1 //===- ValueTracking.cpp - Walk computations to compute properties --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains routines that help analyze properties that chains of 10 // computations have. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/ValueTracking.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/ADT/iterator_range.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/AssumptionCache.h" 28 #include "llvm/Analysis/GuardUtils.h" 29 #include "llvm/Analysis/InstructionSimplify.h" 30 #include "llvm/Analysis/Loads.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/IR/Argument.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CallSite.h" 38 #include "llvm/IR/Constant.h" 39 #include "llvm/IR/ConstantRange.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/GlobalAlias.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/IntrinsicInst.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/IntrinsicsAArch64.h" 55 #include "llvm/IR/IntrinsicsX86.h" 56 #include "llvm/IR/LLVMContext.h" 57 #include "llvm/IR/Metadata.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PatternMatch.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/User.h" 63 #include "llvm/IR/Value.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/KnownBits.h" 69 #include "llvm/Support/MathExtras.h" 70 #include <algorithm> 71 #include <array> 72 #include <cassert> 73 #include <cstdint> 74 #include <iterator> 75 #include <utility> 76 77 using namespace llvm; 78 using namespace llvm::PatternMatch; 79 80 const unsigned MaxDepth = 6; 81 82 // Controls the number of uses of the value searched for possible 83 // dominating comparisons. 84 static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses", 85 cl::Hidden, cl::init(20)); 86 87 /// Returns the bitwidth of the given scalar or pointer type. For vector types, 88 /// returns the element type's bitwidth. 89 static unsigned getBitWidth(Type *Ty, const DataLayout &DL) { 90 if (unsigned BitWidth = Ty->getScalarSizeInBits()) 91 return BitWidth; 92 93 return DL.getPointerTypeSizeInBits(Ty); 94 } 95 96 namespace { 97 98 // Simplifying using an assume can only be done in a particular control-flow 99 // context (the context instruction provides that context). If an assume and 100 // the context instruction are not in the same block then the DT helps in 101 // figuring out if we can use it. 102 struct Query { 103 const DataLayout &DL; 104 AssumptionCache *AC; 105 const Instruction *CxtI; 106 const DominatorTree *DT; 107 108 // Unlike the other analyses, this may be a nullptr because not all clients 109 // provide it currently. 110 OptimizationRemarkEmitter *ORE; 111 112 /// Set of assumptions that should be excluded from further queries. 113 /// This is because of the potential for mutual recursion to cause 114 /// computeKnownBits to repeatedly visit the same assume intrinsic. The 115 /// classic case of this is assume(x = y), which will attempt to determine 116 /// bits in x from bits in y, which will attempt to determine bits in y from 117 /// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call 118 /// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo 119 /// (all of which can call computeKnownBits), and so on. 120 std::array<const Value *, MaxDepth> Excluded; 121 122 /// If true, it is safe to use metadata during simplification. 123 InstrInfoQuery IIQ; 124 125 unsigned NumExcluded = 0; 126 127 Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI, 128 const DominatorTree *DT, bool UseInstrInfo, 129 OptimizationRemarkEmitter *ORE = nullptr) 130 : DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {} 131 132 Query(const Query &Q, const Value *NewExcl) 133 : DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ), 134 NumExcluded(Q.NumExcluded) { 135 Excluded = Q.Excluded; 136 Excluded[NumExcluded++] = NewExcl; 137 assert(NumExcluded <= Excluded.size()); 138 } 139 140 bool isExcluded(const Value *Value) const { 141 if (NumExcluded == 0) 142 return false; 143 auto End = Excluded.begin() + NumExcluded; 144 return std::find(Excluded.begin(), End, Value) != End; 145 } 146 }; 147 148 } // end anonymous namespace 149 150 // Given the provided Value and, potentially, a context instruction, return 151 // the preferred context instruction (if any). 152 static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) { 153 // If we've been provided with a context instruction, then use that (provided 154 // it has been inserted). 155 if (CxtI && CxtI->getParent()) 156 return CxtI; 157 158 // If the value is really an already-inserted instruction, then use that. 159 CxtI = dyn_cast<Instruction>(V); 160 if (CxtI && CxtI->getParent()) 161 return CxtI; 162 163 return nullptr; 164 } 165 166 static bool getShuffleDemandedElts(const ShuffleVectorInst *Shuf, 167 const APInt &DemandedElts, 168 APInt &DemandedLHS, APInt &DemandedRHS) { 169 // The length of scalable vectors is unknown at compile time, thus we 170 // cannot check their values 171 if (Shuf->getType()->getVectorElementCount().Scalable) 172 return false; 173 174 int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements(); 175 int NumMaskElts = Shuf->getType()->getVectorNumElements(); 176 DemandedLHS = DemandedRHS = APInt::getNullValue(NumElts); 177 if (DemandedElts.isNullValue()) 178 return true; 179 // Simple case of a shuffle with zeroinitializer. 180 if (all_of(Shuf->getShuffleMask(), [](int Elt) { return Elt == 0; })) { 181 DemandedLHS.setBit(0); 182 return true; 183 } 184 for (int i = 0; i != NumMaskElts; ++i) { 185 if (!DemandedElts[i]) 186 continue; 187 int M = Shuf->getMaskValue(i); 188 assert(M < (NumElts * 2) && "Invalid shuffle mask constant"); 189 190 // For undef elements, we don't know anything about the common state of 191 // the shuffle result. 192 if (M == -1) 193 return false; 194 if (M < NumElts) 195 DemandedLHS.setBit(M % NumElts); 196 else 197 DemandedRHS.setBit(M % NumElts); 198 } 199 200 return true; 201 } 202 203 static void computeKnownBits(const Value *V, const APInt &DemandedElts, 204 KnownBits &Known, unsigned Depth, const Query &Q); 205 206 static void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth, 207 const Query &Q) { 208 Type *Ty = V->getType(); 209 APInt DemandedElts = Ty->isVectorTy() 210 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 211 : APInt(1, 1); 212 computeKnownBits(V, DemandedElts, Known, Depth, Q); 213 } 214 215 void llvm::computeKnownBits(const Value *V, KnownBits &Known, 216 const DataLayout &DL, unsigned Depth, 217 AssumptionCache *AC, const Instruction *CxtI, 218 const DominatorTree *DT, 219 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 220 ::computeKnownBits(V, Known, Depth, 221 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 222 } 223 224 void llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 225 KnownBits &Known, const DataLayout &DL, 226 unsigned Depth, AssumptionCache *AC, 227 const Instruction *CxtI, const DominatorTree *DT, 228 OptimizationRemarkEmitter *ORE, bool UseInstrInfo) { 229 ::computeKnownBits(V, DemandedElts, Known, Depth, 230 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 231 } 232 233 static KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 234 unsigned Depth, const Query &Q); 235 236 static KnownBits computeKnownBits(const Value *V, unsigned Depth, 237 const Query &Q); 238 239 KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL, 240 unsigned Depth, AssumptionCache *AC, 241 const Instruction *CxtI, 242 const DominatorTree *DT, 243 OptimizationRemarkEmitter *ORE, 244 bool UseInstrInfo) { 245 return ::computeKnownBits( 246 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 247 } 248 249 KnownBits llvm::computeKnownBits(const Value *V, const APInt &DemandedElts, 250 const DataLayout &DL, unsigned Depth, 251 AssumptionCache *AC, const Instruction *CxtI, 252 const DominatorTree *DT, 253 OptimizationRemarkEmitter *ORE, 254 bool UseInstrInfo) { 255 return ::computeKnownBits( 256 V, DemandedElts, Depth, 257 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE)); 258 } 259 260 bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS, 261 const DataLayout &DL, AssumptionCache *AC, 262 const Instruction *CxtI, const DominatorTree *DT, 263 bool UseInstrInfo) { 264 assert(LHS->getType() == RHS->getType() && 265 "LHS and RHS should have the same type"); 266 assert(LHS->getType()->isIntOrIntVectorTy() && 267 "LHS and RHS should be integers"); 268 // Look for an inverted mask: (X & ~M) op (Y & M). 269 Value *M; 270 if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 271 match(RHS, m_c_And(m_Specific(M), m_Value()))) 272 return true; 273 if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) && 274 match(LHS, m_c_And(m_Specific(M), m_Value()))) 275 return true; 276 IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType()); 277 KnownBits LHSKnown(IT->getBitWidth()); 278 KnownBits RHSKnown(IT->getBitWidth()); 279 computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 280 computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo); 281 return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue(); 282 } 283 284 bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) { 285 for (const User *U : CxtI->users()) { 286 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 287 if (IC->isEquality()) 288 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 289 if (C->isNullValue()) 290 continue; 291 return false; 292 } 293 return true; 294 } 295 296 static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 297 const Query &Q); 298 299 bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL, 300 bool OrZero, unsigned Depth, 301 AssumptionCache *AC, const Instruction *CxtI, 302 const DominatorTree *DT, bool UseInstrInfo) { 303 return ::isKnownToBeAPowerOfTwo( 304 V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 305 } 306 307 static bool isKnownNonZero(const Value *V, const APInt &DemandedElts, 308 unsigned Depth, const Query &Q); 309 310 static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q); 311 312 bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth, 313 AssumptionCache *AC, const Instruction *CxtI, 314 const DominatorTree *DT, bool UseInstrInfo) { 315 return ::isKnownNonZero(V, Depth, 316 Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 317 } 318 319 bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL, 320 unsigned Depth, AssumptionCache *AC, 321 const Instruction *CxtI, const DominatorTree *DT, 322 bool UseInstrInfo) { 323 KnownBits Known = 324 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 325 return Known.isNonNegative(); 326 } 327 328 bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth, 329 AssumptionCache *AC, const Instruction *CxtI, 330 const DominatorTree *DT, bool UseInstrInfo) { 331 if (auto *CI = dyn_cast<ConstantInt>(V)) 332 return CI->getValue().isStrictlyPositive(); 333 334 // TODO: We'd doing two recursive queries here. We should factor this such 335 // that only a single query is needed. 336 return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) && 337 isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo); 338 } 339 340 bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth, 341 AssumptionCache *AC, const Instruction *CxtI, 342 const DominatorTree *DT, bool UseInstrInfo) { 343 KnownBits Known = 344 computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo); 345 return Known.isNegative(); 346 } 347 348 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q); 349 350 bool llvm::isKnownNonEqual(const Value *V1, const Value *V2, 351 const DataLayout &DL, AssumptionCache *AC, 352 const Instruction *CxtI, const DominatorTree *DT, 353 bool UseInstrInfo) { 354 return ::isKnownNonEqual(V1, V2, 355 Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT, 356 UseInstrInfo, /*ORE=*/nullptr)); 357 } 358 359 static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 360 const Query &Q); 361 362 bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask, 363 const DataLayout &DL, unsigned Depth, 364 AssumptionCache *AC, const Instruction *CxtI, 365 const DominatorTree *DT, bool UseInstrInfo) { 366 return ::MaskedValueIsZero( 367 V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 368 } 369 370 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 371 unsigned Depth, const Query &Q); 372 373 static unsigned ComputeNumSignBits(const Value *V, unsigned Depth, 374 const Query &Q) { 375 Type *Ty = V->getType(); 376 APInt DemandedElts = Ty->isVectorTy() 377 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 378 : APInt(1, 1); 379 return ComputeNumSignBits(V, DemandedElts, Depth, Q); 380 } 381 382 unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL, 383 unsigned Depth, AssumptionCache *AC, 384 const Instruction *CxtI, 385 const DominatorTree *DT, bool UseInstrInfo) { 386 return ::ComputeNumSignBits( 387 V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo)); 388 } 389 390 static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1, 391 bool NSW, const APInt &DemandedElts, 392 KnownBits &KnownOut, KnownBits &Known2, 393 unsigned Depth, const Query &Q) { 394 computeKnownBits(Op1, DemandedElts, KnownOut, Depth + 1, Q); 395 396 // If one operand is unknown and we have no nowrap information, 397 // the result will be unknown independently of the second operand. 398 if (KnownOut.isUnknown() && !NSW) 399 return; 400 401 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 402 KnownOut = KnownBits::computeForAddSub(Add, NSW, Known2, KnownOut); 403 } 404 405 static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW, 406 const APInt &DemandedElts, KnownBits &Known, 407 KnownBits &Known2, unsigned Depth, 408 const Query &Q) { 409 unsigned BitWidth = Known.getBitWidth(); 410 computeKnownBits(Op1, DemandedElts, Known, Depth + 1, Q); 411 computeKnownBits(Op0, DemandedElts, Known2, Depth + 1, Q); 412 413 bool isKnownNegative = false; 414 bool isKnownNonNegative = false; 415 // If the multiplication is known not to overflow, compute the sign bit. 416 if (NSW) { 417 if (Op0 == Op1) { 418 // The product of a number with itself is non-negative. 419 isKnownNonNegative = true; 420 } else { 421 bool isKnownNonNegativeOp1 = Known.isNonNegative(); 422 bool isKnownNonNegativeOp0 = Known2.isNonNegative(); 423 bool isKnownNegativeOp1 = Known.isNegative(); 424 bool isKnownNegativeOp0 = Known2.isNegative(); 425 // The product of two numbers with the same sign is non-negative. 426 isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) || 427 (isKnownNonNegativeOp1 && isKnownNonNegativeOp0); 428 // The product of a negative number and a non-negative number is either 429 // negative or zero. 430 if (!isKnownNonNegative) 431 isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 && 432 isKnownNonZero(Op0, Depth, Q)) || 433 (isKnownNegativeOp0 && isKnownNonNegativeOp1 && 434 isKnownNonZero(Op1, Depth, Q)); 435 } 436 } 437 438 assert(!Known.hasConflict() && !Known2.hasConflict()); 439 // Compute a conservative estimate for high known-0 bits. 440 unsigned LeadZ = std::max(Known.countMinLeadingZeros() + 441 Known2.countMinLeadingZeros(), 442 BitWidth) - BitWidth; 443 LeadZ = std::min(LeadZ, BitWidth); 444 445 // The result of the bottom bits of an integer multiply can be 446 // inferred by looking at the bottom bits of both operands and 447 // multiplying them together. 448 // We can infer at least the minimum number of known trailing bits 449 // of both operands. Depending on number of trailing zeros, we can 450 // infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming 451 // a and b are divisible by m and n respectively. 452 // We then calculate how many of those bits are inferrable and set 453 // the output. For example, the i8 mul: 454 // a = XXXX1100 (12) 455 // b = XXXX1110 (14) 456 // We know the bottom 3 bits are zero since the first can be divided by 457 // 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4). 458 // Applying the multiplication to the trimmed arguments gets: 459 // XX11 (3) 460 // X111 (7) 461 // ------- 462 // XX11 463 // XX11 464 // XX11 465 // XX11 466 // ------- 467 // XXXXX01 468 // Which allows us to infer the 2 LSBs. Since we're multiplying the result 469 // by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits. 470 // The proof for this can be described as: 471 // Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) && 472 // (C7 == (1 << (umin(countTrailingZeros(C1), C5) + 473 // umin(countTrailingZeros(C2), C6) + 474 // umin(C5 - umin(countTrailingZeros(C1), C5), 475 // C6 - umin(countTrailingZeros(C2), C6)))) - 1) 476 // %aa = shl i8 %a, C5 477 // %bb = shl i8 %b, C6 478 // %aaa = or i8 %aa, C1 479 // %bbb = or i8 %bb, C2 480 // %mul = mul i8 %aaa, %bbb 481 // %mask = and i8 %mul, C7 482 // => 483 // %mask = i8 ((C1*C2)&C7) 484 // Where C5, C6 describe the known bits of %a, %b 485 // C1, C2 describe the known bottom bits of %a, %b. 486 // C7 describes the mask of the known bits of the result. 487 APInt Bottom0 = Known.One; 488 APInt Bottom1 = Known2.One; 489 490 // How many times we'd be able to divide each argument by 2 (shr by 1). 491 // This gives us the number of trailing zeros on the multiplication result. 492 unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes(); 493 unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes(); 494 unsigned TrailZero0 = Known.countMinTrailingZeros(); 495 unsigned TrailZero1 = Known2.countMinTrailingZeros(); 496 unsigned TrailZ = TrailZero0 + TrailZero1; 497 498 // Figure out the fewest known-bits operand. 499 unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0, 500 TrailBitsKnown1 - TrailZero1); 501 unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth); 502 503 APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) * 504 Bottom1.getLoBits(TrailBitsKnown1); 505 506 Known.resetAll(); 507 Known.Zero.setHighBits(LeadZ); 508 Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown); 509 Known.One |= BottomKnown.getLoBits(ResultBitsKnown); 510 511 // Only make use of no-wrap flags if we failed to compute the sign bit 512 // directly. This matters if the multiplication always overflows, in 513 // which case we prefer to follow the result of the direct computation, 514 // though as the program is invoking undefined behaviour we can choose 515 // whatever we like here. 516 if (isKnownNonNegative && !Known.isNegative()) 517 Known.makeNonNegative(); 518 else if (isKnownNegative && !Known.isNonNegative()) 519 Known.makeNegative(); 520 } 521 522 void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges, 523 KnownBits &Known) { 524 unsigned BitWidth = Known.getBitWidth(); 525 unsigned NumRanges = Ranges.getNumOperands() / 2; 526 assert(NumRanges >= 1); 527 528 Known.Zero.setAllBits(); 529 Known.One.setAllBits(); 530 531 for (unsigned i = 0; i < NumRanges; ++i) { 532 ConstantInt *Lower = 533 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); 534 ConstantInt *Upper = 535 mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); 536 ConstantRange Range(Lower->getValue(), Upper->getValue()); 537 538 // The first CommonPrefixBits of all values in Range are equal. 539 unsigned CommonPrefixBits = 540 (Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros(); 541 542 APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits); 543 Known.One &= Range.getUnsignedMax() & Mask; 544 Known.Zero &= ~Range.getUnsignedMax() & Mask; 545 } 546 } 547 548 static bool isEphemeralValueOf(const Instruction *I, const Value *E) { 549 SmallVector<const Value *, 16> WorkSet(1, I); 550 SmallPtrSet<const Value *, 32> Visited; 551 SmallPtrSet<const Value *, 16> EphValues; 552 553 // The instruction defining an assumption's condition itself is always 554 // considered ephemeral to that assumption (even if it has other 555 // non-ephemeral users). See r246696's test case for an example. 556 if (is_contained(I->operands(), E)) 557 return true; 558 559 while (!WorkSet.empty()) { 560 const Value *V = WorkSet.pop_back_val(); 561 if (!Visited.insert(V).second) 562 continue; 563 564 // If all uses of this value are ephemeral, then so is this value. 565 if (llvm::all_of(V->users(), [&](const User *U) { 566 return EphValues.count(U); 567 })) { 568 if (V == E) 569 return true; 570 571 if (V == I || isSafeToSpeculativelyExecute(V)) { 572 EphValues.insert(V); 573 if (const User *U = dyn_cast<User>(V)) 574 for (User::const_op_iterator J = U->op_begin(), JE = U->op_end(); 575 J != JE; ++J) 576 WorkSet.push_back(*J); 577 } 578 } 579 } 580 581 return false; 582 } 583 584 // Is this an intrinsic that cannot be speculated but also cannot trap? 585 bool llvm::isAssumeLikeIntrinsic(const Instruction *I) { 586 if (const CallInst *CI = dyn_cast<CallInst>(I)) 587 if (Function *F = CI->getCalledFunction()) 588 switch (F->getIntrinsicID()) { 589 default: break; 590 // FIXME: This list is repeated from NoTTI::getIntrinsicCost. 591 case Intrinsic::assume: 592 case Intrinsic::sideeffect: 593 case Intrinsic::dbg_declare: 594 case Intrinsic::dbg_value: 595 case Intrinsic::dbg_label: 596 case Intrinsic::invariant_start: 597 case Intrinsic::invariant_end: 598 case Intrinsic::lifetime_start: 599 case Intrinsic::lifetime_end: 600 case Intrinsic::objectsize: 601 case Intrinsic::ptr_annotation: 602 case Intrinsic::var_annotation: 603 return true; 604 } 605 606 return false; 607 } 608 609 bool llvm::isValidAssumeForContext(const Instruction *Inv, 610 const Instruction *CxtI, 611 const DominatorTree *DT) { 612 // There are two restrictions on the use of an assume: 613 // 1. The assume must dominate the context (or the control flow must 614 // reach the assume whenever it reaches the context). 615 // 2. The context must not be in the assume's set of ephemeral values 616 // (otherwise we will use the assume to prove that the condition 617 // feeding the assume is trivially true, thus causing the removal of 618 // the assume). 619 620 if (Inv->getParent() == CxtI->getParent()) { 621 // If Inv and CtxI are in the same block, check if the assume (Inv) is first 622 // in the BB. 623 if (Inv->comesBefore(CxtI)) 624 return true; 625 626 // Don't let an assume affect itself - this would cause the problems 627 // `isEphemeralValueOf` is trying to prevent, and it would also make 628 // the loop below go out of bounds. 629 if (Inv == CxtI) 630 return false; 631 632 // The context comes first, but they're both in the same block. 633 // Make sure there is nothing in between that might interrupt 634 // the control flow, not even CxtI itself. 635 for (BasicBlock::const_iterator I(CxtI), IE(Inv); I != IE; ++I) 636 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 637 return false; 638 639 return !isEphemeralValueOf(Inv, CxtI); 640 } 641 642 // Inv and CxtI are in different blocks. 643 if (DT) { 644 if (DT->dominates(Inv, CxtI)) 645 return true; 646 } else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) { 647 // We don't have a DT, but this trivially dominates. 648 return true; 649 } 650 651 return false; 652 } 653 654 static bool isKnownNonZeroFromAssume(const Value *V, const Query &Q) { 655 // Use of assumptions is context-sensitive. If we don't have a context, we 656 // cannot use them! 657 if (!Q.AC || !Q.CxtI) 658 return false; 659 660 // Note that the patterns below need to be kept in sync with the code 661 // in AssumptionCache::updateAffectedValues. 662 663 auto CmpExcludesZero = [V](ICmpInst *Cmp) { 664 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 665 666 Value *RHS; 667 CmpInst::Predicate Pred; 668 if (!match(Cmp, m_c_ICmp(Pred, m_V, m_Value(RHS)))) 669 return false; 670 // assume(v u> y) -> assume(v != 0) 671 if (Pred == ICmpInst::ICMP_UGT) 672 return true; 673 674 // assume(v != 0) 675 // We special-case this one to ensure that we handle `assume(v != null)`. 676 if (Pred == ICmpInst::ICMP_NE) 677 return match(RHS, m_Zero()); 678 679 // All other predicates - rely on generic ConstantRange handling. 680 ConstantInt *CI; 681 if (!match(RHS, m_ConstantInt(CI))) 682 return false; 683 ConstantRange RHSRange(CI->getValue()); 684 ConstantRange TrueValues = 685 ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); 686 return !TrueValues.contains(APInt::getNullValue(CI->getBitWidth())); 687 }; 688 689 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 690 if (!AssumeVH) 691 continue; 692 CallInst *I = cast<CallInst>(AssumeVH); 693 assert(I->getFunction() == Q.CxtI->getFunction() && 694 "Got assumption for the wrong function!"); 695 if (Q.isExcluded(I)) 696 continue; 697 698 // Warning: This loop can end up being somewhat performance sensitive. 699 // We're running this loop for once for each value queried resulting in a 700 // runtime of ~O(#assumes * #values). 701 702 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 703 "must be an assume intrinsic"); 704 705 Value *Arg = I->getArgOperand(0); 706 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 707 if (!Cmp) 708 continue; 709 710 if (CmpExcludesZero(Cmp) && isValidAssumeForContext(I, Q.CxtI, Q.DT)) 711 return true; 712 } 713 714 return false; 715 } 716 717 static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known, 718 unsigned Depth, const Query &Q) { 719 // Use of assumptions is context-sensitive. If we don't have a context, we 720 // cannot use them! 721 if (!Q.AC || !Q.CxtI) 722 return; 723 724 unsigned BitWidth = Known.getBitWidth(); 725 726 // Note that the patterns below need to be kept in sync with the code 727 // in AssumptionCache::updateAffectedValues. 728 729 for (auto &AssumeVH : Q.AC->assumptionsFor(V)) { 730 if (!AssumeVH) 731 continue; 732 CallInst *I = cast<CallInst>(AssumeVH); 733 assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() && 734 "Got assumption for the wrong function!"); 735 if (Q.isExcluded(I)) 736 continue; 737 738 // Warning: This loop can end up being somewhat performance sensitive. 739 // We're running this loop for once for each value queried resulting in a 740 // runtime of ~O(#assumes * #values). 741 742 assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume && 743 "must be an assume intrinsic"); 744 745 Value *Arg = I->getArgOperand(0); 746 747 if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 748 assert(BitWidth == 1 && "assume operand is not i1?"); 749 Known.setAllOnes(); 750 return; 751 } 752 if (match(Arg, m_Not(m_Specific(V))) && 753 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 754 assert(BitWidth == 1 && "assume operand is not i1?"); 755 Known.setAllZero(); 756 return; 757 } 758 759 // The remaining tests are all recursive, so bail out if we hit the limit. 