) {
5881   CmpInst::Predicate Pred = CmpI->getPredicate();
5882   Value *CmpLHS = CmpI->getOperand(0);
5883   Value *CmpRHS = CmpI->getOperand(1);
5884   FastMathFlags FMF;
5885   if (isa<FPMathOperator>(CmpI))
5886     FMF = CmpI->getFastMathFlags();
5887 
5888   // Bail out early.
5889   if (CmpI->isEquality())
5890     return {SPF_UNKNOWN, SPNB_NA, false};
5891 
5892   // Deal with type mismatches.
5893   if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
5894     if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
5895       // If this is a potential fmin/fmax with a cast to integer, then ignore
5896       // -0.0 because there is no corresponding integer value.
5897       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5898         FMF.setNoSignedZeros();
5899       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5900                                   cast<CastInst>(TrueVal)->getOperand(0), C,
5901                                   LHS, RHS, Depth);
5902     }
5903     if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
5904       // If this is a potential fmin/fmax with a cast to integer, then ignore
5905       // -0.0 because there is no corresponding integer value.
5906       if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
5907         FMF.setNoSignedZeros();
5908       return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
5909                                   C, cast<CastInst>(FalseVal)->getOperand(0),
5910                                   LHS, RHS, Depth);
5911     }
5912   }
5913   return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
5914                               LHS, RHS, Depth);
5915 }
5916 
5917 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
5918   if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
5919   if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
5920   if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
5921   if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
5922   if (SPF == SPF_FMINNUM)
5923     return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
5924   if (SPF == SPF_FMAXNUM)
5925     return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
5926   llvm_unreachable("unhandled!");
5927 }
5928 
5929 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
5930   if (SPF == SPF_SMIN) return SPF_SMAX;
5931   if (SPF == SPF_UMIN) return SPF_UMAX;
5932   if (SPF == SPF_SMAX) return SPF_SMIN;
5933   if (SPF == SPF_UMAX) return SPF_UMIN;
5934   llvm_unreachable("unhandled!");
5935 }
5936 
5937 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
5938   return getMinMaxPred(getInverseMinMaxFlavor(SPF));
5939 }
5940 
5941 /// Return true if "icmp Pred LHS RHS" is always true.
5942 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
5943                             const Value *RHS, const DataLayout &DL,
5944                             unsigned Depth) {
5945   assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
5946   if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
5947     return true;
5948 
5949   switch (Pred) {
5950   default:
5951     return false;
5952 
5953   case CmpInst::ICMP_SLE: {
5954     const APInt *C;
5955 
5956     // LHS s<= LHS +_{nsw} C   if C >= 0
5957     if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
5958       return !C->isNegative();
5959     return false;
5960   }
5961 
5962   case CmpInst::ICMP_ULE: {
5963     const APInt *C;
5964 
5965     // LHS u<= LHS +_{nuw} C   for any C
5966     if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
5967       return true;
5968 
5969     // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
5970     auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
5971                                        const Value *&X,
5972                                        const APInt *&CA, const APInt *&CB) {
5973       if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
5974           match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
5975         return true;
5976 
5977       // If X & C == 0 then (X | C) == X +_{nuw} C
5978       if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
5979           match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
5980         KnownBits Known(CA->getBitWidth());
5981         computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
5982                          /*CxtI*/ nullptr, /*DT*/ nullptr);
5983         if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
5984           return true;
5985       }
5986 
5987       return false;
5988     };
5989 
5990     const Value *X;
5991     const APInt *CLHS, *CRHS;
5992     if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
5993       return CLHS->ule(*CRHS);
5994 
5995     return false;
5996   }
5997   }
5998 }
5999 
6000 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
6001 /// ALHS ARHS" is true.  Otherwise, return None.
6002 static Optional<bool>
6003 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
6004                       const Value *ARHS, const Value *BLHS, const Value *BRHS,
6005                       const DataLayout &DL, unsigned Depth) {
6006   switch (Pred) {
6007   default:
6008     return None;
6009 
6010   case CmpInst::ICMP_SLT:
6011   case CmpInst::ICMP_SLE:
6012     if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
6013         isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
6014       return true;
6015     return None;
6016 
6017   case CmpInst::ICMP_ULT:
6018   case CmpInst::ICMP_ULE:
6019     if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
6020         isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
6021       return true;
6022     return None;
6023   }
6024 }
6025 
6026 /// Return true if the operands of the two compares match.  IsSwappedOps is true
6027 /// when the operands match, but are swapped.