760 if (Depth == MaxDepth) 761 continue; 762 763 ICmpInst *Cmp = dyn_cast<ICmpInst>(Arg); 764 if (!Cmp) 765 continue; 766 767 Value *A, *B; 768 auto m_V = m_CombineOr(m_Specific(V), m_PtrToInt(m_Specific(V))); 769 770 CmpInst::Predicate Pred; 771 uint64_t C; 772 switch (Cmp->getPredicate()) { 773 default: 774 break; 775 case ICmpInst::ICMP_EQ: 776 // assume(v = a) 777 if (match(Cmp, m_c_ICmp(Pred, m_V, m_Value(A))) && 778 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 779 KnownBits RHSKnown(BitWidth); 780 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 781 Known.Zero |= RHSKnown.Zero; 782 Known.One |= RHSKnown.One; 783 // assume(v & b = a) 784 } else if (match(Cmp, 785 m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) && 786 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 787 KnownBits RHSKnown(BitWidth); 788 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 789 KnownBits MaskKnown(BitWidth); 790 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 791 792 // For those bits in the mask that are known to be one, we can propagate 793 // known bits from the RHS to V. 794 Known.Zero |= RHSKnown.Zero & MaskKnown.One; 795 Known.One |= RHSKnown.One & MaskKnown.One; 796 // assume(~(v & b) = a) 797 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))), 798 m_Value(A))) && 799 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 800 KnownBits RHSKnown(BitWidth); 801 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 802 KnownBits MaskKnown(BitWidth); 803 computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I)); 804 805 // For those bits in the mask that are known to be one, we can propagate 806 // inverted known bits from the RHS to V. 807 Known.Zero |= RHSKnown.One & MaskKnown.One; 808 Known.One |= RHSKnown.Zero & MaskKnown.One; 809 // assume(v | b = a) 810 } else if (match(Cmp, 811 m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) && 812 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 813 KnownBits RHSKnown(BitWidth); 814 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 815 KnownBits BKnown(BitWidth); 816 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 817 818 // For those bits in B that are known to be zero, we can propagate known 819 // bits from the RHS to V. 820 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 821 Known.One |= RHSKnown.One & BKnown.Zero; 822 // assume(~(v | b) = a) 823 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))), 824 m_Value(A))) && 825 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 826 KnownBits RHSKnown(BitWidth); 827 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 828 KnownBits BKnown(BitWidth); 829 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 830 831 // For those bits in B that are known to be zero, we can propagate 832 // inverted known bits from the RHS to V. 833 Known.Zero |= RHSKnown.One & BKnown.Zero; 834 Known.One |= RHSKnown.Zero & BKnown.Zero; 835 // assume(v ^ b = a) 836 } else if (match(Cmp, 837 m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) && 838 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 839 KnownBits RHSKnown(BitWidth); 840 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 841 KnownBits BKnown(BitWidth); 842 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 843 844 // For those bits in B that are known to be zero, we can propagate known 845 // bits from the RHS to V. For those bits in B that are known to be one, 846 // we can propagate inverted known bits from the RHS to V. 847 Known.Zero |= RHSKnown.Zero & BKnown.Zero; 848 Known.One |= RHSKnown.One & BKnown.Zero; 849 Known.Zero |= RHSKnown.One & BKnown.One; 850 Known.One |= RHSKnown.Zero & BKnown.One; 851 // assume(~(v ^ b) = a) 852 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))), 853 m_Value(A))) && 854 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 855 KnownBits RHSKnown(BitWidth); 856 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 857 KnownBits BKnown(BitWidth); 858 computeKnownBits(B, BKnown, Depth+1, Query(Q, I)); 859 860 // For those bits in B that are known to be zero, we can propagate 861 // inverted known bits from the RHS to V. For those bits in B that are 862 // known to be one, we can propagate known bits from the RHS to V. 863 Known.Zero |= RHSKnown.One & BKnown.Zero; 864 Known.One |= RHSKnown.Zero & BKnown.Zero; 865 Known.Zero |= RHSKnown.Zero & BKnown.One; 866 Known.One |= RHSKnown.One & BKnown.One; 867 // assume(v << c = a) 868 } else if (match(Cmp, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)), 869 m_Value(A))) && 870 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 871 KnownBits RHSKnown(BitWidth); 872 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 873 // For those bits in RHS that are known, we can propagate them to known 874 // bits in V shifted to the right by C. 875 RHSKnown.Zero.lshrInPlace(C); 876 Known.Zero |= RHSKnown.Zero; 877 RHSKnown.One.lshrInPlace(C); 878 Known.One |= RHSKnown.One; 879 // assume(~(v << c) = a) 880 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))), 881 m_Value(A))) && 882 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 883 KnownBits RHSKnown(BitWidth); 884 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 885 // For those bits in RHS that are known, we can propagate them inverted 886 // to known bits in V shifted to the right by C. 887 RHSKnown.One.lshrInPlace(C); 888 Known.Zero |= RHSKnown.One; 889 RHSKnown.Zero.lshrInPlace(C); 890 Known.One |= RHSKnown.Zero; 891 // assume(v >> c = a) 892 } else if (match(Cmp, m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)), 893 m_Value(A))) && 894 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 895 KnownBits RHSKnown(BitWidth); 896 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 897 // For those bits in RHS that are known, we can propagate them to known 898 // bits in V shifted to the right by C. 899 Known.Zero |= RHSKnown.Zero << C; 900 Known.One |= RHSKnown.One << C; 901 // assume(~(v >> c) = a) 902 } else if (match(Cmp, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))), 903 m_Value(A))) && 904 isValidAssumeForContext(I, Q.CxtI, Q.DT) && C < BitWidth) { 905 KnownBits RHSKnown(BitWidth); 906 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 907 // For those bits in RHS that are known, we can propagate them inverted 908 // to known bits in V shifted to the right by C. 909 Known.Zero |= RHSKnown.One << C; 910 Known.One |= RHSKnown.Zero << C; 911 } 912 break; 913 case ICmpInst::ICMP_SGE: 914 // assume(v >=_s c) where c is non-negative 915 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 916 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 917 KnownBits RHSKnown(BitWidth); 918 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 919 920 if (RHSKnown.isNonNegative()) { 921 // We know that the sign bit is zero. 922 Known.makeNonNegative(); 923 } 924 } 925 break; 926 case ICmpInst::ICMP_SGT: 927 // assume(v >_s c) where c is at least -1. 928 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 929 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 930 KnownBits RHSKnown(BitWidth); 931 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 932 933 if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) { 934 // We know that the sign bit is zero. 935 Known.makeNonNegative(); 936 } 937 } 938 break; 939 case ICmpInst::ICMP_SLE: 940 // assume(v <=_s c) where c is negative 941 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 942 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 943 KnownBits RHSKnown(BitWidth); 944 computeKnownBits(A, RHSKnown, Depth + 1, Query(Q, I)); 945 946 if (RHSKnown.isNegative()) { 947 // We know that the sign bit is one. 948 Known.makeNegative(); 949 } 950 } 951 break; 952 case ICmpInst::ICMP_SLT: 953 // assume(v <_s c) where c is non-positive 954 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 955 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 956 KnownBits RHSKnown(BitWidth); 957 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 958 959 if (RHSKnown.isZero() || RHSKnown.isNegative()) { 960 // We know that the sign bit is one. 961 Known.makeNegative(); 962 } 963 } 964 break; 965 case ICmpInst::ICMP_ULE: 966 // assume(v <=_u c) 967 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 968 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 969 KnownBits RHSKnown(BitWidth); 970 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 971 972 // Whatever high bits in c are zero are known to be zero. 973 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 974 } 975 break; 976 case ICmpInst::ICMP_ULT: 977 // assume(v <_u c) 978 if (match(Cmp, m_ICmp(Pred, m_V, m_Value(A))) && 979 isValidAssumeForContext(I, Q.CxtI, Q.DT)) { 980 KnownBits RHSKnown(BitWidth); 981 computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I)); 982 983 // If the RHS is known zero, then this assumption must be wrong (nothing 984 // is unsigned less than zero). Signal a conflict and get out of here. 985 if (RHSKnown.isZero()) { 986 Known.Zero.setAllBits(); 987 Known.One.setAllBits(); 988 break; 989 } 990 991 // Whatever high bits in c are zero are known to be zero (if c is a power 992 // of 2, then one more). 993 if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I))) 994 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1); 995 else 996 Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros()); 997 } 998 break; 999 } 1000 } 1001 1002 // If assumptions conflict with each other or previous known bits, then we 1003 // have a logical fallacy. It's possible that the assumption is not reachable, 1004 // so this isn't a real bug. On the other hand, the program may have undefined 1005 // behavior, or we might have a bug in the compiler. We can't assert/crash, so 1006 // clear out the known bits, try to warn the user, and hope for the best. 1007 if (Known.Zero.intersects(Known.One)) { 1008 Known.resetAll(); 1009 1010 if (Q.ORE) 1011 Q.ORE->emit([&]() { 1012 auto *CxtI = const_cast<Instruction *>(Q.CxtI); 1013 return OptimizationRemarkAnalysis("value-tracking", "BadAssumption", 1014 CxtI) 1015 << "Detected conflicting code assumptions. Program may " 1016 "have undefined behavior, or compiler may have " 1017 "internal error."; 1018 }); 1019 } 1020 } 1021 1022 /// Compute known bits from a shift operator, including those with a 1023 /// non-constant shift amount. Known is the output of this function. Known2 is a 1024 /// pre-allocated temporary with the same bit width as Known. KZF and KOF are 1025 /// operator-specific functions that, given the known-zero or known-one bits 1026 /// respectively, and a shift amount, compute the implied known-zero or 1027 /// known-one bits of the shift operator's result respectively for that shift 1028 /// amount. The results from calling KZF and KOF are conservatively combined for 1029 /// all permitted shift amounts. 1030 static void computeKnownBitsFromShiftOperator( 1031 const Operator *I, const APInt &DemandedElts, KnownBits &Known, 1032 KnownBits &Known2, unsigned Depth, const Query &Q, 1033 function_ref<APInt(const APInt &, unsigned)> KZF, 1034 function_ref<APInt(const APInt &, unsigned)> KOF) { 1035 unsigned BitWidth = Known.getBitWidth(); 1036 1037 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1038 if (Known.isConstant()) { 1039 unsigned ShiftAmt = Known.getConstant().getLimitedValue(BitWidth - 1); 1040 1041 computeKnownBits(I->getOperand(0), DemandedElts, Known, Depth + 1, Q); 1042 Known.Zero = KZF(Known.Zero, ShiftAmt); 1043 Known.One = KOF(Known.One, ShiftAmt); 1044 // If the known bits conflict, this must be an overflowing left shift, so 1045 // the shift result is poison. We can return anything we want. Choose 0 for 1046 // the best folding opportunity. 1047 if (Known.hasConflict()) 1048 Known.setAllZero(); 1049 1050 return; 1051 } 1052 1053 // If the shift amount could be greater than or equal to the bit-width of the 1054 // LHS, the value could be poison, but bail out because the check below is 1055 // expensive. 1056 // TODO: Should we just carry on? 1057 if (Known.getMaxValue().uge(BitWidth)) { 1058 Known.resetAll(); 1059 return; 1060 } 1061 1062 // Note: We cannot use Known.Zero.getLimitedValue() here, because if 1063 // BitWidth > 64 and any upper bits are known, we'll end up returning the 1064 // limit value (which implies all bits are known). 1065 uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue(); 1066 uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue(); 1067 1068 // It would be more-clearly correct to use the two temporaries for this 1069 // calculation. Reusing the APInts here to prevent unnecessary allocations. 1070 Known.resetAll(); 1071 1072 // If we know the shifter operand is nonzero, we can sometimes infer more 1073 // known bits. However this is expensive to compute, so be lazy about it and 1074 // only compute it when absolutely necessary. 1075 Optional<bool> ShifterOperandIsNonZero; 1076 1077 // Early exit if we can't constrain any well-defined shift amount. 1078 if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) && 1079 !(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) { 1080 ShifterOperandIsNonZero = 1081 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1082 if (!*ShifterOperandIsNonZero) 1083 return; 1084 } 1085 1086 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1087 1088 Known.Zero.setAllBits(); 1089 Known.One.setAllBits(); 1090 for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) { 1091 // Combine the shifted known input bits only for those shift amounts 1092 // compatible with its known constraints. 1093 if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt) 1094 continue; 1095 if ((ShiftAmt | ShiftAmtKO) != ShiftAmt) 1096 continue; 1097 // If we know the shifter is nonzero, we may be able to infer more known 1098 // bits. This check is sunk down as far as possible to avoid the expensive 1099 // call to isKnownNonZero if the cheaper checks above fail. 1100 if (ShiftAmt == 0) { 1101 if (!ShifterOperandIsNonZero.hasValue()) 1102 ShifterOperandIsNonZero = 1103 isKnownNonZero(I->getOperand(1), DemandedElts, Depth + 1, Q); 1104 if (*ShifterOperandIsNonZero) 1105 continue; 1106 } 1107 1108 Known.Zero &= KZF(Known2.Zero, ShiftAmt); 1109 Known.One &= KOF(Known2.One, ShiftAmt); 1110 } 1111 1112 // If the known bits conflict, the result is poison. Return a 0 and hope the 1113 // caller can further optimize that. 1114 if (Known.hasConflict()) 1115 Known.setAllZero(); 1116 } 1117 1118 static void computeKnownBitsFromOperator(const Operator *I, 1119 const APInt &DemandedElts, 1120 KnownBits &Known, unsigned Depth, 1121 const Query &Q) { 1122 unsigned BitWidth = Known.getBitWidth(); 1123 1124 KnownBits Known2(Known); 1125 switch (I->getOpcode()) { 1126 default: break; 1127 case Instruction::Load: 1128 if (MDNode *MD = 1129 Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range)) 1130 computeKnownBitsFromRangeMetadata(*MD, Known); 1131 break; 1132 case Instruction::And: { 1133 // If either the LHS or the RHS are Zero, the result is zero. 1134 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1135 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1136 1137 // Output known-1 bits are only known if set in both the LHS & RHS. 1138 Known.One &= Known2.One; 1139 // Output known-0 are known to be clear if zero in either the LHS | RHS. 1140 Known.Zero |= Known2.Zero; 1141 1142 // and(x, add (x, -1)) is a common idiom that always clears the low bit; 1143 // here we handle the more general case of adding any odd number by 1144 // matching the form add(x, add(x, y)) where y is odd. 1145 // TODO: This could be generalized to clearing any bit set in y where the 1146 // following bit is known to be unset in y. 1147 Value *X = nullptr, *Y = nullptr; 1148 if (!Known.Zero[0] && !Known.One[0] && 1149 match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) { 1150 Known2.resetAll(); 1151 computeKnownBits(Y, DemandedElts, Known2, Depth + 1, Q); 1152 if (Known2.countMinTrailingOnes() > 0) 1153 Known.Zero.setBit(0); 1154 } 1155 break; 1156 } 1157 case Instruction::Or: 1158 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1159 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1160 1161 // Output known-0 bits are only known if clear in both the LHS & RHS. 1162 Known.Zero &= Known2.Zero; 1163 // Output known-1 are known to be set if set in either the LHS | RHS. 1164 Known.One |= Known2.One; 1165 break; 1166 case Instruction::Xor: { 1167 computeKnownBits(I->getOperand(1), DemandedElts, Known, Depth + 1, Q); 1168 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1169 1170 // Output known-0 bits are known if clear or set in both the LHS & RHS. 1171 APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One); 1172 // Output known-1 are known to be set if set in only one of the LHS, RHS. 1173 Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero); 1174 Known.Zero = std::move(KnownZeroOut); 1175 break; 1176 } 1177 case Instruction::Mul: { 1178 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1179 computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, DemandedElts, 1180 Known, Known2, Depth, Q); 1181 break; 1182 } 1183 case Instruction::UDiv: { 1184 // For the purposes of computing leading zeros we can conservatively 1185 // treat a udiv as a logical right shift by the power of 2 known to 1186 // be less than the denominator. 1187 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1188 unsigned LeadZ = Known2.countMinLeadingZeros(); 1189 1190 Known2.resetAll(); 1191 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1192 unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros(); 1193 if (RHSMaxLeadingZeros != BitWidth) 1194 LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1); 1195 1196 Known.Zero.setHighBits(LeadZ); 1197 break; 1198 } 1199 case Instruction::Select: { 1200 const Value *LHS = nullptr, *RHS = nullptr; 1201 SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor; 1202 if (SelectPatternResult::isMinOrMax(SPF)) { 1203 computeKnownBits(RHS, Known, Depth + 1, Q); 1204 computeKnownBits(LHS, Known2, Depth + 1, Q); 1205 } else { 1206 computeKnownBits(I->getOperand(2), Known, Depth + 1, Q); 1207 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1208 } 1209 1210 unsigned MaxHighOnes = 0; 1211 unsigned MaxHighZeros = 0; 1212 if (SPF == SPF_SMAX) { 1213 // If both sides are negative, the result is negative. 1214 if (Known.isNegative() && Known2.isNegative()) 1215 // We can derive a lower bound on the result by taking the max of the 1216 // leading one bits. 1217 MaxHighOnes = 1218 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1219 // If either side is non-negative, the result is non-negative. 1220 else if (Known.isNonNegative() || Known2.isNonNegative()) 1221 MaxHighZeros = 1; 1222 } else if (SPF == SPF_SMIN) { 1223 // If both sides are non-negative, the result is non-negative. 1224 if (Known.isNonNegative() && Known2.isNonNegative()) 1225 // We can derive an upper bound on the result by taking the max of the 1226 // leading zero bits. 1227 MaxHighZeros = std::max(Known.countMinLeadingZeros(), 1228 Known2.countMinLeadingZeros()); 1229 // If either side is negative, the result is negative. 1230 else if (Known.isNegative() || Known2.isNegative()) 1231 MaxHighOnes = 1; 1232 } else if (SPF == SPF_UMAX) { 1233 // We can derive a lower bound on the result by taking the max of the 1234 // leading one bits. 1235 MaxHighOnes = 1236 std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes()); 1237 } else if (SPF == SPF_UMIN) { 1238 // We can derive an upper bound on the result by taking the max of the 1239 // leading zero bits. 1240 MaxHighZeros = 1241 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1242 } else if (SPF == SPF_ABS) { 1243 // RHS from matchSelectPattern returns the negation part of abs pattern. 1244 // If the negate has an NSW flag we can assume the sign bit of the result 1245 // will be 0 because that makes abs(INT_MIN) undefined. 1246 if (match(RHS, m_Neg(m_Specific(LHS))) && 1247 Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 1248 MaxHighZeros = 1; 1249 } 1250 1251 // Only known if known in both the LHS and RHS. 1252 Known.One &= Known2.One; 1253 Known.Zero &= Known2.Zero; 1254 if (MaxHighOnes > 0) 1255 Known.One.setHighBits(MaxHighOnes); 1256 if (MaxHighZeros > 0) 1257 Known.Zero.setHighBits(MaxHighZeros); 1258 break; 1259 } 1260 case Instruction::FPTrunc: 1261 case Instruction::FPExt: 1262 case Instruction::FPToUI: 1263 case Instruction::FPToSI: 1264 case Instruction::SIToFP: 1265 case Instruction::UIToFP: 1266 break; // Can't work with floating point. 1267 case Instruction::PtrToInt: 1268 case Instruction::IntToPtr: 1269 // Fall through and handle them the same as zext/trunc. 1270 LLVM_FALLTHROUGH; 1271 case Instruction::ZExt: 1272 case Instruction::Trunc: { 1273 Type *SrcTy = I->getOperand(0)->getType(); 1274 1275 unsigned SrcBitWidth; 1276 // Note that we handle pointer operands here because of inttoptr/ptrtoint 1277 // which fall through here. 1278 Type *ScalarTy = SrcTy->getScalarType(); 1279 SrcBitWidth = ScalarTy->isPointerTy() ? 1280 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 1281 Q.DL.getTypeSizeInBits(ScalarTy); 1282 1283 assert(SrcBitWidth && "SrcBitWidth can't be zero"); 1284 Known = Known.anyextOrTrunc(SrcBitWidth); 1285 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1286 Known = Known.zextOrTrunc(BitWidth); 1287 break; 1288 } 1289 case Instruction::BitCast: { 1290 Type *SrcTy = I->getOperand(0)->getType(); 1291 if (SrcTy->isIntOrPtrTy() && 1292 // TODO: For now, not handling conversions like: 1293 // (bitcast i64 %x to <2 x i32>) 1294 !I->getType()->isVectorTy()) { 1295 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1296 break; 1297 } 1298 break; 1299 } 1300 case Instruction::SExt: { 1301 // Compute the bits in the result that are not present in the input. 1302 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits(); 1303 1304 Known = Known.trunc(SrcBitWidth); 1305 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1306 // If the sign bit of the input is known set or clear, then we know the 1307 // top bits of the result. 1308 Known = Known.sext(BitWidth); 1309 break; 1310 } 1311 case Instruction::Shl: { 1312 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0 1313 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1314 auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) { 1315 APInt KZResult = KnownZero << ShiftAmt; 1316 KZResult.setLowBits(ShiftAmt); // Low bits known 0. 1317 // If this shift has "nsw" keyword, then the result is either a poison 1318 // value or has the same sign bit as the first operand. 1319 if (NSW && KnownZero.isSignBitSet()) 1320 KZResult.setSignBit(); 1321 return KZResult; 1322 }; 1323 1324 auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) { 1325 APInt KOResult = KnownOne << ShiftAmt; 1326 if (NSW && KnownOne.isSignBitSet()) 1327 KOResult.setSignBit(); 1328 return KOResult; 1329 }; 1330 1331 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1332 KZF, KOF); 1333 break; 1334 } 1335 case Instruction::LShr: { 1336 // (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1337 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1338 APInt KZResult = KnownZero.lshr(ShiftAmt); 1339 // High bits known zero. 1340 KZResult.setHighBits(ShiftAmt); 1341 return KZResult; 1342 }; 1343 1344 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1345 return KnownOne.lshr(ShiftAmt); 1346 }; 1347 1348 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1349 KZF, KOF); 1350 break; 1351 } 1352 case Instruction::AShr: { 1353 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0 1354 auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) { 1355 return KnownZero.ashr(ShiftAmt); 1356 }; 1357 1358 auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) { 1359 return KnownOne.ashr(ShiftAmt); 1360 }; 1361 1362 computeKnownBitsFromShiftOperator(I, DemandedElts, Known, Known2, Depth, Q, 1363 KZF, KOF); 1364 break; 1365 } 1366 case Instruction::Sub: { 1367 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1368 computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW, 1369 DemandedElts, Known, Known2, Depth, Q); 1370 break; 1371 } 1372 case Instruction::Add: { 1373 bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I)); 1374 computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW, 1375 DemandedElts, Known, Known2, Depth, Q); 1376 break; 1377 } 1378 case Instruction::SRem: 1379 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1380 APInt RA = Rem->getValue().abs(); 1381 if (RA.isPowerOf2()) { 1382 APInt LowBits = RA - 1; 1383 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1384 1385 // The low bits of the first operand are unchanged by the srem. 1386 Known.Zero = Known2.Zero & LowBits; 1387 Known.One = Known2.One & LowBits; 1388 1389 // If the first operand is non-negative or has all low bits zero, then 1390 // the upper bits are all zero. 1391 if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero)) 1392 Known.Zero |= ~LowBits; 1393 1394 // If the first operand is negative and not all low bits are zero, then 1395 // the upper bits are all one. 1396 if (Known2.isNegative() && LowBits.intersects(Known2.One)) 1397 Known.One |= ~LowBits; 1398 1399 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1400 break; 1401 } 1402 } 1403 1404 // The sign bit is the LHS's sign bit, except when the result of the 1405 // remainder is zero. 1406 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1407 // If it's known zero, our sign bit is also zero. 1408 if (Known2.isNonNegative()) 1409 Known.makeNonNegative(); 1410 1411 break; 1412 case Instruction::URem: { 1413 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) { 1414 const APInt &RA = Rem->getValue(); 1415 if (RA.isPowerOf2()) { 1416 APInt LowBits = (RA - 1); 1417 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1418 Known.Zero |= ~LowBits; 1419 Known.One &= LowBits; 1420 break; 1421 } 1422 } 1423 1424 // Since the result is less than or equal to either operand, any leading 1425 // zero bits in either operand must also exist in the result. 1426 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1427 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1428 1429 unsigned Leaders = 1430 std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros()); 1431 Known.resetAll(); 1432 Known.Zero.setHighBits(Leaders); 1433 break; 1434 } 1435 1436 case Instruction::Alloca: { 1437 const AllocaInst *AI = cast<AllocaInst>(I); 1438 unsigned Align = AI->getAlignment(); 1439 if (Align == 0) 1440 Align = Q.DL.getABITypeAlignment(AI->getAllocatedType()); 1441 1442 if (Align > 0) 1443 Known.Zero.setLowBits(countTrailingZeros(Align)); 1444 break; 1445 } 1446 case Instruction::GetElementPtr: { 1447 // Analyze all of the subscripts of this getelementptr instruction 1448 // to determine if we can prove known low zero bits. 1449 KnownBits LocalKnown(BitWidth); 1450 computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q); 1451 unsigned TrailZ = LocalKnown.countMinTrailingZeros(); 1452 1453 gep_type_iterator GTI = gep_type_begin(I); 1454 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) { 1455 Value *Index = I->getOperand(i); 1456 if (StructType *STy = GTI.getStructTypeOrNull()) { 1457 // Handle struct member offset arithmetic. 1458 1459 // Handle case when index is vector zeroinitializer 1460 Constant *CIndex = cast<Constant>(Index); 1461 if (CIndex->isZeroValue()) 1462 continue; 1463 1464 if (CIndex->getType()->isVectorTy()) 1465 Index = CIndex->getSplatValue(); 1466 1467 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue(); 1468 const StructLayout *SL = Q.DL.getStructLayout(STy); 1469 uint64_t Offset = SL->getElementOffset(Idx); 1470 TrailZ = std::min<unsigned>(TrailZ, 1471 countTrailingZeros(Offset)); 1472 } else { 1473 // Handle array index arithmetic. 1474 Type *IndexedTy = GTI.getIndexedType(); 1475 if (!IndexedTy->isSized()) { 1476 TrailZ = 0; 1477 break; 1478 } 1479 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits(); 1480 uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy).getKnownMinSize(); 1481 LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0); 1482 computeKnownBits(Index, LocalKnown, Depth + 1, Q); 1483 TrailZ = std::min(TrailZ, 1484 unsigned(countTrailingZeros(TypeSize) + 1485 LocalKnown.countMinTrailingZeros())); 1486 } 1487 } 1488 1489 Known.Zero.setLowBits(TrailZ); 1490 break; 1491 } 1492 case Instruction::PHI: { 1493 const PHINode *P = cast<PHINode>(I); 1494 // Handle the case of a simple two-predecessor recurrence PHI. 1495 // There's a lot more that could theoretically be done here, but 1496 // this is sufficient to catch some interesting cases. 1497 if (P->getNumIncomingValues() == 2) { 1498 for (unsigned i = 0; i != 2; ++i) { 1499 Value *L = P->getIncomingValue(i); 1500 Value *R = P->getIncomingValue(!i); 1501 Instruction *RInst = P->getIncomingBlock(!i)->getTerminator(); 1502 Instruction *LInst = P->getIncomingBlock(i)->getTerminator(); 1503 Operator *LU = dyn_cast<Operator>(L); 1504 if (!LU) 1505 continue; 1506 unsigned Opcode = LU->getOpcode(); 1507 // Check for operations that have the property that if 1508 // both their operands have low zero bits, the result 1509 // will have low zero bits. 1510 if (Opcode == Instruction::Add || 1511 Opcode == Instruction::Sub || 1512 Opcode == Instruction::And || 1513 Opcode == Instruction::Or || 1514 Opcode == Instruction::Mul) { 1515 Value *LL = LU->getOperand(0); 1516 Value *LR = LU->getOperand(1); 1517 // Find a recurrence. 1518 if (LL == I) 1519 L = LR; 1520 else if (LR == I) 1521 L = LL; 1522 else 1523 continue; // Check for recurrence with L and R flipped. 1524 1525 // Change the context instruction to the "edge" that flows into the 1526 // phi. This is important because that is where the value is actually 1527 // "evaluated" even though it is used later somewhere else. (see also 1528 // D69571). 1529 Query RecQ = Q; 1530 1531 // Ok, we have a PHI of the form L op= R. Check for low 1532 // zero bits. 1533 RecQ.CxtI = RInst; 1534 computeKnownBits(R, Known2, Depth + 1, RecQ); 1535 1536 // We need to take the minimum number of known bits 1537 KnownBits Known3(Known); 1538 RecQ.CxtI = LInst; 1539 computeKnownBits(L, Known3, Depth + 1, RecQ); 1540 1541 Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(), 1542 Known3.countMinTrailingZeros())); 1543 1544 auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU); 1545 if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) { 1546 // If initial value of recurrence is nonnegative, and we are adding 1547 // a nonnegative number with nsw, the result can only be nonnegative 1548 // or poison value regardless of the number of times we execute the 1549 // add in phi recurrence. If initial value is negative and we are 1550 // adding a negative number with nsw, the result can only be 1551 // negative or poison value. Similar arguments apply to sub and mul. 1552 // 1553 // (add non-negative, non-negative) --> non-negative 1554 // (add negative, negative) --> negative 1555 if (Opcode == Instruction::Add) { 1556 if (Known2.isNonNegative() && Known3.isNonNegative()) 1557 Known.makeNonNegative(); 1558 else if (Known2.isNegative() && Known3.isNegative()) 1559 Known.makeNegative(); 1560 } 1561 1562 // (sub nsw non-negative, negative) --> non-negative 1563 // (sub nsw negative, non-negative) --> negative 1564 else if (Opcode == Instruction::Sub && LL == I) { 1565 if (Known2.isNonNegative() && Known3.isNegative()) 1566 Known.makeNonNegative(); 1567 else if (Known2.isNegative() && Known3.isNonNegative()) 1568 Known.makeNegative(); 1569 } 1570 1571 // (mul nsw non-negative, non-negative) --> non-negative 1572 else if (Opcode == Instruction::Mul && Known2.isNonNegative() && 1573 Known3.isNonNegative()) 1574 Known.makeNonNegative(); 1575 } 1576 1577 break; 1578 } 1579 } 1580 } 1581 1582 // Unreachable blocks may have zero-operand PHI nodes. 1583 if (P->getNumIncomingValues() == 0) 1584 break; 1585 1586 // Otherwise take the unions of the known bit sets of the operands, 1587 // taking conservative care to avoid excessive recursion. 1588 if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) { 1589 // Skip if every incoming value references to ourself. 1590 if (dyn_cast_or_null<UndefValue>(P->hasConstantValue())) 1591 break; 1592 1593 Known.Zero.setAllBits(); 1594 Known.One.setAllBits(); 1595 for (unsigned u = 0, e = P->getNumIncomingValues(); u < e; ++u) { 1596 Value *IncValue = P->getIncomingValue(u); 1597 // Skip direct self references. 1598 if (IncValue == P) continue; 1599 1600 // Change the context instruction to the "edge" that flows into the 1601 // phi. This is important because that is where the value is actually 1602 // "evaluated" even though it is used later somewhere else. (see also 1603 // D69571). 1604 Query RecQ = Q; 1605 RecQ.CxtI = P->getIncomingBlock(u)->getTerminator(); 1606 1607 Known2 = KnownBits(BitWidth); 1608 // Recurse, but cap the recursion to one level, because we don't 1609 // want to waste time spinning around in loops. 1610 computeKnownBits(IncValue, Known2, MaxDepth - 1, RecQ); 1611 Known.Zero &= Known2.Zero; 1612 Known.One &= Known2.One; 1613 // If all bits have been ruled out, there's no need to check 1614 // more operands. 1615 if (!Known.Zero && !Known.One) 1616 break; 1617 } 1618 } 1619 break; 1620 } 1621 case Instruction::Call: 1622 case Instruction::Invoke: 1623 // If range metadata is attached to this call, set known bits from that, 1624 // and then intersect with known bits based on other properties of the 1625 // function. 1626 if (MDNode *MD = 1627 Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range)) 1628 computeKnownBitsFromRangeMetadata(*MD, Known); 1629 if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) { 1630 computeKnownBits(RV, Known2, Depth + 1, Q); 1631 Known.Zero |= Known2.Zero; 1632 Known.One |= Known2.One; 1633 } 1634 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 1635 switch (II->getIntrinsicID()) { 1636 default: break; 1637 case Intrinsic::bitreverse: 1638 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1639 Known.Zero |= Known2.Zero.reverseBits(); 1640 Known.One |= Known2.One.reverseBits(); 1641 break; 1642 case Intrinsic::bswap: 1643 computeKnownBits(I->getOperand(0), DemandedElts, Known2, Depth + 1, Q); 1644 Known.Zero |= Known2.Zero.byteSwap(); 1645 Known.One |= Known2.One.byteSwap(); 1646 break; 1647 case Intrinsic::ctlz: { 1648 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1649 // If we have a known 1, its position is our upper bound. 1650 unsigned PossibleLZ = Known2.One.countLeadingZeros(); 1651 // If this call is undefined for 0, the result will be less than 2^n. 1652 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1653 PossibleLZ = std::min(PossibleLZ, BitWidth - 1); 1654 unsigned LowBits = Log2_32(PossibleLZ)+1; 1655 Known.Zero.setBitsFrom(LowBits); 1656 break; 1657 } 1658 case Intrinsic::cttz: { 1659 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1660 // If we have a known 1, its position is our upper bound. 1661 unsigned PossibleTZ = Known2.One.countTrailingZeros(); 1662 // If this call is undefined for 0, the result will be less than 2^n. 1663 if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext())) 1664 PossibleTZ = std::min(PossibleTZ, BitWidth - 1); 1665 unsigned LowBits = Log2_32(PossibleTZ)+1; 1666 Known.Zero.setBitsFrom(LowBits); 1667 break; 1668 } 1669 case Intrinsic::ctpop: { 1670 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1671 // We can bound the space the count needs. Also, bits known to be zero 1672 // can't contribute to the population. 1673 unsigned BitsPossiblySet = Known2.countMaxPopulation(); 1674 unsigned LowBits = Log2_32(BitsPossiblySet)+1; 1675 Known.Zero.setBitsFrom(LowBits); 1676 // TODO: we could bound KnownOne using the lower bound on the number 1677 // of bits which might be set provided by popcnt KnownOne2. 1678 break; 1679 } 1680 case Intrinsic::fshr: 1681 case Intrinsic::fshl: { 1682 const APInt *SA; 1683 if (!match(I->getOperand(2), m_APInt(SA))) 1684 break; 1685 1686 // Normalize to funnel shift left. 1687 uint64_t ShiftAmt = SA->urem(BitWidth); 1688 if (II->getIntrinsicID() == Intrinsic::fshr) 1689 ShiftAmt = BitWidth - ShiftAmt; 1690 1691 KnownBits Known3(Known); 1692 computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q); 1693 computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q); 1694 1695 Known.Zero = 1696 Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt); 1697 Known.One = 1698 Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt); 1699 break; 1700 } 1701 case Intrinsic::uadd_sat: 1702 case Intrinsic::usub_sat: { 1703 bool IsAdd = II->getIntrinsicID() == Intrinsic::uadd_sat; 1704 computeKnownBits(I->getOperand(0), Known, Depth + 1, Q); 1705 computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q); 1706 1707 // Add: Leading ones of either operand are preserved. 1708 // Sub: Leading zeros of LHS and leading ones of RHS are preserved 1709 // as leading zeros in the result. 1710 unsigned LeadingKnown; 1711 if (IsAdd) 1712 LeadingKnown = std::max(Known.countMinLeadingOnes(), 1713 Known2.countMinLeadingOnes()); 1714 else 1715 LeadingKnown = std::max(Known.countMinLeadingZeros(), 1716 Known2.countMinLeadingOnes()); 1717 1718 Known = KnownBits::computeForAddSub( 1719 IsAdd, /* NSW */ false, Known, Known2); 1720 1721 // We select between the operation result and all-ones/zero 1722 // respectively, so we can preserve known ones/zeros. 1723 if (IsAdd) { 1724 Known.One.setHighBits(LeadingKnown); 1725 Known.Zero.clearAllBits(); 1726 } else { 1727 Known.Zero.setHighBits(LeadingKnown); 1728 Known.One.clearAllBits(); 1729 } 1730 break; 1731 } 1732 case Intrinsic::x86_sse42_crc32_64_64: 1733 Known.Zero.setBitsFrom(32); 1734 break; 1735 } 1736 } 1737 break; 1738 case Instruction::ShuffleVector: { 1739 auto *Shuf = dyn_cast<ShuffleVectorInst>(I); 1740 // FIXME: Do we need to handle ConstantExpr involving shufflevectors? 1741 if (!Shuf) { 1742 Known.resetAll(); 1743 return; 1744 } 1745 // For undef elements, we don't know anything about the common state of 1746 // the shuffle result. 1747 APInt DemandedLHS, DemandedRHS; 1748 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) { 1749 Known.resetAll(); 1750 return; 1751 } 1752 Known.One.setAllBits(); 1753 Known.Zero.setAllBits(); 1754 if (!!DemandedLHS) { 1755 const Value *LHS = Shuf->getOperand(0); 1756 computeKnownBits(LHS, DemandedLHS, Known, Depth + 1, Q); 1757 // If we don't know any bits, early out. 1758 if (Known.isUnknown()) 1759 break; 1760 } 1761 if (!!DemandedRHS) { 1762 const Value *RHS = Shuf->getOperand(1); 1763 computeKnownBits(RHS, DemandedRHS, Known2, Depth + 1, Q); 1764 Known.One &= Known2.One; 1765 Known.Zero &= Known2.Zero; 1766 } 1767 break; 1768 } 1769 case Instruction::InsertElement: { 1770 const Value *Vec = I->getOperand(0); 1771 const Value *Elt = I->getOperand(1); 1772 auto *CIdx = dyn_cast<ConstantInt>(I->getOperand(2)); 1773 // Early out if the index is non-constant or out-of-range. 1774 unsigned NumElts = DemandedElts.getBitWidth(); 1775 if (!CIdx || CIdx->getValue().uge(NumElts)) { 1776 Known.resetAll(); 1777 return; 1778 } 1779 Known.One.setAllBits(); 1780 Known.Zero.setAllBits(); 1781 unsigned EltIdx = CIdx->getZExtValue(); 1782 // Do we demand the inserted element? 1783 if (DemandedElts[EltIdx]) { 1784 computeKnownBits(Elt, Known, Depth + 1, Q); 1785 // If we don't know any bits, early out. 1786 if (Known.isUnknown()) 1787 break; 1788 } 1789 // We don't need the base vector element that has been inserted. 1790 APInt DemandedVecElts = DemandedElts; 1791 DemandedVecElts.clearBit(EltIdx); 1792 if (!!DemandedVecElts) { 1793 computeKnownBits(Vec, DemandedVecElts, Known2, Depth + 1, Q); 1794 Known.One &= Known2.One; 1795 Known.Zero &= Known2.Zero; 1796 } 1797 break; 1798 } 1799 case Instruction::ExtractElement: { 1800 // Look through extract element. If the index is non-constant or 1801 // out-of-range demand all elements, otherwise just the extracted element. 1802 const Value *Vec = I->getOperand(0); 1803 const Value *Idx = I->getOperand(1); 1804 auto *CIdx = dyn_cast<ConstantInt>(Idx); 1805 unsigned NumElts = Vec->getType()->getVectorNumElements(); 1806 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 1807 if (CIdx && CIdx->getValue().ult(NumElts)) 1808 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 1809 computeKnownBits(Vec, DemandedVecElts, Known, Depth + 1, Q); 1810 break; 1811 } 1812 case Instruction::ExtractValue: 1813 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) { 1814 const ExtractValueInst *EVI = cast<ExtractValueInst>(I); 1815 if (EVI->getNumIndices() != 1) break; 1816 if (EVI->getIndices()[0] == 0) { 1817 switch (II->getIntrinsicID()) { 1818 default: break; 1819 case Intrinsic::uadd_with_overflow: 1820 case Intrinsic::sadd_with_overflow: 1821 computeKnownBitsAddSub(true, II->getArgOperand(0), 1822 II->getArgOperand(1), false, DemandedElts, 1823 Known, Known2, Depth, Q); 1824 break; 1825 case Intrinsic::usub_with_overflow: 1826 case Intrinsic::ssub_with_overflow: 1827 computeKnownBitsAddSub(false, II->getArgOperand(0), 1828 II->getArgOperand(1), false, DemandedElts, 1829 Known, Known2, Depth, Q); 1830 break; 1831 case Intrinsic::umul_with_overflow: 1832 case Intrinsic::smul_with_overflow: 1833 computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false, 1834 DemandedElts, Known, Known2, Depth, Q); 1835 break; 1836 } 1837 } 1838 } 1839 break; 1840 } 1841 } 1842 1843 /// Determine which bits of V are known to be either zero or one and return 1844 /// them. 1845 KnownBits computeKnownBits(const Value *V, const APInt &DemandedElts, 1846 unsigned Depth, const Query &Q) { 1847 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1848 computeKnownBits(V, DemandedElts, Known, Depth, Q); 1849 return Known; 1850 } 1851 1852 /// Determine which bits of V are known to be either zero or one and return 1853 /// them. 1854 KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) { 1855 KnownBits Known(getBitWidth(V->getType(), Q.DL)); 1856 computeKnownBits(V, Known, Depth, Q); 1857 return Known; 1858 } 1859 1860 /// Determine which bits of V are known to be either zero or one and return 1861 /// them in the Known bit set. 1862 /// 1863 /// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that 1864 /// we cannot optimize based on the assumption that it is zero without changing 1865 /// it to be an explicit zero. If we don't change it to zero, other code could 1866 /// optimized based on the contradictory assumption that it is non-zero. 1867 /// Because instcombine aggressively folds operations with undef args anyway, 1868 /// this won't lose us code quality. 1869 /// 1870 /// This function is defined on values with integer type, values with pointer 1871 /// type, and vectors of integers. In the case 1872 /// where V is a vector, known zero, and known one values are the 1873 /// same width as the vector element, and the bit is set only if it is true 1874 /// for all of the demanded elements in the vector specified by DemandedElts. 1875 void computeKnownBits(const Value *V, const APInt &DemandedElts, 1876 KnownBits &Known, unsigned Depth, const Query &Q) { 1877 assert(V && "No Value?"); 1878 assert(Depth <= MaxDepth && "Limit Search Depth"); 1879 unsigned BitWidth = Known.getBitWidth(); 1880 1881 Type *Ty = V->getType(); 1882 assert((Ty->isIntOrIntVectorTy(BitWidth) || Ty->isPtrOrPtrVectorTy()) && 1883 "Not integer or pointer type!"); 1884 assert(((Ty->isVectorTy() && 1885 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 1886 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 1887 "Unexpected vector size"); 1888 1889 Type *ScalarTy = Ty->getScalarType(); 1890 unsigned ExpectedWidth = ScalarTy->isPointerTy() ? 1891 Q.DL.getPointerTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy); 1892 assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth"); 1893 (void)BitWidth; 1894 (void)ExpectedWidth; 1895 1896 if (!DemandedElts) { 1897 // No demanded elts, better to assume we don't know anything. 1898 Known.resetAll(); 1899 return; 1900 } 1901 1902 const APInt *C; 1903 if (match(V, m_APInt(C))) { 1904 // We know all of the bits for a scalar constant or a splat vector constant! 1905 Known.One = *C; 1906 Known.Zero = ~Known.One; 1907 return; 1908 } 1909 // Null and aggregate-zero are all-zeros. 1910 if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) { 1911 Known.setAllZero(); 1912 return; 1913 } 1914 // Handle a constant vector by taking the intersection of the known bits of 1915 // each element. 1916 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) { 1917 assert((!Ty->isVectorTy() || 1918 CDS->getNumElements() == DemandedElts.getBitWidth()) && 1919 "Unexpected vector size"); 1920 // We know that CDS must be a vector of integers. Take the intersection of 1921 // each element. 1922 Known.Zero.setAllBits(); Known.One.setAllBits(); 1923 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1924 if (Ty->isVectorTy() && !DemandedElts[i]) 1925 continue; 1926 APInt Elt = CDS->getElementAsAPInt(i); 1927 Known.Zero &= ~Elt; 1928 Known.One &= Elt; 1929 } 1930 return; 1931 } 1932 1933 if (const auto *CV = dyn_cast<ConstantVector>(V)) { 1934 assert(CV->getNumOperands() == DemandedElts.getBitWidth() && 1935 "Unexpected vector size"); 1936 // We know that CV must be a vector of integers. Take the intersection of 1937 // each element. 1938 Known.Zero.setAllBits(); Known.One.setAllBits(); 1939 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1940 if (!DemandedElts[i]) 1941 continue; 1942 Constant *Element = CV->getAggregateElement(i); 1943 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 1944 if (!ElementCI) { 1945 Known.resetAll(); 1946 return; 1947 } 1948 const APInt &Elt = ElementCI->getValue(); 1949 Known.Zero &= ~Elt; 1950 Known.One &= Elt; 1951 } 1952 return; 1953 } 1954 1955 // Start out not knowing anything. 1956 Known.resetAll(); 1957 1958 // We can't imply anything about undefs. 1959 if (isa<UndefValue>(V)) 1960 return; 1961 1962 // There's no point in looking through other users of ConstantData for 1963 // assumptions. Confirm that we've handled them all. 1964 assert(!isa<ConstantData>(V) && "Unhandled constant data!"); 1965 1966 // Limit search depth. 1967 // All recursive calls that increase depth must come after this. 1968 if (Depth == MaxDepth) 1969 return; 1970 1971 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has 1972 // the bits of its aliasee. 1973 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 1974 if (!GA->isInterposable()) 1975 computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q); 1976 return; 1977 } 1978 1979 if (const Operator *I = dyn_cast<Operator>(V)) 1980 computeKnownBitsFromOperator(I, DemandedElts, Known, Depth, Q); 1981 1982 // Aligned pointers have trailing zeros - refine Known.Zero set 1983 if (Ty->isPointerTy()) { 1984 const MaybeAlign Align = V->getPointerAlignment(Q.DL); 1985 if (Align) 1986 Known.Zero.setLowBits(countTrailingZeros(Align->value())); 1987 } 1988 1989 // computeKnownBitsFromAssume strictly refines Known. 1990 // Therefore, we run them after computeKnownBitsFromOperator. 1991 1992 // Check whether a nearby assume intrinsic can determine some known bits. 1993 computeKnownBitsFromAssume(V, Known, Depth, Q); 1994 1995 assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?"); 1996 } 1997 1998 /// Return true if the given value is known to have exactly one 1999 /// bit set when defined. For vectors return true if every element is known to 2000 /// be a power of two when defined. Supports values with integer or pointer 2001 /// types and vectors of integers. 2002 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth, 2003 const Query &Q) { 2004 assert(Depth <= MaxDepth && "Limit Search Depth"); 2005 2006 // Attempt to match against constants. 2007 if (OrZero && match(V, m_Power2OrZero())) 2008 return true; 2009 if (match(V, m_Power2())) 2010 return true; 2011 2012 // 1 << X is clearly a power of two if the one is not shifted off the end. If 2013 // it is shifted off the end then the result is undefined. 2014 if (match(V, m_Shl(m_One(), m_Value()))) 2015 return true; 2016 2017 // (signmask) >>l X is clearly a power of two if the one is not shifted off 2018 // the bottom. If it is shifted off the bottom then the result is undefined. 2019 if (match(V, m_LShr(m_SignMask(), m_Value()))) 2020 return true; 2021 2022 // The remaining tests are all recursive, so bail out if we hit the limit. 2023 if (Depth++ == MaxDepth) 2024 return false; 2025 2026 Value *X = nullptr, *Y = nullptr; 2027 // A shift left or a logical shift right of a power of two is a power of two 2028 // or zero. 2029 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) || 2030 match(V, m_LShr(m_Value(X), m_Value())))) 2031 return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q); 2032 2033 if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V)) 2034 return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q); 2035 2036 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) 2037 return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) && 2038 isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q); 2039 2040 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) { 2041 // A power of two and'd with anything is a power of two or zero. 2042 if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) || 2043 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q)) 2044 return true; 2045 // X & (-X) is always a power of two or zero. 2046 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X)))) 2047 return true; 2048 return false; 2049 } 2050 2051 // Adding a power-of-two or zero to the same power-of-two or zero yields 2052 // either the original power-of-two, a larger power-of-two or zero. 2053 if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2054 const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V); 2055 if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) || 2056 Q.IIQ.hasNoSignedWrap(VOBO)) { 2057 if (match(X, m_And(m_Specific(Y), m_Value())) || 2058 match(X, m_And(m_Value(), m_Specific(Y)))) 2059 if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q)) 2060 return true; 2061 if (match(Y, m_And(m_Specific(X), m_Value())) || 2062 match(Y, m_And(m_Value(), m_Specific(X)))) 2063 if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q)) 2064 return true; 2065 2066 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 2067 KnownBits LHSBits(BitWidth); 2068 computeKnownBits(X, LHSBits, Depth, Q); 2069 2070 KnownBits RHSBits(BitWidth); 2071 computeKnownBits(Y, RHSBits, Depth, Q); 2072 // If i8 V is a power of two or zero: 2073 // ZeroBits: 1 1 1 0 1 1 1 1 2074 // ~ZeroBits: 0 0 0 1 0 0 0 0 2075 if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2()) 2076 // If OrZero isn't set, we cannot give back a zero result. 2077 // Make sure either the LHS or RHS has a bit set. 2078 if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue()) 2079 return true; 2080 } 2081 } 2082 2083 // An exact divide or right shift can only shift off zero bits, so the result 2084 // is a power of two only if the first operand is a power of two and not 2085 // copying a sign bit (sdiv int_min, 2). 2086 if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) || 2087 match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) { 2088 return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero, 2089 Depth, Q); 2090 } 2091 2092 return false; 2093 } 2094 2095 /// Test whether a GEP's result is known to be non-null. 2096 /// 2097 /// Uses properties inherent in a GEP to try to determine whether it is known 2098 /// to be non-null. 2099 /// 2100 /// Currently this routine does not support vector GEPs. 2101 static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth, 2102 const Query &Q) { 2103 const Function *F = nullptr; 2104 if (const Instruction *I = dyn_cast<Instruction>(GEP)) 2105 F = I->getFunction(); 2106 2107 if (!GEP->isInBounds() || 2108 NullPointerIsDefined(F, GEP->getPointerAddressSpace())) 2109 return false; 2110 2111 // FIXME: Support vector-GEPs. 2112 assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP"); 2113 2114 // If the base pointer is non-null, we cannot walk to a null address with an 2115 // inbounds GEP in address space zero. 2116 if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q)) 2117 return true; 2118 2119 // Walk the GEP operands and see if any operand introduces a non-zero offset. 2120 // If so, then the GEP cannot produce a null pointer, as doing so would 2121 // inherently violate the inbounds contract within address space zero. 2122 for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); 2123 GTI != GTE; ++GTI) { 2124 // Struct types are easy -- they must always be indexed by a constant. 2125 if (StructType *STy = GTI.getStructTypeOrNull()) { 2126 ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand()); 2127 unsigned ElementIdx = OpC->getZExtValue(); 2128 const StructLayout *SL = Q.DL.getStructLayout(STy); 2129 uint64_t ElementOffset = SL->getElementOffset(ElementIdx); 2130 if (ElementOffset > 0) 2131 return true; 2132 continue; 2133 } 2134 2135 // If we have a zero-sized type, the index doesn't matter. Keep looping. 2136 if (Q.DL.getTypeAllocSize(GTI.getIndexedType()).getKnownMinSize() == 0) 2137 continue; 2138 2139 // Fast path the constant operand case both for efficiency and so we don't 2140 // increment Depth when just zipping down an all-constant GEP. 2141 if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) { 2142 if (!OpC->isZero()) 2143 return true; 2144 continue; 2145 } 2146 2147 // We post-increment Depth here because while isKnownNonZero increments it 2148 // as well, when we pop back up that increment won't persist. We don't want 2149 // to recurse 10k times just because we have 10k GEP operands. We don't 2150 // bail completely out because we want to handle constant GEPs regardless 2151 // of depth. 2152 if (Depth++ >= MaxDepth) 2153 continue; 2154 2155 if (isKnownNonZero(GTI.getOperand(), Depth, Q)) 2156 return true; 2157 } 2158 2159 return false; 2160 } 2161 2162 static bool isKnownNonNullFromDominatingCondition(const Value *V, 2163 const Instruction *CtxI, 2164 const DominatorTree *DT) { 2165 if (isa<Constant>(V)) 2166 return false; 2167 2168 if (!CtxI || !DT) 2169 return false; 2170 2171 unsigned NumUsesExplored = 0; 2172 for (auto *U : V->users()) { 2173 // Avoid massive lists 2174 if (NumUsesExplored >= DomConditionsMaxUses) 2175 break; 2176 NumUsesExplored++; 2177 2178 // If the value is used as an argument to a call or invoke, then argument 2179 // attributes may provide an answer about null-ness. 2180 if (auto CS = ImmutableCallSite(U)) 2181 if (auto *CalledFunc = CS.getCalledFunction()) 2182 for (const Argument &Arg : CalledFunc->args()) 2183 if (CS.getArgOperand(Arg.getArgNo()) == V && 2184 Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI)) 2185 return true; 2186 2187 // If the value is used as a load/store, then the pointer must be non null. 2188 if (V == getLoadStorePointerOperand(U)) { 2189 const Instruction *I = cast<Instruction>(U); 2190 if (!NullPointerIsDefined(I->getFunction(), 2191 V->getType()->getPointerAddressSpace()) && 2192 DT->dominates(I, CtxI)) 2193 return true; 2194 } 2195 2196 // Consider only compare instructions uniquely controlling a branch 2197 CmpInst::Predicate Pred; 2198 if (!match(const_cast<User *>(U), 2199 m_c_ICmp(Pred, m_Specific(V), m_Zero())) || 2200 (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)) 2201 continue; 2202 2203 SmallVector<const User *, 4> WorkList; 2204 SmallPtrSet<const User *, 4> Visited; 2205 for (auto *CmpU : U->users()) { 2206 assert(WorkList.empty() && "Should be!"); 2207 if (Visited.insert(CmpU).second) 2208 WorkList.push_back(CmpU); 2209 2210 while (!WorkList.empty()) { 2211 auto *Curr = WorkList.pop_back_val(); 2212 2213 // If a user is an AND, add all its users to the work list. We only 2214 // propagate "pred != null" condition through AND because it is only 2215 // correct to assume that all conditions of AND are met in true branch. 2216 // TODO: Support similar logic of OR and EQ predicate? 2217 if (Pred == ICmpInst::ICMP_NE) 2218 if (auto *BO = dyn_cast<BinaryOperator>(Curr)) 2219 if (BO->getOpcode() == Instruction::And) { 2220 for (auto *BOU : BO->users()) 2221 if (Visited.insert(BOU).second) 2222 WorkList.push_back(BOU); 2223 continue; 2224 } 2225 2226 if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) { 2227 assert(BI->isConditional() && "uses a comparison!"); 2228 2229 BasicBlock *NonNullSuccessor = 2230 BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0); 2231 BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor); 2232 if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent())) 2233 return true; 2234 } else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) && 2235 DT->dominates(cast<Instruction>(Curr), CtxI)) { 2236 return true; 2237 } 2238 } 2239 } 2240 } 2241 2242 return false; 2243 } 2244 2245 /// Does the 'Range' metadata (which must be a valid MD_range operand list) 2246 /// ensure that the value it's attached to is never Value? 'RangeType' is 2247 /// is the type of the value described by the range. 2248 static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) { 2249 const unsigned NumRanges = Ranges->getNumOperands() / 2; 2250 assert(NumRanges >= 1); 2251 for (unsigned i = 0; i < NumRanges; ++i) { 2252 ConstantInt *Lower = 2253 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0)); 2254 ConstantInt *Upper = 2255 mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1)); 2256 ConstantRange Range(Lower->getValue(), Upper->getValue()); 2257 if (Range.contains(Value)) 2258 return false; 2259 } 2260 return true; 2261 } 2262 2263 /// Return true if the given value is known to be non-zero when defined. For 2264 /// vectors, return true if every demanded element is known to be non-zero when 2265 /// defined. For pointers, if the context instruction and dominator tree are 2266 /// specified, perform context-sensitive analysis and return true if the 2267 /// pointer couldn't possibly be null at the specified instruction. 2268 /// Supports values with integer or pointer type and vectors of integers. 2269 bool isKnownNonZero(const Value *V, const APInt &DemandedElts, unsigned Depth, 2270 const Query &Q) { 2271 if (auto *C = dyn_cast<Constant>(V)) { 2272 if (C->isNullValue()) 2273 return false; 2274 if (isa<ConstantInt>(C)) 2275 // Must be non-zero due to null test above. 2276 return true; 2277 2278 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 2279 // See the comment for IntToPtr/PtrToInt instructions below. 2280 if (CE->getOpcode() == Instruction::IntToPtr || 2281 CE->getOpcode() == Instruction::PtrToInt) 2282 if (Q.DL.getTypeSizeInBits(CE->getOperand(0)->getType()) <= 2283 Q.DL.getTypeSizeInBits(CE->getType())) 2284 return isKnownNonZero(CE->getOperand(0), Depth, Q); 2285 } 2286 2287 // For constant vectors, check that all elements are undefined or known 2288 // non-zero to determine that the whole vector is known non-zero. 2289 if (auto *VecTy = dyn_cast<VectorType>(C->getType())) { 2290 for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) { 2291 if (!DemandedElts[i]) 2292 continue; 2293 Constant *Elt = C->getAggregateElement(i); 2294 if (!Elt || Elt->isNullValue()) 2295 return false; 2296 if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt)) 2297 return false; 2298 } 2299 return true; 2300 } 2301 2302 // A global variable in address space 0 is non null unless extern weak 2303 // or an absolute symbol reference. Other address spaces may have null as a 2304 // valid address for a global, so we can't assume anything. 2305 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 2306 if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() && 2307 GV->getType()->getAddressSpace() == 0) 2308 return true; 2309 } else 2310 return false; 2311 } 2312 2313 if (auto *I = dyn_cast<Instruction>(V)) { 2314 if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) { 2315 // If the possible ranges don't contain zero, then the value is 2316 // definitely non-zero. 2317 if (auto *Ty = dyn_cast<IntegerType>(V->getType())) { 2318 const APInt ZeroValue(Ty->getBitWidth(), 0); 2319 if (rangeMetadataExcludesValue(Ranges, ZeroValue)) 2320 return true; 2321 } 2322 } 2323 } 2324 2325 if (isKnownNonZeroFromAssume(V, Q)) 2326 return true; 2327 2328 // Some of the tests below are recursive, so bail out if we hit the limit. 2329 if (Depth++ >= MaxDepth) 2330 return false; 2331 2332 // Check for pointer simplifications. 2333 if (V->getType()->isPointerTy()) { 2334 // Alloca never returns null, malloc might. 