6028 static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
6029                           const Value *BLHS, const Value *BRHS,
6030                           bool &IsSwappedOps) {
6031 
6032   bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
6033   IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
6034   return IsMatchingOps || IsSwappedOps;
6035 }
6036 
6037 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
6038 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
6039 /// Otherwise, return None if we can't infer anything.
6040 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
6041                                                     CmpInst::Predicate BPred,
6042                                                     bool AreSwappedOps) {
6043   // Canonicalize the predicate as if the operands were not commuted.
6044   if (AreSwappedOps)
6045     BPred = ICmpInst::getSwappedPredicate(BPred);
6046 
6047   if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
6048     return true;
6049   if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
6050     return false;
6051 
6052   return None;
6053 }
6054 
6055 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
6056 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
6057 /// Otherwise, return None if we can't infer anything.
6058 static Optional<bool>
6059 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
6060                                  const ConstantInt *C1,
6061                                  CmpInst::Predicate BPred,
6062                                  const ConstantInt *C2) {
6063   ConstantRange DomCR =
6064       ConstantRange::makeExactICmpRegion(APred, C1->getValue());
6065   ConstantRange CR =
6066       ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
6067   ConstantRange Intersection = DomCR.intersectWith(CR);
6068   ConstantRange Difference = DomCR.difference(CR);
6069   if (Intersection.isEmptySet())
6070     return false;
6071   if (Difference.isEmptySet())
6072     return true;
6073   return None;
6074 }
6075 
6076 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6077 /// false.  Otherwise, return None if we can't infer anything.
6078 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
6079                                          CmpInst::Predicate BPred,
6080                                          const Value *BLHS, const Value *BRHS,
6081                                          const DataLayout &DL, bool LHSIsTrue,
6082                                          unsigned Depth) {
6083   Value *ALHS = LHS->getOperand(0);
6084   Value *ARHS = LHS->getOperand(1);
6085 
6086   // The rest of the logic assumes the LHS condition is true.  If that's not the
6087   // case, invert the predicate to make it so.
6088   CmpInst::Predicate APred =
6089       LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
6090 
6091   // Can we infer anything when the two compares have matching operands?
6092   bool AreSwappedOps;
6093   if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
6094     if (Optional<bool> Implication = isImpliedCondMatchingOperands(
6095             APred, BPred, AreSwappedOps))
6096       return Implication;
6097     // No amount of additional analysis will infer the second condition, so
6098     // early exit.
6099     return None;
6100   }
6101 
6102   // Can we infer anything when the LHS operands match and the RHS operands are
6103   // constants (not necessarily matching)?
6104   if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
6105     if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
6106             APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
6107       return Implication;
6108     // No amount of additional analysis will infer the second condition, so
6109     // early exit.
6110     return None;
6111   }
6112 
6113   if (APred == BPred)
6114     return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
6115   return None;
6116 }
6117 
6118 /// Return true if LHS implies RHS is true.  Return false if LHS implies RHS is
6119 /// false.  Otherwise, return None if we can't infer anything.  We expect the
6120 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
6121 static Optional<bool>
6122 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred,
6123                    const Value *RHSOp0, const Value *RHSOp1,
6124 
6125                    const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6126   // The LHS must be an 'or' or an 'and' instruction.
6127   assert((LHS->getOpcode() == Instruction::And ||
6128           LHS->getOpcode() == Instruction::Or) &&
6129          "Expected LHS to be 'and' or 'or'.");
6130 
6131   assert(Depth <= MaxAnalysisRecursionDepth && "Hit recursion limit");
6132 
6133   // If the result of an 'or' is false, then we know both legs of the 'or' are
6134   // false.  Similarly, if the result of an 'and' is true, then we know both
6135   // legs of the 'and' are true.
6136   Value *ALHS, *ARHS;
6137   if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
6138       (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
6139     // FIXME: Make this non-recursion.
6140     if (Optional<bool> Implication = isImpliedCondition(
6141             ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6142       return Implication;
6143     if (Optional<bool> Implication = isImpliedCondition(
6144             ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1))
6145       return Implication;
6146     return None;
6147   }
6148   return None;
6149 }
6150 
6151 Optional<bool>
6152 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred,
6153                          const Value *RHSOp0, const Value *RHSOp1,
6154                          const DataLayout &DL, bool LHSIsTrue, unsigned Depth) {
6155   // Bail out when we hit the limit.