2335 if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0) 2336 return true; 2337 2338 // A byval, inalloca, or nonnull argument is never null. 2339 if (const Argument *A = dyn_cast<Argument>(V)) 2340 if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr()) 2341 return true; 2342 2343 // A Load tagged with nonnull metadata is never null. 2344 if (const LoadInst *LI = dyn_cast<LoadInst>(V)) 2345 if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull)) 2346 return true; 2347 2348 if (const auto *Call = dyn_cast<CallBase>(V)) { 2349 if (Call->isReturnNonNull()) 2350 return true; 2351 if (const auto *RP = getArgumentAliasingToReturnedPointer(Call, true)) 2352 return isKnownNonZero(RP, Depth, Q); 2353 } 2354 } 2355 2356 if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT)) 2357 return true; 2358 2359 // Check for recursive pointer simplifications. 2360 if (V->getType()->isPointerTy()) { 2361 // Look through bitcast operations, GEPs, and int2ptr instructions as they 2362 // do not alter the value, or at least not the nullness property of the 2363 // value, e.g., int2ptr is allowed to zero/sign extend the value. 2364 // 2365 // Note that we have to take special care to avoid looking through 2366 // truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well 2367 // as casts that can alter the value, e.g., AddrSpaceCasts. 2368 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) 2369 if (isGEPKnownNonNull(GEP, Depth, Q)) 2370 return true; 2371 2372 if (auto *BCO = dyn_cast<BitCastOperator>(V)) 2373 return isKnownNonZero(BCO->getOperand(0), Depth, Q); 2374 2375 if (auto *I2P = dyn_cast<IntToPtrInst>(V)) 2376 if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <= 2377 Q.DL.getTypeSizeInBits(I2P->getDestTy())) 2378 return isKnownNonZero(I2P->getOperand(0), Depth, Q); 2379 } 2380 2381 // Similar to int2ptr above, we can look through ptr2int here if the cast 2382 // is a no-op or an extend and not a truncate. 2383 if (auto *P2I = dyn_cast<PtrToIntInst>(V)) 2384 if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <= 2385 Q.DL.getTypeSizeInBits(P2I->getDestTy())) 2386 return isKnownNonZero(P2I->getOperand(0), Depth, Q); 2387 2388 unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL); 2389 2390 // X | Y != 0 if X != 0 or Y != 0. 2391 Value *X = nullptr, *Y = nullptr; 2392 if (match(V, m_Or(m_Value(X), m_Value(Y)))) 2393 return isKnownNonZero(X, DemandedElts, Depth, Q) || 2394 isKnownNonZero(Y, DemandedElts, Depth, Q); 2395 2396 // ext X != 0 if X != 0. 2397 if (isa<SExtInst>(V) || isa<ZExtInst>(V)) 2398 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q); 2399 2400 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined 2401 // if the lowest bit is shifted off the end. 2402 if (match(V, m_Shl(m_Value(X), m_Value(Y)))) { 2403 // shl nuw can't remove any non-zero bits. 2404 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2405 if (Q.IIQ.hasNoUnsignedWrap(BO)) 2406 return isKnownNonZero(X, Depth, Q); 2407 2408 KnownBits Known(BitWidth); 2409 computeKnownBits(X, DemandedElts, Known, Depth, Q); 2410 if (Known.One[0]) 2411 return true; 2412 } 2413 // shr X, Y != 0 if X is negative. Note that the value of the shift is not 2414 // defined if the sign bit is shifted off the end. 2415 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) { 2416 // shr exact can only shift out zero bits. 2417 const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V); 2418 if (BO->isExact()) 2419 return isKnownNonZero(X, Depth, Q); 2420 2421 KnownBits Known = computeKnownBits(X, DemandedElts, Depth, Q); 2422 if (Known.isNegative()) 2423 return true; 2424 2425 // If the shifter operand is a constant, and all of the bits shifted 2426 // out are known to be zero, and X is known non-zero then at least one 2427 // non-zero bit must remain. 2428 if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) { 2429 auto ShiftVal = Shift->getLimitedValue(BitWidth - 1); 2430 // Is there a known one in the portion not shifted out? 2431 if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal) 2432 return true; 2433 // Are all the bits to be shifted out known zero? 2434 if (Known.countMinTrailingZeros() >= ShiftVal) 2435 return isKnownNonZero(X, DemandedElts, Depth, Q); 2436 } 2437 } 2438 // div exact can only produce a zero if the dividend is zero. 2439 else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) { 2440 return isKnownNonZero(X, DemandedElts, Depth, Q); 2441 } 2442 // X + Y. 2443 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) { 2444 KnownBits XKnown = computeKnownBits(X, DemandedElts, Depth, Q); 2445 KnownBits YKnown = computeKnownBits(Y, DemandedElts, Depth, Q); 2446 2447 // If X and Y are both non-negative (as signed values) then their sum is not 2448 // zero unless both X and Y are zero. 2449 if (XKnown.isNonNegative() && YKnown.isNonNegative()) 2450 if (isKnownNonZero(X, DemandedElts, Depth, Q) || 2451 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2452 return true; 2453 2454 // If X and Y are both negative (as signed values) then their sum is not 2455 // zero unless both X and Y equal INT_MIN. 2456 if (XKnown.isNegative() && YKnown.isNegative()) { 2457 APInt Mask = APInt::getSignedMaxValue(BitWidth); 2458 // The sign bit of X is set. If some other bit is set then X is not equal 2459 // to INT_MIN. 2460 if (XKnown.One.intersects(Mask)) 2461 return true; 2462 // The sign bit of Y is set. If some other bit is set then Y is not equal 2463 // to INT_MIN. 2464 if (YKnown.One.intersects(Mask)) 2465 return true; 2466 } 2467 2468 // The sum of a non-negative number and a power of two is not zero. 2469 if (XKnown.isNonNegative() && 2470 isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q)) 2471 return true; 2472 if (YKnown.isNonNegative() && 2473 isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q)) 2474 return true; 2475 } 2476 // X * Y. 2477 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) { 2478 const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V); 2479 // If X and Y are non-zero then so is X * Y as long as the multiplication 2480 // does not overflow. 2481 if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) && 2482 isKnownNonZero(X, DemandedElts, Depth, Q) && 2483 isKnownNonZero(Y, DemandedElts, Depth, Q)) 2484 return true; 2485 } 2486 // (C ? X : Y) != 0 if X != 0 and Y != 0. 2487 else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 2488 if (isKnownNonZero(SI->getTrueValue(), DemandedElts, Depth, Q) && 2489 isKnownNonZero(SI->getFalseValue(), DemandedElts, Depth, Q)) 2490 return true; 2491 } 2492 // PHI 2493 else if (const PHINode *PN = dyn_cast<PHINode>(V)) { 2494 // Try and detect a recurrence that monotonically increases from a 2495 // starting value, as these are common as induction variables. 2496 if (PN->getNumIncomingValues() == 2) { 2497 Value *Start = PN->getIncomingValue(0); 2498 Value *Induction = PN->getIncomingValue(1); 2499 if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start)) 2500 std::swap(Start, Induction); 2501 if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) { 2502 if (!C->isZero() && !C->isNegative()) { 2503 ConstantInt *X; 2504 if (Q.IIQ.UseInstrInfo && 2505 (match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) || 2506 match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) && 2507 !X->isNegative()) 2508 return true; 2509 } 2510 } 2511 } 2512 // Check if all incoming values are non-zero constant. 2513 bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) { 2514 return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero(); 2515 }); 2516 if (AllNonZeroConstants) 2517 return true; 2518 } 2519 // ExtractElement 2520 else if (const auto *EEI = dyn_cast<ExtractElementInst>(V)) { 2521 const Value *Vec = EEI->getVectorOperand(); 2522 const Value *Idx = EEI->getIndexOperand(); 2523 auto *CIdx = dyn_cast<ConstantInt>(Idx); 2524 unsigned NumElts = Vec->getType()->getVectorNumElements(); 2525 APInt DemandedVecElts = APInt::getAllOnesValue(NumElts); 2526 if (CIdx && CIdx->getValue().ult(NumElts)) 2527 DemandedVecElts = APInt::getOneBitSet(NumElts, CIdx->getZExtValue()); 2528 return isKnownNonZero(Vec, DemandedVecElts, Depth, Q); 2529 } 2530 2531 KnownBits Known(BitWidth); 2532 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2533 return Known.One != 0; 2534 } 2535 2536 bool isKnownNonZero(const Value* V, unsigned Depth, const Query& Q) { 2537 Type *Ty = V->getType(); 2538 APInt DemandedElts = Ty->isVectorTy() 2539 ? APInt::getAllOnesValue(Ty->getVectorNumElements()) 2540 : APInt(1, 1); 2541 return isKnownNonZero(V, DemandedElts, Depth, Q); 2542 } 2543 2544 /// Return true if V2 == V1 + X, where X is known non-zero. 2545 static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) { 2546 const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1); 2547 if (!BO || BO->getOpcode() != Instruction::Add) 2548 return false; 2549 Value *Op = nullptr; 2550 if (V2 == BO->getOperand(0)) 2551 Op = BO->getOperand(1); 2552 else if (V2 == BO->getOperand(1)) 2553 Op = BO->getOperand(0); 2554 else 2555 return false; 2556 return isKnownNonZero(Op, 0, Q); 2557 } 2558 2559 /// Return true if it is known that V1 != V2. 2560 static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) { 2561 if (V1 == V2) 2562 return false; 2563 if (V1->getType() != V2->getType()) 2564 // We can't look through casts yet. 2565 return false; 2566 if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q)) 2567 return true; 2568 2569 if (V1->getType()->isIntOrIntVectorTy()) { 2570 // Are any known bits in V1 contradictory to known bits in V2? If V1 2571 // has a known zero where V2 has a known one, they must not be equal. 2572 KnownBits Known1 = computeKnownBits(V1, 0, Q); 2573 KnownBits Known2 = computeKnownBits(V2, 0, Q); 2574 2575 if (Known1.Zero.intersects(Known2.One) || 2576 Known2.Zero.intersects(Known1.One)) 2577 return true; 2578 } 2579 return false; 2580 } 2581 2582 /// Return true if 'V & Mask' is known to be zero. We use this predicate to 2583 /// simplify operations downstream. Mask is known to be zero for bits that V 2584 /// cannot have. 2585 /// 2586 /// This function is defined on values with integer type, values with pointer 2587 /// type, and vectors of integers. In the case 2588 /// where V is a vector, the mask, known zero, and known one values are the 2589 /// same width as the vector element, and the bit is set only if it is true 2590 /// for all of the elements in the vector. 2591 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth, 2592 const Query &Q) { 2593 KnownBits Known(Mask.getBitWidth()); 2594 computeKnownBits(V, Known, Depth, Q); 2595 return Mask.isSubsetOf(Known.Zero); 2596 } 2597 2598 // Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow). 2599 // Returns the input and lower/upper bounds. 2600 static bool isSignedMinMaxClamp(const Value *Select, const Value *&In, 2601 const APInt *&CLow, const APInt *&CHigh) { 2602 assert(isa<Operator>(Select) && 2603 cast<Operator>(Select)->getOpcode() == Instruction::Select && 2604 "Input should be a Select!"); 2605 2606 const Value *LHS = nullptr, *RHS = nullptr; 2607 SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor; 2608 if (SPF != SPF_SMAX && SPF != SPF_SMIN) 2609 return false; 2610 2611 if (!match(RHS, m_APInt(CLow))) 2612 return false; 2613 2614 const Value *LHS2 = nullptr, *RHS2 = nullptr; 2615 SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor; 2616 if (getInverseMinMaxFlavor(SPF) != SPF2) 2617 return false; 2618 2619 if (!match(RHS2, m_APInt(CHigh))) 2620 return false; 2621 2622 if (SPF == SPF_SMIN) 2623 std::swap(CLow, CHigh); 2624 2625 In = LHS2; 2626 return CLow->sle(*CHigh); 2627 } 2628 2629 /// For vector constants, loop over the elements and find the constant with the 2630 /// minimum number of sign bits. Return 0 if the value is not a vector constant 2631 /// or if any element was not analyzed; otherwise, return the count for the 2632 /// element with the minimum number of sign bits. 2633 static unsigned computeNumSignBitsVectorConstant(const Value *V, 2634 const APInt &DemandedElts, 2635 unsigned TyBits) { 2636 const auto *CV = dyn_cast<Constant>(V); 2637 if (!CV || !CV->getType()->isVectorTy()) 2638 return 0; 2639 2640 unsigned MinSignBits = TyBits; 2641 unsigned NumElts = CV->getType()->getVectorNumElements(); 2642 for (unsigned i = 0; i != NumElts; ++i) { 2643 if (!DemandedElts[i]) 2644 continue; 2645 // If we find a non-ConstantInt, bail out. 2646 auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i)); 2647 if (!Elt) 2648 return 0; 2649 2650 MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits()); 2651 } 2652 2653 return MinSignBits; 2654 } 2655 2656 static unsigned ComputeNumSignBitsImpl(const Value *V, 2657 const APInt &DemandedElts, 2658 unsigned Depth, const Query &Q); 2659 2660 static unsigned ComputeNumSignBits(const Value *V, const APInt &DemandedElts, 2661 unsigned Depth, const Query &Q) { 2662 unsigned Result = ComputeNumSignBitsImpl(V, DemandedElts, Depth, Q); 2663 assert(Result > 0 && "At least one sign bit needs to be present!"); 2664 return Result; 2665 } 2666 2667 /// Return the number of times the sign bit of the register is replicated into 2668 /// the other bits. We know that at least 1 bit is always equal to the sign bit 2669 /// (itself), but other cases can give us information. For example, immediately 2670 /// after an "ashr X, 2", we know that the top 3 bits are all equal to each 2671 /// other, so we return 3. For vectors, return the number of sign bits for the 2672 /// vector element with the minimum number of known sign bits of the demanded 2673 /// elements in the vector specified by DemandedElts. 2674 static unsigned ComputeNumSignBitsImpl(const Value *V, 2675 const APInt &DemandedElts, 2676 unsigned Depth, const Query &Q) { 2677 assert(Depth <= MaxDepth && "Limit Search Depth"); 2678 2679 // We return the minimum number of sign bits that are guaranteed to be present 2680 // in V, so for undef we have to conservatively return 1. We don't have the 2681 // same behavior for poison though -- that's a FIXME today. 2682 2683 Type *Ty = V->getType(); 2684 assert(((Ty->isVectorTy() && 2685 Ty->getVectorNumElements() == DemandedElts.getBitWidth()) || 2686 (!Ty->isVectorTy() && DemandedElts == APInt(1, 1))) && 2687 "Unexpected vector size"); 2688 2689 Type *ScalarTy = Ty->getScalarType(); 2690 unsigned TyBits = ScalarTy->isPointerTy() ? 2691 Q.DL.getPointerTypeSizeInBits(ScalarTy) : 2692 Q.DL.getTypeSizeInBits(ScalarTy); 2693 2694 unsigned Tmp, Tmp2; 2695 unsigned FirstAnswer = 1; 2696 2697 // Note that ConstantInt is handled by the general computeKnownBits case 2698 // below. 2699 2700 if (Depth == MaxDepth) 2701 return 1; // Limit search depth. 2702 2703 if (auto *U = dyn_cast<Operator>(V)) { 2704 switch (Operator::getOpcode(V)) { 2705 default: break; 2706 case Instruction::SExt: 2707 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits(); 2708 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp; 2709 2710 case Instruction::SDiv: { 2711 const APInt *Denominator; 2712 // sdiv X, C -> adds log(C) sign bits. 2713 if (match(U->getOperand(1), m_APInt(Denominator))) { 2714 2715 // Ignore non-positive denominator. 2716 if (!Denominator->isStrictlyPositive()) 2717 break; 2718 2719 // Calculate the incoming numerator bits. 2720 unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2721 2722 // Add floor(log(C)) bits to the numerator bits. 2723 return std::min(TyBits, NumBits + Denominator->logBase2()); 2724 } 2725 break; 2726 } 2727 2728 case Instruction::SRem: { 2729 const APInt *Denominator; 2730 // srem X, C -> we know that the result is within [-C+1,C) when C is a 2731 // positive constant. This let us put a lower bound on the number of sign 2732 // bits. 2733 if (match(U->getOperand(1), m_APInt(Denominator))) { 2734 2735 // Ignore non-positive denominator. 2736 if (!Denominator->isStrictlyPositive()) 2737 break; 2738 2739 // Calculate the incoming numerator bits. SRem by a positive constant 2740 // can't lower the number of sign bits. 2741 unsigned NumrBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2742 2743 // Calculate the leading sign bit constraints by examining the 2744 // denominator. Given that the denominator is positive, there are two 2745 // cases: 2746 // 2747 // 1. the numerator is positive. The result range is [0,C) and [0,C) u< 2748 // (1 << ceilLogBase2(C)). 2749 // 2750 // 2. the numerator is negative. Then the result range is (-C,0] and 2751 // integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)). 2752 // 2753 // Thus a lower bound on the number of sign bits is `TyBits - 2754 // ceilLogBase2(C)`. 2755 2756 unsigned ResBits = TyBits - Denominator->ceilLogBase2(); 2757 return std::max(NumrBits, ResBits); 2758 } 2759 break; 2760 } 2761 2762 case Instruction::AShr: { 2763 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2764 // ashr X, C -> adds C sign bits. Vectors too. 2765 const APInt *ShAmt; 2766 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2767 if (ShAmt->uge(TyBits)) 2768 break; // Bad shift. 2769 unsigned ShAmtLimited = ShAmt->getZExtValue(); 2770 Tmp += ShAmtLimited; 2771 if (Tmp > TyBits) Tmp = TyBits; 2772 } 2773 return Tmp; 2774 } 2775 case Instruction::Shl: { 2776 const APInt *ShAmt; 2777 if (match(U->getOperand(1), m_APInt(ShAmt))) { 2778 // shl destroys sign bits. 2779 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2780 if (ShAmt->uge(TyBits) || // Bad shift. 2781 ShAmt->uge(Tmp)) break; // Shifted all sign bits out. 2782 Tmp2 = ShAmt->getZExtValue(); 2783 return Tmp - Tmp2; 2784 } 2785 break; 2786 } 2787 case Instruction::And: 2788 case Instruction::Or: 2789 case Instruction::Xor: // NOT is handled here. 2790 // Logical binary ops preserve the number of sign bits at the worst. 2791 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2792 if (Tmp != 1) { 2793 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2794 FirstAnswer = std::min(Tmp, Tmp2); 2795 // We computed what we know about the sign bits as our first 2796 // answer. Now proceed to the generic code that uses 2797 // computeKnownBits, and pick whichever answer is better. 2798 } 2799 break; 2800 2801 case Instruction::Select: { 2802 // If we have a clamp pattern, we know that the number of sign bits will 2803 // be the minimum of the clamp min/max range. 2804 const Value *X; 2805 const APInt *CLow, *CHigh; 2806 if (isSignedMinMaxClamp(U, X, CLow, CHigh)) 2807 return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits()); 2808 2809 Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2810 if (Tmp == 1) break; 2811 Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q); 2812 return std::min(Tmp, Tmp2); 2813 } 2814 2815 case Instruction::Add: 2816 // Add can have at most one carry bit. Thus we know that the output 2817 // is, at worst, one more bit than the inputs. 2818 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2819 if (Tmp == 1) break; 2820 2821 // Special case decrementing a value (ADD X, -1): 2822 if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1))) 2823 if (CRHS->isAllOnesValue()) { 2824 KnownBits Known(TyBits); 2825 computeKnownBits(U->getOperand(0), Known, Depth + 1, Q); 2826 2827 // If the input is known to be 0 or 1, the output is 0/-1, which is 2828 // all sign bits set. 2829 if ((Known.Zero | 1).isAllOnesValue()) 2830 return TyBits; 2831 2832 // If we are subtracting one from a positive number, there is no carry 2833 // out of the result. 2834 if (Known.isNonNegative()) 2835 return Tmp; 2836 } 2837 2838 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2839 if (Tmp2 == 1) break; 2840 return std::min(Tmp, Tmp2) - 1; 2841 2842 case Instruction::Sub: 2843 Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2844 if (Tmp2 == 1) break; 2845 2846 // Handle NEG. 2847 if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0))) 2848 if (CLHS->isNullValue()) { 2849 KnownBits Known(TyBits); 2850 computeKnownBits(U->getOperand(1), Known, Depth + 1, Q); 2851 // If the input is known to be 0 or 1, the output is 0/-1, which is 2852 // all sign bits set. 2853 if ((Known.Zero | 1).isAllOnesValue()) 2854 return TyBits; 2855 2856 // If the input is known to be positive (the sign bit is known clear), 2857 // the output of the NEG has the same number of sign bits as the 2858 // input. 2859 if (Known.isNonNegative()) 2860 return Tmp2; 2861 2862 // Otherwise, we treat this like a SUB. 2863 } 2864 2865 // Sub can have at most one carry bit. Thus we know that the output 2866 // is, at worst, one more bit than the inputs. 2867 Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2868 if (Tmp == 1) break; 2869 return std::min(Tmp, Tmp2) - 1; 2870 2871 case Instruction::Mul: { 2872 // The output of the Mul can be at most twice the valid bits in the 2873 // inputs. 2874 unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2875 if (SignBitsOp0 == 1) break; 2876 unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q); 2877 if (SignBitsOp1 == 1) break; 2878 unsigned OutValidBits = 2879 (TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1); 2880 return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1; 2881 } 2882 2883 case Instruction::PHI: { 2884 const PHINode *PN = cast<PHINode>(U); 2885 unsigned NumIncomingValues = PN->getNumIncomingValues(); 2886 // Don't analyze large in-degree PHIs. 2887 if (NumIncomingValues > 4) break; 2888 // Unreachable blocks may have zero-operand PHI nodes. 2889 if (NumIncomingValues == 0) break; 2890 2891 // Take the minimum of all incoming values. This can't infinitely loop 2892 // because of our depth threshold. 2893 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q); 2894 for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) { 2895 if (Tmp == 1) return Tmp; 2896 Tmp = std::min( 2897 Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q)); 2898 } 2899 return Tmp; 2900 } 2901 2902 case Instruction::Trunc: 2903 // FIXME: it's tricky to do anything useful for this, but it is an 2904 // important case for targets like X86. 2905 break; 2906 2907 case Instruction::ExtractElement: 2908 // Look through extract element. At the moment we keep this simple and 2909 // skip tracking the specific element. But at least we might find 2910 // information valid for all elements of the vector (for example if vector 2911 // is sign extended, shifted, etc). 2912 return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q); 2913 2914 case Instruction::ShuffleVector: { 2915 // Collect the minimum number of sign bits that are shared by every vector 2916 // element referenced by the shuffle. 2917 auto *Shuf = cast<ShuffleVectorInst>(U); 2918 APInt DemandedLHS, DemandedRHS; 2919 // For undef elements, we don't know anything about the common state of 2920 // the shuffle result. 2921 if (!getShuffleDemandedElts(Shuf, DemandedElts, DemandedLHS, DemandedRHS)) 2922 return 1; 2923 Tmp = std::numeric_limits<unsigned>::max(); 2924 if (!!DemandedLHS) { 2925 const Value *LHS = Shuf->getOperand(0); 2926 Tmp = ComputeNumSignBits(LHS, DemandedLHS, Depth + 1, Q); 2927 } 2928 // If we don't know anything, early out and try computeKnownBits 2929 // fall-back. 2930 if (Tmp == 1) 2931 break; 2932 if (!!DemandedRHS) { 2933 const Value *RHS = Shuf->getOperand(1); 2934 Tmp2 = ComputeNumSignBits(RHS, DemandedRHS, Depth + 1, Q); 2935 Tmp = std::min(Tmp, Tmp2); 2936 } 2937 // If we don't know anything, early out and try computeKnownBits 2938 // fall-back. 2939 if (Tmp == 1) 2940 break; 2941 assert(Tmp <= Ty->getScalarSizeInBits() && 2942 "Failed to determine minimum sign bits"); 2943 return Tmp; 2944 } 2945 } 2946 } 2947 2948 // Finally, if we can prove that the top bits of the result are 0's or 1's, 2949 // use this information. 2950 2951 // If we can examine all elements of a vector constant successfully, we're 2952 // done (we can't do any better than that). If not, keep trying. 2953 if (unsigned VecSignBits = 2954 computeNumSignBitsVectorConstant(V, DemandedElts, TyBits)) 2955 return VecSignBits; 2956 2957 KnownBits Known(TyBits); 2958 computeKnownBits(V, DemandedElts, Known, Depth, Q); 2959 2960 // If we know that the sign bit is either zero or one, determine the number of 2961 // identical bits in the top of the input value. 2962 return std::max(FirstAnswer, Known.countMinSignBits()); 2963 } 2964 2965 /// This function computes the integer multiple of Base that equals V. 2966 /// If successful, it returns true and returns the multiple in 2967 /// Multiple. If unsuccessful, it returns false. It looks 2968 /// through SExt instructions only if LookThroughSExt is true. 2969 bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple, 2970 bool LookThroughSExt, unsigned Depth) { 2971 assert(V && "No Value?"); 2972 assert(Depth <= MaxDepth && "Limit Search Depth"); 2973 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!"); 2974 2975 Type *T = V->getType(); 2976 2977 ConstantInt *CI = dyn_cast<ConstantInt>(V); 2978 2979 if (Base == 0) 2980 return false; 2981 2982 if (Base == 1) { 2983 Multiple = V; 2984 return true; 2985 } 2986 2987 ConstantExpr *CO = dyn_cast<ConstantExpr>(V); 2988 Constant *BaseVal = ConstantInt::get(T, Base); 2989 if (CO && CO == BaseVal) { 2990 // Multiple is 1. 2991 Multiple = ConstantInt::get(T, 1); 2992 return true; 2993 } 2994 2995 if (CI && CI->getZExtValue() % Base == 0) { 2996 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base); 2997 return true; 2998 } 2999 3000 if (Depth == MaxDepth) return false; // Limit search depth. 3001 3002 Operator *I = dyn_cast<Operator>(V); 3003 if (!I) return false; 3004 3005 switch (I->getOpcode()) { 3006 default: break; 3007 case Instruction::SExt: 3008 if (!LookThroughSExt) return false; 3009 // otherwise fall through to ZExt 3010 LLVM_FALLTHROUGH; 3011 case Instruction::ZExt: 3012 return ComputeMultiple(I->getOperand(0), Base, Multiple, 3013 LookThroughSExt, Depth+1); 3014 case Instruction::Shl: 3015 case Instruction::Mul: { 3016 Value *Op0 = I->getOperand(0); 3017 Value *Op1 = I->getOperand(1); 3018 3019 if (I->getOpcode() == Instruction::Shl) { 3020 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1); 3021 if (!Op1CI) return false; 3022 // Turn Op0 << Op1 into Op0 * 2^Op1 3023 APInt Op1Int = Op1CI->getValue(); 3024 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1); 3025 APInt API(Op1Int.getBitWidth(), 0); 3026 API.setBit(BitToSet); 3027 Op1 = ConstantInt::get(V->getContext(), API); 3028 } 3029 3030 Value *Mul0 = nullptr; 3031 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) { 3032 if (Constant *Op1C = dyn_cast<Constant>(Op1)) 3033 if (Constant *MulC = dyn_cast<Constant>(Mul0)) { 3034 if (Op1C->getType()->getPrimitiveSizeInBits() < 3035 MulC->getType()->getPrimitiveSizeInBits()) 3036 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType()); 3037 if (Op1C->getType()->getPrimitiveSizeInBits() > 3038 MulC->getType()->getPrimitiveSizeInBits()) 3039 MulC = ConstantExpr::getZExt(MulC, Op1C->getType()); 3040 3041 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1) 3042 Multiple = ConstantExpr::getMul(MulC, Op1C); 3043 return true; 3044 } 3045 3046 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0)) 3047 if (Mul0CI->getValue() == 1) { 3048 // V == Base * Op1, so return Op1 3049 Multiple = Op1; 3050 return true; 3051 } 3052 } 3053 3054 Value *Mul1 = nullptr; 3055 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) { 3056 if (Constant *Op0C = dyn_cast<Constant>(Op0)) 3057 if (Constant *MulC = dyn_cast<Constant>(Mul1)) { 3058 if (Op0C->getType()->getPrimitiveSizeInBits() < 3059 MulC->getType()->getPrimitiveSizeInBits()) 3060 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType()); 3061 if (Op0C->getType()->getPrimitiveSizeInBits() > 3062 MulC->getType()->getPrimitiveSizeInBits()) 3063 MulC = ConstantExpr::getZExt(MulC, Op0C->getType()); 3064 3065 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0) 3066 Multiple = ConstantExpr::getMul(MulC, Op0C); 3067 return true; 3068 } 3069 3070 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1)) 3071 if (Mul1CI->getValue() == 1) { 3072 // V == Base * Op0, so return Op0 3073 Multiple = Op0; 3074 return true; 3075 } 3076 } 3077 } 3078 } 3079 3080 // We could not determine if V is a multiple of Base. 3081 return false; 3082 } 3083 3084 Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS, 3085 const TargetLibraryInfo *TLI) { 3086 const Function *F = ICS.getCalledFunction(); 3087 if (!F) 3088 return Intrinsic::not_intrinsic; 3089 3090 if (F->isIntrinsic()) 3091 return F->getIntrinsicID(); 3092 3093 if (!TLI) 3094 return Intrinsic::not_intrinsic; 3095 3096 LibFunc Func; 3097 // We're going to make assumptions on the semantics of the functions, check 3098 // that the target knows that it's available in this environment and it does 3099 // not have local linkage. 3100 if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func)) 3101 return Intrinsic::not_intrinsic; 3102 3103 if (!ICS.onlyReadsMemory()) 3104 return Intrinsic::not_intrinsic; 3105 3106 // Otherwise check if we have a call to a function that can be turned into a 3107 // vector intrinsic. 