6156   if (Depth == MaxAnalysisRecursionDepth)
6157     return None;
6158 
6159   // A mismatch occurs when we compare a scalar cmp to a vector cmp, for
6160   // example.
6161   if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy())
6162     return None;
6163 
6164   Type *OpTy = LHS->getType();
6165   assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
6166 
6167   // FIXME: Extending the code below to handle vectors.
6168   if (OpTy->isVectorTy())
6169     return None;
6170 
6171   assert(OpTy->isIntegerTy(1) && "implied by above");
6172 
6173   // Both LHS and RHS are icmps.
6174   const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
6175   if (LHSCmp)
6176     return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6177                               Depth);
6178 
6179   /// The LHS should be an 'or' or an 'and' instruction.  We expect the RHS to
6180   /// be / an icmp. FIXME: Add support for and/or on the RHS.
6181   const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
6182   if (LHSBO) {
6183     if ((LHSBO->getOpcode() == Instruction::And ||
6184          LHSBO->getOpcode() == Instruction::Or))
6185       return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue,
6186                                 Depth);
6187   }
6188   return None;
6189 }
6190 
6191 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
6192                                         const DataLayout &DL, bool LHSIsTrue,
6193                                         unsigned Depth) {
6194   // LHS ==> RHS by definition
6195   if (LHS == RHS)
6196     return LHSIsTrue;
6197 
6198   const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
6199   if (RHSCmp)
6200     return isImpliedCondition(LHS, RHSCmp->getPredicate(),
6201                               RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL,
6202                               LHSIsTrue, Depth);
6203   return None;
6204 }
6205 
6206 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch
6207 // condition dominating ContextI or nullptr, if no condition is found.
6208 static std::pair<Value *, bool>
6209 getDomPredecessorCondition(const Instruction *ContextI) {
6210   if (!ContextI || !ContextI->getParent())
6211     return {nullptr, false};
6212 
6213   // TODO: This is a poor/cheap way to determine dominance. Should we use a
6214   // dominator tree (eg, from a SimplifyQuery) instead?
6215   const BasicBlock *ContextBB = ContextI->getParent();
6216   const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
6217   if (!PredBB)
6218     return {nullptr, false};
6219 
6220   // We need a conditional branch in the predecessor.
6221   Value *PredCond;
6222   BasicBlock *TrueBB, *FalseBB;
6223   if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
6224     return {nullptr, false};
6225 
6226   // The branch should get simplified. Don't bother simplifying this condition.
6227   if (TrueBB == FalseBB)
6228     return {nullptr, false};
6229 
6230   assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
6231          "Predecessor block does not point to successor?");
6232 
6233   // Is this condition implied by the predecessor condition?
6234   return {PredCond, TrueBB == ContextBB};
6235 }
6236 
6237 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
6238                                              const Instruction *ContextI,
6239                                              const DataLayout &DL) {
6240   assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
6241   auto PredCond = getDomPredecessorCondition(ContextI);
6242   if (PredCond.first)
6243     return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second);
6244   return None;
6245 }
6246 
6247 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred,
6248                                              const Value *LHS, const Value *RHS,
6249                                              const Instruction *ContextI,
6250                                              const DataLayout &DL) {
6251   auto PredCond = getDomPredecessorCondition(ContextI);
6252   if (PredCond.first)
6253     return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL,
6254                               PredCond.second);
6255   return None;
6256 }
6257 
6258 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower,
6259                               APInt &Upper, const InstrInfoQuery &IIQ) {
6260   unsigned Width = Lower.getBitWidth();
6261   const APInt *C;
6262   switch (BO.getOpcode()) {
6263   case Instruction::Add:
6264     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6265       // FIXME: If we have both nuw and nsw, we should reduce the range further.
6266       if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6267         // 'add nuw x, C' produces [C, UINT_MAX].
6268         Lower = *C;
6269       } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) {
6270         if (C->isNegative()) {
6271           // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C].
6272           Lower = APInt::getSignedMinValue(Width);
6273           Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6274         } else {
6275           // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX].