3108 switch (Func) { 3109 default: 3110 break; 3111 case LibFunc_sin: 3112 case LibFunc_sinf: 3113 case LibFunc_sinl: 3114 return Intrinsic::sin; 3115 case LibFunc_cos: 3116 case LibFunc_cosf: 3117 case LibFunc_cosl: 3118 return Intrinsic::cos; 3119 case LibFunc_exp: 3120 case LibFunc_expf: 3121 case LibFunc_expl: 3122 return Intrinsic::exp; 3123 case LibFunc_exp2: 3124 case LibFunc_exp2f: 3125 case LibFunc_exp2l: 3126 return Intrinsic::exp2; 3127 case LibFunc_log: 3128 case LibFunc_logf: 3129 case LibFunc_logl: 3130 return Intrinsic::log; 3131 case LibFunc_log10: 3132 case LibFunc_log10f: 3133 case LibFunc_log10l: 3134 return Intrinsic::log10; 3135 case LibFunc_log2: 3136 case LibFunc_log2f: 3137 case LibFunc_log2l: 3138 return Intrinsic::log2; 3139 case LibFunc_fabs: 3140 case LibFunc_fabsf: 3141 case LibFunc_fabsl: 3142 return Intrinsic::fabs; 3143 case LibFunc_fmin: 3144 case LibFunc_fminf: 3145 case LibFunc_fminl: 3146 return Intrinsic::minnum; 3147 case LibFunc_fmax: 3148 case LibFunc_fmaxf: 3149 case LibFunc_fmaxl: 3150 return Intrinsic::maxnum; 3151 case LibFunc_copysign: 3152 case LibFunc_copysignf: 3153 case LibFunc_copysignl: 3154 return Intrinsic::copysign; 3155 case LibFunc_floor: 3156 case LibFunc_floorf: 3157 case LibFunc_floorl: 3158 return Intrinsic::floor; 3159 case LibFunc_ceil: 3160 case LibFunc_ceilf: 3161 case LibFunc_ceill: 3162 return Intrinsic::ceil; 3163 case LibFunc_trunc: 3164 case LibFunc_truncf: 3165 case LibFunc_truncl: 3166 return Intrinsic::trunc; 3167 case LibFunc_rint: 3168 case LibFunc_rintf: 3169 case LibFunc_rintl: 3170 return Intrinsic::rint; 3171 case LibFunc_nearbyint: 3172 case LibFunc_nearbyintf: 3173 case LibFunc_nearbyintl: 3174 return Intrinsic::nearbyint; 3175 case LibFunc_round: 3176 case LibFunc_roundf: 3177 case LibFunc_roundl: 3178 return Intrinsic::round; 3179 case LibFunc_pow: 3180 case LibFunc_powf: 3181 case LibFunc_powl: 3182 return Intrinsic::pow; 3183 case LibFunc_sqrt: 3184 case LibFunc_sqrtf: 3185 case LibFunc_sqrtl: 3186 return Intrinsic::sqrt; 3187 } 3188 3189 return Intrinsic::not_intrinsic; 3190 } 3191 3192 /// Return true if we can prove that the specified FP value is never equal to 3193 /// -0.0. 3194 /// 3195 /// NOTE: this function will need to be revisited when we support non-default 3196 /// rounding modes! 3197 bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI, 3198 unsigned Depth) { 3199 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3200 return !CFP->getValueAPF().isNegZero(); 3201 3202 // Limit search depth. 3203 if (Depth == MaxDepth) 3204 return false; 3205 3206 auto *Op = dyn_cast<Operator>(V); 3207 if (!Op) 3208 return false; 3209 3210 // Check if the nsz fast-math flag is set. 3211 if (auto *FPO = dyn_cast<FPMathOperator>(Op)) 3212 if (FPO->hasNoSignedZeros()) 3213 return true; 3214 3215 // (fadd x, 0.0) is guaranteed to return +0.0, not -0.0. 3216 if (match(Op, m_FAdd(m_Value(), m_PosZeroFP()))) 3217 return true; 3218 3219 // sitofp and uitofp turn into +0.0 for zero. 3220 if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) 3221 return true; 3222 3223 if (auto *Call = dyn_cast<CallInst>(Op)) { 3224 Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI); 3225 switch (IID) { 3226 default: 3227 break; 3228 // sqrt(-0.0) = -0.0, no other negative results are possible. 3229 case Intrinsic::sqrt: 3230 case Intrinsic::canonicalize: 3231 return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1); 3232 // fabs(x) != -0.0 3233 case Intrinsic::fabs: 3234 return true; 3235 } 3236 } 3237 3238 return false; 3239 } 3240 3241 /// If \p SignBitOnly is true, test for a known 0 sign bit rather than a 3242 /// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign 3243 /// bit despite comparing equal. 3244 static bool cannotBeOrderedLessThanZeroImpl(const Value *V, 3245 const TargetLibraryInfo *TLI, 3246 bool SignBitOnly, 3247 unsigned Depth) { 3248 // TODO: This function does not do the right thing when SignBitOnly is true 3249 // and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform 3250 // which flips the sign bits of NaNs. See 3251 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3252 3253 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 3254 return !CFP->getValueAPF().isNegative() || 3255 (!SignBitOnly && CFP->getValueAPF().isZero()); 3256 } 3257 3258 // Handle vector of constants. 3259 if (auto *CV = dyn_cast<Constant>(V)) { 3260 if (CV->getType()->isVectorTy()) { 3261 unsigned NumElts = CV->getType()->getVectorNumElements(); 3262 for (unsigned i = 0; i != NumElts; ++i) { 3263 auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i)); 3264 if (!CFP) 3265 return false; 3266 if (CFP->getValueAPF().isNegative() && 3267 (SignBitOnly || !CFP->getValueAPF().isZero())) 3268 return false; 3269 } 3270 3271 // All non-negative ConstantFPs. 3272 return true; 3273 } 3274 } 3275 3276 if (Depth == MaxDepth) 3277 return false; // Limit search depth. 3278 3279 const Operator *I = dyn_cast<Operator>(V); 3280 if (!I) 3281 return false; 3282 3283 switch (I->getOpcode()) { 3284 default: 3285 break; 3286 // Unsigned integers are always nonnegative. 3287 case Instruction::UIToFP: 3288 return true; 3289 case Instruction::FMul: 3290 // x*x is always non-negative or a NaN. 3291 if (I->getOperand(0) == I->getOperand(1) && 3292 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs())) 3293 return true; 3294 3295 LLVM_FALLTHROUGH; 3296 case Instruction::FAdd: 3297 case Instruction::FDiv: 3298 case Instruction::FRem: 3299 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3300 Depth + 1) && 3301 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3302 Depth + 1); 3303 case Instruction::Select: 3304 return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3305 Depth + 1) && 3306 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3307 Depth + 1); 3308 case Instruction::FPExt: 3309 case Instruction::FPTrunc: 3310 // Widening/narrowing never change sign. 3311 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3312 Depth + 1); 3313 case Instruction::ExtractElement: 3314 // Look through extract element. At the moment we keep this simple and skip 3315 // tracking the specific element. But at least we might find information 3316 // valid for all elements of the vector. 3317 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3318 Depth + 1); 3319 case Instruction::Call: 3320 const auto *CI = cast<CallInst>(I); 3321 Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI); 3322 switch (IID) { 3323 default: 3324 break; 3325 case Intrinsic::maxnum: 3326 return (isKnownNeverNaN(I->getOperand(0), TLI) && 3327 cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, 3328 SignBitOnly, Depth + 1)) || 3329 (isKnownNeverNaN(I->getOperand(1), TLI) && 3330 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, 3331 SignBitOnly, Depth + 1)); 3332 3333 case Intrinsic::maximum: 3334 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3335 Depth + 1) || 3336 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3337 Depth + 1); 3338 case Intrinsic::minnum: 3339 case Intrinsic::minimum: 3340 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3341 Depth + 1) && 3342 cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly, 3343 Depth + 1); 3344 case Intrinsic::exp: 3345 case Intrinsic::exp2: 3346 case Intrinsic::fabs: 3347 return true; 3348 3349 case Intrinsic::sqrt: 3350 // sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0. 3351 if (!SignBitOnly) 3352 return true; 3353 return CI->hasNoNaNs() && (CI->hasNoSignedZeros() || 3354 CannotBeNegativeZero(CI->getOperand(0), TLI)); 3355 3356 case Intrinsic::powi: 3357 if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) { 3358 // powi(x,n) is non-negative if n is even. 3359 if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0) 3360 return true; 3361 } 3362 // TODO: This is not correct. Given that exp is an integer, here are the 3363 // ways that pow can return a negative value: 3364 // 3365 // pow(x, exp) --> negative if exp is odd and x is negative. 3366 // pow(-0, exp) --> -inf if exp is negative odd. 3367 // pow(-0, exp) --> -0 if exp is positive odd. 3368 // pow(-inf, exp) --> -0 if exp is negative odd. 3369 // pow(-inf, exp) --> -inf if exp is positive odd. 3370 // 3371 // Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN, 3372 // but we must return false if x == -0. Unfortunately we do not currently 3373 // have a way of expressing this constraint. See details in 3374 // https://llvm.org/bugs/show_bug.cgi?id=31702. 3375 return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly, 3376 Depth + 1); 3377 3378 case Intrinsic::fma: 3379 case Intrinsic::fmuladd: 3380 // x*x+y is non-negative if y is non-negative. 3381 return I->getOperand(0) == I->getOperand(1) && 3382 (!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) && 3383 cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly, 3384 Depth + 1); 3385 } 3386 break; 3387 } 3388 return false; 3389 } 3390 3391 bool llvm::CannotBeOrderedLessThanZero(const Value *V, 3392 const TargetLibraryInfo *TLI) { 3393 return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0); 3394 } 3395 3396 bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) { 3397 return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0); 3398 } 3399 3400 bool llvm::isKnownNeverInfinity(const Value *V, const TargetLibraryInfo *TLI, 3401 unsigned Depth) { 3402 assert(V->getType()->isFPOrFPVectorTy() && "Querying for Inf on non-FP type"); 3403 3404 // If we're told that infinities won't happen, assume they won't. 3405 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3406 if (FPMathOp->hasNoInfs()) 3407 return true; 3408 3409 // Handle scalar constants. 3410 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3411 return !CFP->isInfinity(); 3412 3413 if (Depth == MaxDepth) 3414 return false; 3415 3416 if (auto *Inst = dyn_cast<Instruction>(V)) { 3417 switch (Inst->getOpcode()) { 3418 case Instruction::Select: { 3419 return isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1) && 3420 isKnownNeverInfinity(Inst->getOperand(2), TLI, Depth + 1); 3421 } 3422 case Instruction::UIToFP: 3423 // If the input type fits into the floating type the result is finite. 3424 return ilogb(APFloat::getLargest( 3425 Inst->getType()->getScalarType()->getFltSemantics())) >= 3426 (int)Inst->getOperand(0)->getType()->getScalarSizeInBits(); 3427 default: 3428 break; 3429 } 3430 } 3431 3432 // Bail out for constant expressions, but try to handle vector constants. 3433 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3434 return false; 3435 3436 // For vectors, verify that each element is not infinity. 3437 unsigned NumElts = V->getType()->getVectorNumElements(); 3438 for (unsigned i = 0; i != NumElts; ++i) { 3439 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3440 if (!Elt) 3441 return false; 3442 if (isa<UndefValue>(Elt)) 3443 continue; 3444 auto *CElt = dyn_cast<ConstantFP>(Elt); 3445 if (!CElt || CElt->isInfinity()) 3446 return false; 3447 } 3448 // All elements were confirmed non-infinity or undefined. 3449 return true; 3450 } 3451 3452 bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI, 3453 unsigned Depth) { 3454 assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type"); 3455 3456 // If we're told that NaNs won't happen, assume they won't. 3457 if (auto *FPMathOp = dyn_cast<FPMathOperator>(V)) 3458 if (FPMathOp->hasNoNaNs()) 3459 return true; 3460 3461 // Handle scalar constants. 3462 if (auto *CFP = dyn_cast<ConstantFP>(V)) 3463 return !CFP->isNaN(); 3464 3465 if (Depth == MaxDepth) 3466 return false; 3467 3468 if (auto *Inst = dyn_cast<Instruction>(V)) { 3469 switch (Inst->getOpcode()) { 3470 case Instruction::FAdd: 3471 case Instruction::FSub: 3472 // Adding positive and negative infinity produces NaN. 3473 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3474 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3475 (isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) || 3476 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1)); 3477 3478 case Instruction::FMul: 3479 // Zero multiplied with infinity produces NaN. 3480 // FIXME: If neither side can be zero fmul never produces NaN. 3481 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1) && 3482 isKnownNeverInfinity(Inst->getOperand(0), TLI, Depth + 1) && 3483 isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3484 isKnownNeverInfinity(Inst->getOperand(1), TLI, Depth + 1); 3485 3486 case Instruction::FDiv: 3487 case Instruction::FRem: 3488 // FIXME: Only 0/0, Inf/Inf, Inf REM x and x REM 0 produce NaN. 3489 return false; 3490 3491 case Instruction::Select: { 3492 return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) && 3493 isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1); 3494 } 3495 case Instruction::SIToFP: 3496 case Instruction::UIToFP: 3497 return true; 3498 case Instruction::FPTrunc: 3499 case Instruction::FPExt: 3500 return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1); 3501 default: 3502 break; 3503 } 3504 } 3505 3506 if (const auto *II = dyn_cast<IntrinsicInst>(V)) { 3507 switch (II->getIntrinsicID()) { 3508 case Intrinsic::canonicalize: 3509 case Intrinsic::fabs: 3510 case Intrinsic::copysign: 3511 case Intrinsic::exp: 3512 case Intrinsic::exp2: 3513 case Intrinsic::floor: 3514 case Intrinsic::ceil: 3515 case Intrinsic::trunc: 3516 case Intrinsic::rint: 3517 case Intrinsic::nearbyint: 3518 case Intrinsic::round: 3519 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1); 3520 case Intrinsic::sqrt: 3521 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) && 3522 CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI); 3523 case Intrinsic::minnum: 3524 case Intrinsic::maxnum: 3525 // If either operand is not NaN, the result is not NaN. 3526 return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) || 3527 isKnownNeverNaN(II->getArgOperand(1), TLI, Depth + 1); 3528 default: 3529 return false; 3530 } 3531 } 3532 3533 // Bail out for constant expressions, but try to handle vector constants. 3534 if (!V->getType()->isVectorTy() || !isa<Constant>(V)) 3535 return false; 3536 3537 // For vectors, verify that each element is not NaN. 3538 unsigned NumElts = V->getType()->getVectorNumElements(); 3539 for (unsigned i = 0; i != NumElts; ++i) { 3540 Constant *Elt = cast<Constant>(V)->getAggregateElement(i); 3541 if (!Elt) 3542 return false; 3543 if (isa<UndefValue>(Elt)) 3544 continue; 3545 auto *CElt = dyn_cast<ConstantFP>(Elt); 3546 if (!CElt || CElt->isNaN()) 3547 return false; 3548 } 3549 // All elements were confirmed not-NaN or undefined. 3550 return true; 3551 } 3552 3553 Value *llvm::isBytewiseValue(Value *V, const DataLayout &DL) { 3554 3555 // All byte-wide stores are splatable, even of arbitrary variables. 3556 if (V->getType()->isIntegerTy(8)) 3557 return V; 3558 3559 LLVMContext &Ctx = V->getContext(); 3560 3561 // Undef don't care. 3562 auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx)); 3563 if (isa<UndefValue>(V)) 3564 return UndefInt8; 3565 3566 // Return Undef for zero-sized type. 3567 if (!DL.getTypeStoreSize(V->getType()).isNonZero()) 3568 return UndefInt8; 3569 3570 Constant *C = dyn_cast<Constant>(V); 3571 if (!C) { 3572 // Conceptually, we could handle things like: 3573 // %a = zext i8 %X to i16 3574 // %b = shl i16 %a, 8 3575 // %c = or i16 %a, %b 3576 // but until there is an example that actually needs this, it doesn't seem 3577 // worth worrying about. 3578 return nullptr; 3579 } 3580 3581 // Handle 'null' ConstantArrayZero etc. 3582 if (C->isNullValue()) 3583 return Constant::getNullValue(Type::getInt8Ty(Ctx)); 3584 3585 // Constant floating-point values can be handled as integer values if the 3586 // corresponding integer value is "byteable". An important case is 0.0. 3587 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 3588 Type *Ty = nullptr; 3589 if (CFP->getType()->isHalfTy()) 3590 Ty = Type::getInt16Ty(Ctx); 3591 else if (CFP->getType()->isFloatTy()) 3592 Ty = Type::getInt32Ty(Ctx); 3593 else if (CFP->getType()->isDoubleTy()) 3594 Ty = Type::getInt64Ty(Ctx); 3595 // Don't handle long double formats, which have strange constraints. 3596 return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty), DL) 3597 : nullptr; 3598 } 3599 3600 // We can handle constant integers that are multiple of 8 bits. 3601 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 3602 if (CI->getBitWidth() % 8 == 0) { 3603 assert(CI->getBitWidth() > 8 && "8 bits should be handled above!"); 3604 if (!CI->getValue().isSplat(8)) 3605 return nullptr; 3606 return ConstantInt::get(Ctx, CI->getValue().trunc(8)); 3607 } 3608 } 3609 3610 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 3611 if (CE->getOpcode() == Instruction::IntToPtr) { 3612 auto PS = DL.getPointerSizeInBits( 3613 cast<PointerType>(CE->getType())->getAddressSpace()); 3614 return isBytewiseValue( 3615 ConstantExpr::getIntegerCast(CE->getOperand(0), 3616 Type::getIntNTy(Ctx, PS), false), 3617 DL); 3618 } 3619 } 3620 3621 auto Merge = [&](Value *LHS, Value *RHS) -> Value * { 3622 if (LHS == RHS) 3623 return LHS; 3624 if (!LHS || !RHS) 3625 return nullptr; 3626 if (LHS == UndefInt8) 3627 return RHS; 3628 if (RHS == UndefInt8) 3629 return LHS; 3630 return nullptr; 3631 }; 3632 3633 if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) { 3634 Value *Val = UndefInt8; 3635 for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I) 3636 if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I), DL)))) 3637 return nullptr; 3638 return Val; 3639 } 3640 3641 if (isa<ConstantAggregate>(C)) { 3642 Value *Val = UndefInt8; 3643 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) 3644 if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I), DL)))) 3645 return nullptr; 3646 return Val; 3647 } 3648 3649 // Don't try to handle the handful of other constants. 3650 return nullptr; 3651 } 3652 3653 // This is the recursive version of BuildSubAggregate. It takes a few different 3654 // arguments. Idxs is the index within the nested struct From that we are 3655 // looking at now (which is of type IndexedType). IdxSkip is the number of 3656 // indices from Idxs that should be left out when inserting into the resulting 3657 // struct. To is the result struct built so far, new insertvalue instructions 3658 // build on that. 3659 static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType, 3660 SmallVectorImpl<unsigned> &Idxs, 3661 unsigned IdxSkip, 3662 Instruction *InsertBefore) { 3663 StructType *STy = dyn_cast<StructType>(IndexedType); 3664 if (STy) { 3665 // Save the original To argument so we can modify it 3666 Value *OrigTo = To; 3667 // General case, the type indexed by Idxs is a struct 3668 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3669 // Process each struct element recursively 3670 Idxs.push_back(i); 3671 Value *PrevTo = To; 3672 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip, 3673 InsertBefore); 3674 Idxs.pop_back(); 3675 if (!To) { 3676 // Couldn't find any inserted value for this index? Cleanup 3677 while (PrevTo != OrigTo) { 3678 InsertValueInst* Del = cast<InsertValueInst>(PrevTo); 3679 PrevTo = Del->getAggregateOperand(); 3680 Del->eraseFromParent(); 3681 } 3682 // Stop processing elements 3683 break; 3684 } 3685 } 3686 // If we successfully found a value for each of our subaggregates 3687 if (To) 3688 return To; 3689 } 3690 // Base case, the type indexed by SourceIdxs is not a struct, or not all of 3691 // the struct's elements had a value that was inserted directly. In the latter 3692 // case, perhaps we can't determine each of the subelements individually, but 3693 // we might be able to find the complete struct somewhere. 3694 3695 // Find the value that is at that particular spot 3696 Value *V = FindInsertedValue(From, Idxs); 3697 3698 if (!V) 3699 return nullptr; 3700 3701 // Insert the value in the new (sub) aggregate 3702 return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip), 3703 "tmp", InsertBefore); 3704 } 3705 3706 // This helper takes a nested struct and extracts a part of it (which is again a 3707 // struct) into a new value. For example, given the struct: 3708 // { a, { b, { c, d }, e } } 3709 // and the indices "1, 1" this returns 3710 // { c, d }. 3711 // 3712 // It does this by inserting an insertvalue for each element in the resulting 3713 // struct, as opposed to just inserting a single struct. This will only work if 3714 // each of the elements of the substruct are known (ie, inserted into From by an 3715 // insertvalue instruction somewhere). 3716 // 3717 // All inserted insertvalue instructions are inserted before InsertBefore 3718 static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range, 3719 Instruction *InsertBefore) { 3720 assert(InsertBefore && "Must have someplace to insert!"); 3721 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(), 3722 idx_range); 3723 Value *To = UndefValue::get(IndexedType); 3724 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end()); 3725 unsigned IdxSkip = Idxs.size(); 3726 3727 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore); 3728 } 3729 3730 /// Given an aggregate and a sequence of indices, see if the scalar value 3731 /// indexed is already around as a register, for example if it was inserted 3732 /// directly into the aggregate. 3733 /// 3734 /// If InsertBefore is not null, this function will duplicate (modified) 3735 /// insertvalues when a part of a nested struct is extracted. 3736 Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range, 3737 Instruction *InsertBefore) { 3738 // Nothing to index? Just return V then (this is useful at the end of our 3739 // recursion). 3740 if (idx_range.empty()) 3741 return V; 3742 // We have indices, so V should have an indexable type. 3743 assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) && 3744 "Not looking at a struct or array?"); 3745 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) && 3746 "Invalid indices for type?"); 3747 3748 if (Constant *C = dyn_cast<Constant>(V)) { 3749 C = C->getAggregateElement(idx_range[0]); 3750 if (!C) return nullptr; 3751 return FindInsertedValue(C, idx_range.slice(1), InsertBefore); 3752 } 3753 3754 if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) { 3755 // Loop the indices for the insertvalue instruction in parallel with the 3756 // requested indices 3757 const unsigned *req_idx = idx_range.begin(); 3758 for (const unsigned *i = I->idx_begin(), *e = I->idx_end(); 3759 i != e; ++i, ++req_idx) { 3760 if (req_idx == idx_range.end()) { 3761 // We can't handle this without inserting insertvalues 3762 if (!InsertBefore) 3763 return nullptr; 3764 3765 // The requested index identifies a part of a nested aggregate. Handle 3766 // this specially. For example, 3767 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0 3768 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1 3769 // %C = extractvalue {i32, { i32, i32 } } %B, 1 3770 // This can be changed into 3771 // %A = insertvalue {i32, i32 } undef, i32 10, 0 3772 // %C = insertvalue {i32, i32 } %A, i32 11, 1 3773 // which allows the unused 0,0 element from the nested struct to be 3774 // removed. 3775 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx), 3776 InsertBefore); 3777 } 3778 3779 // This insert value inserts something else than what we are looking for. 3780 // See if the (aggregate) value inserted into has the value we are 3781 // looking for, then. 3782 if (*req_idx != *i) 3783 return FindInsertedValue(I->getAggregateOperand(), idx_range, 3784 InsertBefore); 3785 } 3786 // If we end up here, the indices of the insertvalue match with those 3787 // requested (though possibly only partially). Now we recursively look at 3788 // the inserted value, passing any remaining indices. 3789 return FindInsertedValue(I->getInsertedValueOperand(), 3790 makeArrayRef(req_idx, idx_range.end()), 3791 InsertBefore); 3792 } 3793 3794 if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) { 3795 // If we're extracting a value from an aggregate that was extracted from 3796 // something else, we can extract from that something else directly instead. 3797 // However, we will need to chain I's indices with the requested indices. 3798 3799 // Calculate the number of indices required 3800 unsigned size = I->getNumIndices() + idx_range.size(); 3801 // Allocate some space to put the new indices in 3802 SmallVector<unsigned, 5> Idxs; 3803 Idxs.reserve(size); 3804 // Add indices from the extract value instruction 3805 Idxs.append(I->idx_begin(), I->idx_end()); 3806 3807 // Add requested indices 3808 Idxs.append(idx_range.begin(), idx_range.end()); 3809 3810 assert(Idxs.size() == size 3811 && "Number of indices added not correct?"); 3812 3813 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore); 3814 } 3815 // Otherwise, we don't know (such as, extracting from a function return value 3816 // or load instruction) 3817 return nullptr; 3818 } 3819 3820 bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP, 3821 unsigned CharSize) { 3822 // Make sure the GEP has exactly three arguments. 3823 if (GEP->getNumOperands() != 3) 3824 return false; 3825 3826 // Make sure the index-ee is a pointer to array of \p CharSize integers. 3827 // CharSize. 3828 ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType()); 3829 if (!AT || !AT->getElementType()->isIntegerTy(CharSize)) 3830 return false; 3831 3832 // Check to make sure that the first operand of the GEP is an integer and 3833 // has value 0 so that we are sure we're indexing into the initializer. 3834 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1)); 3835 if (!FirstIdx || !FirstIdx->isZero()) 3836 return false; 3837 3838 return true; 3839 } 3840 3841 bool llvm::getConstantDataArrayInfo(const Value *V, 3842 ConstantDataArraySlice &Slice, 3843 unsigned ElementSize, uint64_t Offset) { 3844 assert(V); 3845 3846 // Look through bitcast instructions and geps. 3847 V = V->stripPointerCasts(); 3848 3849 // If the value is a GEP instruction or constant expression, treat it as an 3850 // offset. 3851 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 3852 // The GEP operator should be based on a pointer to string constant, and is 3853 // indexing into the string constant. 3854 if (!isGEPBasedOnPointerToString(GEP, ElementSize)) 3855 return false; 3856 3857 // If the second index isn't a ConstantInt, then this is a variable index 3858 // into the array. If this occurs, we can't say anything meaningful about 3859 // the string. 3860 uint64_t StartIdx = 0; 3861 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2))) 3862 StartIdx = CI->getZExtValue(); 3863 else 3864 return false; 3865 return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize, 3866 StartIdx + Offset); 3867 } 3868 3869 // The GEP instruction, constant or instruction, must reference a global 3870 // variable that is a constant and is initialized. The referenced constant 3871 // initializer is the array that we'll use for optimization. 3872 const GlobalVariable *GV = dyn_cast<GlobalVariable>(V); 3873 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 3874 return false; 3875 3876 const ConstantDataArray *Array; 3877 ArrayType *ArrayTy; 3878 if (GV->getInitializer()->isNullValue()) { 3879 Type *GVTy = GV->getValueType(); 3880 if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) { 3881 // A zeroinitializer for the array; there is no ConstantDataArray. 3882 Array = nullptr; 3883 } else { 3884 const DataLayout &DL = GV->getParent()->getDataLayout(); 3885 uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy).getFixedSize(); 3886 uint64_t Length = SizeInBytes / (ElementSize / 8); 3887 if (Length <= Offset) 3888 return false; 3889 3890 Slice.Array = nullptr; 3891 Slice.Offset = 0; 3892 Slice.Length = Length - Offset; 3893 return true; 3894 } 3895 } else { 3896 // This must be a ConstantDataArray. 3897 Array = dyn_cast<ConstantDataArray>(GV->getInitializer()); 3898 if (!Array) 3899 return false; 3900 ArrayTy = Array->getType(); 3901 } 3902 if (!ArrayTy->getElementType()->isIntegerTy(ElementSize)) 3903 return false; 3904 3905 uint64_t NumElts = ArrayTy->getArrayNumElements(); 3906 if (Offset > NumElts) 3907 return false; 3908 3909 Slice.Array = Array; 3910 Slice.Offset = Offset; 3911 Slice.Length = NumElts - Offset; 3912 return true; 3913 } 3914 3915 /// This function computes the length of a null-terminated C string pointed to 3916 /// by V. If successful, it returns true and returns the string in Str. 3917 /// If unsuccessful, it returns false. 3918 bool llvm::getConstantStringInfo(const Value *V, StringRef &Str, 3919 uint64_t Offset, bool TrimAtNul) { 3920 ConstantDataArraySlice Slice; 3921 if (!getConstantDataArrayInfo(V, Slice, 8, Offset)) 3922 return false; 3923 3924 if (Slice.Array == nullptr) { 3925 if (TrimAtNul) { 3926 Str = StringRef(); 3927 return true; 3928 } 3929 if (Slice.Length == 1) { 3930 Str = StringRef("", 1); 3931 return true; 3932 } 3933 // We cannot instantiate a StringRef as we do not have an appropriate string 3934 // of 0s at hand. 3935 return false; 3936 } 3937 3938 // Start out with the entire array in the StringRef. 3939 Str = Slice.Array->getAsString(); 3940 // Skip over 'offset' bytes. 3941 Str = Str.substr(Slice.Offset); 3942 3943 if (TrimAtNul) { 3944 // Trim off the \0 and anything after it. If the array is not nul 3945 // terminated, we just return the whole end of string. The client may know 3946 // some other way that the string is length-bound. 3947 Str = Str.substr(0, Str.find('\0')); 3948 } 3949 return true; 3950 } 3951 3952 // These next two are very similar to the above, but also look through PHI 3953 // nodes. 3954 // TODO: See if we can integrate these two together. 3955 3956 /// If we can compute the length of the string pointed to by 3957 /// the specified pointer, return 'len+1'. If we can't, return 0. 3958 static uint64_t GetStringLengthH(const Value *V, 3959 SmallPtrSetImpl<const PHINode*> &PHIs, 3960 unsigned CharSize) { 3961 // Look through noop bitcast instructions. 3962 V = V->stripPointerCasts(); 3963 3964 // If this is a PHI node, there are two cases: either we have already seen it 3965 // or we haven't. 3966 if (const PHINode *PN = dyn_cast<PHINode>(V)) { 3967 if (!PHIs.insert(PN).second) 3968 return ~0ULL; // already in the set. 3969 3970 // If it was new, see if all the input strings are the same length. 3971 uint64_t LenSoFar = ~0ULL; 3972 for (Value *IncValue : PN->incoming_values()) { 3973 uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize); 3974 if (Len == 0) return 0; // Unknown length -> unknown. 3975 3976 if (Len == ~0ULL) continue; 3977 3978 if (Len != LenSoFar && LenSoFar != ~0ULL) 3979 return 0; // Disagree -> unknown. 3980 LenSoFar = Len; 3981 } 3982 3983 // Success, all agree. 3984 return LenSoFar; 3985 } 3986 3987 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y) 3988 if (const SelectInst *SI = dyn_cast<SelectInst>(V)) { 3989 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize); 3990 if (Len1 == 0) return 0; 3991 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize); 3992 if (Len2 == 0) return 0; 3993 if (Len1 == ~0ULL) return Len2; 3994 if (Len2 == ~0ULL) return Len1; 3995 if (Len1 != Len2) return 0; 3996 return Len1; 3997 } 3998 3999 // Otherwise, see if we can read the string. 4000 ConstantDataArraySlice Slice; 4001 if (!getConstantDataArrayInfo(V, Slice, CharSize)) 4002 return 0; 4003 4004 if (Slice.Array == nullptr) 4005 return 1; 4006 4007 // Search for nul characters 4008 unsigned NullIndex = 0; 4009 for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) { 4010 if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0) 4011 break; 4012 } 4013 4014 return NullIndex + 1; 4015 } 4016 4017 /// If we can compute the length of the string pointed to by 4018 /// the specified pointer, return 'len+1'. If we can't, return 0. 4019 uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) { 4020 if (!V->getType()->isPointerTy()) 4021 return 0; 4022 4023 SmallPtrSet<const PHINode*, 32> PHIs; 4024 uint64_t Len = GetStringLengthH(V, PHIs, CharSize); 4025 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return 4026 // an empty string as a length. 4027 return Len == ~0ULL ? 1 : Len; 4028 } 4029 4030 const Value * 4031 llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call, 4032 bool MustPreserveNullness) { 4033 assert(Call && 4034 "getArgumentAliasingToReturnedPointer only works on nonnull calls"); 4035 if (const Value *RV = Call->getReturnedArgOperand()) 4036 return RV; 4037 // This can be used only as a aliasing property. 4038 if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4039 Call, MustPreserveNullness)) 4040 return Call->getArgOperand(0); 4041 return nullptr; 4042 } 4043 4044 bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing( 4045 const CallBase *Call, bool MustPreserveNullness) { 4046 return Call->getIntrinsicID() == Intrinsic::launder_invariant_group || 4047 Call->getIntrinsicID() == Intrinsic::strip_invariant_group || 4048 Call->getIntrinsicID() == Intrinsic::aarch64_irg || 4049 Call->getIntrinsicID() == Intrinsic::aarch64_tagp || 4050 (!MustPreserveNullness && 4051 Call->getIntrinsicID() == Intrinsic::ptrmask); 4052 } 4053 4054 /// \p PN defines a loop-variant pointer to an object. Check if the 4055 /// previous iteration of the loop was referring to the same object as \p PN. 4056 static bool isSameUnderlyingObjectInLoop(const PHINode *PN, 4057 const LoopInfo *LI) { 4058 // Find the loop-defined value. 4059 Loop *L = LI->getLoopFor(PN->getParent()); 4060 if (PN->getNumIncomingValues() != 2) 4061 return true; 4062 4063 // Find the value from previous iteration. 4064 auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0)); 4065 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4066 PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1)); 4067 if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L) 4068 return true; 4069 4070 // If a new pointer is loaded in the loop, the pointer references a different 4071 // object in every iteration. E.g.: 4072 // for (i) 4073 // int *p = a[i]; 4074 // ... 4075 if (auto *Load = dyn_cast<LoadInst>(PrevValue)) 4076 if (!L->isLoopInvariant(Load->getPointerOperand())) 4077 return false; 4078 return true; 4079 } 4080 4081 Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL, 4082 unsigned MaxLookup) { 4083 if (!V->getType()->isPointerTy()) 4084 return V; 4085 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) { 4086 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { 4087 V = GEP->getPointerOperand(); 4088 } else if (Operator::getOpcode(V) == Instruction::BitCast || 4089 Operator::getOpcode(V) == Instruction::AddrSpaceCast) { 4090 V = cast<Operator>(V)->getOperand(0); 4091 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { 4092 if (GA->isInterposable()) 4093 return V; 4094 V = GA->getAliasee(); 4095 } else if (isa<AllocaInst>(V)) { 4096 // An alloca can't be further simplified. 4097 return V; 4098 } else { 4099 if (auto *Call = dyn_cast<CallBase>(V)) { 4100 // CaptureTracking can know about special capturing properties of some 4101 // intrinsics like launder.invariant.group, that can't be expressed with 4102 // the attributes, but have properties like returning aliasing pointer. 4103 // Because some analysis may assume that nocaptured pointer is not 4104 // returned from some special intrinsic (because function would have to 4105 // be marked with returns attribute), it is crucial to use this function 4106 // because it should be in sync with CaptureTracking. Not using it may 4107 // cause weird miscompilations where 2 aliasing pointers are assumed to 4108 // noalias. 4109 if (auto *RP = getArgumentAliasingToReturnedPointer(Call, false)) { 4110 V = RP; 4111 continue; 4112 } 4113 } 4114 4115 // See if InstructionSimplify knows any relevant tricks. 4116 if (Instruction *I = dyn_cast<Instruction>(V)) 4117 // TODO: Acquire a DominatorTree and AssumptionCache and use them. 4118 if (Value *Simplified = SimplifyInstruction(I, {DL, I})) { 4119 V = Simplified; 4120 continue; 4121 } 4122 4123 return V; 4124 } 4125 assert(V->getType()->isPointerTy() && "Unexpected operand type!"); 4126 } 4127 return V; 4128 } 4129 4130 void llvm::GetUnderlyingObjects(const Value *V, 4131 SmallVectorImpl<const Value *> &Objects, 4132 const DataLayout &DL, LoopInfo *LI, 4133 unsigned MaxLookup) { 4134 SmallPtrSet<const Value *, 4> Visited; 4135 SmallVector<const Value *, 4> Worklist; 4136 Worklist.push_back(V); 4137 do { 4138 const Value *P = Worklist.pop_back_val(); 4139 P = GetUnderlyingObject(P, DL, MaxLookup); 4140 4141 if (!Visited.insert(P).second) 4142 continue; 4143 4144 if (auto *SI = dyn_cast<SelectInst>(P)) { 4145 Worklist.push_back(SI->getTrueValue()); 4146 Worklist.push_back(SI->getFalseValue()); 4147 continue; 4148 } 4149 4150 if (auto *PN = dyn_cast<PHINode>(P)) { 4151 // If this PHI changes the underlying object in every iteration of the 4152 // loop, don't look through it. Consider: 4153 // int **A; 4154 // for (i) { 4155 // Prev = Curr; // Prev = PHI (Prev_0, Curr) 4156 // Curr = A[i]; 4157 // *Prev, *Curr; 4158 // 4159 // Prev is tracking Curr one iteration behind so they refer to different 4160 // underlying objects. 4161 if (!LI || !LI->isLoopHeader(PN->getParent()) || 4162 isSameUnderlyingObjectInLoop(PN, LI)) 4163 for (Value *IncValue : PN->incoming_values()) 4164 Worklist.push_back(IncValue); 4165 continue; 4166 } 4167 4168 Objects.push_back(P); 4169 } while (!Worklist.empty()); 4170 } 4171 4172 /// This is the function that does the work of looking through basic 4173 /// ptrtoint+arithmetic+inttoptr sequences. 4174 static const Value *getUnderlyingObjectFromInt(const Value *V) { 4175 do { 4176 if (const Operator *U = dyn_cast<Operator>(V)) { 4177 // If we find a ptrtoint, we can transfer control back to the 4178 // regular getUnderlyingObjectFromInt. 4179 if (U->getOpcode() == Instruction::PtrToInt) 4180 return U->getOperand(0); 4181 // If we find an add of a constant, a multiplied value, or a phi, it's 4182 // likely that the other operand will lead us to the base 4183 // object. We don't have to worry about the case where the 4184 // object address is somehow being computed by the multiply, 4185 // because our callers only care when the result is an 4186 // identifiable object. 4187 if (U->getOpcode() != Instruction::Add || 4188 (!isa<ConstantInt>(U->getOperand(1)) && 4189 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul && 4190 !isa<PHINode>(U->getOperand(1)))) 4191 return V; 4192 V = U->getOperand(0); 4193 } else { 4194 return V; 4195 } 4196 assert(V->getType()->isIntegerTy() && "Unexpected operand type!"); 4197 } while (true); 4198 } 4199 4200 /// This is a wrapper around GetUnderlyingObjects and adds support for basic 4201 /// ptrtoint+arithmetic+inttoptr sequences. 4202 /// It returns false if unidentified object is found in GetUnderlyingObjects. 4203 bool llvm::getUnderlyingObjectsForCodeGen(const Value *V, 4204 SmallVectorImpl<Value *> &Objects, 4205 const DataLayout &DL) { 4206 SmallPtrSet<const Value *, 16> Visited; 4207 SmallVector<const Value *, 4> Working(1, V); 4208 do { 4209 V = Working.pop_back_val(); 4210 4211 SmallVector<const Value *, 4> Objs; 4212 GetUnderlyingObjects(V, Objs, DL); 4213 4214 for (const Value *V : Objs) { 4215 if (!Visited.insert(V).second) 4216 continue; 4217 if (Operator::getOpcode(V) == Instruction::IntToPtr) { 4218 const Value *O = 4219 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0)); 4220 if (O->getType()->isPointerTy()) { 4221 Working.push_back(O); 4222 continue; 4223 } 4224 } 4225 // If GetUnderlyingObjects fails to find an identifiable object, 4226 // getUnderlyingObjectsForCodeGen also fails for safety. 4227 if (!isIdentifiedObject(V)) { 4228 Objects.clear(); 4229 return false; 4230 } 4231 Objects.push_back(const_cast<Value *>(V)); 4232 } 4233 } while (!Working.empty()); 4234 return true; 4235 } 4236 4237 /// Return true if the only users of this pointer are lifetime markers. 4238 bool llvm::onlyUsedByLifetimeMarkers(const Value *V) { 4239 for (const User *U : V->users()) { 4240 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); 4241 if (!II) return false; 4242 4243 if (!II->isLifetimeStartOrEnd()) 4244 return false; 4245 } 4246 return true; 4247 } 4248 4249 bool llvm::mustSuppressSpeculation(const LoadInst &LI) { 4250 if (!LI.isUnordered()) 4251 return true; 4252 const Function &F = *LI.getFunction(); 4253 // Speculative load may create a race that did not exist in the source. 4254 return F.hasFnAttribute(Attribute::SanitizeThread) || 4255 // Speculative load may load data from dirty regions. 4256 F.hasFnAttribute(Attribute::SanitizeAddress) || 4257 F.hasFnAttribute(Attribute::SanitizeHWAddress); 4258 } 4259 4260 4261 bool llvm::isSafeToSpeculativelyExecute(const Value *V, 4262 const Instruction *CtxI, 4263 const DominatorTree *DT) { 4264 const Operator *Inst = dyn_cast<Operator>(V); 4265 if (!Inst) 4266 return false; 4267 4268 for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i) 4269 if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i))) 4270 if (C->canTrap()) 4271 return false; 4272 4273 switch (Inst->getOpcode()) { 4274 default: 4275 return true; 4276 case Instruction::UDiv: 4277 case Instruction::URem: { 4278 // x / y is undefined if y == 0. 4279 const APInt *V; 4280 if (match(Inst->getOperand(1), m_APInt(V))) 4281 return *V != 0; 4282 return false; 4283 } 4284 case Instruction::SDiv: 4285 case Instruction::SRem: { 4286 // x / y is undefined if y == 0 or x == INT_MIN and y == -1 4287 const APInt *Numerator, *Denominator; 4288 if (!match(Inst->getOperand(1), m_APInt(Denominator))) 4289 return false; 4290 // We cannot hoist this division if the denominator is 0. 4291 if (*Denominator == 0) 4292 return false; 4293 // It's safe to hoist if the denominator is not 0 or -1. 4294 if (*Denominator != -1) 4295 return true; 4296 // At this point we know that the denominator is -1. It is safe to hoist as 4297 // long we know that the numerator is not INT_MIN. 4298 if (match(Inst->getOperand(0), m_APInt(Numerator))) 4299 return !Numerator->isMinSignedValue(); 4300 // The numerator *might* be MinSignedValue. 4301 return false; 4302 } 4303 case Instruction::Load: { 4304 const LoadInst *LI = cast<LoadInst>(Inst); 4305 if (mustSuppressSpeculation(*LI)) 4306 return false; 4307 const DataLayout &DL = LI->getModule()->getDataLayout(); 4308 return isDereferenceableAndAlignedPointer( 4309 LI->getPointerOperand(), LI->getType(), MaybeAlign(LI->getAlignment()), 4310 DL, CtxI, DT); 4311 } 4312 case Instruction::Call: { 4313 auto *CI = cast<const CallInst>(Inst); 4314 const Function *Callee = CI->getCalledFunction(); 4315 4316 // The called function could have undefined behavior or side-effects, even 4317 // if marked readnone nounwind. 4318 return Callee && Callee->isSpeculatable(); 4319 } 4320 case Instruction::VAArg: 4321 case Instruction::Alloca: 4322 case Instruction::Invoke: 4323 case Instruction::CallBr: 4324 case Instruction::PHI: 4325 case Instruction::Store: 4326 case Instruction::Ret: 4327 case Instruction::Br: 4328 case Instruction::IndirectBr: 4329 case Instruction::Switch: 4330 case Instruction::Unreachable: 4331 case Instruction::Fence: 4332 case Instruction::AtomicRMW: 4333 case Instruction::AtomicCmpXchg: 4334 case Instruction::LandingPad: 4335 case Instruction::Resume: 4336 case Instruction::CatchSwitch: 4337 case Instruction::CatchPad: 4338 case Instruction::CatchRet: 4339 case Instruction::CleanupPad: 4340 case Instruction::CleanupRet: 4341 return false; // Misc instructions which have effects 4342 } 4343 } 4344 4345 bool llvm::mayBeMemoryDependent(const Instruction &I) { 4346 return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I); 4347 } 4348 4349 /// Convert ConstantRange OverflowResult into ValueTracking OverflowResult. 4350 static OverflowResult mapOverflowResult(ConstantRange::OverflowResult OR) { 4351 switch (OR) { 4352 case ConstantRange::OverflowResult::MayOverflow: 4353 return OverflowResult::MayOverflow; 4354 case ConstantRange::OverflowResult::AlwaysOverflowsLow: 4355 return OverflowResult::AlwaysOverflowsLow; 4356 case ConstantRange::OverflowResult::AlwaysOverflowsHigh: 4357 return OverflowResult::AlwaysOverflowsHigh; 4358 case ConstantRange::OverflowResult::NeverOverflows: 4359 return OverflowResult::NeverOverflows; 4360 } 4361 llvm_unreachable("Unknown OverflowResult"); 4362 } 4363 4364 /// Combine constant ranges from computeConstantRange() and computeKnownBits(). 4365 static ConstantRange computeConstantRangeIncludingKnownBits( 4366 const Value *V, bool ForSigned, const DataLayout &DL, unsigned Depth, 4367 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4368 OptimizationRemarkEmitter *ORE = nullptr, bool UseInstrInfo = true) { 4369 KnownBits Known = computeKnownBits( 4370 V, DL, Depth, AC, CxtI, DT, ORE, UseInstrInfo); 4371 ConstantRange CR1 = ConstantRange::fromKnownBits(Known, ForSigned); 4372 ConstantRange CR2 = computeConstantRange(V, UseInstrInfo); 4373 ConstantRange::PreferredRangeType RangeType = 4374 ForSigned ? ConstantRange::Signed : ConstantRange::Unsigned; 4375 return CR1.intersectWith(CR2, RangeType); 4376 } 4377 4378 OverflowResult llvm::computeOverflowForUnsignedMul( 4379 const Value *LHS, const Value *RHS, const DataLayout &DL, 4380 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4381 bool UseInstrInfo) { 4382 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4383 nullptr, UseInstrInfo); 4384 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4385 nullptr, UseInstrInfo); 4386 ConstantRange LHSRange = ConstantRange::fromKnownBits(LHSKnown, false); 4387 ConstantRange RHSRange = ConstantRange::fromKnownBits(RHSKnown, false); 4388 return mapOverflowResult(LHSRange.unsignedMulMayOverflow(RHSRange)); 4389 } 4390 4391 OverflowResult 4392 llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS, 4393 const DataLayout &DL, AssumptionCache *AC, 4394 const Instruction *CxtI, 4395 const DominatorTree *DT, bool UseInstrInfo) { 4396 // Multiplying n * m significant bits yields a result of n + m significant 4397 // bits. If the total number of significant bits does not exceed the 4398 // result bit width (minus 1), there is no overflow. 4399 // This means if we have enough leading sign bits in the operands 4400 // we can guarantee that the result does not overflow. 4401 // Ref: "Hacker's Delight" by Henry Warren 4402 unsigned BitWidth = LHS->getType()->getScalarSizeInBits(); 4403 4404 // Note that underestimating the number of sign bits gives a more 4405 // conservative answer. 4406 unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) + 4407 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT); 4408 4409 // First handle the easy case: if we have enough sign bits there's 4410 // definitely no overflow. 4411 if (SignBits > BitWidth + 1) 4412 return OverflowResult::NeverOverflows; 4413 4414 // There are two ambiguous cases where there can be no overflow: 4415 // SignBits == BitWidth + 1 and 4416 // SignBits == BitWidth 4417 // The second case is difficult to check, therefore we only handle the 4418 // first case. 4419 if (SignBits == BitWidth + 1) { 4420 // It overflows only when both arguments are negative and the true 4421 // product is exactly the minimum negative number. 4422 // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000 4423 // For simplicity we just check if at least one side is not negative. 4424 KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT, 4425 nullptr, UseInstrInfo); 4426 KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT, 4427 nullptr, UseInstrInfo); 4428 if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) 4429 return OverflowResult::NeverOverflows; 4430 } 4431 return OverflowResult::MayOverflow; 4432 } 4433 4434 OverflowResult llvm::computeOverflowForUnsignedAdd( 4435 const Value *LHS, const Value *RHS, const DataLayout &DL, 4436 AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT, 4437 bool UseInstrInfo) { 4438 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4439 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4440 nullptr, UseInstrInfo); 4441 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4442 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT, 4443 nullptr, UseInstrInfo); 4444 return mapOverflowResult(LHSRange.unsignedAddMayOverflow(RHSRange)); 4445 } 4446 4447 static OverflowResult computeOverflowForSignedAdd(const Value *LHS, 4448 const Value *RHS, 4449 const AddOperator *Add, 4450 const DataLayout &DL, 4451 AssumptionCache *AC, 4452 const Instruction *CxtI, 4453 const DominatorTree *DT) { 4454 if (Add && Add->hasNoSignedWrap()) { 4455 return OverflowResult::NeverOverflows; 4456 } 4457 4458 // If LHS and RHS each have at least two sign bits, the addition will look 4459 // like 4460 // 4461 // XX..... + 4462 // YY..... 4463 // 4464 // If the carry into the most significant position is 0, X and Y can't both 4465 // be 1 and therefore the carry out of the addition is also 0. 4466 // 4467 // If the carry into the most significant position is 1, X and Y can't both 4468 // be 0 and therefore the carry out of the addition is also 1. 4469 // 4470 // Since the carry into the most significant position is always equal to 4471 // the carry out of the addition, there is no signed overflow. 4472 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4473 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4474 return OverflowResult::NeverOverflows; 4475 4476 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4477 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4478 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4479 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4480 OverflowResult OR = 4481 mapOverflowResult(LHSRange.signedAddMayOverflow(RHSRange)); 4482 if (OR != OverflowResult::MayOverflow) 4483 return OR; 4484 4485 // The remaining code needs Add to be available. Early returns if not so. 4486 if (!Add) 4487 return OverflowResult::MayOverflow; 4488 4489 // If the sign of Add is the same as at least one of the operands, this add 4490 // CANNOT overflow. If this can be determined from the known bits of the 4491 // operands the above signedAddMayOverflow() check will have already done so. 4492 // The only other way to improve on the known bits is from an assumption, so 4493 // call computeKnownBitsFromAssume() directly. 4494 bool LHSOrRHSKnownNonNegative = 4495 (LHSRange.isAllNonNegative() || RHSRange.isAllNonNegative()); 4496 bool LHSOrRHSKnownNegative = 4497 (LHSRange.isAllNegative() || RHSRange.isAllNegative()); 4498 if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) { 4499 KnownBits AddKnown(LHSRange.getBitWidth()); 4500 computeKnownBitsFromAssume( 4501 Add, AddKnown, /*Depth=*/0, Query(DL, AC, CxtI, DT, true)); 4502 if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) || 4503 (AddKnown.isNegative() && LHSOrRHSKnownNegative)) 4504 return OverflowResult::NeverOverflows; 4505 } 4506 4507 return OverflowResult::MayOverflow; 4508 } 4509 4510 OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS, 4511 const Value *RHS, 4512 const DataLayout &DL, 4513 AssumptionCache *AC, 4514 const Instruction *CxtI, 4515 const DominatorTree *DT) { 4516 // Checking for conditions implied by dominating conditions may be expensive. 4517 // Limit it to usub_with_overflow calls for now. 4518 if (match(CxtI, 4519 m_Intrinsic<Intrinsic::usub_with_overflow>(m_Value(), m_Value()))) 4520 if (auto C = 4521 isImpliedByDomCondition(CmpInst::ICMP_UGE, LHS, RHS, CxtI, DL)) { 4522 if (*C) 4523 return OverflowResult::NeverOverflows; 4524 return OverflowResult::AlwaysOverflowsLow; 4525 } 4526 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4527 LHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4528 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4529 RHS, /*ForSigned=*/false, DL, /*Depth=*/0, AC, CxtI, DT); 4530 return mapOverflowResult(LHSRange.unsignedSubMayOverflow(RHSRange)); 4531 } 4532 4533 OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS, 4534 const Value *RHS, 4535 const DataLayout &DL, 4536 AssumptionCache *AC, 4537 const Instruction *CxtI, 4538 const DominatorTree *DT) { 4539 // If LHS and RHS each have at least two sign bits, the subtraction 4540 // cannot overflow. 4541 if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 && 4542 ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1) 4543 return OverflowResult::NeverOverflows; 4544 4545 ConstantRange LHSRange = computeConstantRangeIncludingKnownBits( 4546 LHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4547 ConstantRange RHSRange = computeConstantRangeIncludingKnownBits( 4548 RHS, /*ForSigned=*/true, DL, /*Depth=*/0, AC, CxtI, DT); 4549 return mapOverflowResult(LHSRange.signedSubMayOverflow(RHSRange)); 4550 } 4551 4552 bool llvm::isOverflowIntrinsicNoWrap(const WithOverflowInst *WO, 4553 const DominatorTree &DT) { 4554 SmallVector<const BranchInst *, 2> GuardingBranches; 4555 SmallVector<const ExtractValueInst *, 2> Results; 4556 4557 for (const User *U : WO->users()) { 4558 if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) { 4559 assert(EVI->getNumIndices() == 1 && "Obvious from CI's type"); 4560 4561 if (EVI->getIndices()[0] == 0) 4562 Results.push_back(EVI); 4563 else { 4564 assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type"); 4565 4566 for (const auto *U : EVI->users()) 4567 if (const auto *B = dyn_cast<BranchInst>(U)) { 4568 assert(B->isConditional() && "How else is it using an i1?"); 4569 GuardingBranches.push_back(B); 4570 } 4571 } 4572 } else { 4573 // We are using the aggregate directly in a way we don't want to analyze 4574 // here (storing it to a global, say). 4575 return false; 4576 } 4577 } 4578 4579 auto AllUsesGuardedByBranch = [&](const BranchInst *BI) { 4580 BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1)); 4581 if (!NoWrapEdge.isSingleEdge()) 4582 return false; 4583 4584 // Check if all users of the add are provably no-wrap. 4585 for (const auto *Result : Results) { 4586 // If the extractvalue itself is not executed on overflow, the we don't 4587 // need to check each use separately, since domination is transitive. 4588 if (DT.dominates(NoWrapEdge, Result->getParent())) 4589 continue; 4590 4591 for (auto &RU : Result->uses()) 4592 if (!DT.dominates(NoWrapEdge, RU)) 4593 return false; 4594 } 4595 4596 return true; 4597 }; 4598 4599 return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch); 4600 } 4601 4602 bool llvm::isGuaranteedNotToBeUndefOrPoison(const Value *V, 4603 const Instruction *CtxI, 4604 const DominatorTree *DT) { 4605 // If the value is a freeze instruction, then it can never 4606 // be undef or poison. 4607 if (isa<FreezeInst>(V)) 4608 return true; 4609 // TODO: Some instructions are guaranteed to return neither undef 4610 // nor poison if their arguments are not poison/undef. 4611 4612 if (auto *C = dyn_cast<Constant>(V)) { 4613 // TODO: We can analyze ConstExpr by opcode to determine if there is any 4614 // possibility of poison. 4615 if (isa<UndefValue>(C) || isa<ConstantExpr>(C)) 4616 return false; 4617 4618 // TODO: Add ConstantFP and pointers. 4619 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) ) 4620 return true; 4621 4622 if (C->getType()->isVectorTy()) 4623 return !C->containsUndefElement() && !C->containsConstantExpression(); 4624 4625 // TODO: Recursively analyze aggregates or other constants. 4626 return false; 4627 } 4628 4629 if (auto PN = dyn_cast<PHINode>(V)) { 4630 if (llvm::all_of(PN->incoming_values(), [](const Use &U) { 4631 return isa<ConstantInt>(U.get()); 4632 })) 4633 return true; 4634 } 4635 4636 if (auto II = dyn_cast<ICmpInst>(V)) { 4637 if (llvm::all_of(II->operands(), [](const Value *V) { 4638 return isGuaranteedNotToBeUndefOrPoison(V); 4639 })) 4640 return true; 4641 } 4642 4643 if (auto I = dyn_cast<Instruction>(V)) { 4644 if (programUndefinedIfFullPoison(I) && I->getType()->isIntegerTy(1)) 4645 // Note: once we have an agreement that poison is a value-wise concept, 4646 // we can remove the isIntegerTy(1) constraint. 4647 return true; 4648 } 4649 4650 // CxtI may be null or a cloned instruction. 4651 if (!CtxI || !CtxI->getParent() || !DT) 4652 return false; 4653 4654 // If V is used as a branch condition before reaching CtxI, V cannot be 4655 // undef or poison. 4656 // br V, BB1, BB2 4657 // BB1: 4658 // CtxI ; V cannot be undef or poison here 4659 auto Dominator = DT->getNode(CtxI->getParent())->getIDom(); 4660 while (Dominator) { 4661 auto *TI = Dominator->getBlock()->getTerminator(); 4662 4663 if (auto BI = dyn_cast<BranchInst>(TI)) { 4664 if (BI->isConditional() && BI->getCondition() == V) 4665 return true; 4666 } else if (auto SI = dyn_cast<SwitchInst>(TI)) { 4667 if (SI->getCondition() == V) 4668 return true; 4669 } 4670 4671 Dominator = Dominator->getIDom(); 4672 } 4673 4674 return false; 4675 } 4676 4677 OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add, 4678 const DataLayout &DL, 4679 AssumptionCache *AC, 4680 const Instruction *CxtI, 4681 const DominatorTree *DT) { 4682 return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1), 4683 Add, DL, AC, CxtI, DT); 4684 } 4685 4686 OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS, 4687 const Value *RHS, 4688 const DataLayout &DL, 4689 AssumptionCache *AC, 4690 const Instruction *CxtI, 4691 const DominatorTree *DT) { 4692 return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT); 4693 } 4694 4695 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) { 4696 // Note: An atomic operation isn't guaranteed to return in a reasonable amount 4697 // of time because it's possible for another thread to interfere with it for an 4698 // arbitrary length of time, but programs aren't allowed to rely on that. 4699 4700 // If there is no successor, then execution can't transfer to it. 4701 if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) 4702 return !CRI->unwindsToCaller(); 4703 if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I)) 4704 return !CatchSwitch->unwindsToCaller(); 4705 if (isa<ResumeInst>(I)) 4706 return false; 4707 if (isa<ReturnInst>(I)) 4708 return false; 4709 if (isa<UnreachableInst>(I)) 4710 return false; 4711 4712 // Calls can throw, or contain an infinite loop, or kill the process. 4713 if (auto CS = ImmutableCallSite(I)) { 4714 // Call sites that throw have implicit non-local control flow. 4715 if (!CS.doesNotThrow()) 4716 return false; 4717 4718 // A function which doens't throw and has "willreturn" attribute will 4719 // always return. 4720 if (CS.hasFnAttr(Attribute::WillReturn)) 4721 return true; 4722 4723 // Non-throwing call sites can loop infinitely, call exit/pthread_exit 4724 // etc. and thus not return. However, LLVM already assumes that 4725 // 4726 // - Thread exiting actions are modeled as writes to memory invisible to 4727 // the program. 