6276           Lower = APInt::getSignedMinValue(Width) + *C;
6277           Upper = APInt::getSignedMaxValue(Width) + 1;
6278         }
6279       }
6280     }
6281     break;
6282 
6283   case Instruction::And:
6284     if (match(BO.getOperand(1), m_APInt(C)))
6285       // 'and x, C' produces [0, C].
6286       Upper = *C + 1;
6287     break;
6288 
6289   case Instruction::Or:
6290     if (match(BO.getOperand(1), m_APInt(C)))
6291       // 'or x, C' produces [C, UINT_MAX].
6292       Lower = *C;
6293     break;
6294 
6295   case Instruction::AShr:
6296     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6297       // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C].
6298       Lower = APInt::getSignedMinValue(Width).ashr(*C);
6299       Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1;
6300     } else if (match(BO.getOperand(0), m_APInt(C))) {
6301       unsigned ShiftAmount = Width - 1;
6302       if (!C->isNullValue() && IIQ.isExact(&BO))
6303         ShiftAmount = C->countTrailingZeros();
6304       if (C->isNegative()) {
6305         // 'ashr C, x' produces [C, C >> (Width-1)]
6306         Lower = *C;
6307         Upper = C->ashr(ShiftAmount) + 1;
6308       } else {
6309         // 'ashr C, x' produces [C >> (Width-1), C]
6310         Lower = C->ashr(ShiftAmount);
6311         Upper = *C + 1;
6312       }
6313     }
6314     break;
6315 
6316   case Instruction::LShr:
6317     if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) {
6318       // 'lshr x, C' produces [0, UINT_MAX >> C].
6319       Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1;
6320     } else if (match(BO.getOperand(0), m_APInt(C))) {
6321       // 'lshr C, x' produces [C >> (Width-1), C].
6322       unsigned ShiftAmount = Width - 1;
6323       if (!C->isNullValue() && IIQ.isExact(&BO))
6324         ShiftAmount = C->countTrailingZeros();
6325       Lower = C->lshr(ShiftAmount);
6326       Upper = *C + 1;
6327     }
6328     break;
6329 
6330   case Instruction::Shl:
6331     if (match(BO.getOperand(0), m_APInt(C))) {
6332       if (IIQ.hasNoUnsignedWrap(&BO)) {
6333         // 'shl nuw C, x' produces [C, C << CLZ(C)]
6334         Lower = *C;
6335         Upper = Lower.shl(Lower.countLeadingZeros()) + 1;
6336       } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw?
6337         if (C->isNegative()) {
6338           // 'shl nsw C, x' produces [C << CLO(C)-1, C]
6339           unsigned ShiftAmount = C->countLeadingOnes() - 1;
6340           Lower = C->shl(ShiftAmount);
6341           Upper = *C + 1;
6342         } else {
6343           // 'shl nsw C, x' produces [C, C << CLZ(C)-1]
6344           unsigned ShiftAmount = C->countLeadingZeros() - 1;
6345           Lower = *C;
6346           Upper = C->shl(ShiftAmount) + 1;
6347         }
6348       }
6349     }
6350     break;
6351 
6352   case Instruction::SDiv:
6353     if (match(BO.getOperand(1), m_APInt(C))) {
6354       APInt IntMin = APInt::getSignedMinValue(Width);
6355       APInt IntMax = APInt::getSignedMaxValue(Width);
6356       if (C->isAllOnesValue()) {
6357         // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX]
6358         //    where C != -1 and C != 0 and C != 1
6359         Lower = IntMin + 1;
6360         Upper = IntMax + 1;
6361       } else if (C->countLeadingZeros() < Width - 1) {
6362         // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C]
6363         //    where C != -1 and C != 0 and C != 1
6364         Lower = IntMin.sdiv(*C);
6365         Upper = IntMax.sdiv(*C);
6366         if (Lower.sgt(Upper))
6367           std::swap(Lower, Upper);
6368         Upper = Upper + 1;
6369         assert(Upper != Lower && "Upper part of range has wrapped!");
6370       }
6371     } else if (match(BO.getOperand(0), m_APInt(C))) {
6372       if (C->isMinSignedValue()) {
6373         // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2].
6374         Lower = *C;
6375         Upper = Lower.lshr(1) + 1;
6376       } else {
6377         // 'sdiv C, x' produces [-|C|, |C|].