4728 // 4729 // - Loops that don't have side effects (side effects are volatile/atomic 4730 // stores and IO) always terminate (see http://llvm.org/PR965). 4731 // Furthermore IO itself is also modeled as writes to memory invisible to 4732 // the program. 4733 // 4734 // We rely on those assumptions here, and use the memory effects of the call 4735 // target as a proxy for checking that it always returns. 4736 4737 // FIXME: This isn't aggressive enough; a call which only writes to a global 4738 // is guaranteed to return. 4739 return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory(); 4740 } 4741 4742 // Other instructions return normally. 4743 return true; 4744 } 4745 4746 bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) { 4747 // TODO: This is slightly conservative for invoke instruction since exiting 4748 // via an exception *is* normal control for them. 4749 for (auto I = BB->begin(), E = BB->end(); I != E; ++I) 4750 if (!isGuaranteedToTransferExecutionToSuccessor(&*I)) 4751 return false; 4752 return true; 4753 } 4754 4755 bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I, 4756 const Loop *L) { 4757 // The loop header is guaranteed to be executed for every iteration. 4758 // 4759 // FIXME: Relax this constraint to cover all basic blocks that are 4760 // guaranteed to be executed at every iteration. 4761 if (I->getParent() != L->getHeader()) return false; 4762 4763 for (const Instruction &LI : *L->getHeader()) { 4764 if (&LI == I) return true; 4765 if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false; 4766 } 4767 llvm_unreachable("Instruction not contained in its own parent basic block."); 4768 } 4769 4770 bool llvm::propagatesFullPoison(const Instruction *I) { 4771 // TODO: This should include all instructions apart from phis, selects and 4772 // call-like instructions. 4773 switch (I->getOpcode()) { 4774 case Instruction::Add: 4775 case Instruction::Sub: 4776 case Instruction::Xor: 4777 case Instruction::Trunc: 4778 case Instruction::BitCast: 4779 case Instruction::AddrSpaceCast: 4780 case Instruction::Mul: 4781 case Instruction::Shl: 4782 case Instruction::GetElementPtr: 4783 // These operations all propagate poison unconditionally. Note that poison 4784 // is not any particular value, so xor or subtraction of poison with 4785 // itself still yields poison, not zero. 4786 return true; 4787 4788 case Instruction::AShr: 4789 case Instruction::SExt: 4790 // For these operations, one bit of the input is replicated across 4791 // multiple output bits. A replicated poison bit is still poison. 4792 return true; 4793 4794 case Instruction::ICmp: 4795 // Comparing poison with any value yields poison. This is why, for 4796 // instance, x s< (x +nsw 1) can be folded to true. 4797 return true; 4798 4799 default: 4800 return false; 4801 } 4802 } 4803 4804 const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) { 4805 switch (I->getOpcode()) { 4806 case Instruction::Store: 4807 return cast<StoreInst>(I)->getPointerOperand(); 4808 4809 case Instruction::Load: 4810 return cast<LoadInst>(I)->getPointerOperand(); 4811 4812 case Instruction::AtomicCmpXchg: 4813 return cast<AtomicCmpXchgInst>(I)->getPointerOperand(); 4814 4815 case Instruction::AtomicRMW: 4816 return cast<AtomicRMWInst>(I)->getPointerOperand(); 4817 4818 case Instruction::UDiv: 4819 case Instruction::SDiv: 4820 case Instruction::URem: 4821 case Instruction::SRem: 4822 return I->getOperand(1); 4823 4824 case Instruction::Call: 4825 if (auto *II = dyn_cast<IntrinsicInst>(I)) { 4826 switch (II->getIntrinsicID()) { 4827 case Intrinsic::assume: 4828 return II->getArgOperand(0); 4829 default: 4830 return nullptr; 4831 } 4832 } 4833 return nullptr; 4834 4835 default: 4836 return nullptr; 4837 } 4838 } 4839 4840 bool llvm::mustTriggerUB(const Instruction *I, 4841 const SmallSet<const Value *, 16>& KnownPoison) { 4842 auto *NotPoison = getGuaranteedNonFullPoisonOp(I); 4843 return (NotPoison && KnownPoison.count(NotPoison)); 4844 } 4845 4846 4847 bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) { 4848 // We currently only look for uses of poison values within the same basic 4849 // block, as that makes it easier to guarantee that the uses will be 4850 // executed given that PoisonI is executed. 4851 // 4852 // FIXME: Expand this to consider uses beyond the same basic block. To do 4853 // this, look out for the distinction between post-dominance and strong 4854 // post-dominance. 4855 const BasicBlock *BB = PoisonI->getParent(); 4856 4857 // Set of instructions that we have proved will yield poison if PoisonI 4858 // does. 4859 SmallSet<const Value *, 16> YieldsPoison; 4860 SmallSet<const BasicBlock *, 4> Visited; 4861 YieldsPoison.insert(PoisonI); 4862 Visited.insert(PoisonI->getParent()); 4863 4864 BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end(); 4865 4866 unsigned Iter = 0; 4867 while (Iter++ < MaxDepth) { 4868 for (auto &I : make_range(Begin, End)) { 4869 if (&I != PoisonI) { 4870 if (mustTriggerUB(&I, YieldsPoison)) 4871 return true; 4872 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 4873 return false; 4874 } 4875 4876 // Mark poison that propagates from I through uses of I. 4877 if (YieldsPoison.count(&I)) { 4878 for (const User *User : I.users()) { 4879 const Instruction *UserI = cast<Instruction>(User); 4880 if (propagatesFullPoison(UserI)) 4881 YieldsPoison.insert(User); 4882 } 4883 } 4884 } 4885 4886 if (auto *NextBB = BB->getSingleSuccessor()) { 4887 if (Visited.insert(NextBB).second) { 4888 BB = NextBB; 4889 Begin = BB->getFirstNonPHI()->getIterator(); 4890 End = BB->end(); 4891 continue; 4892 } 4893 } 4894 4895 break; 4896 } 4897 return false; 4898 } 4899 4900 static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) { 4901 if (FMF.noNaNs()) 4902 return true; 4903 4904 if (auto *C = dyn_cast<ConstantFP>(V)) 4905 return !C->isNaN(); 4906 4907 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4908 if (!C->getElementType()->isFloatingPointTy()) 4909 return false; 4910 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4911 if (C->getElementAsAPFloat(I).isNaN()) 4912 return false; 4913 } 4914 return true; 4915 } 4916 4917 if (isa<ConstantAggregateZero>(V)) 4918 return true; 4919 4920 return false; 4921 } 4922 4923 static bool isKnownNonZero(const Value *V) { 4924 if (auto *C = dyn_cast<ConstantFP>(V)) 4925 return !C->isZero(); 4926 4927 if (auto *C = dyn_cast<ConstantDataVector>(V)) { 4928 if (!C->getElementType()->isFloatingPointTy()) 4929 return false; 4930 for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) { 4931 if (C->getElementAsAPFloat(I).isZero()) 4932 return false; 4933 } 4934 return true; 4935 } 4936 4937 return false; 4938 } 4939 4940 /// Match clamp pattern for float types without care about NaNs or signed zeros. 4941 /// Given non-min/max outer cmp/select from the clamp pattern this 4942 /// function recognizes if it can be substitued by a "canonical" min/max 4943 /// pattern. 4944 static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred, 4945 Value *CmpLHS, Value *CmpRHS, 4946 Value *TrueVal, Value *FalseVal, 4947 Value *&LHS, Value *&RHS) { 4948 // Try to match 4949 // X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2)) 4950 // X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2)) 4951 // and return description of the outer Max/Min. 4952 4953 // First, check if select has inverse order: 4954 if (CmpRHS == FalseVal) { 4955 std::swap(TrueVal, FalseVal); 4956 Pred = CmpInst::getInversePredicate(Pred); 4957 } 4958 4959 // Assume success now. If there's no match, callers should not use these anyway. 4960 LHS = TrueVal; 4961 RHS = FalseVal; 4962 4963 const APFloat *FC1; 4964 if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite()) 4965 return {SPF_UNKNOWN, SPNB_NA, false}; 4966 4967 const APFloat *FC2; 4968 switch (Pred) { 4969 case CmpInst::FCMP_OLT: 4970 case CmpInst::FCMP_OLE: 4971 case CmpInst::FCMP_ULT: 4972 case CmpInst::FCMP_ULE: 4973 if (match(FalseVal, 4974 m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)), 4975 m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4976 *FC1 < *FC2) 4977 return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false}; 4978 break; 4979 case CmpInst::FCMP_OGT: 4980 case CmpInst::FCMP_OGE: 4981 case CmpInst::FCMP_UGT: 4982 case CmpInst::FCMP_UGE: 4983 if (match(FalseVal, 4984 m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)), 4985 m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) && 4986 *FC1 > *FC2) 4987 return {SPF_FMINNUM, SPNB_RETURNS_ANY, false}; 4988 break; 4989 default: 4990 break; 4991 } 4992 4993 return {SPF_UNKNOWN, SPNB_NA, false}; 4994 } 4995 4996 /// Recognize variations of: 4997 /// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v))) 4998 static SelectPatternResult matchClamp(CmpInst::Predicate Pred, 4999 Value *CmpLHS, Value *CmpRHS, 5000 Value *TrueVal, Value *FalseVal) { 5001 // Swap the select operands and predicate to match the patterns below. 5002 if (CmpRHS != TrueVal) { 5003 Pred = ICmpInst::getSwappedPredicate(Pred); 5004 std::swap(TrueVal, FalseVal); 5005 } 5006 const APInt *C1; 5007 if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) { 5008 const APInt *C2; 5009 // (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1) 5010 if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) && 5011 C1->slt(*C2) && Pred == CmpInst::ICMP_SLT) 5012 return {SPF_SMAX, SPNB_NA, false}; 5013 5014 // (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1) 5015 if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) && 5016 C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT) 5017 return {SPF_SMIN, SPNB_NA, false}; 5018 5019 // (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1) 5020 if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) && 5021 C1->ult(*C2) && Pred == CmpInst::ICMP_ULT) 5022 return {SPF_UMAX, SPNB_NA, false}; 5023 5024 // (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1) 5025 if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) && 5026 C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT) 5027 return {SPF_UMIN, SPNB_NA, false}; 5028 } 5029 return {SPF_UNKNOWN, SPNB_NA, false}; 5030 } 5031 5032 /// Recognize variations of: 5033 /// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c)) 5034 static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred, 5035 Value *CmpLHS, Value *CmpRHS, 5036 Value *TVal, Value *FVal, 5037 unsigned Depth) { 5038 // TODO: Allow FP min/max with nnan/nsz. 5039 assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison"); 5040 5041 Value *A = nullptr, *B = nullptr; 5042 SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1); 5043 if (!SelectPatternResult::isMinOrMax(L.Flavor)) 5044 return {SPF_UNKNOWN, SPNB_NA, false}; 5045 5046 Value *C = nullptr, *D = nullptr; 5047 SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1); 5048 if (L.Flavor != R.Flavor) 5049 return {SPF_UNKNOWN, SPNB_NA, false}; 5050 5051 // We have something like: x Pred y ? min(a, b) : min(c, d). 5052 // Try to match the compare to the min/max operations of the select operands. 5053 // First, make sure we have the right compare predicate. 5054 switch (L.Flavor) { 5055 case SPF_SMIN: 5056 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { 5057 Pred = ICmpInst::getSwappedPredicate(Pred); 5058 std::swap(CmpLHS, CmpRHS); 5059 } 5060 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 5061 break; 5062 return {SPF_UNKNOWN, SPNB_NA, false}; 5063 case SPF_SMAX: 5064 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) { 5065 Pred = ICmpInst::getSwappedPredicate(Pred); 5066 std::swap(CmpLHS, CmpRHS); 5067 } 5068 if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) 5069 break; 5070 return {SPF_UNKNOWN, SPNB_NA, false}; 5071 case SPF_UMIN: 5072 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 5073 Pred = ICmpInst::getSwappedPredicate(Pred); 5074 std::swap(CmpLHS, CmpRHS); 5075 } 5076 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 5077 break; 5078 return {SPF_UNKNOWN, SPNB_NA, false}; 5079 case SPF_UMAX: 5080 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) { 5081 Pred = ICmpInst::getSwappedPredicate(Pred); 5082 std::swap(CmpLHS, CmpRHS); 5083 } 5084 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) 5085 break; 5086 return {SPF_UNKNOWN, SPNB_NA, false}; 5087 default: 5088 return {SPF_UNKNOWN, SPNB_NA, false}; 5089 } 5090 5091 // If there is a common operand in the already matched min/max and the other 5092 // min/max operands match the compare operands (either directly or inverted), 5093 // then this is min/max of the same flavor. 5094 5095 // a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5096 // ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b)) 5097 if (D == B) { 5098 if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5099 match(A, m_Not(m_Specific(CmpRHS))))) 5100 return {L.Flavor, SPNB_NA, false}; 5101 } 5102 // a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5103 // ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d)) 5104 if (C == B) { 5105 if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5106 match(A, m_Not(m_Specific(CmpRHS))))) 5107 return {L.Flavor, SPNB_NA, false}; 5108 } 5109 // b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5110 // ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a)) 5111 if (D == A) { 5112 if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) && 5113 match(B, m_Not(m_Specific(CmpRHS))))) 5114 return {L.Flavor, SPNB_NA, false}; 5115 } 5116 // b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5117 // ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d)) 5118 if (C == A) { 5119 if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) && 5120 match(B, m_Not(m_Specific(CmpRHS))))) 5121 return {L.Flavor, SPNB_NA, false}; 5122 } 5123 5124 return {SPF_UNKNOWN, SPNB_NA, false}; 5125 } 5126 5127 /// If the input value is the result of a 'not' op, constant integer, or vector 5128 /// splat of a constant integer, return the bitwise-not source value. 5129 /// TODO: This could be extended to handle non-splat vector integer constants. 5130 static Value *getNotValue(Value *V) { 5131 Value *NotV; 5132 if (match(V, m_Not(m_Value(NotV)))) 5133 return NotV; 5134 5135 const APInt *C; 5136 if (match(V, m_APInt(C))) 5137 return ConstantInt::get(V->getType(), ~(*C)); 5138 5139 return nullptr; 5140 } 5141 5142 /// Match non-obvious integer minimum and maximum sequences. 5143 static SelectPatternResult matchMinMax(CmpInst::Predicate Pred, 5144 Value *CmpLHS, Value *CmpRHS, 5145 Value *TrueVal, Value *FalseVal, 5146 Value *&LHS, Value *&RHS, 5147 unsigned Depth) { 5148 // Assume success. If there's no match, callers should not use these anyway. 5149 LHS = TrueVal; 5150 RHS = FalseVal; 5151 5152 SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal); 5153 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5154 return SPR; 5155 5156 SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth); 5157 if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN) 5158 return SPR; 5159 5160 // Look through 'not' ops to find disguised min/max. 5161 // (X > Y) ? ~X : ~Y ==> (~X < ~Y) ? ~X : ~Y ==> MIN(~X, ~Y) 5162 // (X < Y) ? ~X : ~Y ==> (~X > ~Y) ? ~X : ~Y ==> MAX(~X, ~Y) 5163 if (CmpLHS == getNotValue(TrueVal) && CmpRHS == getNotValue(FalseVal)) { 5164 switch (Pred) { 5165 case CmpInst::ICMP_SGT: return {SPF_SMIN, SPNB_NA, false}; 5166 case CmpInst::ICMP_SLT: return {SPF_SMAX, SPNB_NA, false}; 5167 case CmpInst::ICMP_UGT: return {SPF_UMIN, SPNB_NA, false}; 5168 case CmpInst::ICMP_ULT: return {SPF_UMAX, SPNB_NA, false}; 5169 default: break; 5170 } 5171 } 5172 5173 // (X > Y) ? ~Y : ~X ==> (~X < ~Y) ? ~Y : ~X ==> MAX(~Y, ~X) 5174 // (X < Y) ? ~Y : ~X ==> (~X > ~Y) ? ~Y : ~X ==> MIN(~Y, ~X) 5175 if (CmpLHS == getNotValue(FalseVal) && CmpRHS == getNotValue(TrueVal)) { 5176 switch (Pred) { 5177 case CmpInst::ICMP_SGT: return {SPF_SMAX, SPNB_NA, false}; 5178 case CmpInst::ICMP_SLT: return {SPF_SMIN, SPNB_NA, false}; 5179 case CmpInst::ICMP_UGT: return {SPF_UMAX, SPNB_NA, false}; 5180 case CmpInst::ICMP_ULT: return {SPF_UMIN, SPNB_NA, false}; 5181 default: break; 5182 } 5183 } 5184 5185 if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT) 5186 return {SPF_UNKNOWN, SPNB_NA, false}; 5187 5188 // Z = X -nsw Y 5189 // (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0) 5190 // (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0) 5191 if (match(TrueVal, m_Zero()) && 5192 match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5193 return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false}; 5194 5195 // Z = X -nsw Y 5196 // (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0) 5197 // (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0) 5198 if (match(FalseVal, m_Zero()) && 5199 match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS)))) 5200 return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false}; 5201 5202 const APInt *C1; 5203 if (!match(CmpRHS, m_APInt(C1))) 5204 return {SPF_UNKNOWN, SPNB_NA, false}; 5205 5206 // An unsigned min/max can be written with a signed compare. 5207 const APInt *C2; 5208 if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) || 5209 (CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) { 5210 // Is the sign bit set? 5211 // (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX 5212 // (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN 5213 if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() && 5214 C2->isMaxSignedValue()) 5215 return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5216 5217 // Is the sign bit clear? 5218 // (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX 5219 // (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN 5220 if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() && 5221 C2->isMinSignedValue()) 5222 return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false}; 5223 } 5224 5225 return {SPF_UNKNOWN, SPNB_NA, false}; 5226 } 5227 5228 bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) { 5229 assert(X && Y && "Invalid operand"); 5230 5231 // X = sub (0, Y) || X = sub nsw (0, Y) 5232 if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) || 5233 (NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y))))) 5234 return true; 5235 5236 // Y = sub (0, X) || Y = sub nsw (0, X) 5237 if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) || 5238 (NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X))))) 5239 return true; 5240 5241 // X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A) 5242 Value *A, *B; 5243 return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) && 5244 match(Y, m_Sub(m_Specific(B), m_Specific(A))))) || 5245 (NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) && 5246 match(Y, m_NSWSub(m_Specific(B), m_Specific(A))))); 5247 } 5248 5249 static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred, 5250 FastMathFlags FMF, 5251 Value *CmpLHS, Value *CmpRHS, 5252 Value *TrueVal, Value *FalseVal, 5253 Value *&LHS, Value *&RHS, 5254 unsigned Depth) { 5255 if (CmpInst::isFPPredicate(Pred)) { 5256 // IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one 5257 // 0.0 operand, set the compare's 0.0 operands to that same value for the 5258 // purpose of identifying min/max. Disregard vector constants with undefined 5259 // elements because those can not be back-propagated for analysis. 5260 Value *OutputZeroVal = nullptr; 5261 if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) && 5262 !cast<Constant>(TrueVal)->containsUndefElement()) 5263 OutputZeroVal = TrueVal; 5264 else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) && 5265 !cast<Constant>(FalseVal)->containsUndefElement()) 5266 OutputZeroVal = FalseVal; 5267 5268 if (OutputZeroVal) { 5269 if (match(CmpLHS, m_AnyZeroFP())) 5270 CmpLHS = OutputZeroVal; 5271 if (match(CmpRHS, m_AnyZeroFP())) 5272 CmpRHS = OutputZeroVal; 5273 } 5274 } 5275 5276 LHS = CmpLHS; 5277 RHS = CmpRHS; 5278 5279 // Signed zero may return inconsistent results between implementations. 5280 // (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0 5281 // minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1) 5282 // Therefore, we behave conservatively and only proceed if at least one of the 5283 // operands is known to not be zero or if we don't care about signed zero. 5284 switch (Pred) { 5285 default: break; 5286 // FIXME: Include OGT/OLT/UGT/ULT. 5287 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE: 5288 case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE: 5289 if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5290 !isKnownNonZero(CmpRHS)) 5291 return {SPF_UNKNOWN, SPNB_NA, false}; 5292 } 5293 5294 SelectPatternNaNBehavior NaNBehavior = SPNB_NA; 5295 bool Ordered = false; 5296 5297 // When given one NaN and one non-NaN input: 5298 // - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input. 5299 // - A simple C99 (a < b ? a : b) construction will return 'b' (as the 5300 // ordered comparison fails), which could be NaN or non-NaN. 5301 // so here we discover exactly what NaN behavior is required/accepted. 5302 if (CmpInst::isFPPredicate(Pred)) { 5303 bool LHSSafe = isKnownNonNaN(CmpLHS, FMF); 5304 bool RHSSafe = isKnownNonNaN(CmpRHS, FMF); 5305 5306 if (LHSSafe && RHSSafe) { 5307 // Both operands are known non-NaN. 5308 NaNBehavior = SPNB_RETURNS_ANY; 5309 } else if (CmpInst::isOrdered(Pred)) { 5310 // An ordered comparison will return false when given a NaN, so it 5311 // returns the RHS. 5312 Ordered = true; 5313 if (LHSSafe) 5314 // LHS is non-NaN, so if RHS is NaN then NaN will be returned. 5315 NaNBehavior = SPNB_RETURNS_NAN; 5316 else if (RHSSafe) 5317 NaNBehavior = SPNB_RETURNS_OTHER; 5318 else 5319 // Completely unsafe. 5320 return {SPF_UNKNOWN, SPNB_NA, false}; 5321 } else { 5322 Ordered = false; 5323 // An unordered comparison will return true when given a NaN, so it 5324 // returns the LHS. 5325 if (LHSSafe) 5326 // LHS is non-NaN, so if RHS is NaN then non-NaN will be returned. 5327 NaNBehavior = SPNB_RETURNS_OTHER; 5328 else if (RHSSafe) 5329 NaNBehavior = SPNB_RETURNS_NAN; 5330 else 5331 // Completely unsafe. 5332 return {SPF_UNKNOWN, SPNB_NA, false}; 5333 } 5334 } 5335 5336 if (TrueVal == CmpRHS && FalseVal == CmpLHS) { 5337 std::swap(CmpLHS, CmpRHS); 5338 Pred = CmpInst::getSwappedPredicate(Pred); 5339 if (NaNBehavior == SPNB_RETURNS_NAN) 5340 NaNBehavior = SPNB_RETURNS_OTHER; 5341 else if (NaNBehavior == SPNB_RETURNS_OTHER) 5342 NaNBehavior = SPNB_RETURNS_NAN; 5343 Ordered = !Ordered; 5344 } 5345 5346 // ([if]cmp X, Y) ? X : Y 5347 if (TrueVal == CmpLHS && FalseVal == CmpRHS) { 5348 switch (Pred) { 5349 default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality. 5350 case ICmpInst::ICMP_UGT: 5351 case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false}; 5352 case ICmpInst::ICMP_SGT: 5353 case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false}; 5354 case ICmpInst::ICMP_ULT: 5355 case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false}; 5356 case ICmpInst::ICMP_SLT: 5357 case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false}; 5358 case FCmpInst::FCMP_UGT: 5359 case FCmpInst::FCMP_UGE: 5360 case FCmpInst::FCMP_OGT: 5361 case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered}; 5362 case FCmpInst::FCMP_ULT: 5363 case FCmpInst::FCMP_ULE: 5364 case FCmpInst::FCMP_OLT: 5365 case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered}; 5366 } 5367 } 5368 5369 if (isKnownNegation(TrueVal, FalseVal)) { 5370 // Sign-extending LHS does not change its sign, so TrueVal/FalseVal can 5371 // match against either LHS or sext(LHS). 5372 auto MaybeSExtCmpLHS = 5373 m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS))); 5374 auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes()); 5375 auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One()); 5376 if (match(TrueVal, MaybeSExtCmpLHS)) { 5377 // Set the return values. If the compare uses the negated value (-X >s 0), 5378 // swap the return values because the negated value is always 'RHS'. 5379 LHS = TrueVal; 5380 RHS = FalseVal; 5381 if (match(CmpLHS, m_Neg(m_Specific(FalseVal)))) 5382 std::swap(LHS, RHS); 5383 5384 // (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X) 5385 // (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X) 5386 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5387 return {SPF_ABS, SPNB_NA, false}; 5388 5389 // (X >=s 0) ? X : -X or (X >=s 1) ? X : -X --> ABS(X) 5390 if (Pred == ICmpInst::ICMP_SGE && match(CmpRHS, ZeroOrOne)) 5391 return {SPF_ABS, SPNB_NA, false}; 5392 5393 // (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X) 5394 // (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X) 5395 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5396 return {SPF_NABS, SPNB_NA, false}; 5397 } 5398 else if (match(FalseVal, MaybeSExtCmpLHS)) { 5399 // Set the return values. If the compare uses the negated value (-X >s 0), 5400 // swap the return values because the negated value is always 'RHS'. 5401 LHS = FalseVal; 5402 RHS = TrueVal; 5403 if (match(CmpLHS, m_Neg(m_Specific(TrueVal)))) 5404 std::swap(LHS, RHS); 5405 5406 // (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X) 5407 // (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X) 5408 if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes)) 5409 return {SPF_NABS, SPNB_NA, false}; 5410 5411 // (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X) 5412 // (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X) 5413 if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne)) 5414 return {SPF_ABS, SPNB_NA, false}; 5415 } 5416 } 5417 5418 if (CmpInst::isIntPredicate(Pred)) 5419 return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth); 5420 5421 // According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar 5422 // may return either -0.0 or 0.0, so fcmp/select pair has stricter 5423 // semantics than minNum. Be conservative in such case. 5424 if (NaNBehavior != SPNB_RETURNS_ANY || 5425 (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) && 5426 !isKnownNonZero(CmpRHS))) 5427 return {SPF_UNKNOWN, SPNB_NA, false}; 5428 5429 return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS); 5430 } 5431 5432 /// Helps to match a select pattern in case of a type mismatch. 5433 /// 5434 /// The function processes the case when type of true and false values of a 5435 /// select instruction differs from type of the cmp instruction operands because 5436 /// of a cast instruction. The function checks if it is legal to move the cast 5437 /// operation after "select". If yes, it returns the new second value of 5438 /// "select" (with the assumption that cast is moved): 5439 /// 1. As operand of cast instruction when both values of "select" are same cast 5440 /// instructions. 5441 /// 2. As restored constant (by applying reverse cast operation) when the first 5442 /// value of the "select" is a cast operation and the second value is a 5443 /// constant. 5444 /// NOTE: We return only the new second value because the first value could be 5445 /// accessed as operand of cast instruction. 5446 static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2, 5447 Instruction::CastOps *CastOp) { 5448 auto *Cast1 = dyn_cast<CastInst>(V1); 5449 if (!Cast1) 5450 return nullptr; 5451 5452 *CastOp = Cast1->getOpcode(); 5453 Type *SrcTy = Cast1->getSrcTy(); 5454 if (auto *Cast2 = dyn_cast<CastInst>(V2)) { 5455 // If V1 and V2 are both the same cast from the same type, look through V1. 5456 if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy()) 5457 return Cast2->getOperand(0); 5458 return nullptr; 5459 } 5460 5461 auto *C = dyn_cast<Constant>(V2); 5462 if (!C) 5463 return nullptr; 5464 5465 Constant *CastedTo = nullptr; 5466 switch (*CastOp) { 5467 case Instruction::ZExt: 5468 if (CmpI->isUnsigned()) 5469 CastedTo = ConstantExpr::getTrunc(C, SrcTy); 5470 break; 5471 case Instruction::SExt: 5472 if (CmpI->isSigned()) 5473 CastedTo = ConstantExpr::getTrunc(C, SrcTy, true); 5474 break; 5475 case Instruction::Trunc: 5476 Constant *CmpConst; 5477 if (match(CmpI->getOperand(1), m_Constant(CmpConst)) && 5478 CmpConst->getType() == SrcTy) { 5479 // Here we have the following case: 5480 // 5481 // %cond = cmp iN %x, CmpConst 5482 // %tr = trunc iN %x to iK 5483 // %narrowsel = select i1 %cond, iK %t, iK C 5484 // 5485 // We can always move trunc after select operation: 5486 // 5487 // %cond = cmp iN %x, CmpConst 5488 // %widesel = select i1 %cond, iN %x, iN CmpConst 5489 // %tr = trunc iN %widesel to iK 5490 // 5491 // Note that C could be extended in any way because we don't care about 5492 // upper bits after truncation. It can't be abs pattern, because it would 5493 // look like: 5494 // 5495 // select i1 %cond, x, -x. 5496 // 5497 // So only min/max pattern could be matched. Such match requires widened C 5498 // == CmpConst. That is why set widened C = CmpConst, condition trunc 5499 // CmpConst == C is checked below. 