6378         Upper = C->abs() + 1;
6379         Lower = (-Upper) + 1;
6380       }
6381     }
6382     break;
6383 
6384   case Instruction::UDiv:
6385     if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) {
6386       // 'udiv x, C' produces [0, UINT_MAX / C].
6387       Upper = APInt::getMaxValue(Width).udiv(*C) + 1;
6388     } else if (match(BO.getOperand(0), m_APInt(C))) {
6389       // 'udiv C, x' produces [0, C].
6390       Upper = *C + 1;
6391     }
6392     break;
6393 
6394   case Instruction::SRem:
6395     if (match(BO.getOperand(1), m_APInt(C))) {
6396       // 'srem x, C' produces (-|C|, |C|).
6397       Upper = C->abs();
6398       Lower = (-Upper) + 1;
6399     }
6400     break;
6401 
6402   case Instruction::URem:
6403     if (match(BO.getOperand(1), m_APInt(C)))
6404       // 'urem x, C' produces [0, C).
6405       Upper = *C;
6406     break;
6407 
6408   default:
6409     break;
6410   }
6411 }
6412 
6413 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower,
6414                                   APInt &Upper) {
6415   unsigned Width = Lower.getBitWidth();
6416   const APInt *C;
6417   switch (II.getIntrinsicID()) {
6418   case Intrinsic::uadd_sat:
6419     // uadd.sat(x, C) produces [C, UINT_MAX].
6420     if (match(II.getOperand(0), m_APInt(C)) ||
6421         match(II.getOperand(1), m_APInt(C)))
6422       Lower = *C;
6423     break;
6424   case Intrinsic::sadd_sat:
6425     if (match(II.getOperand(0), m_APInt(C)) ||
6426         match(II.getOperand(1), m_APInt(C))) {
6427       if (C->isNegative()) {
6428         // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)].
6429         Lower = APInt::getSignedMinValue(Width);
6430         Upper = APInt::getSignedMaxValue(Width) + *C + 1;
6431       } else {
6432         // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX].
6433         Lower = APInt::getSignedMinValue(Width) + *C;
6434         Upper = APInt::getSignedMaxValue(Width) + 1;
6435       }
6436     }
6437     break;
6438   case Intrinsic::usub_sat:
6439     // usub.sat(C, x) produces [0, C].
6440     if (match(II.getOperand(0), m_APInt(C)))
6441       Upper = *C + 1;
6442     // usub.sat(x, C) produces [0, UINT_MAX - C].
6443     else if (match(II.getOperand(1), m_APInt(C)))
6444       Upper = APInt::getMaxValue(Width) - *C + 1;
6445     break;
6446   case Intrinsic::ssub_sat:
6447     if (match(II.getOperand(0), m_APInt(C))) {
6448       if (C->isNegative()) {
6449         // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)].
6450         Lower = APInt::getSignedMinValue(Width);
6451         Upper = *C - APInt::getSignedMinValue(Width) + 1;
6452       } else {
6453         // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX].
6454         Lower = *C - APInt::getSignedMaxValue(Width);
6455         Upper = APInt::getSignedMaxValue(Width) + 1;
6456       }
6457     } else if (match(II.getOperand(1), m_APInt(C))) {
6458       if (C->isNegative()) {
6459         // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]:
6460         Lower = APInt::getSignedMinValue(Width) - *C;
6461         Upper = APInt::getSignedMaxValue(Width) + 1;
6462       } else {
6463         // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C].