5500 CastedTo = CmpConst; 5501 } else { 5502 CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned()); 5503 } 5504 break; 5505 case Instruction::FPTrunc: 5506 CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true); 5507 break; 5508 case Instruction::FPExt: 5509 CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true); 5510 break; 5511 case Instruction::FPToUI: 5512 CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true); 5513 break; 5514 case Instruction::FPToSI: 5515 CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true); 5516 break; 5517 case Instruction::UIToFP: 5518 CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true); 5519 break; 5520 case Instruction::SIToFP: 5521 CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true); 5522 break; 5523 default: 5524 break; 5525 } 5526 5527 if (!CastedTo) 5528 return nullptr; 5529 5530 // Make sure the cast doesn't lose any information. 5531 Constant *CastedBack = 5532 ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true); 5533 if (CastedBack != C) 5534 return nullptr; 5535 5536 return CastedTo; 5537 } 5538 5539 SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS, 5540 Instruction::CastOps *CastOp, 5541 unsigned Depth) { 5542 if (Depth >= MaxDepth) 5543 return {SPF_UNKNOWN, SPNB_NA, false}; 5544 5545 SelectInst *SI = dyn_cast<SelectInst>(V); 5546 if (!SI) return {SPF_UNKNOWN, SPNB_NA, false}; 5547 5548 CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition()); 5549 if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false}; 5550 5551 Value *TrueVal = SI->getTrueValue(); 5552 Value *FalseVal = SI->getFalseValue(); 5553 5554 return llvm::matchDecomposedSelectPattern(CmpI, TrueVal, FalseVal, LHS, RHS, 5555 CastOp, Depth); 5556 } 5557 5558 SelectPatternResult llvm::matchDecomposedSelectPattern( 5559 CmpInst *CmpI, Value *TrueVal, Value *FalseVal, Value *&LHS, Value *&RHS, 5560 Instruction::CastOps *CastOp, unsigned Depth) { 5561 CmpInst::Predicate Pred = CmpI->getPredicate(); 5562 Value *CmpLHS = CmpI->getOperand(0); 5563 Value *CmpRHS = CmpI->getOperand(1); 5564 FastMathFlags FMF; 5565 if (isa<FPMathOperator>(CmpI)) 5566 FMF = CmpI->getFastMathFlags(); 5567 5568 // Bail out early. 5569 if (CmpI->isEquality()) 5570 return {SPF_UNKNOWN, SPNB_NA, false}; 5571 5572 // Deal with type mismatches. 5573 if (CastOp && CmpLHS->getType() != TrueVal->getType()) { 5574 if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) { 5575 // If this is a potential fmin/fmax with a cast to integer, then ignore 5576 // -0.0 because there is no corresponding integer value. 5577 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5578 FMF.setNoSignedZeros(); 5579 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5580 cast<CastInst>(TrueVal)->getOperand(0), C, 5581 LHS, RHS, Depth); 5582 } 5583 if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) { 5584 // If this is a potential fmin/fmax with a cast to integer, then ignore 5585 // -0.0 because there is no corresponding integer value. 5586 if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI) 5587 FMF.setNoSignedZeros(); 5588 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, 5589 C, cast<CastInst>(FalseVal)->getOperand(0), 5590 LHS, RHS, Depth); 5591 } 5592 } 5593 return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal, 5594 LHS, RHS, Depth); 5595 } 5596 5597 CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) { 5598 if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT; 5599 if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT; 5600 if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT; 5601 if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT; 5602 if (SPF == SPF_FMINNUM) 5603 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 5604 if (SPF == SPF_FMAXNUM) 5605 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 5606 llvm_unreachable("unhandled!"); 5607 } 5608 5609 SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) { 5610 if (SPF == SPF_SMIN) return SPF_SMAX; 5611 if (SPF == SPF_UMIN) return SPF_UMAX; 5612 if (SPF == SPF_SMAX) return SPF_SMIN; 5613 if (SPF == SPF_UMAX) return SPF_UMIN; 5614 llvm_unreachable("unhandled!"); 5615 } 5616 5617 CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) { 5618 return getMinMaxPred(getInverseMinMaxFlavor(SPF)); 5619 } 5620 5621 /// Return true if "icmp Pred LHS RHS" is always true. 5622 static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS, 5623 const Value *RHS, const DataLayout &DL, 5624 unsigned Depth) { 5625 assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!"); 5626 if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS) 5627 return true; 5628 5629 switch (Pred) { 5630 default: 5631 return false; 5632 5633 case CmpInst::ICMP_SLE: { 5634 const APInt *C; 5635 5636 // LHS s<= LHS +_{nsw} C if C >= 0 5637 if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C)))) 5638 return !C->isNegative(); 5639 return false; 5640 } 5641 5642 case CmpInst::ICMP_ULE: { 5643 const APInt *C; 5644 5645 // LHS u<= LHS +_{nuw} C for any C 5646 if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C)))) 5647 return true; 5648 5649 // Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB) 5650 auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B, 5651 const Value *&X, 5652 const APInt *&CA, const APInt *&CB) { 5653 if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) && 5654 match(B, m_NUWAdd(m_Specific(X), m_APInt(CB)))) 5655 return true; 5656 5657 // If X & C == 0 then (X | C) == X +_{nuw} C 5658 if (match(A, m_Or(m_Value(X), m_APInt(CA))) && 5659 match(B, m_Or(m_Specific(X), m_APInt(CB)))) { 5660 KnownBits Known(CA->getBitWidth()); 5661 computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr, 5662 /*CxtI*/ nullptr, /*DT*/ nullptr); 5663 if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero)) 5664 return true; 5665 } 5666 5667 return false; 5668 }; 5669 5670 const Value *X; 5671 const APInt *CLHS, *CRHS; 5672 if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS)) 5673 return CLHS->ule(*CRHS); 5674 5675 return false; 5676 } 5677 } 5678 } 5679 5680 /// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred 5681 /// ALHS ARHS" is true. Otherwise, return None. 5682 static Optional<bool> 5683 isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS, 5684 const Value *ARHS, const Value *BLHS, const Value *BRHS, 5685 const DataLayout &DL, unsigned Depth) { 5686 switch (Pred) { 5687 default: 5688 return None; 5689 5690 case CmpInst::ICMP_SLT: 5691 case CmpInst::ICMP_SLE: 5692 if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) && 5693 isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth)) 5694 return true; 5695 return None; 5696 5697 case CmpInst::ICMP_ULT: 5698 case CmpInst::ICMP_ULE: 5699 if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) && 5700 isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth)) 5701 return true; 5702 return None; 5703 } 5704 } 5705 5706 /// Return true if the operands of the two compares match. IsSwappedOps is true 5707 /// when the operands match, but are swapped. 5708 static bool isMatchingOps(const Value *ALHS, const Value *ARHS, 5709 const Value *BLHS, const Value *BRHS, 5710 bool &IsSwappedOps) { 5711 5712 bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS); 5713 IsSwappedOps = (ALHS == BRHS && ARHS == BLHS); 5714 return IsMatchingOps || IsSwappedOps; 5715 } 5716 5717 /// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true. 5718 /// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false. 5719 /// Otherwise, return None if we can't infer anything. 5720 static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred, 5721 CmpInst::Predicate BPred, 5722 bool AreSwappedOps) { 5723 // Canonicalize the predicate as if the operands were not commuted. 5724 if (AreSwappedOps) 5725 BPred = ICmpInst::getSwappedPredicate(BPred); 5726 5727 if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred)) 5728 return true; 5729 if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred)) 5730 return false; 5731 5732 return None; 5733 } 5734 5735 /// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true. 5736 /// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false. 5737 /// Otherwise, return None if we can't infer anything. 5738 static Optional<bool> 5739 isImpliedCondMatchingImmOperands(CmpInst::Predicate APred, 5740 const ConstantInt *C1, 5741 CmpInst::Predicate BPred, 5742 const ConstantInt *C2) { 5743 ConstantRange DomCR = 5744 ConstantRange::makeExactICmpRegion(APred, C1->getValue()); 5745 ConstantRange CR = 5746 ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue()); 5747 ConstantRange Intersection = DomCR.intersectWith(CR); 5748 ConstantRange Difference = DomCR.difference(CR); 5749 if (Intersection.isEmptySet()) 5750 return false; 5751 if (Difference.isEmptySet()) 5752 return true; 5753 return None; 5754 } 5755 5756 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5757 /// false. Otherwise, return None if we can't infer anything. 5758 static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS, 5759 CmpInst::Predicate BPred, 5760 const Value *BLHS, const Value *BRHS, 5761 const DataLayout &DL, bool LHSIsTrue, 5762 unsigned Depth) { 5763 Value *ALHS = LHS->getOperand(0); 5764 Value *ARHS = LHS->getOperand(1); 5765 5766 // The rest of the logic assumes the LHS condition is true. If that's not the 5767 // case, invert the predicate to make it so. 5768 CmpInst::Predicate APred = 5769 LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate(); 5770 5771 // Can we infer anything when the two compares have matching operands? 5772 bool AreSwappedOps; 5773 if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) { 5774 if (Optional<bool> Implication = isImpliedCondMatchingOperands( 5775 APred, BPred, AreSwappedOps)) 5776 return Implication; 5777 // No amount of additional analysis will infer the second condition, so 5778 // early exit. 5779 return None; 5780 } 5781 5782 // Can we infer anything when the LHS operands match and the RHS operands are 5783 // constants (not necessarily matching)? 5784 if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) { 5785 if (Optional<bool> Implication = isImpliedCondMatchingImmOperands( 5786 APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS))) 5787 return Implication; 5788 // No amount of additional analysis will infer the second condition, so 5789 // early exit. 5790 return None; 5791 } 5792 5793 if (APred == BPred) 5794 return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth); 5795 return None; 5796 } 5797 5798 /// Return true if LHS implies RHS is true. Return false if LHS implies RHS is 5799 /// false. Otherwise, return None if we can't infer anything. We expect the 5800 /// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction. 5801 static Optional<bool> 5802 isImpliedCondAndOr(const BinaryOperator *LHS, CmpInst::Predicate RHSPred, 5803 const Value *RHSOp0, const Value *RHSOp1, 5804 5805 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5806 // The LHS must be an 'or' or an 'and' instruction. 5807 assert((LHS->getOpcode() == Instruction::And || 5808 LHS->getOpcode() == Instruction::Or) && 5809 "Expected LHS to be 'and' or 'or'."); 5810 5811 assert(Depth <= MaxDepth && "Hit recursion limit"); 5812 5813 // If the result of an 'or' is false, then we know both legs of the 'or' are 5814 // false. Similarly, if the result of an 'and' is true, then we know both 5815 // legs of the 'and' are true. 5816 Value *ALHS, *ARHS; 5817 if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) || 5818 (LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) { 5819 // FIXME: Make this non-recursion. 5820 if (Optional<bool> Implication = isImpliedCondition( 5821 ALHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5822 return Implication; 5823 if (Optional<bool> Implication = isImpliedCondition( 5824 ARHS, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, Depth + 1)) 5825 return Implication; 5826 return None; 5827 } 5828 return None; 5829 } 5830 5831 Optional<bool> 5832 llvm::isImpliedCondition(const Value *LHS, CmpInst::Predicate RHSPred, 5833 const Value *RHSOp0, const Value *RHSOp1, 5834 const DataLayout &DL, bool LHSIsTrue, unsigned Depth) { 5835 // Bail out when we hit the limit. 5836 if (Depth == MaxDepth) 5837 return None; 5838 5839 // A mismatch occurs when we compare a scalar cmp to a vector cmp, for 5840 // example. 5841 if (RHSOp0->getType()->isVectorTy() != LHS->getType()->isVectorTy()) 5842 return None; 5843 5844 Type *OpTy = LHS->getType(); 5845 assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!"); 5846 5847 // FIXME: Extending the code below to handle vectors. 5848 if (OpTy->isVectorTy()) 5849 return None; 5850 5851 assert(OpTy->isIntegerTy(1) && "implied by above"); 5852 5853 // Both LHS and RHS are icmps. 5854 const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS); 5855 if (LHSCmp) 5856 return isImpliedCondICmps(LHSCmp, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5857 Depth); 5858 5859 /// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to 5860 /// be / an icmp. FIXME: Add support for and/or on the RHS. 5861 const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS); 5862 if (LHSBO) { 5863 if ((LHSBO->getOpcode() == Instruction::And || 5864 LHSBO->getOpcode() == Instruction::Or)) 5865 return isImpliedCondAndOr(LHSBO, RHSPred, RHSOp0, RHSOp1, DL, LHSIsTrue, 5866 Depth); 5867 } 5868 return None; 5869 } 5870 5871 Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS, 5872 const DataLayout &DL, bool LHSIsTrue, 5873 unsigned Depth) { 5874 // LHS ==> RHS by definition 5875 if (LHS == RHS) 5876 return LHSIsTrue; 5877 5878 const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS); 5879 if (RHSCmp) 5880 return isImpliedCondition(LHS, RHSCmp->getPredicate(), 5881 RHSCmp->getOperand(0), RHSCmp->getOperand(1), DL, 5882 LHSIsTrue, Depth); 5883 return None; 5884 } 5885 5886 // Returns a pair (Condition, ConditionIsTrue), where Condition is a branch 5887 // condition dominating ContextI or nullptr, if no condition is found. 5888 static std::pair<Value *, bool> 5889 getDomPredecessorCondition(const Instruction *ContextI) { 5890 if (!ContextI || !ContextI->getParent()) 5891 return {nullptr, false}; 5892 5893 // TODO: This is a poor/cheap way to determine dominance. Should we use a 5894 // dominator tree (eg, from a SimplifyQuery) instead? 5895 const BasicBlock *ContextBB = ContextI->getParent(); 5896 const BasicBlock *PredBB = ContextBB->getSinglePredecessor(); 5897 if (!PredBB) 5898 return {nullptr, false}; 5899 5900 // We need a conditional branch in the predecessor. 5901 Value *PredCond; 5902 BasicBlock *TrueBB, *FalseBB; 5903 if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB))) 5904 return {nullptr, false}; 5905 5906 // The branch should get simplified. Don't bother simplifying this condition. 5907 if (TrueBB == FalseBB) 5908 return {nullptr, false}; 5909 5910 assert((TrueBB == ContextBB || FalseBB == ContextBB) && 5911 "Predecessor block does not point to successor?"); 5912 5913 // Is this condition implied by the predecessor condition? 5914 return {PredCond, TrueBB == ContextBB}; 5915 } 5916 5917 Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond, 5918 const Instruction *ContextI, 5919 const DataLayout &DL) { 5920 assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool"); 5921 auto PredCond = getDomPredecessorCondition(ContextI); 5922 if (PredCond.first) 5923 return isImpliedCondition(PredCond.first, Cond, DL, PredCond.second); 5924 return None; 5925 } 5926 5927 Optional<bool> llvm::isImpliedByDomCondition(CmpInst::Predicate Pred, 5928 const Value *LHS, const Value *RHS, 5929 const Instruction *ContextI, 5930 const DataLayout &DL) { 5931 auto PredCond = getDomPredecessorCondition(ContextI); 5932 if (PredCond.first) 5933 return isImpliedCondition(PredCond.first, Pred, LHS, RHS, DL, 5934 PredCond.second); 5935 return None; 5936 } 5937 5938 static void setLimitsForBinOp(const BinaryOperator &BO, APInt &Lower, 5939 APInt &Upper, const InstrInfoQuery &IIQ) { 5940 unsigned Width = Lower.getBitWidth(); 5941 const APInt *C; 5942 switch (BO.getOpcode()) { 5943 case Instruction::Add: 5944 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 5945 // FIXME: If we have both nuw and nsw, we should reduce the range further. 5946 if (IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5947 // 'add nuw x, C' produces [C, UINT_MAX]. 5948 Lower = *C; 5949 } else if (IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(&BO))) { 5950 if (C->isNegative()) { 5951 // 'add nsw x, -C' produces [SINT_MIN, SINT_MAX - C]. 5952 Lower = APInt::getSignedMinValue(Width); 5953 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 5954 } else { 5955 // 'add nsw x, +C' produces [SINT_MIN + C, SINT_MAX]. 5956 Lower = APInt::getSignedMinValue(Width) + *C; 5957 Upper = APInt::getSignedMaxValue(Width) + 1; 5958 } 5959 } 5960 } 5961 break; 5962 5963 case Instruction::And: 5964 if (match(BO.getOperand(1), m_APInt(C))) 5965 // 'and x, C' produces [0, C]. 5966 Upper = *C + 1; 5967 break; 5968 5969 case Instruction::Or: 5970 if (match(BO.getOperand(1), m_APInt(C))) 5971 // 'or x, C' produces [C, UINT_MAX]. 5972 Lower = *C; 5973 break; 5974 5975 case Instruction::AShr: 5976 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5977 // 'ashr x, C' produces [INT_MIN >> C, INT_MAX >> C]. 5978 Lower = APInt::getSignedMinValue(Width).ashr(*C); 5979 Upper = APInt::getSignedMaxValue(Width).ashr(*C) + 1; 5980 } else if (match(BO.getOperand(0), m_APInt(C))) { 5981 unsigned ShiftAmount = Width - 1; 5982 if (!C->isNullValue() && IIQ.isExact(&BO)) 5983 ShiftAmount = C->countTrailingZeros(); 5984 if (C->isNegative()) { 5985 // 'ashr C, x' produces [C, C >> (Width-1)] 5986 Lower = *C; 5987 Upper = C->ashr(ShiftAmount) + 1; 5988 } else { 5989 // 'ashr C, x' produces [C >> (Width-1), C] 5990 Lower = C->ashr(ShiftAmount); 5991 Upper = *C + 1; 5992 } 5993 } 5994 break; 5995 5996 case Instruction::LShr: 5997 if (match(BO.getOperand(1), m_APInt(C)) && C->ult(Width)) { 5998 // 'lshr x, C' produces [0, UINT_MAX >> C]. 5999 Upper = APInt::getAllOnesValue(Width).lshr(*C) + 1; 6000 } else if (match(BO.getOperand(0), m_APInt(C))) { 6001 // 'lshr C, x' produces [C >> (Width-1), C]. 6002 unsigned ShiftAmount = Width - 1; 6003 if (!C->isNullValue() && IIQ.isExact(&BO)) 6004 ShiftAmount = C->countTrailingZeros(); 6005 Lower = C->lshr(ShiftAmount); 6006 Upper = *C + 1; 6007 } 6008 break; 6009 6010 case Instruction::Shl: 6011 if (match(BO.getOperand(0), m_APInt(C))) { 6012 if (IIQ.hasNoUnsignedWrap(&BO)) { 6013 // 'shl nuw C, x' produces [C, C << CLZ(C)] 6014 Lower = *C; 6015 Upper = Lower.shl(Lower.countLeadingZeros()) + 1; 6016 } else if (BO.hasNoSignedWrap()) { // TODO: What if both nuw+nsw? 6017 if (C->isNegative()) { 6018 // 'shl nsw C, x' produces [C << CLO(C)-1, C] 6019 unsigned ShiftAmount = C->countLeadingOnes() - 1; 6020 Lower = C->shl(ShiftAmount); 6021 Upper = *C + 1; 6022 } else { 6023 // 'shl nsw C, x' produces [C, C << CLZ(C)-1] 6024 unsigned ShiftAmount = C->countLeadingZeros() - 1; 6025 Lower = *C; 6026 Upper = C->shl(ShiftAmount) + 1; 6027 } 6028 } 6029 } 6030 break; 6031 6032 case Instruction::SDiv: 6033 if (match(BO.getOperand(1), m_APInt(C))) { 6034 APInt IntMin = APInt::getSignedMinValue(Width); 6035 APInt IntMax = APInt::getSignedMaxValue(Width); 6036 if (C->isAllOnesValue()) { 6037 // 'sdiv x, -1' produces [INT_MIN + 1, INT_MAX] 6038 // where C != -1 and C != 0 and C != 1 6039 Lower = IntMin + 1; 6040 Upper = IntMax + 1; 6041 } else if (C->countLeadingZeros() < Width - 1) { 6042 // 'sdiv x, C' produces [INT_MIN / C, INT_MAX / C] 6043 // where C != -1 and C != 0 and C != 1 6044 Lower = IntMin.sdiv(*C); 6045 Upper = IntMax.sdiv(*C); 6046 if (Lower.sgt(Upper)) 6047 std::swap(Lower, Upper); 6048 Upper = Upper + 1; 6049 assert(Upper != Lower && "Upper part of range has wrapped!"); 6050 } 6051 } else if (match(BO.getOperand(0), m_APInt(C))) { 6052 if (C->isMinSignedValue()) { 6053 // 'sdiv INT_MIN, x' produces [INT_MIN, INT_MIN / -2]. 6054 Lower = *C; 6055 Upper = Lower.lshr(1) + 1; 6056 } else { 6057 // 'sdiv C, x' produces [-|C|, |C|]. 6058 Upper = C->abs() + 1; 6059 Lower = (-Upper) + 1; 6060 } 6061 } 6062 break; 6063 6064 case Instruction::UDiv: 6065 if (match(BO.getOperand(1), m_APInt(C)) && !C->isNullValue()) { 6066 // 'udiv x, C' produces [0, UINT_MAX / C]. 6067 Upper = APInt::getMaxValue(Width).udiv(*C) + 1; 6068 } else if (match(BO.getOperand(0), m_APInt(C))) { 6069 // 'udiv C, x' produces [0, C]. 6070 Upper = *C + 1; 6071 } 6072 break; 6073 6074 case Instruction::SRem: 6075 if (match(BO.getOperand(1), m_APInt(C))) { 6076 // 'srem x, C' produces (-|C|, |C|). 6077 Upper = C->abs(); 6078 Lower = (-Upper) + 1; 6079 } 6080 break; 6081 6082 case Instruction::URem: 6083 if (match(BO.getOperand(1), m_APInt(C))) 6084 // 'urem x, C' produces [0, C). 6085 Upper = *C; 6086 break; 6087 6088 default: 6089 break; 6090 } 6091 } 6092 6093 static void setLimitsForIntrinsic(const IntrinsicInst &II, APInt &Lower, 6094 APInt &Upper) { 6095 unsigned Width = Lower.getBitWidth(); 6096 const APInt *C; 6097 switch (II.getIntrinsicID()) { 6098 case Intrinsic::uadd_sat: 6099 // uadd.sat(x, C) produces [C, UINT_MAX]. 6100 if (match(II.getOperand(0), m_APInt(C)) || 6101 match(II.getOperand(1), m_APInt(C))) 6102 Lower = *C; 6103 break; 6104 case Intrinsic::sadd_sat: 6105 if (match(II.getOperand(0), m_APInt(C)) || 6106 match(II.getOperand(1), m_APInt(C))) { 6107 if (C->isNegative()) { 6108 // sadd.sat(x, -C) produces [SINT_MIN, SINT_MAX + (-C)]. 6109 Lower = APInt::getSignedMinValue(Width); 6110 Upper = APInt::getSignedMaxValue(Width) + *C + 1; 6111 } else { 6112 // sadd.sat(x, +C) produces [SINT_MIN + C, SINT_MAX]. 6113 Lower = APInt::getSignedMinValue(Width) + *C; 6114 Upper = APInt::getSignedMaxValue(Width) + 1; 6115 } 6116 } 6117 break; 6118 case Intrinsic::usub_sat: 6119 // usub.sat(C, x) produces [0, C]. 6120 if (match(II.getOperand(0), m_APInt(C))) 6121 Upper = *C + 1; 6122 // usub.sat(x, C) produces [0, UINT_MAX - C]. 6123 else if (match(II.getOperand(1), m_APInt(C))) 6124 Upper = APInt::getMaxValue(Width) - *C + 1; 6125 break; 6126 case Intrinsic::ssub_sat: 6127 if (match(II.getOperand(0), m_APInt(C))) { 6128 if (C->isNegative()) { 6129 // ssub.sat(-C, x) produces [SINT_MIN, -SINT_MIN + (-C)]. 6130 Lower = APInt::getSignedMinValue(Width); 6131 Upper = *C - APInt::getSignedMinValue(Width) + 1; 6132 } else { 6133 // ssub.sat(+C, x) produces [-SINT_MAX + C, SINT_MAX]. 6134 Lower = *C - APInt::getSignedMaxValue(Width); 6135 Upper = APInt::getSignedMaxValue(Width) + 1; 6136 } 6137 } else if (match(II.getOperand(1), m_APInt(C))) { 6138 if (C->isNegative()) { 6139 // ssub.sat(x, -C) produces [SINT_MIN - (-C), SINT_MAX]: 6140 Lower = APInt::getSignedMinValue(Width) - *C; 6141 Upper = APInt::getSignedMaxValue(Width) + 1; 6142 } else { 6143 // ssub.sat(x, +C) produces [SINT_MIN, SINT_MAX - C]. 6144 Lower = APInt::getSignedMinValue(Width); 6145 Upper = APInt::getSignedMaxValue(Width) - *C + 1; 6146 } 6147 } 6148 break; 6149 default: 6150 break; 6151 } 6152 } 6153 6154 static void setLimitsForSelectPattern(const SelectInst &SI, APInt &Lower, 6155 APInt &Upper, const InstrInfoQuery &IIQ) { 6156 const Value *LHS = nullptr, *RHS = nullptr; 6157 SelectPatternResult R = matchSelectPattern(&SI, LHS, RHS); 6158 if (R.Flavor == SPF_UNKNOWN) 6159 return; 6160 6161 unsigned BitWidth = SI.getType()->getScalarSizeInBits(); 6162 6163 if (R.Flavor == SelectPatternFlavor::SPF_ABS) { 6164 // If the negation part of the abs (in RHS) has the NSW flag, 6165 // then the result of abs(X) is [0..SIGNED_MAX], 6166 // otherwise it is [0..SIGNED_MIN], as -SIGNED_MIN == SIGNED_MIN. 6167 Lower = APInt::getNullValue(BitWidth); 6168 if (match(RHS, m_Neg(m_Specific(LHS))) && 6169 IIQ.hasNoSignedWrap(cast<Instruction>(RHS))) 6170 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6171 else 6172 Upper = APInt::getSignedMinValue(BitWidth) + 1; 6173 return; 6174 } 6175 6176 if (R.Flavor == SelectPatternFlavor::SPF_NABS) { 6177 // The result of -abs(X) is <= 0. 6178 Lower = APInt::getSignedMinValue(BitWidth); 6179 Upper = APInt(BitWidth, 1); 6180 return; 6181 } 6182 6183 const APInt *C; 6184 if (!match(LHS, m_APInt(C)) && !match(RHS, m_APInt(C))) 6185 return; 6186 6187 switch (R.Flavor) { 6188 case SPF_UMIN: 6189 Upper = *C + 1; 6190 break; 6191 case SPF_UMAX: 6192 Lower = *C; 6193 break; 6194 case SPF_SMIN: 6195 Lower = APInt::getSignedMinValue(BitWidth); 6196 Upper = *C + 1; 6197 break; 6198 case SPF_SMAX: 6199 Lower = *C; 6200 Upper = APInt::getSignedMaxValue(BitWidth) + 1; 6201 break; 6202 default: 6203 break; 6204 } 6205 } 6206 6207 ConstantRange llvm::computeConstantRange(const Value *V, bool UseInstrInfo) { 6208 assert(V->getType()->isIntOrIntVectorTy() && "Expected integer instruction"); 6209 6210 const APInt *C; 6211 if (match(V, m_APInt(C))) 6212 return ConstantRange(*C); 6213 6214 InstrInfoQuery IIQ(UseInstrInfo); 6215 unsigned BitWidth = V->getType()->getScalarSizeInBits(); 6216 APInt Lower = APInt(BitWidth, 0); 6217 APInt Upper = APInt(BitWidth, 0); 6218 if (auto *BO = dyn_cast<BinaryOperator>(V)) 6219 setLimitsForBinOp(*BO, Lower, Upper, IIQ); 6220 else if (auto *II = dyn_cast<IntrinsicInst>(V)) 6221 setLimitsForIntrinsic(*II, Lower, Upper); 6222 else if (auto *SI = dyn_cast<SelectInst>(V)) 6223 setLimitsForSelectPattern(*SI, Lower, Upper, IIQ); 6224 6225 ConstantRange CR = ConstantRange::getNonEmpty(Lower, Upper); 6226 6227 if (auto *I = dyn_cast<Instruction>(V)) 6228 if (auto *Range = IIQ.getMetadata(I, LLVMContext::MD_range)) 6229 CR = CR.intersectWith(getConstantRangeFromMetadata(*Range)); 6230 6231 return CR; 6232 } 6233 6234 static Optional<int64_t> 6235 getOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, const DataLayout &DL) { 6236 // Skip over the first indices. 6237 gep_type_iterator GTI = gep_type_begin(GEP); 6238 for (unsigned i = 1; i != Idx; ++i, ++GTI) 6239 /*skip along*/; 6240 6241 // Compute the offset implied by the rest of the indices. 6242 int64_t Offset = 0; 6243 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { 6244 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); 6245 if (!OpC) 6246 return None; 6247 if (OpC->isZero()) 6248 continue; // No offset. 6249 6250 // Handle struct indices, which add their field offset to the pointer. 6251 if (StructType *STy = GTI.getStructTypeOrNull()) { 6252 Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); 6253 continue; 6254 } 6255 6256 // Otherwise, we have a sequential type like an array or fixed-length 6257 // vector. Multiply the index by the ElementSize. 6258 TypeSize Size = DL.getTypeAllocSize(GTI.getIndexedType()); 6259 if (Size.isScalable()) 6260 return None; 6261 Offset += Size.getFixedSize() * OpC->getSExtValue(); 6262 } 6263 6264 return Offset; 6265 } 6266 6267 Optional<int64_t> llvm::isPointerOffset(const Value *Ptr1, const Value *Ptr2, 6268 const DataLayout &DL) { 6269 Ptr1 = Ptr1->stripPointerCasts(); 6270 Ptr2 = Ptr2->stripPointerCasts(); 6271 6272 // Handle the trivial case first. 6273 if (Ptr1 == Ptr2) { 6274 return 0; 6275 } 6276 6277 const GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); 6278 const GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); 6279 6280 // If one pointer is a GEP see if the GEP is a constant offset from the base, 6281 // as in "P" and "gep P, 1". 6282 // Also do this iteratively to handle the the following case: 6283 // Ptr_t1 = GEP Ptr1, c1 6284 // Ptr_t2 = GEP Ptr_t1, c2 6285 // Ptr2 = GEP Ptr_t2, c3 6286 // where we will return c1+c2+c3. 6287 // TODO: Handle the case when both Ptr1 and Ptr2 are GEPs of some common base 6288 // -- replace getOffsetFromBase with getOffsetAndBase, check that the bases 6289 // are the same, and return the difference between offsets. 6290 auto getOffsetFromBase = [&DL](const GEPOperator *GEP, 6291 const Value *Ptr) -> Optional<int64_t> { 6292 const GEPOperator *GEP_T = GEP; 6293 int64_t OffsetVal = 0; 6294 bool HasSameBase = false; 6295 while (GEP_T) { 6296 auto Offset = getOffsetFromIndex(GEP_T, 1, DL); 6297 if (!Offset) 6298 return None; 6299 OffsetVal += *Offset; 6300 auto Op0 = GEP_T->getOperand(0)->stripPointerCasts(); 6301 if (Op0 == Ptr) { 6302 HasSameBase = true; 6303 break; 6304 } 6305 GEP_T = dyn_cast<GEPOperator>(Op0); 6306 } 6307 if (!HasSameBase) 6308 return None; 6309 return OffsetVal; 6310 }; 6311 6312 if (GEP1) { 6313 auto Offset = getOffsetFromBase(GEP1, Ptr2); 6314 if (Offset) 6315 return -*Offset; 6316 } 6317 if (GEP2) { 6318 auto Offset = getOffsetFromBase(GEP2, Ptr1); 6319 if (Offset) 6320 return Offset; 6321 } 6322 6323 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical 6324 // base. After that base, they may have some number of common (and 6325 // potentially variable) indices. After that they handle some constant 6326 // offset, which determines their offset from each other. At this point, we 6327 // handle no other case. 6328 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) 6329 return None; 6330 6331 // Skip any common indices and track the GEP types. 6332 unsigned Idx = 1; 6333 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) 6334 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) 6335 break; 6336 6337 auto Offset1 = getOffsetFromIndex(GEP1, Idx, DL); 6338 auto Offset2 = getOffsetFromIndex(GEP2, Idx, DL); 6339 if (!Offset1 || !Offset2) 6340 return None; 6341 return *Offset2 - *Offset1; 6342 } 6343