6464         Lower = APInt::getSignedMinValue(Width);
6465         Upper = APInt::getSignedMaxValue(Width) - *C + 1;
6466       }
6467     }
6468     break;
6469   case Intrinsic::umin:
6470   case Intrinsic::umax:
6471   case Intrinsic::smin:
6472   case Intrinsic::smax:
6473     if (!match(II.getOperand(0), m_APInt(C)) &&
6474         !match(II.getOperand(1), m_APInt(C)))
6475       break;
6476 
6477     switch (II.getIntrinsicID()) {
6478     case Intrinsic::umin:
6479       Upper = *C + 1;
6480       break;
6481     case Intrinsic::umax:
6482       Lower = *C;
6483       break;
6484     case Intrinsic::smin:
6485       Lower = APInt::getSignedMinValue(Width);
6486       Upper = *C + 1;
6487       break;
6488     case Intrinsic::smax:
6489       Lower = *C;
6490       Upper = APInt::getSignedMaxValue(Width) + 1;
6491       break;
6492     default:
6493       llvm_unreachable("Must be min/max intrinsic");
6494     }
6495     break;
6496   case Intrinsic::abs:
6497     // If abs of SIGNED_MIN is poison, then the result is [0..SIGNED_MAX],
6498     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6499     if (match(II.getOperand(1), m_One()))
6500       Upper = APInt::getSignedMaxValue(Width) + 1;
6501     else
6502       Upper = APInt::getSignedMinValue(Width) + 1;
6503     break;
6504   default:
6505     break;
6506   }
6507 }
6508 
6509 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower,
6510                                       APInt &Upper, const InstrInfoQuery &IIQ) {
6511   const Value *LHS = nullptr, *RHS = nullptr;
6512   SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS);
6513   if (R.Flavor == SPF_UNKNOWN)
6514     return;
6515 
6516   unsigned BitWidth = SI.getType()->getScalarSizeInBits();
6517 
6518   if (R.Flavor == SelectPatternFlavor::SPF_ABS) {
6519     // If the negation part of the abs (in RHS) has the NSW flag,
6520     // then the result of abs(X) is [0..SIGNED_MAX],
6521     // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN.
6522     Lower = APInt::getNullValue(BitWidth);
6523     if (match(RHS, m_Neg(m_Specific(LHS))) &&
6524         IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
6525       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6526     else
6527       Upper = APInt::getSignedMinValue(BitWidth) + 1;
6528     return;
6529   }
6530 
6531   if (R.Flavor == SelectPatternFlavor::SPF_NABS) {
6532     // The result of -abs(X) is <= 0.
6533     Lower = APInt::getSignedMinValue(BitWidth);
6534     Upper = APInt(BitWidth, 1);
6535     return;
6536   }
6537 
6538   const APInt *C;
6539   if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C)))
6540     return;
6541 
6542   switch (R.Flavor) {
6543     case SPF_UMIN:
6544       Upper = *C + 1;
6545       break;
6546     case SPF_UMAX:
6547       Lower = *C;
6548       break;
6549     case SPF_SMIN:
6550       Lower = APInt::getSignedMinValue(BitWidth);
6551       Upper = *C + 1;
6552       break;
6553     case SPF_SMAX:
6554       Lower = *C;
6555       Upper = APInt::getSignedMaxValue(BitWidth) + 1;
6556       break;
6557     default:
6558       break;
6559   }
6560 }
6561 
6562 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo,
6563                                          AssumptionCache *AC,
6564                                          const Instruction *CtxI,
6565                                          unsigned Depth) {
6566   assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction");
6567 
6568   if (Depth == MaxAnalysisRecursionDepth)
6569     return ConstantRange::getFull(V->getType()->getScalarSizeInBits());
6570 
6571   const APInt *C;
6572   if (match(V, m_APInt(C)))
6573     return ConstantRange(*C);
6574 
6575   InstrInfoQuery IIQ(UseInstrInfo);
6576   unsigned BitWidth = V->getType()->getScalarSizeInBits();
6577   APInt Lower = APInt(BitWidth, 0);
6578   APInt Upper = APInt(BitWidth, 0);
6579   if (auto *BO = dyn_cast<BinaryOperator>(V))
6580     setLimitsForBinOp(*BO, Lower, Upper, IIQ);
6581   else if (auto *II = dyn_cast<IntrinsicInst>(V))
6582     setLimitsForIntrinsic(*II, Lower, Upper);
6583   else if (auto *SI = dyn_cast<SelectInst>(V))
6584     setLimitsForSelectPattern(*SI, Lower, Upper, IIQ);
6585 
6586   ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper);
6587 
6588   if (auto *I = dyn_cast<Instruction>(V))
6589     if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range))
6590       CR = CR.intersectWith(getConstantRangeFromMetadata(*Range));
6591 
6592   if (CtxI && AC) {
6593     // Try to restrict the range based on information from assumptions.
6594     for (auto &AssumeVH : AC->assumptionsFor(V)) {
6595       if (!AssumeVH)
6596         continue;
6597       CallInst *I = cast<CallInst>(AssumeVH);
6598       assert(I->getParent()->getParent() == CtxI->getParent()->getParent() &&
6599              "Got assumption for the wrong function!");
6600       assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
6601              "must be an assume intrinsic");
6602 
6603       if (!isValidAssumeForContext(I, CtxI, nullptr))
6604         continue;
6605       Value *Arg = I->getArgOperand(0);
6606       ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg);
6607       // Currently we just use information from comparisons.
6608       if (!Cmp || Cmp->getOperand(0) != V)
6609         continue;
6610       ConstantRange RHS = computeConstantRange(Cmp->getOperand(1), UseInstrInfo,
6611                                                AC, I, Depth + 1);
6612       CR = CR.intersectWith(
6613           ConstantRange::makeSatisfyingICmpRegion(Cmp->getPredicate(), RHS));
6614     }
6615   }
6616 
6617   return CR;
6618 }
6619 
6620 static Optional<int64_t>
6621 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) {
6622   // Skip over the first indices.
6623   gep_type_iterator GTI = gep_type_begin(GEP);
6624   for (unsigned i = 1; i != Idx; ++i, ++GTI)
6625     /*skip along*/;
6626 
6627   // Compute the offset implied by the rest of the indices.
6628   int64_t Offset = 0;
6629   for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
6630     ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
6631     if (!OpC)
6632       return None;
6633     if (OpC->isZero())
6634       continue; // No offset.
6635 
6636     // Handle struct indices, which add their field offset to the pointer.
6637     if (StructType *STy = GTI.getStructTypeOrNull()) {
6638       Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
6639       continue;
6640     }
6641 
6642     // Otherwise, we have a sequential type like an array or fixed-length
6643     // vector. Multiply the index by the ElementSize.
6644     TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType());
6645     if (Size.isScalable())
6646       return None;
6647     Offset += Size.getFixedSize() * OpC->getSExtValue();
6648   }
6649 
6650   return Offset;
6651 }
6652 
6653 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2,
6654                                         const DataLayout &DL) {
6655   Ptr1 = Ptr1->stripPointerCasts();
6656   Ptr2 = Ptr2->stripPointerCasts();
6657 
6658   // Handle the trivial case first.
6659   if (Ptr1 == Ptr2) {
6660     return 0;
6661   }
6662 
6663   const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1);
6664   const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2);
6665 
6666   // If one pointer is a GEP see if the GEP is a constant offset from the base,
6667   // as in "P" and "gep P, 1".
6668   // Also do this iteratively to handle the the following case:
6669   //   Ptr_t1 = GEP Ptr1, c1
6670   //   Ptr_t2 = GEP Ptr_t1, c2
6671   //   Ptr2 = GEP Ptr_t2, c3
6672   // where we will return c1+c2+c3.
6673   // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base
6674   // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases
6675   // are the same, and return the difference between offsets.
6676   auto getOffsetFromBase = [&DL](const GEPOperator *GEP,
6677                                  const Value *Ptr) -> Optional<int64_t> {
6678     const GEPOperator *GEP_T = GEP;
6679     int64_t OffsetVal = 0;
6680     bool HasSameBase = false;
6681     while (GEP_T) {
6682       auto Offset = getOffsetFromIndex(GEP_T, 1, DL);
6683       if (!Offset)
6684         return None;
6685       OffsetVal += *Offset;
6686       auto Op0 = GEP_T->getOperand(0)->stripPointerCasts();
6687       if (Op0 == Ptr) {
6688         HasSameBase = true;
6689         break;
6690       }
6691       GEP_T = dyn_cast<GEPOperator>(Op0);
6692     }
6693     if (!HasSameBase)
6694       return None;
6695     return OffsetVal;
6696   };
6697 
6698   if (GEP1) {
6699     auto Offset = getOffsetFromBase(GEP1, Ptr2);
6700     if (Offset)
6701       return -*Offset;
6702   }
6703   if (GEP2) {
6704     auto Offset = getOffsetFromBase(GEP2, Ptr1);
6705     if (Offset)
6706       return Offset;
6707   }
6708 
6709   // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
6710   // base.  After that base, they may have some number of common (and
6711   // potentially variable) indices.  After that they handle some constant
6712   // offset, which determines their offset from each other.  At this point, we
6713   // handle no other case.
6714   if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
6715     return None;
6716 
6717   // Skip any common indices and track the GEP types.
6718   unsigned Idx = 1;
6719   for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
6720     if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
6721       break;
6722 
6723   auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL);
6724   auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL);
6725   if (!Offset1 || !Offset2)
6726     return None;
6727   return *Offset2 - *Offset1;
6728 }
6729